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ABSTRACT
The pleasant incidence properties of the finite projective geometry PG(m,2) are invoked in
order to handle nicely certain commutativity/anti-commutativity aspects of the real
Clifford algebras C1(0,d), d = |PG(m,2)|= 2m*} - 1 , m = 2,8,
1. Introduction

As {n [1],[2] we deal with an irreducible representation of C1(0,d), d = 2m+1l - 1,

(m 2 2), in which the operators I, T2, ... , I'a satisfy
(re)2 = -1, I'plq = ~I'al'p, P #* 4, (1.1)

and

'y ... Ta=+1. (1.2)
Let s = (1,2, ... ,d). Then for each «€P(S)(= power set of S) we can define an
assoclated element I (a) in our representation. For example 1f a = {2,3,7,8} then
T(a) = rarar'sle . 0f course I ({p)}) =T, . It follows from (1.1),(1.2) that

r(a)r(g) = r(adg) , I'(s) = +I (1.3)
where «A8 denotes the symmetric difference of the subsets «,82 of S. Using A as

addition, observe that P(S) is a vector space, of dimension d, over the field F; = {0,1)
of erder 2. In particular abAax = 8 (= the zero vector of P(S)). What is more, noting
that oN(pAY) = (aNB)A(aNv) ., we see that (P(S),A,N) 1is a Fz-algebra having S as 1
(since oS = a).

Let us now interpret S as the set of points of a finite projective geometry PG(m,2) ,
of (projective) dimension m over F,. Because of the peculiar nature of [z, in which
A# 0 implies A =1 , we may view S as consisting of the nonzero vectors of a vector
space V of dimension m+l1 over Fz, three distinct points p,q,r of S being collinear
if and only if p+qg+r =0 . Now |V]| = 2m*) |, and so |§| = 2m*l - 1 = d , as announced
above. Let S denote, for r = 0,1, ...,m, the set of all the r-flats of PG(m,2), and
let C, denote that vector subspace of P(S) which is spanned by the complements of the
r-flats:
Cr = < a¢ : €S, > . (1.4)

Observe that C, coincides with the subspace E(S) of P(S) consisting of all the even

subsets of S:

Co = E(8) = {«eP(5) : |a|e22} . (1.5)
Since ac = @AS , we have P(S) = Co® <S> . 1In particular dim Go = d - 1. (Caution:

in [1],[2] we viewed C, slightly differently, as the quotient P(S)/<S» , and used
multiplicative notation, with Co. isomorphic to the elementary abelian group (22)9-1.)
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2. Some abelian results

Denote by F(S) the F;-vector space consisting of all the forms on S (i.e. all the

functions S+F;). For r>0 , let F, = F.(S) denote the vector subspace of F(5§)
consisting of all the forms of degree r. Thus F. 1is spanned by forms of the kind
fifz ... fr where each f; is a linear form, arising (by restriction to S) from an
element of the dual space V = L(V,F2). TFor feF(S) we define p(f)eP(S) by
BA(f) = {pe§ : f(p) = 1} . (2.1}

Lexus A The mapping g : £ = 8(f) yields an isomorphism

(F(S), +, +,0,1)=(P(5),A,N,d,5) (2.2)
of [Fa-algebras. (In the algebra F(S) the multiplication is pointwise multiplication of

forms, and 0, 1 denote the forms taking the constant values 0, 1 respectively.) Upon
restriction the algebra isomorphism B yields the isomorphisms of [Fz-vector spaces

Fe 2 Cp-r , r =0,1, ... ,m, (2.3)
{(where, for convenience, we define F, to be {0}).

Now, on account of the peculiar nature of F;, we have f2 = f, f3gih? = fgh, etc., and
consequently we have the nesting

F(S) D Fy D Fu-y D +++ D F, = {0} , (2.4)
and also the equalities

Fr = F(8) , for r>m . (2.5)
From (2.3), (2.4) we obtain immediately the next lemma. Alternatively the inclusions
Cr ® Cr4y follow from theorem 2.3 of [1], and the fact that, for r = 0,1, ... ,m-1, the

inclusion is proper follows, for example, from (2.7) below.

LEMMA B E(8) =Co D2 C1 2 ... D2Cn = {&) . (2.6)
THEOREM C For r = 1,2, ... ,m there exists a unique linear isomorphism
pr + ATV » Coor/Cnersy (2.7
such that, for arbitrary £, ... .r,eG ,
pe(faa .. afe) = (€00 ... NB(£f:) mod Cu-rs1 . {2.8)

By inverting the isomorphism ywm+)-r and using the properties of the (unique, over [Fz2)

Poincarg isomorphism amtli-r V + AtV we obtain also the next theorem.

TueorE¥ D For r = 1,2, ..., m there exists a unique linear surjection
¥r i Cr-1 = ATV
such that
¢x(Join(vy, ... , Vr)€) = V1A ... AV,
holds whenever wv,, ... , v, are indepenlcui points of S.
(Thus the usual Plicker map, from S,.; on to those rays of arV which are spanned by
decomposable r-vectors, "extends" to a linear map from the whole of C..; on to the whole
of ArvV ) Moreover ker ¢, = C; , and we have the linear lsomorphism
Crug/Ce E AtV , r=1, ... , m. (2.9)
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Convenient bases for the subspaces Cy can be displayed in terms of the faces of a chosen
simplex of reference for PG(m,2). Let ¥, denote the set of s-faces of the simplex and
let € = {ac : ae¥%,}. By appealing to standard bases in the exterior algebra aV, or

otherwise, one obtains the next lemma.

LEMMA B €mey Ufm-z U ... U 1is a basis for Cc . Consequently
m+1 m+1 m+1
dim Cc = (7;7) + O B T 2 P I (2.10)

Finally, recalling that afV is known to be irreducible under the natural action of GL(V)
2 GL(m+1; F3), the isomorphism (2.9) vields the following result.

TurorEM F Under the natural action of GL(V), the subspace chain (2.6) is a composition

sgries.

REMARK If m=23 then, by (2.10), dim C; = 10 . As described in [1], the 210 = 1024
figures of C€; fall into seven GL(4;F2)-orbits. At the time of writing the paper [1]
the author was not aware of the isomorphisms (2.3), and so did not see the tie-up with the
classification of quadrics in PG(3,2), as given in Tables 15.4 and 15.9 of [3].
Similarly, in the case m=4, the classification in [2] of the 215 = 32,768 figures of C;
into eight GL(5;Fz)-orbits ties in, via the isomorphism F; & C; , with the classification
of quadrics in PG(4,2). For example, each 153 figure, see {2], in Cj is a non-
degenerate quadric whose equation can be taken to be X;x; + X3xq = (xg)2 , and one finds

that there are 13,888 such quadrics in PG(4,2), in agreement with equation (4.10) in [2].

3. Some Clifford algebra consequences

Loosely speaking, we now deal with m-dimensional projective geometry in which the "points"
T, anticommute. The chief link-up of the incidence properties of PG(m,2) with commuta~-
tivity/anti-commutativity properties of C1(0,d) is by way of the next lemma. The first
part of this lemma follows from (1.1), (1.2) upon using the fact that a projective

subgspace has an odd number of points.

LExmMa G If «eS. , peS, , with r 20 , s 2 0 , then

T(g)r(a), if « meets B
r(a)r(g) = (8.1)
r'pg)r{a), if o i1s skew to g
Also, for r 21 , we have rI(a)?2 = +I
For r =0,1, ... ,m we shall be interested in the finite groups
Gr = < % Ir{«) : a€S,y > . (3.2)

For r 21, Gy is a proper subgroup of the finite group G, generated by the I;. This
group is of order 24, and is isomorphic to the "even Dirac group” consisting of products
of an even number of elements drawn from a usual orthonormal set {e;, ... ,eq} of vectors
generating C1(0,d). Clearly

G:/{ £ I} =0, . (3.3)
(Incidentally, the fact that the commutator subgroup, Frattini subgroup and centre of Go

are all equal to {t I) means that G, is an extra-special 2-group; see for example [4],
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where further references can be found.) Consequently, from lemma B, we have the subgroup

chain

Go DGy 2 ... 2 Gm = {£ I} . (3.4)
LEuua H For r =0,1, ... ,m, G lies inside the centralizer of Gm-r within G,.
This follows from lemma G, since each r-flat meets every (m-r)-flat. However, lemma H

can be strengthened as in the next theorem which, as pointed out in section VI of [1], i8
a fairly easy consequence of theorem F and lemma H. (In [1] our present theorem F

appeared only as a conjecture.)
THEOREM T For r = 0,1, ... ,m, Gy Is the fulﬁ centralizer of Gu-r within G,.

COROLLARY J If m = 2¢ is even, then G& is a maximal abelian normal subgroup of Ge.

ILLUSTRATION In the case m = 4, 1.e. C1(0,81), a maximal abelian normal subgroup of Go
is G2 & (+ I} x Kz, where K, = C3. A possible cholce of fifteen independent gencrators
of Kz 1s accordingly, by lemma E, the set {(r{a) : «ae¥; U ¥} associated with the ten
2-faces and five 3-faces of the chosen simplex of reference for PG(4,2). The 215 sets of
simultaneous eigenvalues (+ 1, ... , & 1) of the fifteen mutually commuting involutions
r(a) will label the 215 = 32,768 linearly independent spinor states of our irreducible
representation of C1(0,31).

Leuma K Let «,8 denote arbitrary subsets of S. Then

1) 1?2 = (-1)3% ) where qla) = %l (]a] + 1) + 22.

11) r(a)r(p) = e{a,B)r(B)r(a} , where ef(a«,p) = (~1)b¢,p?, with b(x,8) = [aNg] + |«}|B]
+ 22 € 2/2Z = Fp .

i11) b(-,+) 1s an alternating bilinear form on P(S).

Leuma L Let b, denote the restriction of b to Co x Co . (S0 bo(«,8) = |aNg| + 2Z.)
Then b, is a non-degenerate scalar product on Co and, within C,, C, is the orthogonal
subspace to Cpu-r

Ce = (Cmee)t, £ = 0,1, ... \m . (3.5)

The equality (3.5) follows by dimensions (lemma E), after noting that we have the
inclusion C; & (Cm-,)l (because each r-flat meets every (m-r)-flat).

REMARK Since bo(a,8) = 0 if and only if r(a) commutes with r(g8), observe that (3.5)
provides us with a second proof of the full centralizer property of theorem I.
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