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I. INTRODUCTION

Recently some progress has been made towards understanding the prop-
erties of cosmic ray events in terms of properties of strong interactions
at lower energies. For example, the one-pion exchange model was applied
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Fig.1
A highly inelastic event leading to several "clumps” by means of repeated one -pion exchange

to peripheral collisions and then generalized by the SALZMANSs (1],
GOEBEL [2] and AMATI et al. [3] to a repeated one-pion exchange model
which leads to several ""clumps'' of particles in the final state (Fig.l). In
this generalized approach a very high energy process is reduced to a product
of factors, each representing production of one of the clumps at much lower
energy where the interactions are better understood.

Meanwhile elastic proton-proton scattering [4] at accelerator energies
has been found to decrease exponentially with increasing momentum transfer

| t| . Over part of the range of experiments, especially at | t| < 1 (GeV)z,
the observed behaviour may be explained by the exchange of a single dominant
Regge pole [5-8] , but the exponential falloff persists at larger [tl where
the detailed mechanism is not understood.

In the present approach we shall assume, without attempting to under-
stand the underlying reasons or formalism, that the exponential damping
of large momentum transfers is a general characteristic of high-energy
amplitudes. The rate of damping will be taken from the existing elastic proton-
proton results [4] and aﬁplied to inelastic p +p and 7 +p events. We also
employ a breakdown into low-energy clumps as in the work of the SALZMANs
[1] , GOEBEL [2] and AMATI et al. [3], whose approach and results we
follow in many respects. No restricition is made to one-pion exchange be-
tween clumps, however,

Observed features [9, 10], such as "fireballs' and constant transverse
momentum of secondary particles, come out in a natural way, with reasonable
magnitudes. The relation of these properties of cosmic rays to small momen-
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tum transfers has already been noticed by cosmic ray experts [10} , so the
present approach serves especially to emphasize that momentum transfers
are comparably small at machine energies and at higher energies. One result:
of the present approach is that a definite conception of the fireball, as dis-
tinguished from individual particles, emerges. This picture will be discussed
in detail, especially in the energy region 10% - 10% GeV where most of the
data on fireballs has been obtained.

II., THE ASSUMPTION ON MOMENTUM TRANSFER DEPENDENCE

At -1 (GeV)k t < 0, elastic proton-proton scattering decreases eprnent-
ially with increasing t] ‘and the width of the exponential peak decreases
slowly as the energy rises. The data are consistent with the formula [5, §]

- N %))

do (s,) f(t)< : >2am -2~f(t) e-zh‘“"““/?w)
dt 2 M2

where s is the square of the centre of mass energy, M is the nucleon mass,
and ¢ {t) is the spin of the dominant Regge trajectory, rising from about
a=0att=-1(GeVy? toa =1latt=0.

At larger -t, ¢ (t) seems to stabilize in the region 0.5 <¢.< 0, with
large errors. If this is true,the factor exp [-2|t| o’In(s/2M?)] decreases
no further; nevertheless do/dt still falls with increasing -t at approximately
the rate 10¥/M® = exp[ 2.3 t/M?], rather independent of energy (4] . The
reason for this behaviour is'not known. ' ’

Our assumption will be that any high-energy amplitude decreases at
least as fast as exp [ 1.1 t/M2] . This is taken directly from the square
root of the elastic proton-proton cross-section. If (II.1) is appropriate, the
amplitude may decrease faster. For the dominant inelastic processes, how-
ever, a simple kinematic analysis shows that the reactions are not in the
asymptotic region where (II.1) is valid.

Actually there are two momentum transfers in elastic scattering, the
"direct" transfer t and the "exchange" transfer u. They are related by the
constraint s +t+u=15¢ M12 The distance to the nearest singularity {t = v’
at small | t) is therefore the same in either variable; |t - u?| = fru - £m?
+u? + s). Thus our assumption can be formulated more generally: in
each variable the amplitude falls off exponentially as the distance of the
variable from the nearest singularity increases. Naturally it is most con-
venient to use t at small ] t] , for then the nearest singularity lies at a small
mass fixed independently of s. In the inelastic case where many momentum
transfers can be defined, we shall again find it convenient to use a small
one.

III. HOW LARGE ARE THE CLUMPS?

To appreciate the effect of the assumption made in SectionIl, consider
Fig. 2 for the reaction A + B » C + D, where C and D are arbitrary clumps
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Fig.2

The reaction A +B—>C +D

of particles with energies M3 and M4 respectively in their own centres of
mass. Define s = (p; + pgf andt = (p3 - p;)? in the usual way. Inthe centre-
of-mass system of the entire reaction, C and D each emerge with momentum
pr transverse to the initial direction of motion. The relation between t and
Pr is given by

_ o2, 1 2 2 2 22_‘ 2 v M2 M2+ ool
t—-pT+4s[[M3-M4f M, le [M3+N§ M- M, ZPT]]
(III.1)

One sees that -t grows dlrectly with pT Thus our assumption of exp [1.1/M?]
falloff 1mp11es exp [-1.1 pf /MZ] falloff with increasing transverse mo-
mentum, In fact, from (III. 1) it is clear that the experimental absence
of large pr directly impliés that large | t| are absent. The momentum trans-
fer is somewhat less sensitive to the masses of clumps at high energy s,

and the exponential falloff tends to restrict the masses only when they grow
at least as fast as M3 M% ~s.

Before discussing further the dymamical limitation on clump size, we
need to agree on a definite way to assign the various particles in a com-
plicated final state to clumps. Consider thecentre-of-mass frame for the
reaction A + B - many particles., Now clump C will be defined to consist
of all particles which go forward in the centre of mass, and clump D will
be defined to consist of all particles which go backward. This definition
yields a relatively small momentum transfer and coincides with the natural
experimental division into forward and backward groups.

There are various ways to categorize the exchange that occurs between
(A, C) and (B, D) in Fig. 2. It can be described as a one-pion exchange, plus
a two-pion exchange, plus an NN exchange, and so forth. Or it can be de-
scribed as the exchange of 'a succession of Regge poles. In any case the com-
plete amplitude factors into a product of terms: ‘ '

(1) The amplitude for A + exchanged object E = C. (Of course, the
amplitude must be continued from the physical square mass of E to a
negative square mass.)

(2) A factor involving only E.

(3) The amplitude for B+ E - D.

The next step is to take amplitude (1) or (3) and again break the final
state into two groups of particles. For example (Fig.3) in the centre -of -
mass of (1) we include forward-moving particles in group 5, with energy
M; in its own rest frame, and backward-moving particles in group 6.

There are now four groups.of particles in the final state, and these
groups could be sub-divided further to the point where each clump contains



532 S. FRAUTSCHI

Fig.3

Breakdown of A +B— C +D into 4 clumps

only one particle, But we shall carry the subdivision only down to the point
where each clump contains a couple of GeV. At this point it is possible to
make some qualitative estimate of what will happen without reducing the
energy further, and our assumption on exponential damping of large momen-
tum transfers cannot be used at lower energies. The question then is: how
many subdivisions are required before each clump is reduced to a couple

of GeV ? If there were no dynamical restrictions, the energies M3 and My
of clumps C and D in their own rest frames could take up all the available
centre-of-mass energy s, leaving no relative kinetic energy for the clumps.
In this case many subdivisions would be required to reduce the clumps to low
masses. However, M§ M3 would then grow as s2 and -t would grow as

s, and here the dynamical assumption of section II which damps large mo-
mentum transfers becomes relevant,

Consider first A + B = C + D(Fig.2). The cross-section can be ex-
pressed interms of the cross-sections gaec(t; M§)for A+E-C [E has m? = t]
and "BEﬁ {t; M%) for B+E-D by a slightly modified form of the Salzman re-
lation [1] :

3
9°0o 1
stomMZaMg  2(2n°p? M7 [0 4pct: M3)q,M?) Fis,t, 5y, 5210 gep (t; M) g My]
3

(I11.2)

where p;j. is the momentum of A in the lab [rest frame of B], q_ is the
momentum of A in the centre of mass of the reaction A+E - C, and gy
is the momentum of B in the centre of mass of B+ E 5 D. The factor F(t)
refers to the system exchanged; it is (t-m‘,zr)‘2 in one-pion exchange and
exponentially decreasing in our case. At high energies, with M, and M,
fixed, (III.2) simplifies to '

3% MIm?
StoMZOM?2 T2 @n)3s? O aecF 9 gep- (II1.3)

The cross-sections 0c and o g are expected to remain approximately
constant as M§ and M% respectively increase. Our method is too weak to
understand the t dependence of o,;c Opp or the dependence of F on s, s,
-and sg, but provided none of these factors increase exponentially,it is clear
that large |t| are restrained by F ~ exp (-2.3 |t|), and this is sufficient
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to establish that M3 M2< s M*2 where M* is of order 1 GeV*. The next
step is to break clump C down into subgroups with masses Ms and Mg. The
centre-of-mass energy squared for the reaction A + E -»C is M3, and the
limitation on momentum transfer leads in this case to M2 M} S M3§ M*2,
Similarly the breakdown of clump D leads to M2 MB < ME M* . Altogether
one has MsMgM Mg < M3
For example, if the lap energy of a proton-proton collision is 104GeV,

then s = 2 X 10* GeVZ2 and MsMgM;Mg < 1.4 X 100 X M#*3, If we take M*2
= (2.3)"1 GeV2[the value for which exp [-2.3 ] t] becomes exp (-1)],then

MsMgMoMg < 40 GeV4, In case each split was symmetric, Ms = Mg = My
=Mg<2.5GeV and all 4 clumps have reached the low-energy region where
one can make plausible guesses about them without further reductions. Of
course non-symmetric splits are also allowed,and in extreme cases larger
clumps would require more than two successive reductions at 10% GeV.

IV, FIREBALLS

Let us discuss in more detail the 4 clumps pbtained in proton-proton
reactions at lab energies of 104 GeV, Although we have only obtained a
maximum size,the experiments suggest that this maximum size is about
normal; and we shall confine the discussion to the case where the maximum
is attained without attempting to discover why it is usually attained, In the
. centre of mass one will see a fast clump moving forward along the original
" direction of A (remember that pt must be small for a clump) and another
moving backward along the original direction of C, each followed by a slower

clump moving along the same line (Fig. 4).
A—> +—8B
~? & &—»
Fig.4
Maotion of clumps in centre of mass of reaction A +B—>C +D

The damping of large momentum transfers between clumps suggests
the dominance of long-range forces, and on this basis one expects that sys-
tems of baryon number zero will normally be exchanged between the clumps,
, Each of the two fast clumps (5 and 8) then carries baryon number one since
‘ the incoming particles A and C were baryons, and the two slow clumps (6
“and 7) carry baryon number zero, In accordance with cosmic ray terminolo-
gy the clumps with baryon number one will be called nucleon isobars, and
the clumps with baryon number zero will be called "fireballs".
How many fireballs are there in general? We have adopted the procedure
of subdividing until reduced scattering events are obtained, each at a rel-

%It might be objected that, as ~t becomes very large and far from the nearest singularity at positive
t =2, it may approach the nearest singularity at negative t = }:M2 -s ~ 2, and the cross-section may rise
again, This possibility is excluded by the definition of t as (p, - PA)? where pc and p A areboth in the for-
ward hemisphere in the centre of mass,
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atively low energy. Because of the low energies involved, each of these
scatterings produces arelatively isotropig final state in its own centre of

- mass, though still peaked somewhat forward and backward. It is these rela-
tively isotropic final states which are called nucleon isobars or fireballs,
Now as the overall energy of the reaction is increased, the centre-of-mass
energy of each "fireball" and "isobar" slowly increases, and each of them
becomes more strongly peaked forward and backward. Above some clump
mass, of order 5 GeV for the clumps with nucleon number one and perhaps
lower for the fireballs, it becomes meaningful to split the clump again into
its forward and backward components, each of which has a mass between

1 and 2 GeV and is relatively isotropic again. In summary the mass of fire-
ball always lies between exiremes of order 1 and 5 GeV, and as the overall
energy of the reaction increases fireballs swell into dumbbell shapes and
divide rather than grow beyond their proper sizes [11) . The process is
illustrated in Fig, 5%,

&
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Fig,$

The growth of clumps along the ériginal direction of motion in the centre of mass, as the energy increases

Although the number of fireballs increases with energy, the increase
is slow. At 30'GeV lab energy, proton-proton scattering leads to two "iso-
bars" and no fireballs, At 10* GeV lab energy two fireballs have also devel-
oped, At 108 GeV asymmetric split-up leads to 6 fireballs,each with a mass
of about 2,3 GeV, In general n clumps are obtained with repeated applica-
tions of the formula

2022 2
M, M/ M#® = s (Iv.1)

leading to

(22 Mty (2 ) Mx?) = s
o (Iv.2)

([ /a0 1= 5

i=1

%It should be mentioned, however, that there is some evidence for fireballs emitnting secondaries into
a disk pattern peaked perpendicular to the incoming direction, rather than into a dumbbell pattem (e.g.
Ref.[10]). Further evidence on this point should be of great importance for the consistency of the multiple
fireball picture.
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where each of the M; is a fireball or isobar mass, not greater than 5 GeV.
Taking an average square mass for the fireballs and isobars, one finds

n=-[In {s/M*2%)] /[ln (Wi/M*2 ) (IV.3)

so the multiplicity of isotropic clumps increases as In s.

Asymmetric as well as symmetric split~ ups occur, since only the com-
bination M% Mﬁ enters into Eq, (III.1) when M3 and M3 are each much
greater than 1 GeV2. The asymmetry is especially noticeable when it occurs
in the first split-up, leading to a depletion of secondaries in one hemisphere
in the centre of mass Suppose this happens at 10% GeV lab energy, and
M2 is large while M4 is only a few GeVZ, Then in the backward hemi-
sphere a nuclear isobar, or perhaps only a single nucleon emerges, while
in the forward hemisphere M2 = M*25/M 2 can be split into 4 clumps if
M4 1 GeV* (single nucleon) or 3 to 4 clumps if M4 = several GeV?
(nucleon isobar). The general nature of the derivation showing that fireball
multiplicity rises as In s ensures that asymmetric spht -ups lead to similar
multiplicities.

From the féregoing description it is clear that the nucleon isobars and
fireballs have a similar origin in the present model. The masses of fire-
balls and isobars are sufficiently low relative to the nucleon mass, however,
to lead to certain differences, and one of these is the multiplicity of particles
emitted from the fireball or isobar. Consider the mass 2.5 GeV, for example.
A state with this mass and baryon number one is expected to contain one
hucleon and one or two pions. A state with this mass and baryon number

_ zero is expected to contain three or four particles which are most likely
T, p, W or n. The decay of thep, w or n then leads to a final state with
about six pions. This is what happens, for example, in the final state of
pp annihilation. Thus the fireballs produce pions much more copiously than
the nucleon isobars. For an incident lab energy of 10 GeV each isobar
emits one or two pions and each fireball about six, or a total of about 15
pions. .

The logarithmic growth with s of fireball and clump multiplicity Eq.
(Iv.3) indicates that particle multiplicity increases as Ilns at large s where
the fireball picture is applicable [3], since an average fireball emits about
the same number of particles whatever the original s is. Actually the rate
of increase in pp scattering from 30 GeV to 10?4 GeV in the lab is somewhat
enhanced because the two fireballs which appear in this energy region pro-
vide more partiéles than the two "nucleon isobars' which were already
present at 30 GeV., For example we expect the total number of particles,

N, to increase from about 5 to 17 as the energy rises from 30 GeV (2 nucle-
on isobars)to 104 GeV (15 pions + 2 nucleons) whereas the form N = a Ins
would give a rise from about 5 to 13 in this interval, This makes our predic-
tions fairly compatible with the data even though the observed multiplicity

is traditionally represented as growing at a rate N ~s# over much of this
region [9, 10].

Everything that has been said for proton-proton scattering would also
hold for pion-pion scattering, with one of the outside nucleon isobars re-
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placed by a fireball, Asaby-productat 30 GeV where only two clumps are
typically formed, one expects a somewhat higher particle multiplicity in
7 N reactions than in NN reactions because one of the clumps contains only
pions in the former case,

Since events of arbitrarily high energy reduc€ to products of events
at several GeV, most of the sécondaries are pions, and K mesons and
baryons will be produced in ratios similar to those found at a few GeV,

V. TRANSVERSE MOMENTA

One of the most persistent phenomena in high-energy and cosmic-ray
physics involves the transverse momentum distribution of inelastic second-
aries; for any incident energy, the distribution is peaked around pr ~ 0.4
GeV/c. At accelerator energies the tail of large pt has also been studied
quantitatively [12] and is found to fall off exponentially, consistent with
exp (-pr/90.2) [pr in GeV/c].

The kinematical dependence of t on p% (Eq. III.1), together with ex-
ponential damping of large |t|, damps the transverse momentum of each
clump as exp {-2.3 p2 ). As a consequence each fireball or nucleon isobar
moves approximately along the line of flight of the particles which initiated
the reaction. Then the transverse momentum of gach particle has a com-
ponent due to the motion of its clump (shared among several particles and
therefore small), plus the motion of the particle relative to the clump centre
of mass. The later contribution refers to a reaction of only a few GeV, so
the transverse momentum of individual particles reduces approximately
to the low-energy figure no matter what the incoming energy is. Largetrans-
verse momenta are strongly damped by dynamical factors, and further
damped at a few GeV by competition among the particles in a clump forphase
space. :

What does this model have to say about the transverse momenta of dif-
ferent kinds of secondaries: m, K, N? Distinctions can appear only in the
last stage where a clump is broken down into several particles, and this
involves reactions at a few GeV. Here the dynamical damping of cross-
sections at large momentum transfer is probably of order (t - M?) '2, where
M is the exchanged mass, rather than exponential, The exchanged mass
is greater for production of K's and baryons than for pion production, so
the dynamical damping of large pr relative to small pr may be weaker for
K's and baryons, There are also phase space factors to consider, and these
strongly inhibit the transverse momentum of any particle from becoming
very large, especially in the fireballs because they have more particles
than the "nucleon isobars". At accelerator energies pp scattering does not
yet produce fireballs, and the strange particles which require a large mass
exchange may well have larger pr than pions have.

VI. INELASTICITY

As a measure of the distribution of energy in the final states, cosmic-
ray physicists [9, 10] define the inelasticity K
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K = Centre-~of-mass energy of secondaries ) (VL.1)

Centre-of-mass energy of initial state

The "secondaries" are defined as all particles in the final state except for
the fastest particle in each hemisphere.

Let us first consider the contribution of a fireball to K, in the energy
range where there are only two fireballs. In section III the relation
MZM3ZM?2 Mg ~M*bs was-established for this energy range. Aparticularly low
inelasticity is found when the reaction is symmetric in the centre of mass
[Ms = Mg, M g= Mq] and the "nucleon isobar' is simply one nucleon [M;
= M]. Then the fireball mass Mﬁ is proportional to si, as compared with the
total centre-of-mass energy s?, so the inelasticity K can fall off as rapidly
as s? if the fireball moves only slowly in the centre-of-mass frame (a pos-
sibility which is consistent with our conditions). Larger inelasticities are

" also possible, especially when the nucleon isobar is larger and emits pions.
' The result depends somewhat on the detection method; for example, only
charged secondaries may be detected, and then the question is whether the
fast nucleon isobar in the lab emits more than one charged particle. If it
does, the inelasticity can easily be 0.5 or greater. At somewhat higher
energies where 4 fireballs appear, the inelasticity can be low if the original
fireballs have grown large and split in two, or large if the original nucleon

_ isobar has grown and split in two [11], At all energies, then, the inelasticity
will have a broad spread. The average is essentially controlled by the frac-
tion of energy the fastest nucleon isobar shares with pions that get counted
as "secondaries'". The composition of the nucleon isobar is rot very energy-
dependent, so the average should be approximately energy-independent [3] .
The inclasticity for 7 N events should behave similarly, but the average
should be higher because there are more fast pions,

VII. REGGE POLES

The author began this study of highly inelastic events with the hope that
exchange of a dominant Regge trajectory would lead to a simple formula
like (IL.I). This worked in the case of elastic or nearly elastic scattering
[5-8], where the amplitude at fixed t and large s was dominated by a term
proportional to P, (cos 6, ) ~(cos 6,)% As s increased, cos 8, grew as

cos 6, = -1-2s/(t -4 M?), (VIL.1)

taking equal masses as an example, and the amplitude grew as s Now
if all four masses are unequal in the process A+ B - C + D, (VIL.1) is
replaced by '

~(t% 4 t(2s - M3 - Mj - Mg - M) + (M} - M3) (M3 - M3))
JE-IM, - M)ZJE- (M + M) VT - (M, - M)At (MM )’
(VIL.2)

cosg, =
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We are interested in the cosmic-ray case discussed in the previous sections,
where M2 M2 = M*2s and M;, M, can be neglected, leaving

cos 6, ~-2 ts/M: M, ~ -2 t/ M+’ (V1L3)

at large s and fixed t. So cos 6; does not increase with s, and (II.1) cannot
be used.

' Nevertheless it would be desirable to have a Regge pole formalism ap-

plicable to highly inelastic events; it might help to put the very simple con-

siderations of the preceding sections on a more adequate basis. The author

does not know how to do this but would like to call attention to a few prob-

lems which come up [13] .

To begin with, recall the one-pion exchange model for A+ B -»C + D.
The amplitude is written as the product of

(2) the amplitude for A + exchanged 7 - C,

(b) the pion propagator,

(c) the amplitude for B+ 7 = D,

So far the unknown amplitude for A + B C + D has simply been reduced
to a product of unknown amplitudes. The next step is to calculate A+ 7 - C,
which is done by expressing this amplitude as another one-pion exchange.
The process is repeated until one has a product of low-energy amplitudes.
The incoming objects in these amplitudes (except for the original particles
A and B) have spin zero, and their masses are in many cases continued
from t = m? to negative t.

Now if the pion lies on a Regge trajectory, the one-pion exchange proce-
dure still applies for t = m?, and a natural extension is to exchange the pion
Regge trajectory (or to be more complete, the sum over all trajectories)
at t # m’* . The original amplitude can still be factored [14, 15] into the prod-
ucts of (a) the amplitude for A + exchanged trajectory E = C, (b) a term
involving only the Regge pole, (c) the amplitude for B + E = D. Letus assume
that the amplitude for A + E = C, for example, can be expressed in terms
of another Regge pole exchange. One again obtains a product of low-energy
amplitudes., This time the incoming objects in the low-energy amplitudes
{except for A and B) are Regge poles which not only have masses continued
to m? =t where t may be negative, but also have spins continued to non-
integer values which vary with t, In order to construct a theory of repeated
~ Regge pole exchange, then, it will be necessary to construct a theory of
. amplitudes in which some of the external objects are Regge poles.

Suppose that all this can be done, and consider the case where s/M3M4
-grows and cos 6, becomes large. The exchange of a Regge pole with
a; (t) between clumps C and D gives a factor

-2ts :
<____>°‘i<‘) ; _ (VIL4)
M3M3E

the exchange of a pole with oj4{t') between clumps 5 and 6 (Fig. 3) gives a
factor (-2t'M3 /M M%)« | and so forth. The first factor (VIL4) con-
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tributes to F in the Salzman formula (II1.2), which may however contain
further dependence ont, M3 = s;, and M3 = s,. We would like to end with
the point that until this further dependence is known one has no idea whether
the highest @ dominates even the contribution to do/dt from large cos 6.,
for do/dt involves an integration [f dM% dM3 and the factor (VIL4) sup-
presses large Mg and Mi when it favours large s.

(1
2]

(3
41

REFERENCES

SALZMAN, F, and SALZMAN, G., Phys, Rev, 120 (1960) 599 and 121 (1961) 1541,

GOEBEL, C., Proceedings of the 1961 International Conference on Theoretical Aspects of Very High-
Energy Phenomena at CERN, (1861) 353.

AMATI, D., FUBINI, S., STANGHELLINI, A and TONIN, M., Nuovo Cimemo 22(1961) 569,
COCCONI, G., DIDDENS, A,N., LILLETHUN, E., MANNING, G,., TAYLOR, A.E., WALKER, T.G.
and WETHERELL, A.M., Phys. Rev, Letters, 7 (1961) 450. Some more recent points at larger momentum
transfer are given in the report of G. COCCONI to the International Conference on High Energy Physics,
CERN (1962),

GRIBOV, V.N., J. Exptl. Theoret, Phys. (USSR) 51_(1961) 667 (translation; Sov, Phys. JETP 14 (1961)
478)).

LOVELACE, C., Imperial College preprint,

BLANKENBECIER, R., and GOLDBERGER, M.L., Phys. Rev, E(1962) 766,

CHEW, G.F. and FRAUTSCHI, 5.C., Phys. Rev, letters 7 (1961) 394,

For an excellent summary of data up to 1961 see PERKINS, D,H., Proc. Int. Conf, on Theoretical
Aspects of Very High-Energy Phenomena, CERN (1961).

For a survey of data and its interpretation as of 1963 see HAYAKAWA, S., Trieste Seminar on Theoretical
Physics (1962) .

Some observational evidence for events with more than 2 fireballs is argued by HASEGAWA, S., Prog.
Theor, Phys, 26 (1961) 150, . .

MORRISSON, D.R.O., Proc. Int. Conf. on Theoretical Aspects of Very High-Energy Phenomena, CERN
(1961) 153,

These questions have been investigated independently by K. Ter-Manerosyéll' (reported by V, Gribov

at the International Conference on High Energy Physics, CERN (1962)).

GELL-MANN, M., Phys. Rev, Letters 8 (1962) 263.

GRIBOV, V.N. and POMERANCHUK, I.Ya., Phys. Rev, Letters §_(1962) 343,



