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Introducti on 

One of the first things the beginner learns of in representation 

theory is that every group has two natural representations, namely 

the trivial representation and the regular representation. There is, 

however, another natural representation, Frame's Conju~atin~ 

Representation, which deserves attention for the following reasons: 

it is easily defined, providing useful examples for students; it 

presents some unsolved problems and conjectures; it has aroused 

independent interest in the Pure Mathematics and Mathematical Physics 

literature in recent years (see ref. I for a bibliography). 

Let G be a finite group with group algebra A(G) = Icomplex 

linear sums of group elements, with product the linear extension of 

the multiplication in G I. The conjugating representation F is 

defined on A(G) (or any faithful representation of A(G)) by g -* Fg, 

where Fga = gag "I , for g e G, a e A(G). By interpreting A(G) as an 

algebra of group functions, the definition of F can be carried over 

to the compact group case - see ref. 2 for the proper definition. 

F is completely reducible so one can ask for its irreduciole 

constituents. We first observe that Fg is the identity if g e Z, 

the centre Qf G, hence F can only contain irreducibles which arise 

from irreducibles of G/Z. Even so, there are examples which show 

that F need not contain all irreducibles of G/Z. However, since F 

is a faithful (and real) representation of G/Z, we know from a 

theorem of Burnside that 3 an integer N such that ~nF contains all 

irreducibles of G/Z V n I> N. 

If G acts faithfully on something, for example a space of wave 

functions, then A(G) becomes an algebra of operators which transform 

tensorially among themselves under F. On reducing F we see that we 

have a source of irreducible tensor operators for G. F is sometimes 

called the tensor representation. 

Having noted above that F gives rise only to tensor operators 

which correspond to irreducibles of G/Z, and even then not neces- 

sarily all of them directly, we investigate in this paper 

generalisations of F which can be used to associate tensor operators 

with all irreducibles of G, hence answering in the affirmative a 

question of de Vries. Finally, we show that all irreducibles of G/Z 
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appear in F for G = 8U(3). 

Generalised conjugating representation 

Two obvious generalisations of F are 

G act by conjugation on the group algebra 

G; (2) letting G act on its twisted group 

together, suppose G ~ G' and let A(G', ~) 

algebra of G' corresponding to the factor 

obtained by (I) letting 

of a group G' containing 

algebra. Putting these 

be the twisted group 

system ~ (recall from 

ref. I that A(G', oa) is a module over the complex field, with basis 

the set of objects Iv(g): g c G'}, which has as a multiplication the 

linear extension of the law ~(g,)~(g2) = ~(gl, g2)~(g,g2)). Now 

define the representation F ~ of G by g ~ Fg ~, where Fg~a = w(g)a~(g) -~ 

for g c G, a c A(G', ~). Using the properties of factor systems and 

~(g)-i = ~(g-i)/00(g, g-i), we can check that F °° is indeed a 

representation of G and that Fg~(g ') = v(gg'g -l)00(g, g')/~(gg'g-', g) 

for g e G, g' c G'. 8o Fg ~ is the identity operation iff g c Z', 

the centre of G', and ~(g, g') = ~(g', g) fc~ all g' e N'(g), the 

centraliser of g in G' (which for central g is G' itself). But the 

latter is precisely the condition that g be ~-regular in G' - see 

ref. I. If R ~ is the set (not in general a group) of ~-regular 

elements in G' then it is clear that the kernel of F ~ is 

G ,~ Z' ~ R ~ = K ~, which of course must be a subgroup of G. 

Evidently A(G', ~) has become a faithful G/K~-module, hence is a 

faithful G-module iff K ~ is trivial. 

To calculate the irreducible constituents of F ~ we first 

compute its character, which is the restriction to G of the 

character X ~ of the conjugating representation of G' on A(G', ~). 

Using the fact that, for fixed g c G', g' -~ ~(g, g')/~(g', g) is a 

linear character on N'(g), we find that xW(g) =~N'(g)| if g e 

N'(g) ~ R ~, but zero otherwise. Then if X~ = ~-c~x (~! we find 

~_/xj.(~) ,u, ~th that c~ = , where Xi (~) is the value of the irreducible 

i 
character of G' on the i th conjugacy class, and where the prime 

restricts the summation to ~-regular classes only. Another expression 

is X~ = ~-0~'k0*~'k, where the 0 ~'k are the inequivalent irreducible 

k 
~-characters of G'. Thus we have two ways of computing the 

irreducibles of F~: either summing entries in the rows of the 

ordinary character table of G' or using the Clebsch-Gordun series 

for projective representations of G', and then restricting to G. 

Which method one chooses of course depends on context and available 
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information, but we must remark that it is only the second method 

which makes proper senee and is indeed valid in the case of a non- 

finite compact group. 

Example s 

E. de Vries has posed the problem: given a finite group G, find 

some way of associating terror operators to all irreducibles of G. 

I hope that the following is the best possible gensral solution in 

the context of this paper. 

G acts on itself by left translations, thus for g ¢ G, define 

kg by kggl = ggl. The set Ikg: g c G 1 forms a group of permutations 

isomorphic to G itself on the set of elements of G, and hence embeds 

G in the full permutation group SIG I of order IGI'. Now SIG I is 

centreless for IGI > 2, hence A(SIG I ) provides a faithful G-module. 

In ref. 1 we show that A(SlGI, L ) in fact ~carries all irreducibles of 

G. Of course we knew in advance that @~A(SIG I ), carries all 

irreducibles of G for some suitable integer N, but it requires a 

calculation to prove that N can be taken as unity. I know of no 

sufficient condition which, in the general case, allows one to take 

N = I. Kasperkovitz and Dirl, ref. 2, hav~ suggested that a suf- 

ficient condition might be the existence of a faithful irreducible 

representation, but as yet the conjecture is unproved. If the 

conjecture is true then it implies in particular my own conjecture 

that Frame's conjugating representation for G = S n contains all 

irreducibles of S n fc~ n > 2 - it is strongly verified by looking at 

character tables for n = 3, 4, ...I0. 

Let me now look at the compact groups S0(3), SU(2), SU(3). 

(a) S0(3) is centreless, and has irreducibles D j, j = O, I, 2... 

We compute the conjugating representation ~ (D 2j @ D 2j-I... @ DO), 
j=O 

hence contains all D J's infinitely many times. 

(b) The projective representations of SO(3) are D j, 

j = 1/2, 3/2, 5/2,..., hence the twistsd conjugating representation 

of 80(3) is @ (D ~ ~ D j~) = @ (D ~j @ D2J-I... @ DO), so 

J/2,3/2 j/2,.. 
again all irreducibles of 80(3) appear infinitely many times. 

(c) SU(2) is the covering group of S0(3), so its representa- 

tions are the ordinary and projective representations lifted from 

S0(3). The ordinary conjugating representation (there is no non- 

trivial conjugating representation) thus contains all D J's, J an 

integer, infinitely many times. But these are precisely the ones 

trivial on the centre of SU(2). 

(d) The case of SU(3) requires a little more setting up. I 
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begin by reminding ourselves of some aspects of the representation 

theory of SU(n). Irreducibles of SU(n) are labelled by Young 

tableaux k_ = (k~, km, ...~n_1 ) containing at most n - I rows of 

square boxes. Actually Young tableaux with at most n rows will do, 

but it then turns out that (hl, km,...~ n) = (k, - ~n' km - ~,-.., 

kn_ 1 - kn). Now if D h has tableau h then the tableaux of D~ is 

given by rotating through 180 ° the shaded region in the diagram 

bel ow. 

Also D ~ is trivial on the centre of 

A, ~ n-1 

x~ ~. ~ , ' ; ~ ,~  SU(n) iff h i is a multiple of n. 

. : [ ? g . , ~ / /  ; ~ i = 1  
~. " \ Now in order to reduce the product 

~ ~~" "~ D ~ ~ D ~ to irreducibles, we set up the 

~ !  \ \\~\~\~ tableaux k, ~ side by side, writing in 

a fixed symbol, al say, in the ~i boxes 

in the first row of ~, a symbol, am say, in the ~m boxes of the 

second row of ~, etc. Then we consider all Young tableaux obtain- 

able from ~ by the adjunction one by one of the labelled boxes of 

consistent with the following restrictions: 

(I) at each stage in the process the augmented diagrams must be 

Young tableaux with at most n rows; 

(2) adjoin all boxes from the i th row of ~ before adjoining any 

from the i + l th; 

(3) no two boxes with the same label can be in the same column; 

(4) each fir~l tableau must be such that if one records the 

occurrence of the symbols a~, am, etc., reading the rows as one 

would read lines of mirrar English, then at each stage in the count 
t s t s 

the number of a~ ,s ~> number of a2 ... >I number of an_ I . 

Finally all tableaux with n rows can be reduced to n - 1 rows. This 

procedure only tells one whether or not a given irreducible occurs in 

a Kronecker product, but not its multiplicity. Now let me apply the 

above to show that the conjugating representation af SU(3) contains 

all irreducibles of 8U(3)/Z. Given k = (kl, km) with k, + k2 = 3r, 

r an integer, I will find ~ = (~L, ~m) such that D ~ occurs in 

D~ ~ D ~. Now always we have kL >i 3r/2, but either k, ~< 2r or 

kl > 2r. 

O~se k I ,~ 2r 

Write hl = 2r - k, km = r + k, where k ~< r/2. I claim that I 

can take ~ = (r, k) (then ~. = (r, r - k)). The proof is implicit in 

the following tableau multiplication 
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t ,¢," I ~-I 
contains 

which is precisely k. 

C~se kl > 2r 

Write kl = 2r + k, ~2 = r - k, where 0 < k ~ r. 

= (2r, r), in which case ~* = ~. Then 

~ ~~: A 

I take 

~ J ® [ .~ i ~-~I contains ~ i ~-~.I 

which can be reduced to (2r + k, r - k) = ~. This concludes the 

proof. 

R~fgrences 

I. N. B. Backhouse, J. Math. Phys. 16 (1975), <0~3-7. 

2. P. Kasperkovitz and R. Dirl, J. Math. Phys. 15 (1974), 1203-10. 


