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The major progress in the Reggeon Calculus within the last year 

has been the development of a very beautiful self-consistent solution 

of the high-energy problem. This solution is essentially the “strong- 

coupling” or “scaling” solution suggested several years ago by Gribov 

and Migdal. 
1 

However, recent studies of this solution by Migdal, 

Polyakov and Ter-Martirosyan2 and by Abarbanel and Bronzan, 3 

using the renormalization group, have shown that this solution predicts 

that total cross sections will rise asymptotically like (In s)n and that 

n can in principle, be calculated exactly. (That this solution can be 

explicitly constructed, despite difficult infra-red problems has 

recently been shown by Sugar and myself. 
4 

1 n can be determined 

exactly because it is a critical exponent in the sense that the whole 

solution is analagous to a critical phenomenon (the intercept of the 

Pomeron plays the role of temperature and placing the intercept exactly 

at one places us right at the critical temperature). The critical phenomenon 

analogy is part of the beauty and strength of the solution. Universality 

is a familiar idea in statistical mechanics --that is, the critical 

exponents of a phase transition (which determine the divergences of 

thermodynamic quantities at the critical point) are independent of the 

short-range forces of the system and depend only on the symmetry 

properties of the system. The analagous statement here is that the 

“strong-coupling” solution (and in particular n 1 does not depend on the 

underlying strong interaction forces between particles. Gribov’s 
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original motivation5 for studying the high-energy Pomeranchuk 

problem was his belief that the solution of the problem should be 

independent of the details of strong interaction forces. The possibility 

that at very high energy we will observe a critical phenomenon, seems 

to me to be a very attractive realization of Gribov’s belief. 

There are many important theoretical and experimental features of 

the strong-coupling solution. I shall devote most of this talk to 

describing as many as possible of these features. I will briefly discuss 

the status of other possible solutions and work that has been done on them 

in the remainder of the talk. The major virtues of the strong-coupling 

solution that I shall emphasize are: 

1. Critical Phenomenon Analogy--Scaling Laws 

I will give a very brief discussion of the phase transition analogy 

which will serve both as an introduction to the Reggeon Field theory 

and explain why the renormalization group helps solve the problem in 

the way described by Abarbanel. 
7 It also explains why scaling laws 

are obtained. 

2. Multiparticle t-channel Unitarity 

I’ll emphasize the rigorous background to the solution if we proceed 

through the angular momentum plane. Since the Pomeron is a pole 

for positive t*, and the field theory satisfies multi-Pomeron unitarity, 

multiparticle t-channel unitarity is automatically satisfied. 
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3. s-Channel Unitarity--Avoidance of Decoupling Problems 

We cannot prove s-channel unitarity directly, but at least it appears 

that all well-known confrontations of a Regge description of the Pomeron 

with unitarity in this channel are avoided. These include the Finkelstein- 

Kajantie problem8 and the inclusive sum rule decoupling arguments. ’ 9 10 

4. The “Bare” Pomeron Intercept Is Above One by 0 [gp(0)21 

The renormalized triple Pomeron coupling has an absolute value 

in the strong coupling solution. L The present experimental value is 

too small. This suggests that the bare parameters of the Pomeron 

are what we observe at present energies (Fermilab-ISR). To be 

exactly at the critical point, however, these parameters have to be 

closely related. 
4 

Experimentally this relation looks pretty good. A 

tight-relation between diffractive and non-diffractive production is 

implied and this could unify various views of rising cross sections. 

5. “t-channel” Enforcement of the Froissart Bound 

Eikonalization of a “bare” Pomeron pole with intercept above one 

requires absorptive corrections to the bare Pomeron to be closely 

inter-related. t-channel renormalization of the bare intercept down 

to one does not require this, but the bare intercept has to be exactly 

right. 
do 

Recent fits to (z Iel at the ISR’i suggest that a single bare 

Pomeron pole can be isolated and this favors the t-channel process. 

6. A Big Bonus--Fermion Parity Doublets Removed 

In the strong-coupling solution, rising cross sections seem to 
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correspond to a fixed cut in the angular momentum plane. In the case 

of Fermion exchange this same branch-point plays a crucial role in the 

removal of fermion parity doublets. 
42 It is very nice that this old 

phenomenological puzzle can be resolved by the strong-coupling Pomeron. 

I. CRITICAL PHENOMENON ANALOGY 

It is now fairly well accepted that the bulk of low and medium 

energy experimental data can be explained in terms of multiperipheral- 

like models that are short-range in rapidity and cut-off in transverse 

momentum. 
13 Correlations among produced particles are largely 

short-range in rapidity space. We also know from theoretical 

9 0 
consistency arguments I2 and experimental data) that eventually long-range 

interactions must develop at asymptotic energies. The language, of 

course, already suggests an analogy with the approach to a phase 

transition and several people have previously tried to make such an 

analogy explicit. 
14 

The general idea has been to treat the correlation 

functions of particle production as the correlation functions of a 

statistical gas or fluid. I shall proceed differently. My analogy will 

be ill-defined and capable of considerable improvement. 

Consider, elastic scattering in rapidity and impact parameter space 

(rapidity is the logarithm of the energy and impact parameter is the 

conjugate fourier transform variable to transverse momentum - 

transverse distance!) There will be an effective interaction volume which 
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we shall treat as analagous to the medium in which initial short-range 

forces co-operate to produce the long-range order characteristic of 

a phase transition. Our initial scattering forces we envisage as 

operating Over short distances in rapidity and some finite range in 

impact parameter, 

The Wilson use of the renormalization group 5 in this situation 

proceeds as follows. We assume that the local short-range interactions 

can be smoothed out in the sense that the medium can be broken up 

into blocks and that lump parameters for each block (in solid state 

physics average spin density is such a parameter) are sufficient to 

describe the development of long-range order. The parameters of 

the block define a field for which an effective interaction Hamiltonian is 

introduced. The renormalization group transformation is implemented 

by an increase of the block size, with a consequent transformation of 

the effective Hamiltonian. The development of the truly long-range 

order characteristic of a phase transition should be insensitive to the 

block size transformation and so should correspond to a “fixed-point” 

of the renormalization group transformation, i. e. , the effective 

Hamiltonian for describing the phase transition should be unchanged 

by the renormalization group transformation. 

In fact the mathematics to describe the renormalization group 

transformation has been developed in momentum space rather than in 

position space. The block-size is replaced by a cut-off in the 
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momenta (or frequencies) that are considered. The renormalization 

group transformation is realized by decreasing the cut-off (5 increasing 

the block size). 

To proceed in the Wilson manner in our problem we clearly should 

introduce blocks in rapidity/impact parameter space and introduce 

a field to describe the lump parameters of the block--the Pomeron 

field. The Pomeron field therefore describes the smoothed out short- 

range interactions. Care will be necessary in introducing the blocks 

since our interactions must be between points well-separated in rapidity 

and at least a finite separation in impact parameter. There is no three- 

dimensional symmetry to the problem. Therefore, neighboring blocks 

must be displaced relatively in both variables. Also the interaction 

volume is bordered by the external hadrons since they define the limits 

of the interaction region in rapidity space. To treat these borders 

properly the hadrons must be regarded as acting as sources for any 

number of Pomerons which then propagate through the interaction 

volume. 

If we now transform to “momentum space” for our field theory, 

we transform to the conjugate angular momentum and momentum 

transfer variables. Since hadrons act as sources for Pomerons we 

can calculate the elastic scattering amplitude if we can calculate 

the series shown in Fig. 2. That is, we need to calculate all Green’s 

functions for interacting Pomerons. If we are at a critical point we 
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should be able to calculate these Green’s functions from an interaction 

Lagrangian which is a fixed point of the renormalization group trans- 

formation. 

[Note that in our analogy the Pomeron Green’s functions are the 

equivalent of the correlation functions of the fluid and not the correlation 

functions of particle production. To relate the long-range oscillations 

of our Pomeron field to long-range correlations in particle production, 

it is first necessary to give a description of production amplitudes in 

terms of Pomeron Green’s functions.] 

Scaling laws for correlation functions at the critical point are a 

familiar phenomenon in a phase transition and the renormalization 

group explains why they occur. In our case we argue as follows: if 

the Lagrangian is covariant under a change of scale, then similarly the 

Green’s functions arecovariant under a change of scaIe in rapidity 

space 

A(lnS, 0) cc A(kln S,O) 4 A a (In S)‘. (1) 
In S -m 

For small, non-zero t this result generalizes to 

A(ln S,t) - (In S)n A[t(ln s)‘l . 
(In S)+ m 

(2) 

Both n and v can be viewed as critical exponents. 

This ends the intuitive discussion of the phase transition analogy. 



-9- FERMILAB-Conf-74/77-THY 

To go any further and in particular to discuss calculating n we must 

be more formal. We write down a Lagrangian for our Pomeron field. 

In (x,y) space (impact parameter, rapidity) 

&x,y) - +++o$.-A ,++$ 

_ 11, 
2 0 [ dJ12+++2(J 1 x3o + 2 [&J3 + *+3+]+. . , (3) 

The imaginary triple Pomeron coupling arises from the absorptive 

character of the Pomeron field. 

If the result we were looking for were not simply a fixed-point 

of the renormalization group transformation we would be lost at this 

stage, since the result would appear to be critically dependent on the 

Lagrangian chosen and who tells us what that is. Fortunately the 

results of Wilson5 tell us that we obtain the same fixed-point by 

starting with a large class of Lagrangians. The only determining 

factors being the symmetry properties of the Lagrangian. In our case 

there seem no justification for giving + more than one component or 

introducing any new fields into the Lagrangian. 

To proceed using Wilson’ s approach we should now go to momentum 

15 
space. This procedure has been carried out explicitly by Jengo 

and is essentially the method used by Migdal, Polyakov and 

Ter-Martirosyan. 2 The action A can be written as [we write 

p z (E,k) E = 4-j, and k‘ = -t -- j = angular momentum, t = [momentum 

transfer 1 21. 
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A 

A= 
I 

[dpl ($[E-a’gk’+a,+...l - 

0 

+r2p 2+ . ..) (4) 

+$(*+3*++i+3)(Ao+X 2+...) 
OP 

The renormalization group transformation is performed by 

integrating out the range of p from* to A and showing that this can be 

intrepreted as renormalizing the parameters Cry;, ro,r2 . . . ). This 

procedure is repeated until a fixed-point is reached. 

More simply we can start with the Lagrangian involving just the 

triple Pomeron interaction. Since this theory is renormalizable in 

a conventional sense, we can apply the renormalization group in the 

way familiar in renormalizable relativistic theories. This is the method 

previously described by Abarbanel and used by him and Bronzan. The 

result obtained for q should be the same in either approach. In the 

last approach the normalization point is varied and a renormalization 

group equation written for the Green’s functions which is then solved 

e. g., for the propagator r (*,I) (‘- ..,.cJ,-- ) 

I 

a 
E aE B(gG + 

C 
a’ - 5(a’,g) 1 a -- 

ag 
-+ y(g)-l aa’ 

I 

p, 1) 
R (E,k,@‘,g) = 0 
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g is a dimensionless coupling constant. If there exists a g such that 

p(g) = 0 and k2 = 0 so that 

-$k I)= 0 a 
aa' R 

then 

E-&r, =(q +‘)‘R (6) 

which is the result we want. p(g) and v(g) can be calculated in 

perturbation theory and g can be consistently determined this way if 

it is small. It turns out that this can only be done by varying the 

dimension of the transverse momentum (lf). Writing dimension D = 

4 - E and making an ” E -expansion” we obtain 
16 

n = $I +0.64 ~1 +O(c3) (8) 

Although the e-expansion doesn’t look very convergent, it doesn’t 

look any better in solid-state! However, O( l 2, calculations are quite 

close to the correct result. 

The two approaches we have outlined here-using a bare field theory 

with a cut-off and a renormalizable theory including the lowest coupling, 

are also used in solid-state calculations. 5 



-12- FERMILAB-Conf-74/ 77-THY 

So far our treatment has been formal only after we have justified 

introducing the Reggeon Field Theory. Although our intuitive introduction 

is closely related to Gribov’s derivation of the Reggeon field theory 

from an underlying field theory.l’There is, however, an alternative 

way to proceed-- 

11. MULTIPARTICLE t-CHANNEL UNITARITY 

The t-channel unitarity relation--which at fixed t involves only 

a finite number of terms --can be projected onto (t-channel) partial 

waves. Assuming only quite general analyticity properties of production 

amplitudes, 18 the resulting equations can be analytically continued to 

complex j. These equations can be used to give unitarity corrections to 

a Regge pole. 
i9 The generation of the two-Reggeon branch 

point (or threshold) in the four-particle unitarity relation is illustrated 

in Fig. 3. More formally the discontinuity in the partial-wave amplitude 

a (j, t ) can be written in terms of the two-particle/ two-Pomeron amplitude 

A (j, t) - 
Lylry2 

Disc a(j,t) = i sin tj 
6 (j -et -a2 +I) A 

112 
(t” ti, t,) 

dt2 n 
t sin z Lul sin 5 a2 

xA (j’,t) A (.i-,t) (11) 
cul@2 cvla2 

Further equations which can be derived are illustrated in Figs. 4 
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and 5. The set of coupled discontinuity formulae for all multi-Regge 

cuts can be summarized by writing E = i-j, k2 = -t and saying that 

in the j-plane a Reggeon behaves like a quasi-particle with energy E - LY[ k21 

and momentum k. The coupled Regge cut equations can then be regarded 

as the unitarity equations controlling the scattering of the quasi-particle. 

An important point is that the analysis shows that the two Pomeron 

branch point has a negative imaginary par?-‘-so the unitarity relation 

is also a “quasi-unitarity” relation. This negative sign requires the 

triple Pomeron coupling to be pure imaginary. 

Since the Regge cut discontinuity formulae are derived with some 

rigor and depend only on quite general analyticity properties they 

should hold in a wide class of strong interaction theories. Any treatment 

of the Pomeron that satisfies these equations carries with it the virtue 

of satisfying full, multi-particle, t-channel unitarity in the j-plane. 

Our j-plane Pomeron field theory naturally satisfies unitarity in the 

j-plane and it is attractive to make this the basis for introducing the 

field theory. The full propagator reduces to the free propagator at 

large j(-E) and large t(-k2) 

G(1,*) = i 
0 

E - aOk2+A0 + . . . 
(42) 

which (by design!) contains a Pomeron pole. The Reggeon Calculus 

is the *treatment of high-energy scattering which satisfies full 
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t-channel unitarity. The eikonal formalism neglects it and in fact 

the corrections to the eikonal formalism which are needed to satisfy 

t-channel unitar’ity are believed by several people to substantially 

modify eikonal calculations. 
2f 

Introducing the Reggeon Calculus as a field-theoretic solution of 

Regge Cut discontinuity formulae is unambiguous and aesthetically 

appealing. It might, however, seem rather mathematical compared 

to the intuitive picture we presented in I. 

III. S-CHANNEL UNITARITY-- 
AVOIDANCE OF DECOUPLING ARGUMENTS 

If we could explicitly prove S-channel unitarity there would be 

very little scope for doubters of the Reggeon Calculus. Gribov’s 

derivation of the Calculus from an underlying field theory 
17 which 

clearly does satisfy s-channel unitarity shows that the calculus can 

be consistent with the unitarity condition. The best we can do to 

check unitarity without going to an underlying strong-interaction theory, 

is to check the general decoupling arguments that have been used to 

argue that the Pomeron cannot be just a simple pole. First we consider 

the old8 

Finkelstein-Kajantie Argument (simplified version) 

If the Pomeron is a pole with ‘~~(0) = 1 then from the inequality 

shown in Fig. 6 we obtain 
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On ’ 
(In [ln sl )“-’ 

In s (13) 

and 

To discuss how this problem is resolved in the strong-coupling solution 

we need to be able to calculate the production amplitude shown in Fig. 6. 

Migdal, Polyakov and Ter-Martirosyan’extended the Pomeron field 

theory to production amplitudes in a straightforward way. The general 

opinion of their treatment is that it is probably right for the Pomeron 

near t = 0. Soon we should have a derivation of their approach from hybrid 

22 23 
Feynman graphs and also from t-channel unitarity. Basically (14) is 

avoided because of a decoupling suggested by Finkelstein and Kajantie, 

the vertex shown in Fig. 7 does vanish at ti = t2 = 0. Detailed 

calculations’ show that Fig. 6 gives 

0 *(Ins) 
n 

-a-[ q-21p,a = 5 g+ G(E2), p = $ + 0 (E2) 

So mm diffraction cross sections eventually fall with energy. 

Inclusive Sum Rule Arguments 

It is well-known9that the energy sum rule gives the inequality 

shown in Fig. 8 if the integration is limited to the triple Regge 

region of the inclusive phase space. If the Pomeron is a simple pole 

and the triple Pomeron coupling gp(0) # 0 and a;(O) $ m then we obtain 
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oT> clnlns =$ oT+ const 

or gp(0) = 0, or O”‘p(0) zrn 

(16) 

In the strong axfling solution the behavior of the inclusive cross section 

in the triple Pomeron region is quite complicated. The Pomeron 

propagator is not a simple pole, but if we isolate a pure pole contribution 

we obtain 
3 

gp(0) = 0 
and @Y;, (O) = m 

(17) 

Integrating the complete contribution of the three propagators and the 

vertex function shown in Fig. 9 we find that the right-hand side of Fig. 8 

gives (In s)n for large In s and so consistency is achieved. 2 
Figure 9 

also gives 
2 

&M2 ;02 (Ins) 
@f 

(18) 
dM d Pi (In M2) 

cu2 
t=o 

1 
3 = 12 + O(E2) a2 = $+ O(c2) 

where 1y ’ is the effective slope measured experimentally. When the strong 
P 

coupling solution is valid g has an absolute value 

pJ-$- +o(eZ)= 1 (19) 

The recent deuteron scattering experiment at Fermilab gives 
24 

g-o.4 (2.0) 
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and so we conclude that at present energies the strong coupling solution 

cannot be used directly, Before going on to “bare perturbation theory, ” 

we note another important property of the strong-coupling solution. 

In the Central Region the leading behavior comes from the graph 

shown in Fig. 10. This gives 

1 1 do 
a T K 

dyd’p I 
‘y 1 &&ity of d,td,:l,)d 

particles 

This is shown in Fig. 11. At asymptotic energies there is no central 

plateau. 

IV. BARE PERTURBATION THEORY AND PRESENT ENERGIES 

The renormalization group results we have presented so far are 

obtained from the complete renormalized Green’s functions. The theory, 

however, also has a bare perturbation expansion as illustrated in 

Fig. 12. This is the expansion we would expect to obtain if we followed 

Gribov’s procedure of deriving the calculus from an underlying field 

17 
theory. The bare propagator which appears in these diagrams will 

not have intercept one, but the intercept has to be chosen so that the 

renormalized intercept is one. In fact we can show that4 

2 
rO 

@B(O) =’ +- 4Ly; (22) 

where r. and w 0’ are bare quantities but the normalization is such that 
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rold (Y 0’ compares directly with g above. A is the cut-off discussed 

above, and An represents all other bare Pomeron couplings. 2 
rO 

The effective expansion parameter for our bare expansion is 4;;‘ x 
0 

In s,which at present energies is small so that we may expect to see 

only a few terms in this expansion. 

apply w,hen 6 

The renormalization group results 

4;67 In 53 1. Another reason for expecting to see only a few 
0 

terms at low energy is that there must be enough energy available for 

each Pomeron channel to be well represented by a pole. For example, 

from Fig. 13 wesee that the masses M1 and M2 should be well above 

any important thresholds in these channels, 25 for this process to be 

well represented by the Pomeron graph. Note that the bare perturbation 

expansion is very similar to other perturbative approaches to the Pomeron 26 

that have been advocated. A major difference is that we take account of 

absorptive effects which are responsible for the negative sign of the ti~o 

Pomeron aut. This is why our bare Pomeron intercept is renormalizad 

downwar,ds by t-channel iteration of Pomeron interaction diagrams. 

As we mentioned earlier it is only when the renormalized intercept 

is exactly at one that we obtain the critical behavior--or strong- 

coupling solution. This requires the bare parameters, a,(O), ro, 

a; to be related by the above expression. Now recent fits to the ISR 

data fi do 
for z el ( 1 

have shown that the data are best fitted by a simple 

pole with intercept above one where 
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a,(o) - 1 = 0.06 (231 

’ = 0.25 (yO (24) 

and the recent deuteron scattering experiment at Fermilab gives 

‘0 
- 0.2 (25) 

A%’ 
if we take A such that In - 2 

% 1, (an order of magnitude estimate is 

rO clearly insensitive to the exact value of A) then 

‘ 

rO Aa; 
7 ln- 
4cu0 

2 - 0.04 

‘0 

(261 

This seems a very encouraging result, since these three parameters 

could a-priori be of totally different orders of magnitude. Also 0.06 

is probably an over -estimate for Q $0) - 1 since some small part of the 

rise of the total cross section must be coming from cut contributions. 

Note that the rise of the effective Pomeron intercept from low to 

ISR energies has to be unrelated to diffractive production in this picture 

(it could well be explained by Nfi production, as advocated by several 
27 

people 1. Yet the amount the intercept is pushed above one is determined 

by diffractive production in this picture as measured by the triple Pomeron 

coupling. Therefore, there has to be a tight relation between diffractive 

and non-diffractive production and, in this sense, both effects can be 

regarded as responsible for the rising total cross section, as measured 

by (~$0) - 1. 



-2o- FERMILAB-Conf-74/77-THY 

V. t-CHANNEL IMPOSITION OF THE FROISSART BOUND 

I dont mean to imply here that t-channel unitarity is strong enough 

to satisfy the Froissart bound (Ill discuss this outside of the strong- 

coupling solution shortly). I simply wish to compare the t-channel 

process whereby a particular al,(O) ( > 1) can give (via the Reggeon 

Calculus) a renormalized intercept of one, with the more familiar process 

of s-channel eikonalization were an arbitrary ~$0) > 1 can be brought 

down to one. 

Roughly the t-channel effect is achieved by summing the diagrams 

of Fig.. 12, while the eikonal effect is achieved by summing the diagrams 

of Fig. 14. For the eikonal effect each of the diagrams in this sum 

must be comparable and all are present at any given energy, so the - 

bare pole can never be isolated. This explains why the eikonal approach 

do 
has such difficulty fitting x 

( 1 
at the ISR. 28.29 The t-channel process el 

can work even when all the rescattering diagrams of the eikonal approach 

are small. Further the bare pole can and should be isolated at low 

energies. Hence, the fit of Collins, Gault and Martin, 
ii 

which favors 

a bare pole over an eikonal sum of cuts, suggests that the t-channel 

process is at work. 

We would expect the rise of oT initially produced by the bare pole 

to slow down as diffractive production of two large masses builds up, 

giving rise to the diagram of Fig. i3. This diagram should produce a 
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partial cancellation of the bare pole. Note that the t-channel 

renormalization effects of diagrams such as this should fall off sharply 

in t because of the fall-off of the triple-Pomeron coupling for negative 

t. Hence if the bare trajectory has the form shown in Fig. 15, then 

after renormalization we would expect the form shown in Fig. 16. 

The scaling law mentioned earlier requires3the trajectory to be non- 

analytic at t = 0 

Qp(t) = 1 +ct IIv _= 12 1 
v T3 -1. O(E2) 

Finally we come to 

VI. THE REMOVAL OF PARITY DOTELETS 

Since fermion regge trajectories are approximately linear in the 

Mandelstam variable u then from MacDowell symmetry we expect 

to see nearly degenerate, positive and negative parity partner trajectories. 

Experimentally this is apparently not the case. Some time ago Carlitz 

and K&linger 30 
showed that a natural analytic structure for partial- 

wave amplitudes was a fixed-cut located at j = ~~(0). This could move 

the wrong parity trajectory off the physical sheet in the angular momentum 

plane. Carlitz and Kislinger suggested a Van-Hove like model constructed 

out of resonances of one parity, as the origin of the fixed-cut. However, 

the Pomeron corrections to the Fermion propagator coming from 

Pomeron interactions (as shown in Fig. 17 give rise to multi-Pomeron 
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Fermion branch-points passing through j = LYF(O). Bartels and 

Savit have shown that the strong coupling Pomeron can give rise to 

a fixed-cu?lwhich will play a very similar role to that suggested by 

Carlitz and Kislinger. The analytic structure obtained by Bartels 

and Savit is slightly different. Their bare Fermion propagator contains 

both parity trajectories. The renormalized propagator has complex- 

conjugate partner trajectories for negative u but only one parity trajectory 

remains on the physical sheet of the fixed j-cut for positive u (see 

Fig. 18). This is a welcome bonus from the strong coupling Pomeron, 

which is now seen as the dynamical source of the fixed j-cut. 

It is hard to determine the complete analytic structure of both the 

Pomeron and the Fermion propagators, An explicit form for the scaling 

functions in the scaling laws can only be derived for small E and it is 

difficult to check whether the scaling laws are related to afixed cut in 

j or u (or conceivably neither 1. However, it can be proved that for 

large j there is no fixed cut in u, whereas the converse cannot be 

proved. So it seems very likely that there is a fixed-j cut. 

VII. OTHER SOLUTIONS 

Weak Coupling 

The renormalization group has also been used to realize the well- 

known alternative weak-coupling solution of Gribov and Migdal 
32 

(which Gribov apparently still favors 1 in which the triple-Pomeron 
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coupling vanishes linearly. 
15,33 As in Gribov and Migdal’s original 

Schwinger-Dyson equation analysis this is achieved by cut-off dependent 

cancellations and so it is very hard to understand how the further de- 

couplings arguments of Ref. 10 outlined in Fig. 19 can be avoided. It 

would seem that cuts corrections to the simple Regge pole exchange 

have to be vital 34 m avoiding the argument of Fig. 19 and it is hard to 

see how this can be achieved when cut-off dependent cancellations are 

invoked to produce the triple Pomeron zero. If the weak-coupling 

solution can be realized consistently it seems likely that higher-order 

34 interactions play a vital role. In the strong coupling solution there should 

be no difficulty in avoiding the argument of Fig. 19, since cut corrections 

to the pole are as strong as the pole. 

z,(O) - i> OiriL 

In this situation we are below the critical point. This looks very 

much like the negative (mass )’ spontaneous symmetry breaking situation 

familiar from relativistic field theory or solid-state physics.35 

Unfortunately the pure imaginary triple Pomeron coupling makes the 

effective potential non-hermitian. This together with the complex 

nature of the Pomeron field has so far defied attempts to treat this 

situation from the spontaneous symmetry breaking point of view. 

It may be that if LYE - 1 > O(ri) that the Froissart bound 

must be imposed by s-channel summation. That is the s-channel sums 
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of the eikonal form shown in Fig. 14 will be more important than the 

t-channel sums of Fig. 12. Cardy36 has given a nice discussion of how 

the eikonal summation could generalize in this situation--see also 

Bronzan’s “weak-coupling” calculation. 37 

Although we don’t yet have a completely satisfactory solution with 

CUB(O) - 1 > O(rE) it remains an intriguing possibility. 

Pomeron Not a Pole, but o+ * Constant 

If a bare Pomeron is used which is not a pole, a constant cross 

section can be obtained 
38 

(infra-red freedom). Since the renormalized 

propagator reduces to the bare propagator at large positive t, the 

leading singularity in this sort of solution is not a pole and so t-channel 

unitarity is no longer guaranteed. 
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