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ABSTRACT 

We present a detailed model for exclusive properties of initial 

state parton showers. A numerically efficient algorithm is obtained by 

tracing the parton showers backwards, i.e. start with the hard 

scattering partons and then successively reconstruct preceding 

branchings in falling sequence of spacelike virtualities Q2 and rising 

sequence of parton energies. We show how the Altarelli-Parisi equations 

can be recast in a form suitable for this, and also discuss the 

kinematics of the branchings. The complete model is implemented in a 

Monte Carlo program, and some first results are presented. 
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A model for exclusive properties of high-pT events in hadron-hadron 

interactions requires a number of separate components [l]: QCD hard 

scattering matrix elements, structure functions, initial state 

(spacelike) parton evolution, final state (timelike) parton showers, and 

jet fragmentation. Of these, the initial state parton showers probably 

are the least well studied. In the present paper we will therefore 

develop a detailed model for this component, using the backwards 

evolution formalism, an approach orthogonal to presently available 

models. In particular, this allows a quite efficient implementation in 

terms of computer algorithms for event generation. Together with the 

other components above, this model has been implemented within the 

framework of the Lund Monte Carlo [2,3]. We present some first results 

here, to illustrate the methods and problems. 

A fast hadron may be viewed as a cloud of quasireal partons. At 

each instant, an individual parton can initate a cascade, branching into 

a number of partons. These partons do not have enough energy to be on 

mass-shell (M2tO), and thus only live for a finite time before 

reassembling. In a hard interaction between two incoming hadrons, when 

two partons scatter to high pT, also the other partons in the two 

related cascades are provided with the necessary energy to live 

indefinitely. The correct description for this transfer of energy is 

obviously given by the various 2+N hard scattering matrix elements, 

where 2 stands for the two initiators of the cascades and N for the 

final parton multiplicity. In practice, matrix elements can only be 

calculated for small values of N, and one has to resort to approximate 

schemes, such as the leading logarithmic approximation (see e.g. [41). 

In particular, for subsequent Monte Carlo applications, it is convenient 
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to imagine that the partons on the two branches which leads from the two 

initiators to the hard scattering (7+3+1 and 5+2 in Fig. 1) have 

increasing spacelike virtualities, Q2=-M2>0, adjusted such that the 

partons on all other branches (8, 4 and 6 in Fig. 1) may have M2' 0; 

these latter partons are in the following referred to as the timelike 

ones. Then the momentum transfer given by the central 2+2 hard 

scattering subprocess is enough to ensure that all partons may end up on 

mass shell. Except for the two hard scatterers, the partons continue 

essentially along the direction of the respective hadron they belonged 

to, although occasionally they may have large transverse momenta and 

give rise to separately visible jets of their own. Other cascades 

within the two interacting hadrons remain unaffected, i. e. do not 

receive any energy transfers, and disappear unnoticed into the low-pT 

"beam jet' background. 

Current programs for initial state parton showers, COJETS by 

Odorico [5] and the CIT-Florida ones by Field, Fox, Kelly and Shatz [6], 

use a forward evolution in physical time. This means that the parton 

structure functions are sampled at some low scale Qo2=4 GeV2. The two 

partons chosen, one from each incoming hadron, are then evolved up to 

the hard scattering Q2 scale by successive branchings a+bc according to 

the Altarelli-Parisi (AP) equations [7]. Finally, the event is accepted 

with a probability proportional to the da/d; of the hard scattering 

subprocess. There are two major problems with this approach. Firstly, 

in each branching a+bc, It is not known whether the hard scattering 

parton will be on the b or c branch. Secondly, the hard scattering 

scale Q2, which sets the upper limit for the spacelike evolution, is not 

known beforehand. In the CIT-Florida approach, these problems are 
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overcome by brute force, which leads to an extremely inefficient Monte 

Carlo implementation. By introducing a pretabulation step, Odorico is 

able to make the generation more efficient, although not entirely 

transparent. 

In the present approach, the starting point is the hard scattering 

subprocess. An inclusive sumnation over all initial state showers is 

equivalent to using Q2-evolved structure functions, e. g. the 

parametrizations in [8]. The efficient choice of reaction channel and 
* 

kinematical variables (XI, x2 and t) for this hard scattering is a 

standard task, already solved in the Lund and other Monte Carlos. The 

exclusive parton showers must now be reconstructed step by step, 

i. e. for a parton b one must find which branching a+bc gave rise to it, 

alternatively that b was present already at the cutoff scale Qo2. 

For this, consider the AP equations 

df,,(X,t) a,(t) 
dt = 2x ; I F f,(x'tt) pa+,&) 

where fi(x,t) is the structure function for flavour i, t= In Q2 is the 

evolution parameter, a,(t) the running strong coupling constant and 

P a+bc(z) the AP splitting functions. The normal use of these equations 

is to assume fi(x, to) known at the cutoff to =ln Qo2, and then follow 

the influx of partons b at x from the branching of partons a at x'>x as 

t increases, to find fi(x, t) for t>tO. However, let us assume that 

fi(x,t) has already been obtained this way [8]. The probability that a 

parton b disappears from x during a small decrease dt is then given by 
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dfb(X,t) 
dPb = fb(x,t) 

a,(t) f,(x’,t) 
= ldtl r i? J %$ fbtx,t) P&&) (2) 

a 

This probability exponentiates, so that one may define a form factor 

5 Qs(t’ 1 dx’ fa(X’,t’) 
Sb(x9tl;t) = exP i-i dt’ 2n ; J ~1 fb(x,tl) Pa+bc($)} (3) 

giving the probability that a parton b remains at x from tI to t<tI. 

Note that the t' dependence of fa and fb implies that the influx of 

partons b from x"<x and outflow of partons a to x">x' with decreasing t' 

is implicitly accounted for. 

The practical interpretation of eq. (3) is 

(i) the t value at which the branching a+bc takes place, i. e. the 

virtuality of b, is given by putting Sb(x,tI;t) equal to a random 

number between 0 and 1 and solving for t; if the random number is 

smaller than Sb(x,tI; to) the parton b existed at Q02 and there is 

no more branching; 

(ii) The relative probabilities for the different possible branchings 

a+bc are given by the integrals 

Jg 
f,(x',t) 
fb(x,t) 'a+bc (5) (4) 

with t the value chosen in (i); 

(iii) the probability distribution in x' is given by the integrand in 

eq. (4) for the process a+bc chosen in (ii). 

In practice, a numerical integration over x' and t' would be too 

time-consuming. The convenient Monte Carlo procedure is to find a 

simple function that is everywhere larger than the integrand in eq. (3) 

and is analytically integrable, choose t and x' according to this 
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function, and accept the choice with a probability the ratio of the 

correct integrand to the simple function in this (t, x') point. In case 

of rejection, the upper limit tl of eq. (3) is put equal to the rejected 

t value and the procedure is iterated. 

Two important consequences of eq. (3) should be noted. Firstly, 

the fact that the x' value is chosen proportional to f,(x',t) ensures 

not only that x' values larger than 1 are excluded, but also that the 

proper limiting behaviour for x'+l is obtained. Secondly, although the 

AP splitting functions are flavour symmetric (up to mass effects), the 

structure functions are generally not. At the low Qo2 scale, a proton 

contains more u than d (or u). When a gluon is chosen at the hard 

scattering and evolved backwards, the different numerators f,(x',t') 

indeed ensure that this gluon is more likely to have been emitted by a u 

than a d. Similarly, if a heavy flavour is chosen at the hard 

scattering, the denominator fb(x,t') will vanish at the Q2 threshold of 

the heavy flavour production, which means that the x' integral diverges 

and Sb itself vanishes, so that no heavy flavours remain below 

threshold. 

In passing, we note that these two points distinguish our model 

from the scheme recently outlined by Gottschalk [9]: he proposes to use 

z=x/x' values chosen from Pa+bc(z) alone, which means that the x' 

distribution does not a priori vanish for xi+1 (indeed, the x 

distribution thus obtained at Qo2 tends to be too large at small and 

large x and too small at intermediate ones). Also, choosing the 

different branchings a-rbc just from Pa,bc(z) would lead to a g in a 

proton equally often coming from a u as from a d. 
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The procedure outlined above for one single branching can obviously 

be iterated, to yield two sequences (one for each incoming hadron) of 

decreasing spacelike virtualities Q* (i. e. where the Q* of one 

branching is taken as the upper limit (tl in eq. (3)) for the preceding 

one), increasing x values and specified flavours, stretching backwards 

in time from the hard scattering to the cascade initiators. The 

kinematical interpretation of the x variable is not unique, however. As 

in [9] we choose to use an implementation in terms of invariant masses, 

where ;=x1x2s both at the hard scattering and at each preceding step, 

i.e. where the 2=x/x' value at each branching corresponds to an 

increase (moving backwards in time) by a factor l/z in the total 2. The 

advantage of this choice over using e.g. lightcone variables is that 
A 

the hard scattering s is defined uniquely by the x1 and x2 values, 

without any reference to virtualities or transverse momenta. 

We briefly outline the reconstruction of the kinematics, Fig. 1. 

Start by defining the two hard scatterers 1 and 2 in their CM frame, 
A 

coming in with momenta along the tz axis, with s=(p1+p2)*=xlx2s (pi 

denoting four-vectors). By backwards evolution from the hard scattering 

Q2> a branching 3+1+4 is found, which defines the virtuality Q,* and the 

2=x1/x3 variable. Correspondingly, the branching 5X+6 defines Q,[ and 

7+3+8 Q,*. The construction of the four-momentum p3 now contains two 

degrees of freedom, apart from an arbitrary azimuthal angle. These may 

be chosen as the transverse momentum pT3(=pT4) and the mass-squared ma2 

of the associated timelike parton. One constraint is given by our 

interpretation of z: (p3+p2)*=:/z. The maximum possible value for ma2 is 

found for pT3=O: 



-8- FERMILAB-Pub-85/23-T 

(m4 2 )max = -Q* 1 -Q* 3 + 1 ^22 :2 2 
2Q2 {(s+Q,+Q, )(,+Q, +Q, 1 

2 

- [[(;+Q; + Q;)*-49; Q:] (($Q;+ Q2,)*-4Q; Q2,]11’*l 

which, for the special case of Q,*=O, reduces to 

A A 
2 

lrn4 )max = ( 
!!L 

z Q’3 I(+-- 
s+Q; 

-x-+ 
s/z+Q3 

(5) 

(6) 

Parton 4 may initiate a timelike parton shower, which can be constructed 

using standard methods (see e.g. [lo]). A mass m4* between (m42)max and 

0 (or mq * for a quark) is then obtained, whereafter the kinematics of 

the branching 3+1+4 is completely specified. The system can be boosted 

to the CM frame of 3 and 2 and rotated to put their momenta along the 'z 

axis. The whole procedure may now be repeated for the next branching, 

5+2+6 or 7-+3+8, etc. Branchings on the two spacelike lines are 

interleaved to form a single, monotonically falling sequence of 

virtualities Q*; obviously this choice is not unique. In the end, the 

two outermost partons (the cascade initiators) have virtualities Q*<QO*, 

and one may put these Q2=0. Up to small corrections from the 

introduction of primordial kT, a final longitudinal boost will bring the 

partons from their CM frame to the overall CM frame, where the x values 

of the outermost partons agree with the customary lightcone definition. 

In eqs. (l)-(4), the range of x' integration is nominally x<x'<l. 

The lower limit corresponds to z=x/x'=l, where the q+qg and g+gg AP 

splitting functions are singular. In the same limit, the energy carried 
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away by the timelike parton, (xl-x)Js/2=(1-z)x'Js/2, vanishes. We 

therefore choose to require a minimum energy, typically 2 GeV, for the 

timelike partons. The energy carried away by gluons below this cutoff 

may be resumed and included as an effective shift of the z value chosen 

at each step; this shift turns out to have negligible physical 

consequences. Another constraint on allowed z values is given by the 

requirement that (m$max LO (or mq*) in eq. (5). This constraint can 

not be used at the choice of z values, since Q32 (and often Q *) is 2 not 

known at that time; rather it is implemented in connection with the 

reconstruction of the kinematics. 

The production of W and Z offers a simple testing ground for 

initial state radiation. In Fig. 2 we show the py spectrum dn/dpy 

obtained for W production at central rapidities (1YI~l) compared to UAl 

and UA2 measurements. The data are not corrected for detector smearing 

effects, which tend to deplete low pTw values [13], so within present 

statistics the agreement is fair. We have used the 

Eichten-Hinchliffe-Lane-Quigg set 2 structure functions [8] with A=290 

MeV, which gives <pTw>=5.3 GeV. If EHLQ set 1 with A=200 MeV is used, 

this is decreased by 0.2 GeV. If the Q* scale for W production, which 

defines the maximum allowed spacelike virtuality, is taken to be MW2/4 

rather than MW * <pTw> is decreased by 1.0 GeV. , If emitted timelike 

partons are not allowed to shower, but rather put on mass shell, <pTw) 

is increased by 0.7 GeV. The results are also in fair agreement with 

the analytic predictions of [14] (using Gluck-Hoffmann-Reya structure 

functions [8] with ~=400 MeV and no associated timelike showers, which 

gives <pTw>=6.8 GeV), although again the region of low pTw is more 

depleted in the analytic treatment. 
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Because of the increase in phase space for shower development, 

<pTw> does grow with CM energy, from 2.5 GeV at Js = 200 GeV to 5.9 GeV 

at 630 GeV, to 9.1 GeV at 2 TeV, to 17.6 GeV at 40 TeV. At the same 

time, the sumned lpTl of associated (recoil) jets increases from 4.0 GeV 

to 10.9 GeV, to 18.2 GeV, to 43.6 GeV. Needless to say, the figures at 

40 TeV are not particularly relevant: since we explicitly assume that MS 

is the hard scattering Q* scale, graphs like u+& W+g with pT>MW/2 are 

not included, and at high energies these dominate the <PTw> [14]. 

Correspondingly, our model would not be particularly useful for the 

(Drell-Yan) production of low-mass lepton pairs even a present energies. 

We have also made a number of comparisons between our model and 

collider jet data. Here all fragmentation parameters are fixed by e'e- 

data, and we have used the EHLQ set 2 structure functions with A = 290 

MeV, a hard scattering Q2=2%/(;*+?*+c2)=~: and a maximum parton 

virtuality of 4Q2e4tT2 for shower development. The main result of these 

studies is readily visible in Fig. 3: the core of jets seems reasonably 

well described when initial and final state showers are included, but 

the number of particles and the energy flow in the low-pT background is 

significantly understimated. This discrepancy is present already in 

"minimum bias" events without high-pT jets. If we believe in jet 

universality, we would then conclude that the underlying process must be 

more complicated, involving e.g. multiple independent hard scatterings 

[16] or soft gluon exchanges [17]. This obviously warrants further 

study. 

In conclusion, we have formulated an explicit and detailed model 

for initial state radiation, which offers a fairly efficient means for 

event generation: at &=540 GeV, requiring a hard scattering pT>10 GeV, 
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one event takes 0.1 s Cyber 175 time, whereof l/4 is for the hard 

scattering and initial and final state radiation, and the rest for the 

subsequent fragmentation and decay chain. 

ACKNOWLEDGEMENTS 

We thank H-U. Bengtsson and T. 0. Gottschalk for useful 

discussions. This study was carried out under Swedish Natural Science 

Research Council post-dot grant F-PO 1559-101. The hospitality of the 

Fermilab theory group is gratefully acknowledged. 



-12- FERMILAB-Pub-85/23-T 

REFERENCES 

1. M. Derrick, T. Gottschalk, in Proc. of 1984 Snowmass SSC Sumner 

Study, Eds. R. Donaldson, J. G. Morfin, p. 49 

2. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 

97 (1983) 33 

T. Sjtrstrand, Nucl. Phys. 8248 (1984) 469 - 

3. H-U. Bengtsson, Computer Phys. Comn. 31 (1984) 323 

H-U. Bengtsson, G. Ingelman, Computer Phys. Comn. 34 (1985) 251 

T. Sjdstrand, Computer Phys. Comn. 27 (1982) 243 

4. L. V. Grlbov, E. M. Levin, M. G. Ryskin, Physics Reports joJ 

(1983) 1 

5. R. Odorico, Nucl. Phys. 8228 (1983) 381 

R. Odorico, Computer Phys. Comn. 32 (1984) 139 

6. R. D. Field, G. C. Fox, R. L. Kelly, Phys. Lett. 1198 (1982) 439 

M. P. Shatz, Caltech thesis/preprint CALT-68-1145 (1984) 

7. G. Altarelli, G. Parisi, Nucl. Phys. 6126 (1977) 298 

8. M. GlUck, E. Hoffmann, E. Reya, 2. Physik Cl3 (1982) 119 - 

D. W. Duke, J. F. Owens, Phys. Rev. 030 (1984) 49 

E. Eichten, I. Hinchliffe, K. Lane, C. Quigg, Rev. Mod. Phys. 56 

(1984) 579 

9. T. Gottschalk, in Proc. of 1984 Snowmass SSC Sumner Study, 

Eds. R. Donaldson, J. G. Morfin, p. 78 

10. K. Kajantie, E. Pietarinen, Phys. Lett. 93B (1980) 269 - 

G. C. Fox, S. Wolfram, Nucl. Phys. 8168 (1980) 285 

R. Odorico, Nucl. Phys. BE (1980) 141 

C.-H. Lai, J. L. Petersen, T. F. Walsh, Nucl. Phys. B173 (1980) 

141 



-13- FERMILAB-Pub-85/23-T 

T. D. Gottschalk, Nucl. Phys. B214 (1983) 201 

G. Marchesini, B. R. Webber, Nucl. Phys. 8238 (1984) 1 

B. R. Webber, Nucl. Phys. 8238 (1984) 492 

11. UAl Collaboration, S. Geer et. al., CERN-EP/84-160 

12. UA2 Collaboration, talk by J. P. Repellin at Leipzig Conference 

1984 

13. R. Odorico, Phys. Rev. D31 (1985) 49 - 

14. G. Altarelli, R. K. Ellis, M. Greco, G. Martinelli, Nucl. Phys. 

8246 (1984) 12 

15. UAl Collaboration, G. Arnison et al., Phys. Lett. 1328 (1983) 214 

16. N. Paver, D. Treleani, Phys. Lett. 146B (1984) 252 

17. A. Capella, J. Tran Thanh Van, Z. Physik c23 (1984) 165 

P. Aurenche, F. W. Bopp, J. Ranft, Z. Physik c23 (1984) 67 



-14- FERMILAB-Pub-85/23-T 

FIGURE CAPTIONS 

Fig. 1. Schematic picture of spacelike shower evolutlon, with hard 

scattering partons 1 and 2 and emitted timelike partons 4, 6 

and 8. 

Fig. 2. Transverse momentum distribution of W, from UAl [ll] and VA2 

[121 compared with Monte Carlo results. The latter curve has 

been normalized to the same area as UAl. 

Fig. 3. Transverse energy flow for jets with ET>35 GeV, in bins of 

A@.05 around jet core, Integrated over lA$j<n/i?. Results 

from UAl [15] are compared with Monte Carlo simulation with 

and without shower developent. 
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