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Chapter 1

Introduction

With the gained interest of hadrons containing at least one heavy quark ,the con

struction of phenomenological models in the nonperturbative regime of QCD is very 

essential.In most cases, the potential models are very much successful in the pre

diction of hadron spectrum and decay modes.Under such circumstances,to pursue a 

QCD inspired potential model and then to study the different static and dynamic 

properties of hadrons really makes sense.The effectiveness and reliability of such a 

model can be tested through the calculation of these properties and their compari

son with other models and data.

The present work is an attempt to work out a potential model for the rela

tively simpler mesonic system containing at least one heavy quark,where the basic 

input equation is the Sehrodinger equation .We solve it for heavy-light flavour pseu

doscalar mesons like D,DS,B,BS etc.The solution i.e. wavefunction is obtained 

by using diffrent approximation methods like Dalgarno method [1] and Variation- 

ally Improved Perturbation Theory (VIPT)[2, 3, 4] .We note that with linear plus 

Coulombic potential ,we have alternate options of choosing parent-perturbation (i.e. 

parent-child) combination and then use it in the said approximation methods in the 

process of obtaining the appropriate wavefunction.Getting an accurate wavefunction 

is very much essential for any successful potential model to obtain corresponding
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static and dynamic properties like Isgur-Wise(I-W) function [5, 6, 7, 8],elastic form 

factors[9, 10, 11], charge radii etc.The I-W function being a universal function pa

rameterizes all the nonperturbative effects of seinileptonic decays while the elastic 

form factor or charge radius measures the charge distribution of the constituents of 

a hadron and thus they determine the fate of a specific QCD model.

We incorporate relativistic modifications from outside due to the light quarks 

involved and use fixed values of running coupling constant as either form MS [12] 

or from V scheme [13, 14. 15],Both finite and infinite mass limits are taken into 

account which give a broader aspect of the model.

The obtained results are compared with available data as well as those of other 

models to confirm the reliability and effectiveness of the model.The comparison con

vinces us that our work is in reasonably agreement with those models and data.

1.1 QCD:perturbative QCD (pQCD) and nonper

turbative QCD (npQCD)

The violation of Pauli priniciple for states like A++, A~ etc and nonexistence of 

single quark or states like qq,qq etc led to the color hypothesis.

According to it, each quark flavour carries three strong color charges,red (r),yellow 

(;y) and blue (6) . As far as quark content is concerned ,only color singlet (colorless) 

states exist as free particles.This leads to color confinement and explains why no free 

quark or states like qq,qq etc exist.The color of a quark forms the basis of SU(3) color 

symmetry group. The quarks interact through a non-Abelian gauge field known as 

gluons which are self interacting .The colors and gluons are experimentally proven 

facts and the gauge invariant field theory resulted out of their strong interaction is
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known as QCD.

The important properties of QCD are : (i) the gluons being mediators of strong 

interaction .carry color charge and exchange of gluons give rise to attractive forces 

between color singlet states which provides binding between quarks in a hadron ,(ii) 

asymptotic freedom which implies that the effective coupling constant decreses log- 

arthimically at short distances or high momentum transfer which is the basis for 

pQCD that accounts for different phenomena at high energy or momentum trans

fer, (iii) confinement of quarks which implies that at large distances or low energy ,the 

binding energy between color charges increases linearly so that no free quark exists 

or quarks are never found isolated.This property is not properly investigated yet on 

theoretical basis but supported by lattice theory and quarkonium spectroscopy.The 

quark confinement leads to the npQCD and takes account of the low energy regime.

The pQCD allows one to calculate the short distance behaviour of quarks and glu

ons in terms of perturbative expansion of the strong coupling constant as.Although 

pQCD is very useful in the high energy regime through the use of concepts like run

ning coupling constant and renomalization group equation ,but not applicable in the 

low energy region to take account of certain properties like confinement,chiral sym

metry breaking,dynamical mass generation etc.So, a reliable approach of npQCD 

is very much essential as far as the static and dynamic properties of hadrons are 

concerned.

In the nonperturbative description, we basically believe in the lattice QCD 

[16, 17, 18, 19] which is however handicapped at distances less than what is called 

lattice spacing.Purther, the method being based on expensive computation technique 

is left with inadequate physical insight to understand important properties like con

finement etc.The way then lies in the construction of some phenomenological quark 

models based on confinement or long range forces to predict hadronic properties like
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mass, decay widths etc. To that end we are left with some models developed earlier 

like constituent quark model [20, 21], light cone QCD[22] and effective field theories 

like HQET [23, 24],ChPT [25, 26, 27] besides QCD sum rules [28].

According to CQM,the hadrons are considered as bound state of three valence 

quarks (baryons) or a quark and an antiquark (mesons).The valence quarks have dif

ferent masses and internal structure from QCD quarks although the quantum num

bers are same for both of them.The NonRelativistic Constituent Quark Model(NRQM) 

[29, 30]whieh is a type of CQM,can organize the calculation of as in all orders and at 

the same time,elaborate the relativistic corrections to the conventional formula very 

successfully.Further,within the framework of NRQM,hadronic spectra was explained 

successfully by different authors [31, 32, 33, 34, 35, 36, 37].

1.2 Potential model

As pointed above,it is clear that formulation of a phenomenological model is very use

ful to make a proper analysis in the nonperturbative regime.Various such models are 

proposed in different context. Out of these,the concept of potential between a heavy 

quark and another heavy or light quark has been subject of theoretical investigation 

since long [38, 39, 40, 41, 42, 43].The potential has played a key role in understand

ing properties like quark confinement and can describe non relativistically bound 

systems such as heavy quarkonia very successfully. Indeed the potential model is 

tremendously successful in providing both qualitative and quantitative description of 

the hadron spectrum and the deacy modes.The potential models seem to reproduce 

the experimental values much better as they contain more input parameters than 

lattice QCD or perturbative QCD models.However, it is always preferable to use 

phenomenological form of flavour independent potential from qualitative arguments 

[39, 40] and to find out the limitations of the model than to explain experimental 

data.
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To work with a suitable potential model, the choice of the correct potential is the 

most important thing.As we know that in QCD,the exchange of glucns gives force of 

attraction between color singlet states and thus provides binding between quarks in 

a hadron.This potential known as One Gluon Exchange (OGE) potential is attrac

tive because of the color charges present and can at best provide binding at short 

distance.But,it is not sufficient to explain the confinement of quarks and thus a long 

distance part of the potential is also required.The long distance potential in QCD 

is assumed to increase with the distance due to the self interaction of color carrying 

gluons so that the quarks can be confined in a hadron.Phenoinenologically,such a 

potential is of the form

V(r) = V,{r) + VL{r) (1.1)

where

W = ~ + V, (1-2)

and ks = |(|) for qq(qqq) system.

Here Vg is the OGE potential potential having spin dependent components Vs 

while Vl is the corresponding spin and flavour independent confining piece.

With these considerations,Rujula,Georgi and Glashow [29] developed a Hamilo- 

tonian resulted out of Fermi-Breit interaction given as:

H = H0 + Hc + Hfb + Hl (1.3)

where the subscripts o, C, FB, L on the various terms of the Hamiltonian H refer 

to the zero interaction( free) ,Coulomb,Fermi-Breit (spin-spin,spin-orbit and tensor 

term of spin) and long range (confining) respectively.

The exact form of Hl is still not calculable.Various workers have used different
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forms for it with success.The lattice QCD [44] and string theory [45]support a lin

ear potential Hi ~ r ,some authors prefer a harmonic oscillator potential Hi ~ r2 

[46],while others favour the logarithimic dependence Hi ~ In r [42] . These specu

lations have made the number of parameters fixed from the comparison with exper

imental data comparable to the number of experimental data.So, while introducing 

a form of the potential on qualitative ground,one must develop simpler models than 

to explain experimental data and look for the limitations of the model.

The above considerations lead one to consider the linear plus Coulombic poten

tial [43, 44] as the suitable one to start with and it has already been used in the 

explanation of hadron spectroscopy with success. With such a potential,the Coulom

bic term can be calculated with two loop correction of Wilson loop formulae [47] 

and this can be incorporated in an effective coupling constant in a scheme known 

as V scheme [13, 14, 15].

For heavy-light flavour mesons,the relativistic effects need consideration due to 

light quarks involved . Considerable interest has been shown in this regard and 

there are certain models in which relativistic corrections are treated as perturbation 

[48] as far as nonrelativistic models are concerned.

The nonrelativistic models are usually based on Schrodinger equation. The ad

vantage of this equation is that it can handle many particle system effectively at 

least in principle.However,it will be seen later that for a Hamiltonian in equation 

(1.11),the exact solution of Schrodinger equation is not possible and certain refine

ments are required for that.Further,relativistic effect is to be put from outside.

As far as relativistic effect is concerned , Dirac equation is a suitable one but it 

is effective for a single particle only, not for many particles and one needs a wide 

framework of Quantum Field Theory (QFT).
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1.3 Semileptonic decays and heavy quark symme

try

The semileptonic decays offer a perfect testing ground for both pQCD and npQCD 

effects such as decay constants,form factors as well as the best possible predictions 

of the CKM matrix elements.So, a potential model can be used to make such pre

dictions for the semileptonic decays for mesons containing at least one heavy quark.

The analysis of semileptonic decays have been greatly simplified for hadrons 

containing at least one heavy quark due to what is called Heavy Quark Symmetry 

(HQS) [5, 6, 10, 24, 49, 50].Being a very useful tool to obtain model independent in

formation of weak decays, the HQS arises because the masses (tuq) of heavy quarks 

(c, 6, t) are much larger than the QCD scale Aqcd -In other sense,it is the infinite 

mass limit mg —> oo that leads to HQS as noted below:

I. The heavy quark and the hadron that contain it have the same velocity.In the 

hadron’s rest frame,the heavy quark is also at rest.The light degree of freedom are 

blind to the flavour(mass) and thus we obtain a heavy flavour symmetry introduced 

by Shuryak [51].

II. In this limit,the spin of the heavy quark decouples from the gluon field or 

light degree of freedom because the hyperfine ,magnetic interaction scale as m~Q .The 

members of a hyperfine multiplet become degenerate in mass.Consequently,there is 

a new spin symmetry because of which the light degree of freedom in the (heavy- 

light) mesons are in the same state even if the spin orientation of heavy degree of 

freedom changes.

The flavour-spin symmetry SU(2Nh) for number of heavy flavours as dis

cussed above is the HQS.Due to HQS , replacement of a heavy quark by another
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of different mass and spin but same velocity will not effect the light degree of free- 

dom.The underlying theory of QCD in this limit is the HQET [49, 52] which allows 

a systematic,order by order evaluation of correction to infinite mass limit in inverse 

powers of the heavy quark masses.The HQS or HQET offer useful contribution to 

understand the dynamics of systems containing at least one heavy quark.

1.3.1 The Isgur-Wise function

As stated above,the HQS has greatly simplified the analysis of heavy flavour hadrons. 

Indeed, for the semileptonic decays of B mesons,the HQS implies that all the inde

pendent form factors that describe these decays are expressible in terms of a single 

universal function of velocity transfer commonly known as Isgur-Wise(I-W) function 

[5, 6, 7, 8] .The I-W function parameterizes all the nonperturbative QCD effects of 

semileptonic decays and thus is a standard factor in determining the reliability of a 

specific QCD model.

The I-W function measures the overlap of the wavefunctions of the fight degrees 

of freedom of initial and final mesons moving with velocities v and v' respectively. 

The knowledge of I-W function £(y) (where y = v.v') is essential to make a direct 

connection between heavy hadron and the corresponding quark amplitude and gain 

insight into mg1 corrections of HQET.The condition £(y = 1} = 1 is the normal

ization condition of I-W function at the zero recoil point (v = vr) well predicted by 

HQET.

The HQET-the well defined theory of QCD arising out of HQS as said above, 

make predictions related to decays of heavy hadrons in terms of this single function 

enabling the description over simplified and less model dependent.Consequently,the 

experimental predictions become convincing ones.However,the I-W function is not 

calculable in pQCD and needs nonperturbative means like lattice QCD or QCD 

sum rules.The perturbative calculations leave new uncalculable functions and thus
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reduces the predictive power of HQET.Further,HQET can’t predict the shape of the 

I-W function.So,the phenomenological models always remain important.However,the 

dynamical quark models can be matched with HQET from the normalization con

dition of I-W function at zero recoil point apart from considering different aspects 

of the I-W function.

We note that the I-W function (also the elastic form factor,charge radius etc)is di

rectly related to the hadronic wavefunction and so getting an accurate wavefunction 

is a real test for any specific potential model.One can use different approximation 

methods like the Dalgarno method [1],VIPT [2, 3, 4] in getting it by solving the 

Schrodinger equation for the quark-antiquark system.

1.4 The approximation methods

It is clear that while investigating different hadronic properties ,one have to use 

different approximation methods to obtain the wavefunction. Every method has its 

own merits and demerits which basically depends on the type of application.

The Dalgarno method [1] is a type of stationary state perturbation theory in 

which one first uses a trial form of the first order correction to wavefunction in 

terms of a series cooperated to the perturbed Hamiltonian operating on the unper

turbed wavefunction and then adopt the series solution method of Forbenius.

The VIPT [2, 3, 4] is a combination of variational method and perturbation 

theory.At first,the variational method is used in terms of known trial function (in 

contrary to the usual perturbation theory) which then allows to exercise the per

turbation theory in terms of convergent expansion parameter obtained from the 

variational method used earlier.
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With the linear cum Coulombic potential we have two options of choosing the 

parent or perturbation which allows a broader prespective of the model.

1.5 A brief description of the thesis

This work is evolved from a QCD inspired potential model with the linear cum 

Coulombic potential and aims at the calculation of hadronic properties like slope and 

curvature of I-W function ,elastic form factors,charge radii for the relatively simpler 

mesonic system containing at least one heavy quark. For that we have solved the 

Schrodinger equation using the Dalgarno method,VIPT in two different scenarios- 

linear part and Coulombic part as perturbation .So,our main attention lies in getting 

an appropriate wavefunetion to be used in the calculation of the above quantities. 

The reliability and effectiveness of the model is tested by the comparison of these 

calculated values with those of other models and data [53-68].

1.5.1 The model:

The model [30] we have pursued is based on the work of Rujula,Georgi and Glashaow 

[29] .Being very successful in explaining various aspects of hadronic physics ,their 

work used a Hamiltonian known as Fermi-Breit Hamiltonian having terms which 

are more singular than r~2 and was not exactly soivable.Their work was improved 

by Godfrey and Isgur [69] by postulating relativistic potential and smearing fune- 

tion.The smearing of potentials removed all the singularities but it required addi

tional parameters.

In our model, we have adopted the same Hamiltonian in the absence of spin for the 

ground state only and use Schrodinger equation to solve it.The relativistic effect is 

incorporated in a parameter free way using the standard Dirac modification [70, 71].

The Fermi-Breit Hamiltonian developed by Rujula et al [29] for two quarks of
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masses m,, rrij and three momenta pup3 can also be written as [69] :

2 2

H(r) = 7T~ + + H^ir) + Hhyp(r) + HM (r)
2m, 2m (1.4)

Here,

Hconf(r) Q's 3 br 3c
------ 1--- Z--- H ~7r 4 4

Fj.Fj- (1.5)

Hhyp(r) = - a.
m,m.

8irS,.S,<53(r) , 1 f3(S,.r)(S,.r) „ 0
3 r3 1 r- * 3 (F,F,) (1.6)

/p °-(r) = Hs o + Hs'° (tp•) (1.7)

JJS.O.{t.p,)^rj _ i / s, s
2r dr m^ m*+ (1.8)

Hs.o.(c-m.)^ = + + (FvFj)L
r° \m, rrij/ \mt m} (1.9)

Here as is the running coupling constant, b is the confinememt parameter and c 

is another parameter whose significance will be cleared later and S, and S3 are the 

spins of the ith and jth quark respectively separated by a distance r.Also, for the 

mesons
„ „ 4

< Fj.Fj >= -- (1.10)

For the ground state (l = 0) the spin independent Hamiltonian becomes:

H Pt + P3 4 as —----------- 1-br + c
2m, 2m, 3r

(1.11)

With this Hamiltonian we have solved the Schrodinger equation namely

H\ip >= (H0 + H*)\1> >= E\i> > (1.12)
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by using the perturbative methods like Dalgarno method and VIPT with the 

different options of parent-child combination.The unperturbed Hamiltontian is Hq 

and H' is the perturbative part to be chosen from the equation (1.11) above.

Chapter 2: It has reported the use of Dalgarno method with Coulombic parent 

in getting the wavefunction .This work has extensively observed the effectiveness of 

a scale parameter ‘c’ within the potential leading to upper bounds on the slope and 

curvature of I-W function.

Chapter 3: This chapter has introduced the VIPT with Coulombic parent in 

obtaining the wavefunction and then used it in the calculation of I-W function.The 

improvents are well recorded over the earlier method done in chapter 2.

Chapter 4: In this chapter,we have chosen the linear part as parent in the 

Dalgarno method in getting the wavefunction as an alternate approach.This new 

wavefunction is then used in the calculation of I-W function as done in the earlier 

chapters and important conclusions are drawn.

Chapter 5: This chapter deals with the last option i.e. linear parent with VIPT 

in the process of searching an accurate wavefunction which is then used in the cal

culation of slope and curvature of I-W function in a similar manner.

Chapter 6: It has extended the use of VIPT in the calculation of elastic form 

factors and charge radii for the same heavy-light mesons to make the model more 

reliable and effective one.

Chapter 7: It includes the summary,conclusion and future outlook.
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Chapter 2

Bounds on the slope and curvature 

of Isgur-Wise(I-W) function in a 

QCD inspired quark model

2.1 Introduction

As stated in chapter 1, this work basically solves the Schrodinger equation using ap

proximation methods like Dalgarno method ,Variationally Improved Perturbation 

Theory (VIPT) and obtains the wave function under two different scenarios-linear 

part and Coulombic part as perturbation of the linear cum Coulombic potential 

provided by the approximation methods.The model pursued by us is based on the 

work of Rujula,Georgi and Glashow as explained in chapter l,and we are finally 

left with a spin independent Hamiltonian for ground state to work with as given by 

equation(l.ll) there.

We solve the nonrelativistic Schrodinger equation with this Hamiltonian and 

then incorporate relativistic effect using standard Dirac modification.The wavefunc- 

tions thus obtained are used in the calculation of slope and curvature of Isgur-Wise 

(I-W) function,elastic form factors ,charge radii as mentioned earlier.

13



In this chapter,we start our search for the wavefunction using the Dalgarno 

method with Coulombic part as the parent of the total potential — + br + c.This

has been already considered in the work of [30, 72, 73] with c = 0, and then 

c 7^ 0 in [74].The parameter ‘c’ usually appear in a composite form lcAo’ as a 

coefficient in the solution of Schrodinger equation with Dalgarno method where 1Aq’ 

is the undetermined factor appearing in the series solution of the same (c/. Appendix 

A).However,the case c ^ 0 in [74] was handicapped by its scaling at natural scale 

~ 1 GeV with presumably taken Aq = 1 and the adhoc adjustment of the strong 

coupling constant.

In this work,we consider the c ^ 0 case with a different strategy.We use the 

wavefunction at the origin involving the unknown coefficient cAo and fix it from the 

experimental values of masses and decay constants directly.The reality constraint 

on cAq will be seen to yield lower bounds on the strong coupling constant a3. which 

would lead to the upper bounds on the slope and curvature of the I-W function.

The chapter is organized as follows : section 2 contains the formalism,section 3 

the results and lastly section 4 encloses the conclusion and remarks.

2.2 Formalism

2.2.1 The Wavefunction

We rewrite the spin independent Fermi-Breit Hamiltonian given by eq.(l.ll) for 

ground state (l = 0),with the two body problem reduced to a single one of reduced 

mass pi :

H U0 + /-/',

V2 Aas 
2/i 3r

+ br + c. (2.1)
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We set 6 = 0.183GeF2 and look for an effective range of running coupling constant 

as which can lead to better results for slope and curvature of I-W function.

With H„ — ^ as the parent Hamiltonian and H' — br+c as the perturbed

Hamiltonian , we obtain a ground state wavefunction upto the first order correction 

using the Dalgarno method [1] of stationary state perturbation theory as :

Tpamf (r) = N (2.2)

where A0 is the unknown coefficient appearing in the series solution of the Dalgarno 

method as stated above(details are given in Appendix A).

Including the relativistic effect [70, 71], the wavefunction is :

i’canf+rel (?') = N' (cA0 + ~J== ~ (—} e~^, (2.3)

\ y7roo yTrap / ^°0//

Here ao is given by:

and

ao
3

4 nas'
(2.4)

e = l- a/1
4as
~3~’ (2.5)

N and N1 are the normalization constants given by :

N2
1 + - 3pba% + va%<?Al + 2$& -ZsSdWL’

(2.6)

TTQn \/7ra;

and
N,2 = 27—2e

r (3 - 2e) X! ‘
(2.7)

where Xi is given in Appendix B.
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We note that the equations (2.2),(2.3),(2.6)and (2.7) are obtained from eq.(4),(6),(5) 

and (7) of ref. [74] exhibiting explicit dependence of cA0 in them.

2.2.2 Fixing of the coefficient cAq

The wavefunction at the origin (WFO), is related to the decay constant fp and the 

mass of the pseudoscalar meson Mp through the relation [30, 75]:

W(0)lJ = ^p (2.8)

Again from equation (2.2), we have :

|,K0) |2 = W2[A4S + A +(2.9) 
™o y7ro§

Using equation(2.6) and (2.9), we arrive at the quadratic equation for cA0:

A1 (cAof + B1 (cAq) + C' = 0, (2.10)

where

A1 = 7ral\i> (0) |2- 1,

B' = (0) |2 - 3/j,bal^/na^\ip (0) |2

and

G' = IV* (0) ri + «;W?S_3^
8 7rag'

(2.11)

(2.12)

(2.13)

Using the experimental values of fp and Mp [76] , we determine \ip (0) |2 using equa- 

tion(2.8) which in turn will yield two solutions for cAq in equation (2.10):

cAn -B' ± VB'2 - 4A!C' 
2A'

(2.14)

Thus,cAo depends on /J.,Mp,fp and as.The solution corresponding to the +ve(-ve)
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sign of equation(2.14)will be termed as +ve(-ve) solution hereafter.lt will be shown 

numerically that for a given p, Mp,and fp ,as reaches the minimum value when the 

following condition is satisfied :

B'2 - AA'C' = 0. (2.15)

The formalism involving eq.(2.5)-(2.15) is strictly valid only without relativistic 

effect as the wavefunction at the origin with such effect [eq.(2.3)J is not well defined 

due to its singularity at the origin. For a subsequent analysis ,we assume that cAq 

does not deviate significantly from its non-relativist.ic value so that it can be used 

to calculate the slope and curvature of the I-W function even without relativistic 

effect.

2.2.3 Charge radius (slope)and convexity parameter (cur

vature) of I-W function

The Isgur-Wise function is written as [6, 7, 77] :

= $(y) = i-p2(j/-1) + c,(y-i)2 + -” (2T6)

where

V = (2-17)

and Vp and v'jt being the four velocity of the heavy meson before and after the 

decay.The quantity p2 is the slope of I-W function at y = 1 and known as charge 

radius :

P2 = | U, (2-18)

The second order derivative is the curvature of the I-W function known as convexity 

parameter :

_d2yv=1 (2.19)
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For the heavy-light flavor mesons the I-W function can also be written as [7, 72] :

47rr2 \tp (r)|2 cos prdr,

where

p2 = 2p2 (y — 1).

(2.20)

(2.21)

Equation (2.20) holds good for both relativistic and nonrelativistic case.The 

wavefunction ip (r) takes different form for both the cases. Without relativistic ef

fect, it is given by equation(2.2) and with relativistic effect it is given by (2.3).

With the wavefunction(2.2)in equation(2.20) i.e. including confinement only the 

charge radius p^j and convexity parameter Cconf are respectively given by:

2 p? [247r c2 ^4qOq + 24a§ + 630p262a® + 48cAoy 7rap — 180c.4op6y7raQ3 — 180 pbal)
P0™* 8-kc2AqO,1 + 8 + 45p262a® + 10cAq\Jtuj}q — 24pbcA^ixal — 24p,ba%

(2.22)

and

^conf
p4[607rc2i4o°o + 60oq + 4725p262ao° -I- IIOcAq^JkOq — SiDcAopb^ira},7 — 840pba70]

167TC2 A^al + 16 + 90p262ao + 32c Ao^/™3 — ASpbcAo^/rraf) — 48 p6o3
(2.23)

With the wavefunction (2.3)in equation (2.20) i.e. including both relativistic and 

confinement effect the charge radius p2conj+Tei and convexity parameter f+rei are 

given by :

Pconf+rel
p2al (4 - 2e) (3 - 2e) [Ai] 

4[X2]
(2.24)

and

aconf+rel
p4ai (6 - 2e) (5 - 2e) (4 - 2e) (3 - 2e) [X3] 

96[A2]
(2.25)

where Xi,X2 and X3 are given in Appendix B.

We note that equations (2.24) and (2.25) are equivalent to equations (18) and (19)of 

ref. [74] exhibiting explicit cAq dependence.
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2.3 Results

2.3.1 Values of cA$ and lower bounds on as

As noted earlier , cA0 depends on p,Mp,fp and as.In fig.(2.1-2.5) we plot cA0 vs as 

for D,DS,B,BS and Bc mesons .It shows that as tends to reach the minimum value 

when two solutions of eq.(2.10) almost merge satisfying the eondition(2.15).This 

feature is true for any set of the parameters p, fv and Mp. In table 2.1 ,we give the 

lower bounds on as for these mesons .

The dependence of cAq on as and p can be noted as follows :

With constant p , cA0 decreases with a3 values rising and vice-versa. On the other 

hand, with constant as , cA0 increases(decreases) with increase (decrease) in p.

2.3.2 Bounds on slope and curvature of the I-W function

Using the lower bounds on as for each heavy-light and heavy-heavy mesons,we ob

tain upper bounds on the slope and curvature of the I-W function using equations 

(2.22),(2.23),(2.24) and (2.25). They are listed in table 2.2.We note that with in

creasing as values, the slope and curvature decrease and henceforth the lower bound 

on as corresponds to the upper bound on p2 and C.

In table 2.3,we record the predictions of the slope and curvature of the I-W function 

in various models while in table 2.4,we reproduce the corresponding predictions of 

the model [74] with c = 1 GeV and Aq = 1 in V-scheme [13, 14, 15] for various 

mesons.Two set of values for B, Bs and Bc mesons are shown in the table where 

case- a represents the actual values for p2 and C in that work with as = 0.261;while 

case-b represents those for adhoc adjustable value of as = 0.60 in order to show the 

usefulness of large as as mentioned in ref. [74] .The as values were already large for 

D and Ds mesons,so no adhoc adjustment was necessary that might lead to two set 

of values .
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Table 2.1: Lower Bounds on as.

Mesons Quark content /i(GeV) 
ref. [76]

Mp(GeV) 
ref. [76]

/p(GeV) 
ref. [76]

cAq Lower bound 
on as

D cu/cd 0.276 1.869 0.192 0.9665 ~ 0.601

B bu/bd 0.315 5.279 0.210 0.7653 ~ 0.652

Ds cs 0.368 1.968 0.157 0.9543 ~ 0.49

B3 bs 0.44 5.279 0.171 0.999 ~ 0.493

Be be 1.18 5.37 0.36 1.167 ~ 0.302

Table 2.2: Upper Bounds on slope and curvature.

Meson Slope p2 Curvature C
(Quark

Content)
Without relati
vistic effect

With relati
vistic effect

Without relati
vistic effect

With relativi- 
vistic effect

D (cu/cd) 6.78 1.675 13.19 5.138

B (bu/bd) 5.78 1.016 9.58 1.29

Ds(cs) 9.115 3.067 26.48 14.32

Bs(bs) 11.92 2.652 34.49 6.902

Bc(bc) 28.46 10.39 219.46 45.23
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Table 2.3: Predictions of the slope and curvature of the I-W function in various 
models.

Model Value of f? Value of curvature C
Le Youanc et al [53] > 0.75 ..

Le Youanc et al [54] > 0.75 > 0.47
Rosner [55] 1.66 2.76
Mannel [56] 0.98 0.98

Ebert et al [57] 1.04 1.36
Pole Ansatz [58] 1.42 2.71

MIT Bag Model [59] 2.35 3.95
Simple Quark Model [60] 1 1.11

Skryme Model [61] 1.3 0.85
QCD Sum Rule [62] 0.65 0.47

Relativistic Three Quark Model [63] 1.35 1.75
Neubert [64] 0.82±0.09

Infinite Momentum Frame Quark Model [65] 3.04 6.81
UKQCD Coll. [66] 0.83tift|| ..

CLEO Coll. [67] 0.76 ±0.16 ±0.08
BELLE Coll. [68] 0.69 ±0.14

Table 2.4: Predictions of the slope and curvature of the I-W function in the QCD 
inspired quark model according to ref. [74] with c = 1 and A0 — 1 taking relativistic 
and confinement effect in V-scheme.This table is reproduced from the last rows of 
tables 1,2,3 of ref.[74] .

Meson &8 slope (p2) curvature(C)
D 0.625 1.136 5.377
Ds 0.625 1.083 3.583
B a) 0.261 a) 128.128 a)5212

6)0.60 6)1.329 6)7.2
Bs a)0.261 o)112.759 a)4841

6)0.60 6)1.257 6)4.379
Bc a)0.261 a)44.479 a)2318

6)0.60 6)1.523 6)0.432
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alpha s

Figure 2.1: Variation of cAq vs as for D Meson.The +ve (-ve) solution of eq.2.14 
corresponds to the dashed (solid) line and the two lines nearly coincide at as ~ 
0.601 , the lower bound on as corresponding to the eq.2.15 for D Meson.

22



alpha s

Figure 2.2: Variation of cA0 vs as for B Meson.The +ve (-ve) solution of eq.2.14 
corresponds to the dashed (solid) line and the two lines nearly coincide at as ~ 
0.652 , the lower bound on as corresponding to the eq.2.15 for B Meson.
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alpha s

Figure 2.3: Variation of cAq vs as for Ds Meson.The +ve (-ve) solution of eq.2.14 
corresponds to the dashed (solid) line and the two lines nearly coincide at as ~ 0.49 
, the lower bound on as corresponding to the eq.2.15 for Ds Meson.
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alpha s

Figure 2.4: Variation of cAq vs as for Bs Meson.The +ve (-ve) solution of eq.2.14 
corresponds to the dashed (solid) line and the two lines nearly coincide at as ~ 
0.493 , the lower bound on as corresponding to the eq.2.15 for Bs Meson.
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alpha s

Figure 2.5: Variation of cA0 vs as for Bc Meson.The +ve (-ve) solution of eq.2.14 
corresponds to the dashed (solid) line and the two lines nearly coincide at as ~ 
0.302 , the lower bound on as corresponding to the eq.2.15 for Bc Meson.
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2.4 Conclusion and Remarks

In this chapter,we have shown that the reality bound on cAq puts lower limit on as 

and correspondingly upper limit on p2 and C.

Furthermore,with cAq , the upper bounds on p2 and C decrease which is evident 

from the above list of bounds(table-2.2). The estimated upper bounds on p2 and C 

for all the mesons are found to be consistent with other models and data (table-2.3) 

without making any adhoc enhancement of the strong coupling constant as had been 

done in ref.[74](table-2.4) .From the phenomenological point of view we note that 

in the nonrelativistic limit ,the universal form factor and Isgur-Wise function for 

semileptonic decay B —» D*lv are identical when subleading terms in velocity and 

terms of order O (^) are neglected with as the binding energy and mg as the 

mass of heavy quark [50].However even if we make calculation for the universal form 

factor for finite mass, we obtain to first order in (y — 1) as 0.8 -2.57 (y — 1) which 

seems to be satisfactory [50, 52].

It is worthwhile to note that in the limit cAq —> 0, there will be no bounds on as 

as well as on p2 and C ; rather fixed values of a3 have to be used to get definite set 

of p2 and G\So,in that case, the analysis will turn to that of ref. [73,74] where large 

confinement i.e.6 = 0.183(?eF2 [78] could not be incorporated e.g. tables -(1,3) of 

ref.[73] and tables -(2,3) of ref.[74].

We conclude this chapter with a comment on the physical significance of the factor 

‘e’ that has become so crucial for our analysis of bounds on slope and curvature.

It is common wisdom that a constant potential like ‘c’ just scales the energies and 

doesnot affect the wavefunction nor does it change physics.This can be seen from 

the hydrogen atom problem with the potential V (r) = —■ + c. However , if one uses 

‘c’ as the perturbation instead of as parent in the Dalgarno method of perturbation 

theory [l],the normalized wave function for the H-atom becomes:
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which is to be compared with the normalized wave function with ‘c! as parent:

_
e ao

Thus, the perturbative child ‘c’ rather than the parent ‘c’ plays the crucial role 

in the present analysis.
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Chapter 3

Slope and curvature of Isgur-Wise 

function using Variationally 

Improved Perturbation Theory 

(VIPT) with Coulombic parent in 

a QCD inspired potential model

3.1 Introduction

We have seen in chapter 2 ,how the reality constraint on the coefficient ‘c/l0’ led to 

bounds on the slope and curvature of I-W function instead of fixed values for them 

[79].In this chapter,we use recently introduced Variationally Improved Perturbation 

Theory (VIPT) [3-5] as an alternate approach in finding the wavefunction and then 

use it in the calculation of slope and curvature I-W function.

The VIPT is being a recent entry into the literature which shows a great ex

pectation regarding the use of approximation methods.The work by Aitchison and 

Dudek [4] inspired us to apply the method to the QCD inspired model which had 

limitations some of which may be due to the use of conventional perturbation tech-
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nique.We know that the results of perturbation theory are expressed in terms of 

finite power series (in an expansion parameter which is taken to be very small)that 

seem to converge to the exact values when summed to higher order .After a cer

tain order,however the results become increasingly worse since she series is usually 

divergent (being asymptotic series).At this juncture, the variational method which 

estimates variationally optimized parameter (through energy minimization)helps in 

converting the divergent perturbation expansion into a convergent one which can 

be evaluated for large expansion parameter .We note that using only the varia

tional method [1, 80] is quite cumbersome as it is difficult to choose an appropriate 

trial wavefunction in terms of unknown parameter(s)which is later optimized to 

estimate the parameter(s).But in VIPT, we use a known wavefunction as a trial 

one (e.g.the Is state H-atom wavefunction)and then optimize it to get the new 

parameter (s)(e.g.a'10 in our case [eq.3.10 of this work])which make the perturba

tion series convergent.Purther,we know that the perturbation theory is efficient to 

systems which have good unperturbed Hamiltonian ,while variational method is ro

bust even in cases where it is hard to determine a good unperturbed Hamiltonian 

.On the other hand,VIPT becomes independent of the fact whether we have a good 

unperturbed Hamiltonian or not.

Question arises regarding the use of the Coulombic piece as the parent and linear 

part as the perturbed one of the total Cornell potential - that upto what distance 

this consideration is valid ? Indeed,it was shown in ref. [4] that if < r > < ro then 

the Coulomb base will perform better . Here < r > is the expectation value of 

the distance r which reasonably gives the size of a state (in this case meson) and r0 

is a point at which linear cum Coulomb potential becomes zero( fig. 1 of Aitchison 

and Dudek ,ref. [4] ).Further,for low lying mesons i.e. n = 1,1 = 0 ,(cf.Equation 

8 of ref.[4] )the expectation value < r > is inversely proportional to the parameter 

a = i|a for a given reduced mass pi .Using VIPT we get variably optimized a'10 

(cf. Equation 3.10 of this work) as the new parameter which assumes substantially 

larger value than a.As a result,it effectively makes the “linear term” weaker so that
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Coulombic piece becomes the parent.This ensures us that the distance between the 

quarks is shoit enough to treat the binding effect mainly in terms of the Coulombic 

potential.Thus VIPT is a convenient and strong tool in treating the Coulombic 

potential as parent and linear as perturbation of the total Cornell potential.

It would be evident from equation(3.10) that a'10 increases with the increase in 

as and greater values of a'10 strongly support the binding effect mainly in terms of 

Coulombic potential. For the B-sector meson, the as values are small. It raises the 

question of applicability of the Coulombic part as parent. However the corresponding 

a'10 values are sufficiently large enough to conform to the expectation < r > < ro 

but probably not as large enough to make the results of slope and curvature of the 

Isgur-Wise function compatible one for these mesons.

The aim of the chapter is to apply the VIPT method to the QCD inspired quark 

model [29, 30] referred earlier and to calculate the I-W function ,its slope and curva

ture .Using the same Hamiltonian and treating linear confinement as perturbation 

we arrive at the hadronic wavefunction which enables to calculate the I-W func

tion. Relativistic modification of the wavefunction [30, 70, 71] as well as the two 

loop effect of strong coupling constant using V-scheme [13, 14, 15] is also taken into 

account.

Section 2 has reported the formalism,section 3 the results and finally section 4 

the discussion and conclusion.

3.2 Formalism

3.2.1 Variationally Improved Perturbation Theory-VIPT

The recently introduced VIPT method [4, 5, 6], combines two procedures, namely 

stationary state perturbation theory and the variational method.We have total 

Hamiltonian as:

H = H0 + H’ (3.1)
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where H0 being the parent Hamiltonian containing a physical parameter P (say) and 

H' is the perturbed Hamiltonian.The corresponding wavefunctions also contain P. 

In VIPT, we make :

P = P + P' - P' (3.2)

where P' is the variational parameter such that :

H = HoP, + H0- HoP, + IV

= HoP, + H'P, (3.3)

The parent Hamiltonian is now H0p> instead of Ha which depends on the variational 

parameter P' and H'P, is the new perturbed Hamiltonian instead of H' which also 

depends on P'.Correspondingly the wavefunctions will also change with P being 

replaced by P'. Now,one can treat these wavefunctions as trial wavefunctions with 

P' as the variational parameter and would find the value of P' which gives minimum 

value of energy corrected upto the first order. This will yield variationally improved 

unperturbed wavefunction upon which the usual perturbation theory will be applied. 

The wavefunction corrected upto the first, order of jth state is given by [4] :

* = <’ + E
k^j Ef] - 40)

The energy corrected upto first order for the same state is

(3.4)

Ej = J 4°}*H^0)dv
= j ^{Hop, + H'p^fdv (3.5)

where ipk, Pfc are the wavefunction and energy eigen values of the kth states which 

are orthonormal to jth state .The superscript(O) means zeroeth order correction of 

the corresponding quantities .

With the Cornell potential [44], we can have two possibilities of choosing parent
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(and hence perturbed) Hamiltonian as said earlier.In one,Coulombic piece is the 

parent and in the other linear one as the second possibility.

The summation in equation (3.4),can include any number of kth states .In this 

work,we consider upto three terms in the summation.

3.2.2 Coulomb plus linear potential and wavefunctions us

ing VIPT

(i)With one term in the summation

As explained earlier , we use variational parameter a' instead of the physical pa

rameter a = ^ (as we are taking the Coulombic potential as the parent one). The 

Hamiltonian takes the form [equation (3.3)]:

H H0 + H'
_V^_4o£

2 fj, 3 r

_Z!_"
2fi r 
V2 a' (a' — a)
2/i r r

-Hoc*' + H'n>

+ br + c 

+ br + c

+ br 4- c

(3.6)

(3.7)

where a = a — oi + a'.

Now ,Hoa> = — ^ is the parent Hamiltonian with a' and H'a, = +br+c

is the perturbed Hamiltonian with the same variational parameter ct' .We notice that 

the physical parameter a is replaced by the variational parameter a'.

We consider jth as Is state (n = 1,1 = 0) and in the summation of equation(3.4), 

we consider only one number of kth state which is the 2s state (n = 2,1 = 0).
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The trial Is state can be written ( analogous to H- atom case)with variational 

parameter a' as (this being the unperturbed wavefunction):

=
(Mo)^ g~/lalor (3.8)

where subscript 10 in a1 indicates the quantum number (n, l) of the jth state.

We now find the value of a'10 which leads to minimum E3 given by (3.5) in the 

following way :

In the variational method, we are interested only in the ‘r’-dependence of the Hamil

tonian ,so ‘e’ in H'a, has no role to play in the calculation [1].

Using equation (3.5),(3.7),(3.8) :

file Wo) = ^ - (3.9)

Minimization of equation (3.9) gives :

a10 aa10
_36_
2/j,2

=0 (3.10)

The solution of (3.10) is the required value of a'l0 which gives minimum £’io(«io) 

and we denote it by a'10.

Thus ,unperturbed wavefunction in VIPT is :

■<!>'$ Wo) = r''®''"’' (3.11)
V"

Here a'10 will be different for different mesons as solution of equation (3.10)depends 

on n and a with b = 0.183GeV2. We list the values of a'10 in table 3.1 using known 

values of as under MS [12] and those in table 3.2 with as in V-scheme [13, 14, 15].
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Table 3.1: Values of a'10 for different mesons with as values under MS scheme .

Mesons as p II “[? «io
D 0.2761 0.39 0.52 1.7271
Ds 0.3648 0.39 0.52 1.4642
B 0.31 0.22 0.2933 1.5104
Bs 0.44 0.22 0.2933 1.23
Be 1.18 0.22 0.2933 0.6979

Table 3.2: Values of a'w for different mesons with as values under V-scheme .

Mesons a* a = aio
D 0.2761 0.693 0.924 1.9105
Ds 0.3648 0.693 0.924 1.6593
B 0.31 0.261 0.348 1.531
Bs 0.44 0.261 0.348 1.2521
Bc 1.18 0.261 0.348 0.724

Now we consider the single kth state in the summation of equation (3.4)which is 

the 2s state given by :

4°}(«io) = 4o(«io)

= f _ Mgr
\ 2

(3.12)

Therefore equation (3.4)gives wavefunction corrected upto first order as :

Ao (aJo) to (aio
N , / 4o* (aio) (aio) dv , (0)

3/ "> „(cfi ___ ; V20si? Caio) 4? (aio) (aio) (3.13)

The energy eigenvalues are given by :

BnO (cijo) — ^10

2 n2
(3.14)

The summation in equation (3.13)is dropped as we are considering single kth state.Also, 

we have n = l,and n = 2, due to the single state consideration in equation (3.4). 

Carrying out the integration in (3.13), we find that the wavefunction corrected upto
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the first order as :

V'io (aio) = -010 (aio)
4-y//j___f Afia'iQ (a — q.'(q) 32b

3VS(a;„)’ V 27 81j»ai0
ifll

The relativistic version of (3.15)is [70, 71]:

(3.15)

Ao,rel (aio) = ^10 (aio) [(r/iaio) ] (3.16)

with e given by eq(2.5).

The expressions for I-W function, charge radius and convexity parameter with con

finement only(which corresponds to wavefunction given by eq.3.15) are:

£s,conf (y) — 1 Ps,amf (V 1) ~b ^S,conf (y 1) + (3.17)

where the charge radius is :

2 _ 4**? f3cf
ps,conf --t=rsl-r + ma + 1024c', A,— 1 F 34j42 -I-----—4-

p°a'io~' 4 243
(3.18)

and the convexity parameter is :

AtxNI 45cf 20 x 2udA,
Cstconf — « ~“,i 7 [—+ 5760A2 + 1

6m3 aio7 8 36
(3.19)

Here,
j _ Paw ci — r-

7T3
(3.20)

and
A = 4Vp {4Paio (q - qjo) _ 32b i

3^ (a'10)2 27 8W (3.21)

The subscript ‘S’ corresponds to the single term in the summation of equation(3.4). 

The normalization constant Ni is given by:

47ri\T2
r-£ 2 A2

(3.22)
14ai35^ /t35'io3j
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The respective relativistic versions are :

^S,rel+conf {y) — Ps,rel+conf (V 1) + Cs.rei+con/('1/ 1) + ••• (3.23)

with

Ps,rel+con
4ttJVf r (3 - 2c) (4 - 2e) (3 - 2e) f cf

g|+X1 + X2 (3.24)

and

4irN[2 r (3 - 2e) (6 - 2e) (5 - 2c) (4 - 2c) (3 - 2e) '

(3.25)

Here the normalization constant N[ is given by :

4xNC
T (3 — 2e) [^ + X5 + X6

(3.26)

All the functions Xt (e)\i = 1,2, ..6 are defined in the Appendix C.

(ii)Two terms in the summation

In this step, we consider the 3s state (n = 3,/ = 0) in addition to 2s state (as done 

in the single term case).The 3s state with the variational parameter a'10 is written 

as :

(3.27)

With the inclusion of this state , the summation and integration in (3.4) gives the 

wavefunction corrected upto the first order as :

(3.28)
3
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where

B — f3/ia^o (a o!iq) _ 276 .
_V^(a'io)’ 64 256Mo

(3.29)

The relativistic version is obtained by multiplying (3.28) by (rfia[Q)~e. The I-W 

function ,charge radius and convexity parameter for the wavefunction (3.28) which 

is to be normalized are given by (i.e. with confinement only ):

£D,conf (V) — 1 PD,conf (V 1) &D,conf (y 1) + (3.30)

where the charge radius is :

2 47rJVfr3cf a a2 1024cM 34 x 211 x B2
Pl^f = + 84^ + “2^--------------- 4-------- +

36 x 39 x dB 66 x 69 x 16 x AB,
28 3 x 57

(3.31)

and the convexity parameter is :

d'D,conf
Air No r45c( 20 x 21 V, A

2 r^i + 5760^2 + ^ ^ ^ ^
6p3*'io71 § 36

+414163 x B2 + 39 x 185 x d B 69 x 24608 x AB
45 + 3 x 59

(3.32)

with normalizaion constant 7V2 given by

AirNn
1

Jx  , 2A2 , 27B2 , 27c'B _ 63 x492x.4Bl
^3S'103 M3a'io3 4/^3a'10iJ 55n35'103 ■*

(3.33)

The subscript ‘D’ corresponds to two terms in the summation. The respective 

relativistic versions of (3.30),(3.31) and (3.32) are :

£D,rel+conf (?/) _ 1 PD,rel+conf (V T C'D^el+conf (j/ 1) (3.34)

where

li_ **N$ (4 - &) (3 - 2e) r (3 - 2e) + ^ + ^ + ^ ^
PD,rel+conf M35i10 32 i=7

(3.35)
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and

CD,rel+conf
4?rNj (6 - 2e) (5 - 2e) (4 - 2e) (3 - 2e) T (3 - 2e) 

6Ai3ai07
r/2 16 

X ^198 + ^3 + ^t]
i=12

(3.36)

The normalization constant is given as :

AixNn =
M3«'io3

T (3 — 2e) [^ + X5 + X6 + E?ii7X,
(3.37)

and Xt (e);i = 7,8,..., 21-are defined in the Appendix C.

(iii)With three terms in the summation

In addition to the 2s and 3s states we now add the 4s state : 

.1.(0)/y \ Ho)2 f 1 3/ia(0r p2a'*0r2 /i3af0r3
^40 ^ “-jg-+-33-"-^gg

|J°inre ■* (3.38)

With the inclusion of this state , the first order wavefunction now becomes :

V'io (s'io) = (a'1Q) - A
2/ia'ior , 2/j2«iV5

+

3juai0r + mMoT2
16 32

27

r aior
8 x 96

e 3 +

fiar ]nr
40- (3.39)

where
n' = Wo)^ r36 (a ~ g/io) _ 3846

\pK 1 15625ai0 78125/z2c4 (3.40)

As usual , the relativistic version of this wavefunctin is obtained by multiplying 

above expression by (r/M'10)~e.

Thus,with confinement only ,the I-W function is :

fr,c<mf (y) = 1 - Pr.amf (V ~ 1) + CT,conf (y ~ l)2 + (3-41)
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where charge radius is :

2 tirNl.pl ,con fE
pT'conf p?af0l 4tt Nl

3k;/5 
10 + 10368 x D' - 2.51 x D'<

-109.88 x D'A - 2558.46 x D'B] (3.42)

and convexity parameter is :

CW = + 9123840 x If
6 p,3a'7-10 Air Nn

-19.32 x D'd - 3196.4 x D'A - 183755.94 x D'B] (3.43)

with

4tvNj = ,2
c'l , 2A3 , 27B* , 27e^B _ 63x492xAB , 16£>':

4/i35'io M3af0 4;i3a'130 5sji3af0 "3™';,T IM3«ia

(3.44)

Here,the subscript‘T’ refers to three terms in the summation. 

The corresponding relativistic expresions are :

£T,rel+conf (y) = 1 ~ pT,rel+conf (V ~ 1) + CT,rel+ccmf {V - l)2 + (3.45)

where
47rJ<(4-2e)(3-2e)r(3-2e)rC'12 , v.

PT,rel+conf ~ 3—,s Lnr) + Zj A«.
r‘ a10 i=22

(3.46)

and

C'T,rel+con f
47rlV'2 (6 - 2e) (5 - 2e) (4 - 2e) (3 - 2e) T (3 - 2e)

6/i3a'710

x[4+EX1 (3.47)
128 7=30
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The normalization constant is given by :

4tt1V' =
r (3 2e) [^ + E?=38^

(3.48)

and the functions Xt (e);z = 22,23, ..,45 are defined in the Appendix C.

3.3 Calculation and Results

We have listed the values of charge radius and convexity parameter of the calculated 

I-W function for various heavy-light flavor mesons in the present method considering 

single state , two states and three states in the summation occurred in VIPT with 

confinement and relativistic effect.

In making the tables we have used two sets of as values : one under MS- scheme 

[12] and the second under P-scheme [13,14,15] at ‘c’ and ‘6’ -quark mass scale so that 

we get two sets of readings for the same quantities .Table 3.3 represents the numerical 

values of the parameters c'x ,A,B,D' given by equations (3.20),(3.21),(3.29)and(3.40) 

respectively with as under MS- scheme;while table 3.4 represents those values 

with as values under P-scheme.Similarly,tables (3.5-3.7) give charge radius and 

convexity parameter for different combination of states with as values under MS- 

scheme;whereas tables (3.8-3.10) give the same quantities with as values under V- 

scheme. The values of a[0 are taken from the tables 3.1 and 3.2.

Correspondingly,the graphs which show the variation of I-W function £ (y) ver

sus velocity transfer ratio ‘y’ consist of total two figures out of which the first one 

(i.e.fig.3.1) correspond to MS scheme and the last one (i.e. fig.3.2) to V-scheme.
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Table 3.3: Various parameters with as values under MS scheme.
Mesons A A B x 10~2 D' x 10~4

D 0.39 0.33 -0.0712 0.304 5.055
Ds 0.39 0.37 -0.08 0.34 5.60
B 0.22 0.32 -0.082 0.35 5.77
Bs 0.22 0.37 -0.094 0.401 6.66
Bc 0.22 0.5625 -0.134 0.57 9.51

Table 3.4: Various parameters with as values in V-scheme.
Mesons (Xg <k A B x 10~2 D' x 10~4

D 0.693 0.36 -0.0613 0.3166 4.345
d3 0.693 0.42 -0.066 0.34 4.65
B 0.261 0.33 -0.08 0.41 5.67
Bs 0.22 0.376 -0.09 0.47 6.48
Be 0.22 0.58 -0.0127 0.66 9.01

Table 3.5: Slope (charge radius) and curvature (convexity parameter) with single 
term in eq.(3.4) under MS scheme.

Mesons r's.amf Cs,conf rt2rs,rel+can f ds,reL-\~conf

D 3.73 13.92 2.197 5.61
Ds 5.06 26.18 2.53 10.54
B 5.83 29.08 4.132 18.72
Bs 9.49 71.48 6.30 34.44
Bc 25.54 592.1 18.1 379.7

Table 3.6: Slope (charge radius) and curvature (convexity parameter) with two terms 
in eq.(3.4) under MS scheme.

Mesons PD.conf S>D,eonf PD,rel+con f DD,rel+zonf

D 2.84 9.37 1.83 5.184
Ds 3.9 17.72 2.50 9.776
B 4.14 18.55 3.72 14.92
Bs 6.56 44.47 5.66 34.31
Bc 18.64 385.32 16.55 305.23
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Table 3.7: Slope(charge radius) and curvature(convexity parameter) with three 
terms in eq.(3.4)under MS scheme.

Mesons P'T^canf C'T1canf PT,rel+con f ^'T,rel-^-conf

D 2.83 9.15 1.80 5.04
Ds 3.88 17.28 2.46 9.45
B 4.13 18.1 3.68 14.53
Bs 6.45 43.37 5.59 33.4
Bc 18.55 375.91 16.35 298.31

Table 3.8: Slope(charge radius) and curvature(convexity parameter) with single term 
in eq.(3.4)under V-scheme.

Mesons n2rs.conf Ds,conJ rs,rel+con f Ds,rel+conf

D 2.19 6.22 0.433 0.525
Ds 2.62 9.55 0.56 0.85
B 5.43 26.26 3.57 15.27
Bs 8.12 58.65 5.33 34.11
Bs 21.4 447.03 13.86 258.35

Table 3.9: Slope(charge radius) and curvature(convexity parameter) with two terms 
in eq.(3.4) under V-scheme.

Mesons PD,conf Cd^ccmf PD,rel+conf CD,rel+conf
D 1.82 4.57 0.432 0.524
Ds 2.28 7.31 0.55 0.84
B 3.60 16.2 3.16 12.32
Bs 5.42 36.4 4.72 27.52
Bs 15.05 294.87 42.78 243.8

Table 3.10: Slope(eharge radius) and curvature(convexity parameter) with three 
terms in eq.(3.4) under V-scheme.

Mesons PT.conf PT,rel+ctm f DT,rel+conf

D 1.79 4.36 0.430 0.516
Ds 2.25 6.98 0.545 0.815
B 3.55 15.43 3.12 11.77
Bs 5.3 34.67 4.66 26.29
Bs 14.82 278.3 12.61 204.34
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Figure 3.1: Variation of Isgur-Wise Function £(y) vs velocity transfer ratio ‘y’ as 
given by eq.3.45 for MS scheme,(c/.Table-3.7).

44



Figure 3.2: Variation of Isgur-Wise Function £(y) vs ly’ as given by eq. (3.45) for 
V scheme, (cf.Table-3.10).
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3.4 Discussion and Conclusion

In this chapter ,we have calculated the slope and curvature of the I-W function 

using VIPT method in the QCD inspired quark model [30,72-74],In this approach, 

we notice that with the inclusion of more states in the summation of equation(3.4), 

the results come closer to the predictions of the other models [53-68],Further, An 

analysis of the tables (3.5-3.10) indicates that relativistic effects invariably reduces 

the values of p2 and C so as to bring them close to the predictions of other mod

els. We have seen from the results that the slope and curvature agree quite well with 

the values and bounds of other models in table 2.3 for D and Ds mesons but not as 

expected for B,BS,BC mesons .This is due to the low value of as for the B sector 

mesons. Such feature was earlier noticed in ref. [74] too,suggesting the necesssity of 

higher order effects beyond O(af) in V-scheme.

We also note that the equations (3.18),(3.19),(3.24),(3.25),(3.31),(3.32),(3.35), 

(3.36),(3.42),(3.43),(3.46) and (3.47) along with (3.22),(3.26),(3.33),(3.37),(3.44) and 

(3.48) of the text contain several large numerical factors appearing to be divergent 

compared to the leading order term which is in contrary to the expectation of a 

perturbation theory.However, a careful study reveals that actually it is not so.

As an illustration, the correct leading order term in equation (3.18) with 6 = 0, 

a'10 = a becomes PsiCOnf,w — ^ — if^j ; which for as = 0.693 is ~ 3.51 not far away 

from the results of table 3.8 .Similar analysis can be done for the other equations as 

well .

With the Coulombic parent, this approach shows unsatisfactory results for the 

U-sector mesons. Definitely, it will be interesting to explore if the linear potential 

as parent can improve the results of the present analysis as far as /3-sector mesons 

are concerned.
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Chapter 4

Isgur-Wise function in a QCD 

potential model with linear parent 

in Dalgarno method

4.1 Introduction

We have seen from the above analysis in chapters 2 and 3 that while calculating the 

slope and curvature of I-W function ,the Coulombic parent leads to unsatisfactory 

results for heavier mesons like Bs, Bc whether one uses Dalgarno method or VIPT 

[79, 81] .It definitely paves the way for considering the linear potential as parent in 

the solution of Schrodinger equation using the approximation methods.

In this chapter,we calculate the slope and curvature of I-W function using the 

linear potential as parent with the help of Dalgarno method .The linear parent gives 

rise to the Airy functions as the unperturbed wave functions.The corrected wave 

function upto first order for the Coulombic part as perturbation can be calculated 

in the same way as for Coulombic parent in chapter 2.

47



This chapter includes the formalism as section 2,the results as section 3 and

lastly the discussion and conclusion is the section 4.

4.2 Formalism

4.2.1 The wavefunction

In this case, for the Hamiltonian (eq.1.11) we have considered ,the perturbed Hamil

tonian is :

(4.1)

and the unperturbed Hamiltonian is:

(4.2)

The constant ‘c’ at its natural scale is taken to be 1 GeV [74].

The unperturbed wave function coresponding to Hq are the Airy functions which 

after normalization can be written as :

■40) (r) = ^v^((2^6)*+ P°n) (4.3)

where pon s are the zeros of the Airy function Ai (pon) = 0, n — 1,2,3.. represent 

the principal quantum no. (of course for the ground state n=l) and N is the normal

ization constant.

The pon s are given as [4, 82]:

(4.4)
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The first order correction to wave function and energy W,W are related as:

+ H'i>i = WnV + (4.5)

where W® is the unperturbed energy given as [4]

K = E« = -(^j pa„ (4.6)

and
W™ = ^+°° r2H' |^(0) (r) |2 dr (4.7)

Since we consider the ground state (n = 1) , so we drop the ‘n’ from W^,W^, ip^ 

and ip*. The first order correction is :

i’1 (r) = —(y + «2 + asr) (4.8)

As Airy function Ai(r) involve infinite series in ‘r\ so in calculating the coefficients 

ai,a2 and a3 we have considered upto order r3 and they are given by :

0.8808 (6/z) 3 a2 414^x0.21005 
(E-c) n(E-c)+ 3 a,(E-c) (4-9)

ba0 4 x W1 x 0.8808 x (&/*)$ 0.6535 x (&/x)S
(E-c)+ 3as (E -c) (E- c) (4-10)

a3 =
4fjW* x 0,1183 

3a, (4-11)

The total wave function corrected upto first order with normalization is:

ipcoul (r) = ip{Q) (r) + ^(1) (r)
- N* ^((2M^)^ + Poi) _ 4a, 

2^/w r 3
a i
-------b 0,2 + ^3?'
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where Ni is the normalization constant for the total wave function ipCoui (r) with 

subscript ‘coul’ means Coulombic potential as perturbation.

The relativistic version of eq (4.13)is obtained by multiplying it with i.e.

Ael (r) = 'tpccml (r) (4.14)

where oo is given by eq.(2.4) and e is the relativistic factor given by (2.5).

4.3 Calculation and Results

We have calculated the values of charge radius and convexity parameter of the Isgur- 

Wise function given by eq.(2.20) for two set of coupling constants both in MS[ 12] 

and V-scheme [13-15] to facilitate the comparison of our result with the previous 

work[73,74].

For these calculations,we have used the expressions for E, W1 ,ai,a2,a3 given 

by equations (4.6),(4.7),(4.9),(4.10),(4.11) respectively.These are shown in the table 

4.1 and table 4.2.The result of p2 and C in the present work is shown in table 4.3. 

We also compare the present result with that of previous work with linear as the 

perturbation [74] in F-scheme which was an improvement over MS-scheme and is 

shown in table 4.3.

In evaluating the various integrations, we use numerical method of integration 

in mathematica software.
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Table 4.1: The values of E and Wl in GeV

Mesons E W1

MS scheme V scheme
D 0.3898 0.0467 0.08314
Ds 0.4291 0.5137 0.0915
B 0.4072 0.02742 0.0327
Bs 0.4553 0.0308 0.0366
Bc 0.6327 0.0451 0.051

Table 4.2: List of ai,a2 and a3

Mesons Ol a2(GeV) a3(GeVz)

V scheme MS scheme V scheme MS scheme V scheme MS scheme
D 0.2143 0.1943 , -0.006138 -0.007877 0.00293 0.002933
Ds 0.238 0.21387 -0.00916 -0.01257 0.0043 0.004304
B 0.2245 0.2029 -0.00749 -0.0099 0.00349 0.00348
Bs 0.254 0.2269 -0.0114 -0.01604 0.005446 0.00547
Bc 0.38 0.3222 -0.0188 -0.023 0.02034 0.2035

Table 4.3: Values of slope(pz) and curvature(C) in our work and its comparision to 
earlier work in this model for c = 1 GeV.

Our work

Scheme Mesons p2 C
D 0.7936 0.0008

MS-scheme Ds 1.186 0.002
B 0.89 0.0004
Bs 1.41 0.0012
Bc 5.49 0.0322
D 0.896 0.00306

V-scheme Ds 1.352 0.0077
B 0.912 0.0007
Bs 1.421 0.00155
Be 5.67 0.065

Earlier work

ref. [74] D 1.136 5.377
Ds 1.083 3.583
B 128.13 5212
Bs 112.759 4841
Be 44.479 2318
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4.4 Discussion and Conclusion

Our calculated values of slope of I-W function in this work are found to be in 

good agreement with the other results (table 2.3). The lattice QCD evaluation of 

p2 = 0.83:^1^22 for B meson[66] and the experimental values of D meson p% = 

0.76 ± 0.16 ± 0.08 [67] and p% = 0.69 ± 0.14 [68] are also in good agreement with 

our calculated results.However, the values of curvature for each meson are found to 

be smaller in comparison to other predicted values. The reason may be presumably 

due to cut off the infinite series of Ai(z) upto 0(r3) as noted earlier.But, still such 

small values can be considered as a success particularly for the B sector mesons as 

these values were very large in case of Coulombic potential as parent [72-74],

This study of the Isgur-Wise function with Coulombic part as perturbation shows 

a different picture as compared to the earlier work [72-74] With linear part as per

turbation done earlier, the slope and curvature decrease with the increase of a.,; 

while in this work , we have observed a reverse effect. Further,this analysis shows 

a great reduction in the'values of p2 and C for all the mesons as compared to the 

previous work with linear part as perturbation.

Let us conclude the section with a few comments.

The strong coupling constant entering the coulombic potential is a function of the 

momentum in full QCD.But in potential model,it is nothing but a mere parameter. 

However,here we have used the strong coupling constant in the MS and K-scheme 

to facilitate only a proper comparison with the previous work with linear part as 

perturbation[73,74].The comparison between the two schemes for all the work done 

so far [73,74,81] shows that the V-scheme is the preferable one.
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Chapter 5

Isgur-Wise function in a QCD 

inspired potential model with 

confinement as parent in the 

Variationally Improved 

Perturbation Theory (VIPT)

5.1 Introduction

As noted in chapter 4 ,while using the Dalgamo method with linear potential as 

parent [83],the results for the slope and curvature of I-W function were quite satis

factory except for the Bc meson .So, to make further study with VIPT again for the 

linear parent is meaningful which will widen the applicability of VIPT at the same 

time.

A careful investigation shows that the linear part with significant confinement 

effect(6 = 0.183C?eV2) usually comes out to be dominant over the Coulombic one for 

mesons having greater reduced mass /^.Further, as pointed in ref. [4], the linear parent 

comes out to be quite handy in predicting the mass, energy etc for different states
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over the Coulombic piece.Under such circumstances,it will be definitely worthwhile 

to test the model with linear parent expecting success for the Ba,Bc mesons also 

which have greater reduced mass fj,.

We recall that [4] for the linear potential to be dominant we require < r > > 

ro,where < r > is the expectation value of the distance r which reasonably gives the 

size of a state(in this case meson) and ro is a point at which linear cum Coulomb 

potential becomes zero( fig.l of Aitchison and Dudek ,ref.[4] }. The condition of 

applicability of VIPT to linear as parent conforms to low value of as and high value 

of 6.This is because ro is directly proportional to as and inversely to 6 and we need a 

small r0 for the linear potential to dominate.So, with linear parent, one can suitably 

handle large b and small aa which is necessary in this QCD inspired potential model 

for the B-sector mesons (e.g. B, Bs, Bc) usually incorporated with small running 

coupling constant a$ due to their large mass.The linear parent is thus expected to 

be effective for heavier mesons.

Our approach is further is boosted by the success of the work [83] where we have 

used the Dalgarno method with linear parent for D,DS)B,BS mesons .

With this idea in mind,this chapter is devoted to the calculation of slope and 

curvature of I-W function using VIPT for the linear parent.

Section 2 is the formalism,section 3 is the result and section 4 contains the 

disscussion and conclusion.

5.2 Formalism

5.2.1 First order corrected wavefunction and energy in VIPT

The wavefunction corrected upto the first order of jth state is given by eq.(3.4) and 

the energy corrected upto first order for the same state is given by eq.(3.5). We 

note that in this case, P' — V is the variational parameter related to the physical
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parameter ft as in eq.(3.2) :

ft = ft + ft' -b' (5.1)

In this work also , we consider terms upto three states in the summation (3.4) 

as was done in ref. [81].

5.2.2 Wavefunctions using VIPT with linear potential as 

the parent

(i)With one term in the summation

As explained earlier , we take V as the variational parameter instead of the physical 

parameter b in the parent linear potential to write the Hamiltonian as[4, 81]:

H = H0 + H'
V2 , 4as

~iH+hr~ v+c
+ br ■_Z!

2/j,
V2

~^+6r 

Hob' + Hi

a
r
a
r

| £»

b'r + br + c

(5.2)

Now ,H0b> = — — b'r is the parent Hamiltonian with the new parameter b' and

Hy = j — b’r + br + c is the perturbed Hamiltonian with the same variational pa

rameter V instead of the physical parameter b .

We consider jth as Is state (n — 1,1 = 0) and in the summation of equation(3.4), 

we consider a single kth state which is the 2s state (n = 2,1 — 0).

We again note that in the variational method, we are interested only in the 

V dependence of the Hamiltonian, and so ‘c’ in H'b, has no role to play in the 

calculation [1],
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The unperturbed wavefunctions with linear parent with appropriate boundary con

ditions are the Airy functions given by [4]:

(5.3)

where pon s are the zeros of the Airy function Ai (pon) = 0 given by eq(4.4) 

and Nn is the normalization constant.Eq.(5.3) is identical to eq.(4.3) except to the 

replacement b —* V.

As an illustration , we reproduce for s states a few of the zeros of the Airy func

tion in table 5.1.

The corresponding energies are given as :

(5.4)

Of course n = 1,2,3,4,.... is the principal quantum number.

Thus the trial Is state (n = 1,/ = 0) wavefunction is (which is also the unper

turbed wavefunetion) :

^(0) = A!

(5.5)

where

(5.6)
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and the subscript 10 indicates the quantum number (n, l) of the jth state.

We note that V is to be replaced by b' which is obtained by minimizing E3 given 

by equation(3.5).It is essential since in VIPT we have to use the values of variational 

parameter leading to minimum energy (for example in ref. [81], as was replaced by 

a'K)). The values of b' for different mesons are listed in table 5.2.

Now we consider the single kth state in the summation of equation (3.4)which is 

the 2s state given by :

N2
2 v/iV

N2
2-\fwr

Ai ((2jui/)5r 

Ai (z2) (5.7)

where

z2 = (j2fjb')5r — 4.083) (5.8)

The wavefunction corrected upto first order is :

1>s = N ^ + (2M) =

(p02 — Poi) b

b — b>Sj <r >2,x -a < J >2i,i) Ip20 (r) (5.9)

where

< r >2,i= N\N2 J+°° rAi ((2^')5r - 2.3194) Ai ((2/i&')*r - 4.083) dr (5.10)

and N is the normalization constant.
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(ii)With two terms in the summation

We next consider the 3s state (n = 3,/ = 0) in addition to 2s state l as done in the 

single term case) given by :

VVj' = 5.5153)

= (5.11)l^/Tvr

where

z3= ((2/i6')5r- 5.5153) (5.12)

With the inclusion of this state , the wavefunction corrected upto the first order 

is :

if>D = N'[ip{0) H------———t <r >2,i -a <- >2,i] i'20 (r) +

(P02 — Poi)b

-----——-r f (f> - S') < r >3)i -a < - >3)1 J '030 (r)] (5.13)

(P03 ~ Poi)b

where

<'r >3,1—N1N3 J rAi [i2pJ))^r — 2.3194) Ai ((2fib')^r — 5.5153) dr (5.14) 

and N' is the normalization constant.

(iii)With three terms in the summation

In addition to the 2s and 3s states we now add the 4s state :

V4o = - 6.782)

= ^7=~A% (*0 (5.15)
Zy/'KT
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where

(5.16)24 = ((20&')Jr - 6.782)

With the inclusion of this state . the first order wavefunction now becomes :

ifo = NH-------((b-b') <r >2,x -a < - >2,i] $20 (r) +

(P02 — Poi)b

-----——-j ((& - S') < r >3,i —a < ^ >3,1) M

(P03 ~ Poi)b

+-----—----- 5- ((b~b') <r >4ii -a<- >4,1) ^40 Ml (5-17)
(P04 - P01) V r

where

< r >41= NxN4 £°° rAi ((2/i&')Sr - 2.3194) Ai ((2/x6')ir - 6.782) dr (5.18) 

and JV" is the normalization constant.

The relativistic version of these wavefunctions are obtained in an analogous way by 

multiplying the above expression by (rjj.a)~e [81]. Thus,relativistic version of all 

these wavefunctions is:

i>t,rei = i'x (rpa)~e (5.19)

where i — S,D,T and e is the relativistic factor defined in eq.(2.5).Putting all 

these wavefunctions i.e. equations (5.9),(5.13),(5.17) and (5.19) in (2.20) we can 

calculate the Isgur-Wise function for the different cases.

5.3 Calculation and Results

We have listed the values of slope and curvature of the calculated I-W function for 

various heavy-light flavor mesons in the present method considering single state , 

two states and three states of eq.(3.4) with and without relativistic effect.
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Table 5.1: A few of the zeros of Airy function for s states .

State POn
ls(n = 1,1 = 0) -2.3194
2 s(n = 2,1 = 0) -4.083
3s (to = 3,1 = 0) -5.5183
4s (n = 4,1 = 0) -6.782

Table 5.2: Values of b' with b = 0.183GeV2

Mesons Reduced mass p a = *f
------ ==?-----------------

b without
relativistic effect

---------------- =7----------------------------
6 with

relativistic effect
D 0.2761 0.924 5.406 16.24
Ds 0.368248 0.924 5.876 19.8
B 0.31464 0.348 4.33 5.587
Bs 0.4401 0.348 4.497 5.954
Bc 1.1803 0.348 5.39 8.103

Table 5.1 gives the zeros of Airy function while table 5.2 gives the values of b'. In 

tables (5.3-5.5), we record our predictions of slope and curvature for single term,two 

terms and three terms of eq.(3.4) respectively . Table 5.6 gives a comparison of 

VIPT and Dalgarno method for both the options .

The as values are taken from the V-scheme [13, 14, 15] and the integrations are 

done numerically for all these calculations.

Table 5.3: Values of slope (p2) and curvature (C) with single term in equation(3.4).

Meson Ps Cs Ps.rel Cs,rel
D 1.36 0.01 0.53 0.0022
Ds 1.867 0.03 0.702 0.0036
B 1.93 0.02 1.41 0.013
Bs 2.923 0.046 2.113 0.0283
Bc 9.442 0.484 6.274 0.2522
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Table 5.4: Values of slope (p2) and curvature (C) with two terms in equation(3.4).

Meson Pd Cp PD,rel

D 1.201 0.013 0.57 0.0026
Ds 2.001 0.0242 0.74 0.0041
B 2.004 0.0244 1.44 0.0133
Bs 3.031 0.0565 2.16 0.0297
Bc 10.2 0.61 6.51 0.275

Table 5.5: Values of slope (p2) and curvature (C) with three terms in equation(3.4).

Meson
---- *----

Pt CT PT.rel CT,rel
D 1.33 0.016 0.604 0.00326
Ds 2.023 0.0305 0.78 0.0054
B 2.027 0.031 1.54 0.0217
Bs 3.087 0.071 2.29 0.047
Bc 10.25 0.767 6.99 0.441

Table 5.6: Comparison of the values of slope p2 and curvature C in VIPT and Dal- 
garno method for both the options .For comparison we take the best representative 
values of p2 and C from the available data for D,DS,B mesons.

VIPT
I. Linear Parent 

[this work]
ILCoulombic Parent 

[81]
Terms considered in eq.(3.4) meson Ps Ps Cs

single term D 0.53 0.0022 0.433 0.525
Ds 0.702 0.0036 0.56 0.85
B 1.41 0.0126 3.6 15.3

two terms D 0.57 0.0026 0.432 0.524
Ds 0.74 0.0041 0.55 0.84
B 1.44 0.0133 3.16, 12.32

three terms D 0.604 0.0033 0.43 0.516
Ds 0.78 0.0054 0.545 0.815
B 1.54 0.0213 3.12 11.8

Dalgarno Method
I. Linear Parent ILCoulombic Parent

[83] [74]
- meson Ps Cs Ps Cs
- D 0.896 0.0031 1.136 5.377

Ds 1.352 0.0077 1.083 3.583
B 1.41 0.013 128.13 5212
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5.4 Discussion and Conclusion

This analysis with linear parent shows a complete different picture in comparison 

to that with Coulombic parent[81].With more terms in (3.4),the slope and curva

ture have increased in contrary to Coulombic parent.Also, an analysis of table 5.6 

indicates that for a definite term,the slope has assumed larger values than those 

of ref.[81] while for the curvature,the pattern is reversed i.e.it has assumed smaller 

values than those of ref. [81].

Regarding the number of terms considered in the summation (3.4),we have seen 

that the most satisfactory and comparable result is for the single term considera- 

tion.This is undoubtedably a great phenomenological advantage as involvement of 

more terms in equation(3.4) makes the calculation quite cumbersome which hap

pened in ref.[81].However, relativistic correction in this case also decrease the slope 

and curvature of Isgur-Wise function as observed earlier [81] .If we look back at our 

Dalgarno method approach with linear parent in chapter 4, we have observed larger 

values of slope and curvature for D, Ds mesons while smaller values for B, Bs, Bc 

mesons in this work over those in that work .

To conclude , the present approach based on VIPT for the calculation of I-W 

function within the QCD inspired potential model appears to be preferable over the 

one of ref. [81] where the linear potential was considered as perturbation.

62



Chapter 6

Form factors and charge radii in a 

QCD inspired potential model 

using the Variationally Improved 

Perturbation Theory

6.1 Introduction

We recall that the reliability and effectiveness of a QCD inspired model is determined 

by the standard factors like I-W function,elastic form factors,charge radii etc, the 

basic ingredient of which is the wavefunction .So far, we have determined the wave 

functions using approximation methods like Dalgamo method,VIPT for both linear 

and Coulombic parent and use them in the calculation of I-W function.We,in this 

chapter , report the calculation of elastic form factors and charge radii with the same 

wavefunctions obtained from VIPT which were used in calculating the I-W function.

It is well known that the elastic form factor and charge radius are dependent 

on the momentum transform of the wavefunction.So,getting an appropriate wave- 

function is very essential for a fruitful analysis.With the success of VIPT in the
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calculation of Isgur-Wise function as pointed above [81,84],one can expect a sim

ilar success here also .It is worthwhile to note that while investigating the form 

factor ,one must take into account of a proper range of four momentum transfer 

Q2.The Q2 range usually determines the applicability of perturbative QCD(pQCD) 

or nonperturbative(npQCD).So,an accurate selection of Q2 range within the non- 

perturbative approach is necessary which will also fall within the experimental 

regime.This facilitates a direct comparison between theory and experiment.This has 

been done both theoretically and experimentally since long [85-90] for the light n, K 

etc mesons.However,for the mesons which contain at least one heavy quark,very little 

have been investigated theoretically [9-11] .In the absence of any experimental data 

for them,our results may be helpful in future in the experimental set up regarding 

the Q2 range .

As far as our model is concerned, the perturbative or nonperturbative regime of 

QCD can be interpreted through the relativistic factor ‘e — 1 — ^1 — ’ [30]. The

reality constraint on the form factor F (Q2) leads to the condition 0 < e < 1, where 

the case e—*0(e—»l) corresponds to the perturbative (nonperturbative) limit of 

QCD .The e —► 1 limit demands large as or low Q2.So, discussing the nonperturba

tive effects of QCD with large confinement parameter b ,we must consider the low 

Q2 limit of as in this model .However, we have observed in ref.[30] that large value 

of 6(= 0.183GeV2) prohibits the use of low Q2 compelling one to involve with small 

as which corresponds to the perturbative regime and thus can’t be accounted in this 

nonperturbative approach.

We reanalyze all these observations in this approach of VIPT for both the sce

narios -linear or confinement part as perturbation and Coulombic part as perturba

tion. We will explore the possibility of incorporating significant value of as even with 

large confinement (b = 0.183GeV2). This work will also check the status of both 

confinement and Coulombic part as perurbation and observe the consequences re-
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garding the usable range of Q2 to work , in the absence of experimental data for the 

said mesons .The calculations are done with a fixed value of as from V-scheme [13- 

15] with large confinement effect b = 0.183(7eV2 instead of variation in both.Even 

with this single value of (xs and b one can draw similar conclusion regarding the 

effective range of Q2. The calculated form factors are plotted graphically to show 

their variation with Q2 for both the scenarios.

Basically, this work explores the possibility of improving the results for form 

factors and charge radii over those of ref. [11,30] with the help of VIPT.In the process, 

we also try to find a useful range of Q2 which may be workable for the experimental 

investigations in the later course of time.Comparison of both the options is being 

made to arrive at a conclusion in using VIPT.

The rest of the chapter is organized as follows : section 2 contains the formalism, 

section 3 the result and calculation while section 4 includes the discussion and 

conclusion.

6.2 Formalism

6.2.1 VIPT with Coulombic potential as parent

(i)Wave function

The physical parameter in this scenario is as and the variational parameter is a's 

(eq.3.2).As stated above,we use the wave functions obtained earlier which are given 

by equations (3.15),(3.28),(3.39) respectively for single,double,triple term consider

ation of eq.(3.4). The wavefunctions for single and double term consideration can 

be obtained by putting B = D' — 0 and D' = 0 respectively in the equation (3.39).

However we will consider the relativistic version (e 0) of the above wave func

tion obtained by multiplying the nonrelativistic version by (r^ta'10)~c [for example 

eq.(3.16) of ref.81].
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(ii)The elastic charge form factor and charge radii

The form factor can be expressed as [91]:

where

eF (<32) =J2^.f0 r IV'r.flez (012 sin Qirdr

E m%

(6.1)

(6.2)

and we have used the relativistic wave function for three term consideration ipT.m-

Putting the relativistic wave function ^^(relativistic version of eq.(3.39)) in 

(6.1) we get the form factor as :

^ (Q2) - £ e,<r(3 - 2e) [qx + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 + 910] (6.3)

where N£ is the same normalization constant as appeared in equation(54)of ref. [81] 

and the different qi{Qt) s(i = 1,2,..., 10) are defined in the Appendix D.

The charge radius is derived as [30] :

< r > - d(eF(Q2))
dQ2

Iq2=o

— N3 T(3 — 2e)[ri + r2 + + r§ + + t? + r$

+ r9 + r10]

(6.4)

(6.5)

where the different rt s (7 = 1,2,..., 10) are defined in the Appendix D.

(iii)Status of linear potential as perturbation 

The momentum transform of is [92, 93]:

ipT,Rei{Q2) = T^,T'Rel (r) s'mQirdr

= I]e*iV3V“r(3_2e)bl“P2 + P3+P4]

(6.6)

(6.7)
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The Pt s which depend on Ql,e etc are given in the Appendix D.

If linear potential is treated as perturbation then from equation(6.7) above the 

following inequality must be preserved:

Pi > P2 - P3 - P4 (6.8)

This inequality leads to a lower limit of Q2 namely Ql [30] above which one have to 

use the values of Q2.The Ql is determined from the condition:

Pi = P2 - P3 - P4 (6.9)

Due to the quark mass dependence ,Ql s have different values and they are shown 

in table 6.2.In the Dalgarno method approach [30], the lower limits Ql were large 

and the formalism failed to account for large confinement effect (b = 0.183Gey2)in 

the nonperturbative QCD regime where a., values were taken to be large.Only in the 

limit 6 —► 0 ,the Ql values were lowered and the formalism worked for low Q2 range 

[30].In this method of VIPT,the values of Q2 are shown to be quite small even with 

large confinement effect (b = 0.183GeF2) enabling us to work in the nonperturbative 

QCD regime with large as.

We also note that for single term consideration only p2 exists on the RHS of the 

inequality (6.8) and for double term both p2 and ps exist.We have also recorded the 

values of Ql for single and double term consideration in table 6.2 .

6.2.2 VIPT with linear potential as parent

(i) Wavefunction

As pointed in ref.[4,83,84],the linear parent gives rise to Airy functions.The physical 

parameter is b and the optimized variational parameter is b' .We use the wavefunc- 

tions for single,double,triple term consideration obtained earlier which are given 

by equations (5.9),(5.13),(5.17) respectively in the same way as was done for the
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Coulombic parent above.

We note that for single (double) term consideration of equation(3.4) the third and 

fourth term ( fourth term) is dropped from the equation (5.17) and normalization 

constants also changes to different one (eq.17 and 21 of ref. [84]).

For this case also we take the relativistic version of these wavefunctions obtained 

by multiplying the nonrelativistic version by (rfia'w)~e .

Like the expressions we have adopted the same values of b, b', pQn as given in 

chapter 5( tables 5.1,5.2 ).

(ii)The elastic charge form factor and charge radii

For the relativistic version ( ipT,m) of the wave function ipx given by eq.(5.17) 

considered above, the form factor is found to be :

(6.10)

The coefficients C, C's are given in table 6.3 and N" is the normalization con- 

stant.They are of course different for single,double or more than two term con

sideration in eq.(3.4).Numerical integrations are done in getting the above result. 

The corresponding charge radius is obtained by using eq.(6.4) which are recorded in

table 6.3.

(iii) Status of Coulombic potential as perturbation

The momentum transform of ipT,Rei *s:

(6.11)

- Y^+Pe+Pr + Ps)] (6.12)
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The p't s (i = 1,2,.., 8) are given in the Appendix D.

If Coulombic potential is treated as perturbation then from equation(6.12) above 

the following inequality must be preserved:

(6.13)

This inequality leads to a upper limit of Q2 namely Ql below which one have to 

use the values of Q2.The Q§ determined from the condition:

(6.14)

The different values of upper limit Ql s are shown in table 6.4.The corresponding 

values for single and double term consideration are also shown.

6.3 Calculation and Results

In table 6.1, we record the charge radii for single,double and triple terms of eq.(3.4) 

for Coulombic potential as parent; whereas the same is recorded for linear poten

tial as parent in table 6.3.We have also listed the lower and upper limit of Qq for 

single,double and triple term consideration in tables 6.2 and 6.4.The infinite mass 

limit shown by the subscript oo is also included for triple (single) term consideration 

for Coulombic (linear) parent.The table 6.5 shows charge radii of different mesons 

obtained from other models and data.

The as values are taken from the V-scheme [13, 14, 15] and the integrations are 

done numerically for all these calculations.
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Table 6.1: Values of charge radii for different mesons with Coulombic parent for 
single,double and triple terms in eq.(3.4).The subscripts lS, D,T’ correspond to 
single,double and triple terms respectively whereas lF' means finite mass consid- 
eration.The infinite mass limit ( subscript oo is used) is shown for the triple term 
alone.

Meson W D+ m B+ Bu Bt

< rfF >5 infm -0.121 0.115 0.11 0.2545 -0.1822 -0.168 0.108
< r2DF >2 infm, -0.119 0.112 0.106 0.2512 -0.1788 -0.164 0.105
< rf F >2 infm -0.118 0.109 0.101 0.2464 -0.1736 -0.158 0.1034
< rT,oo >5 infm -0.131 0.12 0.113 0.263 -0.186 -0.1742 0.1325

Table 6.2: Values of lower limit of four momentum transfer Qq with Coulombic 
parent taking single,double and triple terms in eq.(3.4).We have to use Q2 values 
above these.

Meson D+ D~ Df B+ Ss° Bt

Qo,s 0.0004 0.0004 0.001 0.053 0.053 0.075 0.211
Qo,d 0.00036 0.00036 0.0009 0.052 0.052 0.072 0.209
Qo,t 0.0003 0.0003 0.0007 0.05 0.05 0.07 0.205

The graphs show the variation eF(Q2) vs Q2 for D, Ds and Bc mesons for both 

the options.
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Table G.3: Values of charge radii for different mesons with linear parent for sin
gle,double and triple terms in eq.(3.4) . The subscripts ‘5, D, 7” correspond to 
single,double and triple terms respectively whereas ‘F’ means finite mass consider
ation .The infinite mass limit ( subscript oo is used) is shown for the single term 
alone.

Meson Fu D+ Df B+ B° b:
8.24 8.24 5.916 14.22 14.22 10.91 4.50

C's 2.266 2.266 1.173 7.71 7.71 4.52 0.78
< r\ p >2 infm -0.197 0.1494 0.104 0.425 -0.2996 -0.2227 0.1125

cD 13.1 13.1 8.1 26.7 26.7 16.5 5.2
C'D 2.69 2.69 1.67 9.89 9.89 5.7 1.1

<rDF >5 infm -0.21 0.161 0.121 0.473 -0.336 -0.2489 0.127
CT 18.14 18.14 11.18 43.09 43.09 25.56 6.636
Or 3.365 3.365 2.199 13.14 13.14 7.655 1.363

< rFF >2 infm -0.24 0.182 0.143 0.555 -0.391 -0.289 0.148
< rl.oo *nfm -0.246 0.174 0.125 0.453 -0.32 -0.246 0.144

Table 6.4: Values of upper limit of four momentum transfer Qq with linear parent 
taking single,double and triple terms in eq.(3.4).We have to use Q2 values lower than 
these.

Meson D+ D~ Df B+ B° B“ Bf
Qo,s 2.297 2.297 2.92 1.43 1.43 1.676 3.11
Qo,d 2.1 2.1 2.67 1.31 1.31 1.56 2.89
Qo,t 1.88 1.88 2.387 1.177 1.177 1.386 2.55

Table 6.5: Prediction of < r2 >5 mfm for finite and infinite mass consideration in 
other models.The subscript ‘F’ (‘oo' ) means finite (infinite) mass limit.

Meson D° D+ Df B+/B- 5° B°JB° Bf/B;
<rjl>*[9] 0.506 0.491 0.258(5") 0.256(5°) 0.236(5-)
< Tp > i [10] -0.551 0.43 0.352 0.612(5+) -0.432 -0.345(5°) 0.207(5+)
<r^>l[10] -0.704 0.498 0.425 0.704(5+) -0.498 -0.425(5°) ...(Bf)
<r|>5[ll] -0.484 0.366 0.355 1.72(5+) -1.21 -1.17(5°) 1.43(5+)
<■4 >5[11] -0.6025 0.427 0.427 1.836(5+) -1.29 -1.29(5°) 1.84(5+)
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Figure 6.1: Variation of eF(Q2) vs Q2 for D ,DS and Bc-meson with Coulombie 
parent .
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Figure 6.2: Variation of eF(Q2) vs Q2 for D ,DS and Bc-meson with linear parent .
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6.4 Discussion and Conclusion

We have analyzed elastic form factors and charge radii in a QCD inspired potential 

model using VIPT under two scenarios- Coulombic and linear potential as parent . 

We summarize our achievements below:

I. The form factor eF(Q2) decreases with the increase of Q2 (as it should) for both 

the scenarios .

II. The form factor is either very small (for D-sector mesons)or small ( for ^-sector 

mesons)with Coulombic parent as compared to those with linear parent.

The charge radii is also observed to be smaller with Coulombic parent as compared 

to linear parent.

III. We use a fixed set of values for as under V-scheme[13-15] in the calculation , 

for example it is 0.693 for the D, Ds mesons which is larger than the value 0.261 

for the B,BS,BC mesons.This consideration directly results in the smaller values of 

charge radii for D, Ds mesons as compared to the B, Bs, Bc mesons.Larger as values 

are responsible for smaller charge radius.

IV. While checking the status of confinement as perturbation i.e. Coulombic parent 

(or Coulombic part as perturbation i.e. linear parent) we end up with a lower (or 

upper) limit on Q2 .This allows us a useful range of Q2 to show the variation of form 

factor which is shown in fig.6.1 and fig.6.2.

V. In the present analysis, even with large 6,the lower limit of Q2(for linear per

turbation) are really small as shown in table 6.3 for fixed as.We have seen that for 

a3 = 0.693 , the lower limit of Q2 for D, Ds mesons are respectively 0.0003,0.0007, 

whereas with as = 0.261 ,the lower limit of Q2 for B, Bs, Bc mesons are respec

tively 0.05,0.07,0.205 .These values for B, Bs, Bc mesons will be lowered if we put 

as > 0.261. This is clearly advantageous over the Dalgarno method with linear 

perturbation as done in ref. [30] where the formalism broke down for large b.Thus, 

this approach allows a large value of as(Q2) in-the limit Q2 —> 0 even with large 

confinement , an important feature absent in ref. [30].

VI. The Coulombic perturbation leads to an upper limit of Q2 instead of a lower
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limit(table 6.4). This allows us to use any value of as(Q2) in the limit Q2 —* 0.

VII. Further, consideration of different terms in eq.(3.4) leads to different charge 

radii and the limiting values of Q2 for both the cases. The charge radii and the 

lower limit of Q2 decrease with more terms for the linear part as perturbation (i.e. 

Coulombic parent) whereas the charge radii increase and upper limit of Q2 decreases 

for the Coulombic part as perturbation (i.e. linear parent).

VIII. The infinite mass consideration in this work shows that the charge radii are 

larger than those for finite mass consideration to agree well with other models (table 

6.5).

The above list as a whole suggests success of VIPT over the Dalgarno method 

[11, 30] as far as large confinement and limiting values of Q2 are concerned. Fur

ther,the difference in the values of form factors and charge radii for both the sce

narios may be attributed to the use of same as (i.e. Q2) under V-scheme as the 

Coulombic potential is dominant for large Q2 (i.e.low r)and the linear potential in 

the low Q2 (i.e. large r) regime.We must note that we have used the low Q2 (like 

sinQtT ~ Qi'r — —g— ) assumption[30] in the calculation of form factors and this 

clearly effects the upper limit of Q2 corresponding to the validity of Coulombic per

turbation (i.e. linear parent). The larger value of as for B-sector as compared to 

B-sector is also another point to take account of this .Although, the Unear parent 

has shown more flexibility and hence is the better option than Coulombic parent in 

VIPT,but it has used terms up to a particular order in ‘r’ in the integration involved 

with Airy function (which is an infinite series).This may lead to the loss of certain 

information as far as physics is concerned. In the absence of any experimental re

sults for these mesons , it is quite difficult to make a direct conclusion but there is 

clear indication that one must be careful in choosing the parameter as(Q2) as well 

as the confinement parameter in the calculation of form factor and charge radius 

within the QCD framework.
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The above discussion led to the conclusion that there is scope to use this approach 

in the study of meson decays.The lower and upper limit on Q2 (i.e. range of Q2) in 

this analysis may be useful in the experimental set up to investigate cross-section 

and form factor in future for these mesons.Purther, from the model specific values 

of form factors and charge radii, this method allows to investigate the behaviour of 

as w.r.t Q2 in the nonperturbative regime of QCD.
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Chapter 7

Summary,conclusion and future 

outlook

This work has dealt with the nonperturbative domain of QCD and discussed the var

ious hadronic properties of heavy-light flavour mesons in terms of a Non Relativistic 

Quark Model(NRQM)[30] based on potential concept.lt is basically evolved from the 

work of Rujula,Georgi and Glashow [29] who used the linear cum Coulombic pieces 

as the basis for QCD potential model approach.To test the model we have calculated 

the slope and curvature of Isgur-Wise(I-W) function [79, 81, 83, 84],elastic form fac

tors ,charge radii [94] etc which are directly dependent on the wave function.We 

use different, approximation methods like Dalgarno method [1] and Variationally 

Improved Perturbation Theory (VTPT)[2-4] to solve the Schrodinger equation in 

getting appropriate wavefunctions.We note that the Unear cum Coulombic poten

tial allows us to use one part either as parent or perturbation (i.e. child) in these 

approximation methods and we have used both the options.

Although nonrelativistic in nature,we have incorporated relativistic effect using 

the standard Dirac modification in a parameter free way. We have tried to incor

porate significant confinement effect [78] and fixed numerical values of running cou- 

phng constant as from either MS [12] or P-scheme [13,14,15] throughout the whole
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work.Being successful in predicting the slope and curvature of I-W functions,elastic 

form factors,charge radii etc,this work suggests novel application of quantum me

chanical approximation methods in QCD.

While chapter 1 gives an introduction to the subject matter we want to study, 

chapter 2 is involved with the use of the Dalgarno method with Coulombic parent.In 

the process,upper bounds on the slope and curvature of I-W function is obtained.The 

work [79] has revealed that a scale parameter (‘c’ in this work) in the potential can 

modify the wavefunction when treated as perturbation and significantly influence 

the I-W function .The bounds are well within the predictions of other models and 

data [53]-[68] .Although large confinement (b = Q.183GeF2) was successfully incor

porated , this work hints at the necessity of large as.

Chapter 3 has summarized the attempt of VIPT with Coulombic parent in the 

calculation of slope and curvature of I-W function.The results are shown to be good 

for the 5-sector mesons having large as ,but not the same for 5-sector having small 

as.The analysis shows that more term consideration in the expression for first order 

corrected wavefunction leads to satisfactory results and thus it is very essential for 

5-sector mesons.The calculation however becomes cumbersome with more and more 

terms.

In chapter 4,we study the I-W function using the Dalgarno method with linear 

parent as an alternate option to improve the results.The results are significantly 

improved except for the 5c-meson.

In chapter 5,we worked out the last option i.e. linear parent with VIPT in 

predicting the slope and curvature of I-W function .The predictions are compara

ble to those of other workers [53-68] even with a single term in the expression for 

the first order correction to wavefunction unlike the case of Coulombic parent in

78



VIPT.However,the Bc meson still needs more attention.

The success of VIPT in the calculation of I-W function has tempted us to ex

tend it in the prediction of elastic form factors and charge radii for all the above 

mesons.In chapter 6, we have done it for both linear and Coulombic parent.In the 

absence of experimental data,our results are compared with those of other models 

[9, 10, 11] .We have succeded in including large confinement effect and significant 

value of as in this approach which was absent in earlier work [30] with Dalgarno 

method within this QCD inspired model.Further,it leads to a useful range of four 

momentum transfer Q2 in the calculation of form factors and charge radii. Perfor

mances of both the options are also compared.

Thus in this thesis,we have used different approximation methods, namely the 

Dalgarno method and VIPT in solving the nonrelativistic Schrodinger equation and 

use the solution i.e. wavefunction in the calculation of slope and curvature of I-W 

function ,elastic form factors,charge radii etc for the heavy-light mesons in a QCD 

potential model.The relativistic effects are introduced too reasonably.The proper

ties we have calculated are of great importance as they act like standard factors of 

determining the reliability and effectiveness of a specific modeLAlthough this work 

has been successful in predicting these standard factors ( which thus suggests the 

effectiveness and reliability of our model),there are certain limitations or aspects 

which need modifications for greater applicability of the model.

We have listed those aspects as below:

I. At first,the spin effects need serious attention.We have considered a Hamilto

nian which is spin independent.So,incorporation of spin effect can be applied which 

will extend the model for vector mesons and at the same time,provide the mass 

splitting between pseudoscalar and vector mesons.
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II. As we have noticed that whether it is Dalgarno method or VIPT,the linear 

parent ends up with much more satisfactory results.This approach basically deals 

with Any functions [4, 83, 84] which is an infinite series in interquark distance V’.In 

our calculation,we truncate the series upto 0(r3) for the convenience of caleula- 

tion.As it is not a good idea at all to consider a certain order at will ,so a similar 

analysis can be carried to investigate the effective order of r leading to most satis

factory results for I-W function or the order (of r )dependence of I-W function.

III. We have restricted our work for the ground state only (n = 1,1 = 0).So, 

consideration of excited states will widen the applicability of the present method in 

new areas of hadron physics.

IV. One of the most common feature throughout the whole work is the use of

a fixed value of confinement parameter i.e. b = 0.183GeV2 .This value taken from

the charmonium spectroscopy [78], may be reconsidered as far as 5-sector mesons

are concerned .This might change the used range of as values taken from either
\

MS-scheme or V-scheme and consequently lead to change in the predictions.

We hope to work for the improvement of the above aspects in future.
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Appendix

A Appendix A

In chapter 2,we have calculated the wavefunction corrected upto first order using 

the Dalgarno method as follows.

We start from the basic equation of perturbation theory :

H^[l) + + WftyJ05

This can be put in the form :

[H0 - ^i1J = (wf13 - H') ip\(0)

(Al)

(A2)

The unperturbed Hamiltonian is :

2/x 3 r
_A 

2\x r

where

The perturbed Hamiltonian is :

(A3)

(A4)

H' = br + c

The unperturbed energy is :

(0) =
1 2 

9

(A5)

(A6)
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The unperturbed wavefunction is :

^i0) = 1 _H..___e ao

The first order corrected energy is:

wl = W

= j V^ootfVioo dv

(A7)

(AS)

The subscripts reflect the fact that the state we have considered is ground state. 

We can put equation(2) in the form :

L) „/,w _ Jo.
a 0r

(br + c — W) e “<• (A9)

We take the first order correction to wavefunction as :

jffp = (br + c) R (r) (A10)

Equation(9) becomes :

d^_+ 2d_ _2__ _1_ 
dr2 rdr agr Og

(br + c) R (r) — D (br + c — W) e a° (All)

where

Eq.(ll) becomes:

(A12)

dr + c) AA2 + *-*)” + * R
dr2 dr r rdr aar

Again let us take

R(r) = F (r) e °o

D(br + c — W)e ao 

(A13)

(A14)
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So, equation(13) becomes:

(br + c) F" (r) + 2 (^ + c) + 26 - 2 (br + c) 
r ®o
26 26
r a0

F’(r) + 

F (r) = D (br + c — W)

We now take series solution:

Therefore

F(r) = J2Anr”
n=0

F'(r) = Y,nAnrn-1
n=0

oo
= X>(n- l)A„rn-2 

ra=0

(A15)

(A16)

(A17)

(A18)

and so on. Equation(15)is modified to:

(br + c) n (n — 1) Anrn~2 +
n=0

^ + 4
r &o do

2b _ 2b 
r a0

Y^nAnrn x +
n=0

Y^Anrn = D(br + c~W) (A19)

After simplification it leads to:

rn~2 +

»=o
26 ^2* zo-E"^» + -E4,
“0 n=o a0

rn-1 _

c^n(n- l)An + 2cY'nA„
n=° n=0

&E«(«-l)An + 46g>An-^f>^n + 26f
n=0 ZZk On “ ^

n=0

rn = D(br + c- W) 

Let us equate the various coefficients. Equating r’1 , n = 1,0 we get:

2c 00
°0n=0 

26 00

71=0
(A20)

cA\ + bAn - 0 (A21)
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Equating r°,n = 2,1,0 we get :

cA2 + bAx = j{c - W) (A22)

Equating r\n = 3,2,1 we get

cA3 + bA2 =^ b + 2{c-W)
3qq

Equating r2,n = 4,3,2 we get :

cA^ + bA3 D
40ao b 4" 2(c - W)

3ao

Now,

Thus,

F (r) = A0r° + Atrl + A2r2 + A3t3 + A4r4 +

(A23)

(A24)

(A25)

= (br + c)F(r)e °o

= (ibr + c) (A0r° + A^r1 + A2r2 + A3r3 + A4r4 + ....) e~% (A26)

Using the above equations for cA0,cAi,cA2,cA3 etc we get:

= [cA0r° + (cAi + bA0) r1 + (cA2 + bAx) r2 + {cA3 + bA2) r3 + (cA4 + bA3) r4 + ....] e~%

or

Also,

cV + V>* + £ (» + fcS'l r3 H---- —— (b+ r4
6' ; 12 \ ^ 3ao j 12°“oV 3“o J + ... e “o

^ = J i'wo (br + c) ip{%dv

36fln
+ c (A27)
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where definition of Gamma functions is used. Thus,

c-W = - Zbao
~2~

Now,

b+^m = 6+Af_^
3a0 3a0 V 2 /

= 0

This leads to :

cA0 — 

cA0 -

Dbagr2

jibaor2

°0

r
°0

Thus, the wavefunction corrected upto first order is :

cA0 + J -kOq p,ba0r2
e ao

With normalization this becomes :

(A28)

(A29)

(A30)

(A31)

A = N cAq + fibaor2
e “o (A32)

where N is the normalization constant.

Of course this wavefunction is same as that in equation (2.2) of the thesis (pp-15).
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B Appendix B

Xi, X2 and X3 as occured in chapter 2 are evaluated as :

Xi = Uirc2Alal + 64 + fj?b2ag (8 - 2e) (7 - 2e) (6 - 2c) (5 - 2c) 

+128cAo^/7ra| — 16cJ40/^^\/7rao — 2e) (5 — 2e)

—16/u6ag (6 — 2e) (5 — 2e) (Bl)

X2 = 647rc2i4gaQ + 64 + fj.2b2al (6 - 2e) (5 — 2e) (4 — 2e) (3 — 2e) 

+12&cAq\J-k(Iq — 16cv4o/j6y'7ra[J (4 — 2e) (3 — 2e) 

-16/^ag (4 - 2c) (3 - 2c) (B2)

X% — 647rc2^gao + 64 + fi2b2al (10 - 2e) (9 - 2e) (8 — 2e) (7 - 2e) 

+12&cAq\Jira^ — IQcAai-ibsJ-Ka% (8 — 2e) (7 — 2e) 

-1 S/xbal (8 - 2e) (7 - 2c) (B3)

Not only the above expressions ,but all the integrals in the analysis are evaluated 

with the help of Gamma function given by :

r(n + l)
an+1

dr (B4)
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C Appendix C

xt(i = 1, 2,..... ,45) as occured in chapter 3 are:

Xi = A2 1 + (6 - 2e) (5 - 2e) (5-2c))

= 64c'lA ( ^72^ “ 1729

X3 = A2 1 +
2fn , (8 — 2e) (7 — 2e) (7 — 2e))

X4 = 256c[A [ ^ 2^

X, = A2 1 +

2187 6561

(4 - 2e) (3 - 2e)
(3-2c)

x7 = b2 243 324 (6 - 2e) (5 - 2e) 243 (5 - 2c)
32 + 32 16

X8 = B2 (7 - 2e) (6 2c) (5 - 2c)

243c', B

9 (8 - 2c) 81

X9 = 45 2 - 243 (5 - 2c) +

128 32

3 (6 - 2c) (5 - 2c)

-X10 =
6 5AB 

5s
14 (5-2c)

(Cl)

(C2)

(C3)

(C4)

(C5)

(06)

(07)

(08) 

(09)

(CIO)

X11
2 x 67AB (6 - 2e) (5 - 2c)

3 x 57
6 (7 — 2e) 11

945

X12 = B2 37 36 (8 - 2e) (7 - 2c) 37 (7 - 2c)
128 + 32 64

Xxz
B2 x 35 (9 - 2e) (8 - 2c) (7 - 2c)

37 x dxB
Ai —>•14 47

128

2 - (7 - 2c) +

(10 - 2e)
4

-3

3 (8-2c) (7-2c)'

(Oil)

(C12)

(C13)

(014)
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X15
67 x AB 

57
14(5 — 2e)

(C15)

Xl6 =
2 x 6MB (6 - 2e) (5 - 2e) 

3 x 59
6 (7 — 2e) 11

945

X17 = B2 27 9 (4 - 2e) (3 - 2e) 27(3-2e)
8 + 2 4

X18 - B2 (5 - 2e) (4 - 2e) (3 - 2e) 

33 x c£B

3 (6 - 2e) 9

XlQ -
43

2 - (3 - 2e) +

32 8

3 (4 - 2c) (3 - 2c)

X20
63 x AB 

53
14 (3 - 2e) -2

(C16)

(C17)

(C18)

(C19)

(C20)

X21 =
2 x 6MB (4 - 2e) (3 - 2e) 

3x5s
6 (5 - 2c) 11

45 9

li
x22—Xi+x2+Xj

»=7

(C21)

(C22)

X23 = D'2 32 + 104(6-2e) (5 - *) - 152 (T - 2e) (6I-2e) (5 - 2e) _
3

(C23)

Xm = Dp (8 - 2e) (7 - 2c) (6 - 2c) (5 - 2c) [12 4 (9 - 2c)

(10 — 2e) (9 — 2e), 
18 J (C24)

v 2x45ci £>' 3 (5 — 2e) 16 (6 — 2e) (5 — 2e)
X25 ~^----- [1--------- z------- !• _ - ~ ~ ~55 5 200

(7 - 2c) (6 - 2e) (5 - 2c)
375

(C25)

v 2 x 4sBMr5 (5 — 2e) 16 (6 - 2c) (5 - 2c)
X26 =---- 35-----[----- 3------------------ is------------ (G26)3 18



, 2 x 45DM (7 ~ 2e) (6 — 2e) (5 — 2e) f 4(8-2e),
---------------------[13---------g----- ]

2 x 125D'B 17 (5 - 2e) 151 x 122 (6 - 2e) (5 - 2e)
7s 1 7 + 216 x 72 J

(C27)

(C28)

2 x 128£>'£ (7 - 2e) (6 - 2e) (5 - 2e) 83
78 1 576 +

132 (8-2e) 12 (9 - 2e) (8 - 2e)
6048 8 x 27 x 72 J (C29)

16

x3D = x3 + x4+'Ext
1=12

(C30)

X3i = D2[128 + 416 (8 - 2e) (7 - 2e) - 
608(9-2l)(8-2e)(7-2e)_384(7 _2e)1

o
(C31)

*32 = D'2 (10 - 2e) (9 - 2e) (8 - 2e) (7 - 2e) [48 - 

16 (11-2c) 2 (12 — 2e) (11 — 2e).
3 + 9 J (C32)

v 2 x 47c/1Dr 3 (7 — 2e) 16 (8 - 2e) (7 - 2e)
a33 =----- ^----- [1--------- -------- (-

57 5 200
(9 — 2e) (8-2c) (5-2c).

375 J

„ 2 x 47£Mr5 (7 — 2e) 16(8 - 2c) (7-2e) ..
*34 = ------------------- 1-------- 7,------------------------------7S-------------------- 1J

37 18

*36 =

v 2 x 47D'A (9 - 2c) (8 - 2e) (7 - 2e) ri „ 4(10- 2e)
A35 — g1X [13 g

2 x 127D'B 17 (7 - 2c) 151 x 122 (8 - 2c) (7 - 2c)
77 + 216 x 72

(C33)

(C34)

(C35)

(C36)

*37
2 x 12*D'B (9 - 2e) (8 - 2e) (7 - 2e) 

710

83 132 (10- 2c) 12 (11 — 2e) (10 — 2e)
576 + 6048 8 x 27 x T2 (C37)
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21

-^38 — x5+Xq + Xt
i= 17

(C38)

*39 = D' [8 + 26 (4 - 2e) (3 - 2e)
, 38 (5 - 2e) (4 - 2.) (3 - 2e) _ 24 (3 _ 2e)] (C39)

Xto = D'2 (6 - 2e) (5 - 2e) (4 - 2e) (3 - 2e)

„ro (7 — 2e) , (8 — 2e) (7 — 2e), 
Xld 3“+ 72 J (C40)

„ 2 x 4?dxD' 3 (3 — 2e) 2 (4 - 2e) (3 - 2e)2Ui =------—----- [i--------- -------- (_
53 5 ' 25

(5 - 2e) (4 - 2e) (3 - 2e)
375 J (C41)

v 2 x 4?D'A r5 (3 — 2e) 16 (4 - 2e) (3 - 2e) „
^42 = ----------^----------1-----------n--------------------------------------7S------------------------- !J

33 18

„ 2 x 43D'A (5 - 2e) (4 - 2c) (3 - 2c) Ho 4 (6 - 2c),
*43 =-------------------------------------------------------[13------------------ ]

v 2 x 123D'B F1 17 (3 - 2c) , 151 x 122 (4 - 2c) (3 - 2c), 
^■44- i1 'r + 216 x72 J73

(C42)

(C43)

(C44)

Xak = 2 x 12&D'B (5 - 2c) (4 - 2e) (3 - 2c) L45 =--------------------- ------------------------

83 132 (6-2c) 12(7-2e)(6-2e), 
576 + 6048 8 x 27 x 72 J (C45)
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D Appendix D

a?>
The various expressions for qi,ri,Pi,j/t as occured in chapter 6 are given as :

Expressions for qt s :

01 (4p,2a'2
cf
+ Qf)(1_e)

(Dl)

q2 = A2 1
{p?a>2 + g?)(i-‘)

(3 — 2e)/zo' (4 —2e)(3 —2 e)p2cf
(/z2a'2 + Q2)(i.B-0 + (/i2a/2 + Q?)(»-0 (D2)

ft = s’bs 4(3 - 2e)pa'

16(4 - 2e)(3 - 2e)fi2a'2 8(5 - 2e)(4 - 2e)(3 - 2e)/i3cf3

27(^ + Q?)(2-d 81(^ + Q2)Vs~<)
4(6 - 2e)(5 - 2c) (4 - 2e)(3 - 2e^a1*

+

+

2-^r/2729(£|- + Q2)<3-e)
(D3)

04 = -D'2 1 3(3 — 2e)pa'
Wi^ + Q2)^ 32(^ + <?2)(15-e)

17(4 - 2e)(3 - 2e)/iV 19(5 - 2c)(4 - 2e)(3 - 2c)/xV
256(^ + Q?)(2-£) 1536(^ + Q2)( 2-5~£>

7(6 - 2c)(5 - 2e)(4 - 2c)(3 - 2e)p4a'*
6144(^ + Q2)(3-c)

(7 - 2c) (6 - 2e)(5 - 2e)(4 - 2e)(3 - 2€)/x5a/5 
12288(^ + Q?)(3'5-d

+

+

(D4)

05 = 2 dxA
(3 - 2e)fia'

(9^ + Q2)(l-e) 2(^ + Qt2)d-5-e) (D5)

06 = 2ciB
2tc/22(3 - 2e)jxa' 2(4 - 2c)(3 - 2e)p2W

(16^ + Q2)(1_e) 3(jafd + Q2)(1.5-e) 27(±^ + Q2)(2~f)
(D6)
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1
97 = 2c'1D'[

3(3 — 2 e)fm'
4(25^1+ (?2)(1-£) 16(25^f + g2)(l,5-e)

(4 - 2e)(3 - 2f)/iV (5 — 2e)(4 — 2e)(3 — 2e)/i3a'3,
32(25M^L + Q2)(2-e) 768(2^ + Q2)(2.B-eJ

+

(D7)

q$ = — 2AB[
5(3 - 2e)/j.a'

(2^ + Q2)( i-«) 6(2^ + g2)(i-8-0

20(4 - 2e)(3 - 2e)/i2a' (5 - 2e)(4 - 2e)(3 - 2e)/j?a'
(2725^! + Q2)(2-e) 27(2®^ + Q2)(2.5-«)

+

(D8)

99 -2/l£>'[
5(3 - 2f)pa'

4(^rf~ + Q?)(1"£) 16(2^- + 6-‘)
16

(4 - 2e)(3 - 2e)/i2a'2 13(5 - 2e)(4 - 2e)(3 - 2e)n3afl
8(2^ + Q2)( 2-«) 768(2^ + <3?)<2-»-«)

(6 - 2c) (5 - 2e)(4 - 2e)(3 - 2e)/z4a/4 
1536(2^ + Q2)(3~e)

+

+

(D9)

9io = 2 BD'[
25(3 - 2e)/iZS'

:i2a'24(«L + Qm~e) 48(^11 + Q?)d-«-0 
151(4-2e)(3 - 2e)/i2a'2 27.66(5 - 2e)(4 - 2e)(3 - 2e)/iV

864(2 1̂44 + Ql){2~c) 768(3^-+ Qf)(2 5-0

3.66(6 - 2c)(5 - 2e)(4 - 2e)(3 - 2ej/Za'4 
1152(25^ + Q2)<3-)

(7 - 2e)(6 - 2e)(5 - 2e)(4 - 2e)(3 - 2e)/iV 
10368(25^ + Q2)(3-®“e)

+

+

(DIO)
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Expressions for rt s:

ri = 3cf (1 + — )-2(4/jV)£-2 (2 - 2e) (Dll)
T~fbj

r2 = 3v42(1 + —)~2[(2 - 2c) (4/i25/2)£~2 - 3/x5'(3 - 2e)2(At2a/')e-2'5 +\2/’,,2T-/2\e-2.5
m

0.75/*V(4 - 2e)2(3 - 2e)(/i2cO2-W2\e—31 (D12)

m ,4/i2a' . ,r3 = 352(1 + —)“2[(^-)e“a (2 - 2e) - 4Ma'(3 - 2e)2(^-)— +
m,

Apof ^£—2.5
9

16^2a/2 ^ 2 0_w4/zV 8
-(4 — 2e)2(3 — 2e)(- -)

o,\2 (a ow0 n .2^/2

81
-(5 — 2e)2(4 — 2e)(3 — 2e)(- +

i-prl44 ii*a‘ 
729

4/rW2
-(6 - 2e)z(5 - 2e)(4 - 2e)(3 - 2e)(-^—-)e“4] (D13)

r4 = 3D°(1 + ^)-2l(^)'-2 (2 - *) - ^(S - 2£)2(^)‘- +

19/i3a/3

^(4-2£«3-2£)(^r3 -

,2-rr-r
612 (5 - 2£)2(4 - 2e)(3 - 2£)(^)-3J> +

4^21/i4a
6144

A****'" n«-4
-(6 - 2e)2(5 - 2e)(4 - 2e)(3 - 2e)(^=——)

5^/*3 fr a! 
12288

4
2tt/2

(7 - 2e)2(6 - 2e)(5 - 2e)<4 - 2e)(3 - 2c)<-£—)4/i a' u"4-5] (D14)

q 2_f2 q 2_/2
r5 = 2ci^(l + -—)—2 [3 —)e—2 (2 - 2e) - 1.5m5,(3 - 2e)2(^-^)c-2'5] (D15)

m,

.-2fo/ 16^i2a'2
== 2c'1£(l + —)“2[3(

7Tlj
)e~2 (2 — 2e) - 

2-7T,il2^3-2^“ “

5^(4-2£)2(3-2£)(^“ '‘-3

)t_AO +

-)6~3] (D16)
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T,=2^(i+^rr^)25/z2a,2_ 23(2~2e)

9/ia'(3 — 2e)2 .25^2a/2'e_2 5
V 1 a ) '16 16

3/J?a' /A 3 25M2a' ,£_3
32

-(4 — 2c)2(3 — 2e)(-

3^/33 (j,6a‘ 
768

-(5 — 2e)2(4 — 2e)(3 — 2e)(

16 
25/j,2 a'2

16

-r
r“i (D17)

^8 — —2AB(1 + —)“2[(
m,- 36
™M_2r,25My },_23(2_2f)

2.5/ia'(3 - 2e)2(-25',V '‘-2'5
36

-)e +
20fj,2a'2

-(4 — 2e)2(3 — 2e)( 25 ji2 a2ttt/2
\e—3

(5 - 2e)2(4 - 2e)(3 - 2e)(

36 
25 /i2a'2 

36
)e-3.5] (DIB)

r9 = —2AZ>/(1 + — )-2[0.75(^-r2 (2 - 2c) 
™ lbm,

0^2/9M2^' Ne-2.5

16
-(3 — 2e)2(-^-~—) +

3"V(4-2e)2(3-2e)(^r3

37c/313/rc?
256

8

-(5 — 2e)2(4 — 2e)(3 — 2e)(

16
2-prl29 fra e—3.5

4_/4froT
512

(6 - 2e)2(5 - 2c)(4 - 2e)(3 - 2e)(

16 ' 
,27c/2

+
W \e—4l 

16 ; J (D19)

r10 = 2BD\l + —)-2[0.75(
m%. _2, A9f.i2a! . e_2 ..
m,

16

144 

-(3 — 2e)2(
17^ /0 o,\2/4V«'2 \e—2.5

)*"2 (2 - 2c)

)e
144

+

151 fjPa! lA 0 ,2, . A9fi2a' ,e_3
288

-(4 — 2e)2(3 - 2e)(-

83/i3a'‘
768
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144
,2 tc/2

■)*

49^a'\e_3>5
144

+
47U/433/i4a

3456
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2—fl9 nla‘ 
16

\e-4
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fjt5a'

3456
(7 - 2e)2(6 - 2e)(5 - 2e)(4 - 2e)(3 - 2e)( 144 ' J (D20)

Expressions for pt s:

= 4______ (D21)

P2 = 4~=i
(3 — 2e)pa'

{iq1 + Q2)^l 2(^+Q2)^
(D22)

Pa =
0.67(3 - 2e)Ju5/

2(4 - 2e)(3 - 2e)/iV 
27(^ + Q2)I¥i

(D23)

Pi = £»'[
0.25 3(3 - 2e)pa'

(4 - 2e)(3 - 2e)p2a' 
32 (U?f + Q^ 

(5 - 2e) (4 - 2e) (3 - 2c)a*V 
768l^f + Q^

(D24)

Expressions for p\ s

Pi = nx x : (D25)



p'8 - n8 x (b'fif (D32)

Each of the constants ni,n2, ....,ns are different for different mesons and they have 
been obtained by numerical integration.
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Abstract. We used variationally improved perturbation theory (VIPT) in calculating 
the slope and curvature of Isgur-Wise (I-W) function with the Cornell potential— + 
br + c instead of the usual stationary state perturbation theory as done earlier. We used 
—(4as/3r), i.e. the Coulombic potential, as the parent and the linear one, i.e. br+c as the 
perturbed potential in the theory and calculated the slope and curvature of Isgur-Wise 
function including three states in the summation involved in the first-order correction to 
wave function in the method.

Keywords. Variationally improved perturbation theory; Isgur-Wise function; charge 
radii; convexity parameter.

PAgS Nos 12.39.-x; 12.39.Jh; 12.39.Pn

1. Introduction

The Isgur-Wise (I-W) function is a single unknown form factor which includes 
all the independent form factors occurring in weak decay amplitudes in the heavy 
quark limit because in the heavy quark limit, two additional symmetries appear in 
QCD which gives rise to a SU(2N) symmetry called the heavy quark or Isgur-Wise 
(I-W) symmetry, where N is the number of quarks. The heavy quark symmetry 
enormously simplifies the analysis of semileptonic decays [1]. The I-W function 
and the relevant phenomenology are important topics in QCD as they act as a test 
for the correctness of any specified QCD-inspired model. Also, as the I-W function 
is related to the wave function directly, a correct estimation of the wave function is 
an essential tool to understand the decay processes and the relevant mechanism.

In recent years, a QCD-inspired quark model has been pursued by us [2,3] and 
I-W function has been calculated. In the model, the two-body Schrodinger
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equation was solved and first-order perturbed wave function for the ground state 
was obtained using the Dalgarno method [4]. Also in the model, the spin- 
independent ground state Fermi-Breit Hamiltonian with no contact term was con
sidered [5] and the linear confinement was treated as perturbation keeping the 
Coulombic term as the parent one.

As an alternative approach one can use the variationally improved perturbation 
theory (VTPT) method [7] instead of the Dalgarno method in getting the wave 
function which combines the variational method and the perturbation theory.

The VIPT is a recent entry in the literature [6-8] which shows great promise 
regarding the use of approximation methods. The work by Aitchison and Dudek 
[6] inspired us to apply the method to the QCD-inspired model which had some 
limitations. Some of these limitations may be due to conventional perturbation 
technique. We know that the results of perturbation theory are expressed in terms 
of finite power series (in an expansion parameter which is taken to be very small) 
that seem to converge to the exact values when summed to higher order. After 
a certain order, however the results become increasingly worse since the series is 
usually divergent (being asymptotic). At this juncture, the variational method 
which estimates variationally optimized parameters (through energy minimization) 
helps in converting the divergent perturbation expansion to a convergent one which 
can be evaluated for large expansion parameters. We note that the variational 
method [4,9] is quite cumbersome as it is difficult to choose an appropriate trial wave 
function in terms of unknown parameter(s) which is later optimized to estimate the 
parameter(s). But in VIPT, we use a known wave function as the trial one (e.g. the 
Is state H-atom wave function) and then optimize it to get the new parameter(s) 
(e.g. a'1Q in our case (eq. (16)) which make the perturbation series convergent. 
Further, we know that the perturbation theory is suitable to systems which have 
good unperturbed Hamiltonian, while variational method is robust even in cases 
where it is hard to determine a good unperturbed Hamiltonian. On the other hand, 
VIPT can be applied whether we have a good unperturbed Hamiltonian or not.

Question arises regarding the use of the Coulombic piece as the parent and linear 
part as the perturbed one of the total Cornell potential - that upto what distance 
this consideration is valid? Indeed, it was shown in ref. [6] that if (r) < ro then the 
Coulomb base will perform better. Here (r) is the expectation value of the distance 
r which reasonably gives the size of a state (meson in this case) and tq is a point at 
which linear and Coulomb potentials become zero (figure 1 of Aitchison and Dudek 
[6]). Further, for low-lying mesons, i.e. n = 1, l = 0 (see eq. (8) of ref. [6]) the 
expectation value (r) is inversely proportional to the parameter a — 4as/3 (see eq. 
(12) of this work) for a given reduced mass [i. Using VIPT we get variably optimized 
d'10 (see eq. (16) of this work) as the new parameter instead of a which assumes 
substantially larger value (see table 1 of this work) than a effectively making the 
‘linear term’ weaker so that Coulombic piece becomes the parent. This ensures that 
the distance between the quarks is short enough to treat the binding effect mainly 
in terms of the Coulombic potential. Thus VIPT is a convenient and strong tool 
in treating the Coulombic potential as parent and linear potential as perturbed of 
the total Cornell potential.

It is evident from eq. (16) that d'10 increases with the increase in c*s and greater 
values of d'10 strongly support the binding effect mainly in terms of Coulombic
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potential. For the 5-meson, the as values are small. It raises the question of 
applicability of the Coulombic part as the parent. However, the corresponding 
a'10 values are sufficiently large to conform to the expectation (r) < ro but not 
large enough to make the results of slope and curvature of the Isgur-Wise function 
compatible with the constraints as referred by Neubert [10].

This paper aims to apply the VIPT method to the QCD-inspired quark model 
[2,3] referred earlier and to calculate the I-W function, its slope and curvature. 
Using the same Hamiltonian and treating linear confinement as perturbation, we 
arrive at the hadronic wave function which enables us to calculate I-W function. 
Relativistic modification of the wave function [11,12] as well as the two-loop effect 
of strong coupling constant using V-scheme [13—16] are also taken into account.

The rest of the paper is organized as follows: Section 2 contains the formalism, 
§3 the result and calculation and §4 the discussion and conclusion.

2. Formalism

2.1 Isgur-Wise function: Its slope and curvature

The Isgur-Wise function is written as [1]

f Ov ■ «#.) = £(»)
— 1 ~ P2{v - 1) + C(y -1)2 4---- , (1)

where

y = vii-v'tl (2)

with Vp and being the four velocity of the heavy meson before and after the 
decay. The quantity p2 is the slope of I-W function at y = 1 and known as charge 
radius:

(3)
2/=l

The second-order derivative is the curvature of the I-W function kncwn as convexity 
parameter:

2 \dy2 (4)
y=l

For the heavy-fight flavour mesons, the I-W function can also be written as [3,17]
r+oo

£{y) = / 47rr2 \ip (r)|2cosprdr (5)
Jo

where

p2 = 2p, (y - 1). (6)

Here p and ip are respectively the reduced mass and wave function of the hadronic 
system.
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2.2 Variationally improved perturbation theory

The VIPT method is not too old [6-8] and it combines two procedures, namely, 
stationary state perturbation theory and the variational method. We have the total 
Hamiltonian as

H = H0 + H', (7)

where Hq is the parent Hamibonian containing a physical parameter P (say) 
and H' is the perturbed Hamiltonian. The corresponding wave functions also 
contain P.

In VIPT,

P = P + P,-P>,

where P' is the variational parameter such that

(8)

H = Hop'+H0-H0P. + H'
= HoP,+H'P,. , (9)

The parent Hamiltonian is now E0p< instead of H0 which depends on the variational 
parameter P1 and H'p, is the new perturbed Hamiltonian instead of H1 which also 
depends on P'. Correspondingly the wave functions will also change when P is 
replaced by P'. Nowr, one can treat these wave functions as trial wave functions 
with P' as the variational parameter and would find the value of P' which gives 
minimum value of energy corrected upto the first order. This will yeild variationally 
improved unperturbed wave function upon which the usual perturbation theory will 
be applied.

The wave function corrected up to the first order of jth state is given by [6]

(0! +£
/#'•«

e{0) - K(0) (10)

The energy corrected up to first order for the same state is

E3 = J ^0)*H^0)dv

= Jipf)*(HoP,+H'P,)ipl0)dv, (11)

where ipk and £?& are the wave function and energy eigenvalues of the kth state which 
are orthonormal to jth state. The superscript (0) is the zeroeth-order correction of 
the corresponding quantities.

With Cornell potential [18], we can have two possibilities to choose parent (and 
hence perturbed) Hamiltonian. In one, Coulombic one is the parent and in the 
other, linear one is the parent.

The summation in eq. (10) can include any number of fcth states. In this work, 
terms upto three states in the summation are considered.
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2.3 Coulomb cum linear potential and wave functions using VIPT

2.3.1 With one term m the summation
As explained earlier, variational parameter a' is used instead of the physical pa

rameter a = 4as/3 (here Coulombic potential is the parent one). The Hamiltonian 
takes the form (eq. (9)):

H = H0+ H'
_ _V^ _ 4a, 

2p 3 r
_ _V^ _ a 

2p r 
V2

+ br + c 

+ br + c

a' (a' — a)
2p + + br + c

Hoa' + H'a,, (12)
where a = a — a' + a'. Now, Hoa> = — ^ is the parent Hamiltonian with a'

and H'a, = ~a^ + br + c is the perturbed Hamiltonian with the same variational 
parameter a'. We notice that the physical parameter a is replaced by the variational 
parameter a1.

We consider j as Is state (n = 1, l = 0) and in the summation of eq. (10), we 
consider only one fcth state which is the 2s state (n = 2, l = 0).

The trial Is state can be written (analogous to H-atom) with variational para
meter a' as (this being the unperturbed wave function)

if
(o) (/^io)3/2

10 " . A
Q~fiOt'l0r ^ (13)

where subscript 10 in a' indicates the quantum number (n, l) of the jth state.
We now find the value of a'10 which leads to minimum E3 given by (11) in the 

following way:
In the variational method, we are interested only in the ‘r’-dependence of the 

Hamiltonian, and so c in H'a, has no role to play in the calculation [4]. Using eqs 
(11), (12), (13)

EW (“io) —
,2

2 - Maa'io +
3b

Minimization of eq. (14) gives

(14)'

,3 ,2 3b
«io-<*<*10-2^ = (15)

The solution of (15) is the required value of a/10 which gives minimum £10(0^0) 
and we denote it by a!w. Thus, unperturbed wave function in VIPT is
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Table 1. a'10 (eq. (15) for different mesons with a„ values under MS scheme.

Mesons h as a = 4as/3 <*10

D 0.2761 0.39 0.52 1.7271
D* 0.3648 0.39 0.52 1.4642
B 0.3100 0.22 0.2933 1.5104

Table 2. aio (eq. (15)) for different mesons with as values in V-scheme.

Mesons Os a = 4as/3 <*io

D 0.2761 0.693 0.924 1.9105
Ds 0.3648 0.693 0.924 1.6593
B 0.3100 0.261 0.348 1.531

(/^10)3/2
(16)

Here a'10 will be different for different mesons as solution of eq. (15) depends on fj, 
and a with b = 0.183. We list the values of a'w in table 1 using known values of a3 
under MS [3] and those in table 2 with as in V-scheme [13-16].

Now we consider the single kill state in the summation of eq. (10) which is the 
2s state given by

~ v4oHa,io)

— (^io)3|/2r-wafnr/2 (i _ ya'wA

~ V8i V * )' (17)

Therefore, eq. (10) gives wave function corrected up to first order:

, X /(0) f , x , Si>2o*(«io)^'104o (aio)d« ,(0),-, x
^io(«io) = w(« 10) +---- 7-i(o)/—* . turn.. . ,----- V-'2o (aw)-

E> *^10 (aio) ~ ^20 (aio)
(18)

The energy eigenvalues are given by
— I'2Mo

2n2 ’
(19)

The summation in eq. (19) is dropped as we are considering single fcth state. Also, 
we have n = 1 and 2, due to the single-state consideration in eq. (10). Carrying 
out the integration in (19) we find the wave function corrected up to the first order 
as

’’fiioi&io) = ^’icOo)
_____f 4^10 (a ~ Qiq) ^ 326 ~\

3v^(aio)1/2 V 27 81/id^ J
x(l- e^'i0r/2_ (20)
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The relativistic version of (20) is [11,12]

V’lO,rel(a!o) = V,lo(aio)[(r/i«,lo)~1 (21)

with

e = l — (22)

The expressions for I-W function, charge radius and convexity parameter with 
confinement only (which corresponds to wave function given by eq. (20)) are

£s,conf(y) — 1 Ps,con{{y 1) ~t" ^AS.conf(?/ 1) + '' ',

where the charge radius is

PS,coni
4nNf 

M a10

q/̂- + 84 A2 + 1024^ A 
243

and the convexity parameter is

C.S’.conf —
4 nNf

6M3«io

'45cf

8
+ 5760A2 + 20 x 212ciA 

36

Here,

and

pa'io
7T1/3

A- 4v^ 
3V^(aio)1/2

Wio(a ~ Qio)
27

m
81/id'io

(23)

(24)

(25)

(26)

(27)

The subscript S refers to the single-state consideration in the summation of eq. 
(10). The normalization constant N\ is given by

4?riVl [(<u /4m3 ^io) + (2A2/m3Qio)] ’ ^

The respective relativistic versions are

£s,rel+conf (y) = 1 ~ Ps.rel+conf iV ~ 4) "b Cs,rel+conf {V ~ 1) + • • • (29)

_2 4,kN'1 r(3 - 2e)(4 - 2e)(3 - 2e)
PS,rel+conf ~ 3 =■/*>

M 0^10 32
d-Xx+Xa (30)

and

Pramana - J. Phys., Vol. 75, No. 3, September 2010 429



Bhaskar Jyoti Eazanka and D K Choudhury

C'S, rel+conf
4arN[ r(3 - 2e)(6 - 2e)(5 - 2c) (4 - 2e)(3 - 2e)

6 n3a,T10

Cl
128

+ X3 + X4

Here the normalization constant N[ is given by

3P aio

(31)

(32)47rTVf =------
r(3 - 2e) [^- + X5 + X6 

All the functions Xt(e), i = 1,2,..., 6 are defined in the Appendix. 

2.3.2 With two terms in the summation

In this step, we consider the 3s state (n = 3, l = 0) in addition to 2s state (as done 
in the single-term case). The 3s state with the variational parameter a'10 is written 
as

W(“!0)
K)3/2 f,

r
2Kor , 2/u2aior2 

27
(33)

By including this state, the summation and integration in (10) gives the wave 
function corrected upto the first order as

^io(aio) = ^m(a'io) - A (l- e/ja'10r/2

+B 1 _ ~2^a'wr , 2mVio?~2 
3 27

e-(pa'10r/3)^ (34)

where

5
V^Ko)1/2

3/10(0(0 — Q:(q I -

64
27b

256/iojq
(35)

The relativistic version is obtained by multiplying (34) by (r/ia'10)“e. The I-W 
function, charge radius and convexity parameter for the wave function (34) which 
is to be normalized are given by (i.e. with confinement only)

£D,coni{y) — 1 p£)tconf(2/ 1) 4" Ofl,coni(V 1) + •••>

where the charge radius is

2 _ 4tt7V22
PD,coni q _/5

M3“io

3c^ + 84A2 + 1024c(A 34 x 211 x B2
243

36 x 39 x dB 66 x 69 x 16 x AB
4------------ ■rs------------- 1-----

28 3 x 57

(36)

(37)
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and the convexity parameter is

D ,coni —
47TjVf

6/x3S'710 L

45c'
8

+ 5760A2 + 20 x 212dxA 
36

o 39 x 185 x CiJB 69 x 24603 x AB+414163 x B2 +-------- -=---- +----------- -—==-------45 3 x o9

with normalizaion constant AT2 given by

4ttN$
r + J4L + 27,______________________ _
VsJ fi3a'ia 4^3 af0 4fi*a% 5B/i35jQ

27e;g 6ix492xABl

(38)

(39)

The subscript 13 refers to two terms in the summation. The respective relativistic 
versions of (36), (37) and (38) are

where

5-D,rel+conf (y) — 1 PZ3,rel+conf (V 1) + {+D,rel+conf {y 1) +'

AkN'2 (4 - 2e)(3 - 2e)T(3 - 2c)
Pd, rel+conf „ 3/v/6M “10

X

~y

11
h + Xi + X2 + '^Xl

1=7
and

Cn,rel+conf —
(6 - 2c) (5 - 2c) (4 - 2e)(3 - 2e)T(3 - 2e) 

6/x35,t10
16

128
+x3+X4 + y' xt

r=12

The normalization constant A2 is given as

4ttN!>
Q _/a

M “10
r(3-2e)[^- + X5 + Xe + E"=ir ^ 

and 3fj(e), i = 7,8,..., 21 are defined in the Appendix.

2.3.3 With three terms in the summation 

In addition to the 2s and 3s states, we now add the 4s state: 

(^io)3/2V’40^(alo) ~
\/27T
f 1 3/ifl'10r p,2a f0r2 ^3af0r3

16 + 32 8 x 96

(40)

(41)

(42)

(43)

3-(+*'ior/4). (44)
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With the inclusion of this state, the first-order wave function now becomes

^o(ai0) = ^(oio) - A (l- e-(^a'ior/2)

+B 1-
2[ia'wr 2/x2a'10r2

+ -Oia'10r/3)
27

, (1 %a'10r M2a'10r2 /J?a'10r3
+D 4 16 + 32 8 x 96

3-(#tai0r/4) . (45)

where

jy _ (m^io)372 36(a — a'10) 3846
15625ai0 78125/i2af0.

(46)

As usual, the relativistic version of this wave function is obtained by multiplying 
the above expression by (ry,a'1Q)~e. Thus, with confinement only the I-W function 
is

6r,conf(y) = 1 - Pr,conf(y ~ 1) + Cr.conffa - l)2 + • ’ • ,

where charge radius is

2
PT, conf

47TiV| [ PD,con(PaW 1036g x _ 2M x D,
4 TrJVfM axo

-109.88 x D'A - 2558.46 x D'B 

and convexity parameter is

Cr.conf
4ttN$

6 fjfia!7-10

Cx>,conffiM O^lQ

4trJV?
+ 9123840 x D'

-19.32 x D'c\ - 3196.4 x T>'A - 183755.94 x D'B

with

47TiY| :

L4^3a‘
i . 2A2 , 27B3 , 27c^B _ 63x492xvlB , 16£>'21

4^3 Sip 4/i3«io 55ft3aio m3S'io4/i3«5‘ 55/n3c

(47)

(48)

(49)

(50)

Here, the subscript T refers to three terms in the summation.
The corresponding relativistic expressions are

CT,rel+conf V?/) = 1 — PT,rel+conf {V — 4) + Cr.rel+conf {V ~ 1) + • • • , (51)

where
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2 4jtJV£ (4 - 2e)(3 - 2e)r(3 - 2c)
PT,rel+conf “ 3-,s

P a10

29

32
+ E*-

=22
(52)

and

£t, rel+conf —
4ttAT' (6 - 2e)(5 - 2c)(4 - 2c) (3 - 2e)r(3 - 2c)

6/i3q;'710

c'
128

37

i=30

The normalization constant is given by

4tt1V(
•3 _/d

M “io
r(3-2e)fr+ £"**]

and the functions Xt(e), i = 21,22,, 45 are defined in the Appendix.

(53)

(54)

3. Calculation and results

We have listed the values of charge radius and convexity parameter of the calcu
lated I-W function for various heavy-light flavour mesons in the present method 
considering single state, two states and three states in the summation occurred in 
VIPT with confinement and relativistic effect. __

To set the tables we have used two sets of as values: one under MS scheme [3] and 
the other under V-scheme [13-16] at ‘c’ and ‘b’-quark mass scale so that we get two 
sets of readings for the same quantities. Table 3 represents the numerical values of 
the parameters c[, A, B, D' given by eqs (26), (27), (35) and (46) respectively with 
a3 under MS scheme while table 4 represents those values with as values under 
V-scheme. Similarly, tables 5-7 give charge radius and convexity parameter for 
different combinations of states with as values under MS scheme whereas tables 
8-10 give the same quantities with a8 values under V-scheme. The values of a'10 
are taken from tables 1 and 2.

In table 11, we record the predictions of p2 and C for the present model [19] 
using Dalgarno method [4] while in table 12, we refer to the predicted values of 
p2 and C for different models [19-31]. In table 11, only one set of result is shown 
for the D-, Ds-mesons while two sets are shown for B-meson taken from the tables 
1, 2 and 4 of ref. [19] to show the preference of higher as values for this meson. 
Specifically, it is seen that for as = 0.261, as computed in the V-scheme at 6-quark 
scale, the predictions overshoot the predictions of other models (table 12) by two 
orders of magnitude. However, for as = 0.60, the results are comparable. In ref. 
[19] such an enhanced value of as was attributed to the necessity of potentially 
large flavour-dependent higher-order effects beyond 0(a3) in the V-scheme [14-16].

An analysis of tables 5-10 shows that relativistic effects invariably reduce the 
values of p2 and C so as to bring them close to the predictions of other models. 
This feature further improves as we take two and three terms in the summation of 
eq. (10).
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Table 3. Various parameters with as values under MS scheme.

Mesons c'l A B x 10-2 D' x 10“4

D 0.39 0.33 -0.0712 0.304 5.055
Ds 0 39 0.37 -0.0800 0.340 5.600
B 0.22 0.32 -0.0820 0.350 5.770

Table 4. Various parameters with a3 values in the V-scheme.

Mesons as ci A B x 10“2 D' x 10~4

D 0.693 0.36 -0.0613 0.3166 4.345
Ds 0.693 0.42 -0.0660 0.3400 4.650
B 0.261 0.33 -0.0800 0.4100 5.670

Table 5. Charge radius and convexity parameter with single term in eq. (10) 
under MS scheme.

Mesons n2PS,coni &S, canf 2
PS.rel+conf rel-f-conf

D 3.73 13.92 2.197 5.61
DB 5.06 26.18 2.530 10.54
B 5.83 29.08 4.132 18.72

Figure 1. Variation of Isgur-Wise function f (y) vs. velocity transfer ratio 
‘3/’ with three terms in the summation of eq. (10) (see table 7).

Correspondingly, the graphs which show the variation of I-W function £(y) vs. 
velocity transfer ratio ‘y’ consist of two figures out of which the first one (i.e. 
figure 1) correspond to MS scheme and the last one (i.e. figure 2) to V-scheme.
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Table 6. Charge radius and convexity parameter with two terms in eq. (10) 
under MS scheme.

Mesons 2Pd, conf C\D, conf n.2
PD,rel+conf £?D,reI+conf

D 2.84 9.37 1.83 5.184
Ds 3.90 17.72 2.50 9.776
B 4.14 18.55 3.72 14.92

Table 7. Charge radius and convexity parameter with three terms in eq. (10)
under MS scheme.

Mesons n2PTyConi Ct, conf
2Ar, rel-fconf Or,rel+conf

D 2.83 9.15 1.80 5.04
Ds 3.88 17.28 2.46 9.45
B 4.13 18.10 3.68 14.53

Table 8. Charge radius and convexity parameter with single term in eq. (10)
under V-scheme.

Mesons 2
As,conf Cs, conf

2
PS,rel4-conf C^rel+conf

D 2.19 6.22 0.433 0.525
Ds 2.62 9.55 0.560 0.850
B 5.43 26.26 3.570 15.270

Table 9. Charge radius and convexity parameter with two terms in eq. (10)
under V-scheme.

Mesons 2
Ad,conf Co,conf n2AD.rel-fconf ^D.rel-j-conf

D 1.82 4.57 0.432 0.524
Ds 2.28 7.31 0.550 0.840
B 3.60 16.20 3.160 12.320

Table 10. Charge radius and convexity parameter wbh three terms in
eq. (10) under V-scheme.

Mesons .2
Ar.conf Ct, conf n2PT,rel+conf ^Tjrel+conf

D 1.79 4.36 0.430 0.516
Ds 2.25 6.98 0.545 0.815
B 3.55 15.43 3.120 11.770
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Table 11. Predictions of the slope and curvature of the I-W function with 
b = 0.183 GeV2, Aq = 1 and c = 1 GeV in V-scheme for the model of ref. [19] 
with relativistic and confinement effect.

Mesons as 2
Prel-fconf Crel+conf

D 0.625 1.136 5.377
D„ 0.625 1.083 3.583
B 0.261 128.1 5212

0.600 1.329 7.2

Table 12. Predictions of the slope and' curvature of the I-W function in
various models.

Model Value of p2 Value of curvature C

Le Youanc et al [20] > 0.75 —

Le Youanc et al [21] >0.75 >0.47
Rosner [28] 1.66 2.76
Mannel [29,30] 0.98 0.98
Pole ansatz [31] 1.42 2.71
MIT bag model [27] 2.35 3.95
Simple quark model [26] 1 1.11
Skryme model [24] 1.3 0.85
QCD sum rule [25] 0.65 0.47
Relativistic three-quark model [23] 1.35 1.75
Infinite momentum frame 3.04 6.81

quark model [22]
Neubert [10] 0.82±0.09

Figure 2. Variation of Isgur-Wise function £(y) vs. iy' with three terms in 
the summation of eq. (10) (see table 10).
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4. Discussion and conclusion

In this paper, we have calculated the slope and curvature of the I-W function using 
VIPT method in the QCD-inspired quark model [3,13,19]. In this approach, we 
notice that with the inclusion of more states in the summation of eq. (10), the 
results come closer to the predictions of the other models [19-31]. We have seen 
from the results that the slope and curvature agree quite well with the values and 
bounds of other models in table 12 for D- and Ds-mesons but not as expected 
for B-meson. This is due to the low value of a3 for B-meson. Such a feature 
was earlier noticed in ref. [19] too, suggesting the necessity of higher-order effects 
beyond O(a^) in V-scheme.

We also note that eqs (24), (25), (30), (31), (37), (38), (41), (42), (48), (49), 
(52) and (53) along with (28), (32), (39), (43), (50) and (54) of the text contain 
several large numerical factors appearing to be divergent compared to the leading 
order term which is contrary to the expectation of perturbation theory. However, 
a careful study reveals that actually it is not so.

As an illustration, the correct leading order term in eq. (24) with 6 = 0, a'w = a 
becomes p|conf LO = 3/a2 = 27/16a2; which for as = 0.693 is ~3.51 not far away 
from the results of table 8. Similar analysis can be done for the other equations as 
well.

It will also be interesting to explore if the linear potential as parent incorporating 
more terms in the correction for wave function can improve the results of the present 
analysis as far as B-meson is concerned. Such an investigation is currently under 
progress.

Appendix

Xi = A* [1 +2/1 , (6 — 2e)(5 — 2e)
— (5 — 2e)

x2 = 64c[A ( ^_Jf) _ 1243

X3 = /r 1 +2/1 , (8 — 2e)(7 — 2e)
(7-2c)

Xi = 2564A f ----- +

1 +

(7 ~2c) 
2187 ‘ 6561

(4 - 2e)(3 - 2c)
(3-2c)

Rest of the equations can be obtained from the authors on request.

(Al)

(A2)

(A3)

(A4)

(A5)
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Abstract The quantum chromodynamics-inspired po
tential model pursued by us earlier has been recently 
modified to incorporate an additional factor ‘c’ in 
the linear cum Coulomb potential. While it felicitates 
the inclusion of standard confinement parameter b = 
0.183 GeV2 unlike in previous work, it still falls short 
of explaining the Isgur-Wise function for the B mesons 
without ad hoc adjustment of the strong coupling con
stant. In this work, we determine the factor ‘c’ from 
the experimental values of decay constants and masses 
and show that the reality constraint on ‘c’ yields bounds 
on the strong coupling constant as well as on slope 
and curvature of Isgur-Wise function allowing more 
flexibility to the model.

Keywords Dalgamo method • Isgur-Wise function • 
Slope • Curvature • Nonrelativistic quark model • 
Potential models

PACS 12.39.-x • 12.39Jh . 12.39.Pn

1 Introduction

In recent years, considerable experimental and theo
retical efforts have been undertaken to understand the

B. J Hazarika (El)
Department of Physics, Pandu College, 
Guwahati 781012, India 
e-mail bjh_06@rediffmail com

D. K. Choudhury
Depaitment of Physics, Gauhati University. 
Guwahati 781014, India

physics of hadrons containing a heavy quark [1], 'The 
Isgur-Wise (I-W) function [2] is an important quantity 
in this area of hadron physics. It is in this spirit that this 
function has been studied in various quark models [3— 
12] besides quantum chromodynamics (QCD) sum rule 
approach [13], the MTT bag model [14] and the Skryme 
model [15].

Since one of the basic ingredients of the I-W function 
is the hadron wavefunctjon involving heavy'quark [3- 
12], it is therefore meaningful to test any specific QCD- 
inspired quark model by calculating thfe I-W function 
and studying it phenomenologically. Sometimes back, 
a specific QCD-inspired quark model was proposed by 
us [16] which had later been used to calculate the I-W 
function as well [17-19],

One of the drawback of the model is that significant 
confinement effects could not be accommodated in the 
model [16-18] due to perturbative constraints coming 
from using the Dalgarno’s method [20], Only recently 
[19], the standard confinement effect b =0.183 GeV2 
[21] was accommodated in the improved version of 
QCD-inspired quark model, brought through the intro-’ 
duction of parameter ‘c’ in the potential: V — +
br + c taking c ~ 1 GeV as its natural scale and fixing 
Ao = 1, where Aa is an undetermined factor appearing 
in the series solution of the Schrodinger equation ((8) 
of [19]). In earlier work [16-18], the unknown coeff
icient cAo occurred in the wavefunction was set to zero.

One of the drawback of work [19] was the ad hoc 
enhancement of strong coupling constant needed to 
take into account of the slope and curvature of B, Bs 
and Bc mesons. Also, the scaling of c ~ 1 GeV as 
natural is questionable.

In this woik, we take'an alternative strategy to re
move this ad hoc enhancement as well as the scaling

^ Springer
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of c. We use the wavefunclion at the origin (WFO) 
involving the unknown coefficient cA0 and fix it from 
the experimental values of masses and decay constants 
directly. The reality constraint on cAo will be seen to 
yield lower bounds on the strong coupling constant cys, 
which would lead to the upper bounds on the slope and 
curvature of the I-W function.

The rest of the paper is organised as follows: 
Section 2 contains the formalism of the improved QCD- 
inspired quark model, Section 3 encloses the results and 
in Section 4 we draw conclusion and remarks.

2 Formalism

Here <?o is given by:

flo
3

4 fia% ’

and

= W] 4gs
3

(4)

(5)

N and N' are the normalization constants given by!

JV2 = -
1

1 +
45lirbta%

- —3iJ,bal+7Talc2'Al+ IcAyiral 37ra^cA(ifxb

(6)

2.1 The Wavefunction and

The spin-independent Fermi-Breit Hamiltonian for 
ground state {/ = 0), neglecting the contact term pro
portional to <53, is [16,17].

H=Ha + H\
V2 

2 fJ.
4as
~3r -f* b t T c. (1)

AT
27-2f

r (3 - 2e) A"!'
(7)

where X\ is given in “Appendix”.
We note that the (2), (3), (6) and (7) are obtained 

from (4), (5), (6) and (7) of [19] exhibiting explicit 
dependence of cAd in them.

where as is the running coupling constant, b is the 
confinement parameter and c is another parameter 
whose significance will be cleared later.

As our objective is to look for the improvement over 
the earlier work [19], so in this work also we retain 
the same choice of as values taken from the V-scheme 
[IS, 26, 27] and b = 0.183 GeV2 [19, 21] to investigate 
whether this approach leads to better results or not. 
With H0 = — ^ - 3^ as the parent Hamiltonian and 
H' = br + c as the perturbed Hamiltonian, we obtain a 
ground state wavefunction up to the first-order correc
tion using the Dalgarno method [20] of stationary state 
perturbation theory as:

2.2 Fixing of the Coefficient cAo
. i

The WFO is related to the decay constant /p and 
the mass of the pseudoscalar meson Mv through the 
relation [16,24]:

hK0)|2 = ^. .(8)

Again from (2). we have:

\f (0) |2 = N2 c2A2 + +
2cAq

71 (In
(9)

^conf (0 — Af cAo +

Using (6) and (9), we arrive at the quadratic equation 
for cAo'.

A' (cAo)" + B' (cAq) + C =0, (10)

where Aq is the unknown coefficient appearing in the 
series solution of the Dalgarno method.

Including the relativistic effect [22, 23], the wave- 
function is:

t^conf-M el O’)

where

A' = Ttahi/ (0) |2 — 1,

B' = 2^ (0) |2 - 'SixbalJnc^W (0) |2, 

and

(11)

(12)'

= N' cAq + (3) C = \f(0)\2
45/z2£>2Uq ,

1+ °—3 fiba2
na:

.(13)
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Using the experimental values of fv and Mv [25], we 
determme |i/r (0) |2 from (8) wliich in turn will yield two 
solutions for c A0 in (10):

. — S' ± >/B’2 — 4A'C
Cy4° 2A’ ’ (W)

which will depend on p,, Mp, fp and as. The solution 
corresponding to the +ve(-ve) sign of (14) will be 
termed as +ve(—ve) solution hereafter. It will be shown 
numerically that for a given /x, Mp, and /p. as reaches 
the minimum value when the following condition is 
satisfied-

B- - 4A'C' = 0. (15)

The formalism involving (5)—(15) is strictly valid only 
without relativistic effect as the wavefunction at the 
origin with such effect (3) is not well-defined due to its 
singularity at the origin. For a subsequent analysis, we 
assume that cAq does not deviate significantly from its 
non-relativistic value so that it can be used to calculate 
the slope and curvature of the I-W function even with
out relativistic effect.

where

(17)

and v/t and v'. being the four velocity of the heavy 
meson before and after.the decay. The quantity p2 is 
the slope of I-W function at y = 1 and known as charge 
radius:

.(IB)

The second-oider derivative is the curvature of the I-W 
function known as convexity parameter:

C = \y= i
(19)
t

For the heavy-light flavor mesons, the I-W function can 
also be written as [6,17]:

Hy)
p+cc

Jo '4jr r2 | \jr (r)|2 cos prdr. (20)

where

p2 = 2,j? (y -1). . ' •(21)

2.3 Charge Radius (Slope) and Convexity Parameter 
(Curvature) of I-W Function

The Isgur-Wise function is written as [2,17]:

£ (v<) = t O')

= I - P2 (y — 1) + C(y — l)2 + ..., (16)

Equation (20) holds good for both relativistic and non- 
relativistic case. The wavefunction if (r) takes different 
form for both the cases. Without relativistic effect, it is 
given by (2) and with relativistic effect it is given by (3).

With the wavefunction (2) in (20), i.e. including 
confinement, only the charge radius p2ont and convexity 
parameter Cc0„r are, respectively, given by:

Peon f

p?\lL4nc2 A^a^ + 24 % + 630fi2b2ap + 4%cAq^Jttoi() — \^0cAop,b^7ta^ — lBO^hflgj 

8jrcMgflQ + 8 + 45 p?bza\ + IbcA^na^ — 24p.be Ao^tt^ — 24 p.ba\
(22)-

and:

Cconf —

p4 607TC2Afal + 60ag + 4725p?b2al00 + l20cAo^Jnal0° — MOcAopb^jira^ - 840/ihflgj

16jrc2A2a2 + 16 + 90 p2b2a60 +
(23)

7t%~ 4%p.bcAoJna\ - 48pb%

With the wavefunction (3) m (20), i.e. including both 
relativistic and confinement effect, the charge radius 
Pconf+rei and convexity parameter Cconf-nei are given by:

J^conf+rel
p}a2(4-26) (3-2c) [X,] 

. 4[X2]
(24)

and

Cconft-rel
[A4 (6 - 2e) (5 - 26) (4 - 2e) (3 - 2e) [X3]

96[X2]
(25)

where X[, X2 and X3 are given in “Appendix".

Cl Spnngcr



162 Braz J Phys (2011) 41:159-166

Fig.l Variation of cAq vs as 

for D meson The +ve(-ve) 
solution of (14) corresponds 
to the dashed (solid) line and 
the two lines nearly coincide 
at ofs ~0 601, the lower bound 
on as corresponding to the 
solution of (15) for D meson

We note that (24) and (25) are equivalent to (18) and 
(19) of [19] exhibiting explicit cA0 dependence.

3 Results
*

3.1 Values of cAq and Lower Bounds on a,

As noted earlier, qA® depends on p, Mp, fp and as. 
In Fig. 1, 2, 3, 4 and 5, we plot cA0 vs as for D, Dh,

B, Bs and Bc mesons. It shows that as tends to reach 
the minimum value'when two solutions of (14) alihost 
merge satisfying the condition (15). This feature is true 
for any set of the parameters p, /p and Afp. In Table 1, 
we give the lower bounds on as for mesons having c and' 
b quarks.

The dependence of cAo on as and p can be noted as 
follows: With constant p, cAo decreases with as values 
rising and vice versa. On the other hand, with constant

Fig. 2 Variation of cAo vs as 
for B meson The +ve(-ve) 
solution of (14) cori esponds 
to the dashed (solid) line and 
the two lines nearly coincide 
at a, ''-0.652, the lower bound 
on as corresponding to the 
solution of (15) for B meson

alpha s
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Fig. 3 Vanation of cAq vs 
for Ds meson Tlie +ve(-ve) 
solution of (14) corresponds 
to the clashed (solid) line and 
the two lines nearly coincide 
at ofs '"0.49, the lower bound 
on cfs corresponding to the 
solution of (15) for Ds meson

as, cAq increases (decreases) with increase (decrease) 
in fj,.

3.2 Bounds on Slope and Curvature of the I-W 
Function

Using the lower bounds on as for each heavy-light and 
heavy-heavy mesons, we obtain upper bounds on the

slope and curvature of the I-W function using (23), 
(24), (25) and (26). They are listed in Table 2. We note 
that with increasing cts values, the slope and curvature 
decrease and henceforth the lower bound on as corre
sponds to the upper bound on p2 and C.

In Table 3, we record the predictions of the slope and 
curvature of the I-W fun'ction in various models while 
in Table 4, we reproduce the correspondmg predictions 
of the model of [19] with c = 1 GeV and A0 = \ in

Fig. 4 Variation of cAq vs as 2.5
for Bs meson. The +ve(—ve)
solution of (14) corresponds
to the dashed (solid) line and
the two lines nearly coincide
at a% ~0.493. the lower bound
on as corresponding to. the 2
solution of (15) for Bs Meson

•g°t 15

1

05
0 49 0 495 0 5 0 505 0 51 0 515 0 52.

alpha s

A) Springer
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Variation of cA$ vs as 
for Bc Meson. The -j-ve(-ve) 
solution of (14) corresponds 
to the dashed (solid) line and 
the two lines nearly coincide 
at ors —0 302, the lower bound 
on as corresponding to the 
solution of (15) for Bc meson

Tabic 1 Lower bounds on as Mesons Quark content H (GeV) 
[25]

Mp (GeV) 
[25]

/p (GeV) 
[25]

cAq Lower bound
on as

D cu/cd 0276 1869 0.192 09665 -0.601
B bu/bd 0.315 5 279 0.210 07653 -0.652
Ds cs 0.368 1.968 0.157 0 9543 -0.49
B, 0.44 5.279 0.171 0 999 -0.493
Be bc 1.18 5.37 0 36 1.167 -0.302 '

Table 2 Upper bounds on 
slope and curvature

Meson
(quark
content)

Slope p2 Curvature C •

Without relativistic 
effect

With relativistic 
effect

Without relativistic
effect

With relativistic 
effect

D(cu/cd) 678 1.675 13.19 5 138
B(bu/bd) 5 78 1.016 9 58 1.29 ‘
Ds(cs) 9.115 3.067 26.4? 14.32
BAbs) 11.92 2 652 34.49 6.902
Be(bc) 28.46 10.39 21946 45.23

Table 3 Predictions ol 
the slope and curvatuit 
of the I-W function m 
various models

Model Value of p2 Value of curvature C.
Yaouanc et al. [28J >0.75
Yaouanc et al. [12] >0.75 >0.47
Rosner et al. [29] 1.66 2.76
Mannel et al [30,31] 0 98 0.98
Pole Ansatz [32] 1.42 2.71 .
MIT bag model [14] 2.35 3.95
Simple quark model [3] 1 1.11
Skryme model [15] 1.3 0.85
QCD sum rule [13] 0.65 0.47
Relativistic three quark model [4] 1 35 1.75
Infinite momentum frame quark model [5] 3.04 6 81

■§) Springer
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Table 4 Predictions of the slope and curvature of the I-W func
tion m the QCD inspired quark model according to [19] with 
c = 1 and Ao = 1 taking relativistic and confinement effect in V- 
scheme

Meson Slope (p2) Curvature(C)
D 0.625 1 136 5.377
Ds 0 625 1.083 3 583
B (a)0.261 (a)128.128 (a)5212

(b)0.60 (b) 1.329 (b)7 2
Bs (a)0.261 (a)l 12.759 (a)4841

(b)0 60 (b) 1.257 (b)4 379
Bc (a)0.261 (a)44 479 (a)2318

(b)0 60 (b) 1.523 (b)0 432

This table is nothing but a replica of the last i ows of Tables 1, 2 
and 3 of [19]

V-scheme [26,27] for various mesons. Two set of values 
for B, B% and Bc mesons are shown in the table where 
case (a) represents the actual values for p2 and C in that 
work with as = 0.261, while case (b) represents those 
for an ad hoc adjustable value of a, = 0.60 in order to 
show the usefulness of large as as mentioned m [19]. 
The as values were already large for D and D% mesons, 
so no ad hoc adjustment was necessary that might lead 
to two set of values.

4 Conclusion and Remarks

We have shown that the reality bound on cAq puts 
a lower limit on ors and a corresponding upper limit 
on p2 and C. Furthermore, with cAq, that the upper
bounds on p2 and C decrease, which is evident from 
the above list of bounds (Table 2). The estimated upper
bounds on p2 and C for all the mesons are found to 
be consistent with other models and data (Table 3) 
without making any ad hoc enhancement of the strong 
coupling constant as had been done in [19] (Table 4).
From the phenomenological point of view, we note that 
in the nonrelativistic limit, the universal form factor and 
Isgur-Wise function for semileptonic decay B -> D*lv 
are identical when subleading terms in velocity and 
terms of order O are neglected with Eb as the 
binding energy and mo as the mass of heavy quark 
[33], However, even if we make calculation for the 
universal form factor for finite mass, we obtain to first 
order in (y - 1) as 0.8-2.57 {y - 1) which seems to be 
satisfactory [33,34],

It is worth notable that in the limit cAq 0, there 
will be no bounds on a, as well as on p2 and C; rather, 
fixed values of as have to be used to get definite set of 
p2 and C. So, in th&t case, the analysis will turn to that 
of [17, 18] where large confinement could not be (i.e.

b = 0.183 GeV2) incorporated, e.g. Tables 1 and 3 of 
[17] and Tables 2 and 3 of [18].

We conclude this paper with a comment on the 
physical significance of the factor ‘o' that has become 
so crucial for our analysis of bounds on.slope and cur
vature. It is common wisdom that a constant potential 
like ‘c’ just scales the energies and does not affect 
the wavefunction nor does it change physics. This can 
be seen from the hydrogen atom problem with the 
potential V(r) =— ~- + c. However, if one uses ‘c’ as 
the perturbation instead of as parent in the Dalgarno 
method of perturbation theory [20], the normalized 
wavefunction for the //-atom becomes

iMO l+ndc2A2 * + 2 *-^.
cAq + e “«.

which is to be compared with the normalized wavefunc
tion with ‘c’ as parent:

f (r) =
1

\/*«o
e ao.

Thus, the perturbative child ‘c’ rather than the parent 
‘c’ plays the crucial role in the present analysis.

Appendix

X], X2 and X2 are evaluated as

X\ = 6Aiu?A\a\ 4- 64 + firb2al

x (8 - 2e) (7 - 2e) (6 - 2e) (5 - 20

+\2%cAo^nal — \6cAQpib2lna90 (6—20 (5—20 

-16nbal (6 - 2e) (5 - 2e), . (26)

X2 = 64jre2 A\a\ + 64 + p?b2a §

x (6 - 2e) (5 - 2e) (4 - 2<?) (3 - 2e)

+12&cAoyJna\ — 16cAojxb (4-26) (3-2e)

-16lib flg (4 - 2e) (3 - 2e), _ (27)

and

AT = 64nc2A\a\ + 64 + prb2a q

x (10 - 2e) (9 - 2e) (8 - 2e) (7 - 20

+ 12?,cA0^n:Oq— 16cAop,byjjtUq (8-2e) (7-2e) . 

-16nba\ (8 - 20 (7 - 20 • (28)
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Not only the above expressions but also all the integrals 
in the analysis are evaluated with the help of Gamma 
function, given by:

r(n + 1)
an+1

iMe~a' dr. (29)
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We study heavy light mesons in a QCD inspired quark model with the Cornell potential 
~^§r~ +5r + c. Here we consider the linear term 6r as the parent and — + c, i.e. the 
Coloumbic part as the perturbation. The linear parent leads to Airy Emotion as the 
unperturbed wave function. We then use the Dalgarno method of perturbation theory 
to obtain the total wave function corrected up to first order with Coulombic piece as 
the perturbation. With these wave functions, we study the Isgur-Wise function and 
calculate its slope and curvature.

Keywords: Dalgarno method, Isgur-Wise function; slope and curvature.

PACS Nos.. 12.39-x, 12.39.Jh, 12.39.Pn

1. Introduction

Considerable efforts have been made in understanding the physics of hadrons con
taining at least one heavy quark since long.1-9 It is well known that the heavy 
quark symmetry in the heavy quark limit leads to a single form factor called the 
Isgur-Wise (I-W) function which can describe the heavy quark bilinear current 
matrix elements of weak decay. The basic ingradient of the I-W function is the 
hadronic wave function, the determination of which becomes such a crucial factor. 
The potential models for this purpose is quite helpful as they contain more input 
parameters and hence has its firm basis.

Under such circumstances the I-W function has been investigated3-9 with 
considerable success of valid degrees in different models. In the potential models, 
“Cornell potential” is found to be more useful than the others. It leaves two options 
of choosing the parent (1) the Coulombic part —and (2) the linear potential 
part br.

1 Corresponding author

1547
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The slope and curvature of I-W function with the Coulombic potential as the 
parent has already been reported for different heavy-light flavor mesons,10-15 which 
however had certain limitations. In Coulombic potential as parent and linear as 
perturbation, the value of slope (p2) and curvature (C) was found to be too large 
in MS-scheme. Imposing V-scheme,14-18 with larger as the values were found to 
be improved13 but still larger than expectations. As an alternate approach, in the 
present work we choose linear term “fid’ as the parent and Coulombic piece as the 
perturbation in finding the wave function.

As usual, two-body Schrodinger equation is used with the ground state Fermi - 
Breit Hamiltonian in the absence of contact term and with Coulombic perturbation, 
the wave function corrected up to first order is obtained by using the Dalgarno 
method.10’19 The relativistic effect is incorporated by using standard Dirac 
modification20,21 in a parameter free way. These wave functions are used in the 
calculation of slope and curvature of I-W function.

The rest of the paper is organized as follows: Sec. 2 contains the formalism, 
Sec. 3 the result and Sec. 4 the conclusion and discussion.

2. Formalism
2.1. The wave function
We start with the ground state (l = 0) spin independent Fermi-Breit Hamiltonian 
without the contact term given by10,11:

H = -

so that

H'

V^_4a,
2n 3 r

4a,

+ br + c

3 r + c

can be treated as perturbation to the unperturbed Hamiltonian:

V2
Ho 2fi

+ br.

(1)

(2)

(3)

In Eq. (1), the strong coupling constant connected to the potential is a function of 
the momentum as

4?r
adP2) (4)(11 - ^)ln(£)

where n/ is the number of flavor. The constant “c” at its natural scale is taken to be 
1 GeV.13 The two-body nonrelativistic Schrodinger wave equation can be recasted 
as

H\i,) = {Ho + H'm = E\il>). (5)

The unperturbed wave function corresponding to Ho are the Airy functions which 
after normalization can be written as:
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^i0)(r) = + Pon),2y/irr (6)

where pon are the zeros of the Airy function Ai(pon) — 0, n = 1,2,3,... represent 
the principal quantum number (of course for the ground state n = 1) and N is the 
normalization constant.

The po-n are given as22,23:

POn —

37r(4n
8 (7)

The first-order correction to wave function ipiP and energy 
given by

are respectively

= w»i>1 + ww, (8)
where W® is the unperturbed energy given as22

<='e“--(!)'»" <9)

and
r+oo

= / r2H'\ipW(r)\2dr. (10)
Jo

Since we consider the ground state (n = 1), so we drop the “n” from W°, Wn\ 
tpn^ and The first-order correction is:

t/d(r) 4 as 
3

<io---- 1- Oi + a2rr (11)

As Airy function Ai(r) involve infinite series in r, so in calculating the coefficients 
do, ai and a2 we have considered up to order r3 and are given by:

0.8808(6/i)5 a2 4W1 x 0.21005 
a°" (E-c) p,(E-c) + 3 as(E-c) ’

ba0 4 x W1 x 0.8808 x (6/1)3 0.6535 x (6/i)i
ai~~(E-c)+ 3 as(E-c) (E-c)

4/iW1 x 0.1183 
°2 = ——--------- •

The total wave function corrected up to first order with normalization is 

i>coui(r) = ^(0)(r) + ip(1)(r)

Ni 'At((2/16)3 +poi) 
2y/n _ r

do
r + di + a2r

(12)

(13)

(14)

(15)

(16)
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where N\ is the normalization constant for the total wave function V’coui(^) with 
subscript “coul” means Coulombic potential as perturbation.

The relativistic version of Eq. (17) is obtained by multiplying it with {a^h ) 
UBohr depends on oc3 as:

and

G'Bohr —

e = 1 —

Thus, relativistic wave function is:

^rel IT) — V’coul (X)
®Bohr

(17)

(18)

(19)

2.2. Isgur—Wise function 

The I-W function is written as1,2:

£0/) = 1 - p2(y - 1) + C(y - l)2 H---- , (20)

where

V = % ’ ^ (21)

and vti and v'M being the four-velocity of the heavy meson before and after the 
decay. The quantity p2 is the slope of I-W function at y — 1 and known as charge 
radius:

dy y= i
(22)

The second-order derivative is the curvature of the I-W function known as convexity 
parameter:

<92£
dy2 y=l

(23)

For the heavy-light flavor mesons, the I-W function can also be written as6,11:

Aitr2\ip(r) |2 cos pr dr, (24)

where

p2 = 2p,2(y — 1) (25)

the wave function Eq. (19) with relativistic effect is used in the calculation of £(y) 
given by Eq. (24).
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3. Calculation and Results

We have calculated the values of charge radius and convexity parameter of the 
I-W function given by Eq. (20) for two set of coupling constants both in MS and 
F-scheme.14-17

Regarding the use of the above-mentioned schemes11’12 we note that with n/ = 4 
and n/ = 5 and fixing Aqcd = 0.216 GeV,24 the corresponding value of a^g at 
the scale of 1.5 GeV and 8 GeV are respectively 0.39 and 0.22.24 The respec
tive change of a^jg to a„(^r) in the F-scheme14-17 for three different choices 
of scale p, are calculated12 and shown in Table 1. Although there is no funda
mental reason for the choice, we have chosen the two renormalization schemes 
(MS and F-schemes) to facilitate the comparison of our result with the previous 
work.12’13 Also we use the same model parameter b = 0.183 GeV2 from charmonium 
spectroscopy.25’26

For these calculations, we have used the expressions for E, IF1, a0- given by 
Eqs. (10), (12)-(14) respectively. These are shown in Tables 2 and 3. The result 
of p2 and c in the present work is shown in Table 4. We also compare the present

Table 1. The value of av for different choices of /j.

Choices P= £ m-£7e ’ M = r

aMS (m&) “ 0 ~ ^ 0.259 0.261 0.258

aMS (m°) “ 0*39, rif — 4 0.693 0.651 0.604

Table 2. The values of W1 and E in GeV.

* W1

Mesons E MS-scheme F-scheme

D 0 3898 0.0467 0 08314
Ds 0.4291 0.5137 0.0915
B 0.4072 0.02742 0.0327

Ba 0.4553 0 0308 0.0366

Table 3 List of ao , ai and a2.

Mesons

ao ai (GeV) a 2 (GeV2)

F-scheme MS-scheme F-scheme MS-scheme F-scheme MS-scheme

D 0.2143 0.1943 -0 006138 -0.007877 0.00293 0.002933
Ds 0.238 0.21387 -0.00916 -0 01257 0.0043 0.0043036
B 0.2245 0.2029 -0.00749 -0.0099 0.00349 0.00348

Bs 0.254 0.2269 -0.0114 -0.01604 0.005446 0.00547
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Table 4 Values of p2 and C in our work and its comparison to other work.

Our work

Scheme Mesons P2 C

MS-scheme C 0.7936 0 0008

Ds 1.186 0.002

B 0.89 0 0004

Ba 1.41 0.0012

V-scheme D 0.896 0 00306

D, 1.352 0.0077

B 0.912 0.0007

b5 1.421 0.00155

Other work

Previous work12,13 D 1.136 5.377

Ds 1.083 3.583

B 128.28 5212

Bs 112.759 4841

Le Youanc et al.27 >0 75

Le Youanc et al.28 > 0.75 > 0.47

Rosner29 1.66 2.76

Mannel30'31 0.98 0.98

Pole Ansatz32 1.42 2.71

Ebert et at36 1.04 1.36

Simple Quark Model3 1.00 1.11

Skryme Model35 1.3 0.85

QCD Sum Rule34 0.65 0.47

Relativistic Three Quark Model4 1.35 1 75

Neubert33 0 82 ± 0.09

result with that of previous work with linear as the perturbation13 in F-scheme 
which was an improvement over MS-scheme and is shown in Table 4.

In Table 4, we give a list of predictions of p2 and C in different theoretical 
models.

In evaluating the various integrations, we use numerical method of integration 
in Mathematica software.

4. Discussion and Conclusion

Our calculated values of slope of I-W function in this work are found to be in good 
agreement with the other theoretical results (Table 4). The lattice QCD evaluation
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of p2 = 0.831^22 f°r -B-meson37 and the experimental values of D-meson p2D =
0.76 ± 0.16 ± 0.08 and38 p2D = 0.69 ± 0.14 are39 also in good agreement with our 
calculated results. However, the values of C for each meson are found to be smaller 
in comparison to other theoretical values. The reason may be presumably due to 
the cutoff of the infinite series of Ai(z) up to 0(r3) as noted earlier and still such 
small values can be considered as a success particularly for the ^-sector mesons as 
these values were very large in case of Coulombic potential as parent.11-14

This study of the I-W function with Coulombic part as perturbation shows a 
different picture as compared to the earlier work.11-13 With linear part as pertur
bation, the slope and curvature decrease with the increase of as; while in this work, 
we have observed a reverse effect. Further, this analysis shows a great reduction in 
the values of p2 and C for all the mesons as compared to the previous work with 
linear part as perturbation.

Let us conclude the section with a few comments.
The strong coupling constant entering the Coulombic potential is a function 

of the momentum in full QCD. But in potential model, it is nothing but a mere 
parameter. Here we have used the strong coupling constant in the MS and V- 
scheme to facilitate a proper comparison with the previous work with linear part 
as perturbation.12,13

However, instead of using a particular renormalization scheme we could as well 
have considered the strong coupling constant merely as a free parameter in the 
potential model to be fitted from data. Such a possibility is currently under study.
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Abstract We have recently reported the calculation of slope and curvature of Isgur-Wise function 
based on variationally improved perturbation theory (VIPT) in a quantum chromodynamics (QCD)- 
inspired potential model. In that work, Coulombic potential was taken as the parent while the linear 
one as the perturbation. In this work, we choose the linear one as the parent with Coulombic one as 
the perturbation and see the consequences.

Keywords. Variationally improved perturbation theory; Isgur-Wise function; charge radii; 
convexity parameter.

PACS Nos 12.39.-x; 12.39.Jh; 12.39.Pn

1. Introduction

Being a universal form factor, the Isgur-Wise (I-W) function has been instrumental in the 
analysis of semileptonic decays [1] and so far various QCD-inspired models have been 
developed for its proper understanding. In this spirit, the I-W function had been investi
gated for the last few years in a QCD-inspired model [2,3] where two-body Schrodinger 
equation was solved for the spin-independent Fermi-Breit Hamiltonian consisting of the 
linear cum Coulombic potential with the contact term being neglected [3,4], The Dal- 
gamo method was the method used to obtain the wave function which could predict the 
I-W function [15] with either Coulombic piece as the parent [3,5-7] or the linear one 
as the parent [8]. While refs [5-7] demanded either small confinement (i.e. b) or large 
coupling constant (aj, ref. [8] was quite successful in predicting satisfactory results for 
the slope and curvature with the same range of values for the parameters b and as.

As an alternative to Dalgamo method, one can use the recently introduced [9-11] varia
tionally improved perturbation theory (VIPT) to solve the Schrodinger equation to obtain 
the wave function. The disadvantage of conventional perturbation theory is that it needs 
a very small expansion parameter which leads to diverging results after a certain order.

DOI: 10.1007M2043-011-0255-4; ^Publication: 1 March 2012 555
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Similarly, the variational method needs an appropriate trial wave function in terms of 
unknown parameter(s) which is quite tedious and this makes it an inconvenient method. 
However, in VIPT one uses the variational method in terms of a known trial function and 
through optimization process, new parameters are obtained which are then applied to the 
perturbation theory to make the perturbation expansion a convergent one [12]. Thus, the 
VIPT removes the specific problems of variational method and perturbation theory by 
combining both of them properly and thus hope to handle large perturbation.

With linear cum Coulombic potential [13], we have two options to use in VIPT: 
(i) Coulombic potential as the parent and linear one as the perturbation and (ii) linear 
one as the parent and Coulombic potential as perturbation in the potential model we have 
adopted. We have already reported such an attempt [12] in the calculation of slope and 
curvature of I-W function with Coulombic parent. It had successfully analysed the said 
for D, Ds, B mesons taking into account the three terms in the summation of equation 
expressing the first-order corrected wave function. Although the results were shown to be 
improved with more terms in that equation, it was quite cumbersome. Further, larger as 
values were felt necessary for B-meson for which the result was not so satisfactory when 
compared to D, Ds mesons. .

A careful investigation shows that the linear part with significant confinement effect 
(b = 0.183 GeV2) is usually dominant over the Coulombic one for mesons having greater 
reduced mass /x. Further, as pointed out in ref. [10], the linear parent is quite handy in 
predicting the mass, energy etc. for different stales compared to the Coulombic one. So, 
it is definitely worthwhile to test the model with linear parent-including also the Bs, Bc 
mesons which have greater reduced mass /x.

We recall that [10] for the linear potential to be dominant we require (r) > ro, where 
(r) is the expectation value of the distance r which reasonably gives the size of a state 
(in this case meson) and ro is a point at which linear cum Coulomb potential becomes zero 
(figure 1 of Aitchison and Dudek [10]). The condition of applicability of VIPT to linear 
potential as parent conforms to low value of as and high value of b because ro is directly 
proportional to as and inversely proportional to b and we need a small ro for the linear 
potential to dominate. So, with a linear parent, one can suitably handle large b and small 
as which is necessary in this QCD-inspired potential model for the B-sector mesons (e.g. 
B, Bs, Bc) usually incorporated with small running coupling constant as due to their large 
mass. The linear parent is thus expected to be effective for heavier mesons.

Our approach is further boosted by the success of the work [8] where we have used the 
Dalgarno method with linear parent for D, Ds, B, Bs, Bc mesons.

The rest of the paper is organized as follows: Section 2 contains the formalism, §3 the 
result and calculation while §4 includes the discussion and conclusion.

2. Formalism

2.1 Isgur-Wise function; its slope and curvature 

The Isgur-Wise function is written as [1]

• v'J = f 00
= l-p2(y-l) + C(y-l)2 + ---, (1)
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where

y = vn‘vl (2)

and Vn and are the four velocity of the heavy meson before and after the decay. The 
quantity p2 is the slope of the I-W function at y — 1 and known as charge radius:

P2 (3)

The second-order derivative is the curvature of the I-W function known as convexity 
parameter:

(4)

For the heavy-light flavour mesons the I-W function can also be written as [3,14]

4jrr2 \if{r)\2 cos pr dr, (5)

where

p2=2p}(y-l). (6)

Now the wave function ijr of the hadronic system is determined by taking the linear 
potential as the parent.

2.2 First-order corrected wave Junction and energy in VIPT

The wave function corrected upto the first order of jth state is given by (eq. (10) of 
ref. [12])

v}-tj +2_, Em _ E«» Vito
k~fcj J k

The energy corrected upto the first order for the same state is

lj - j ff^Ehjrf&v
= J ff'iHop, + H'pfffdv,

(7)

(8)

where xfk, Ek are the wave function and energy eigenvalues of the kth states which are 
orthonormal to the jth state. The superscript (0) means zeroth-order correction of the 
corresponding quantities. Also, we note that P' is the variational parameter and HqP>, 
H'p, are as defined in eq. (9) of ref. [12].

The summation in eq. (7) can include any number of £;th states. In this work, we 
consider terms upto three states in the summation as was done in ref. [12].
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2.3 Wave functions using VIPT with linear potential as the parent

2.3.1 With one term in the summation. As explained earlier, we take b' as the variational 
parameter instead of the physical parameter b in the parent linear potential to write the 
Hamiltonian as [3,12]

H = Hq + H'

= -z-+br- — +c 
2 p, 3 r
V2 , a

— — —--- h br--------f-C
I r

V2 a
= + b'r-------- b'r+br + c

2p r
= Jhr+Hf, (9)

where a = 4as/3. Now, Hw — — (V2/2/r) — b'r is the parent Hamiltonian with the new 
parameter b' and H'h, = (a/r) — b'r + br + c is the perturbed Hamiltonian with the same 
variational parameter b' instead of the physical parameter b.

We consider jth state as the Is state (n = 1,1 = 0) and in the summation of eq. (7), we 
consider a single Mi state which is the 2s state (n = 2, l = 0).

We note that in the variational method, we are interested only in the ‘r ’ dependence of 
the Hamiltonian, and so ‘c’ in H'v has no role to play in the calculation [15].

The unperturbed wave functions with linear parent with appropriate boundary condi
tions are the Airy functions given by [10]

fno (r) = 2^=^ {(2pb')l/3r + p0„), (10)

where po„s are the zeroes of the Airy function Ai(po«) = 0 given by [10,16]:

P0n —

3tt(4h — 1) 2/3

8 (11)

and N„ is the normalization constant.
As an illustration, we reproduce for s states a few of the zeroes of the Airy function in 

table 1. The corresponding energies are given as

Table 1. A few of the zeroes of Airy function 
for s states.

State p0n

Is (n = 1,1 = 0) -2.3194
2s (n = 2,1 = 0) -^.083
3s in = 3,1=0) -5.5183
4s (n = 4, / = 0) -6.782

558 Pramana-J. Phys., Vol. 78, No. 4, April 2012
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Of course n = 1,2,3,4,... is the principal quantum number.
Thus the trial Is state (n = 1,1 = 0) wave function is (which is also the unperturbed 

wave function):

= ^L-Ai ((2pb’)l/3r - 2.3194)

N,= -7L~Ai(z1), (13)
2^/nr

where

zi = ((2p,b')1/3r - 2.3194) (14)

and the subscript 10 indicates the quantum number (n, l) of the jth state.
We note that b' is replaced by b' which is obtained by minimizing Ej given by eq. (8). 

It is essential since in VIPT we have to use the values of variational parameter leading to 
minimum energy (for example in ref. [12], as was replaced by a'10). The values of b' for 
different mesons are hsted in table 2.

Now we consider the single fcth state in the summation of eq. (7) which is the 2s state 
given by

= ^:Ai ((2pb') I/3r - 4.083) = ^L_-Ai (z2), (15)

where

z2 = ((2/zh')1/3r - 4.083) .

The wave function corrected upto first order is

(2m) 1/3

(16)

1h = N
(P02 ~ POl) £'2/3

ib-b')(r) 2,i *ho (r)

(17)

where

{r)%i = N1N2 rAi((2pb')1/3r - 2.3194)Ai ((2pb')l/3r 4.083) dr 

(18)

and N is the normalization constant.

2.3.2 With two terms in the summation. We next consider the 3s state (n = 3, / = 0) in 
addition to 2s state (as done in the single term case) given by

((2M^)1/3r - 5.5153) = ^L;Ai (z3), (19)
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Table 2. Values of S' with b = 0.183 GeV2.

Mesons Reduced mass /1 a =4as/3 b' without 
relativistic effect

// with
relativistic effect

D 0.2761 0.924 5.306 16.24
Ds 0.368248 0.924 5.876 19.8
B 0.31464 0.348 4.33 5.587
Bs 0.4401 0.348 4.497 5.954
Bc 1.1803 0.348 5.39 8.103

where

z3 = ((2^')1/3r - 5.5153) . (20)

With the inclusion of this state, the wave function corrected upto the first order is

where

to = N' ^(0) + 

+

(2 fi) 1/3

(P02 - Pot) balz 
(2/i)1/3

{b-b')(r)%i - a

(b-b'){r)Xi - a

2,1/

fm (r)

^20 (r)

, (21)
(P03 - POl)^73 \ \' /3,ly

f+oo
(r)3.i = V, /V3 / rAi ((2/ih')I/3-' - 2.3194) Ai ((2^')1/3r - 5.5153) dr

Jo

and N’ is the normalization constant.

(22)

2.3.3 With three terms in the summation. In addition to the 2s and 3s states we now add 
the 4s state:

- r^-Ai ((2fj,b')1/3r - 6.732) = -^Ai (z4), (23)
2<s/7tr ' 2^/nr

where

Z4 = ((2nb')l/3r - 6.782) .

With the inclusion of this state, the first-order wave function now becomes

(2m)1/3

(24)

fT = N"
(P02 - Poi) ba^

(b -b') (r)2,i ~a{~^ jf2o(r)

+

+

(2 M) 1/3

(P03 - Pot) ba^
(2p)1/3

(P04 - Poi) b12^

(■b-b') (r)x 1 -a(-

(h - £') (r)4>i - a

3,1;

4,1 j

1^30 (r)

1^40 (/•) , (25)
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where

f+OO

{r)4,i = NxN4 / rAi((2^')1/3r-2.3194)Ai((2/x^)!/3r-6.782)dr (26)
Jo

and N" is the normalization constant.
The relativistic version of these wave functions is obtained by multiplying the above 

expression by {rpa)~f [17,18]. The relativistic modification is felt necessary as the light 
quark moves faster relative to the static heavy quark. Thus, relativistic version of all these 
wave functions is

= f,(rpa) e, (27)

where i = S, D,T and

e = i (28)

Putting all these wave functions, i.e. eqs (17), (21), (25) and (27) in (5) we can calculate 
the Isgur-Wise function for different cases.

3. Calculation and results

We have listed the values of charge radius and convexity parameter of the calculated I-W 
function for various heavy-light flavour mesons in the present method considering single 
state, two states, and three states of eq. (7) with and without relativistic effect.

Table 1 gives the zeroes of Airy function while table 2 gives the values of b'. In tables 3- 
5, we record our predictions of slope and curvature for single term, two terms and three 
terms of eq. (7) respectively. Table 6 gives a summary of these in other models while in 
table 7, we give a comparison of VIPT and Dalgamo methods for both the options.

The as values are taken from the V-scheme [6,19-21] and the integrations are done 
numerically for all these calculations.

Table 3. Values of slope p2 and curvature C with single term in eq. (7).

Meson Ps Psm Cs,rel

D 1.36 0.01 0.53 0.0022
Ds 1.867 0.03 0.702 0.0036
B 1.93 0.02 1.41 0.013
Bs 2.923 0.046 2.113 0.0283
Bc 9.442 0.484 6.274 0.2522
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Table 4. Values of slope p2 and curvature C with two terms in eq. (7).

Meson P2D CD 4,rel Cd,rel

D 1.201 0.013 0.57 0.0026
Ds 2.001 0.0242 0.74 0.0041
B 2.004 0.0244 1.44 0.0133
Bs 3.031 0.0565 2.16 0.0297
Bc 10.2 0.61 6.51 0.275

Table 5. Values of slope p2 and curvature C with three terms m eq. (7).

Meson O
Pj Ct 4,rel Cr.rel

D 1.33 0.016 0.604 0.00326
Ds 2.023 0.0305 0.78 0.0054
B 2.027 0.031 1.54 0.0217
Bs 3.087 0.071 2.29 0.047
Bc 10.25 0.767 6.99 0.441

Table 6. Predictions of the slope and curvature of the I-W function m various models.

Model Value of p2 Value of curvature C

Le Yaouanc et al [22] >0.75 _
Le Yaouanc et al [23] >0.75 >0.47
Rosner [29] 1.66 2.76
Mannel [30,31] 0.98 0.98
Pole ansatz [32] 1.42 2.71
MIT bag model [28] 2.35 3.95
Ebert et al [34] 1.04 1.36
Simple quark model [27] 1 1.11
Skryme model [25] 1.3 0.85
QCD sum rule [26] 0.65 0.47
Relativistic three-quark model [24] 1.35 1.75
Neubert [33] 0.82±0.09 -

Infinite momentum frame quark model [35] 3.04 6.81
UKQCD Collaboration [36] n e'2-H5+24 

u*6 -il-22 -
CLEO Collaboration [37] 0.76 ±0.16 ±0.08 -
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Table 7. Comparison of the values of p2 and C in VIPT and Dalgamo methods for 
both the options. For comparison we take the best representative values of p2 and C 
from the available data for D,DS,B mesons.

VIPT

I. Linear parent II. Coulombic parent
(this work) [12]

Terms considered in eq (7) Meson Ps Cs Ps C5

Single term D 0.53 0.0022 0.433 0.525
Ds 0.702 0.0036 0.56 0.85
B 1.41 0.0126 3.6 15.3

Two terms D 0.57 0.0026 0.432 0.524
Ds 0.74 0.0041 0.55 0.84
B 1.44 0.0133 3.16 12.32

Three terms D 0.604 0.0033 0.43 0.516
Ds 0.78 0.0054 0.545 0.815
B 1.54 0.0213 3.12 11.8

Dalgamo Method

I. Linear parent II. Coulombic parent
' [8] [6]

- Meson Ps c5 Ps CS

_ D 0.896 0.0031 1.136 5.377
Ds 1.352 0.0077 0.912 0.0007
B 1.41 0.013 128.13 5212

4. Discussion and conclusion

This analysis with linear parent shows a completely different picture in comparison to 
that with Coulombic parent [12]. With more terms in (7), the slope and curvature have 
increased contrary to Coulombic parent. Also, an analysis of table 6 indicates that for 
a definite term, the slope has assumed larger values than those of ref. [12] while for the 
curvature, the pattern is reversed, i.e. it has assumed smaller values than those of ref. [12].

Regarding the number of terms considered in the summation (7), we have seen that 
the result is the most satisfactory and comparable for the single term consideration. This 
is undoubtably a great phenomenological advantage as involvement of more terms in 
eq. (7) makes the calculation quite cumbersome which happened in ref. [12]. However, 
relativistic correction in this case also decreases the slope and curvature of Isgur-Wise 
function as observed earlier [12]. If we look back at our Dalgamo method with linear 
parent [8], we have observed larger values of slope and curvature for D, Ds mesons and 
smaller values for B,BS,BC mesons in this work compared to that in [8].
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To conclude, the present approach based on VEPT for calculating of I-W function 
within the QCD-inspired potential model appears to be preferable over the one in ref. [12] 
where the linear potential was considered as perturbation.
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