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Abstract

We review basic features and selected topics in conformal field the-

ory, considering memorable results in 2D CFT and a recent attempt

to construct a 4D analogue of a chiral algebra generated by local (ob-

servable) fields with rational correlation functions from a unified point

of view.
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1 Introduction. Conformal symmetry reflects the

idea that only ratios of lengths at each point

have an invariant meaning.

Angle preserving transformations have been used by the ancients in as-

tronomy. Euler studied them and applied to the ”geographic projection of

the Earth” (1770-1778, while completely blind); Gauss (1822) solved the

general problem of a conformal mapping of a 2–dimensional surface into

another. J. Liouville (1850) was the first to describe conformal transforma-

tions in more than two dimensions. We begin our exposition by giving a

precise formulation (and sketching a proof) of his result for aD-dimensional
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space of any signature (Liouville has worked out the 3–dimensional eu-

clidean case).

A (locally defined, smooth) coordinate transformation x �→ y(x) of

a (pseudo-)Riemannian manifold is said to be conformal if the metric is

transformed by a similarity:

gκλ (y) dyκdyλ = gκλ (y (x))
∂yκ

∂xμ
∂yλ

∂xν
dxμdxν = ω2 (x) gμν (x) dxμdxν

(1.1)

It is also useful to write down the infinitesimal counterpart of (1.1) setting

yμ = xμ + εKμ (x) , ω (x) = 1 + ε f (x) , 0 < ε << 1 . (1.2)

We deduce from (1.1) that the Lie derivative of gμν is proportional to gμν :

LK gμν := Kλ ∂λ gμν + (gμν ∂ν + gλν ∂μ)Kλ = 2 f gμν ,

∂λ ≡ ∂

∂xλ
. (1.3)

We say that two metric tensors gμν and g̃μν are conformally equivalent if

they only differ by a positive conformal factor

g̃μν (x) = Ω2 (x) gμν (x) , Ω (x) > 0 . (1.4)

It is easy to see that conformally equivalent metrics admit the same con-

formal group: if we distinguish by a tilde the conformal factor and its

infinitesimal counterpart for the metric {g̃μν} we find

ω̃ (x) =
Ω (y (x))

Ω (x)
ω (x) ,

f̃ (x) = f (x) + Ω−1 (x) Kλ ∂λ Ω (x) . (1.5)

For a manifold M of a given dimension D the conformal group is maximal

if M is conformally flat, – i.e. if (for signature (s, D − s)

gμν (x) = Ω2 (x) ημν , ημν = εν δμν , εν = ± 1 ,

3



∑
ν

εν = 2 s−D . (1.6)

Theorem 1.1 (Infinitesimal version of Liouville theorem) The conformal

group for D = 2 is infinite dimensional while for D > 2 it is isomorphic to

the pseudo-orthogonal group SO (s+ 1, D − s+ 1) , the conformal Killing

vector K(x) having the form

Kλ (x) = aλ + αxλ+lλμ x
ν+2 (c·x) xλ−x2 cλ , lμν = − lνμ . (1.7)

The

⎛
⎝D + 2

2

⎞
⎠ different parameters, aλ , α , lλν , cλ , correspond to trans-

lation, dilation, Lorentz rotations, and special conformal transformations.

To prove the theorem one derives the following infinitesimal form of Eq.

(1.1):

Df = ∂λK
λ , (D − 1) � ∂λK

λ = 0 (� = ημν ∂μ ∂ν ) ,

(D − 2) ∂λ ∂μ ∂ ·K = 0 . (1.8)

The theorem then follows.

The general orientation preserving conformal transformations in the

complex plane and in a pseudo–euclidean 2–dimensional (2D) space have

the form

z �→ f (z) , x± t �→ f (x± t) (1.9)

for any (single–valued) analytic function f .

We shall be working with the connected group G = Spin (D, 2) which

has a single–valued action on local (Bose and Fermi) fields. It is a 4–fold

cover of the conformal group of space time for even D (and its double cover

for odd D ).
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The 2D case is also distinguished by the fact that every (pseudo–

)Riemannian metric can be reduced by a reparametrization to a confor-

mally flat form. Indeed, the number

⎛
⎝D + 1

2

⎞
⎠ of independent components

of a symmetric tensor gμν is equal to the number D + 1 of arbitrary func-

tions at our disposal (the D components of y(x) and the conformal factor)

for D = 2 only.

The first application of the conformal group to physics came soon after

realizing the role of Lorentz invariance for the electromagnetic phenomena

([12] [4]): the Maxwell equations in vacuum are conformally invariant. We

shall prove an equivalent statement: for D = 4 the Maxwell equations only

depend on the conformal class of metrics (not on the choice of an individual

pseudo–Riemannian metric in a given conformal class). To this end we shall

write Maxwell’s equations in terms of the 2–form F (the curvature form of

the U (1) connection A ) and its Hodge dual �F defined by

F =
1
2
Fμν dxμ∧ dxν = dA

�F∧ F = L
√
|g| dx0∧ dx1∧ dx2∧ dx3 (1.10)

where |g| is the absolute value of the determinant of the metric tensor, L
is the Lagrangean density for the (free) electromagnetic field:

L = − 1
4
gκμ gλν Fκλ Fμν ( gλμ gμν = δμν ) . (1.11)

Assuming that F does not change under a conformal rescaling of the metric

we find

gμν �→ Ω2 gμν , gκμ �→ Ω−2 gκμ ,

Fμν �→ Fμν ⇒
√
|g| L �→

√
|g| L . (1.12)

The free Maxwell equations then assume the conformally invariant form

dF = 0 = d �F (1.13)
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The conformally invariant Hodge star acting on 2–forms in 4–dimensional

Minkowski space (with gμν = ημν = diag {−1, +1, ..., +1}) satisfies (�)2 =

−1 and hence defines a complex structure in the space of 2–forms on M .

A complex Maxwell field splits, according the eigenvalue of � , into the ir-

reducible representations (1, 0) and (0, 1) of SL (2, C) . Indeed, expressing

F and �F in terms of the electric field E and the magnetic induction B ,

(Fμν) =

⎛
⎜⎜⎜⎜⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎟⎟⎟⎠ , (�Fμν) =

⎛
⎜⎜⎜⎜⎜⎝

0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

⎞
⎟⎟⎟⎟⎟⎠ (1.14)

we can write

FAȦBḂ = ημμ
′
ηνν

′
(σμ)AȦ (σν)BḂ Fμ′ν′ =

=
1
2
(
εAB ψȦḂ + εȦḂ ϕAB

)
, (εAB) =

⎛
⎝ 0 1

−1 0

⎞
⎠ (1.15)

where

(
ψȦḂ

)
=

⎛
⎝E1 + i B1 + i (E2 + i B2) E3 + i B3

E3 + i B3 E1 + i B1 − i (E2 + i B2)

⎞
⎠ ,

(ϕAB) =

⎛
⎝E1 − i B1 − i (E2 − i B2) E3 − i B3

E3 − i B3 E1 − i B1 + i (E2 − i B2)

⎞
⎠ .

The representations (0, 1) and (1, 0) correspond to self–dual and to anti–

self–dual F ’s, respectively:

�F = i F ⇔ ϕAB = 0 , �F = −i F ⇔ ψȦḂ = 0 ; (1.16)
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for a real F these two representations are conjugate to each other:

Fμν = Fμν ⇔ εȦḂ ϕAB = εAB ψȦḂ . (1.17)

Maxwell electrodynamics has been instrumental in Einstein’s under-

standing of the geometry of space–time in his special theory of relativity.

It is noteworthy that conformal invariance of Maxwell’s equations selects

D = 4 as the dimension of Minkowski space.

The important fact that local conformal transformations preserve causal

ordering was noted and exploited much later ([19], [43]). (The necessity of

a qualification like ”local” will become manifest in Sec. 2 below where we

shall see that space- and time-like intervals can be interchanged by proper

conformal transformations.)

The presence of natural scales in nature, like masses of elementary par-

ticles or discrete wave lengths of atomic spectra, imply that dilation (and

a fortiori conformal) invariance is not an exact property of matter. It is

relevant, however, for the description of critical phenomena in which the

correlation length is much larger than the atomic scale [40], and is believed

to play a role in understanding the short distance behaviour of quantum

field theory (QFT) – in a regime in which masses can be neglected – see, e.g.

[34], [35]. This is not the first example when a beautiful symmetry is only

exhibited in an idealized situation. Stretching imagination one can draw a

parallel with the law of inertia which becomes only manifest if friction is

neglected.

After the return of interest for QFT in the late 1960’ies (preceded by

a fascination with local current algebras) the study of scale and conformal

invariant QFT had several high points.

The first pick of activity was triggered by the discovery of Bjorken

scaling in deep inelastic scattering and by two theoretical developments:

Polyakov’s discovery [40] that 3–point functions are fixed up to normal-
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ization by conformal invariance and Wilson’s understanding of the role

of anomalous dimensions and operator product expansions (OPE) in the

Thirring model [49] (and his subsequent development of renormalization

group methods). The work in this early period is reviewed in [47].

A break-through in 2D conformal field theory (CFT) was achieved in [5]

on the basis of preceding mathematical developments (the computation of

Kac’s determinant which plays a crucial role in the representation theory

of the Virasoro algebra - for a pedagogical review, see [28]). 2D CFT

is attracting attention ever since displaying exciting relations with both

pure mathematics and various branches of theoretical physics (from down–

to–earth applications to surface critical phenomena in condensed matter

physics – including the fractional quantum Hall effect, see, e.g. [22] [10] and

references to earlier work cited there – to more speculative developments

related to the grand string theory project). A textbook survey of the first

decade of this work is offered in [13]. Important subsequent work goes under

the heading of boundary CFT (see, e.g. [24] [39] and references therein).

CFT in 4 (and higher) dimension were never quite forgotten (see, e.g.

[46] [20] [17]) but it made a real comeback with the discovery of the AdS–

CFT correspondence (for an early review – see [1]; later work on the N = 4

supersymmetric Yang Mills theory can be traced back from [2] and [6]). The

present lectures are chiefly based on [36] and [37] where common features

of 2D and 4D CFT are emphasized.
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2 Compactified Minkowski space. Conformal or-

bits of pairs of events.

2.1 The Klein-Dirac quadric and the cone at infinity.

The notion of a conformal space as a projective cone in which the con-

formal group acts without singularities has been introduced (for euclidean

signature) by F. Klein in his famous Erlangen lecture (1872). We proceed

to displaying Dirac’s construction of compactified Minkowski space M [14]

which implements Klein’s program in the pseudo-euclidean case.

Points in M are identified with isotropic rays in R
D, 2 :

M = Q /R
∗ ,

Q =
{
�ξ ∈ R

D, 2 ; �ξ 
= 0 , �ξ 2 := ξ 2 + ξ2D − ξ20 − ξ2−1 = 0
}
. (2.1)

Here R
∗ is the multiplicative group of non–zero reals, ξ 2 =

∑D−1

i= 1
ξ2i . Let

�ea , a = −1, 0, 1, ..., D be an orthonormal basis in R
D, 2 . The embedding

of M in M is given by

M � x �→
{
λ�ξx

}
∈ M ,

�ξx = xμ �eμ +
1 + x2

2
�e−1 +

1 − x2

2
�eD (2.2)

(μ being summed up from 0 to D − 1 and x2 = xμx
μ = x2 − x2

0 ). The

Minkowski space interval is expressed in terms of the inner product of the

representatives of the two points in M :

(x− y)2 = − 2 �ξx ·�ξy =
(
�ξx − �ξy

)2
. (2.3)

A point in M is an image of a point in M iff ξ−1 + ξD 
= 0 ; then xμ =
ξμ

ξ−1+ξD . The points at infinity in M form a D − 1 dimensional cone with

tip at p∞ (cf. [38]):

K∞ =
{
λ �ξ ; �ξ ·�ξ∞ = ξ−1 + ξD = 0

}
,
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�ξ∞ = (−1, 0, 0, 1) , p∞ =
{
λ �ξ∞

}
. (2.4)

An ancient example of a conformal transformation, the conformal in-

version x �→ −x/x2 (known in the 2D case to Apollonius of Perga, third

century BC) maps the origin in M into p∞ . This is an example of an im-

proper conformal transformation. There is a remarkable proper (and again

involutive) conformal transformation, the Weyl inversion,

w x =
(
x0

x 2
,
−x
x 2

)
, w �ξ =

(−ξ−1, −ξ0, ξ1, ..., ξD) , (2.5)

which also interchanges the light cone at the origin with the light cone at

infinity.

The group G acts transitively on M since every two isotropic rays can

be brought to one another by a pseudo–rotation. The stability subgroup

G∞ of p∞ is the Poincaré group extended by dilations. For example, the

images of translations and (uniform) dilations in SO (D, 2) ,

Ta =

⎛
⎜⎜⎜⎜⎜⎝

1 + a2

2 −a0 a a2

2

a0 1 0 a0

aT 0T I aT

−a2

2 a0 a 1 − a2

2

⎞
⎟⎟⎟⎟⎟⎠ ,

Λα =

⎛
⎜⎜⎜⎜⎜⎝

chα 0 0 −shα

0 1 0 0

0T 0T I 0T

−shα 0 0 chα

⎞
⎟⎟⎟⎟⎟⎠ , (2.6)

preserve the ray
{
λ�ξ∞

}
. The simple linear action of G in R

D, 2 allows to

compute the conformal factor in (1.1) for any conformal transformation g .

Indeed, if the image gx of x ∈M under the action of g ∈ G also belongs to

M then the conformal factor ω (x, g) can be defined by

g�ξx = ω (x, g) �ξgx for �ξx ·�ξ∞ = 1 = �ξgx ·�ξ∞
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⇒ ω (x, g) = g �ξx ·�ξ∞ (2.7)

With this definition we find

(gx− gy)2 = −2 �ξgx.�ξgy = −2
g�ξx ·g�ξy

ω (x, g)ω (y, g)
=

=
(x− y)2

ω (x, g)ω (y, g)
. (2.8)

in accord with (1.1).

Proposition 2.1 Any pair (p0, p1) of mutually non-isotropic points of M

can be mapped into any other such pair (p′0, p′1) by a conformal transfor-

mation.

Proof. Due to the transitivity of the action of G there are elements g0 and

g′0 of G which carry p0 and p′0 into the point p∞ : g0p0 = g′0p′0 = p∞ . Then

the images g0p1 and g′0p′1 of the two other points will both belong to M

(because the original pairs are mutually non isotropic) and can hence be

moved to one another by a translation t (in G∞ ) which leaves p∞ invariant:

g′0p′1 = tg0p1 . So the element g ∈ G which transforms the pair (p0, p1) into

(p′0, p′1) is given by g = (g′0)
−1t g0 . �

2.2 A remarkable complex parametrization of M .

We shall also need the complexification MC of M (and QC of Q ) since

energy positivity (Wightman axiom SC of Sec.3 below) implies that the

vector valued distribution F (x) = φ(x)|0〉 for an arbitrary local field φ(x)

can be viewed as the boundary value of an analytic function F (x + iy)

holomorphic in the (forward) tube domain T+ where

T± =
{
x± i y ; x ∈ M , y ∈ V +

}
,

V ± =
{
y ∈ M ; ±y0 > |y|} . (2.9)
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Clearly, T± ⊂ MC and each of them is a homogeneous space of the (real)

conformal group G [48], the stabilizer of a point being conjugate to the

maximal compact subgroup Spin (D) × Spin (2) of G .

Proposition 2.2 For every point p =
{
λ�ξ
}

∈ T+ and representative
�ξ ∈ QC we have

�ξ ·�ξ∗ < 0 and Re
{
�ξ, �ξ∗

}⊥
:={

�η ∈
{
�ξ, �ξ∗

}⊥
; �η ∗ = �η

}
= R

D, 0; (2.10)

here R
D, 0 is a D-dimensional (real) euclidean space.

Proof. Given the transitivity of the action of G on T+ and the G–invariance

of the inner product in C
D+2, we can choose, without loss of generality, the

vector �ξ+ associated with ζ+ according to (2.2) as: �ξ+ := �ξζ+ = �e−+i �e0 . It

follows that �ξ+ · �ξ∗+ = (�e−1 + i �e0) · (�e−1 − i �e0)

= − 2 . Furthermore, Re
{
�ξ, �ξ∗

}⊥
is the (real) linear span of �e1, ..., �eD

– i.e., it is a D-dimensional real euclidean space. �

The real basis vectors �e−1, �e0 can be traded for �ξ±:

2�e−1 = �ξ+ − �ξ− ( = �ξ+ + �ξ∗+ ) ,

2�e0 =
1
i

(
�ξ+ + �ξ−

)
( = i

(
�ξ∗+ − �ξ+

)
) (2.11)

allowing to substitute (2.2) for for x→ ζ ∈ T+ by

�ξζ =
1
2

(
1 + ζ2

2
− i ζ0

)
�ξ+ − 1

2

(
1 + ζ2

2
+ i ζ0

)
�ξ− +

+ζj �ej +
1 − ζ2

2
�eD =

1 + ζ2

2
�e−1 + ζμ�eμ +

1 − ζ2

2
�eD . (2.12)

Thus ζ is mapped on an euclidean complex D–vector z by a complex

conformal transformation (cf. [46]):
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z = ω−1 (ζ) ζ , zD ( = zD ) = ω−1 (ζ)
1 − ζ2

2
, ω (ζ) =

1 + ζ2

2
− i ζ0

⇒ z2 =
D∑
a=1

z2
a =

1+ζ2

2 + i ζ0

1+ζ2

2 − i ζ0
=

ω (ζ)
ω (ζ)

⇒

ω−1 (ζ (z)) =
1 + z2

2
+ zD =: Ω−1 (z)

⇒ ζ = Ω (z) z , i ζ0 = Ω (z)
z2 − 1

2

(⇒ ζ2 =
1 + z2 − 2zD
1 + z2 + 2zD

) . (2.13)

The fact that the mapping ζ �→ z (2.13) is conformal is reflected in the

identity

dz2 ( =
D∑
a=1

(dza)2 ) = ω−2 (ζ) dζ2 ( dζ2 = dζ2 − dζ2
0 ) . (2.14)

The real compactified Minkowski space can be singled out as the set of z

invariant under an appropriate involution:

z ∈ M iff za = z∗a :=
za
z2 ⇒ z2 z2 = 1 ,

Πab :=
zazb
z2

= Πab . (2.15)

The real euclidean space E = R
D, 0 corresponding to real ζ = x and

pure imaginary ζ0 , gives rise to real za (= za ) . Both M and E\ {0} are

contained in the submanifold S
D−1 × C

∗ of MC (of real dimension D +

1 ). This submanifold is characterized by the property that the symmetric

tensor Π = (Πab) of Eq. (2.15) defines a real (1–dimensional) projection

operator:

Π = Π∗ = Π = Π2 ( tr Π = 1 )

⇒ Πab = ua ub , u ∈ S
D−1 . (2.16)
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3 Wightman axioms and global conformal invari-

ance.

For the sake of simplicity we shall consider the theory of a single neutral

scalar field φ . The general case of a system of finite component complex

spintensor fields is treated in [36].

We say that the scalar field is conformally covariant of dimension d if

for {x ; gx ∈M}

g : φ (x) �→ [ω (x, g)]d φ (gx) . (3.1)

The requirement that φ is single valued implies that d should be an integer

in this case. The n–point Wightman function (in fact, tempered distribu-

tion)

W (x1, ..., xn) = 〈0| φ (x1) . . . φ (xn) |0〉 (3.2)

is said to satisfy the condition of global conformal invariance (GCI) if

[ω (x1, g) . . . ω (xn, g)]
d W (gx1, ..., gxn) = W (x1, ..., xn) (3.3)

for gx1, ..., gxn ∈ M . This implies, in particular (unrestricted) Poincaré

and dilation invariance.

We shall consider a quantum field theory satisfying GCI as well as the

standard Wightman axioms which we proceed to recall (see [44] or [8]).

Spectral condition (SC) The Fourier transform of a translation invariant

Wightman function

W (x1, ..., xn) = W (x12, ..., xn−1n) , xik = xi − xk (3.4)

defined by

W̃ (q1, ..., qn−1) =

14



=
∫

· · ·
∫

M×(n−1)

W (y1, ..., yn−1) e−i(q1y1+...+qn−1yn−1) dDy1 . . . dDyn−1 (3.5)

has support in the product of closed future light–cones:

supp W̃ ⊆
(
V

+
)×(n−1)

, V
± =

{
q ∈ M ; ± q0 ≥ |q|

}
. (3.6)

This is the relativistic (Lorentz invariant) form of energy positivity.

A sharpening of SC includes the uniqueness of the vacuum. It implies

the vanishing of truncated n–point functions for ρij �→ ∞ and the vanishing

of all 1–point functions.

Local commutativity (LC):

W (x1, ..., xi, xi+1, ..., xn) = W (x1, ..., xi+1, xi, ..., xn) . (3.7)

Wightman positivity (WP), a consequence of Hilbert space positivity. Con-

sider the Borchers algebra of finite sequences of (complex valued, smooth)

test functions

f = (f0, f1 (x1) , f2 (x1, x2) , ..., fn (x1, ..., xn) , ...) ,

fn = 0 for n >> 1 , (3.8)

equipped with a (noncommutative) multiplication

f × g = (f0 g0, f0 g1 (x1) + f1 (x1) g0, f0 g2 (x1, x2) +

f1 (x1) g1 (x2) + f2 (x1, x2) g0, ...) (3.9)

and with an involution f �→ f∗ given by (term by term) complex conjuga-

tion. Define the Wightman functional W (f) by the series (finite sum)

W (f) = f0 +
∫

W (x1, x2) f2 (x1, x2) dDx1 dDx2 + . . . . (3.10)

Then Wightman positivity assumes the form

W (f∗× f) ≥ 0 for any f . (3.11)
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The following simple result is an elementary application of the above

postulates (see Sec.5.D of [16]).

Proposition 3.1 The 2–point function of φ as well as its 3–point functions

with arbitrary tensor fields are determined from the above postulates up to

normalization constants. If, for instance, T2l is a symmetric traceless tensor

of (even) dimension 2νl ,

T2l (x, ζ) = Tμ1, ..., μ2l
(x) ζμ1 . . . ζμ2l , �ζ T2l (x, ζ) = 0 , (3.12)

then the 3–point function of two φ’s and T2l is given by

〈0| φ (x1)φ (x2)T2l (x3, ζ)|0〉 =

Al (12)d
(
X2

)νl
(
ζ2
)l
C

D
2
−1

2l

(
ζ̂ ·X̂

)
, v̂ =

v√
v2

. (3.13)

Here (12) is the free massless propagator (corresponding to d = 1)

(12) =
1

4π2ρ12
, ρ12 = x 2

12 + i 0x0
12 , (3.14)

the D–vector X depends on the three points,

X ( = X3
12 ) =

x13

ρ13
− x23

ρ23
, X2 =

ρ12

ρ13ρ23
, (3.15)

Cλn is the Gegenbauer polynomial which satisfies the differential equation{(
1 − z2

) d2

dz2
− (2λ+ 1) z

d
dz

+ n (n+ 2λ)
}
Cλn (z) = 0 , (3.16)

and the normalization and orthogonality conditions

Cλn (1) =

⎛
⎝2λ+ n− 1

n

⎞
⎠ ,

1
π

π∫
0

Cλn (cos θ) Cλm (cos θ) sin2λ θ dθ =
Γ (2λ+ n) δmn

22λ−1 n! (n+ λ) Γ2 (λ)
.

(3.17)
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The polynomial in ζ is the (unique) harmonic extension of its light–cone

value

(
ζ2X2

)n
2 Cλn

(
ζ̂ ·X̂

)
=

⎛
⎝n+ λ− 1

n

⎞
⎠ (2 ζ ·X )n

for ζ 2 = 0 . (3.18)

WP implies

d ≥ λ :=
D

2
− 1 (≡ λ (D) ) , νl ≥ λ+ l

for l > 0 , ν0 ≥ 0 . (3.19)

Sketch of proof. We shall only indicate how WP gives lower bounds to the

dimensions (referring for details to Sec.5 of [16]). The i0x0 term in the

definition of rho in (3.14) defines the corresponding distribution in a way

to ensure that its Fourier transform vanishes outside the forward cone (i.e.

satisfies SC). The 2–point function of a symmetric traceless tensor Tn (x)

of dimension dn has the form

〈0| Tn (x1, ζ1) Tn (x2, ζ2) |0〉 =

= Nn
(dn + n− 1) Γ (dn − 1)

(2π)
D
2

(
2
ρ12

)dn

(ζ1 ·r (x12)·ζ2)n =

=
2πNn

Γ (dn − λ)

∫
dDp

(2π)D
θ
(
p0
) (− p 2

2

)dn−λ−n−1

+

×

×
n∑

s= 0

(−1)s
(dn − 2λ− n)n−s
(dn + s− 1)n−s

(
1
2
p 2

)n
Πns (p; ζ1, ζ2) (3.20)
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for ζ 2
1 = 0 = ζ 2

2 ; here (a)l = Γ(a+l)
Γ(a) , (x)+ = max (0, x) , ζ1 ·r (x12) ·ζ2 =

ζ1 ·ζ2 − 2 (ζ1·x12)(ζ2·x12)
ρ12

, Πns (p) are projection operators in Mn:

Πnl (p) Πns (p) = δls Πns (p) ;
n∑

s= 0

Πns (p) = I

i.e.
n∑

s= 0

Πns (p; ζ1, ζ2) = (ζ1 ·ζ2)n , (3.21)

satisfying

pμs . . . pμn [Πns (p)]μ1 ... μn
ν1 ... νn

= 0 =

= [Πns (p)]μ1 ... μn
ν1 ... νn

pνs . . . pνn . (3.22)

WP amounts to positivity of the Fourier transform for complex conjugate

ζ . It is verified for

dn ≥ λ+ nH for n > 0 , d0 ≥ λ , (3.23)

as displayed by the expression for the contracted projection operator:

(−1)s
(

1
2
p 2

)n
Πns

(
p; ζ, ζ

)
=

D + 2 s− 3
(n− s)!

n!2
[
(p·ζ) (p·ζ)]n

(D − 3)n+s+1

C
λ− 1

2
s

(
1 − p2

(
ζ ·ζ)

(p·ζ) (p·ζ)
)
. (3.24)

�

For a systematic study of the unitary positive energy representations of

G which provide necessary conditions for Wightman positivity see [41] [32].

4 Local commutativity and GCI imply Huygens

principle. Huygens principle and spectral con-

ditions imply rationality.

The following strong locality property is an immediate consequence of

Proposition 2.1.
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Theorem 4.1 GCI and LC imply the Huygens principle (a strong form of

LC ):

[φ (x) , φ (y) ] = 0 for

(x− y)2 
= 0 (⇔ (3.7) valid for x 2
i i+1 
= 0 ) . (4.1)

In fact, the proof of the statement for the Wightman function requires a

refinement of Proposition 2.1 proven in [36].

Lemma 4.2 For each set of points (x1, ..., xm, y1, y2) in M such that y 2
12 
=

0 and a pair of mutually non-isotropic y′1, y′2 there exists a g ∈ C such that

gxi ∈M for 1 ≤ i ≤ m and y′1 = gy1, y′2 = gy2.

Lemma 4.2 can be proven by induction in m. We will briefly sketch the

argument.

For m = 0 it reduces to Proposition 2.1. Assume that it is established

for some m ≥ 0. We shall prove that it is then also valid for arbitrary m+1

points x1, ..., xm+1 and mutually non-isotropic pairs (y1, y2), (y′1, y′2) in M .

According to the assumption there exists a g′ ∈ C such that g′xi ∈ M for

1 ≤ i ≤ m and y′1 = g′y1, y′2 = g′y2. If g′xm+1 ∈ M we are in business.

If p : = g′xm+1 ∈ K∞ then there exists an element h , arbitrarily close to

the group unit in the stabilizer Cy′1,y′2 (⊂ C ) of the pair y′1, y′2 such that

hp /∈ K∞ . To complete the proof of Lemma 4.2 it remains to choose h so

that hg′xi ∈M for i = 1 , ... , m . This is possible since M is an open set in

M and C acts continuously on M . Hence, g = hg′ satisfies the conclusion

of Lemma 4.2. �

The main result of this section can be formulated as follows.
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Theorem 4.3 The truncated n–point function of φ (x) is a rational func-

tion of ρij which vanishes for odd nd and has the form

W t (x1, .., xn) =
P (ρkl)∏

1≤ i< j≤n
ρμij

for n ≥ 4 , n d even , (4.2)

where μ is a positive integer, P is a homogeneous polynomial of its ar-

guments of degree n(n − 1)μ− 1
2
nd . Furthermore, P is symmetric under

permutation of xj and every index j of ρ appears in each term of P ,

μ (n− 1) − d times. The 2– and 3–point functions of φ (which coincide

with the corresponding truncated functions) are given by Proposition 3.1;

in particular,

W (x1, x2, x3) = N3d [(12) (23) (13)]
d
2 ,

N3d = 0 for d odd . (4.3)

For space-time dimension D = 4 the power of the denominator in (4.2) can

be chosen as μ = d− 1.

Sketch of proof. Since the n-point Wightman function is a Schwartz dis-

tribution its singularities have a finite order. WP implies that their order

does not exceed the order of the pole of the the 2-point function (see Sec.4

of [36]). It then follows from the Huygens principle (Theorem 4.1) that,

for some (sufficiently large) positive integer μ , the (translation invariant)

function

F (x12, ..., xn−1n) =

⎛
⎝ ∏

1≤ i< j≤n

ρμij

⎞
⎠ W t (x1, ...., xn) (4.4)

is fully symmetric with respect to permutations of the x’s implying, in

particular,

F (y1, ..., yn−1) = F (−yn−1, ..., −y1) . (4.5)
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Applying SC to both sides we conclude that the Fourier transform F̃ of F

in each argument has support in the intersection of the forward and the

backward cone. Hence, the support of F̃ is at the origin in momentum

space. In other words, F is a polynomial in its arguments. The symme-

try of the numerator is a consequence of LC. Poincaré invariance implies

that F (x12, ..., xn−1n) = P (ρkl) for some polynomial in the ρ’s. The last

property of P follows from GCI. The fact that the truncated functions (for

n > 2 and D = 4 ) have strictly lower singularities than the 2–point func-

tion follows from WP (see Corollary 4.4 of [36]). Thus we can choose then

μ = d− 1 . �

Remark 4.1 For D = 2 the power μ of the denominator in (4.2) cannot, in

general, be chosen smaller than d . For instance the so called “energy field”

in the critical Ising model, ε (x) = ψ
(
x0 + x1

)
ψ
(
x0 − x1

)
where ψ and ψ

are free (1–component) Majorana–Weyl spinors of dimension dψ =1
2

, has

dimension d = 1 and a nontrivial truncated 4–point function which falls off

at infinity while d− 1 = 0 .

As noted in the beginning this basic result remains true for an arbitrary

system of GCI fields. The only difference is in the power of ρij in the

definition of F (4.4). For instance in the theory of a rank n symmetric

tensor field of dimension d this power becomes d+ n.

Corollary 4.4 The Huygens principle for any pair of GCI Bose fields can

be written in the form

ρ N
12 [φ (x1) , φ (x2) ] = 0 for N >> 1 , (4.6)

i.e. for N sufficiently large (for the commutator of a rank n symmetric

tensor field of dimension d with itself it is enough to take N = d+ n ).
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Remark 4.2 The canonical scalar and spinor fields (of dimension D−2
2

and
D−1

2
, respectively) do not have rational correlation functions and hence

cannot satisfy GCI for odd D . It follows that the same is true for the

stress–energy tensor T whose 3–point function is necessarily irrational (for

instance, the general conformally invariant 3-point function of T satisfying

the Ward–Takahashi identity for D = 3 is a superposition of the 3–point

functions of the canonical (composite, traceless) tensors of a scalar and a

spinor field of dimensions 1
2 and 1 , respectively, whose x–space propagators

involve square roots of ρij ). It follows that the Huygens’ principle cannot

be realized for the full algebra of observable local fields in odd space–time

dimensions much in line with what we know from classical field theory.

For any four points x1, ..., x4 , there are exactly two independent con-

formally invariant cross ratios:

η1 =
ρ12 ρ34

ρ13 ρ24
, η2 =

ρ14 ρ23

ρ13 ρ24
. (4.7)

Corollary 4.5 For D > 2 the most general GCI truncated 4–point function

of a scalar field of dimension d can be written in the form

W t (x1, ..., x4) = Dd (ρij) Pd (η1, η2) ,

Dd (ρij) =
(ρ13 ρ24)

d−2

(ρ12 ρ23 ρ34 ρ14)
d−1

, Pd (η1, η2) =
∑

i, j ≥ 0

i+j ≤ 2 d−3

cij η
i
1 η

j
2 . (4.8)

Locality implies invariance of the polynomial P under the 6–element

permutation group S3 generated by

s12 : Pd (η1, η2) �→ η2d−3
2 Pd

(
η1

η2
,

1
η2

)
= Pd (η1, η2) ,

s23 : Pd (η1, η2) �→ η2d−3
1 Pd

(
1
η1
,
η2

η1

)
= Pd (η1, η2) (4.9)
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This also yields the symmetry property s12 = s12s23s12 = s23s12s23 :

Pd (η1, η2) �→ Pd (η2, η1) = Pd (η1, η2) . This leaves us with the follow-

ing
[[
d2

3

]]
1 independent coefficients

cij for i ≤ j ≤ 2d− 3 − i

2
( cij = cji = ci, 2d−3−i−j = c2d−3−i−j, i = cj, 2d−3−i−j = c2d−3−i−j, j ) .

(4.10)

We shall study in detail the case d = 2 for D = 4 , that is the minimal

d for which a non–vanishing truncated 4–point function exists. Using the

shorthand notation 〈0| φ (x1) ... φ (xn) |0〉 =: 〈1 ... n〉 we shall write in this

case

〈12〉 =
c

2
(12)2 , 〈123〉 = c (12) (23) (13) ,

〈1234〉 = 〈12〉 〈34〉 + 〈14〉 〈23〉 + 〈13〉 〈24〉 + W t
4 (d = 2) (4.11)

with (ij) given by (3.14) and

W t
4 = c (12) (23) (34) (14) (1 + η1 + η2) =

c
{

(12) (23) (23) (14) + (12) (13) (24) (34) + (13) (14) (23) (24)
}
. (4.12)

5 Stress-energy tensor; the Virasoro algebra.

In a CFT the conformal symmetry generators are expressed as integrals of

the conserved stress-energy tensor:

Pμ =
∫

Θμ0 (x) dx , Lμν =
∫

(xμ Θν0 (x) − xν Θμ0 (x)) dx ,

D =
∫
xλ Θλ0 (x) dx , Kμ =

∫ (
2xμ xλ − x 2 δλμ

)
Θλ0 (x) dx ,

( dx = dx1 . . . dxD−1 ) . (5.1)
1[[a]] stands for the integer part of a
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The infinitesimal translations Pμ and Lorentz transformations Lμν are con-

served as a consequence of stress-energy conservation. The generators of

dilation (D) and of special conformal transformations (Kμ) are conserved

if in addition Θμν is traceless:

dD
dx0

=
∫ (

Θν
ν (x) − xλ ∂ν Θ ν

λ (x)
)

dx = 0 if

∂ν Θν
λ (x) = 0 and Θν

ν (x) = 0 . (5.2)

In the theory of a free massless scalar field this requires adding a second

derivative term to the canonical stress-energy tensor:

Θμ
ν (x) =

D

2 (D − 1)
:∂μϕ∂νϕ : − δμν

2 (D − 1)
:(∂ϕ)2 :

+
D − 2

8 (D − 1)2
(δμν � −D∂μ∂ν) :ϕ2 (x) : . (5.3)

The last term only vanishes for D = 2 . We proceed to considering this

exceptional case in more detail.

The 2D field ϕ does not exist as an operator–valued distribution acting

in a Hilbert space: its 2–point function is logarithmic and hence violates

WP (in the words of Coleman [11] “there are no Goldstone bosons in two

dimensions”). Its gradient, however gives rise to a well defined (free) con-

formal vector field, a conserved current:

√
πjμ (x) = i ∂μϕ (x) , ∂μj

μ (x) = 0 = ∂μjν (x) − ∂νjμ (x) . (5.4)

Equations (5.4) are solved by the chiral components of the current which

depend on a single light-cone variable:

(∂0 − ∂1) jL = 0 , jL
(
x0 + x1

)
=

1
2
(
j0 (x) − j1 (x)

)
,

(∂0 + ∂1) jR = 0 , jR
(
x0 − x1

)
=

1
2
(
j0 (x) + j1 (x)

)
. (5.5)

Expressing Θμν in terms of jμ we obtain from (5.3) the so-called Sugawara

formula (which can actually be traced back to work of the 1930ies – see
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[30]). The traceless stress tensor in 2D also has two independent chiral

components:

ΘL

(
x0 + x1

)
=

1
2
(
Θ0

0 (x) + Θ1
0 (x)

)
( = π j2L ) ,

ΘR

(
x0 − x1

)
=

1
2
(
Θ0

0 (x) − Θ1
0 (x)

)
( = π j2R ) , (5.6)

We shall demonstrate that a chiral conformal field Θ (t) of dimension 2 gives

rise to an infinite dimensional Lie algebra with commutation relations (CR)

derived from Wightman axioms. The possibility to separate the left and

the right movers’ algebra is a simple consequence of L (see [23]).

Proposition 5.1 Locality implies that the left and the right movers’ fields

mutually commute,[
jL

(
x0 + x1

)
, jR

(
y0 − y1

)]
= 0 =

[
jL

(
x0 + x1

)
, jR

(
y0 − y1

)]
, for all

x, y ∈M .

Next we shall use the stereographic projection to introduce what is

called in [23] the analytic compact picture fields:

t = 2 i
1 − z

1 + z
( z =

1 + i
2 t

1 − i
2 t

∼ 1 + i t− t2

2
+ . . . ) , z = ei τ

⇔ t = 2 tg
(τ

2

)
( t ∈ R ⇔ τ ∈ R ) , (5.7)

J (z) = 2π
(
i

dt
dz

)
j (t (z)) =

8π
(1 + z)2

j

(
2 i

1 − z

1 + z

)
,

T (z) = 2π
(
i

dt
dz

)2

ΘL (t (z)) = 2π
16

(1 + z)4
ΘL

(
2 i

1 − z

1 + z

)
.(5.8)

Since (5.7) is an embedding of a light ray into the unit circle the physical

values of z are the fixed points of the involution z∗ = 1
z where z is the

complex conjugate of z . The observable fields are single–valued functions

of z on the circle admitting a discrete Fourier (Laurent) expansion:

J (z) =
∑
n∈Z

Jn z
−n−1 , T (z) =

∑
n∈Z

Ln z
−n−2 , (5.9)
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With these conventions the reality condition for J and T assumes the form:

J∗
n = J−n , L∗

n = L−n . (5.10)

Proposition 5.2G invariance, for G = Spin (2, 2) ∼= SU (1, 1)×SU (1, 1) ,

implies Möbius invariance of the chiral fields and of the vacuum state, the

infinitesimal Möbius transformations being generated by the modes L0 , L±1

of T :

[Ln , J (z)] =
d
dz

(
zn+1 J (z)

)
,

[Ln , T (z)] = zn
(
z

d
dz

+ 2 (n+ 1)
)
T (z) ,

Ln |0〉 = 0 for n = 0, ± 1 . (5.11)

The SC yield positivity of the chiral conformal energy L0 which implies

Ln |0〉 = 0 = Jn |0〉 for n ≥ 0 . (5.12)

The proof of this statement is contained in Sec.2.4 of [23].

The following result goes back to an early stage of 2D CFT ([42] [31]); its

main part (concerned with the Virasoro algebra) is known as the Lüscher–

Mack theorem (see [45] [33]).

Theorem 5.3 Wightman axioms including G–invariance imply the CR

[ J (z1) , J (z2) ] = ∂2 δ (z12) ( z12 = z1 − z2 , ∂2 ≡ ∂

∂z2
)

⇔ [ Jn , Jm] = n δn,−m (5.13)

[T (z1) , T (z2) ] =
c

12
∂3

2 δ (z12) + (T (z1) + T (z2)) ∂2 δ (z12) ,

[ c , T (z) ] = 0 , (5.14)
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where the z–picture δ–function is defined by its formal power series

expansion (cf. [27]):

δ (z12) =
1
z1

∑
n∈Z

(
z2
z1

)n
= lim

|z1|↘ |z2|
1
z12

+ lim
|z2|↘ |z1|

1
z21

. (5.15)

The local CR are equivalent to the Virasoro CR for the modes of T :

[Ln , Lm] = nLn+m + c
n3 − n

12
δn,−m , [ c , Ln] = 0 . (5.16)

The quantum Sugawara formula (implied by (5.6)) reads

T (z) =
1
2

:J2 (z) : =

= J (+) (z) J (−) (z) +
1
2

(
J (+) (z) J (+) (z) + J (−) (z) J (−) (z)

)
, (5.17)

where J (−) (z) (J (+) (z)) is the sums of (non)negative powers of z :

J (−) (z) =
∞∑
n= 0

Jn z
−n−1 ,

J (+) (z) =
∞∑
n= 1

J−n zn−1 = J (z) − J (−) (z) . (5.18)

It fixes the Virasoro central charge to c = 1 and further implies the mixed

CR

[T (z1) , J (z2) ] =
∂

∂z2
(δ (z12)J (z2)) . (5.19)

Sketch of proof. The Huygens principle for an arbitrary chiral (hermitean)

Bose field On (z) of dimension n ∈ N (cf. (4.6)),

(z − w)2n [On (z) , On (w) ] = 0 (5.20)

implies that the commutator can be expanded in a finite sum of derivatives

of δ (z − w) :
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[On (z) , On (w)] =
2n−1∑
l= 0

A2n−l−1 (w) ∂lw δ (z − w)

( ∂w ≡ ∂

∂w
) . (5.21)

Here Ak (w) is a (hermitean) local field of dimension k. The antisymmetry

of the commutator together with the identity

Ak (z) ∂lw δ (z − w) =
l∑

s=0

⎛
⎝l
s

⎞
⎠ A

(s)
k (w) ∂l−sw δ (z − w) . (5.22)

imply the relations

(−1)k Ak (w) =
k∑

s=0

(−1)s

⎛
⎝2n− k + s− 1

s

⎞
⎠ A

(s)
k−s (w) . (5.23)

The uniqueness of the vacuum requires that A0 is a real number. Eq.

(5.23) then allows to express all Ak in terms of the first non-vanishing A2l

for l > 0. If, in particular, A2 is not identically zero then

A1 = 0 , 2A3 = (2n− 3) A′
2 etc. (5.24)

Applied to J (z) (n = 1 ) this gives (5.13) (normalizing J in such a way

that A0 = 1 ). In the case of T (z) (n = 2) the normalization is fixed by the

infinitesimal Möbius transformations (5.11). Indeed using (5.9), (5.11) and

(5.15) we find

L−1 =
∮

T (z)
dz

2π i
, [L−1 , T (z)] = T ′ (z)

( as
∮

|z1|= r1> |z2|
f (z1) δ (z12)

dz1
2π i

= f (z2) ) . (5.25)

This allows to identify A3 and (in view of (5.24)) A2 : A3 (z) = T ′ (z)

= 1
2 A

′
2 (z) , A2 (z) = 2T (z) ; setting A0 (z) = c

12 we end up with

[T (z1) , T (z2) ] =
c

12
∂ 3

2 δ (z12) + 2T (z2) ∂2 δ (z12) + T ′ (z2) δ (z12)

(5.26)
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which is equivalent to (5.14). �

Remark 5.1 The CR for T (z) can be established under the (apparently)

weaker assumption of scale invariance but still requiring tracelessness of

the stress-energy tensor ([31], [23] Sec.3.). This is not surprising since, as

we have already noted, the infinitesimal special conformal transformations

are conserved whenever there is a conserved traceless stress–energy tensor.

6 Example of a rational CFT: Weyl fermions.

The chiral fields like T (z) and J (z) satisfy GCI and hence have rational

correlation functions. A chiral CFT is generated by a “complete set” of

positive energy representations of a local chiral algebra A which are closed

under multiplication of the corresponding interpolating fields (thus giving

rise to well defined fusion rules). If the number of such representations,

called superselection sectors, is finite then the chiral CFT is called rational

(RCFT).

The energy and charge distribution in an irreducible A module Hκ of

a chiral algebra is captured by the chiral partition function or character of

the representation

χ
(κ)
1 (τ, ζ) = trHκ

(
qL̃0 zJ0

)
, q = e2π i τ ,

Im τ > 0 , z = e2π i ζ , L̃0 = L0 − c

24
. (6.1)

The characters in an RCFT have the remarkable property to span a finite

dimensional representation of the modular group SL (2, Z) , of fractional

linear transformations of the parameter τ (with an accompanying change

of ζ and an appropriate multiplicative factor). We shall exhibit these prop-

erties in the simplest example of an RCFT: the theory of a (free) Weyl

field.
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A complex field ψ (z) and its conjugate, which carry unit charge,

[ J0 , ψ
∗ (z) ] = ψ∗ (z) , [ J0 , ψ (z) ] = −ψ (z) , (6.2)

and obey a homogeneous Möbius transformation law, have the canonical

dimension 1
2 of a Weyl fermion (because of the Sugawara formula (5.17).

They satisfy the local anticommutation relations

[ψ (z1) , ψ (z2) ]+ = 0 = [ψ∗ (z1) , ψ∗ (z2) ]+ ,

[ψ (z1) , ψ∗ (z2) ]+ = δ (z12) (6.3)

which (together with SC) determine their Wightman functions. The chi-

ral algebra A of the theory is the maximal Bose field subalgebra of the

Clifford algebra F of ψ(∗) . It is generated by the charge 2 bilocal fields
1
z12

ψ (z1)ψ (z2) and 1
z12

ψ∗ (z1)ψ∗ (z2) that have finite limits for z12 → 0

and provides an example of an 1–dimensional even (charge-)lattice cur-

rent algebra A = A (4 Z), the square of the minimal charge vector being 4.

There are 4 irreducible positive energy representations of A labeled by the

elements of the dual lattice mod 4 Z . The four A modules are combined into

two superselection sectors Hκ of the field algebra F : the Neveu–Schwarz

(NS) sector H0 containing the vacuum |0〉 and the Ramond (R) sector H 1
2

with a pair of oppositely charged minimal energy states carrying charge

of absolute value κ = 1
2 . The mode expansion of ψ(∗) (z) depends on the

sector; if

ψ (z) =
∑
ρ

ψρ z
−ρ− 1

2 , ψ∗ (z) =
∑
ρ

ψ+
ρ z

−ρ− 1
2 ,

(ψρ)
∗ = ψ+

−ρ (6.4)

then ρ ∈ Z + 1
2

for the NS sector and ρ ∈ Z for the R sector (in a compact

formula, ρ = n+ 1
2−κ ), so that

(
ψ
(
e2π iz

)− (−1)2κ ψ (z)
)
Hκ = 0 . There

are two equivalent expressions for the modular energy L̃0 : one, in terms
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of the current modes, another, in terms of the ψ(∗) modes, both given by

ζ–function regularized sums of symmetric (rather than normal) products.

We have

L̃0 =
1
2

∑
n∈Z

J−n Jn = L0 +
1
2

∞∑
n= 1

n =

= L0 +
1
2
ζ (−1) = L0 − 1

24
(6.5)

where

L0 =
1
2
J2

0 +
∞∑
n=1

J−n Jn ,
(
e2π iL0 − ei π κ

2
)
Hκ = 0 ;

ζ (−n) = (−1)n
Bn+1

n+ 1
(6.6)

Bm being the Bernoulli numbers (see, e.g. [18], Sec.1.5), B1 = − 1
2 , B2 =

1
6 , B2n+1 = 0 for n = 1, 2, ... , B4 = − 1

30 , etc.; similarly,

L̃0 =
1
2

∑
ρ

ρ
(
ψ+
−ρ ψρ + ψ−ρ ψ+

ρ

)
=

=
∑
ρ> 0

ρ
(
ψ+
−ρ ψρ + ψ−ρ ψ+

ρ

)− ∑
ρ> 0

ρ ; (6.7)

here the c–number term assumes different values in the two sectors:

−
∑
ρ> 0

ρ =
1
2
κ2 − 1

24

( since
1
2

∑
(2n+ 1) = − 1

2
(ζ (−1) − 2 ζ (−1)) =

1
2
ζ (−1) ) .

(6.8)

In order to compute the characters (6.1) we introduce the mean value

of an operator A in Hκ :

〈A〉κβ, ζ =
1

χ
(κ)
1 (τ, ζ)

trHκ

(
AqL̃0 zJ0

)

for 2πiτ =: −β ( q = e−β ) (6.9)
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(β having the physical interpretation of inverse absolute temperature). It

satisfies the Kubo-Martin-Schwinger (KMS) boundary condition [25]

〈
AqL̃0 zJ0 B q− L̃0z− J0

〉κ
β, ζ

=
〈
BA

〉κ
β, ζ

(6.10)

which will allow us to compute the mean value of the energy

〈
L̃0

〉κ
β, ζ

= − ∂

∂β
log

(
χ

(κ)
1 (τ, ζ)

)
(6.11)

for both expressions (6.5) and (6.7) in our model. (For a systematic ap-

plication of the KMS condition for computing chiral partition functions in

c = 1 RCFTs see [9] and [23].)

The known CR (5.13) of the current modes and the KMS condition

(6.10) allow to compute the mean value of each term in the expansion

(6.6):

q−n
〈
J−n Jn

〉κ
β, ζ

=
〈
J−n qL̃0 Jn q

− L̃0
〉κ
β, ζ

=

=
〈
Jn J−n

〉κ
β, ζ

= n+
〈
J−n Jn

〉κ
β, ζ

=⇒ 〈
J−n Jn

〉κ
β, ζ

=
n qn

1 − qn
. (6.12)

Only the mean value of the first term in the expansion (6.6) depends on z

and κ : 〈
J2

0

〉κ
β, ζ

=
∑
n∈Z

(n+ κ)2 q
1
2

(n+κ)2 zn+κ . (6.13)

Integrating and exponentiating the result we end up with the following

expression for the characters

χ
(κ)
1 (τ, ζ) =

1
η (τ)

∑
n∈Z

q
1
2

(n+κ)2 zn+κ , η (τ) = q
1
24

∞∏
n= 1

(1 − qn)

(6.14)

where η (τ) is the Dedekind η–function.
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Similarly, the expansion (6.7) yields an infinite product formula for the

characters

χ
(κ)
1 (τ, ζ) = q

κ2

2
− 1

24 zκ
∞∏
n= 1

(
1 + z qn+κ− 1

2

)(
1 + z−1 qn−κ−

1
2

)
.

(6.15)

One thus obtains an independent proof of the identity of the expressions

(6.14) and (6.15) which is a consequence of the classical Jacobi triple prod-

uct formula (see e.g. [26]).

The vacuum (NS) representation of the field algebra F is the only one

in which ψ(∗) (z) are local Fermi fields (they satisfy more general anyonic

exchange relations with the field of dimension 1
8 that intertwines the NS

with the R sector). The R sector does provide a single valued representation

of the bosonic chiral algebra A which can be defined as the subalgebra of

gauge invariant obseravables in F with respect to the finite gauge group Z2

of inner automorphisms whose nontrivial element is the fermion parity f :

f : B �→ ei π J0 B e− i π J0

( ei π J0 ψ(∗) e− i π J0 = −ψ(∗) , ei π J0 Ae− i π J0 = A for A ∈ A ) .

(6.16)

In other words, we are dealing here with a simple Z2 orbifold theory

(see, e.g. [15] [29] [7]). The characters (6.1) have now to be supplemented

by the chiral partition functions including the fermion parity:

χ
(κ)
f (τ, ζ) = trHκ

(
f qL̃0 zJ0

)
= (−i)2κ χ(κ)

1

(
τ, ζ +

1
2

)
. (6.17)

We thus have

χ
(κ)
f (τ, ζ) = q

κ2

2
− 1

24 zκ
∞∏
n=1

(
1 − z qn+κ− 1

2

)(
1 − z−1 qn−κ−

1
2

)
=

= K2κ (τ, z; 4) −K2κ+2 (τ, z; 4) (6.18)
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where

Kl (τ, z; m) =
1

η (τ)

∑
n∈Z

q
m
2 (n+ l

m)2

z
1
2

(mn+l) =

= Kl+m (τ, z; m) . (6.19)

The modular group SL (2, Z) has two generators S and T satisfying one

relation:

S =

⎛
⎝0 −1

1 0

⎞
⎠ , T =

⎛
⎝1 1

0 1

⎞
⎠ ,

S2 = (S T )3 (S τ =
−1
τ
, T τ = τ + 1 ) . (6.20)

For even m the action of S and T on the characters (6.19) is given by

e− i π m
4

ζ2

τ Kl

(
− 1
τ
,
ζ

τ
; m

)
=

1√
m

m−1∑
l′ = 0

e− 2 i π l l′
m Kl′ (τ, ζ; m) ,

Kl (τ + 1, ζ; m) = e
i π

(
l2

m
− 1

12

)
Kl (τ, ζ; m) . (6.21)

We note that abelian current algebras, the simplest example of which is the

above considered U (1) current algebra, are associated with RCFT models

applied to the study of fractional quantum Hall states (see, e.g. the work

of Fröhlich et al. and of Cappelli et al. which can be traced back from [22]

and [10]).

The field algebra F of a complex Weyl “spinor” is the antisymmetric

tensor square of the algebra of a Majorana Weyl field. It follows that the

partition functions of the corresponding ”twisted sectors” are squares of

Ising model partition functions2, a fact which is displayed by the infinite

product expressions (6.15) and (6.18). The modular invariant partition

function for the critical Ising model can be written, accordingly, in the

form

ZIsing =
1
2

{∣∣∣χ(0)
1 (τ, 0)

∣∣∣ +
∣∣∣χ(0)

1

(
τ,

1
2

)∣∣∣ +
∣∣∣χ

(
1
2

)
1 (τ, 0)

∣∣∣} (6.22)

2For a textbook treatment of the critical Ising model - see [13].
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where the absolute values of the characters

∣∣∣χ(κ)
1 (τ, z)

∣∣∣ =
{
χ

(κ)
1 (τ, ζ) χ(κ)

1 (τ, ζ)
} 1

2
,

χ
(κ)
1 (τ, ζ) = χ

(κ)
1

(− τ , − ζ
)

(6.23)

are expressed as series of (rational) powers of q and q (bounded below by

− 1
48) with positive integer coefficients.

2D CFT has become an important domain of pure mathematics. The

role of the modular group, noted here, gives only a glimpse of this devel-

opment. Happily, there are two impressive recent books which expand the

modern mathematical point of view on CFT and survey its role in problems

of pure mathematics: [3] and [21].

7 Operator product expansions (OPE). Contribu-

tion of the conserved tensors.

Given a neutral scalar field φ of (integer) dimension d in (D = 4 ) Minkowski

space we will look for an expansion of the product of two φ’s in terms of

bilocal fields:

φ (x1) φ (x2) =
d∑

ν=0

(12)d−ν Vν (x1, x2) , V0 = Cφ (> 0 ) (7.1)

where (12) is the free massless field’s 2–point function (3.14). One can

try to determine Vν as the part of the OPE involving twist (i.e. dimension

minus rank) 2 ν conformal symmetric tensor fields (among others). One can

assume without restricting the generality that different Vν ’s have disjoint

OPEs so that they are orthogonal:

〈0| Vλ (x1, x2) Vν (x3, x4) |0〉 = 0 for λ 
= ν . (7.2)
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Bilocality means that two V ’s commute whenever their arguments are space–

like separated. The results of Sec.4 then imply that two V ’s commute unless

a pair of their arguments is light–like.

The field V1 is of special interest: its OPE involves an infinite set of

(even rank) conserved symmetric traceless tensors starting with the stress–

energy tensor. This OPE has a particularly simple form for d ≤ 2 – i.e. for

free fields, d = 1 , and for the d = 2 case. Then V1 is expanded in just such

tensors so that we can write

V1 (x1, x2) = 2
∞∑
l= 0

C1l

1∫
0

dαKl (α, ρ12 �2) T2l (x2 + αx12; x12)

(7.3)

where

Kl (α, z) =
(4l + 1)!
(2l!)2

α2l (1 − α)2l
∞∑
n=0

[
α (α− 1) z4

]n
n! (4l + 1)n

,

1∫
0

Kl (α, 0) dα = 1 , (7.4)

�2 is the d’Alembert operator acting on x2 for fixed x12 . The operator

acting on T2l is chosen to transform the 2–point function of T2l into a

3–point one:

1∫
0

dαKl (α, ρ12 �2)
(x12 · r (y (α)) · ζ)2l(

ρy(α)

)2 l+2
=

(X · ζ)2l
ρ13 ρ23

,

y (α) = x23 + αx12 , ρy = y2 + i 0 y0 (7.5)

where X and r (y) are defined in (3.15) and after (3.20), respectively. The

conservation of the tensor T2l assumes a simple analytic form:

∂2

∂x ∂ζ
T2l (x, ζ) = 0 , l = 0, 1, ... . (7.6)

36



(For l = 0 Eq. (7.6) just says that T0 is independent of ζ .) For d = 2 the

expansion (7.3) necessarily includes the original field φ (x) itself:

1
2
V1 (x, x) = φ (x) (≡ T0 (x) ) for d ( = d (φ) ) = 2 (C10 = 1 ) .

(7.7)

For higher d we shall be interested in the case when no d = 2 field con-

tributes to the OPE so that C10 = 0 . The contribution of T2l to the 4–point

function

〈0| V1 (x1, x2) V1 (x3, x4)|0〉 (7.8)

is universal (i.e. independent of d ) and can be expressed in terms of hyper-

geometric functions (see Eq. (3.10) of [17] or (A.6) of [37]). For a light–like

x34 , i.e. for ρ34 = 0 (= η1 ) this expression becomes particularly simple:

〈0| V1 (x1, x2)

1∫
0

dα
α2l (1 − α)2l

B (2l + 1, 2l + 1)
T2l (x4 + αx34) |0〉 =

= Al (13) (24) ε2l F (2l + 1, 2l + 1; 4l + 2; ε) ,

ε = 1 − η2 ( = 2
(
x24

ρ24
− x13

ρ13

)
x34 for ρ34 = 0 ) (7.9)

where Al is defined by the normalization of the 3–point function (3.13). The

constants Cl and Al = Nl Cl depend on the normalization of the conserved

tensor field T2l (Nl determining its 2-point function). The product Al Cl =

Nl C
2
l is invariant under rescaling of T2l and can be computed from the

4-point function (1.7). For d = 2 this yields the relation

c

(
1 +

1
1 − ε

)
= 2

∞∑
l= 0

Al Cl ε
2l F (2l + 1, 2l + 1; 4l + 2; ε) (7.10)

which gives

Al Cl ( = Nl C
2
l ) =

⎛
⎝4l

2l

⎞
⎠−1

c . (7.11)

(The result differs from the free field case, d = 1 , just by the factor c .)

The Ward–Takahashi identity for the time ordered 3–point function of the
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stress-energy tensor (see [34]) allows to compute its normalized 3–point

function,

〈0| φ (x1) φ (x2) T2 (x3, ζ) |0〉 =
2c
3

(12) (23) (13)
(
X2ζ2 − 4 (X ·ζ)2

)
,

(7.12)

and hence to find A1 (N1 ) and C1 separately:

A1 ( = N1C1 ) = − 2
3
, C1 = − 1

4
, N1 =

8
3
c . (7.13)

It should be noted that the hypergeometric function in (7.9) is not

rational (it involves a logarithm of 1 − ε - see [37], Appendix A) while the

infinite sum (7.10) is a rational function of ε .

8 An infinite dimensional Lie algebra associated

with a d = 2 field.

We shall now concentrate on the case d = 2 and will use the complex

compact picture parametrization of Sec.2B writing (7.1) for this special

case in the form

φ (z1) φ (z2) = 〈12〉 + (12)V (z1, z2) + :φ (z1) φ (z2) : (8.1)

where

(12) = z−2
12 =

1
z 2
1

∞∑
n= 0

(
z 2
2

z 2
1

)n
2

C1
n (ẑ1 ·ẑ2) ( ẑi =

zi√
z 2
i

) ,

〈12〉 =
c

2
(12)2 . (8.2)

(Eqs. (8.1) (8.2) are obtained from (7.1) by setting V0 = c
2 , V1 ≡ V, V2

(z1, z2) = : φ (z1)φ (z2) : .) The expansion of (12) in terms of Gegenbauer

polynomials (see (3.16)–(3.18)) is designed to indicate that the z-picture

rule for defining (12) as a distribution consists in viewing it as a limit of an

analytic function defined in the domain | z1 | > | z2 |.
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Theorem 8.1

(1) The bilocal field V (z1, z2) with correlation function

〈0| V (z1, z2) V (z3, z4) |0〉 = c
(

(13) (24) + (14) (23)
)

(8.3)

(derived from (4.11) and (4.12)) is harmonic in each argument and admits

an expansion in homogeneous harmonic polynomials

V (z, w) =
∑

n,m∈Z

Vnm (z, w) ,

Δz Vnm (z, w) = 0 = Δw Vnm (z, w) , (8.4)(
z · ∂
∂z

+ n+ 1
)
Vnm (z, w) = 0 =

(
w· ∂
∂w

+m+ 1
)
Vnm (z, w) . (8.5)

For positive n (or m ) Vnm is, in fact, a polynomial in z
z2

(resp. w
w2 ). Eqs.

(8.4) and (8.5) then imply the vanishing of V0m and Vn0 in the vacuum

representation.

(2) The modes Vnm obey the CR

[Vn1n2 (z1, z2) , Vn3n4 (z3, z4) ] =

= c
4∏

j=1

(
z 2
j

)− nj+1

2

{
C1
|n1|−1 (ẑ1 ·ẑ3) C1

|n2|−1 (ẑ2 ·ẑ4) δn1,−n3 δn2,−n4 +

+ C1
|n1|−1 (ẑ1 ·ẑ4) C1

|n2|−1 (ẑ2 ·ẑ3) δn1,−n4 δn2,−n3

}
ε (n1) ε (n2) +

+
(
z 2
1

)− n1+1
2

(
z 2
3

)− n3+1
2 C1

|n1|−1 (ẑ1 ·ẑ3) ε (n1) δn1,−n3 Vn2n4 (z2, z4) +

+
(
z 2
2

)− n2+1
2

(
z 2
3

)− n3+1
2 C1

|n2|−1 (ẑ2 ·ẑ3) ε (n2) δn2,−n3 Vn1n4 (z1, z4) +

+
(
z 2
1

)− n1+1
2

(
z 2
4

)− n4+1
2 C1

|n1|−1 (ẑ1 ·ẑ4) ε (n1) δn1,−n4 Vn2n3 (z2, z3) +

+
(
z 2
2

)− n2+1
2

(
z 2
4

)− n4+1
2 C1

|n2|−1 (ẑ2 ·ẑ4) ε (n2) δn2,−n4 Vn1n3 (z1, z3)(8.6)

Sketch of proof. (1) Eq. (8.3) and the Wightman axioms imply harmonicity

of V (cf. Proposition 2.1 of [37]). The properties of the modes of V follow

from the argument that establishes Proposition 2.2 of [37]. The vacuum
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module HV of the mode algebra is an inner product space with a unique

vacuum state given by the 1-dimensional projection operator |0〉 〈0| such

that

Vnm (z, w)|0〉 = 0 if n ≥ 0 or m ≥ 0 ,

〈0|Vnm = 0 unless n > 0 and m > 0 (8.7)

and |0〉 is a cyclic vector for the modes Vnm . The positivity of the inner

product (i.e., Wightman positivity) then implies

V0mHV = 0 = Vn0 HV . (8.8)

(2) The proof of (8.6) requires using the fact that the truncated 5– and 6–

point functions of φ are also given by (crossing symmetric) sums of 1–loop

graphs (see Proposition 2.3 of [37]). �

The hermiticity condition for φ implies the presence of a conjugation in

the mode algebra such that if e1 and e2 are two real unit vectors then

Vnm (e1, e2)
∗ = V−m−n (e1, e2) ( for e1, 2 ∈ S

3 ) . (8.9)

The resulting real (with respect to the involution so defined) Lie algebra

LV is a central extension of the infinite dimensional real symplectic algebra

sp (∞, R) . To each unit vector e ∈ S
3 corresponds a subalgebra LeV of LV

of the same type that is much simpler to realize. It is generated by

vnm := Vnm (e, e) ∈ LeV ⊂ LV , n, m ∈ Z , e2 = 1 (8.10)

satisfying

[ vn1m1 , vn2m2 ] = c n1m1 (δn1,−n2 δm1,−m2 + δn1,−m2 δm1,−n2) +

+n1 (δn1,−n2 vm1m2 + δn1,−m2 vm1n2) +

+m1 (δm1,−n2 vn1m2 + δm1,−m2 vn1n2) . (8.11)
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It is easy to verify that for integer c = N this algebra is generated by

O (N) invariant normal products

v
(c)
lm = : �Jl · �Jm : ≡

c∑
i= 1

:J il J
i
m : (8.12)

of N commuting U (1) currents �Jn =
{
J in, i = 1, ..., N

}
where the current

modes satisfy the Heisenberg type CR

[
J im , J

j
n

]
= mδm,−n δij , m, n ∈ Z , i, j = 1, ..., N . (8.13)

Remark 8.1 The finite dimensional subalgebra of LeV generated by vnm for

n, m of the same sign (nm > 0 ) and |n| ≤ K , |m| ≤ K equipped with the

above involution is just sp (2K, R) . Indeed the commutator

[ vkl , v−n−m ] = k (slm δkn + sln δkm) + l (skn δlm + skm δln) (8.14)

where k, l, m, n are all positive is expressed in terms of the symmetric

products

sln =
1
2

(
�Jl · �J−n + �J−n · �Jl

)
( l > 0 , n > 0 ) . (8.15)

One has to pass to normal products and hence to a central extension in the

infinite dimensional case only. Indeed then the series defining the modes of

the original field φ,

2φn (z) =
∑
ν ∈Z

Vν, n−ν (z, z) (Vmn (z, z) = Vnm (z, z) ) (8.16)

would not have made sense (for n = 0 ) had we used the symmetric products

instead of the normal ones.

We shall now demonstrate that unitarity of the vacuum representation

of LeV actually implies the realization (8.12). Moreover, the result extends

to the full algebra LV .
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Theorem 8.2 The inner product in the vacuum space HV is positive

semidefinite iff c ∈ Z+ = {0, 1, 2, ... } .

Proof. For each positive integer n there is a vector |Δn〉 whose norm square

is a multiple of c (c− 1) ... (c− n+ 1) :

〈Δn| =
1
n!

〈0|

∣∣∣∣∣∣∣∣∣∣∣

v11 v12 . . . v1n

v21 v22 . . . v2n

. . . . . . . . . . . .

vn1 vn2 . . . vnn

∣∣∣∣∣∣∣∣∣∣∣
,

〈Δn|Δn〉 ≡ ‖ |Δn〉‖2 = (n+ 1)! c (c− 1) . . . (c− n+ 1) . (8.17)

Indeed, it follows from (8.11) that the norm square of |Δn〉 is a polynomial

of degree n in c. We shall demonstrate that it vanishes for c = 0, 1, ..., n−1 .

To this end we insert for integer c = N the normal products (8.12) for vkl

in the definition of 〈Δn| (8.17). We observe that the result is expressed

by the Gram determinant of n vectors in an N dimensional space which

vanishes for N < n. The coefficient (n+ 1)! to the leading (nth) power of

c is computed as a sum of norm squares of terms entering the expansion of

the determinant.

It follows that if c is not a natural number then the representation of

LV cannot be unitary. To see that it is unitary for positive integer c = N

it is sufficient to note that in this case V can be presented in the form

V (z1, z2) =
c∑

i= 1

:ϕi (z1)ϕi (z2) : (8.18)

with ϕi mutually commuting free zero mass fields and to recall that a system

of free fields satisfies all Wightman axioms, including positivity. �

It follows as a corollary that if a GCI field of dimension 2 satisfies all

Wightman axioms then it belongs to the Borchers class of free fields.
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9 Outlook and discussion

The present notes being somewhat inhomogeneous, we shall look back, in

conclusion, at what we had and will try to distribute some accents.

These lectures were not aimed at introducing the student to current

fads in CFT. They were intended, instead, to

1. provide a general view on the subject from a historical perspective (Sec.

1) including a survey of compactified Minkowski space (Sec. 2), the

playground for global conformal transformations;

2. remind the (Wightman) axiomatic approach to QFT (Sec. 3) that pro-

vides the natural framework for a theory with an enhanced symmetry,

such as GCI;

3. survey some memorable results of 2D CFT (Secs. 5, 6);

4. describe a current attempt [37] to construct 4D CFT models with rational

correlation functions (Secs. 7, 8).

We tried to present these differently looking topics from a unified point

of view. Thus Sec. 4, which has a central part in our approach, serves both

as a unorthodox introduction to 2D CFT and as a starting point in our

search of soluble 4D CFT models in the last two sections.

The existence of a 4D CFT model with rational correlation functions

outside the class of normal products of free massless fields still remains an

open problem. We should like to end up our discussion with the remark

that the (positive or negative) answer to the existence question appears to

be within reach. Indeed, if such a model does exist its algebra of (gauge

invariant) local fields should include apart from the stress energy tensor T

also a Lagrangean density: a GCI scalar field L (x) of dimension 4 . Using

Corollary 4.5 we can write its truncated 4-point function in the form:
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W t
4 (4) =

[(12) (34) (34) (14)]2

η1 η2
×

×
{
c0
(
1 + η5

1 + η5
2

)
+ c1

(
η1 + η2 + η4

1 + η4
2 + η1 η2

(
η3
1 + η3

2

))
+

+ c2
(
η2
1 + η2

2 + η3
1 + η3

2 + η2
1 η

2
2 (η1 + η2)

)
+

+ b1 η1 η2

(
1 + η2

1 + η2
2

)
+ b2 η1 η2 (η1 η2 + η1 + η2)

}
( ci ≡ c0i for i = 0, 1, 2 ; bi ≡ c1i for i = 1, 2 ) . (9.1)

Demanding that no field of dimension 2 appears in the OPE of L (x1)L (x2)

(and that this OPE contains T ) we find the constraint

c2 = −c0 − c1 ( 
= 2 c0 ) . (9.2)

The problem is whether Wightman axioms (including positivity) would

allow a more general solution within the resulting 4–parameter family of

truncated 4-point functions (9.1), (9.2) than the 1-parameter subset

c0 = c2 = b1 = −c1/2 , b2 = 0 . (9.3)

If the parameters are restricted by (9.3) then one can prove by the method

of Sec. 8 that the remaining parameter (c0 = c2 = . . .) should be a positive

integer multiple of a fixed (positive) number, recovering a sum of normal

products of free Maxwell fields:

LF (x) = − 1
4

NF∑
a= 1

:F a
μν (x) Fμνa (x) : (NF ∈ N ) . (9.4)

The truncated n-point function of L (x) for even n can again be given as a

sum of (n−1)!
2

1–loop graphs, the propagator associated with the line joining

the vertices 1 and 2 being
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Dλ1μ1λ2μ2 (x12) =

=
1
4

{
∂λ1 (∂λ2 ημ1μ2 − ∂μ2 ημ1λ2) − ∂μ1 (∂λ2 ηλ1μ2 − ∂μ2 ηλ1λ2)

} 1
4π2ρ12

=
rλ1λ2 (x12) rμ1μ2 (x12) − rλ1μ2 (x12) rμ1λ2 (x12)

4π2 ρ2
12

. (9.5)
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