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Abstract

One puzzle of modern physics is the observed matter over antimatter dominance
in the universe. A common explanation for this dominance is based on CP vio-
lating sources. In general CP violation is included in the Standard Model (SM)
of particle physics, but the amount of CP violaton is not sufficient to explain the
measured matter-antimatter-asymmetry. Therefore, additional sources beyond
the SM are searched for. One way of finding these sources is the search for per-
manent Electric Dipole Moments (EDMs) of fundamental particles, since they
violate CP symmetry. The search for EDMs started decades ago in the sector
of neutral particles. Up to now all measurements of EDMs are compatible with
zero. Complementary to the neutral particles, the EDMs of charged particles,
like the proton or deuteron, are of interest to disentangle possible sources of
CP violation. For the charged particles, new experimental methods are needed.
These methods are based on the usage of dedicated particle storage rings. In
order to develop a dedicated storage ring, the JEDI (Jülich Electric Dipole mo-
ment Investigations) collaboration started experiments at the existing magnetic
storage ring COSY(Cooler Synchrotron), at Forschungszentrum Jülich in Ger-
many. Within the years 2017 to 2019, a first direct EDM measurement of the
deuteron by using a radio frequency Wien filter is planned. In this experimental
setup, a non zero EDM would lead to a polarization buildup out of the storage
ring plane into the vertical direction. This buildup can also be created by inter-
actions of the magnetic dipole moment with magnetic fields, if the trajectory of
the particle beam is not centered in the magnetic elements of the accelerator.
In order to counteract this systematic error sources, an orbit correction scheme,
including Beam Position Monitors (BPMs) and corrector magnets is needed.

The existing BPM system at COSY, including the readout electronics, allows a
position measurement with a statistical resolution of 1 µm for a centered beam.
In addition to the statistical resolution, the accuracy is one important character-
istic for a beam position measurement. This accuracy is in the order of 0.1 mm
for the existing electronics and one major source of systematic uncertainties for
EDM experiments. As a conclusion of this result, an upgrade program of the
BPM readout has started with the goal to reach an accuracy and resolution of
4 µm.

In order to correct the measured beam position to zero, a correction algorithm
is developed and benchmarked. This correction algorithm includes the soft-
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ware development of an automated measurement of the Orbit Response Matrix
(ORM) and a detailed analysis of the inversion of this matrix. The inverted ma-
trix is used to calculate deflection angles for the corrector magnets in order to
correct the beam position in all elements. Applying the correction algorithm re-
sults in an orbit RMS (Root Mean Square) of ≈ 2 mm, which is not sufficient for
EDM measurements and much worse than the theoretical limit derived from the
BPM resolution and accuracy. Simulations have been performed to explain this
discrepancy. The simulations indicate, that the magnets positions are known to
a precision of 0.5 mm. In a survey of all magnets this prediction was confirmed.
Based on these results an alignment campaign started and is ongoing. Besides
the realignment of the magnets, additional corrector magnets and additional
BPMs can be placed within the simulations to improve the orbit quality. Up-
grading COSY with additional elements and realigning the magnets should lead
to an orbit RMS of 10 µm, which is in the same range as the resolution and
accuracy of the upgraded BPM electronics.

Besides the correction algorithm, which is a starting point of a live orbit feed-
back, the connection of spin tune changes and ORM measurements was ana-
lyzed. As a result of this analysis, a new method to measure the dispersion
function at corrector magnets is developed and presented in this thesis.

———————————————————
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1. Introduction

Physics describes the phenomena of nature with mathematical models in all
details, starting from the evolution of the universe with its galaxies and stars
down to the smallest structures, the elementary particles. The Standard Model
(SM) of particle physics is successful in describing elementary particles and
their interaction. Measurements at high energies, which allow a deep insight
in particles, as well as cosmological measurements can be described very pre-
cisely by the SM. But the SM is unsuccessful in explaining the measured lack of
antimatter in the known part of the universe. Explanations for the disappear-
ance of antimatter during the early universe are based on the assumption, that
fundamental symmetries are violated. Since the violation of symmetries is so
important, modern experiments try do measure violation of these symmetries.
One candidate for the violation of time or equivalent the combined charge and
parity violation is the Electric Dipole Moment (EDM) of fundamental particles.
This EDM is in the SM much below the experimental sensitivity, but extensions
of the SM, which are able to describe the measured disappearance of antimat-
ter, predict larger EDMs which can be measured with technologies available
today. Therefore a measurement of such an EDM is a candidate to confirm
these models. Since 60 years, measurements of EDMs on neutral particles have
been performed. The statistical and systematical sensitivity improved during
this time. Up to now all measurements are compatible with zero within their
systematical sensitivity and no EDM was found. All these measurements are
based on the principle, of trapping the particle and applying electrical fields to
manipulate the polarization, which is influenced by the coupling of the electrical
fields and the EDM. For charged particles, such an experiment is not possible,
since electric fields will accelerate the particle outside of the particle trap. In
order to enable EDM measurements on charged, elementary particles an exper-
imental method is investigated within the JEDI1 collaboration. This method
uses a particle storage ring as a particle trap. The charged, polarized particles
circulate in the storage ring and radial electric fields or vertical magnetic fields
can be applied. A change of the polarization direction is a direct signal for
an EDM, which couples to the electric fields. The JEDI collaboration aims for
a dedicated EDM storage ring for protons and deuterons, which improves the
systematical and statistical sensitivity.

1JEDI - Jülich Electric Dipole moment Investigations

1



1. Introduction

As a starting point for the studies of the JEDI collaboration, the existing stor-
age ring Cooler Synchrotron (COSY) at Forschungszentrum Jülich in Germany
is used. COSY provides polarized protons or deuterons. The accelerator is
equipped with spin manipulating devices and a polarimeter to monitor the po-
larization evolution. Within the next years, a first direct measurement of the
deuteron EDM is planned. The systematical sensitivity is reduced, compared
to a dedicated storage ring, but the principle mechanisms of EDM measure-
ments on charged particles can be studied. The knowledge, gained with these
measurements will help to construct a dedicated storage ring. One important
quantity, which increases the systematic sensitivity, is the quality of the closed
orbit. In other words, the particle beam has to be centered in all accelerator
elements to reduce systematic effects.

The aim of this thesis is the improvement of the orbit quality at COSY. This is
done by improving the orbit measurement, the orbit correction scheme as well
as the investigation of the main sources of orbit disturbtions. The thesis itself
is structured as follows.

Chapter 2 summarizes the matter over antimatter problem of the SM. The def-
inition of the EDM of fundamental particles is given here and its connection to
fundamental symmetries is described. The EDM measurement principle in ac-
celerators is explained as well. The mathematical tools to describe the particle
trajectory in an accelerator is depicted in chapter 3. This chapter is focused
on the equations and terms needed to perform orbit correction and its connec-
tion to spin manipulation. Chapter 4 illustrates the spin dynamics in storage
rings, since for the EDM measurement the knowledge of the spin is of interest.
Chapter 5 introduced COSY and its elements, the particle sources, the cool-
ing elements and the spin manipulating devices. The EDDA detector, used for
polarization measurements, is described in this chapter as well. In chapter 6
the Beam Position Monitors (BPMs) of COSY are investigated and their per-
formance is analyzed. The beam positions, measured with the BPMs, are later
used as starting point for the orbit correction scheme. Chapter 7 is the main
part of this thesis. It explains a model independent way of the orbit correc-
tion with the existing hardware devices, the BPMs and the corrector magnets.
In addition, the investigation of upgrades to improve the orbit is presented.
Chapter 8 presents a measurement, which combines the tools, developed in the
orbit correction chapter in combination with spin monitoring. This combina-
tion allows to measure parameters of COSY, which can be used to improve the
theoretical understanding of the accelerator model. Chapter 9 summarizes the
results and gives an outlook.

2



2. Motivation

Within this chapter, the physical case, "Why we are interested in searching for
electric dipole moments" is described. In addition a short overview about the
existing measurements of electric dipole moments is presented as well as the
measurement concept for charged particles.

2.1. Matter - Antimatter - Asymmetry

Cosmology and the Standard Model of particle physics (SM) fail to explain why
there is a big amount of matter and no antimatter in the universe. This matter-
antimatter-asymmetry is expressed in the baryon-antibaryon-asymmetry ηBA,
which is defined as the difference of the baryon density nB and the antibaryon
density nB̄ relative to the photon density nγ after the primordial nucleosynthe-
sis:

ηBA = nB − nB̄
nγ

. (2.1)

On the one hand, this asymmetry is a parameter in cosmological models and
on the other hand, it can be measured by astrophysical observations. Two inde-
pendent measurements of the baryon-antibaryon-asymmetry were performed up
to now. One is the measurement of the occurrence of lightweight nuclei, which
were synthesized during the first three minutes after the Big Bang, during the
Big-Bang Nucleosynthesis (BBN)[1, 2]. A second method is the analysis of the
cosmic microwave background (CMB), measured by the satellite experiments
WMAP1 and Planck. The results of both measurements are compatible with
each other and read [3, 4]:

5.8 · 10−10 ≤ ηBA ≤ 6.6 · 10−10 (BBN, 95 % C.L.), (2.2)
ηBA = (6.09± 0.06) · 10−10 (CMB). (2.3)

The baryon-antibaryon-asymmetry expectation from the SM and standard cos-
mological models is in the order of [5]:

ηSM = 10−18, (2.4)
1WMAP - Wilkinson Microwave Anisotropy Probe
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2. Motivation

which is eight orders of magnitude below the measured one. Two explanations
for this discrepancy are possible:

1. Matter and antimatter are separated in the universe and we are living in
a matter dominated region.

2. Asymmetric processes lead to an annihilation of antimatter during the
evolution of the universe.

The first hypothesis is investigated by the experiment AMS-022 on the inter-
national space station, which searches for single heavy anti-nuclei. A finding of
such an anti-nuclei would be an indication of anti-stars in the universe [6].

For the appearance of the second case, the Baryogenesis, three conditions where
formulated by Sakharov [7] in 1967:

• Baryon number violation: A process, which violates the baryon num-
ber conservation, must exist, otherwise the asymmetry of baryons and
antibaryons would be zero.

• Violation of C and CP symmetries: Processes must violate the charge
conjugation symmetry (C) and the combined charge and parity transfor-
mation symmetry (CP). For processes, which generate baryons and are
P symmetric, the conjugated process would generate antibaryons in the
same amount as the process itself generates baryons. This would obviously
result in ηBA = 0.

• Out of thermal equilibrium: The processes have to take place out
of thermal equilibrium, otherwise the inverse process can occur and no
excess of baryons over antibaryons would be possible.

The Standard Model of particle physics partially fulfills the CP violation, but
the amount of CP violating processes is too small to explain the measured
baryon-antibaryon-asymmetry. Additional CP violating processes, beyond the
Standard Model, are necessary. Such processes can manifest in Electric Dipole
Moments (EDMs) of elementary particles, as shown later in this chapter.

2.2. Discrete Symmetries and their
Transformations

Symmetries and their transformations are of interest in physics, since they are
a basis for conservation laws. In particle physics the parity transformation, the

2Alpha Magnetic Spectrometer
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2.2. Discrete Symmetries and their Transformations

charge conjugation, the time reversal and a combination of them are important,
therefore they are defined in the following.

2.2.1. Parity Transformation

The parity transformation P changes the sign of the coordinates of a physi-
cal process (~x → −~x), whereas the time coordinate stays the same (t → t).
Processes which are symmetric under P behave exactly as their mirror im-
age process. The electromagnetic and the strong interactions of particles are
parity symmetric, whereas the weak interaction is parity violating: After the
observation of the K+ decay in a final state of two and three pions, which are
eigenstates of the parity operator with eigenvalues ±1, Lee and Yang postulated
parity violation in the weak section of the SM in 1956 [8]. One year later, Wu
et. al. performed an experiment, where the beta decay of polarized 60Co was
analyzed [9]:

60Co→ 60Ni + e− + ν̄e. (2.5)
The flight direction of the emitted electrons was always aligned to the initial
polarization direction. A parity transformation doesn’t effect the polarization
direction, but it changes the momentum of flight direction. Thereby the mea-
sured process is parity violating. In addition, the spin of the antineutrino points
always in the same direction as its momentum. Assuming massless neutrinos,
only left handed neutrinos and right-handed anti-neutrinos couple to the weak
interaction.

2.2.2. Charge Conjugation

The charge conjugation C transforms a particle into its antiparticle and changes
the sign of all additive quantum numbers of the particle. Under C a left-handed
neutrino converts to a left-handed anti-neutrino, which does not participate in
the weak interaction. Therefore the weak interaction is maximal C violating.

2.2.3. Time Reversal

The time reversal operator T changes the sign of the time without changing the
coordinates (t → −t, ~x → ~x). A process, which runs reverse and is symmetric
under T produces the same rates as the original process.

Tests in the strong and electromagnetic section have shown no evidence for
T violation. In the weak sector, the measurement of the probability of the

5



2. Motivation

transformations K̄0 → K0 and K0 → K̄0 were compared. The measured
asymmetry in the rates is a direct violation of T symmetry [10]:

R
(
K̄0 → K0

)
−R

(
K0 → K̄0

)
R
(
K̄0 → K0

)
+R

(
K0 → K̄0

) = (6.6± 1.3sys ± 1.0stat) 10−3. (2.6)

The combined operation CPT , in any order, is conserved for any local quantum
field theory, which is Lorentz invariant [11]. Assuming this CPT theorem, a
T violation follows from CP violation to hold the CPT symmetry. The CPT
theorem itself is tested by measuring the mass differences of particles and their
antiparticles, which is predicted to be zero. Up to now no mass differences were
found [12].

2.2.4. Combined Charge and Parity Transformation

A direct violation of the combined symmetry CP was measured by Cronin and
Fitch in the decay of K0 particles in 1964 [13]. The rate asymmetry of the
decays:

K0
L → ππ and K0

L → πππ (2.7)
s different. In the decay, two or three pions represent: ππ = π0π0 or ππ = π+π−

and πππ = π+π−π0 or πππ = π0π0π0. This asymmetry is CP violating, since
the second process is the CP transformed process of the first one. The measured
asymmetry can be explained by the unitary 3×3 Cabibbo-Kobayashi-Maskawa
(CKM) matrix, which describes the mixing of the six quarks [14]. The complex
phase of the CKM matrix δ is proportional to the CP violation. Unfortunately,
the CP violation in the CKM matrix is not sufficient to explain the matter-
antimatter-asymmetry. Therefore, additional sources of CP violation are focus
of present research. Such sources can manifest in permanent EDMs as shown
in the following section.

2.3. Electric Dipole Moments

This section deals with EDMs. First of all a general definition of EDMs is given,
followed by its behavior under transformations. The section closes with sources
of EDMs for elementary particles.
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2.3. Electric Dipole Moments

2.3.1. Definition of EDMs

The EDM of a particle is classically defined as a displacement of charges:

~d =
∫
V

ρ(~r) · ~r d~r, (2.8)

where ρ is the charge density. In particle physics, an EDM is a fundamental
property of a particle. It is aligned parallel or antiparallel to the spin ~S of
the particle, since the quantization axis of the spin is the only distinguished
direction [15]. The EDM ~d and the magnetic dipole moment (MDM) ~µ are
given by:

~d = ηEDM
q

2mc
~S (2.9)

~µ = g
q

2m
~S, (2.10)

where q and m denote the charge and the mass of the particle, resp. . The
speed of light is c. The parameter g is the g-factor of the particle, ηEDM is a
scaling factor, defined in analogy with the g-factor.

The Hamiltonian of a particle at rest with magnetic and electric dipole moment
in external magnetic ~B and electric ~E fields reads:

H = −~µ · ~B − ~d · ~E. (2.11)

The parity and time transformations of the Hamiltonian results in:

H = −~µ · ~B − ~d · ~E P→ H = −~µ · ~B + ~d · ~E (2.12)

H = −~µ · ~B − ~d · ~E T→ H = −~µ · ~B + ~d · ~E. (2.13)

The magnetic field and the spin of the particle are eigenstates of parity trans-
formations with the eigenvalue +1. The electric field changes the sign under
parity transformation, therefore it’s eigenvalue is −1. The product of ~d and the
electric field is therefore parity symmetry violating, wheres ~µ ~B stays unchanged
under parity transformation.

For the time reversal, the magnetic field changes the sign and the direction of the
spin flips. This results in an unchanged product of both quantities. In contrast,
the electric field is an eigenstate with eigenvalue +1 of T transformations,
therefore the EDM violates time reversal symmetry. The described situation is
visualized in Fig. 2.1. Assuming the CPT theorem, an EDM, which violates T
symmetry is directly violating CP .

7



2. Motivation
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Figure 2.1.: Schematic drawing of a particle with magnetic and electric dipole
moments, aligned to the spin, under parity transformation and time
reversal. Under parity transformation, the particle stays the same,
but an external electric field changes the sign. Under time reversal,
the spin and the associated quantities EDM and MDM changes the
sign. The external magnetic field changes the direction, wheres the
electric field stays the same. Due to the described transformations,
a non-zero EDM violates time and parity symmetry (adopted from
[16, figure 2.1]).

2.3.2. Sources for CP Violation and their Connection to
EDMs

Possible EDMs of particles can be induced by manifold sources. Within the
SM the weak as well as the strong section can introduce EDMs via higher order
corrections, motivated in the following.

Weak Sector In the weak sector, the already mentioned imaginary phase of
the CKM matrix contributes to CP violation. This contribution to EDMs of
neutrons or protons is on the three-loop level. The contribution to the electron
EDM is even on the four-loop level. Therefore the EDM is tiny and the resulting
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2.3. Electric Dipole Moments

predictions for EDMs of neutrons and electrons are [15, 17, 18]:

dn ≈ 10−32 e cm (2.14)
de ≈ 10−40 e cm. (2.15)

Strong Sector Another source in the SM is the θQCD term, which is an addi-
tional term added to the Lagrangian of the quantum chromodynamics (QCD):

Lθ = −θQCD
g2
s

64π2 ε
µναβGa

µνG
a
αβ. (2.16)

In this Lagrangian, Ga
µν is the gluon field tensor, ε is the four dimensional

Levi-Cevita tensor and gs denotes the strong coupling constant. The parameter
θQCD can lead to huge EDMs of hadrons, especially the neutron and the proton,
compared to the ones generated by the weak sector [19]:

dn = θQCD · (−2.9± 0.9) · 10−16 e cm (2.17)
dp = θQCD · (1.1± 1.1) · 10−16 e cm. (2.18)

Nevertheless, the measurement of the neutron EDM dn < 3.0 · 10−26 e cm with
a confidence level of 90 % [20] limits the θQCD term:

θQCD < 10−10, (2.19)

whereas the natural expectation of this value is O(1). The existing fine tuning
of the θQCD term is called the strong CP problem of the SM.

2.3.3. Existing EDM Measurements

Since the EDM of a fundamental particle is an ideal probe to search for CP
violating sources, many experiments were done up to now. The principle of the
measurements is the following.

Polarized particles or atoms are trapped and the evolution of the polarization,
depending on external electric fields, is measured. During the store of the par-
ticles, a static and homogeneous magnetic field is present. In addition a static
and homogeneous electric field is superimposed. The EDM is determined, by
measuring the frequency shift due to the interaction of the EDM and the elec-
tric field: ~d · ~E. Since the magnetic field contributes to the frequency shift of the
system as well (~µ · ~B), the polarity of the electric field is switched systematically
to disentangle the EDM from the MDM. A change of the electric field influences
the Larmor precession frequency for a non-vanishing EDM. The difference of
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2. Motivation

the frequencies ∆ω, measured for both polarities, is proportional to the EDM
d:

∆ω = ω
(
E+

)
− ω

(
E−

)
= 4dE

~
. (2.20)

The first EDM limit of the neutron was measured in the years 1949 to 1951 and
published in 1957 by Smith, Ramsey and Purcell [21]:

dn = (0.1± 2.4) · 10−20 e cm. (2.21)

Over the last 60 years, the systematic uncertainties were reduced and some
results of upper EDM limits are:

• dn ≤ 3 · 10−26 e cm (90 %C.L.) neutron EDM limit, measured on ultra
cold neutrons [20].

• de ≤ 8.7 · 10−29 e cm (90 %C.L.) electron EDM limit, derived from a mea-
surement using the polar molecule thorium monoxide [22].

• dp ≤ 7.9 · 10−25 e cm (95 %C.L.) proton EDM limit, derived from the mea-
surement of the 199Hg atomic EDM: d199Hg ≤ 3.1 · 10−29 e cm (95 %C.L.)
[23].

• dµ ≤ 1.9 · 10−19 e cm (95 %C.L.) average of the measured EDM of µ+ and
µ− at the g-2 experiment [24].

All measurements are compatible with EDMs of zero, therefore they all provide
upper limits. These upper limits set strong limits on possible extensions of the
SM and are complementary to high energy searches at LHC3 [25].

The measured confidence levels for the EDMs of the charged particles, electron
and proton, are derived from measurements on neutral atoms. The derivation
includes assumptions about the interaction of the nuclei in the atom [26]. The
only direct measurement of the EDM of charged particles was performed with
a µ+ and a µ− beam at the g-2 experiment at Brookhaven National labora-
tory. For heavy nuclei, like deuterons or Helium, no measurements exist at
all. A direct measurement of these EDMs is appropriated to find CP violating
sources.

For charged particles, the classical way of trapping the particle and switching on
electric fields is not feasible since they are accelerated by external electric fields.
Due to this acceleration, the particles can not be stored. A measurement can
only be performed in particle storage rings where the particles circulate with
beam lifetimes up to hours.

3LHC - Large Hadron Collider

10



2.4. EDM Search in Storage Rings

2.4. EDM Search in Storage Rings

As mentioned in the previous section, the EDMs of charged particles can only
be directly measured in storage rings. The principle idea is the same as the
one for neutral systems: electric fields interact with the EDM and if the EDM
is non-zero, the spin precession is perturbed. A possible layout of such an
experiment is the following:

A longitudinally polarized particle beam is injected and trapped inside the
accelerator by magnetic or electric fields in the lab frame. These fields, Lorentz
transformed to the particle rest frame, moving with the velocity ~βc with respect
to the lab frame, lead to magnetic and electric fields. The electric field in the
rest frame interacts with the EDM. A non-zero EDM would lead to a vertical
oscillation of the polarization with the frequency:

~ωEDM = − q

mc

ηEDM

2
(
~E + c~β × ~B

)
, (2.22)

if the polarization stays parallel to the momentum. Unfortunately, the polar-
ization precesses due to the MDM in the horizontal plane with the frequency:

~ωMDM = − q

m

(G+ 1
γ

)
~B −

(
G+ 1

1 + γ

)
~β ×

~E

c

 , (2.23)

where it is assumed, that ~B~β = ~E~β = 0. The anomalous magnetic moment G
is connected to the g-factor G = g−2

g
. γ is the usual Lorentz γ. A more general

motivation of the spin motion equation is given in chapter 4. The momentum
vector itself precesses with the frequency ~ωcyc = − q

mγ

(
~B − ~β× ~E

β2c

)
. In order to

align the spin parallel to the momentum, the spin precession frequency needs
to be the same as the momentum precession. This leads to the "Frozen-Spin"
condition:

G~B =
(
G− 1

γ2 − 1

)
~β ×

~E

c
. (2.24)

This condition can be fulfilled with different combinations of magnetic and
electric fields, depending on the anomalous magnetic moment.

• For particles with G > 0, the spin can be frozen by using only elec-
tric fields at one specific momentum. This momentum, often referred as
"magic", is:

p =
√
γ2 − 1 ·mc = mc√

G
. (2.25)

For protons with G = 1.79, the magic momentum reads p ≈ 0.701 GeV/c.

11



2. Motivation

• For particles with G < 0, the frozen spin condition can only be fulfilled
by the use of magnetic and electric fields. The combined bending element
needs to provide a vertical magnetic field and a radial electric field. The
field strength relation is given by:

B

E
=
(

1− 1
G (γ2 − 1)

)
β

c
. (2.26)

If the spin precession due to the magnetic moment is frozen, the EDM is the
only term, contributing to a spin motion. Thus, the EDM can be determined
by measuring the frequency ωEDM. For a pure electric ring with fields of E ≈
10 MV m−1 and an EDM of d ≈ 1 · 10−24 e cm the frequency is approximately
0.1 mHz. This tiny frequency is not measurable, since the polarization lifetime
is in the order of 1000 s [27] and only the beginning of the oscillation can be
measured. At the beginning of the experiment, the oscillation reads:

Py(t) = P0 · sin (ωEDMt) ≈ P0 · ωEDMt. (2.27)

This linear increase of the vertical polarization is directly proportional to the
EDM and the slope is the EDM signal in all presented measurement concepts.
Actually, the muon EDM limit was extracted from the measurement of the
vertical polarization oscillation observed within the g-2 experiment.

For a pure magnetic ring, the spin precession due to the magnetic moment
is always present. The additional EDM rotation around a radial axis leads
to a tilt of the rotation axis by the angle tan ξ = ηEDMβ

2G . In addition the
precession frequency changes to ω2

S = ω2
MDM + ω2

EDM. Since the EDM effect is
tiny with respect to the MDM effect, this frequency change can be neglected.
In contrast, the tilt of the rotation axis is in principle measurable, since the
polarization oscillates in the vertical plane with the frequency fS = γGfrev.
But the amplitude is small and on average the signal vanishes. In order to
increase the signal, an RF Wien filter which operators at a harmonic of the
spin frequency fS = ωs

2π :

fRF = (1 + k) fS = (1 + k) γGfrev with k ∈ Z, (2.28)

can be used. The electric field of the Wien filter has to point in the radial
direction, whereas the perpendicular magnetic field points in the vertical di-
rection. In case of the running Wien filter the vertical polarization oscillates
with the frequency fS, which is identical to the situation without an RF device.
The use of the Wien filter induces an artificial spin resonance, which leads to a
small polarization buildup in the vertical direction. This polarization build-up
is proportional to the EDM. A measurement of such a build-up is a first direct
measurement of the proton or deuteron EDM. The idea of using a RF Wien

12



2.4. EDM Search in Storage Rings

filter is presented in [28, 29]. A detailed analytic explanation and a simulation
with particle tracking is presented in [16]. In April 2017, an RF Wien filter,
based on a stripline design will be installed in COSY [30]. During 2017 the com-
missioning will take place and a first deuteron EDM measurement is planned
during 2018 [31].

Besides the EDM, misalignments of magnets can lead to such a polarization
buildup induced by the Wien filter. This fake EDM signal has to be considered
as systematic error. The mentioned simulations using particle tracking methods,
show that the fake EDM buildup rate is proportional to the position of the beam
within the magnetic quadrupoles. Therefore, the RMS of the beam position in
the magnets is a quantity to estimate the unwanted polarization buildup due to
the MDM. Two results of the simulations are presented in Tab. 2.1. By using
this table, a measured orbit RMS can be converted in a systematic uncertainty
of the EDM measurement. For example, a measured orbit RMS of 1.3 mm
converts to a systematic uncertainty of the EDM of 5 · 10−19 e cm.

Table 2.1.: The table shows the dependence between the vertical orbit RMS, the
vertical fake polarization buildup due to the MDM and the equivalent
EDM signal, which produces the same vertical polarization buildup
as the MDM effect. For example, an orbit RMS of 1.3 mm leads to a
polarization buildup rate of 1.7 · 10−9 per turn only due to the MDM.
A perfectly aligned orbit and an EDM of 5 · 10−19 e cm leads to the
same buildup rate. [16, figure 8.15 (b)]

orbit RMS (mm) polarization buildup per turn ∆Sy EDM dEDM (e cm)
1.3 1.7 · 10−9 5 · 10−19

0.13 1.7 · 10−10 5 · 10−20

In order to minimize these systematic effects, the orbit of the particle beam has
to be centered in all magnets, this is achieved by an orbit correction system,
consisting of BPMs and corrector magnets.

Within this thesis, the orbit correction system at COSY is investigated in order
to improve the system. First of all, the beam position monitors and their
existing readout electronics are analyzed. The limitations of the system are
pointed out and as a result an upgrade of the readout has started.

In addition an automated measurement of the Orbit Response Matrix (ORM)
and a detailed error analysis of the orbit correction result is presented. The
orbit correction study ends with the analysis of an improvement of the system
in terms of additional elements. A possible systematic EDM limit is calculated
based on the studies and existing simulations.
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2. Motivation

Besides the correction of the orbit, the polarization buildup due to the MDM
and the EDM can be disentangle by measuring the polarization buildup of two
beams. One is circulating clockwise, the other one counterclockwise. The two
beams are injected after each other and the fields have to be reversed. The
EDM signal of both scenarios is the same, whereas the MDM induced buildup
changes the sign. By averaging the measured buildup rate, the MDM signal
drops out and only the EDM part stays [32]. The quality of the field reversal
can be estimated by measuring the relative position of the two beams, therefore
an absolute beam position measurement is not needed. This circumstance is
a big advantage, since a relative beam position measurement is easier than an
absolute one, as shown in chapter 6.
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3. Beam Dynamics in Storage Rings

For the measurement of EDMs in storage rings, a definition, description and
knowledge of the particle’s trajectory through the magnetic and electric ele-
ments is essential. The evolution of this trajectory is called beam dynamics. The
mathematical tools to describe the beam dynamics are presented in this chapter.
It starts with the fundamental Lorentz force, followed by a short description of
the magnetic elements. The combination of both lead to the equations of mo-
tion, which is solved for linearly approximated fields. In addition to this ideal
case dipole errors and their correction scheme is presented. The descriptions
are mainly taken from [33] with additional material from [34, 35, 36].

3.1. Lorentz-Force

A storage ring consists of elements which provide electromagnetic fields. These
fields act on a particle with charge q and mass m traveling with the momentum
~p via the Lorentz force:

d~p
dt = ~F = q ~E + q

mγ

(
~p× ~B

)
, (3.1)

where ~E and ~B are the electric and magnetic field vectors. This force is used
to accelerate, guide and focus the beam onto the desired trajectory within the
accelerator. The acceleration of particles is only possible by using electric fields,
since static magnetic fields lead only to a change of direction, but not to a gain
in momentum. The transverse guidance of the particles is usually achieved by
magnetic fields, since they are enhanced by a factor v ≈ c due to the fact that the
particles in accelerators are relativistic. The Lorentz-force is the fundamental
force which determines the equations of motion of the particles.

3.2. Coordinate System

For the description of the particle trajectory a coordinate system must be de-
fined. In accelerator physics, the coordinate system is usually split in two parts.
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3. Beam Dynamics in Storage Rings

One part describes the ideal path of the particle. The second one is an orthog-
onal moving coordinate system (~ex, ~ey, ~ez), which follows the ideal path. The
deviation of the particle position δ~r from the ideal trajectory ~r0 can be expressed
in these coordinates:

~r (s) = ~r0 (s) + δ~r (s) . (3.2)
Figure 3.1 shows the ideal beam path and a trajectory, which deviates by x, y
from the ideal one. The vectors x and y are orthogonal to each other and

~r0

P

~ex

~ez

~ey

particle

~r

ρ

particle trajectory

ideal beam path

s

Figure 3.1.: The commonly used moving coordinate system in accelerator
physics. The ideal beam path is described in any arbitrary coor-
dinate system (red). The particle’s trajectory (bordeaux red) with
respect to the ideal one is expressed in the moving coordinates
(~ex, ~ey, ~ez). (adapted from [33, Fig. 1.2])

orthogonal to the ideal beam path. The direction of x is chosen in a way, that
the bending dipoles of the accelerators bend the beam in −x direction. In this
choice, y points upwards. The coordinate z is defined as the vector tangential
to the ideal beam path s. This coordinate system is also referred to as the
Frenet-Serret coordinate system.

3.3. Transverse Motion

In COSY, three types of magnets are installed: the dipole, the quadrupole, and
the sextupole magnets. In all magnets, the equilibrium between the Lorentz
force and the centrifugal force determines the local bending radii:

mγv2~κ = −q~v × ~B, (3.3)
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3.3. Transverse Motion

where ~κ = (κx, κy, 0) is the transverse curvature of the trajectory. The bending
radius is the reciprocal of the curvature:

ρu = 1
κu

u ∈ {x, y}, (3.4)

where the coordinate u is introduced as transverse coordinate x or y. The effect
of dipole magnets and quadrupole magnets on the beam trajectory is discussed
in a descriptive way in the upcoming sections.

3.3.1. Bending Magnets

Assuming only transverse magnetic fields and neglecting transverse velocity
components leads to a simplified form of the bending radius in the bending
dipoles:

1
ρx,y

= q

p
By,x, (3.5)

where p = γmv is the momentum of the particle. This formulation of the
bending radius shows, that horizontal magnetic fields lead to a vertical curvature
of the trajectory, whereas vertical magnetic fields lead to an horizontal bending
of the beam path. The kick angle θ, caused by a transverse magnetic field, is
calculated by integrating over the curvature from the entrance to the exit of
the magnet [33, p. 39]:

θ =
ex∫

en

ds
ρ

=
ex∫

en

B
q

p
ds (3.6)

= q

p︸︷︷︸
1/(Bρ)

B · l, (3.7)

where l is the length of the magnet. The beam rigidity Bρ is often used to
normalize the magnetic strength to the momentum.

Dipole magnetic fields are the main components in a circular accelerator, since
they are used to bend the beam trajectory. In addition to the main dipoles,
quadrupoles are installed to focus the beam in the vertical and horizontal di-
rection.
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3. Beam Dynamics in Storage Rings

3.3.2. Focusing Magnets

The quadrupole magnets provide a magnetic field, which is proportional to the
transverse distance measured from the center of the magnet [33, p. 44]:

Bx = gy = −∂V
∂x

(3.8)

By = gx = −∂V
∂y

, (3.9)

where V = −gxy is the scalar potential of the magnet.

Figure 3.2.: Focusing of a quadrupole magnet and the geometric definitions of
the focal length and the focal point [33, Fig. 2.2].

In the center of the transverse plane of the magnet, the deflection angle vanishes,
since there is no magnetic field. If the beam is off centered horizontally, the
magnet bends the beam towards the center. This effect is called focusing. All
trajectories are focused in one spot, the focal point (Fig. 3.2). But at the same
time, vertically displaced trajectories are bend to the outside and are defocused.
A focusing in both planes can be achieved by combining focusing and defocusing
elements.

In analogy to the bending radius, the focusing strength is defined as:

k = q

p
g. (3.10)

The focal length f of a quadrupole magnet is defined as

1
f

= −α
r

= kl, (3.11)

where l is the path length of the trajectory within the quadrupole. With the
help of quadrupole magnets, particles which are slightly off centered in the
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3.3. Transverse Motion

transverse direction u 6= 0, or whose trajectories have an angle to the ideal
beam path u′ 6= 0 are kept inside the accelerator.

They start to oscillate around the ideal beam path with an amplitude
√
εβ,

which depends on the magnetic elements. This oscillation is called betatron
oscillation. The planes u − u′, position and angle in the transverse plane, are
called the transverse phase spaces.

3.3.3. Equations of Motion

The betatron oscillations are solutions of the equations of motion motivated in
the following. The equation of motion in the transverse planes can be derived
by different methods. One method is to use the Lagrangian or the Hamiltonian
of the particle motion. Another method is the classical derivation by using the
Lorentz force as centrifugal force and considering the partial derivatives of the
moving coordinates. Both methods are presented in detail in [33]. The resulting
formulas, used within this theses are discussed and presented in the following.

Only linear approximations of the fields (dipole and quadrupole terms) and
linear momentum deviations of a single particle with respect to the design
momentum p0 are presented within the focus of this thesis. The momentum
deviation ∆p reads:

1
p

= 1
p0
(
1 + ∆p

p0

) ≈ 1
p0

(
1− ∆p

p0
+ ...

)
. (3.12)

Using this approximation leads to the equation of motion for the horizontal
direction [35, eq. 3.4]:

x′′ +
(
k + κ2

x

)
x = κx

∆p
p0

with x′′ = d2x

ds2 . (3.13)

Considering only bending in the horizontal plane leads to the equation of motion
in the vertical plane:

y′′ − ky = 0 (3.14)
The coefficients in the two equations depend on the magnetic field along the
storage ring. The solution of the differential equations is the topic of the fol-
lowing sections.
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3.3.4. Hill’s Equation

By neglecting momentum deviations, the homogeneous part of (3.13) and (3.14)
have the form:

u′′ + k (s) · u = 0 u ∈ {x, y}. (3.15)
For circular accelerators, K(s) has a periodicity which is one circumference
LP = L0, or for periodic structures the length of the structure LP:

k(s) = k (s+ LP) . (3.16)

These two equations have the form of Hill’s equation [37], originally describing
the lunar stability. Hill’s equation (3.15) describes a harmonic oscillator with
a frequency

√
k(s), depending on the longitudinal position s. Hill’s equation is

solved by Floquet’s theorem. The solution of the homogeneous part is given by
[33, p. 252]:

u(s) =
√
εuβu (s) cos (Ψu (s) + Ψu (s0)) , (3.17)

where εu and Ψu (s0) reflect the initial conditions. The function βu (s) is the
betatron function, which depends on the lattice of the accelerator. The phase
advance ∆Ψu between the position s0 and s can be calculated by:

∆Ψu (s) =
s∫

s0

1
βu (ζ)dζ. (3.18)

The number of betatron oscillations per turn are called the betatron tune and
are defined as:

Qu = 1
2π

s+L0∫
s

1
βu (ζ)dζ. (3.19)

The first derivative of (3.17) is:

u′(s) = −
√
εu√

βu(s)
[αu(s) cos (Ψu(s) + Ψu(s0)) + sin (Ψu(s) + Ψu(s0))] (3.20)

with αu(s) := β′u(s)
2 and γu(s) := 1 + α2

u(s)
βu(s)

. (3.21)

The functions αu, βu, and γu are known as the optical functions or Twiss pa-
rameters. The trajectory of the particle in the phase space, the plane spanned
by u and u′, follows an ellipse:

γu(s)u2(s) + 2αu(s)u(s)u′(s) + βu(s)u′2(s) = εu. (3.22)

20



3.3. Transverse Motion

The Twiss parameters define the shape of the phase space ellipse at one position
s = s0 as shown in Fig. 3.3. Along the trajectory, the shape of the ellipse changes
due to the change of the Twiss parameters, but according to Liouville’s theorem
the area πε is conserved if all forces are conservative and the transverse phase
spaces are decoupled. Considering a single point s0 the particle moves on the
phase space ellipse by a phase advance of Qu · 2π in each turn.

u′

u

area = πε

√
εβ

−α
√
ε/β

√
εγ

−α
√
ε/γ

√
ε/β

√
ε/γ

Figure 3.3.: The transverse phase space motion of a particle is described by an
ellipse in the u − u′ plane. The shape of the ellipse is defined by
the optical functions α, β, γ, and the emittance ε (adapted from [33,
Fig 5.2]).

3.3.5. Dispersion

The complete solution xc of (3.13) consists of the solution of the homogeneous
equation, discussed in the previous section, and a particular solution of the
inhomogeneous one:

xc(s) = x(s) + xD(s). (3.23)
In accelerator physics, the additional term is called the dispersive orbit following
the terms used in optics. The additional part xD can be expressed as:

xD(s) = D(s) · ∆p
p0
, (3.24)
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where the dispersion D is introduced as additional function. It describes the
influence of momentum deviations to the horizontal beam position. The vertical
dispersion vanishes, since the vertical equation of motion has no curvature term.
Inserting (3.23) in (3.13) leads to the differential equation of the dispersion:

D′′(s) + k(s)D(s) = κ0x. (3.25)

The solution for the dispersion is given by [33, p. 261]:

D(s) =

√
βx(s)

2 sin πQx

s+LP∫
s

√
βx(ζ)
ρx(ζ) cos [Qx (Ψx(s)−Ψx(ζ) + π)] dζ. (3.26)

A momentum deviation leads to a change of the horizontal trajectory, which
causes a change of the path length of one turn ∆L. This path lengthening can
be calculated by:

∆L =
s+L0∫
s

κx(ζ)x(ζ)dζ = ∆p
p0

s+L0∫
s

κx(ζ)D(ζ)dζ. (3.27)

Defining the momentum compaction factor

αp = 1
L0

L0∫
0

κx(ζ)D(ζ)dζ (3.28)

leads to the relative path change due to a momentum deviation:

∆L
L0

= αp
∆p
p0
. (3.29)

3.3.6. Field Errors

Up to now, only ideal fields and momentum deviations were considered in the
discussion of the transverse motion. But in a realistic accelerator, additional
field components due to field errors or transverse misalignment of magnets have
to be considered.

For example, the vertical quadrupole field (By = gx) is assumed to be zero at
the center. But if the qudrupole is horizontally misaligned by δx, the field in the
center is By = gδx, which is a vertical dipole field. This vertical dipole field leads
to a horizontal bending of the particle trajectory. In general, displaced magnets
of order n produce lower order field components at the desired beam axis. These
fields can be considered as perturbation in the equations of motion.
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Dipole Field Errors Dipole field errors can be included in the equation of
motion as a perturbation p0u(s):

u′′ +
(
k + κ2

u

)
u = p0u(s). (3.30)

The perturbation term represents all dipole errors independent of their source.
The horizontal and vertical perturbation terms up to second order including
field errors (∆κ, and misalignments (∆x,∆y)) read [33, pp. 414-415]:

p0x =−∆κx0 +
(
κ2
x0 + k0

)
∆x+ (2κx0∆κx0 + ∆k) ∆x (3.31)

− 1
2m

(
∆x2 − 2xc∆x−∆y2 + 2yc∆y

)
p0y =−∆κ0y − k0∆y −m (xc∆y + yc∆x) , (3.32)

where xc, yc are the closed orbit deviations in the magnet. Equation (3.30)
can be solved in analogy to the solution for the momentum deviation, where
the solution is the dispersive function. The solution for dipole perturbations is
given by:

uc(s) =

√
βu(s)

2 sin πQu

s+L0∫
s

p0u(ζ)
√
βu(ζ) cos [Qu (Ψu(s)−Ψu(ζ) + π)] dζ, (3.33)

where L0 is the circumference of the accelerator. This solution is called the
closed orbit or equilibrium orbit. Around this defined closed orbit all particles
perform betatron oscillations in horizontal and vertical direction. In principle
this solution is a stable situation, but due to the deviation of the trajectory
from the center of the beam pipe the chance that particles hit the beam pipe
and are lost is higher. This effect influences the beam lifetime. More important
from the EDM measurement point of view are the unwanted field contributions,
which act on an off-centered particle beam.

In order to move the beam in the center of all magnets, additional dipole mag-
nets, the corrector magnets are installed. The strength of the additional dipole
fields can be varied to add additional deflection, which corrects the unwanted
perturbations caused by field errors or survey errors. Each of the corrector mag-
nets performs a kick θj, see (3.7), at the position of the j-th corrector magnet.
The resulting orbit change is:

ucor(s) =

√
βu(s)

2 sin πQu

∑
j

θj
√
βuj cos [Qu (Ψu(z)−Ψuj + π)] , (3.34)

where βuj is the beta function at corrector magnet j. In addition to corrector
magnets, devices which measure the transverse beam position are needed. These
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devices, the Beam Position Monitors (BPMs), are installed along the accelerator
at positions si. The orbit change at one BPM due to corrector kicks reads:

∆ui =
√
βui

2 sin πQu

∑
j

θj
√
βuj cos [Qu (Ψui −Ψuj + π)] , (3.35)

where βui is the beta function at the i-th BPM and Ψui −Ψuj is the the phase
advance between BPM i and corrector magnet j. The orbit change at all BPMs
can be expressed in a matrix notation:

∆~u = M~θ, (3.36)

where the beam positions at the BPMs and the corrector magnet kicks are
written in vector notation. The matrixM is called the Orbit Response Matrix
(ORM). The entries of this matrix are:

Mij =

√
βiβj

2 sin πQ cos [Q (Ψi −Ψj + π)] . (3.37)

This equation holds for the vertical orbit and the vertical corrector magnets
(horizontal dipole field). In the horizontal plane, the matrix has to be modified
to also consider dispersive effects [36]:

Mij =

√
βiβj

2 sin πQ cos [Q (Ψi −Ψj + π)]− DiDj(
αp − 1

γ2

)
L0
, (3.38)

where D is the dispersion function, αp is the momentum compaction factor, and
γ is the Lorentz factor. The additional term includes the effect, that a kick at
a position with dispersion leads to a momentum shift of the beam, if the cavity
is switched on. This momentum shift causes a movement of the beam which is
proportional to the dispersion at the BPM. Coupling between the vertical and
horizontal beam dynamics, caused by tilted quadrupoles or sextupole fields and
higher order terms are neglected in the derivation of the ORM entries.

The combination of BPMs, corrector magnets, and the knowledge of the ORM
allows the calculation of the corrector magnet strengths in a way, that the beam
deviation from the center at the BPMs is minimized. A detailed solution of the
problem

min
~θ

∥∥∥M~θ − ~u
∥∥∥

2
, (3.39)

where ~u is the measured orbit, is presented in 7.3. In addition the measurement
of the ORM as well as the performance of the correction are discussed in the
chapters 7.1 and 7.4.
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3.4. Longitudinal Motion and Path Lengthening

3.4. Longitudinal Motion and Path Lengthening

The longitudinal motion of the particles is influenced by the accelerating cavity,
which produces a longitudinal, sinusoidal electric field. The frequency of the
field is a multiple integer of the beam revolution frequency. In a synchrotron,
the frequency increases synchronously to the particle energy and the magnetic
fields, to hold the particle trajectory stable during the acceleration. At the
final energy, two operation modes are possible. In the first mode, the cavity is
switched off, the beam particles circulate unbunched. In the second mode, the
cavity stays on and the beam is bunched. The second case is used for beam posi-
tion measurements and the orbit correction. In addition, the cavity is switched
on for the planned EDM measurements since the polarization lifetime depends
on the momentum deviation inside the beam. This momentum deviation is in
first order minimized for bunched beams [27]. For bunched beams, the revo-
lution frequency is fixed, which causes coupling between orbit lengthening and
momentum deviations discussed in the upcoming paragraph.

The relative revolution frequency change due to path lengthening (∆L) or due
to velocity changes (∆v) is given by:

∆f
f0

= ∆L
L0
− ∆v

v0
. (3.40)

The orbit lengthening caused by momentum deviations is given by (3.29). The
velocity change due to a momentum change is in first order [38]:

∆v
v0

= 1
γ2

0

∆p
p0
. (3.41)

Consequently, the revolution frequency change due to a momentum change can
be expressed as [39]:

∆f
f0

=
(
αp −

1
γ2

0

)
︸ ︷︷ ︸

η

∆p
p0
, (3.42)

where η is the "phase slip factor". Stable operation of the accelerator is only
possible for η 6= 0.

Additional orbit lengthening effects can be considered in (3.40) as well. For
example a kick θj of a corrector magnet j leads to an orbit change all over the
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3. Beam Dynamics in Storage Rings

ring. The resulting first order orbit lengthening ∆Lθj is given by the integral:

∆L =
Lo∫
0

ucor(ζ)κ(ζ)dζ (3.43)

= Djθj, (3.44)

where the definition of the dispersion (3.26) and the orbit change due to a
corrector change (3.33) are used to solve the integral.

Inserting this additional orbit lengthening in (3.40) and assuming a bunched
beam, where the frequency is kept constant, leads to:

∆f
f0

= Dj

L0
θj + η

∆p
p0

= 0 (3.45)

⇔ ∆p
p0

= − Dj

ηL0
θj. (3.46)

Possible quadratic contributions depend on the sextupole strengths in the ac-
celerator. By adjusting the sextupole strengths in a way, that the chromaticity
is zero, the quadratic term vanishes and only the linear term, mentioned above,
lasts [40, 41, 42].

A corrector magnet change at a region where the dispersion is not equal zero
leads to momentum change. This momentum change results in a position vari-
ation proportional to the dispersion all over the ring (3.24). Since the vertical
dispersion is zero, the resulting term exists only in the horizontal plane and
reads for a BPM i:

∆xi = −DiDj

ηL0
θj. (3.47)

This effect is already included in the horizontal ORM entries.
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4. Spin Dynamics in Storage Rings

As explained in the previous chapters, polarized particles stored in an accelera-
tor can be used for a measurement of their EDM. The formalism to describe an
ensemble of polarized particles, as well as their motion in storage rings is focus
of this chapter. First of all, the polarization formalism is motivated, followed by
a definition of the coordinate system. The spin motion in the accelerator is then
described by the Thomas-Bargmann-Michel-Telegdi equation. The chapter is
based on the literature [43, 44, 45, 46].

4.1. Polarization

The spin of a particle is an additional degree of freedom, which is represented
by a quantum vectorial operator ~̂S =

(
Ŝ1, Ŝ2, Ŝ3

)
. The eigenvalue of ~̂S

2
for

spin-1
2 particles is s(s + 1) = 3

4 . If the z-axis is the quantization axes, the
particles can only be in the states m = ±1

2 [46].

4.1.1. Spin−1
2 Particles

A spin−1
2 particle can be represented by a Pauli spinor [43]:

χ =
(
u
d

)
. (4.1)

A particle with a spin pointing in z direction is described by u = 1 and d = 0. In
quantum mechanics, the expectation value of an observable with the associated
hermitian operator Ω̂, is defined as:

〈Ω〉 = 〈χ| Ω̂ |χ〉 = χ†Ω̂χ. (4.2)

The definition of the density matrix ρ:

ρ = |χ〉 〈χ| =
(
|u|2 ud∗

u∗d |d|2
)

(4.3)
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4. Spin Dynamics in Storage Rings

leads to a reformulation of the expectation value:

〈Ω〉 = TrρΩ̂. (4.4)

The hermitian operators corresponding to the quantum vectorial operator ~̂S of
a spin−1

2 particle are the Pauli matrices [47] defined as:

~̂S = ~
2~σ, (4.5)

with
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.6)

In combination with the identity matrix σ0 = 1, the three Pauli matrices are
a complete basis of the hermitian 2 × 2 matrices. The spin vector ~S of one
particle is defined as the expectation value of the corresponding operator:

~S = 〈 ~̂S〉 = ~
2Trρ~σ. (4.7)

A particle beam in an accelerator contains typically 1010 particles. The inter-
esting quantity of such a beam is the expectation value of the spin observables
of the particle ensemble. For an ensemble of N particles, the density matrix
can be extended to

ρ = 1
N


N∑
n=1

∣∣∣u(n)
∣∣∣2 N∑

n=1
u(n)d(n)∗

N∑
n=1

u(n)∗d(n)
N∑
n=1

∣∣∣d(n)
∣∣∣2

 = 1
2
(
σ0 + ~P~σ

)
. (4.8)

In the last step, the density matrix is expended in the Pauli matrices, where ~P
is the average over all spin vectors of the ensemble:

~P = 1
N

N∑
n=1

~Sn. (4.9)

The polarization vector is normalized to 1 and all three components are bounded
by the limits ±1. For a beam containing Nm= 1

2 and Nm=− 1
2 particles in the

corresponding spin states m = 1
2 and m = −1

2 , the vector polarization along
the quantization axis reads [46]:

PV = Nm= 1
2 −Nm=− 1

2

Nm= 1
2 +Nm=− 1

2
. (4.10)

The particle beam is fully polarized for PV = ±1 and unpolarized for PV = 0.
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4.1. Polarization

4.1.2. Spin−1 Particles

Spin−1 particles are characterized by a three dimensional spinor:

χ =

 a1
a2
a3

 , (4.11)

where the three quantization states m = −1,m = 0, and m = 1 belong to the
three components of the spinor. In analogy with the Pauli matrices, the spin-1
operators are defined as:

Ŝ1 = ~√
2

 0 1 0
1 0 1
0 1 0

 , Ŝ2 = ~√
2

 0 −i 0
i 0 −i
0 i 0

 , Ŝ3 = ~

 1 0 0
0 0 0
0 0 −1

 .
(4.12)

Together with the identity matrix I, the three operators comprise four out of
nine matrices needed as basis for the 3× 3 space. A commonly used definition
of the missing five base operators is the standard Cartesian notation:

Ŝij = 3ŜiŜj − 2δijI with (i, j) ∈ {1, 2, 3}. (4.13)

This set of ten operators is overcomplete and the relation:

Ŝ11 + Ŝ22 + Ŝ33 = 0 (4.14)

reflects the dependency of the chosen basis operators. Commonly, the operators
Ŝi are normalized such that:

TrŜiŜj = 3δij (4.15)

holds. The density matrix for spin−1 particles can be extended as:

ρ = 1
3

I + 3
2

3∑
i=1
PiSi + 1

3

3∑
i=1

3∑
j=1
PijSij

 , with Pij = Pji. (4.16)

Considering a beam containing Nm=−1, Nm=0, and Nm=1 particles, the vector
polarization PV and the tensor polarization PT with respect to the quantization
axis are defined as:

PV = Nm=1 −Nm=−1

Nm=1 +Nm=0 +Nm=−1 , PT = Nm=1 +Nm=−1 − 2Nm=0

Nm=1 +Nm=0 +Nm=−1 . (4.17)
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4. Spin Dynamics in Storage Rings

A spin-1 particle beam can only be prepared in combinations of vector and
tensor polarization. The maximum vector or tensor polarization is:

PV = ±2
3 and PT = 0 or PV = ±1

3 and PT = ±1. (4.18)

4.2. Spin Motion in Storage Rings

After defining the polarization, the connections between the beam polarization,
the polarization coordinate system and the Frenet-Serret coordinate system
have to be defined. In addition, the spin motion under electric and magnetic
fields is discussed in the following.

4.2.1. Coordinate Systems

The comoving Frenet-Serret coordinate system (~ex, ~ey, ~ez) is used to describe
the motion of the particles within the accelerator. The spin of the particles
is described in the Cartesian coordinates (~e1, ~e2, ~e3). Using the axis ~ey as the
quantization axis ~e3 leads to a connection of the coordinates:

(~ex, ~ey, ~ez) = (~e1,−~e3, ~e2) . (4.19)

4.2.2. Spin Motion in Rest Frame

In the rest frame of a particle, magnetic and electric fields act on the spin via
the coupling with the magnetic dipole moment ~µ and the electric dipole moment
~d:

d~S
dt = ~µ× ~B + ~d× ~E = ~Ωs × ~S. (4.20)

The magnetic and electric dipole moments are proportional to the spin [48]:

~µ = g

2
q

m
~S (4.21)

~d = ηEDM
q

2mc
~S. (4.22)

The spin precesses in a plane, perpendicular to ~Ω with a frequency of Ω. In a
pure magnetic field the precession is called Larmor precession.
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4.2. Spin Motion in Storage Rings

The precession of particles with velocity ~v in a magnetic field has a similar form
as (4.20):

d~v
dt = − q

m
~B × ~v = ~Ωcyc × ~v. (4.23)

The relative frequency difference is the gyromagnetic anomaly G or a:

Ωcyc − Ωs

Ωcyc
= g − 2

2 = G = a, (4.24)

where G is usually used in the hadronic sector and a is used in the leptonic
sector. For ideal Dirac particles without any inner structure, the g factor is 2
and the gyromagnetic anomaly vanishes [49]. Higher order corrections from for
example quantum electrodynamics lead to corrections, which can be measured
with high accuracy in the g − 2 experiments. The measured values of the
gyromagnetic anomaly are summarized in Tab. 4.1.

Table 4.1.: The measured values of the gyromagnetic anomaly for the muon, the
electron, the proton, and the deuteron. [50]

particle Magnetic moment anomaly G
muon (1.165 920 89± 0.000 000 63) · 10−3

electron (1.159 652 180 91± 0.000 000 000 26) · 10−3

proton 1.792 847 351± 0.000 000 009
deuteron −0.142 987 272 4± 0.000 000 001 5

4.2.3. Relativistic Particles

The discussed equation of spin motion is valid in the rest frame of the particle,
but in an accelerator the electromagnetic fields are known in the laboratory
frame. In order to describe the spin motion, a Lorentz transformation of the
fields in the rest frame of the particle is needed. The resulting equation of the
spin motion has the same form as the discussed Larmor precession (4.20), only
the angular momentum vector is different.

The result is referred to as the Thomas-Bargmann-Michel-Telegdi (T-BMT)
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4. Spin Dynamics in Storage Rings

equation [45, 51, 52, 48]:

d~S
dt = −

(
~ΩMDM + ~ΩEDM

)
× ~S, with (4.25)

~ΩMDM = q

m

(G+ 1
γ

)
~B − Gγ

γ + 1
(
~β · ~B

)
~β −

(
G+ 1

1 + γ

)
~β ×

~E

c

 , (4.26)

~ΩEDM = q

mc

ηEDM

2

[
~E − γ

γ + 1
(
~β · ~E

)
~β + c~β × ~B

]
. (4.27)

Neglecting the EDM and assuming an ideal accelerator, where only the magnetic
guiding field exists and the velocity is always perpendicular to this field, leads
to:

d~S
dt = − q

mγ
(Gγ + 1)By~ey × ~S. (4.28)

A spin, which is parallel to the guiding field stays stable in time, this direction
is called the stable spin axis ~n0. Spins, which are not aligned with the stable
spin axis, precess around this axis with the frequency ΩMDM. For a realistic
accelerator with transverse field components, the stable spin axis changes its
orientation (4.25).

Besides the spin precession, the momentum vector rotates with the frequency
Ωcyc = q

mγ
, resulting by solving the Lorentz force equation (3.1):

d~p
dt = q

mγ
pz~ez ×By~ey. (4.29)

The number of spin revolutions per particle revolution can be expressed as the
spin tune ν:

ν =
q
mγ

(γG+ 1)
q
mγ

− 1 = γG. (4.30)

One revolution is subtracted, since the spin tune is defined in the comoving
coordinate system, which itself precesses once per particle turn with respect to
the laboratory frame.
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5. Accelerator Complex around COSY

The accelerator COSY, COoler SYnchrotron, at Forschungszentrum Jülich pro-
vides polarized protons or deuterons for experiments. With its capabilities of
cooling and beam manipulating, COSY is a perfect environment to investigate
tools and systems, needed for a dedicated EDM storage ring. This chapter
describes the accelerator and the EDDA detector, used as polarimeter.

5.1. COSY - Cooler Synchrotron

The accelerator complex around COSY at Forschungszentrum Jülich consists
of two ion sources, the cyclotron JULIC1, the Cooler Synchrotron COSY itself
and beam lines as interconnections. A schematic drawing of the accelerator
COSY, its internal experimental areas and the pre-accelerator JULIC is shown
in Fig. 5.1.

The two ion sources provide either negatively charged hydrogen or deuterium,
both polarized or unpolarized [53]. The negatively charged particles are trans-
ported towards the cyclotron JULIC. The cyclotron accelerates the ions up to
a kinetic energy of 45 MeV and 75 MeV, for the H− and D− ions resp. [54].
After the pre-acceleration, the particle beam is injected into the COSY ring via
stacked stripping injection. The typical intensity is in the range between 109

and 1010 particles per fill.

The main accelerator and storage ring COSY [55, 56] is 184 m long and pro-
vides beam momenta from 300 MeV/c to 3.7 GeV/c . Two electron coolers are
available. The 100 keV e-cooler is able to cool the beam up to a momentum of
600 MeV/c for protons and 1200 MeV/c for deuterons [57]. The 2 MeV e-cooler,
installed in 2013, is able to cool the beam up to the maximum momentum ac-
cessible with COSY [58]. In addition, stochastic cooling is possible, starting
from 1.5 GeV/c [59].

Besides the cooling systems, diagnostic systems are available. The diagnostic
systems include a beam profile monitor to measure the transverse beam profile,
by using residual gas ionization [60]. The transverse beam position is measured

1JULIC - Jülich Light Ion Cyclotron
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PAX

ANKE

100 kV cooler

2 MV cooler

Cavity

RF solenoid

JULIC

WASA

EDDA

Stochastic cooling

RF Wien filter

Figure 5.1.: Sketch of the COSY storage ring, the cyclotron JULIC and the
injection beamline. The experimental areas are marked in orange,
the cooling devices are depicted in blue. The currently installed
RF spin manipulators drawn in magenta. The accelerating and
bunching cavity is directly placed behind the EDDA detector.

at several places around the ring with beam position monitors, which are de-
scribed in more detail in chapter 6. The beam intensity is estimated with a
beam current transformer [61].

In addition to the mentioned systems, devices to manipulate the polarization
are placed at COSY. For example, a RF solenoid [62] and a RF Wien filter
[63] are installed. Among others, these devices are used to cross depolarizing
resonances by flipping the polarization by 180°. By using a flip around 90°, the
polarization is transferred from the vertical direction in the horizontal plane
[64, 65].

In order to perform particle physics experiments, four internal experimental
places, where targets and particle detectors can be installed are available: PAX2,
EDDA3, WASA4, and ANKE5. The four names are the names of the experi-

2PAX - Polarized Antiproton eXperiments
3EDDA - Excitation function Data acquisition Designed for Analysis of phase shifts
4WASA - Wide Angle Shower Apparatus
5ANKE - Apparatus for Studies of Nucleon and Kaon Ejectiles
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5.2. EDDA Polarimeter

ments performed at these places [66, 67, 68, 69]. For the experiments done to
investigate the feasibility of EDM measurements at COSY, the EDDA detector
is used to measure the polarization. This allows for determination of the spin
precession frequency fS.

5.2. EDDA Polarimeter

As mentioned, the EDDA detector is used as a polarimeter. The polarization
of the particle beam is measured by analyzing the angular distribution of elas-
tically scattered protons or deuterons. Upstream the EDDA detector, a carbon
block is mounted as a target slightly above the center of the beam pipe. In order
to hit the target with particles, different methods can be applied. One method
is to move the beam slowly onto the target by creating a local orbit bump with
corrector magnets. Another way is to heat the beam vertically by applying an
RF electric field on a strip-line unit. The amplitude of the field is white noise
distributed around a betatron sideband frequency. By using these mechanisms,
the beam is slowly extracted during a time period of typically 100 s to 1000 s.

The cross section σ for the elastically scattered spin 1
2 -particles depends on the

polarization and reads [44]:

σ (ϕ, θ) = σ0 (θ) · (1 + AyPy cosϕ− AyPx sinϕ) , (5.1)

where Px,y are the polarization components in vertical and radial direction, Ax,y
are the corresponding analyzing powers, and ϕ is the azimuthal angle in the
x − y-plane. The cross section for an unpolarized beam is given by σ0. The
analyzing power depends on the polar scattering angle θ, the target material,
the particle species and its momentum. A schematic view of the scattered
particle and the variables is given in Fig. 5.2.

For spin 1-particles, the corresponding cross section is given by [44]

σ (ϕ, θ) = σ0 (θ) ·
[
1 + 1

2AzzPzz +
(3

2AyPy + 2
3AxzPxz

)
cosϕ

+ 1
6 (Axx − Ayy) (Pxx − Pyy) cos (2ϕ)

+
(
−3

2AyPx + 2
3AxzPxy

)
sinϕ

+ 1
3 (Axx − Ayy)Pxy sin (2ϕ)

]
.

(5.2)

In addition to the vector polarization Pi with i ∈ x, y, the tensor polarizationPij
and the corresponding analyzing power Aij with i, j ∈ x, y, z are considered.
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𝜙 𝜃

z

x

y

scattered particle‘s trajectory

Figure 5.2.: Definition of the scattering angles ϕ and θ.

For a beam with vanishing tensor polarization, as used for the experiments
presented within this thesis, the cross section simplifies to:

σ = σ0

[
1 + 3

2AyPy cosϕ− 3
2AyPx sinϕ

]
. (5.3)

Figure 5.3.: The sketch of the EDDA detector shows the scintillating bars and
rings. The four groups which are used for polarization measure-
ments are colored [70].

The polarization of the beam can be measured by analyzing the angle depen-
dence of the scattered particles, which is done with the EDDA detector. It
consists of 32 scintillating bars mounted cylindrically around the beam pipe.
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5.2. EDDA Polarimeter

On top of the bars and perpendicular to them, half rings are installed. The
last four half rings and eight bars, covering the angle range 9° ≤ θ ≤ 14.4°
and ∆ϕ = 90° are grouped. The complete azimuthal range is covered by four
groups, namely Up, Right, Down and Left. A sketch of the detector and the
four groups is given in Fig. 5.3. For each group, covering the angle range Ω, an
effective analyzing power can be calculated:

A
s

y =
∫
Ay(θ) sinϕdΩ∫

dΩ (5.4)

A
c

y =
∫
Ay(θ) cosϕdΩ∫

dΩ . (5.5)

Assuming perfectly aligned detectors with the same efficiency for all elements,
the vertical and radial polarization can be calculated by estimating the asymme-
tries in the count rates N in the detector quadrants Left-Right and Up-Down:

Py = 2
3Ac,Ly

NL −NR

NL +NR
(5.6)

Px = 2
3As,Uy

NU −ND

NU +ND
, (5.7)

where Ac,Ly and A
s,U

y are the averaged analyzing powers for the Left and Up
detectors resp.

By using a so called time stamping of all detected events, which enables an
assignment of a turn number to the scattered event, it is possible to measure the
radial polarization depending on the turn number [70]. In classical scattering
experiments, the time stamping is not important, since all events are mostly
analyzed independently. For the experiments described in this thesis, the precise
time information is important, since this allows to analyze the evolution of the
polarization from turn to turn (1 µs) and on long term basis (1000 s). With this
technique, it is possible to measure the spin precession frequency, which results
in a time dependent horizontal polarization:

Px (t) = Px,0 sin (ωst) ≈ Px,0 sin (γGωrevt) , (5.8)

where ωrev is the revolution frequency of the beam. The frequency of the hor-
izontal polarization is determined by analyzing the Fourier spectra of the de-
tected events [71, 72].
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6. Beam Position Monitor System at
COSY

This chapter introduces the existing BPM system at COSY. First of all, com-
monly used BPMs are described, followed by the definition of uncertainties,
which influence a beam position measurement. Besides the physical monitor
device, the readout electronics with its capabilities and limits with respect to
the orbit correction is described. The chapter closes with an empirical descrip-
tion and error analysis of the existing BPM system.

6.1. Commonly used BPMs

In accelerators the transverse beam position along the particle trajectory is one
of the important beam parameters. This parameter is measured by BPMs. For
circular accelerators usually two systems are used: button BPMs or shoebox
BPMs. Both systems measure the electric field of the passing, bunched particle
beam. The beam position is calculated by analyzing the measured electric field
distribution. Button BPMs are used at electron machines, whereas shoebox
BPMs are used at hadron accelerators. Since COSY is a hadron accelerator,
this chapter focuses on the shoebox design.

Electrode right

Electrode left

Electrode down

Electrode up

Beam direction

Figure 6.1.: Sketch of a round BPM, which measures the vertical and horizontal
beam position, adopted from [73].

Figure 6.1 is the sketch of a round shoebox BPM. It consists of two pairs of
electric pickup electrodes, one for each plane. The dimensions of the BPM have
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6. Beam Position Monitor System at COSY

to fit to the beam pipe of the accelerator. At COSY, two types of BPMs are
installed [61]:

Round BPMs with a length of l = 100 mm and a diameter d = 150 mm
are installed in the straight sections.

In the arcs, where the beam pipe is rectangular, rectangular BPMs are
installed. Their dimensions are: length l = 100 mm, height h = 60 mm
and width w = 150 mm.

In both BPM types, the passing beam induces a voltage in each electrode.
The shoebox design with a diagonal cut of the two electrodes lead to linear
dependence between this voltage and the the beam positions x, y with respect
to the center of the BPM:

UL,R =
qBl

(
1± x

d

)
C

(6.1)

UU,D =
qBl

(
1± y

d

)
C

, (6.2)

where l, d and C are the BPM parameters length, diameter and capacitance.
For the rectangular BPMs, the diameter has to be replaced by the width or the
height of the BPM. The + sign is used for the electrodes positioned left and up
of the beam pipe center, whereas the − sign is used for the two other electrodes.
The variable qB is the charge density. In first order, it is given by:

qB = Nq

L
, (6.3)

where N is the number of particles, L the bunch length and q the particle’s
charge.

By calculating the ratio of the difference and sum of the signals, measured at
opposite electrodes, all parameters besides the position and the diameter drop
out. The beam position reads:

x = d

2 ·
UL − UR

UL + UR
, y = d

2 ·
UU − UD

UU + UD
, (6.4)

where the indexes L, R, U, D indicate the position of the electrodes left, right,
up or down. For the rectangular BPM the position dependence is given by:

x = w

2 ·
UL − UR

UL + UR
, y = h

2 ·
UU − UD

UU + UD
. (6.5)

The detailed calculations are discussed in [74, 75]. Besides the linear response
of the BPMs, which is ensured by design, the uncertainties of the measurement
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are important for the EDM measurement. Sources of these uncertainties are
discussed in the upcoming section.

6.2. Uncertainties of Beam Position
Measurements

The ideal BPM measures the beam position with high resolution and a perfect
accuracy. This means, that the spread in the position measurement with a
stable beam is minimal (resolution). In addition, the measured beam position
should be the same as the true one (accuracy). Figure 6.2 depicts the two
definitions in a descriptive way.

accurate inaccurate

(systematic error)

precise,   

high 

resolution

inprecise,

low 

resolution

(statistical 

error)

Figure 6.2.: Descriptive sketch of the definitions accuracy and precision/resolu-
tion.

The accuracy of the beam position measurement depends on the alignment
accuracy of the BPM itself and the manufacturing accuracy. The resolution
of the BPM as a hardware device depends on the noise on the electrodes. In
addition to these effects, the accuracy and resolution of the readout electronics,
including the signal processing chain, has to be considered.

For the EDM measurement in Wien filter mode, the BPM system should pro-
vide accurate and precise data. For a measurement setup with beam based
calibration of the BPMs or with two counter rotating beams, the BPMs have
to be precise, but to first order the accuracy drops out.
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6. Beam Position Monitor System at COSY

6.2.1. Resolution Limited by Thermal Noise

The theoretical limit of the resolution of the BPMs is the thermal noise of the
BPM, including the pre-amplifiers. The thermal noise is given by the Johnsen-
Nyquist theorem:

U2
noise = 4RkBT∆f, (6.6)

where R is the resistance, T the temperature, kB the Boltzmann’s constant
and ∆f the band width of the system. For a combination of capacity, induc-
tance and resistor, R needs to be replaced by the real part of the admittance.
The admittance Y as a function of the frequency for the pre-amplifier and the
capacitive electrode reads [76, chap. 3]:

Y (f) = 1
R + i

2πfC
. (6.7)

Integrating around the beam frequency of f0 with a width of ∆f results in the
thermal noise:

Unoise =

√√√√√√4kBT
f0+∆f/2∫
f0−∆f/2

Re (Y (f)) df (6.8)

=

√√√√4kBT
πC

arctan (2πfRC)
∣∣∣∣f0+∆f/2

f0−∆f/2
. (6.9)

The resistance of the pre-amplifiers is Rpre = 500 kΩ. The BPM electrodes have
a capacitance of Celectrode = 80 pF. Assuming a temperature of T = 300 K and
a broad band filter with a width of ∆f = 100 kHz around the beam frequency
of f0 = 750 kHz, the noise is calculated to Unoise = 28 µV. This voltage has to
be compared to the signal level of the electrodes, given by (6.2). The induced
voltages for a centered beam with a typical bunch length of 40 m are calculated
to:

UL,R =
90 mV N = 1.8 · 1010 particles

1.9 mV N = 3.8 · 108 particles
. (6.10)

Using Gaussian error propagation for (6.4) and assuming an average of 256
measurements results in the position noise limit of the BPMs:

σx,noise =
0.2 µm N = 1.8 · 1010 particles

11 µm N = 3.8 · 108 particles.
(6.11)

In addition to this thermal limit, the noise of the readout electronics has to be
considered.
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In order to minimize the thermal noise, a project to develop BPMs, based on
measuring the magnetic field distribution of the particle beam by using so called
Rogowski pickup coils [77], readout with SQUIDs (Superconducting QUantum
Interference Device) is ongoing [78]. The beam position resolution of such a
device will be in the order of nm.

6.2.2. Readout Electronics

The COSY BPM readout electronics start directly at the electrodes with a
pre-amplifier, which amplifies each signal by gpre = (13.5± 0.1) dB [79]. The
amplified signal is fed in an analog electronics device [80], where the high fre-
quency signals are mixed with the revolution frequency and filtered by a band-
pass filter. After these processing steps, the difference ∆A and the sum ΣA of
the signals are generated. The resulting voltages are amplified with adjustable
amplification gains g∆, and gΣ. At the end, the amplified voltages are digitized
[81] with an 8 bit ADC (Analog to Digital Converter) for the difference and a
7 bit ADC for the sum. Both ADCs accept a maximum input voltage of 1 V.
The complete readout chain can be expressed mathematically by:

UP,L = 10
gpre
20 UL, UP,R = 10

gpre
20 UR (6.12)

∆A = 10
g∆
20 (UP,R − UP,L)

ΣA = 10
gΣ
20 (UP,R + UP,L)

}
analog (6.13)

∆D = ∆A
1 V · 256

ΣD = ΣA
1 V · 128

}
digital. (6.14)

Typically, the digitized sum and difference signals are averaged over 4 ms, which
corresponds to 256 datapoints. After all the processing steps, the beam position
is calculated out of the digitized voltages by using (6.4):

x = d

2
UL − UR

UL + UR
(6.15)

= d

210
gΣ−g∆

20
∆D

ΣD

1
2 . (6.16)

In the following, the resolution and accuracy of the readout system are dis-
cussed.

Resolution

The resolution of the position measurement can be calculated by Gaussian error
propagation with the knowledge of the width of the digitized signals σ∆D and
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6. Beam Position Monitor System at COSY

σΣD . The statistical uncertainty on the beam position reads:

σx,stat. = x ·
√
σ∆D

∆D

2
+ σΣD

ΣD

2
(6.17)

= d

210
gΣ−g∆

20
∆D

ΣD

1
2 ·
√
σ∆D

∆D

2
+ σΣD

ΣD

2
. (6.18)

The resolution of the digitizers is in the order of 2 LSB1 ≈ 8 mV, which results
in the resolution of the mean value of 0.5 mV for the difference signal and 1 mV
for the sum signal. A distribution of the digitized difference and sum signals,
measured with one BPM at COSY with a beam containing 2.9 · 109 particles is
presented in Fig. 6.3.
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Figure 6.3.: Measured distributions of the digitized difference (a) and sum (b)
signals for 2.9 · 109 particles. The settings of the electronics are:
g∆ = 48 dB, gΣ = 24 dB, and ∆f = 10 kHz. The measured beam
position is calculated to x = (14.4710± 0.0025) mm.

The estimated resolution of the position for 1.8 · 1010 particles and 3.8 · 108 par-
ticles depending on the beam position is shown in Fig. 6.4 as blue resp. red
curve. Since the digitization range is limited, the gains of the analog signal

1LSB - Least Significant Bit
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Figure 6.4.: Resolution of the BPM system, depending on the beam position x
and on the number of particles N . The steps occur, because the gain
of the difference signal processing has to be adjusted. The difference
between the red and blue curve is a result of the limited gain of
the difference signal chain, which is already reached at ±5 mm for
3.8 · 108 particles.

processing have to switch depending on the beam position (g∆) and depending
on the number of particles (gΣ, g∆). The switching of the difference gain results
in the steps of the curves. For the red curve, the maximum gain is already
reached at a position of ±5 mm which results in the shown limit on the resolu-
tion of 3.5 µm. For beams with more particles, this limit is going down below
1 µm.

Compared to the thermal noise, the resolution of the signal processing elec-
tronics is for low number of particles lower than the thermal noise and can be
neglected. For high number of stored particles, the resolution of the electronics
is the dominating effect.

As a conclusion of the discussed effects, the BPM system provides beam position
measurements with a resolution in the order of 1 µm for 109 particles. This
resolution corresponds to an EDM sensitivity of roughly 10 · 10−22 e cm, by using
the results presented in Tab. 2.1.

These values are achievable by transferring all data points to the control system.
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6. Beam Position Monitor System at COSY

Because of limited bandwidth in the existing network, the beam position is
averaged directly in the electronics and rounded to 0.01 mm. This rounding
error is the limiting factor in the fast acquisition mode of the BPMs. Besides
this rounding, the accuracy of the system has to be taken into account.

Accuracy

The accuracy of the readout can be calculated by using the accuracy of the
parts of the electronics. The uncertainty of the switchable gains for example is
in the specification set to σg = ±0.5 dB. Using this number and estimating the
error on the position leads to:

σx,sys = |x|
√

2
( 1

20 log (10)σg
)

(6.19)

= d

210
gΣ−g∆

20
|∆D|
ΣD

1
2 ·
√

2
( 1

20 log (10)σg
)
. (6.20)

In addition, the difference digitizer measures always some small voltage off-
set for an input of 0 V, which results in an offset of ≈10 LSB. Considering
both effects and calculating the accuracy with respect to the beam position
for 1.8 · 1010 particles and 3.8 · 108 particles results in the blue and red curves,
shown in Fig. 6.5. The resulting accuracy is three orders of magnitude worse
than the resolution of the system. The curve corresponding to 3.8 · 108 particles
shows around the zero position a flat line. This limit occurs due to the effect of
an offset in the difference digitizer and the limit in the difference gain settings.
This effect can be displayed by calculating the measured beam position, includ-
ing the mentioned offset, against the true beam position. Figure 6.6 provides
the curves for 1.8 · 1010 particles and 3.8 · 108 particles.

Excluding the center position, the measured position corresponds to the true
beam position. In the center, the measured position converges against a limit
and a blind spot appears. This blind spot depends on the offset introduced by
the electronics and is different for each readout set. For later use of measured
data, an empirical function, describing this blind spot with two parameters
xoffset and xlin is used:

xmeas (xtrue) =



xtrue xtrue < −xlin
−xoffset − (xtrue − x0)2 · a −xlin ≤ xtrue < −x0

−xoffset −x0 < xtrue ≤ 0
+xoffset 0 < xtrue ≤ x0

+xoffset + (x− x0)2 · a x0 < xtrue ≤ xlin

xtrue xtrue > xlin

. (6.21)
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Figure 6.5.: Achievable accuracy taking the uncertainty on the gains as error
source.

The coefficients a and x0 are:

x0 = 2xoffset − xlin (6.22)

a = xlin − xoffset
(xlin − x0)2 . (6.23)

The parameter x0 is the lower limit of the measured beam position, whereas
the parameter xlin is the true beam position, where the linear part of the func-
tion starts. The transition between both parts is described by a second order
polynomial to provide a continuously differentiable function ∀xtrue 6= 0.

In addition to the discussed error sources, the alignment of the BPM itself,
the adjustment of the pre-amplifiers and the calibration factor of the BPM are
systematic error sources. These sources have to be added to the discussed one
of the gains.

In summary, an optimistic estimator for the accuracy by using the existing
readout is 0.1 mm.
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Figure 6.6.: Function describing the relation between the true beam position and
the measured beam position.

6.3. Planned Upgrade of the Readout Electronics

For the year 2017 an upgrade of the readout electronics for all BPMs is planned.
The new system Libera Hadron2[82] will digitize the voltages of the two elec-
trodes directly after amplification with a fixed pre-amplifier. With this new
setup, the discussed problem of the blind spot and the gain switching will dis-
appear. The resolution of the new system will be in the order of 4 µm for a
perfectly matched pre-amplified signal [83, p. 11].

The accuracy of the alignment and the one of the calibration will stay and
2Libera Hadron: High performance beam position monitor electronics for hadron circular
machines.
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have to be addressed separately. One option to get the calibration factor is to
use the Linear Optics from Closed Orbits (LOCO) algorithm [84]. The LOCO
algorithm is based on a fit of a simulated orbit response matrix to a measured
one. The parameters which are varied are usually the quadrupole strength,
the BPM and corrector magnet calibrations, as well as BPM rolls. A first
implementation of LOCO for COSY is presented in [85].

For the advanced method of using clockwise and counterclockwise rotating
beams, the accuracy is not important, since only relative beam position mea-
surements are necessary. A statistical uncertainty of 4 µm in the RMS of the
difference of the two orbits results in a polarization buildup of ∆Sy ≈ 10−12 per
turn [32], which is similar to the buildup due to an EDM of dEDM ≈ 10−22 e cm
[16]. For the mentioned development of Rogowski pick-ups and a SQUID read-
out, the EDM uncertainty will shrink proportional to the gain in resolution.
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7. Orbit Response Matrix

The Orbit Response Matrix (ORM) is the response of the beam position at all
BPMs for a change in one of the corrector magnets. This response depends on
the optical functions of the accelerator lattice and can be calculated by using
the β functions, the dispersion and the phase advances between the corrector
magnets and BPMs. Besides the calculation by using this information, the ma-
trix can be measured directly. One way of measuring this matrix is to measure
the change in the beam position depending on the change of a single corrector
magnet. Repeating this procedure consecutively for all magnets results in a
complete ORM. In the following a newly developed software to measure the
ORM at COSY including a detailed analysis of the measured data points is
presented. The measured ORM can later be used to correct the orbit or to
match the model ORM to the measured one by applying the LOCO algorithm
mentioned in chapter 6.3 and described in [85]. The orbit correction algorithm
is described in section 7.3.

7.1. Measurement Software

In order to provide the ORM measurement, the software needs to be connected
to the corrector magnets, the timing system and the BPMs. All the listed
systems are accessible via Ethernet. The connection to the corrector magnets
is used to change the deflection angle. After receiving a trigger from the timing
system, the BPMs send their measurements to the software. The data are
correlated to the applied kick angle with the help of timestamps, provided by
the timing system.

In addition to the hardware devices, the software uses an existing interface to
a database, which stores information about the conversion between physical
units (deflection angle) and technical units (current in the magnet). For data
storage and analysis the ROOT framework [86] is used. A schematic layout of
the software architecture is given in Fig. 7.1.

The procedures to set the magnet strengths, the BPM triggers as well as the
timing system connections are described in the following.
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Figure 7.1.: The ORM measurement software is connected via Ethernet to the
corrector magnets, the BPMs, and the COSY timing system. Cali-
bration information about the corrector magnets are accessible from
a database through an existing software interface. These informa-
tion are used to control the corrector magnets. The timing system
triggers the BPM measurement. The measured BPM data are re-
ceived, combined with the timing information and stored on disk in
the ROOT file format for a later ORM calculation.

7.1.1. Corrector Magnet Settings

The kick angle of one corrector magnet can by calculated by using (3.7):

θ = 1
Bρ

∫
Bcor ds .

The magnetic field Bcor is a function of the current in the coil of the magnet.
This dependence is approximated by a linear function. In addition the integral
is replaced by an effective field. Both approximations lead to:

θ = 1
Bρ

1
fcalib

· I (7.1)

⇔ I = fcalib ·Bρ · θ. (7.2)

Equation (7.2) is used to transform between technical current changes and the
physical kick angle, which bends the particle trajectory. The calibration factors
fcalib are unique for each magnet and stored in the database.

All corrector magnets at COSY are connected to single, independent power
supplies. These power supplies are controlled by function generators producing
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a bit pattern, which represents the set value of the current. This bit pattern is
modified to apply the corrector magnet change ∆θstep,i for magnet i. A typical
change of the corresponding current ∆I is shown in Fig. 7.2. The trigger events
for the BPM measurements are indicated on top of the current run.

The smallest step size is given by the digital resolution of the power supplies,
which is:

σI,dig = 1
2047 · Imax. (7.3)

But the measured stability is a factor two worse [87]:

σI = 2
2047 · Imax = 0.1 % · Imax. (7.4)

Later on, this uncertainty is considered in the calculation of the ORM.
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Figure 7.2.: Current steps of the horizontal corrector magnet SH01 used for the
orbit response matrix measurement. The stars indicate the BPM
trigger events. For this measurement, the following parameters
were used: Nsteps = 11, ∆θstep = 0.05 mrad, and tstep = 5 s.

For each ORM measurement, the number of steps per corrector magnet Nsteps,
the kick angle per step ∆θstep, and the duration of the kick tstep are adjustable.
The corresponding variables and their default settings are listed in Tab. 7.1.
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During the time periods tstep, for which all corrector strengths are constant, the
measurements of the beam position are performed.

Table 7.1.: The variables, listed, can be modified to adjust the ORM measure-
ment. The listed values are the ones, used for the measurement of
the presented data.

system description variable value

corrector
magnets

number steps per corrector Nsteps 11
kick angle per step ∆θstep (mrad) 0.05corrector

magnets duration of kick tstep (ms) 5000

BPM trigger trigger repetition time ttrig (ms) 1000BPM trigger trigger time gap ttrig,gap (ms) 500

7.1.2. Beam Position Monitor Readout

Each of the BPM readout electronics is configured to measure the beam position
with each incoming trigger signal. The measured position is transmitted via
Ethernet to the automated ORM measurement software. Since the transmitted
data have no time information, a timestamp is attached to the data at the
arrival at the measurement software. This timestamp is the time in ms after
the cycle started. The algorithm to calculate the timestamp is explained in
the following section. This timestamp is used to correlate the beam position
measurement to the setting of the corrector magnets, which is stored internally
in the software. The typical response of the measured change of the closed orbit
is shown in Fig. 7.3 for the two horizontal BPMs bpmx18 and bpmx19. In
the presented examples, the step-wise change of the closed orbit induced by the
change of the corrector magnet SH01 is clearly present.

The timing of the BPM trigger is adjustable with two parameters. The first
parameter is the trigger repetition time ttrig. This time defines the temporal
distance between consecutive trigger events. The second parameter is the time
gap ttrig,gap. This variable defines the gap between the end of one corrector
change and the beginning of the BPM measurements, as well as the time dis-
tance between the last BPM measurement and the next corrector change. The
number of trigger events Ntrig per correcter step is calculated by:

Ntrig = tstep − 2ttrig,gap
ttrig

. (7.5)

For the calculation of the ORM, including an error estimation, a noise mea-
surement for each BPM is needed. This measurement is done within the second
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Figure 7.3.: Response of the beam position, measured with bpmx18 and bpmx19,
for the change of the corrector magnet SH01, shown in Fig. 7.2.

cycle of the complete measurement. In this cycle, no corrector change is ap-
plied and the BPMs are triggered with the same trigger signals as during the
ORM measurement. A detailed discussion of the noise measurement and other
systematic effects, influencing the ORM measurement is presented in 7.2.2.

7.1.3. Timing

The COSY timing system is a central trigger event distributor, which triggers all
needed hardware within an accuracy of 100 ns [88]. All BPMs and all corrector
magnets are triggered by this system. In addition, the timing sender sends,
on request, information about the COSY status every 2 s over Ethernet. The
package sent includes COSY status information like the time in the cycle or the
cycle length. The developed software receives this information and uses it for
time stamping the incoming BPM measurements: On receiving the information
package, the software starts running a local clock, based on the machine time,
to interpolate between successive time packages. The incoming BPM events
are then time-stamped with this interpolated time. The distance between the
timestamp and the trigger event, which is set in the central timing system, is
called readout delay ∆treadout. The distribution of the readout delay times of all
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BPM measurements during the ORM measurement is shown in Fig. 7.4. The
averaged readout delay amounts

∆treadout = 170 ms. (7.6)
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Figure 7.4.: The delay between the BPM trigger and the arrival of the BPM’s
readout is calculated for all BPM events. Their average delay
amounts 170 ms, which is smaller than the difference between a cor-
rector magnet change and a BPM trigger event (ttrig,gap = 500 ms)

The trigger gap between a corrector magnet change and a BPM trigger should
be adjusted to a value which is larger than this readout delay. If this condition
is fulfilled, the interpolated timestamp is accurate enough to exclude a wrong
correlation between the corrector magnet strength and the BPM measurement.
In the presented measurements, this condition is fulfilled:

ttrig,gap = 500 ms ≥ 170 ms = ∆treadout. (7.7)

All the measured beam positions, including their timestamps, the active cor-
rector magnet change and settings of the BPMs itself are stored in a ROOT file
for a later analysis and calculation of the ORM.
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7.2. Orbit Response Matrix Calculation

The ROOT file, which is created and filled with measurements by the software,
described in the previous section, is used to calculate the ORM. Each entry
of the ORM Mi,j represents the response of the beam position, measured with
the BPM i, to a change of the corrector magnet j. For the calculation of the
ORM element, including its error, the following information are needed. First
of all, the noise of the beam position measurement is estimated. In a second
step systematic effects, introduced by global closed orbit changes over time are
calculated and considered in the ORM calculation. In addition to systematic
changes of the accelerator, systematic effects, introduced by the readout elec-
tronics are considered in the calculation. All the mentioned effects are discussed
in the following.

7.2.1. Noise Measurement

The noise of the beam position measurement, including the readout chain and
the beam stability, is estimated by analyzing the noise measurement cycle. This
noise measurement is performed by using the same accelerator settings as during
the ORM measurement, without changing any corrector magnets. The beam
positions measured by all BPMs are plotted against the cycle time.

In the vertical plane, the beam is stable over time and the standard deviation of
all measurements is calculated for each BPM. This standard deviation is later
used for the error estimation during the ORM calculation.

In the horizontal plane the beam moves during the first 10 seconds during the
activation operation of the guiding dipoles. This movement can be described
by an exponential function. The time constant τ of the exponential function is
the same for all horizontal BPMs, the amplitude A is different for all BPMs.
To describe this behavior a global fit to all horizontal data points is performed.
For each BPM the function

fnoise,i (t) = xi − Ai · e
−t
τ (7.8)

is fitted. The parameters Ai and xi are calculated for each BPM. The time con-
stant τ is one common parameter for all fits. The resulting noise measurement
for bpmx25, including the global fit, is shown in Fig. 7.5. For the horizontal
BPMs, the standard deviation σi for BPM i is calculated by:

σi =

√√√√ 1
N − 1

N∑
l=0

(
xi,l − fnoise,i (tl)2

)
. (7.9)
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Figure 7.5.: Noise measurement for bpmx25. The data points are the mea-
sured beam position during one cycle without any corrector magnet
changes. The red curve is a global fit, parameterizeing the activa-
tion operation of the guiding dipoles.

As a comparison, the standard deviation using all data points and no fit, and
the standard deviation using only the data points after 20 seconds are calculated
as well. The results from all three methods are given in Fig. 7.5. The standard
deviations, using the fit and using the data points after 20 seconds result in
the same resolution for one single beam position measurement: σ = 0.1 mm.
This value is later used for the noise estimation for the ORM entry calculation.
The shown bpmx25 is the BPM with the highest noise. The distribution of the
standard deviations, calculated for all BPMs are presented in Fig. 7.6. As a
comparison, the digital resolution σdig = 10 µm of the BPM system is marked
with a green line.

The mean values of the two distributions are:

σx = 21 µm (7.10)
σy = 11 µm. (7.11)

These values reflect a combination of the stability of COSY, after subtracting
the mentioned exponential horizontal beam movement, as well as the resolution
of the BPM system.
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Figure 7.6.: Distribution of the standard deviations for the horizontal and ver-
tical BPMs. The standard deviation is calculated for all measured
beam positions without considering the horizontal beam movement
(blue) and with considering the performed exponential fit to the
horizontal measurements (red). As comparison, the digital reso-
lution of the BPM electronics is indicated by a vertical green line
at σx,y = 10 µm

One possible source of the horizontal beam movement is the inductance of the
main dipoles. The inductance and the resistance of one dipole are:

Rdipole = 3.06 mΩ, Ldipole = 15.6 mH. (7.12)

The time constant during the ramp of the magnet is to first order: τdipole =
Ldipole
Rdipole

= 5.1 s. This simple approximation is in good agreement with the time
constant of (6.53± 0.06) s calculated with the global fit. Additional effects like
Eddy currents in the iron and in the beam pipe increases the time constant τdipole
towards the measured time constant. The amplitudes Ai for each BPM of the
global fit are presented in Fig. 7.7. They are plotted against the longitudinal
position of the BPM in COSY. The obtained curve is proportional to the
dispersion function of the COSY optics used during the measurement. This
distribution underlines the assumption, that the horizontal beam movement is
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Figure 7.7.: The fitted amplitudes Ai for all horizontal BPMs plotted against the
position s of the BPM.

caused by the guiding dipoles of COSY. This exponential curvature of the beam
position is considered in the calculation of the ORM entries.

As additional systematic effects, the properties of the electronics (cp. chapter
6) have to be considered. As one example, the noise measurement of bpmx27,
presented in Fig. 7.8, is evaluated and discussed. The measured beam positions
over time show the already discussed exponential behavior. On top of this
effect, the properties of the readout electronics influence the measured beam
position. The data points show a clear step from −0.2 mm to 0.2 mm at about
50 s. This effect is typical for the measurements around the 0 position and can
be described by (6.21). The combination of (7.8) and (6.21) can be used to fit
the BPM model as well as the true beam position over time:

fnoise (t) = xmeas (xtrue (t)) (7.13)
xtrue (t) = xbpmx27 − Abpmx27 · e−t/τ . (7.14)

The parameters Abpmx27 and xbpmx27 consider the beam properties, whereas the
function xmeas depends on the parameters xlin and xoffset, which describe the
electronics’ properties. The resulting function is shown in orange in Fig. 7.8.
The fitted beam position, without the effect of the electronics is shown as a red
curve. The noise of bpmx27 is estimated by calculating the standard deviation
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Figure 7.8.: Noise measurement of bpmx27. The beam moves towards the elec-
trical center of the BPM. Since the readout electronics is not capable
to measure exactly zero, the data points show the typical step and
the offset. A fit including the BPM readout electronics model and
the global time constant τ is performed to describe the measured
beam positions (orange). The resulting estimate for the true beam
position is illustrated as a red curve.

of the measured data points with respect to the fitted function fnoise.

All in all, the noise measurements show, that systematic effects like beam move-
ment or electronic properties have to be considered in the error estimate. By
describing the mentioned systematics, the noise of the BPM system and the sta-
bility of the beam is in the order of 21 µm for the horizontal BPMs and 11 µm
for the vertical ones, which is compatible to the digitizing error of the readout
electronics. The estimated noise of each BPM is considered in the following
calculations.

7.2.2. Matrix Entry Calculation

The ORM entries are calculated by analyzing the measured beam positions
with respect to the corrector magnet setting. The measured beam positions
are first corrected by the noise measurement to get rid of the exponential beam

61



7. Orbit Response Matrix

movement. This correction is done by subtracting the fitted function (7.8)
fnoise,i (t) from the beam position xi,j measured at time tj with BPM i:

∆xi,j = xi,j − fnoise,i (tj) . (7.15)

The corrected beam positions are used to calculate the change of the orbit,
induced by a change of the corrector magnet. For each setting of the magnet,
Ntrig measurements of the beam position are done. These measurements are
averaged:

xstep,i = 1
Ntrig

Ntrig∑
j=1

∆xi,j. (7.16)

The variance σ2
x,step,i is calculated for each step and each BPM:

σ2
x,step,i = 1

Ntrig − 1

Ntrig∑
j=1

(∆xi,j − xstep,i)2 . (7.17)

The error of the mean value xstep is estimated by using the maximum of the
variance obtained by analyzing the noise measurement (7.9) and the variance
calculated during the averaging:

σxstep,i = 1√
Ntrig

max (σi, σx,step,i) . (7.18)

The described procedure results in Nsteps averaged measurements for each com-
bination of BPM i and corrector magnet j. For each combination, the calculated
average is plotted against the corrector magnet change. The error on the cor-
rector magnet change is estimated by using (7.4). On the resulting Nsteps data
points, a straight line is fitted:

xi = x0,i +Mi,j · θj. (7.19)

The slope of this fit is the matrix entry Mi,j. For the already discussed combi-
nation corrector magnet SH01 and BPM bpmx18, the resulting measurements
are presented in Fig. 7.9.

The measured ORM entry is:

Mbpmx18,SH01 = (−9.22± 0.04) mm
mrad . (7.20)

For the measurements, where the beam is already near the electronic center, or
where the beam moves during the change of the corrector magnets through the
electronic center of the BPM, the measurement is systematically dominated by
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Figure 7.9.: The horizontal beam positions measured with bpmx18 depending on
the strength change of corrector magnet SH01 are marked with blue
points. The red line is the fitted function (7.19). The fit parameter
Mbpmx18,SH01 is the corresponding, measured ORM entry.

the behavior of the readout electronics. Nevertheless, the ORM entry can be
calculated by including equation (6.21) in the fit. For these cases, the measured
beam position can be described by:

x (θ) = xmeas (Mi,j · (θ − θ0)) + x0, (7.21)

where xmeas is the function (6.21) describing the readout electronics. The pa-
rameters, which are adjusted to describe the data points are a, xlin, x0, θ0 and
Mi,j. The first two parameters characterize the electronics, whereas the third
parameter reflects the cycle-to-cycle variations. The parameter θ0 is the cor-
rector magnet strength, which moves the beam to the center of the BPM and
the last parameter is the ORM entry. One example of such set of data points
is shown in Fig. 7.10 for the combination of BPM bpmx10 and magnet SH01.
The fit, including the BPM model is shown as a red line. The orange line is
the simple linear BPM response without the BPM model parameters. By using
only the simple linear BPM response, the resulting ORM entry is overestimated
by 8 %.

All presented examples are measurements with horizontal corrector magnets
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Figure 7.10.: Measurement of the ORM entry SH01 & bpmx10. The beam is
already near the electrical center of bpmx10. The effect of the
non linearity of the bpm readout electronics dominates the position
measurement. Nevertheless, the matrix entry Mbpmx10, SH01 can be
measured by fitting the BPM electronics model.

and horizontal BPMs. In the vertical plane, only the effect of the BPM readout
electronics model has to be taken into account and is included in the pre-
sented measurement result. The effect of the exponential drift of the beam
position at the beginning of the measurement is nonexistent, which indicates,
that this effect is caused by the main dipoles which influence only the hori-
zontal beam position. The resulting ORM, including all discussed effects is
shown in Fig. 7.11. The matrix has a block diagonal structure, since the ver-
tical corrector magnets influence mainly the vertical BPMs and the horizontal
BPMs respond to the horizontal corrector magnets. The upper left block (hori-
zontal BPMs and horizontal magnets) has entries between −0.75 mm/mrad and
1.31 mm/mrad. Their vertical-vertical response is in the range −0.79 mm/mrad
to 0.65 mm/mrad. Within the two mentioned blocks, the entries have a typical
structure of diagonal lines. This structure is caused by the cosine term in the
equation for the ORM matrix entries (3.38). The off-diagonal block entries are
in the range of −0.03 mm/mrad to 0.02 mm/mrad, which is approximately a
factor 40 smaller. In addition, the vertical-horizontal and horizontal-vertical
ORM entries show no inner structure of the matrix. In conclusion, the ORM
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Figure 7.11.: The complete measured ORM. The corrector magnets are listed
on the x axis, the y axis lists the BPMs. The color code is the
response of each BPM to an applied kick angle of the correspond-
ing corrector magnet. The block matrix structure, as described in
the text, is clearly visible: The horizontal-horizontal as well as
the vertical-vertical entries are by a factor ≈ 40 higher than the
horizontal-vertical combinations.

measurement software functions as desired and the calculation of the ORM is
possible with an accuracy of 0.5 % for each entry. Two effects, which can in-
fluence the ORM measurement have to be considered in the calculation and
measurement. The first effect is an exponential horizontal movement of the
beam with a time constant τ = (6.52± 0.06) s. This systematic effect can be
controlled by fitting a global exponential function, parameterizing the effect to
the data points. As a side product, the distribution of the dispersion of the
accelerator can be calculated. Instead of describing the beam movement by an
exponential function, the measurement can be started later in the measurement
cycle. This starting time has to be chosen in a way, that the exponential beam
movement is smaller than the resolution of the BPMs during the ORM entry

65



7. Orbit Response Matrix

measurement. This starting time t1 can be calculated by:

x (t2)− x (t1) < σx

⇔ A ·
(
e−t2/τ − e−t1/τ

)
< σx

⇔ t1 > − ln
(
e−t2/τ + σx

A

)
· τ.

Using the maximum Amplitude Abpmx12 = 5.5 mm, the measured resolution
σx = 20 µm and a measurement time of t2 − t1 = 80 s for one complete set
of measurements, leads to a starting time of t1 = 20 s.

The second systematic effect is the measurement offset around 0. It can be
addressed by measuring more than five different corrector magnet settings for
each ORM entry. With these data points a combined fit, including a BPM
model and the requested ORM entry is possible.

Besides these two effects, a crucial point is the stability of the beam, without
changing any magnet. This effect is estimated by analyzing the noise mea-
surement, which leads to an overall stability of the horizontal measurements
of σx = 22 µm respectively σy = 11 µm. Both values include the stability of
the accelerator, as well as the resolution of the BPMs including the readout
chain.

7.3. Orbit Correction

The closed orbit of an accelerator is the measured beam position at all BPMs,
written in one vector ~y. The deviation of this closed orbit from the center is
one source of systematic effects of the EDM measurement (cf. 2.4). The beam
positions can be corrected by using corrector dipole magnets, which kick the
beam by kick angles ~θ. The task of the orbit correction is to find a combination
of corrector kicks to minimize the orbit deviations.

The orbit correction algorithms are based on the mathematical problem of solv-
ing a system of linear equations:

M~θ = ~y, M ∈ Rm×n, ~θ ∈ Rn, ~y ∈ Rm. (7.22)

At COSY the number of BPMs m = 63 (32 horizontal, 31 vertical) is higher
than the number of corrector magnets n = 41. This leads to an over-determined
system, which is solved by finding the solution of the linear least square prob-
lem:

min
~θ

∥∥∥M~θ − ~y
∥∥∥

2
, M ∈ Rm×n, ~θ ∈ Rn, ~y ∈ Rm. (7.23)
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7.3. Orbit Correction

The vector two norm ‖~y‖2 =
√∑N

i=0 y
2
i is used as a norm for the minimization

process.

7.3.1. Correlated Data

Equation (7.23) holds, if the measurement uncertainties of the measured orbit ~y
are uncorrelated and equal for all BPMs. For the case of correlated data and/or
unequal uncertainties, the equation needs to be modified by the covariance
matrix Cy [89]:

min
~θ

(
M~θ − ~y

)ᵀ
C−1
y

(
M~θ − ~y

)
,

M ∈ Rm×n, ~θ ∈ Rn, ~y ∈ Rm, Cy ∈ Rm×m.
(7.24)

In finding the solution, first a transformation to independent variables is nec-
essary. This transformation, the Cholesky factorization, can always be found
since the covariance matrix is positive definite [90]:

Cy = LCy′L
ᵀ
. (7.25)

The transformation matrix L is lower triangular and the covariance matrix Cy′

is diagonal. The transformation matrix P = L−1 transforms the measured
orbit ~y to the new independent variables ~y′:

~y′ = P ~y (7.26)
M ′ = PM . (7.27)

The solution of the minimization problem, including Cy′ , reads [89, p. 113]

~̂θ =
(
M ′ᵀC−1

y′ M
′
)−1

M ′ᵀC−1
y′
~y′. (7.28)

Since the matrix Cy′ is diagonal and has the diagonal elements η2
1 to η2

m, its
inverted matrix is simply:

C−1
y′ = diag

(
1/η2

1, 1/η2
2, ..., 1/η2

m

)
= η2. (7.29)

Scaling the ORM and the orbit with its uncertainties,

MS = ηM ′ (7.30)
~yS = η~y′, (7.31)
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leads to a rewritten form of (7.28):

~̂θ = −
(
M

ᵀ
SMS

)−1
M

ᵀ
S ~yS. (7.32)

The matrix inversion
(
MS

ᵀ
MS

)−1
can be solved with different methods. One

method, commonly used, is the Singular Value Decomposition SVD.

7.3.2. Singular Value Decomposition

Every matrix Z ∈ Rm×n can be decomposed in its singular values [91, chapter
3]:

Z = UΣV ᵀ (7.33)
where Σ ∈ Rm×n is a diagonal matrix, consisting of the singular values σi:

Σ =



σ1
...

. . . · · · 0 · · ·
σn

...
... ...

· · · 0 · · · · · · 0 · · ·
... ...


, with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. (7.34)

The matrices U ∈ Rm×m and V ∈ Rn×n are unitary, therefore the following
relations hold:

UU
ᵀ = V

ᵀ
V = 1. (7.35)

If the inverse of matrix Z exists, it reads:

Z−1 = V Σ−1U
ᵀ
. (7.36)

The SVD of MS = USΣSV
ᵀ
S can be used to solve (7.32):

~̂θ = −
(
M

ᵀ
SMS

)−1
M

ᵀ
S ~yS (7.37)

= −
((
USΣSV

ᵀ
S

)ᵀ (
UsΣSV

ᵀ
S

))−1 (
USΣSV

ᵀ
S

)ᵀ
~yS (7.38)

= −
(
VSΣSU

ᵀ
SUSΣSV

ᵀ
S

)−1 (
VSΣSU

ᵀ
S

)
~yS (7.39)

= −
(
VSΣ−2

S V
ᵀ
S

) (
VSΣSU

ᵀ
S

)
~yS (7.40)

= −VSΣ−1
S U

ᵀ
S~yS. (7.41)
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In the step from the second to the third line, the unitary of ΣS was used. The
resulting kick angles ~̂θ are the solution of the minimization problem (7.24),
including the covariance matrix Cy.

The quality of the orbit correction is proportional to the RMS of the residual
orbit yres which is defined as:

~yres = M ~̂θ + ~y. (7.42)

Its RMS, with respect to the measured covariance matrix Cy,res is estimated
by:

RMSyres =
√
~yᵀresCy,res~yres

m
, (7.43)

where m is the number of BPMs.

Truncated SVD Small errors in the measured orbit ~y or in the measured
ORM M can lead to large errors in the calculated kick angles. Assuming the
exact solution and the perturbed solution follow the relations:

M exact
S

~θexact = ~yS
exact, MS

~θ =
(
M exact

s + σM
)
~θ, ~yS = ~yS

exact + ~η, (7.44)

an upper bound of the kick angle errors is given by [91, p. 54], [92, pp. 80-82]:

‖~σθ‖2∥∥∥~θexact∥∥∥
2

≤ κ (M)
(
‖~η‖2
‖~yexact‖2

+ ‖σM‖2
‖M‖2

)
, (7.45)

where κ (M) is the condition number of the matrixM . This condition number
is defined as:

κ (M ) = ‖M‖
∥∥∥M−1

∥∥∥. (7.46)
For the 2-norm, the condition number is simply given by the fraction of the
largest σ1 to the smallest σn singular value [91, p. 29]:

κ (M) = σ1

σn
≥ 1. (7.47)

For a big difference between the largest and the smallest singular value, the
uncertainty of the matrix and the uncertainty of the measured orbit gets am-
plified and leads to a large uncertainty of the solution ~̂θ. This amplification
effect can be regularized by using the Truncated Singular Value Decomposition
TSVD approach, which modifies the inverted matrix Σ−1

S . The modification of
the matrix is done, by taking only the k most significant singular values into
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account. The resulting inverse singular value matrix reads:

Σ−1
S,ki,i

=


1
σi

i ≤ k

0 i > k
, (7.48)

where k is the number of used singular values. The parameter k is the regular-
ization parameter, which lies between 1 and n. The solution ~̂θk depends on the
cut value k and reads:

~̂θk = −VSΣ−1
S,kU

ᵀ
S~yS. (7.49)

The corresponding residual orbit results in:

~yres,k = M ~̂θk + ~y = −MVSΣ−1
S,kU

ᵀ
S~yS + ~y. (7.50)

In addition, the condition number gets modified and results in [91, p. 65]:

κk (M) = σ1/σk. (7.51)

Since the singular values are ordered in decreasing sequence, the condition gets
larger for increasing k values. For small values of k, the uncertainties of the
ORM and the orbit are amplified with a small factor, but the solution ~̂θk is far
away from the exact solution. For large values of k, the solution ~̂θk reaches the
exact solution, but the uncertainties are amplified by a large factor. Both effects
can be calculated and the optimal regularization parameter k is a tradeoff of
both effects. Since the quality of the correction is measured by the RMS of the
residual orbit, the influence of the cut value k on the residual orbit is studied
as well as the uncertainty of the residual orbit. On one hand, the error induced
by cutting on the singular values, called bias, is given by:

∆~yres,bias = −MVS
(
Σ−1
S − Σ−1

S,k

)
U

ᵀ
S~yS + ~y. (7.52)

The RMS of this bias allows in combination with the statistical uncertainty an
estimation of the optimal parameter k. The function, describing the RMS is:

fbias (k) =
√
‖~yres,bias‖2

m
. (7.53)

On the other hand, the uncertainty of the residual orbit, ~σy,res has to be cal-
culated. For this, the input uncertainties need to be propagated through the
TSVD process. At the end, a balance between both effects, the bias error and
the perturbation error, needs to be found, compare [91, ch. 5].
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Error propagation through TSVD The covariance matrix of the residual orbit
Cy,res is a function of the two input covariance matrices CM and Cy:

Cy,res = fy (Cy) + fM (CM ) . (7.54)

The function fy can be calculated analytically. The functional dependence on
the matrix CM can not be solved in a closed form for only pseudo invertable
matrices.

First, the analytic solution fy is presented. For the corresponding error propa-
gation, the Jacobian needs to be determined. It is given by:

∂~yres,k

∂~y
= −MVSΣ−1

S,kU
ᵀ
SηP + 1. (7.55)

For the resulting function fy (Cy), it follows:

fy (Cy) =
∂~yres

∂~y
Cy

(
∂~yres

∂~y

)ᵀ

. (7.56)

The second term in (7.54) has no analytic solution. For invertible matrices, a
closed solution for the uncertainties of ~θ is given in [93]. But for only pseudo-
invertable matrices, different approaches are commonly used. Most of these
methods give an error bound, which describes the worst case, but not the 68 %
significance level. A short overview of these methods, used in error analysis
of solar particle spectra, is given in [94]. For the purpose of orbit correction,
the method of choice is a numerical Monte Carlo MC simulation of the inverse
problem and its solution (7.50).

The MC simulation targets a measure of the uncertainty fM (CM ), arising from
the uncertainty of the matrix M . For the simulation, the measured matrix is
used as starting point. The errors on the matrix elements, estimated from the
measurement uncertainties, are used in the simulation as well. In the simula-
tion itself, the solution vector ~̂θk as well as the residual orbit ~yres,k are calculated
Nsample times. For each calculation, the entries of the matrix are smeared by
the Gaussian function with mean zero and a width, corresponding to the mea-
sured uncertainty. The resulting solution vectors ~̂θk and ~yres,k are stored. Their
covariance is used as an estimator for fM (CM ). The procedure is repeated for
every value of k.

Combining the analytic solution (7.56) and the MC estimation, described, re-
sults in the covariance matrix Cy,res with neglecting a possible correlation be-
tween the measured orbit and the measured matrixM . The error vector ~σy,res,k
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is calculated using the information of the covariance matrix Cy,res,k:

(~σy,res,k)i =
√

(Cy,res,k)ii. (7.57)

For later use, the RMS of the uncertainty of ~σy,res,k is calculated:

fpert (k) =
√
‖~σy,res,k‖2

m
. (7.58)

Optimal Regularization Parameter With the developed results, (7.53) and
(7.58), the optimal regularization parameter k can be estimated by compar-
ing both effects, the bias and the perturbation [91, ch. 5]. The bias error is
going down with increasing cut value, whereas the perturbation amplification
increases with increasing regularization parameter k. The regularization pa-
rameter on which the two effects are equal is the one of choice. In addition, the
quadratic sum of both can be calculated and plotted against the regularization
parameter k. The minimum defines the best value for k.

Figure 7.12 shows the curves, calculated during an orbit correction at COSY,
which is described in the following section in more details. A clear minimum
of the function

√
f 2
bias + f 2

pert is not existent. Starting at k = 17, the curve
becomes flat. Therefore, a regularization parameter around 17 can be chosen.

7.3.3. Example of an Orbit Correction using TSVD

The method of orbit correction, using the TSVD of the ORM, is implemented
for COSY and discussed in detail in the following. The presented data were
measured in November 2015 with protons at injection energy. First of all, the
ORM was measured and calculated. In a second step, the uncorrected orbit and
its errors were measured. These uncorrected orbits in horizontal and vertical
direction are shown in Fig. 7.13 and Fig. 7.14 with blue markers. The RMS
of these orbits are: (4.78± 0.07) mm and (3.70± 0.07) mm. For the correc-
tion, the BPM measurements are treated as uncorrelated with an equal error
for each measurement. This simplifies the derived equation (7.32), since the
matrices η and P become the unity matrix 1. Depending on the regulariza-
tion parameter, the kick strengths and the residual orbits are calculated. In
addition, the perturbation function as well as the bias function are estimated.
These two resulting functions are shown in Fig. 7.12a for the horizontal plane
and in Fig. 7.12b for the vertical direction. As discussed in the previous chapter
a clear minimum of the quadratic sum of both functions does not exist. The
regularization parameter can be set to k = 17.
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Figure 7.12.: The distribution of the perturbation, the bias and the quadratic
sum of both is plotted against the selected regularization parame-
ter for the vertical (a) and the horizontal (b) case. The optimal
parameter k is the position of the minimum of the quadratic sum.
Since this minimum is flat, a clear choice is not possible.

For comparison of the calculated results to a measurement at COSY, the reg-
ularization parameters k = 3 and k = 17 are used and the strengths ~̂θk are
calculated and applied to the corrector magnets. The calculated orbit ~yres,k is
shown in Fig. 7.13 and Fig. 7.14 for the horizontal resp. vertical orbit. The
calculated beam positions are marked with open squares. The uncertainty is
calculated by using the developed error propagation through the TSVD inver-
sion, cp. (7.57). The orbit, measured after applying the correction strengths,
is shown on top of the predicted orbit and marked with filled dots includ-
ing the measured uncertainties. For each measured orbit, the measured data
points are connected with a straight line, which guides the eye. Of course the
beam is deflected in between the measured points, since it goes off-centered
through quadrupole magnets. The resulting dipole field deflects the beam. The
predicted and measured orbits agree very well. Besides the measurements with
BPMs bpmx16 (s = 87.5 m)) and bpmx20 (s = 118.1 m), the deviation between
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the measured and the predicted orbit is within the error compatible.
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Figure 7.13.: The measured horizontal uncorrected orbit is shown in blue. The
prediction of the residual orbit for different regularization param-
eters k is indicated with open squares. The corresponding mea-
sured orbit is plotted on top with filled dots. The lines are only
drawn to guide the eye. Besides the beam position measurements
at s = 87.5 m and s = 118.1 m the predicted and the measured
orbit are within the errors in perfect agreement.

To compress the information of the orbit quality and the prediction quality in
one number, the RMS of the orbit is calculated. This estimation is done for
the residual orbit calculated by using the TSVD method for all k values. The
resulting curves for the horizontal and the vertical RMS value including an error
band are plotted in Fig. 7.15 in red resp. blue. The RMS value is decreasing
with an increasing regularization parameter up to the smallest value, which is
achievable with the measured ORM and the available corrector magnets. In ad-
dition, the RMS values of the measured orbit for the regularization parameters
3, 7, 9, 17 and 35 are indicated as red and blue points, including the measured
uncertainty. The measured RMS values follow the predicted dependence on
the regularization parameter, but they are always above the predicted curve.
The deviation between the prediction and the measured RMS increases with
increasing regularization parameter from 0.1 mm to 0.4 mm. This increase can
be explained, since the ORM is a linear approximation of the optical lattice of
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Figure 7.14.: The measured vertical uncorrected orbit is shown in blue. The pre-
diction of the residual orbit for different regularization parameters
k is indicated with open squares. The filled dots represent the mea-
sured orbit, after applying the corrector strengths ~̂θk. The lines are
drawn to guide the eye. The prediction and the measurement are
within the error bars in good agreement.

the accelerator. Higher order terms, which can occur are not included in the
correction scheme. In addition, measurement errors in the matrix are amplified
with increasing regularization parameter k and should be included in the error
band. But since the ORM measurement is done once and the orbit correction
was done once, a statistical statement is not possible at this stage. As an addi-
tional point, the distribution of the perturbation and the bias function indicate,
that the correction runs into saturation at the regularization parameter k ≈ 17,
which is compatible with the measured RMS values for k = 17 and k = 35. All
four RMS values are in the same range of 1.7 mm to 2.1 mm.

In summary, the developed method of measuring the ORM, calculating the
correction strengths, predicting the residual orbit as well as correcting the orbit
behave as expected. The correction method is used in the development of an
orbit feedback system, which is described below.

One important question to address is: Why is the residual orbit RMS in the
order of 2 mm settled and no further correction possible? Is this a problem
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Figure 7.15.: The RMS of the vertical and horizontal orbit after the correction
(7.50) is calculated for each k value. For six values the correction
was applied. The resulting orbit RMS values are indicated as well.

of the correction method, a lack of BPMs, a lack of corrector magnets, or a
problem of the BPM resolution? These questions are investigated in the next
section supported by simulations.

7.3.4. Further Developments toward Orbit Feedback System

The existing control system of COSY is designed to feed forward the settings
of all magnets as predefined ramps, before starting the injection process. All
results presented are measured by using this system. In cooperation with the
external company COSYLab1 the developed algorithm is implemented in a new
EPICS2 based control system. This implementation allows for online orbit
correction during the storage of the particles, without a predefined ramp. This
correction scheme is in the commissioning phase (2016-2017). Later on it will
be used for the correction of time dependent instabilities of power supplies over
the storage time.

1COSYLAB: COntrol SYstem Laboratory, http://www.cosylab.com (visited 2016/12/13)
2Experimental Physics and Industrial Control System, http://www.aps.anl.gov/epics/ (vis-
ited 2016/12/13)
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7.4. Simulations

The question, why is the orbit RMS after the correction not better than ≈ 2 mm
is the leading question to the simulations, presented in the following. For the
simulations of the closed orbit, the program package MAD-X [95] is used and
extended. Within this package, all magnets of the accelerator can be placed
and the closed orbit is calculated at each element. The program is extended
to perform orbit correction with the same method as the one, implemented for
the real storage ring COSY. For example the ORM is estimated by varying the
kicker strength of single correction magnets and calculating the response at all
BPMs. The orbit correction is done by using the same algorithm, described
above.

The starting point of the simulations is an accelerator design, where all elements
are aligned perfectly and the settings are adjusted in a way, that the horizontal
and vertical tune as well as the dispersion are equal to the setup of COSY,
which is used for the deuteron measurements performed to study the feasibility
of measuring the deuteron’s EDM. The optical functions, the horizontal and
vertical beta functions βx, βy and the dispersion D are shown in Fig. 7.16.
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Figure 7.16.: The beta functions βx (red), βy (blue) as well as the dispersion D
(green) are depicted.

With perfectly aligned magnets, the orbit is centered in all elements and no
further correction is needed. To get a disturbed orbit in vertical and horizontal
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direction, magnets need to be moved. This is done by moving the bending
dipoles and the quadrupoles in all three directions and rotating them around
these directions as well. In addition to the alignments, the influence of the BPM
resolution can be analyzed.

The simulation steps and the upcoming corresponding sections are ordered in
the following way. First the connection between the magnet alignment resolu-
tion and the closed orbit RMS is analyzed. On top of these results, the BPM
resolution is investigated. At the end, additional correction elements like BPMs
and corrector magnets are added to the simulation. These steps allow a study
of the theoretical limit of the orbit quality, by assuming a realistic alignment
precision of the magnets. The combination of these effects is presented at the
end and in combination with the simulations presented in [16] a possible EDM
limit is derived.

7.4.1. Misalignment of Quadrupoles

For the study of the influence of the quadrupole alignment on the orbit quality,
all quadrupoles are randomly misaligned with Gaussian distributed misalign-
ments:

z = z0 + ∆z z ∈ {x, y, s, θ, ψ, ϕ} , (7.59)
where ∆z is randomly generated following the Gaussian probability function:

p (∆z) = 1√
2πσz

exp
(
− (∆z)2

σ2
z

)
. (7.60)

The width of the Gaussian distribution is varied from 0.2µm to 1.3 mm resp.
0.2µrad to 1.3 mrad. For 10 000 randomly generated misalignments, the orbit
RMS value at the BPMs is calculated and the orbit correction with respect
to the BPMs is performed. For these calculations, perfectly aligned BPMs
with a perfect resolution are assumed. The resulting distributions are shown
in Fig. 7.17. The blue graphs show the uncorrected case, whereas the red
areas represent the corrected orbit. The filled error band includes 68 % of the
simulated data points, whereas the error bars represent all data points. For all
four curves, a linear function is fitted to the data points:

log (RMSideal) = f · log (σ) . (7.61)

The slope f of these functions is the conversion factor between the alignment
precision and the resulting orbit RMS. The resulting fit parameters are sum-
marized in Tab. 7.2. For both planes, the RMS value in millimeter of the
uncorrected orbit is one order of magnitude higher than the misalignment in
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(b) Vertical orbit.

Figure 7.17.: The horizontal orbit RMS at the BPMs depending on the magnet
misalignment. The uncorrected orbit RMS is shown in blue. The
result of the orbit correction, with respect to the BPMs, is shown
in red. The BPMs are assumed as perfectly aligned and measuring
with a perfect resolution. The filled areas represent the 68 % error
band, the error bars represent all data points. The yellow and
green lines are fits to the data points, corrected resp. uncorrected.

Table 7.2.: The conversion factors between the orbit RMS at the BPMs and the
alignment resolution are summarized for both planes for the uncor-
rected and the corrected cases.

plane corrected / uncorrected conversion factor f
horizontal uncorrected 8.6
vertical uncorrected 10.8

horizontal corrected 2.6
vertical corrected 0.3

millimeter respectively milliradian. The corrected orbit is obtained, by using
the TSVD method iterativley until the change in the orbit RMS is less than
2 %. In the vertical plane, the RMS of the corrected orbit is reduced by a factor
of 50 , which leads to an orbit RMS, which is 30 % of the assumed alignment
resolution of the magnets. For the horizontal plane, the correction reduces the
RMS only by a factor of 5. This shows, that the horizontal orbit can only be
corrected to an RMS value, which is in the same range as the assumed alignment
resolution.

In order to compare the resulting RMS to the one which is crucial for an EDM
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measurement, a translation between the RMS measured with the BPMs and
the RMS of the beam position within the quadrupoles is important, because
the horizontal field components of the quadrupoles are the main sources for
EDM like signals, since they produce for a vertically off-centered beam the
biggest horizontal magnetic fields. These fields lead to a polarization build
up in vertical direction by running an RF Wien filter in EDM mode. The
translation between the RMS measured at the BPMs and the RMS within the
magnetic quadrupoles are estimated by using the simulation. Figure 7.18 shows
the corresponding graphs. For the horizontal and the vertical orbit, the RMS
value is calculated at the quadrupoles and plotted against the RMS calculated
at the BPMs. For the uncorrected case (blue), the RMS values measured with
the BPMs represent the beam RMS in the magnets, since the data points lie
on top of a bisecting line, which is drawn in the diagram.
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Figure 7.18.: The orbit RMS at the quadruople positions shown against the or-
bit RMS at the BPMs. For the uncorrected orbit (blue), the BPM
measurements represent the beam position in the quadrupoles. A
perfect agreement is indicated by the black line. The corrected or-
bit, with respect to the BPMs, shows an higher RMS at the magnets
than for the BPMs. The BPMs are assumed as perfectly aligned
with a resolution of 0.1 mm. The filled areas represent the 68 %
error band, the error bars represent the minimal and maximal val-
ues.

For the corrected case, the BPMs have a distinguished position: These are
the elements, at which the orbit RMS is reduced with the orbit correction.
Wheres the orbit at all other elements of the accelerator is ignored by the orbit
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correction algorithm. Therefore, the RMS at the BPMs is smaller than the one
measured at the quadrupoles. This effect is more visible in the vertical direction
than in the horizontal direction. Nevertheless, the orbit RMS measured at the
quadrupoles is reduced by the orbit correction. This effect is clearly visible in
the vertical case, where the data points for the corrected case are shifted to the
left and the bottom of the plot, compared to the data points of the uncorrected
case.

The effect of an overall corrected orbit is underlined by comparing the corrected
orbit with the uncorrected one at the quadrupole positions. For this compar-
ison the orbit RMS at the quadrupoles is plotted depending on the magnet
misalignment, assumed. Figure 7.19 shows the corresponding graphs, which
show that all data points of the corrected orbit are below the uncorrected one.
In analogy with the case, where the BPMs are investigated the conversion factor
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Figure 7.19.: The orbit RMS at the quadruople positions depending on the mag-
net misalignment. The uncorrected orbit (blue) has the same RMS
as the uncorrected orbit measured at the BPMs (cp. Fig. 7.17).
The corrected orbit is below the uncorrected one. This shows, that
a global orbit correction with only using the BPM information is
possible. The filled areas represent the 68 % error band, the error
bars represent the minimal and maximal values.

between the misalignment and the quadrupole RMS is calculated and indicated
by straight lines. The yellow lines correspond to the uncorrected case and the
green ones to the corrected one. The conversion factors are summarized in
Tab. 7.3.

Overall, the orbit RMS can be corrected by factors 3 and 36 for the horizontal,
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resp. vertical plane, by considering the RMS at BPMs. For the RMS measured
at quadrupoles, the factors are 3 (horizontal) resp. 15.3 (vertical). These factors
show, that the horizontal beam positions can be corrected at the quadrupoles
by using the BPM information. For the vertical plane, the correction is also
possible, but the gain in the orbit RMS at the quadrupoles is a factor 2 worse
than the one at the BPMs.

Table 7.3.: The conversion factors between the orbit RMS at the quadrupole
magnets and the alignment resolution are summarized for the un-
corrected and the corrected cases, each in both planes.

plane corrected / uncorrected conversion factor f
horizontal uncorrected 9.3
vertical uncorrected 10.7

horizontal corrected 2.8
vertical corrected 0.7

7.4.2. BPM Resolution

In addition to the mentioned alignment precision, the resolution of the BPMs
is a crucial point for the orbit correction quality. For the following simulations,
the same generated random numbers are used as for the simulation with ideal
BPMs. Besides the alignment of the magnets, the measured beam positions at
the BPMs are smeared with a Gaussian distribution with a mean of 0 mm and
a width of 0.1 mm, which is an optimistic value for the BPMs at COSY, if the
gain uncertainty is treated as statistical error (see chapter 6). Assuming this
resolution and perfectly aligned BPMs, the figures presented in the previous
section change to the following.

First of all, the measured RMS at the BPMs depending on the magnet alignment
for uncorrected and corrected orbits is presented in Fig. 7.20. For large mis-
alignments, the curves are identical to the ones obtained with perfect BPMs.
Following the uncorrected curves from large misalignements to low ones, the
RMS values start to diverge from a straight line at around 0.2 mm and follow
asymptotically to the BPM resolution of 0.1 mm. This effect can be described
by calculating the first moment of the RMS distribution (cp. A.1), which results
in:

〈RMSrealistic (λ)〉 =
√
π

2L
(N/2−1)
1/2

(
−λ2

2

)
σ√
N
. (7.62)
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In this equation, L(N/2−1)
1/2 (x) are the generalized Laguerre polynomials and λ

reads:

λ =

√√√√ N∑
i=1

(
µi
σi

)2
≈ RMSideal

√
N

σ
. (7.63)

In this equation, µi is the beam position at BPM i and σi is the resolution of
BPM i. In the approximation all BPMs are assumed to have the same reso-
lution σi = σ. The ideal value RMSideal for the orbits is calculated by using
the fit functions (7.61), obtained with ideal BPMs. The calculated expectation
value by using (7.62) and (7.63) of the realistic RMS is plotted above the corre-
sponding data points as a yellow resp. green line in Fig. 7.20. The uncorrected
data points are described very well.

For the corrected orbit, the orbit RMS follows the calculated curve, but is always
above the predicted curve. This effect can be explained with the example of
perfectly aligned magnets:

The correction algorithm has the goal to minimize the measured orbit, including
the BPM uncertainty. If, for example, the real orbit is perfectly at 0 and only
the BPM resolution dominates the measured orbit, the correction algorithm
searches for a solution which minimizes the measured beam position at each
BPM xi 6= 0. After the correction, the beam is "corrected" to the positions
−xi, which results in the same RMS as before the correction. In addition,
the uncertainty of the beam position measurement is added to the new beam
positions −xi, which can be calculated by:

〈RMScor,realistic〉 = 〈RMSrealistic (〈RMSrealistic (0)〉)〉 (7.64)

=
√
π

2
Γ ((N + 1) /2)
Γ (N/2) Γ (1.5) ·

σ√
N
. (7.65)

For the used example of σ = 0.1 mm, the resulting limit of the corrected orbit
is indicated by a black line in Fig. 7.20. The simulated corrected orbit (red
error band) converges towards this line for good alignment resolutions. For
large misalignment errors, compared to the BPM resolution, the corrected orbit
follows the one obtained with perfect BPMs.

One additional and important question is the orbit quality at the quadrupoles
after the correction with realistic BPMs. To answer this question, the orbit
RMS measured at the quadrupoles is plotted against the assumed alignment
precision, shown in Fig. 7.21.

For large misalignments, compared to the BPM resolution, the corrected and
uncorrected orbit curves follow exactly the ones, obtained with perfect BPMs.
The corrected orbit diverges from this ideal case at the point, where the align-
ment resolution is the same as the BPM resolution. Below this point, the orbit
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(b) Vertical orbit.

Figure 7.20.: The orbit RMS measured at the BPMs depending on the mag-
net misalignment. The uncorrected orbit RMS is shown in blue.
The corrected orbit, with respect to the BPMs is shown in red.
The BPMs are assumed as perfectly aligned with a resolution of
0.1 mm. The filled areas represent the 68 % error band, the error
bars represent the minimal and maximal values.

RMS at the quadrupoles converges towards the resolution of the BPMs, which
can be explained by the same mechanism, which explains the asymptotic be-
havior of the RMS measured at the BPMs.

As a conclusion, the orbit correction is limited by the BPM resolution if the
alignment precision of the magnets is in the same order as the BPM resolution.
Above this point, the BPM resolution can be neglected and the limiting factor
is the precision of the magnet adjustment.

7.4.3. Alignment of Dipoles and Quadrupoles

The position of the dipole magnets and the quadrupole magnets, with respect to
the nominal value, were measured during a maintenance period in April 2016 by
the company Vermessungsbüro H.-J. Stollenwerk. The position of each magnet
was measured to a precision of 0.01 mm.

The distributions of the longitudinal and horizonal positions of the 24 dipole
magnets is presented in Fig. 7.22. The distribution of the longitudinal positions
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Figure 7.21.: The orbit RMS at the quadruople positions depending on the mag-
net misalignment. The uncorrected orbit (blue) has the same RMS
as the uncorrected orbit measured at the BPMs (cp. Fig. 7.17).
The corrected orbit is below the uncorrected one. This shows, that
a global orbit correction with only using the BPM information is
possible. The filled areas represent the 68 % error band, the error
bars represent the minimal and maximal values.

is centered at −0.1 mm and has a width of 0.6 mm. The parameters of the hor-
izontal distribution are 0.2 mm for the mean value and 0.4 mm for the standard
deviation.

Figure 7.23 depicts the distributions of the longitudinal and horizontal positions
of the quadrupole magnets. In comparison to the dipole distributions, the ones
of the quadrupoles are much wider. The standard deviation for the longitudinal
position is 4 mm, the one for the horizontal position is 0.7 mm.

Multiplying these numbers by the conversion factors for the corrected orbit,
results in RMS values of the orbit, which are in the order of

RMShor = 2 mm (7.66)
RMSver = 0.5 mm. (7.67)

The horizontal orbit RMS is in the same range as the one achieved after orbit
correction at COSY (1.9 mm). For the vertical orbit, the achieved orbit RMS
after correction is≈1.7 mm, which is a factor 3 larger than the one expected from
the survey estimation. Possible explanations are the non Gaussian distribution
of the magnet positions, which is not included in the simulation. Additionally,
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Figure 7.22.: Distribution of the dipole position deviations, measured during a
survey in April 2016. The horizontal deviation from the nominal
value are displayed in red, the longitudinal one is shown in blue.

the BPMs are not considered in the survey and since the position deviations of
the magnets are much larger than expected before the survey, the BPMs can
of course diverge from their nominal position in the same way as the magnets.
All in all, the survey shows, that the magnets moved slightly over the 20 years
of COSY operation and have to repositioned for an EDM measurement. The
process of realigning the magnets started during the maintenance of COSY in
the winter 2016/2017. If the magnets can be aligned to 0.1 mm and 0.1 mrad
or better, the corrected orbit should improve as well. The orbit RMS of the
corrected orbit is expected to:

RMShor = 0.26 mm (7.68)
RMSver = 0.03 mm, (7.69)

which is in the resolution and accuracy of the existing BPM system and maybe
not measurable with this system.

86



7.4. Simulations

 (mm)x∆s, ∆longitudinal and horizontal deviation from nominal position 
10− 0 10

#

0

5

10

15

entries  54

) (mm) s∆mean(  0.33

) (mm) s∆Std Dev(  4.0

) (mm) x∆mean( 0.11− 
) (mm) x∆Std Dev(  0.7

quadrupole longitudinal

quadrupole horizontal

Figure 7.23.: Distribution of the quadrupole magnet position deviations, mea-
sured during a survey in April 2016. The horizontal deviation
from the nominal value are displayed in red, the longitudinal one
is shown in blue.

7.4.4. Additional Elements

The simulations, discussed up to now, point out that the orbit RMS is dom-
inated by the alignment resolution. One way of improving the RMS is an
alignment of all magnets with a higher precision. A second way is the update of
the correction system, which can include additional BPMs or additional correc-
tor magnets or a combination of both. In the following the effect of additional
correction elements is investigated. As a reference the presently installed BPMs
and corrector magnets at COSY are shown and labeled as default.

The important characteristic numbers are the orbit RMS values calculated at
all elements, which is possible in the simulation framework. In the focus of an
experiment, the RMS can only be calculated by using the BPM measurements,
therefore the BPM measurement results are presented as well. First of all the
effect of additional BPMs is discussed, followed by a discussion of additional
corrector magnets. As a third point the combination of both is presented and
the overall improvement of the orbit quality is pointed out.
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Additional BPMs As a starting point, additional BPMs for both planes are
installed at each quadrupole. With this setup, the correction algorithm uses the
default corrector magnets, the default BPMs and the additional BPMs. The
resulting orbit correction strength is estimated analogously to the conversion
factor between misalignment and orbit RMS for the default correction system
(cp. 7.4.1), but in addition, the guiding dipoles are randomly shifted as well.
The conversion factors between the alignment precision and the RMS measured
at the BPMs are:

fBPM,hor = 0.33 (7.70)
fBPM,ver = 0.49. (7.71)

The factors concerning the overall RMS are in the same range, but a little bit
larger:

fall,hor = 0.40 (7.72)
fall,ver = 0.51. (7.73)

Additional Corrector Magnets As additional corrector magntes, quadrupoles
can be used by adding windings in a way, that they produce a dipole field. Since
this method is a simple way of adding corrector dipoles, all quadrupoles are used
as additional corrector magnets in the simulation. The default BPMs are used
as BPM system in the correction algorithm. The resulting conversion factors
are:

fBPM,hor = 0.001 (7.74)
fBPM,ver = 0.006 (7.75)
fall,hor = 0.28 (7.76)
fall,ver = 0.24. (7.77)

In comparison to the numbers, estimated by using additional BPMs, the dis-
crepancy between the RMS BPMs and the overall RMS is obvious. This effect is
explained, by the fact, that with additional corrector magnets, a perfect correc-
tion at the BPMs is nearly possible. But the RMS at other elements, between
the BPMs, is not included in the correction algorithms, since the beam position
can not be measured at these elements. Nevertheless, the orbit RMS at all
elements is a factor ≈3 better than the default setting.

Additional Corrector Magnets and BPMs The combination of additional
corrector magnets and additional BPMs result in the best orbit after the cor-
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rection. The conversion factors reduce to:

fBPM,hor = 0.068 (7.78)
fBPM,ver = 0.01 (7.79)
fall,hor = 0.10 (7.80)
fall,ver = 0.11. (7.81)

In this configuration, the orbit RMS at all elements can be reduced by fac-
tors of ≈8 (horizontal) and ≈6 (vertical) compared to the default correction
elements.

Summary of Additional Elements All conversion factors for the presented
upgrade with additional corrector magnets and additional BPMs are presented
in Fig. 7.24 and summarized in Tab. 7.4.

Table 7.4.: The conversion factors between magnet alignment precision and or-
bit RMS for different orbit correction system upgrade scenarios are
listed. The scenarios include additional corrector magnets and/or
additional BPMs. The factors are calculated for the horizontal and
vertical planes.

plane correction system BPM system conversion factorsplane correction system BPM system
fBPMs fall

horizontal

default default 0.22 0.83
default add BPMs 0.33 0.40

add correctors default 0.0010 0.28horizontal
add correctors add BPMs 0.068 0.10

vertical

default default 0.32 0.65
default add BPMs 0.49 0.51

add correctors default 0.0063 0.24vertical
add correctors add BPMs 0.01 0.11

The blue bars represent the factors corresponding to the RMS measured at the
BPMs, whereas the red bars correspond to the RMS measured at all elements.
For the presently installed system at COSY, the RMS at all elements is a factor
4 (horizontal) and a factor 2 (vertical) higher than the ones measured at the
BPMs. By upgrading the BPM system, the RMS measured at the BPMs and
the one averaged over the accelerator, approach each other at ≈ 0.4. The
RMS at all elements decreases, whereas the RMS at the BPMs increases. For
the upgrade of only the corrector magnet system, the RMS values decrease.
Especially the RMS conversion factor at the BPMs reaches 0.006 (horizontal)
and 0.001 (vertical). In perspective of the EDM measurement, the RMS at all
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Figure 7.24.: The conversion factor f between the alignment resolution and the
orbit RMS after correction is presented in the two diagrams for dif-
ferent combinations of additional corrector magnets and additional
BPMs. In addition to the existing COSY systems ("default"), ad-
ditional dipole windings are installed at the quadrupoles and/or
additional BPMs are installed inside the quadrupoles. The RMS
is calculated at the BPMs (blue), including the additional ones,
and at all elements (red). The calculation is done for the horizon-
tal and the vertical orbits.

elements is the important value, which is lower than the one with only upgraded
BPMs. For the combination of both upgrades, the RMS values approach each
other and decrease significantly.

The best upgrade option is the upgrade of both systems, which is complicated
since there is no space available for the installations of new BPMs. The second-
best solution is the installation of additional windings on the quadrupoles, which
improves the quality of the orbit correction by a factor of 3 in the horizontal
case and a factor of 2.7 in the vertical case. This improvement is directly
proportional to the systematic EDM limit, depicted in [16].

For example, the orbit can be improved by aligning the magnets with a res-
olution of 0.1 mm, which started end of 2016. This will lead to a corrected
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orbit RMS of 0.08 mm and 0.065 mm for the horizontal resp. vertical direction.
With the possible installation of additional quadrupole windings, the RMS can
be improved to 0.03 mm resp. 0.01 mm. Of course, the BPM resolution has to
be better than the RMS of the orbit, which will be the case for the upgraded
readout electronics. With an achievable vertical RMS of 0.01 mm, the EDM
measurement is systematically limited to dEDM ≈ 5 · 10−21 e cm.
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8. Systematic Effects on Spin Motion

For the EDM measurements, the influence of the ORM and the orbit correction
on the spin motion is of interest. Therefore a measurement of an ORM and in
parallel monitoring the spin tune was performed and analyzed. The spin tune
νs (4.30), the number of spin precessions during one particle revolution, can
be measured by using the EDDA detector with a precision of 1 · 10−10 within
100 s [71]. Since the spin tune determination is the most precise measurement
of a quantity at COSY, it can be used as a tool to measure other quantities of
COSY.

8.1. Dispersion Measurements at the Corrector
Magnets

Varying the strength of the corrector magnets and monitoring the spin tune in
parallel, makes the measurement of the horizontal dispersion function at the
corrector magnets possible. Usually the dispersion function is only measured
at the BPMs, whereas it is unknown in between. In the following a dispersion
measurement at the corrector magnets done in December 2015, and a dispersion
measurement at the BPMs, done in May 2015, are presented.

8.1.1. Theoretical Model

The connection between the dispersion, the corrector magnet change and the
spin tune is derived in the following. The spin tune is in first order given by:

νs = γG. (8.1)

A relative change of the momentum leads to a change of the Lorentz γ:

∆γ
γ0

= β2 ∆p
p0
. (8.2)
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This change results in a spin tune change:

∆ν
ν0

= ∆γ
γ0
. (8.3)

Since a kick θj with corrector magnet j leads to momentum change (3.46), the
spin tune is changed as well:

∆ν
ν0

= −β2 Dj

ηL0
θj. (8.4)

This equation allows for a measurement of the local dispersion at the corrector
magnets by knowing the circumference L0 and the phase slip factor η of COSY.
The factor β2

η
can be measured by changing the cavity frequency and observing

relative spin tune changes. This measurement was done during comissioning
of a feedback system, which stabelizes the spin tune by adjusting the cavity
frequency. The relation of both quantities is given by [72]:

∆ν
ν0

= β2

η

∆f
f0
. (8.5)

The spin tune change, measured with 27 different frequencies, is presented in
Fig. 8.1. A straight line is fitted against the data points. The spin tune
change per frequency change is (76.9± 0.3) · 10−9 Hz−1. In addition to the spin
tune change, the nominal spin tune and the nominal revolution frequency were
measured. Their results are:

f0 = (750 599.036± 0.011) Hz (8.6)
ν0 = 0.160 974 163 5± 1.7 · 10−9 (8.7)

Using these measurements result in:

β2

η
= 0.3572± 0.0015. (8.8)

Combining this result with (8.4) and inserting the length of COSY L0 allows
the estimation of the dispersion at the corrector magnets.

8.1.2. Spin Tune Monitoring

In order to measure the dispersion at the corrector magnets, the spin tune
needs to be monitored during the change of corrector magnets. For the spin
tune measurements the following beam manipulations and accelerator settings
are essential:
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Figure 8.1.: Change of the spin tune induced by a change of the revolu-
tion frequency [72]. The nominal revolution frequency is f0 =
(750 599.036± 0.011) Hz, the nominal spin tune is measured to
ν0 = 0.160 974 163 5± 1.7 · 10−9.

1. The beam is electron cooled for 75 s

2. Moving the beam near a carbon target

3. Start a continuously extraction onto the carbon target with a constant
rate

4. All detected scattered particles are time-stamped

5. Flipping the polarization into the horizontal plane by using an RF solenoid

6. Fourier spectra of the time stamped events provide polarization amplitude
and phase, latter is used for spin tune interpolation.

Electron Cooling The beam is cooled with the electron cooler [57, 96] to
shrink the transverse, as well as the longitudinal phase space. The shrinking of
the phase space in addition to a setting with zero chromaticity leads to a spin
lifetime, also called spin coherence time, in the horizontal plane of about 1000 s
[27, 16].
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Carbon Target After the cooling process, the beam is moved close to a 17 mm
carbon block target, which is fixed 3 mm above the center of the beam pipe at
the internal EDDA experimental area. The scattering of the polarized particles
and a detection of the ejectiles in the scintillating bars and rings of the EDDA
detector allows a determination of the beam polarization as described in 5.2
and in [71, 97].

Continuously Extraction After cooling and moving the beam, it is continu-
ously heated in vertical direction by using a white noise electric field in a strip
line unit with a center frequency at the vertical betatron frequency Qyf0. The
heating leads to an expansion of the beam in vertical direction. This expansion
results in an overlap of the beam with the target. Particles of the beam are
scattered and registered in the detector. The rate in the detector is stabilized
by the means of a feedback system, which controls the noise amplitude. The
rate in the detector is in the order of 5 kHz [71].

Time Stamping All events in the detector are categorized depending on their
azimuth angle in one of the four categories: Up, Right, Down, and Left. In
addition to the category, a time stamp with a precision of 92.59 ps is attached
to the event. In order to estimate later on the spin tune, the cavity frequency
is measured with the same long range time to digital converter [70].

Polarization Flip At injection and during the cooling process, the beam po-
larization is aligned in parallel to the vertical direction. In order to measure
the precession around this axis, the polarization is flipped in the horizontal di-
rection. The flipping is achieved by performing a Froissart Stora scan, which
stops exactly at the resonance frequency. At this time, the initially vertical
polarization is completely flipped in the horizontal plane [98, 64, 65].

Spin Tune and Polarization Determination The time resolved Fourier spec-
tra of the detector events provides the information needed to determine the
polarization amplitude and the spin tune. The amplitude of the Fourier spec-
tra is equal to the up-down asymmetry. This asymmetry is directly proportional
to the polarization of the beam. The position of the maximum divided by the
measured revolution frequency in combination with the time dependent phase
information allows the determination of the spin tune with a precision of 1 · 10−9

for a time interval of 5 s [71, 72].
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8.1.3. Measurement Results

Dispersion Measurement at Corrector Magnets The measurement of the
dispersion at the corrector magnets is done in parallel to the measurement of
the ORM. In each cycle, a corrector magnet current is changed in five steps.
Each of the steps last 5.5 s. The spin tune is determined all over the cycle. The
two dimensional water fall plot of one measurement is presented in Fig. 8.2. The
top x axis displays the time in seconds after the spin flip is performed. The
bottom x axis represents the corresponding kick angle θ. The y axis represents
the spin tune proportional to the frequency, whereas the color coded z axis
represents the Fourier amplitude A. The position change of the Fourier spectra
maximum is clearly visible.
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Figure 8.2.: Spin tune change due to different kick angles at the horizontal cor-
rector magnet 35 (s = 166.1 m). The top x-axis represents the time
in the cycle. The bottom x-axis displays the corresponding kick an-
gles. The y-axis is a frequency spectra, normalized to the revolution
frequency. The fourier amplitude is shown in the color coded z-
axis. The spin tune jumps induced by the corrector kick are clearly
visible.

A detailed analysis, including the phase information [72], results in a two di-
mensional projection of the data, presented in Fig. 8.3. In this view, the y
axis represents the relative spin tune change plotted against the kick angle θ
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(x-axis). The five data points clearly follow within their errors a straight line,
which is fitted against the data points. The slope of this line is according to (8.4)
proportional to the dispersion. It can be calculated by dividing the slope by β2

η2

(8.8) and the circumference L0 = (183.473± 0.001) m. The resulting dispersion
at magnet SH35 reads:

Dsh35 = (11.09± 0.13) m. (8.9)
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Figure 8.3.: Relative spin tune change induced by horizontal corrector kicks. The
averaged spin tune change for each time interval of Fig. 8.2 is plot-
ted against the kick angle θ. The dispersion D at the corrector
magnet position is calculated to D = (11.09± 0.13) m by using the
slope of the fitted linear function and the known parameters β, η, L.

The dispersion measurement, exemplarily explained for corrector magnet sh35,
is repeated for all horizontal corrector magnets. In order to compare the mea-
sured dispersion at the corrector magnets, a measurement of the dispersion,
which was done in May 2015 is analyzed in detail.

Dispersion Measurement at BPMs The usual way to measure the dispersion
is to vary the momentum of the beam and measure the resulting orbit change
at all BPMs. This procedure leads to the dispersion at the BPMs. Such a
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dispersion measurement was performed in May 2015. In this measurement, the
frequency of the cavity was changed in steps of 750 Hz. This change leads to a
momentum change (3.42), which results in a beam position variation at the ith
BPM:

∆xi = Diη
∆f
f0
. (8.10)

The dispersion can be calculated with the knowledge of η. Figure 8.4 shows the
corresponding dispersion measurement at the horizontal BPM bpmx24. The
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Figure 8.4.: Dispersion measurement with one horizontal BPM bpmx24 (s =
151.7 m). The frequency is changed and the corresponding position
change is measured. The slope is the dispersion divided by the phase
slip factor η.

calculation of the dispersion is done for all BPMs.

Comparison of the Dispersion at BPMs and at Corrector Magnets The
dispersion, measured at the horizontal corrector magnets, is plotted as red curve
in Fig. 8.5 against the corrector magnet position in COSY. The dispersion
measured at the BPMs is depicted in blue. The two arcs of COSY, where the
dispersion reaches its maximum value are clearly visible, whereas the dispersion
in the straight sections is suppressed. The blue and red curves show the same
characteristics. A quantitative comparison is not possible, since the BPMs and
the corrector magnets are not at the same position and therefore the dispersion
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Figure 8.5.: The dispersion function is measured with BPMs (blue) and by an-
alyzing the spin tune changes due to corrector magnet kicks (red).
The blue curve is measured in May 2015, the red one in December
2015 with the same accelerator settings. Considering this time gap
between the measurements, they agree very well. The connecting
lines are only drawn to guideline the eye.

is different for both. An additional difference is caused by the fact, that both
measurements are taken with a time difference of six months. In principle,
the settings are reloaded, but fine tuning was done to adjust beam lifetime,
spin lifetime, tunes, chromaticity as well as the extraction process of COSY.
This fine tuning can result in small changes of the dispersion. All in all, the
dispersion measurement at the corrector magnets is possible by using the spin
tune as a tool.

8.1.4. Outlook: Orbit Correction and EDM Measurement

For the planned first measurement of the EDM with the help of an RF Wien
filter [30], a feedback loop, which fixes the Wien filter frequency to a harmonic of
the spin precession frequency, is planned [99]. If the orbit feedback is running
in parallel and changing corrector magnets at positions with high dispersion
without adjusting the revolution frequency, the momentum of the beam changes
(3.46). This momentum change results in a spin tune change. This spin tune

100



8.1. Dispersion Measurements at the Corrector Magnets

change leads to a readjustment of the RFWien filter frequency. In order to avoid
this chain of changes, the measured dispersion at the corrector magnets can be
fed in the orbit feedback system and a readjustment of the cavity frequency
should lead to a stable momentum. Within this setup, the Wien filter feedback
loop has only to adjust the Wien filter frequency by smaller amounts, which
should result in more stable conditions.
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The measurement of EDMs of fundamental particles is complementary to the
high energy experiments to solve the puzzle of antimatter and matter differ-
ences in the known universe. Storage rings can be used to measure the EDMs
of charged hadrons, for which no direct EDM measurement exist at the mo-
ment. Within this thesis, the focus was on the investigation of the existing
storage ring COSY at Jülich. The orbit quality, one major source of systematic
contributions to the EDM measurement, was studied in detail. Especially the
model independent orbit correction is improved. For this correction, a software
measuring the orbit response matrix was developed from scratch. This software
allows an automated measurement of the orbit response matrix. The measure-
ment of the matrix was successfully tested. In a second step, an algorithm for
orbit correction is developed, based on the singular value decomposition. The
developed algorithm is succesfully applied and the orbit is corrected down to
an RMS of 2 mm. The developed algorithm is the starting point for an ongo-
ing project of a live orbit feedback which is able to counteract time dependent
instabilities of the magnets at COSY.

In addition to these algorithms, the resolution of the Beam Position Monitors,
including the readout electronics was analyzed. The existing BPMs are able to
measure the orbit with a resolution of ≈ 1 µm, but the accuracy is much worse:
0.1 mm. The accuracy is dominated by the readout electronics. After the
detailed analysis of the behavior, an upgrade program of the BPM electronics
started and is ongoing. With the upgrade, the accuracy should be in the range
of 4 µm.

A third focus, connected to the orbit correction was the question "Why is the
orbit not getting better?". This question was answered by simulations, using
the program MADX and the developed orbit correction algorithms. The simu-
lations show, that the main source of beam displacements is connected to the
alignment precision of the quadrupole and dipole magnets of COSY. To explain
the measured orbit RMS, the magnets can only be aligned with a precision of
≈ 0.5 mm. A survey of these magnets shows that they are exactly aligned with
the precision, which was predicted by the simulation. In order to improve the
orbit quality, a readjustment of the magnets is in progress. In addition to this
alignment precision, the possibility of upgrading COSY with additional correc-
tor magnets or BPMs was investigated. By adding BPMs the overall RMS can
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be improved by a factor 2. Additional corrector magnets allow an improvement
of a factor 3. The orbit RMS can be reduced by one order of magnitude, if
additional corrector magnets and additional BPMs are installed. With a re-
alignment of the magnets to 0.1 mm and an installation of additional elements,
the orbit RMS should be in the order of 10 µm, which is in the same range as
the resolution of the upgraded BPM system.

If all these steps are done, a direct measurement of the deuteron’s EDM down
to dEDM ≈ 5 · 10−21 e cm is possible by applying the Wien filter method and
trusting the simulations presented in [16].

Besides the topics directly related to the orbit correction, a new method of mea-
suring the dispersion at the positions of the corrector magnets was presented.
This method is based on the monitoring of spin tune changes by changing of
corrector magnet strengths. The measured dispersion agrees qualitatively with
the one measured at the BPMs. A direct comparison was not possible, since a
time gap of half a year was between the measurements. Within this time, small
changes of the dispersion are expected, since the setting of COSY needs always
some fine tuning.

All in all, the developed algorithms and software packages function as expected
and a way of upgrading COSY towards an improved EDM sensitivity was pre-
sented.
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A. Appendix

A.1. Derivation of the RMS Expectation Value

In the following the RMS expectation value is derived by using, the literature
[100, p. 57], [101], and [102]. The distribution

z =

√√√√ N∑
i=1

(
xi
σi

)2
= 1
σ

√√√√ N∑
i=1

x2
i (A.1)

follows a noncentral χ-distribution. In the second step a commen resolution σ
is considered. This distribution has two parameters: λ and N . The parameter
N is the number of degrees of freedom and λ is:

λ =

√√√√ N∑
i=1

(
µi
σi

)2
= 1
σ

√√√√ N∑
i=1

µ2
i . (A.2)

The first moment of this distribution is given by:

〈z〉 =
√
π

2L
(N/2−1)
1/2

(
−λ2

2

)
(A.3)

where L(a)
n (x) is the generalized Laguerre polynomial. For the RMS, which is

RMS = z√
N
· σ, (A.4)

and the standard deviation σ of the sample being equal for all random variables
xi, the first moment of the RMS reads:

〈RMS〉 =
√
π

2L
(N/2−1)
1/2

(
−λ2

2

)
σ√
N

(A.5)

For large values of N and µi � σ, the mean 〈RMS〉 converges to σ.
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