CLIFFORD ALGEBRAS, SPINORS AND FINITE GEOMETRIES

Ronald Shaw
School of Mathematics, University of Hull,
Hull, HU6 7RX, England.

ABSTRACT

The pleasant incidence properties of the finite projective geometry PG(m,2) are invoked in order to handle nicely certain commutativity/anti-commutativity aspects of the real Clifford algebras Cl(0,d), $d = |PG(m,2)| = 2^{m+1} - 1$, $m = 2,3,\ldots$

1. Introduction

As in [1],[2] we deal with an irreducible representation of Cl(0,d), $d=2^{m+1}-1$, $(m \ge 2)$, in which the operators Γ_1 , Γ_2 , ..., Γ_d satisfy

$$(\Gamma_{p})^{2} = -I$$
 , $\Gamma_{p}\Gamma_{q} = -\Gamma_{q}\Gamma_{p}$, $p \neq q$, (1.1)

and

$$\Gamma_1 \Gamma_2 \dots \Gamma_d = + I. \tag{1.2}$$

Let $S = \{1,2, \ldots, d\}$. Then for each $\alpha \in P(S)$ (= power set of S) we can define an associated element $\Gamma(\alpha)$ in our representation. For example if $\alpha = \{2,3,7,8\}$ then $\Gamma(\alpha) = \Gamma_2 \Gamma_3 \Gamma_7 \Gamma_8$. Of course $\Gamma(\{p\}) = \Gamma_p$. It follows from (1.1), (1.2) that

$$\Gamma(\alpha)\Gamma(\beta) = \pm \Gamma(\alpha\Delta\beta)$$
, $\Gamma(S) = \pm I$ (1.3)

where $\alpha\Delta\beta$ denotes the symmetric difference of the subsets α,β of S. Using Δ as addition, observe that P(S) is a vector space, of dimension d, over the field $\mathbb{F}_2 = \{0,1\}$ of order 2. In particular $\alpha\Delta\alpha = \emptyset$ (= the zero vector of P(S)). What is more, noting that $\alpha\cap(\beta\Delta\gamma) = (\alpha\cap\beta)\Delta(\alpha\cap\gamma)$, we see that $(P(S),\Delta,\cap)$ is a \mathbb{F}_2 -algebra having S as 1 (since $\alpha\cap S = \alpha$).

Let us now interpret S as the set of points of a finite projective geometry PG(m,2), of (projective) dimension m over F_2 . Because of the peculiar nature of F_2 , in which $\lambda \neq 0$ implies $\lambda = 1$, we may view S as consisting of the nonzero vectors of a vector space V of dimension m+1 over F_2 , three distinct points p,q,r of S being collinear if and only if p+q+r=0. Now $|V|=2^{m+1}$, and so $|S|=2^{m+1}-1=d$, as announced above. Let S_r denote, for $r=0,1,\ldots,m$, the set of all the r-flats of PG(m,2), and let C_r denote that vector subspace of P(S) which is spanned by the complements of the r-flats:

$$C_r = \langle \alpha^c : \alpha \in S_r \rangle . \tag{1.4}$$

Observe that C_o coincides with the subspace E(S) of P(S) consisting of all the even subsets of S:

$$C_o = E(S) = \{\alpha \in P(S) : |\alpha| \in 2\mathbb{Z}\}. \tag{1.5}$$

Since $\alpha^c = \alpha\Delta S$, we have $P(S) = C_0 \oplus \neg S > 0$. In particular dim $C_0 = d - 1$. (Caution: in [1],[2] we viewed C_0 slightly differently, as the quotient $P(S)/\neg S > 0$, and used multiplicative notation, with C_0 isomorphic to the elementary abelian group $(Z_2)^{d-1}$.)

2. Some abelian results

Denote by F(S) the F_2 -vector space consisting of all the <u>forms</u> on S (i.e. all the functions $S \rightarrow F_2$). For r > 0, let $F_r = F_r(S)$ denote the vector subspace of F(S) consisting of all the forms of degree r. Thus F_r is spanned by forms of the kind $f_1 f_2 \ldots f_r$ where each f_1 is a linear form, arising (by restriction to S) from an element of the dual space $\hat{V} = L(V, F_2)$. For $f \in F(S)$ we define $\beta(f) \in P(S)$ by

$$\beta(f) \approx \{p \in S : f(p) = 1\}$$
 (2.1)

Lemma A The mapping β : $f \mapsto \beta(f)$ yields an isomorphism

$$(F(S), +, \cdot, 0, 1) \rightarrow (P(S), \Delta, \cap, \emptyset, S)$$
 (2.2)

of \mathbb{F}_2 -algebras. (In the algebra $\mathbb{F}(S)$ the multiplication is pointwise multiplication of forms, and 0, 1 denote the forms taking the constant values 0, 1 respectively.) Upon restriction the algebra isomorphism β yields the isomorphisms of \mathbb{F}_2 -vector spaces

$$F_r \cong C_{m-r}$$
, $r = 0,1, \ldots, m$, (2.3)

(where, for convenience, we define Fo to be {0}).

Now, on account of the peculiar nature of \mathbb{F}_2 , we have $f^2 = f$, $f^3g^4h^2 = fgh$, etc., and consequently we have the nesting

$$F(S) \supset F_{2n} \supset F_{2n-1} \supset \cdots \supset F_{n} = \{0\} , \qquad (2.4)$$

and also the equalities

$$F_r = F(S)$$
, for $r > m$. (2.5)

From (2.3), (2.4) we obtain immediately the next lemma. Alternatively the inclusions $C_r \supseteq C_{r+1}$ follow from theorem 2.3 of [1], and the fact that, for $r = 0,1,\ldots,m-1$, the inclusion is proper follows, for example, from (2.7) below.

$$\underline{Lemma B} \qquad E(S) = C_0 \supset C_1 \supset \ldots \supset C_m = \{\emptyset\} . \tag{2.6}$$

THEOREM C For $r \approx 1, 2, \ldots, m$ there exists a unique linear isomorphism

$$\varphi_{\Gamma}: \Lambda^{\Gamma} \hat{V} \rightarrow C_{m-\Gamma}/C_{m-\Gamma+1}$$
 (2.7)

such that, for arbitrary $f_1, \ldots, f_r \in \hat{V}$,

$$\varphi_r(f_1 \wedge \ldots \wedge f_r) = \beta(f_1) \cap \ldots \cap \beta(f_r) \mod C_{m-r+1}. \tag{2.8}$$

By inverting the isomorphism φ_{m+1-r} and using the properties of the (unique, over F₂) Poincaré isomorphism $\wedge^{m+1-r} \hat{V} \rightarrow \wedge^{r} V$ we obtain also the next theorem.

THEOREM D For $r = 1, 2, \ldots, m$ there exists a unique linear surjection

$$\psi_r : C_{r-1} \rightarrow \wedge^r V$$

such that

$$\psi_r(\text{join}(v_1, \ldots, v_r)^c) \approx v_1 \wedge \ldots \wedge v_r$$

holds whenever v_1, \ldots, v_r are independent points of S.

(Thus the usual Plücker map, from S_{r-1} on to those rays of ${}_{\wedge}^{r}V$ which are spanned by decomposable r-vectors, "extends" to a linear map from the whole of C_{r-1} on to the whole of ${}_{\wedge}^{r}V$.) Moreover ker $\psi_{r} = C_{r}$, and we have the linear isomorphism

$$C_{r-1}/C_r \cong A^r V$$
, $r = 1$, ..., m . (2.9)

Convenient bases for the subspaces C_r can be displayed in terms of the faces of a chosen simplex of reference for PG(m,2). Let \mathcal{F}_s denote the set of s-faces of the simplex and let $\mathcal{E}_s = \{\alpha^c : \alpha \in \mathcal{F}_s\}$. By appealing to standard bases in the exterior algebra ΛV , or otherwise, one obtains the next lemma.

LEMMA E
$$\ell_{m-1} \cup \ell_{m-2} \cup \ldots \cup \ell_r$$
 is a basis for C_r . Consequently dim $C_r = {m+1 \choose 1} + {m+1 \choose 2} + \ldots + {m+1 \choose m-r}$. (2.10)

Finally, recalling that \wedge^{FV} is known to be irreducible under the natural action of $GL(V) \cong GL(m+1; \mathbb{F}_2)$, the isomorphism (2.9) yields the following result.

THEOREM F Under the natural action of GL(V), the subspace chain (2.6) is a composition series.

REMARK If m=3 then, by (2.10), dim $C_1=10$. As described in [1], the $2^{10}=1024$ figures of C_1 fall into seven $GL(4;\mathbb{F}_2)$ -orbits. At the time of writing the paper [1] the author was not aware of the isomorphisms (2.3), and so did not see the tie-up with the classification of quadrics in PG(3,2), as given in Tables 15.4 and 15.9 of [3]. Similarly, in the case m=4, the classification in [2] of the $2^{15}=32,768$ figures of C_2 into eight $GL(5;\mathbb{F}_2)$ -orbits ties in, via the isomorphism $F_2\cong C_2$, with the classification of quadrics in PG(4,2). For example, each 153 figure, see [2], in C_2 is a non-degenerate quadric whose equation can be taken to be $x_1x_2 + x_3x_4 = (x_5)^2$, and one finds that there are 13,888 such quadrics in PG(4,2), in agreement with equation (4.10) in [2].

Some Clifford algebra consequences

Loosely speaking, we now deal with m-dimensional projective geometry in which the "points" Γ_p anticommute. The chief link-up of the incidence properties of PG(m,2) with commutativity/anti-commutativity properties of Cl(0,d) is by way of the next lemma. The first part of this lemma follows from (1.1), (1.2) upon using the fact that a projective subspace has an odd number of points.

LEMMA G If $\alpha \in S_r$, $\beta \in S_s$, with $r \ge 0$, $s \ge 0$, then

$$\Gamma(\alpha)\Gamma(\beta) = \begin{cases} \Gamma(\beta)\Gamma(\alpha), & \text{if } \alpha \text{ meets } \beta \\ \Gamma(\beta)\Gamma(\alpha), & \text{if } \alpha \text{ is skew to } \beta \end{cases}$$
(3.1)

Also, for $r \ge 1$, we have $\Gamma(\alpha)^2 = +I$.

For $r = 0,1, \ldots, m$ we shall be interested in the finite groups

$$G_r = \langle \pm \Gamma(\alpha) : \alpha \in S_r \rangle$$
 (3.2)

For $r \ge 1$, G_r is a proper subgroup of the finite group G_o generated by the Γ_p . This group is of order 2^d , and is isomorphic to the "even Dirac group" consisting of products of an even number of elements drawn from a usual orthonormal set $\{e_1, \ldots, e_d\}$ of vectors generating Cl(0,d). Clearly

$$G_r/\{\pm I\} \cong C_r$$
 (3.3)

(Incidentally, the fact that the commutator subgroup, Frattini subgroup and centre of G_o are all equal to $\{\pm\ I\}$ means that G_o is an extra-special 2-group; see for example [4],

where further references can be found.) Consequently, from lemma B, we have the subgroup chain

$$G_0 \supset G_1 \supset \ldots \supset G_m = \{ \pm 1 \}$$
 (3.4)

Lemma H For $r = 0,1,\ldots,m$, G_r lies inside the centralizer of G_{m-r} within G_o .

This follows from lemma G, since each r-flat meets every (m-r)-flat. However, lemma H can be strengthened as in the next theorem which, as pointed out in section VI of [1], is a fairly easy consequence of theorem F and lemma H. (In [1] our present theorem F appeared only as a conjecture.)

THEOREM I For $r = 0,1,\ldots,m$, G_r is the full centralizer of G_{m-r} within G_o .

COROLLARY J If m = 2ℓ is even, then G_{ρ} is a maximal abelian normal subgroup of G_{ϕ} .

<u>ILLUSTRATION</u> In the case m=4, i.e. Cl(0,31), a maximal abelian normal subgroup of Go is $G_2\cong \{\pm\ I\}$ x K_2 , where $K_2\cong C_2$. A possible choice of fifteen independent generators of K_2 is accordingly, by lemma E, the set $\{\Gamma(\alpha):\alpha\in\mathcal{F}_3\cup\mathcal{F}_2\}$ associated with the ten 2-faces and five 3-faces of the chosen simplex of reference for PG(4,2). The 2^{15} sets of simultaneous eigenvalues $(\pm\ 1,\ \dots,\ \pm\ 1)$ of the fifteen mutually commuting involutions $\Gamma(\alpha)$ will label the $2^{15}=32,768$ linearly independent spinor states of our irreducible representation of Cl(0,31).

LEMMA K Let α, β denote arbitrary subsets of S. Then

- 1) $\Gamma(\alpha)^2 = (-1)^{q(\alpha)}$, where $q(\alpha) = \frac{1}{2}|\alpha|(|\alpha| + 1) + 2\mathbb{Z}$.
- ii) $\Gamma(\alpha)\Gamma(\beta) = \epsilon(\alpha,\beta)\Gamma(\beta)\Gamma(\alpha)$, where $\epsilon(\alpha,\beta) = (-1)^{b(\alpha,\beta)}$, with $b(\alpha,\beta) = |\alpha \cap \beta| + |\alpha| |\beta| + 2Z \in \mathbb{Z}/2Z = \mathbb{F}_2$.
- iii) $b(\cdot,\cdot)$ is an alternating bilinear form on P(S).

LEMMA L Let bo denote the restriction of b to $C_0 \times C_0$. (So $b_0(\alpha,\beta) = |\alpha \cap \beta| + 2\mathbb{Z}$.) Then bo is a non-degenerate scalar product on C_0 and, within C_0 , C_r is the orthogonal subspace to C_{m-r} :

$$C_r = (C_{m-r})^{\perp}, r = 0, 1, \dots, m$$
 (3.5)

The equality (3.5) follows by dimensions (lemma E), after noting that we have the inclusion $C_r \subseteq (C_{m-r})^{\perp}$ (because each r-flat meets every (m-r)-flat).

REMARK Since $b_o(\alpha, \beta) = 0$ if and only if $r(\alpha)$ commutes with $r(\beta)$, observe that (3.5) provides us with a second proof of the full centralizer property of theorem I.

References

- 1. R. Shaw: J. Math. Phys. 30, 1971 (1989).
- 2. R. Shaw, T. M. Jarvis: J. Math. Phys. 31, 1315 (1990).
- J. W. P. Hirschfeld: Finite Projective Spaces of Three Dimensions. Clarendon, Oxford, 1985.
- 4. H. W. Braden: J. Math. Phys. 26, 613 (1985).