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[.  Intuitive theory of matter waves.
1. The inhomogeneous differential equation of the densatyix.
2. The conservation laws.
3. Applications (polarization of the vacuum).

II. Quantum theory of the wave field.
1. Presentation of the field equations.
2. Applications (the self-energy of light quanta).

The purpose of the present papeis to construct the Dirac theory of the positfpn
in the formalism of quantum electrodynamics. Thus, vedl slemand that the symmetry
in nature between positive and negative charge shouldpbessed in the basic equations
from the outset, and that in addition to the well\knadifficulties with the divergences
that quantum electrodynamics leads to, no new infinitiesilsl appear in the formalism,
moreover; i.e., that the theory should provide an appm@bam for the treatment of the
circle of problems that have been treated by quantunredsectamics up to now. By the
latter postulate, one distinguishes the present efifom the investigations of Foc¥,
Oppenheimer and Furf), and Peierls), the last of which is similar to it; he is closely
linked with the paper of Diral), moreover. In contrast to the Dirac treatmene bas
the work on the meaning of the conservation law lfiertbtal system of radiation-matter
and the necessity of formulating the basic equatidtiseotheory in a way that grows out
of the Hartree approximation.

) The paper originated in some discussions that | hadiétren Pauli, Dirac, and Weisskopf, in part
written and in part oral, and to them | am deeply guhtef

3 E.g.: P. A. M. DiracThe Principles of Quantum Mechanics,” Oxford (1930), pp. 255.
) V. Fock. C. R. Leningrad (N. S.) no. 6 (1933), 267-271.
) W. H. Furry and J. R. Oppenheimer, Phys. R&\1934), 245.
) R. Peierlsto appear.
) P. A. M. Dirac, Proc. Camb. Phil. S&A (1934), 150 (in what follows, this is always referred to by
loc. cit.).
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[. Intuitive theory of matter waves.

1. The inhomogeneous differential equation for the density. Let the most
important result of the aforementioned Dirac paper bflprsummarized as follows: A
guantum-mechanical system of many electrons thatlftiél Pauli principle and move in
a given force field without back-reaction can be charaed by a “density matrix:”

(X', t', kr | R | X", t", k") — zwnﬂ(xr’tr’kr)wn (X",t",k"), (1)

when ¢n(X, t', K) means the normalized eigenfunctions of the stHias possess one

electron, andx, t', k (X, t", k', resp.) are position, time, and spin variablesll A
physically-important properties of gquantum-mechahisystems like charge density,

current density, etc., can be read off from thesdgrmatrix. In general, this is always

true in the approximation in which the interactmithe electrons can be ignored; i.e., in
which the typical quantum-mechanically intuitiveucse of events does not enter. The
density matrix thus mediates an intuitive, corresjpog picture of the actual process that
is similar to what the classical-mechanical atomadel does. The demand that thein

(1), which, according to Dirac, can also be exprdsa the form{( = t):

R =R (2)

should be normalized can be posed in paralldiéaguantum conditions of the previous
semi-classical theory.

The temporal change in the density matrix will Betermined by the Dirac
differential equation:

HR=|in-2 eAb(x’)+a{ihaa epg(x')}ﬁmc}R:o. 3)

4= — -
cot' ¢ X, C
From now on, the following notations shall be apglihroughout:

1 "
X/i + X/i

Coordinates: ct'=x,=-x* , xX=x, X, =X, ; 5 =¢, |,
Potentials: A =-A", A=A,
U v
Field strengths:ai— oA _pw ,F®=-F, , 4)
&, o,
(Fol,FOZ’FO?:):QE’ (F 23,F 31,F lazﬁ’
Spin matrices: a° = 1, a,=- 1, a =a

Greek indices always run from 0 to 3 and Latin ones 1 to 3. The raising or lowering
of indices shall result from the usual formulash& theory of relativity. Doubled indices
shall always be summed over. Since tffedo not transform simply like a vector, the
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chosen notation only amounts to a convenient abbrewrifdiothese quantities. Equation
(3) now assumes, e.g., the form:

Al 0 _€ , _
{a {Ihi C&(x)}ﬁmc} R=0.

If, as the Dirac theory of holes requires, allassabf negative energy are occupied, except
for finitely many of them, and also only finitelyany positive energy states are occupied
then the matribR will be singular on the light-cone that is definad

X, X° = 0. (5)
Following Dirac, one then suitably considers they meatrix *):
Rs=R—Re, (6)

in place of the matriR, in whichRg refers to the value & for the state of the system in
which every electron level is occupied. As ondlga®nfirms, fort' =t, R- goes to the
Dirac J&function of the variableg’, k', X", k". The matrixRs already has a symmetry
relative to the sign of the charge that will be artpant in the formalism that follows:
Under the addition o Rr, it goes to the corresponding matixof “hole” theory.
Under subtraction ot Rr, it goes to the negative density matrix of a distiion in which
the states of positive energy are occupied and pibstive energy states are free.
Permuting the points, t', k andx’, t", k" and switching the sign & are equivalent to a

change of sign in the electric charge. The simgylaf the matrixRs on the light-cone
was investigated by Dirac; one can represent thexma the form:

a X
(Xr,krlelxn, k"):u(x/‘pxp)z_x/]\lx +W|Og|XAXA|, (7)
A A

in which:
. P
. _8 [
| chPAdX”

27 ¢ ©

u=

(The integral is to be taken along the straigte fromP’ to P".)

The quantityw is determined uniquely by a differential equatibatv is determined
only up to an additive term of the forrd x;, Og. One ordinarily deduces the charge
density, current density, etc., from the densityrimék when one makes the Ansatz, e.g.,
for the charge density:

P = X (KR |x K); 9)

Y The doubled matriRs is the matrix that Dirac denoted By .
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corresponding statements are true for the other physgicattities. Now, due to the
singularity of the matribR, this conclusion is obviously incorrect — e.g., when xtereal
field is present- since only the deviation of the density matrix from therixaf the
state in which all of the negative energy levels fdled contributes any charge and
current density. From Dirac, one would then have tdraabfrom the density matrix,
another density matrix that is determined uniquely by dtereal field in order to obtain
the “true” density matrix — we call iK( k' | r | X", k") — that is definitive for the charge
and current densities, energy densities, etc., corresgptalequation (9). We set:

r=Rs—S (10)

in which S shall be a function o),k and x;, k" that is uniquely determined by the

potentialsA’.
In place of the differential equation (3), one now thesequation:

Hr =—HS (11)

The right-hand side is a function of the electromagniéld that must be determined
more precisely; the original homogeneous Dirac equa8pnv{ll then be replaced with
the inhomogeneous equation (11). Such an equation is tmalnetpression for the fact
that matter can be created and destroyed. The typeation and annihilation will be
established by the form of the quanti$s. If no other external fields are present tisen
shall be given by the value & for the distribution in which all negative energy stat
are occupied. We then assume that the matvanishes everywhere in field-free space.
The set of all matter that is collectively creatduew an external field is imposed and the
again removed can be ascertained without any closer apyation onS by the presence
of external fields. Then, whe®s (and therefore) is known before the imposition of any
sort of field the value oRs can be ascertained from equation (3) after the felagain
removed. However, after the field is removBa@gain has its original value, s@an also
be calculated. Nonetheless, conversely, the rekthieamatter created by the imposition
and removal of the fields gives the general referena# pmi the form of the right-hand
side of (11) in the presence of fields. For examplsingle perturbative calculation
shows that the total set of matter that is createtthdymposition and removal of the field
is, in general, already infinite when the temporal défeial quotient of the electric or
magnetic field strength is sometimes discontinuoush& process of imposing and
removing it, and first becomes correct when the fielcergjths or potentials are
themselves discontinuous. From this, one concludestliatight-hand side of (11),
along with the potentials and field strengths, must atsatain the first and second
derivatives.

Dirac (oc. cit.) carried out the determination 8fin the presence of external fields in
such a way that he described a certain mathematicaggdbat gave the matifi from
the sequence of singular parts; Dirac identified the slitie singular parts thus obtained
by S However, the mathematical process that was chbgddirac did not deliver the
aforementioned value &in the field-free case, but one that differed froryita matrix
that was regular on the light-cone. Whether or nain@mue determination of the
inhomogeneity in (11) is therefore hardly possible usingm&r arguments, by
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considering the conservation laws for charge, enengy,i@pulse, one can restrict the
possibilities forS in such a way that a definite value can be distinguisas a first
hypothesis. We denote the valueSthat is valid in the absence of external forces and
potentials (cf., above) and the one that is calculateBikac, loc. cit., by equations (20)

to (22) byS . If no fields are indeed present, but potentials whotsions vanish enter
into equation (3), the, is to be replaced with:

G [ A,
nc).
v

5.

The quantityS then becomes the most important term that possdssedighest
singularity on the light-cone and includes these quastitivhere the integral should
again be taken along the straight line frBnto P”. We set:

a't
- [ Atdx,
e,

S=e 5 +S. (12)

If one developss, for smallx, then, from (7), it must be capable of being represented in

the form:

A

a X, X

S = — +blog~
X, X

A

. (13)

The tail end of the density matrix is important only tbe calculation of the charge,
current, and energy densities, so (cf., 2) for the dpweént of the quantite in x, it
suffices to know only the terms up to third orderxininclusively and forb, only the
terms up to first order ix, . Furthermore, on the same grounds, it suffices ltulete
only the terms that include the’ only linearly. Expressions foa and b that are
compatible with equation (7) and Dirac’s results on the $anigies of the density matrix
read (up to higher-order terms):

. 2
azul—_ X a’ s -0 Oy |- e2 > X, X, X a’F*F, ¢,
24nc 05, " a& | agn

: 2
b:U (S| a,) aFr/] + ez . Xﬂa'ﬂ(F, Fr/] _Ea/IFTUFTUj )
24nc - 0&  48i°c " 4"

(14)

n

X +ix
2

Here, the field strengths are always to be takeregpaisition = ¢§ . The quantity
u is given by equation (8).
If one definesS by means of equations (12) to (14) then the differdfce S can
: . XA Xﬂ)ﬂ/XH Auvmr Ap
become singular on the light cone by way of termypé t———- A", x, x, A" log

0
XpX
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(a‘a* -a’a’)A,
X, X"
charge density, and the energy and impulse density fhenmdensity matrix when one

goes to the limitx, — 0, not on the light-cone, but in spacelike or timelilections.
The aforementioned singular terms then contribute notkirige terms that are not linear
in a; already drop out under the passage to the limit.)

The matriceR, Rs, S andS are all Hermitian; i.e., under an exchangedpk’ with
X", K" (and thus, under a change of signXpthey go to the conjugate values.

The calculation of formulas (14) results most simfiptym the process that was given
by Dirac (oc. cit). The mathematical form of the expression (14) shives the
arbitrariness that comes about due to the choice ofitjgaatandC, if one would like to
allow no essential complications in the expression(Idy, actually only consists in the

| Xo X°|, or . In these cases, one can, however, deduce the tcanen

fact that an expression of the fosgnx’a’ % can be added ta, along with another
one of the fornx, x° x, o F” F,», without changing the singularities of the ma&jC

is, moreover, completely arbitrary. For the changeé eurrent densities that follow from
the density matrix, the two indeterminacies dimnd C) give rise to an additive charge
and current density in the same way. One can theredtablish the first term ia in the
manner that was given by (14), and all of the indetermimadpe charge density is
pushed ontdC. The second term ia is then, as was shown in 2, determined by the
conservation law that was given in equation (14). The arbigss in the choice of the

constantC is ultimately uninteresting due to the fact that, fidirac, the equatiof{w =

0 is true for the matrixv that is defined in (7); i.e., the quant&ydrops out of the right-
hand side of (11) (up to terms that inclugfeor x; quadratically). This is therefore only
true when the electromagnetic field, along with alitefderivatives, is continuous and
the matrixw can be developed xy andé, . If one makes these assumptions then one
accepts the disadvantage that one cannot simply cotimetheory with the special of
field-free space (e.g., by perturbative calculationsoné allows discontinuous changes
in the higher differential quotients of the fields ohet singularities then the equation

‘Hw = 0 is no longer true at the singular places in questioth,the choice of the quantity

C becomes important. In this case, the suitable cloditdee quantityC will be found by
the following argument: One thinks of a field that is getegtdy a given external charge
density as emerging adiabatically from a “null” field. nfatter field will arise from this
process that is given by the matrix As equations (13) and (14) teach us, according to
the choice ofC, this matter field will completely or partially comsate for the external
charge density or increase it. We will now choGssuch that the total charge of the
matter field that is given by vanishes for the process considered. If this were mot th
case then under the “imposition” the external chargesite could not, in fact, be
separated from the existing electron density; i.e.,woeld already have to define the
“external” charge density to be the sum of the twosdies. We will come back to the
mathematical treatment of this question in 3. There,wile also make good the
calculation ofC, which indeed, from the statements above, has moreematical than
physical meaning. Here, only its value shall be given:



Heisenberg — Remarks on the Dirac theory of the positron 7

h 2
C= 4(—) g2lF7. (15)

whereyrefers to the Euler constampt= 0.577...

With that, the determination of the inhomogeneity indtgerential equation (11) is
completed. In regard to the current that follows frame tensity matrixr, our
assumptions are equivalent to those of Ditac. Cit.). On the other hand, as Herr Dirac
cordially communicated to us, the choice of ma®ithat was made here delivers a
different energy and impulse density than Dirac’s ahalices.

2. Theconservation laws. The charge and current density follows from the density

matrix r in the usual way, and from an investigation by Tetrddethe energy and
impulse tensor of the matter waves can be derived thenfollowing equations:

S,(6)= eZ’a,f,k,, (&K |r|é k"),

H(E\ =[im Ji 0 _& X ul £_X
Uu(a—[!m){ICh@ Z{A (E+ 2j+A (5 ZH}

(16)
X X

ar. | E+= K |r|E-= K" |.

S o[ Erp ki lE—3 k)

In order to show that the conservations laws forguentities thus defined have the usual
form, we shall first prove the following equation:

Sat, {ih%—gN (E+§j+§N (g—gﬂ(gwﬁz, K |r |5—52,k"j =0, (17)

KK

up to terms that are at least quadratic in xhe Equation (17) is equivalent to the
assertion that:

Sat, {ih%—(—zN (5%}‘_2/4* (g—gﬂ(aﬁz,k' B |5—§2,k"j =0,  (18)

KK’

up to quadratic terms xy . The equatioflfRs = 0 is then indeed true for the matRx,
and certainly so is equation (17). Now, one has:

) H. Tetrode, Zeit. Phy<9 (1928), 858.



Heisenberg — Remarks on the Dirac theory of the positron 8

—%T A dx;, J- A dx;
ind_-Sp (5+ j+EA” (5—% e’ =ze E‘EJ Fdx, (19)
& ¢ 2) ¢ 2 cy
andaisb = 0. If one then observes tttcan be written in the form:
A
a* x) f(X° x,) + Aneg(xX” x,)

then it follows that equation (18) is true in any eventthe first part o namely:

8 [ A,
ncl.
v

5.

Thus, we still have to show that equation (18) is trueHe S, part. Its validity for théo

0
0

log

part ofS is then self-explanatory, because, from Dirac,itiagrix w satisfies

Hw = 0 (cf., on this, pp. 6). Thus, it remains for us to wiiscthea / x;x* part.

Calculation shows that, from (14), the terms that afieen the differentiation with
respect toé; in the first part ofa, due to equation (19), cancel those of the second part
precisely. With that, the validity of equation (17preved.
The law of conservation of charge follows from equat{17), when one takes it to
the limitx; - O:
0s;

0@3 kaakk(fklrlfk) T (20)

From the remarks regarding equation (14), the pgassathe limitx; - O is to be carried
out, not on the light-cone, but on either a sp&esadr timelike direction.
For the conservation of energy and impulse, amsfin the same way:

UL (&) _
0¢,

'xif'l{ic %‘S{A“(&g}A"(E—%ﬂ}k,k, “3E (5 SKIr £-2 k"j
- Im{%%{Aﬂ(& j+A“( ’;H}Zak < (5+_ K|re-2 k"j

and, from (17):
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QU (&) _
FY3

9 “ ple XU af e X+ S pf e
Ix'[n{'Ch@—E{A (5+ 2)+A (5 ZHH ichA (&L 2j+ichA (5 Zﬂ

> s [5 X Klr1e-2 kj (&1

) , \
i o (g e
_—eF”f‘(f)Z"ak,k,, (&K |r|é K)==F"*s,.

If one adds the energy-impulse tensor of the Maxwelt fi

v = Lpe, s aeer, ) 22)
ar 4

to U/* and sets down the Maxwell equations in the form:

Fy =-4mrs; (23)
65
then the tensor:
T/ =UY + V) (24)
obeys the relation:
U
GL =0. (25)
0¢,

From Tetrodelfc. cit.), the differenceJ,, — U, is a tensor whose divergence vanishes,
moreover. One can also symmetrize the energy-septensor of the matter field
without disturbing the validity of (25).

One can also briefly summarize the results upow m the following way: If one
restricts oneself to an intuitive analogue theofymatter fields then the well-known
difficulty with the appearance of negative energyels in the Dirac theory can be
avoided in such a way that one replaces the honeagsnDirac differential equation (3)
with an inhomogeneous equation, where the inhon®gens indicative of “pair
creation.” The usual conservation laws are vatidthe matter field that satisfies this
equation, as well as the Maxwell field, and at shene time the energies of the matter
and the radiation field are always individually jpive.

One can recognize the invariance of the theoryeurad change of sign of the
elementary charge most simply in the following w&mne replaces £ with — e in
equations (11) and (16), as well a& K |r | x', k") with = (X", kK" | T [ X, K). The
original equations (11) and (16) are then valideomore for the matrik.
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3. Applications. Two simple examples shall illustrate the applicatmf the
methods that were depicted in 1 and 2. We first assuatetbcalar potenti#l,, which
is regarded as a small perturbation, is slowly introduceldtlaen kept constant, and then
ask what sort of matter is created by it from origin@mpty space; thus, the charge
density that gives rise to the potent®&0 shall be referred to as the “external charge
density”?).

We next solve the Dirac differential equation for decton whose state is
represented by a plane wave before the imposition dialoe Its eigenfunction is called
{» and before the imposition of the field one has:

UHX) = Un(x) & (26)
We set:

Gx) = 3 6 (%) UnlX) &% (27)

and from:

{a‘ {ih 9 eA”(x’)}ﬁmc}z// =0

o c
it follows in the usual way that:
H e\ e (28)

where:
Hom = | ug(x'")iza* A (X")u, (X") dX" (29)

Here,| dx" means integration over the position variables sinmation over the spin
indices.
From (28), one deduces, when Hhg, are constant in time, that:

(- 50
g —-&
Cnm = Ham 5 5 M+ Ohm. (30)
Py~ P

The constants,, thus depend upon the type of temporal increas&,i) we would like
to assume that the increase happens so slowly aifmrmaly that the &, vanish in a
sufficient approximation. One then has:

and

) This problem has essentially already been treateditac in his report to the Solvay Congress in
1933.
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0

_+U (x)}eh o) (31)
p

m

wn(x)—{Zu (X)—"5

Terms of order higher than the first ki, will always be neglected in what follows.
From its definition, the matriks satisfies:

(X, K |Rs|X", k") = %{ D, WX KW, (XK = 0 (XK W, (X",k")] (32)

n,pg>0 n,pl<0

We can now divide the sum over all states intordegral over the impulse and a sum
over four possible states for each impulse. Thexaipr:

alpl'*'ﬁm
|p° |

in which the numbel is to be summed from 1 to 3 (as always for Latiliges), has the
property that it yields + 1 when it is applied toyastate of positive energy and — 1 for a
state of negative energy. With the help of thigrapor, the summations over the spin
states may then be easily performed, and all Ehaa'ms is the integral over the impulse.
Thus, in the following, one will always set=t"; i.e.,x” =x*":

(X', k: |R§|X"a kn) =

1¢d ' ﬁ ? (Xp =Xy ", — -p")+p"x; X,
_E.[h_faplgolrm p( ) '[d J' '[ [xq(p p")+p" X -0,

e 0 m
Ll al pnl +,3mCJ EA (X ) [1 al prl +ﬁrmJ
e 1 J1p% I+ Ip? p? |

e 0 "
Ll_ al pnl +,3mCJ EA (X ) [1 al prl +ﬁrmJ
1”1 J)Ip% |+ Ip” p? |
+ con. (33)

The first term in (33) represents the matxand will be subtracted frols , from the
definition ofr. The next two terms go to:
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__J‘ J‘ J Lx(p! ) p - ] 2 A 1p%p '|—p,’p,"—m202. (34)
Clp” [+ 1p” | I’ p” |

For the evaluation of this expression, one now, seteippropriate:

t' + t"

p' :t+%, ]J":t_%, 'C'_'C":'C, 5 =R. (35)
It then reads:
U LI 0" O I _ A" — 22
_ EJ’deJ' dgAO( nr) ; )gjd—:eht | po,p | p p r(.,n (;’ . (36)
4 " I+ P DI%p” |

The fraction under the integral signs is best dgwedl ing for g < mc, and takes on the
value:

2 2 4 2.2 2
iz g__(‘cg)2 _ 392+5(t9)49 _ 7(‘&92 . (37)
2k X2 16 X 16

in which we have sek? = k* + nfc®. A lengthy calculation leads to the following uts
for (36) (for small values oft|| =r):

e w8 0, m e 1 2(2 2 2 mcrj 1gc¥ ¢°
—|dX" | —=A e’ 0= ———y—=lo +— -
LA h‘{g 0 3 30 )3 1ewe?

_ 1 (21 omer 1
" o 30 Joa T s

1 .

15( j (grad, ¥ (grad 3} (38)
The first two terms- when one doubles them, since the complex conjugatt be

added to (36y represent the part:

A

—+blog %

A

of equation (13), and are thus dropped when ons fjomRs to the matrix. Formally,
(38) also subsequently gives the basis for thetfattthe constar@ in equation (15) was

2
set equal tm(ij e?¥ ¥, We thus arrive at the fact that it is unnecessarcorrect
mc
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the perturbation calculations of the total charge ¢jesierates the field at each new step.
Finally, for |v | = O, the density matrix'( K |r | x", k") becomes:

1 e nY
K| & K) = ——=| — | AA°(D), 39
(&, K [r|d" k") 120nhc(rmj (<) (39)
and the charge density itse4°(&) = -4, where o refers to the external charge
density]:
1 e(nY
= ——| — | Ap,, 40
p 15nhc(mcj Po (40)

which was already computed by Dirdc This additional density, whose total charge
vanishes, also has no physical significance. It is theaparable from the “external”
density and will therefore be calculated automaticdtipg with the “external” density.
The “polarization of the vacuum” first becomes a ptgisproblem for the temporal
variation of external densities; one imagines, e.ghage distribution that moves back
and forth periodically. In such a case, one can Hidigithe external charge density in its
temporal mean value and a second density that oscifletesdically around the null
value. The spatial integral of the second part vanistesiwhe external charge density
moves back and forth in a finite spatial domain. Theswterations up to now are valid
for the part, so for them, the “polarization” plays physical role. The total charge of a
particle can thus never change by means of the polarzafithe vacuum. In order to
ignore what happens for the second part, we considpladge of the temporally constant
scalar potentiah’ in equations (26) to (29), a potential that varies peralyi and set:

A%(x) =B%(r') & + conj. (41)

The only change that must be made to the expression®o(@H) consists in the fact that
the fraction:
1

ap” 1+ 1p” NIp’p? |

is replaced with:
|p” I+ 1p” | |
[( p% 1+1p” - F211p°p? |

The new formulas thus go over to the old ones agimtply — we také << mc — in such a
way that the expression under the integral sig(86) is multiplied by 1 2/ 4kZ. In

addition, terms ind generally appear in the density matrix; we wouke o restrict

% P. A. M. Dirac., Report to the Solvay Congress 19BBac’s value differs from the one above by a
factor of 2, which, as Dirac graciously informed nsegiue to an oversight in his equations.
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ourselves to the calculation for the charge densitywftich the terms i/ play no role.
If one considers only the terms that are proportitmgf in (37) then the expression:

FIENOIES )
K| 2 A |4l

now gets added to (37). The part of the density in quesi&n becomes:

[ eme 2.2
- [ 998 goemyer ™ +conj e L9 (43)
415 h° c h*(mc)
and one thus has the extra density:
peo L€ 1 )
157 he (me)? 7

Here, the periodically oscillating density is deswty o, which gives rise to the field

Bx)e" °, and whose spatial integral vanishes. Equatid) tdaches us that the dipole
moment that is coupled to an oscillating chargé balreduces by the polarization of the
vacuum, and indeed even more so as the frequermscdlation increases. As Dirac has
already suggested, this situation necessitatesgehin the scattering formula of Klein
and Nishina, which generally amounts to perhapsteng of a percent in the realm of
the Compton wavelength.

If one carries out an analogous calculation, ideorto compute, say, the matter
density that is induced by a light wave then thigeg the result that the periodically
varying field of a monochromatic plane light wavengrates either charge or current
density. One can easily see that this result almains true to an arbitrary
approximation: One cannot distinguish any sign fbe charge by means of an
electromagnetic field in empty space, so the indut®rge density must vanish. On the
grounds of invariance, the current density alsaskaes then. Certainly, the vanishing of
the energy density does not follow even from thigd in fact two plane waves that pass
through each other can already give rise to thatione of matter. The intuitive theory of
matter waves is thus no longer appropriate forttkatment of such problems (pair
creation and annihilation), and we thus go on éoghantum theory of waves.



[l. Quantum theory of wave fields.

1. Presentation of the basic equations. In the quantum theory of matter waves, the
Dirac density matrix corresponds to the product of wavetimme with their conjugates;
we then set:

R= ¢ (X, K) ¢«x", K"). (45)

The commutation relation:
WX, K) X", K + X', K ¢ (X, K) = X, K') e (46)

is true for the wave function (fox, = x;). If one considers the Maxwell field as a given

c-field then the Dirac matrix is simply the expectati@iue for the matrix that is defined
by (45). Due to the commutation relation (46), one hashe@mgquantum theory of waves:

Rs =4[/ (X, K) (X", K") = X", K") ¢ (X, K)]. (47)
The equations:
HRs=0 (3a)

andRs =r + Sremain unchanged and only in the form of the inhomogehéiin:
Hr =—"HS (11a)

can a change become necessary due to the non-commutétfeid strengths with
potentials. Now, no non-commuting functions appeahnénfirst term:

a'
- | Aldx
hc E[ A

.

Terms enter int&; [cf., (13) and (14)] that are quadratic in the field gjtha and play a
role when one calculates energy and impulse densitytinerdensity matrix. As long as
one restricts oneself to the calculation of charge emrent density these terms will
longer appear. Now, since the Maxwell equations, togeilith the inhomogeneous
equation (1l1a), determine the physical evolution completiddg reasoning of the
formalism that was depicted in | in the context of quantheory results from a process
that was given for ordinary quantum electrodynamics inote of the author) in
connection with previous research of Klén This process starts with the Maxwell
equations and the wave equation, which are treated-rasmber relations and are
integrated according to the usual methods of the intitiveory. Ordinarily, a
perturbation process is applied to the integration ofbdec equations, in which one
assumes that the interaction between light and mattmnall and is developed in powers
of the charge. The plane light waves in empty spacetl@glane electron waves in
field-free space then take the form of the unperturbgstem. Such a perturbation

) W. Heisenberg, Ann. d. Phy&(1931), 338.
%) 0. Klein, Zeit. Phys41 (1927), 407.
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process is also applicable in the present theory witfurtber assumptions. It is then
necessary only to also develop the ma8ihat is appropriate for the inhomogeneity in
the wave equation in powers of charge, and to consideintheidual terms in the
development that are produced by the perturbation procesgnnat the successive
degrees of approximation. In order to dedReeandr — and therefore, the charge and
current density, in the zeroth order approximatioone will then only have to subtract
the matrix§ fromRs . If one represents the wave function in the form:

Ux K = Y au,(xk), (48)

where the equations:
8,8 * 8,3, = dm (49)

are valid, then one has (in the sequel, we shaliyd setx; = x; ):

Rs = [¢/ (X, K) X", K') = X", K') 4 (X, K)]
Z% B8~ 8,8,) Uy (X, K ) U, (X, K"). (50)

From this, it follows for, when one considers the definition$f, that:

0

Ipﬁl

n,m

=23 [a@n a,a, + nmjunm(x',k’)um(x",k")- (51)

From Jordan and Wigné), one represents the operatarsn the form:
a” =Ny An Vi, an =VaAn Ny, (52)
in which A, converts the numbe, into 1 —N,, and one sets:
Vi = Mn(1 — ).
For the states of negative energy, one can nowdote?):

al=a =V/A'N' =V.A N, (53)
aT] anD NnAnVn NnAnVn

One will then haveN; = 1 —N, .
One finally obtains for the matrix

%) P. Jordan and E. Wigner, Zeit. Ph4%.(1928), 631.
% Cf., e.g., W. Heisenberg, Ann. d. Phy8.(1931), 888.
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r =

= z anDanUnD(X', kl) un (X", k") _ z a;Da;UE(X' ’ kl)un (X" ,k")+ z aEamunD (XI ’kl )um (Xn ,k" )

Po,n>0 Po,N<0 n#m

= D7 NUTOGK) U (KD = DT Nt (G KD (LK) + D ala ud (4K Uy, (¢ K).

Po,n>0 Po,N<0 n#m

(54)

This representation of the density matrix agreds e representation that was chosen
by Pauli and Peierl§, Oppenheimer and Furry, Fodid. cit.). N, means the number of
electrons,N,,, that of the positrons, and the symmetry in tle®ti on the sign of charge

is assumed from the outset. This representationoiwever, only correct in the zeroth-
order approximation. If one goes on to the fingtes approximation then, on the one
hand, the coefficienta, will also contain, as functions of time, termstthee linear in the
field strengths [cf., e.glpc. cit., Ann. d. Phys9, pp. 341, equation (9)], and on the other
hand, the terms that are linearann the definition ofr must be subtracted from the
matrix S, and thus the terms:

i " 7 oF P
& [ Wk, 15+ X" | Fe_gp T |y qr P jog XL (55)
hc, A8 | X X 0, a¢, a¢, C

These terms, together with the terms in the caefitsa, that are linear i, then give a
contribution to the matrix that leads to a finite charge and current der(gityhe first
approximation) and which can therefore assist & dalculation of the electromagnetic
field in the second approximation, etc.

Instead of this process, which is closely conreetéh the integration methods of
the intuitive theory, one can, however, also defnBlamiltonian function in the usual
way and then carry out the perturbation theorytli@ associated Schrdodinger equation.
To this end, we employ the expression for the tetargy that follows from equation
(16), so we do not go to the limit = 0. The total energy takes the form:

e o e 5o2]
xwzk"aL,k,,;%(a,?aTn—m?)uf[&?k'jum(f——;k"j

- 3 B Y4 i, -, €45 Ju (€5 .
k' ,K" n,m

Y I would like to cordially thank Herrn W. Pauli for theitten communication of this result.
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R G T e S L

(56)

If one again develops the Hamiltonian function in powsdrthe elementary charge and
additionally drops the term& + §5%, as well as the corresponding terms in the expression

(14) for the zero-point energy for radiation, therha limitx — O one gets for the zero-
order Hamiltonian:

Ho= Y N.E,-Y NJE,+>M v, (57)

E,>0 E,<0 ge

where one has s&, = - cp’ and M,. means the number of light quanta in the spate
with polarizatione. Likewise, this yields for the perturbation energyicdt order in the
limit x - O (for the sake of simplicityA’ is set to zero):

Hi = [dEeN ()Y abye| 3 NU(EK U, (€.K)

E,>0

= 2 NU(& KDy, (€, k")+%z (@ — 8, Uy (€K U, (§.K") |- (58)

E,<0 n#m

The present theory thus agrees with the result©Ompmbenheimer and Furry in the
expressions foHy andH;. We thus obtain terms of higher order that corsenfthe
matrix S. The passage to the limit — 0 cannot be performed immediately in these
terms, either. Moreover, in carrying out the pedation calculations to the second order,
nl Ir
the terms inH, must be combined with the terms of tyé_élithat originate inH;
L =W
before one can then carry out the passage torttiexli—~ 0 and yield a definite result for
the energy to second order.
In this way, the perturbation process can berimcpple, performed when no infinite
self-energy, as in quantum electrodynamics up te,rieads to a divergence in the
process). The perturbation energys has the following form:

H2:jd§( ifel_::(J'AadXA)z 0 + 1 € X/]XU Aa{aFog_aFm}

Ox, 48P hcx X’ | 0&, O,

T 1 by
[éFTOF 0——2FwF”ﬂ. (59)

Y Cf., on this, V. Weisskopf, Zeit. Phy89 (1934), 27; furthermore, on the search for ways to avoid
the infinite self-energy of the electron, see M. Bdtrgc. Roy. Soc. (Al43 (1934), 410; M. Born and L.
Infeld, ibid., 144 (1934), 425.

T
(2

C

1 € XX _, 1 €
- - o F . +
9677 hic X, X" K A8T he
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Due to the integration ovef H; gives rise to only matrix elements that corresponti¢o t
creation or annihilation of light quanta of the sameuise. For the ordinary processes
in which light quanta are emitted or absorbed or scatt¢hede matrix elements then
play no role in the first approximation. In the pebpation energyHs , which has the

form:
_ (ag|—ich (1€ px | 0S| 2L GE)
= jdg{ I(:7/224( hcAX”j 6x0:l 4877'2(th hcj g((x x? ) (60)

and gives rise to matrix elements that lead to sbattering of light by light (the
annihilation and creation of two light quanta witqual impulse sums). Halpethand
Debye?) have independently proved the fact that the Dir@ory of the positron has the
scattering of light by light a consequence — evéemthe energy of the light quanta is
not sufficient for pair creation. However, the matlements inrH, give no accounting
of the magnitude of this scattering, since it mheste been previously combined with the
contributions that originated in the lower-orderpagximations in order produce a
measure for the probability of a scattering procdsgher perturbation terms th&h do
not appearts, Hg, etc. all vanish in the limi = 0.

2. Applications. For the most practical applications — e.g., paeation,
annihilation, Compton scattering, etc. — the thesegcribed here does not yield anything
new compared to the formulation of the Dirac thealhyalong. Thus, in all of the cases
mentioned, one can break off the perturbation d¢aticun at the second-order
approximation and the new termsHn, due to their special form, contribute nothing to
the transition probabilities that were sought. rifjsi are different for the aforementioned
problem of the scattering of light by light and thie coherent scattering grays from
fixed charge centers that was discussed by Delbiitke calculations in these problems
are so complicated that they will not be attembieck.

We would therefore like to restrict the applicasao an example in which the term
H, in equation (59) becomes important; we shall theatmatter density that is linked to a
light quantum, and in particular, the self-energyhe light quantum that is given on the
basis of this matter density. If one first ignoties termH, and calculates with the usual
methods heretofore then the process can be repedsanfollows: Since matrix elements
appear inH; [equation (58)] that correspond to the conversidm light quanta into a
pair, a light quantum generates a matter fieldtsnneighborhood in a manner that is
similar to the way that an electron generates avédiXield. The energy of this matter
field becomes infinite in complete analogy to thenite self-energy of electrons. Now,
part of the singular terms in the infinite self-emeof the light quantum vanishes when
one considers the perturbation tém. They are then arranged such that no infinile se
energy would appear for a classical light wave.vé¥heless, the following calculation

) 0. Halpern, Phys. Re¥4 (1934), 885.

%) | am deeply grateful to Herrn Debye for cordially commatiigy his reasoning.

% M. Delbriick, Discussion of the experimental resultk.dfleitner and her colleagues, Zeit. PH34.
(1933), 144.
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shows that an infinite part of the self-energy tigtrequired by the application of
guantum theory remains. The analogy with the selfggnef the electrons is complete
now. In the Maxwell theory, a continuous charge thistion would also lead to a finite
self-energy; it is the “quantization” that leadslte infinite self-energy. If one represents
the quantization of the electromagnetic field by pake-light quanta then the infinitude
of the self-energy also emerges in the intuitive theof matter waves, since the
inhomogeneity in equation (11) includes the field strengtlosthair first and second
derivatives, which become singular in the contextgiftliquanta.

For the calculation of the desired self-energy, canre start from a known formula of
perturbation theory for the energy of second order:

Wo=H,S -siHoSi+StHi—His +Hy. (62)

In this, Hp, H1, H> mean the various terms in the Hamiltonian functamgs; is the first
term of the characteristic matrix for the canonicahsformation:

W =sHs™, (63)
namely:
sS=1+5+ ... (64)

The sense in which the methods described in the previousrsact to be used is in the
sense that the matricékin equation (62) are first taken at a finite distancand then it
is only at the conclusion that one first takes thatlasx, — 0. The matrixs, is to be
calculated fronH; in the limitx, = 0 in the usual way:

Im = Hllm(X: O)

. 65
3= oW (65)

The element of the matrid; (x = 0), which belongs to the simultaneous creation of an
electron of impulsep” and a positron of impulsg’ and the annihilation of a light

guantum of impulsg (and polarization), has the form:

eh e 12 " U
W\/g(p’po<olae Ip /P > O)D}‘/I;/:’ (66)

whereV represents the volume that the periodic boundary dondits given on ant¥l_,
means the number of light quanta in the sgate Furthermore, one sets:

(', Po<Olaelp”, p; >0) :Jdtzu;?’,pb<0(alel)up”,pg>0' (67)
kK"

If one now introduces the expressions $rthat follow from (65) and (66) into
equation (62) — in which one must consider not dhy matrix elements (66), but the
ones that correspond to the process of the sinadtacreation of an electron, positron,
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and light quantum — then one obtains contributions frarmelms;H; — H;s; that remain
finite as long ax, x* does not vanish, and which also yield a finite coatiim toW; in
the limit x, - O when one combines them with the corresponding terms inThis is
therefore not true for the pattl{ sy — siHo) s1 . If one decomposds, into a part that
belongs to the matter waves and one that belondsetbght waves then the first one, in
fact, also gives a finite contribution fog x* # 0 that contributes finitely t&V» when
combined withH; in the limitx, — 0. The part that belongs to the electromagnetid fiel
thus does not depend upon so it leads to the sum:

> 1 s ") Fgc. (68)

o'’ =g

This sum diverges; one can immediately refer toetkgression (68) as the infinite self-
energy of the light quantum. If one carries ot snmmation in (68) only up to large,
but finite, values p' | =P and considers only the part in (62) that is prtipoal toM_,

then one obtains an expression of the form:

P

2
g =M, D%IOQR . (69)

In the quantum theory of wave field, the domaiapplicability of the Dirac formulation
of the theory of positrons is therefore not essdlgtilarger than the domain of
applicability for the elementary formulas of Pawfigierls, Fock, Oppenheimer, and
Furry. Equations (48) to (61) then show how thiesmulas can be regarded as the first
step in a sequence of approximations that satlsfyrequirements of relativistic and
gauge invariance. Furthermore, the formalism thatescribed here also yields finite
expectation values for present and energy densitiise first approximation where the
elementary formulas would give infinite values. eTiact that divergences would appear
in the second approximation of the quantum thedrwave fields was to be expected
from results of quantum electrodynamics up to now.

The situation that the application of the quantheory first leads to divergences that
do not appear in the intuitive theory of wave feekliggests that this intuitive theory, in
fact, already contains the essence of the corentesponding description of how things
happen, so one cannot carry out the transitiorusmigim theory in the original way that
was sought for in the current theory heretoforen the Dirac theory of positrons,
moreover, a pure separation of the fields that iav®lved into matter fields and
electromagnetic fields is scarcely possible anyandn particular, this comes from the
fact that in the quantum theory of waves it isigrix Rs — not the matrix — that can be
represented simply by the matter wave functignsit is therefore only a unified theory
of matter and light fields that gives the Sommerfedbnstane’/ ica definite value that
will make possible a contradiction-free union oé tiemands of quantum theory with
those of a correspondence with intuitive field tiyeo




