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In this work we will summarise the recent progress made in constructing consistent theories
for a massive vector field with derivative self-interactions. The construction is such that
only the three desired polarisations of the Proca field propagate. We apply a systematic
construction of the interactions by using the anti-symmetric Levi-Civita tensors. This finite
family of allowed derivative self-interactions can be also obtained from the decoupling limit by
imposing that the Stückelberg field only contains second derivatives both with itself and with
the transverse modes. These interactions can be generalised to curved backgrounds, which
relies on the presence of non-minimal couplings and constitutes a general family of vector-
tensor interactions. We discuss also some extensions of these interactions by alleviating the
restriction of second order nature of the equations or by imposing global symmetries. We will
also comment on their interesting cosmological applications.

1 Introduction

The Standard Model of Big Bang cosmology constitutes the prevailing cosmological model,
which is able to satisfactorily represent the physics on cosmological scales using the two fun-
damental pillars of General Relativity and the Cosmological Principle. The latter stands for
the homogeneity and isotropy. The combined inquiry of the available cosmological observations
has firmly established ΛCDM as the standard model for our universe in a simple picture. It
describes the evolution of the universe from its earliest known periods through the subsequent
formation of large-scale structures and it provides comprehensive explanation for most of the
observed phenomena. Despite being elegant and simple, the model relies on the presence of
three unknown ingredients, namely a cosmological constant acting as dark energy, a cold dark
matter and an inflaton field, and it still faces some theoretical challenges. The most troublesome
is the Cosmological Constant Problem and is a permanent reminder of our worrisome lack of a
fully satisfactory and deep theoretical understanding for the value of the cosmological constant.
Our theoretical foundation is shaky because we can not account for the enormous discrepancy
between observations and the radiative corrections of massive particles to the vacuum energy
using known standard techniques of quantum mechanics 1. Along this line manifests itself an-
other tenacious fundamental problem: we do not know how to construct a consistent theory of



quantum gravity. Naive attempts of applying the principles of quantum mechanics to gravity
immediately fail. The constructed theory of graviton bosons is not renormalisable and loses its
predictive power. We are also prone to encounter classical primordial and black hole singulari-
ties. These singularities might be cured by the quantum nature of the interactions or by classical
modifications of gravity at high curvatures (see for instance 2).

Concerning the dark matter component of the standard model, it is as essential and inevitable
as the dark energy. It is fundamental for a successful description of the rotation curves of galaxies,
Cosmic Microwave Background (CMB) anisotropies, large scale structures and weak lensing
measurements. If dark matter exists, then we believe that it should be a distinctive matter
from the ordinary baryonic matter beyond the standard model of particle physics. Its unique
manifestation comes uniquely from its gravitational effect and it does not interact with photons.
Notwithstanding the tremendous efforts, it has never been directly observed. Leaving aside the
theoretical challenges, from purely observational side, the standard model with a cosmological
constant and a cold dark matter fits the data almost impeccable. The word ”almost” reflects
the fact, that there are still some remaining anomalies. Just to mention a few, there is the
tension in the Hubble constant obtained from local measurements versus from the CMB, the
CMB hemispherical asymmetry together with the lack of power on large scales. There seem to be
also some unusual large scale correlations and large scale bulk flows referred from distant quasar
measurements. Even in the presence of dark matter, a slightly different cosmology is implied
by the galaxy clusters than by the CMB measurements. It is also worth mentioning that there
are unobserved predictions of the standard model, for instance the phase-space correlation of
galaxy satellites and the generic formation of dark matter cusps in galaxies’s central regions. On
the contrary, the observations seem to indicate some tight correlations between the dynamical
versus luminous mass, as the baryonic Tully-Fisher relation, which is not accounted for by
the standard model. Most of the above mentioned anomalies do not have yet an overwhelming
statistical significance, nonetheless, combined they might point out the failure of the assumptions
of the Cosmological Principle and General Relativity.

The above mentioned theoretical challenges together with the remaining observational anoma-
lies have motivated the exploration of modifications of gravity both in UV and IR. Thanks to
the advances in observational cosmology in high precision measurements, cosmology is the ideal
place to test fundamental physics and get to the heart of the true nature of gravitational inter-
actions. Most extensively studied modifications of gravity are based on scalar fields since they
can for instance naturally give rise to accelerated expansion without changing the Cosmological
Principle. A homogeneous and isotropic universe can be realised with a time dependent scalar
field and the non-vanishing vev of the scalar field could naturally support a (quasi) de Sitter
solution. However, as a candidate for dark energy the scalar field needs to be extremely light
resulting unavoidably in long-range forces. Nonetheless, these additional fifth forces have never
been observed in local gravity tests and therefore without any further mechanisms would be ruled
out by observations. Luckily, screening mechanisms come to rescue. The presence of a successful
screening mechanism makes it possible to disguise the scalar field on small scales while being
unleashed on large scales producing the wanted cosmological effects. There are many modifica-
tions of General Relativity that bear an additional scalar field with these promising properties.
Just to mention a few, for instance massive gravity 3,4,5,6,7 and higher dimensional frameworks 8

naturally contain a scalar field as the helicity-0 part of the graviton with very specific non-linear
interactions.

The Standard Model of elementary particles contains both abelian and non-abelian vector
fields as the fundamental fields of the gauge interactions. Therefore, it is well motivated to
explore the role of bosonic vector fields in the cosmological evolution. Traditionally, there is the
worry that vector fields might generate large scale anisotropic expansion, which would make them
not a natural candidate for dark energy. However, cosmic vector fields would naturally explain
some of the aforementioned anomalies, specially those in relation with a possible preferred



direction. A possible way to make the vector field to support isotropic cosmological solutions
would be to promote the vector field to be a Proca field. A promising route in this respect
has been considered in the works 9,10,11 (see also 12,13,14,15,16). These vector-tensor theories can
indeed support isotropic cosmological solutions with the temporal component of the vector field
17,18,19,20,21,22,23. They also feature screening mechanisms 24. Interesting extensions of these
generalised Proca interactions can be constructed by alleviating some of the requirements or
enriching some of the symmetries 25,26,27,28,29,30,31.

1.1 Generalised Proca theories

We would like to generalize the interactions of a massive vector field without changing the
propagating number of degrees of freedom, namely two transverse and one longitudinal mode
of the vector field. To start with, we can promote the mass term to a general potential term
V (A2). This will not alter the spectrum of propagating degrees of freedom, since there is not
any derivative of the vector field involved. In a similar way, we can consider any gauge invariant
interactions constructed out of the field strength tensor Fµν = ∂µAν − ∂νAµ and its dual and
also any contraction of those with the vector field, since they will not contain any dynamics for
the zeroth component of the vector field A0. Collecting all these type of interactions gives

L2 = f2(Aµ, Fµν , F̃µν). (1)

The independent contractions will be in form of X = −AµAµ/2, F = −FµνFµν/4 and Y =
AµAνFµ

αFνα
9,32and therefore this function can be also rewritten as f2(X,F, Y ) (ignoring the

partiy violating terms). In first order in derivatives of Aµ, we can start with the interaction

L3 = f3(A
2) ∂ ·A , (2)

with the arbitrary function f3(A
2). Note, that this interaction does not give a total divergence

due to f3. The temporal component of the vector field remains non-dynamical and the cor-
responding Hessian matrix vanishes identically. Alternatively, we can write this interaction in
terms of the Levi-Civita tensor

L3 = −f3(A
2)

6
εµνρσεανρσ∂µAα = f3(A

2)∂ ·A . (3)

It is clear that there is only one way of contracting the indices of the Levi-Civita tensors at
this order. This term would correspond to the cubic Galileon interaction for the longitudinal
mode if we take the decoupling limit. The indices of the Levi-Civita tensors were contracted
among themselves. We could have also contracted them with two additional vector fields, like
so f̃3(A

2)εµνρσεαβρσ∂µAαAνAβ. This would have resulted in an interaction that is conformally
related to the previous one f̃3(A

2)AµAν(∂µAν). As next order in derivatives of the vector field
we can consider the following three possible ways of contracting the Lorentz indices

L4 = f4(A
2)
[
c1(∂ ·A)2 + c2∂ρAσ∂

ρAσ + c3∂ρAσ∂
σAρ

]
, (4)

where f4 is again an arbitrary function and the parameters c1, c2 and c3 need to be constrained in
order to maintain the required property of three propagating degrees of freedom. In other words,
we have to guarantee the presence of a second class constraint. We can ensure that by demanding
that the corresponding determinant of the Hessian matrix det(Hµν

L4
) = 2(c1 + c2 + c3)(−2c2)

3 is
zero. Hence, we need to ensure c1 + c2 + c3 in order to obtain the required constraint. Choosing
c1 = 1 together with the condition c3 = −(1 + c2), the Lagrangian then becomes

L4 = f4
[
(∂ ·A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂
σAρ

]
. (5)

We can obtain these interactions in terms of the Levi-Civita tensors immediately. The anti-
symmetric structure of the two tensors will directly impose the conditions that we just worked



out by hand. Since the vector field has the symmetric and antisymmetric parts of ∂µAν we can
contract the indices in two ways

L4 = −1

2
εµνρσεαβρσ(f4(A

2)∂µAα∂νAβ + c2f̃4(A
2)∂µAν∂αAβ)

= f4
[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
+ c2f̃4(∂ρAσ∂

ρAσ − ∂ρAσ∂σAρ) . (6)

One recognises that the terms proportional to c2 are just the field strength tensor F

L4 = f4
[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
+ c2f̃4F

2
ρσ (7)

and can be thus absorbed into f2. In a very similar way, we can construct the other interactions
at next orders. We can either consider all the possible contractions of the interactions at each
order and demand the vanishing of the determinant of the Hessian matrix, or we can directly
apply the corresponding contractions with the Levi-Civita tensors. Both techniques result in
the same terms. The self-interactions of the vector field can be summarised as the following
Lagrangians at each order 9,11

L2 = f2(X,F, Y )

L3 = f3(A
2) ∂ ·A

L4 = f4(A
2)
[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
L5 = f5(A

2)
[
(∂ ·A)3 − 3(∂ ·A)∂ρAσ∂

σAρ + 2∂ρAσ∂
γAρ∂σAγ

]
+ f̃5(A

2)F̃αµF̃ βµ∂αAβ

L6 = f6(A
2)F̃αβF̃µν∂αAµ∂βAν . (8)

Note, that the series stops after L6 and there are not any higher order interactions. All these
interactions give rise to second order equations of motion for the vector field and by construction
they do not give rise to any dynamics of the temporal component of the vector field 9,10,11 .

2 Alternative construction from the decoupling limit

In a similar way we could have obtained the previously discussed systematic form of these
interactions starting from the consistent interactions in the decoupling limit. In this limit
the interactions of the transverse and longitudinal modes can be schematically written as an
expansion

L ∼
∑
m,n,p

cm,n,p

(
A

ΛM

)m( F

Λ2
F

)n(
S

Λ2
S

)p
, (9)

where we introduced the symmetric part of the interactions as Sµν = ∂µAν+∂νAµ and the scales
ΛM , ΛF and ΛS of the objects with some coefficients cm,n,p. One very useful trick is to restore
the broken gauge invariance of the vector field using the Stückelberg field as Aµ → Aµ+∂µπ/M ,
where M stands for the mass of the vector field. In this language the scalar field π represents
the longitudinal mode of the original massive vector field. One can now very easily take the
decoupling limit by sending M → 0 with the leading order contributions Aµ → ∂µπ/M and
similarly Sµν → ∂µ∂νπ/M . The aforementioned expansion of the interactions in this limit
becomes

Ldec ∼
∑
m,n,p

cm,n,p

(
∂π

MΛM

)m( F

Λ2
F

)n(
∂∂π

MΛ2
S

)p
. (10)

We can now go order by order in the derivative of the scalar field and impose the conditions on
cm,n,p after the summation. At the lowest order p = 0, we only have one derivative per scalar
field

Lp=0
dec ∼

∑
m,n

cm,n,0

(
∂π

MΛM

)m( F

Λ2
F

)n
. (11)



A glance at the interactions reveals that one would obtain three types of interactions at this
order after summation in m and n. The summation in n maintaining m = 0 would correspond
just to functions of F 2. In the same way the summation in m with n = 0 would give rise
to functions of the vector norm A2. The third type of interactions at this order with m 6= 0
and n 6= 0 would just give rise to functions of Fµ

αFναA
µAν type. Summarizing, the schematic

interactions in (11) correspond exactly to the interactions f2(X,F, Y ) in (17) when one takes
the decoupling limit. In the same way, we can analyse the next order interactions with p = 1

Lp=1
dec ∼

∑
m,n

cm,n,1

(
∂π

MΛM

)m( F

Λ2
F

)n(
∂∂π

MΛ2
S

)
. (12)

We will again have the interactions with n = 0 and they represent nothing else but the standard
Galileon interactions at cubic order f3(∂π

2)∂µ∂
µπ. In fact, they represent the leading order

interactions of f3(A
2) ∂ · A in L3. The novel interesting interactions arise for the case n 6= 0,

which gives rise to the first non-trivial mixing between the gauge field and the scalar field, where
the scalar field comes in with second derivatives acting on it. After perfoming the summation
in m and n, the resulting symmetric rank-2 tensor will be contracted with ∂µ∂νπ and one has
to impose that the 00− component of this tensor does not contain any time derivatives other
than π̇. In other words, this symmetric rank-2 tensor can only be built out of f3(∂π

2)F̃µαF̃ να
in order to satisfy this requirement, since its magnetic part F̃ 0αF̃ 0

α ∝ B2 is purely potential.
Hence, the decoupling limit interactions at this order can only be

Lp=1
dec ∼

(
c2,0,1(∂π)2ηµν + c0,2,1F̃

µαF̃ να
) ∂µ∂νπ
MΛ2

S

. (13)

The coefficients can be arbitrary functions of (∂π2). The first type of interactions are the
leading order terms of f3(A

2)∂ ·A in L3 and the second type interactions are the leading order
contributions of f̃5(A

2)F̃αµF̃ βµ∂αAβ in L5 in the decoupling limit. We see in the decoupling
limit, that these are the only allowed interactions that give rise to second order equations of
motion for both the scalar field and the gauge field. In complete analogy we can build the next
order interactions with p = 2

Lp=2
dec ∼

∑
m,n

cm,n,2

(
∂π

MΛM

)m( F

Λ2
F

)n(
∂∂π

MΛ2
S

)2

. (14)

We have to impose again that the purely scalar interactions have to correspond to the scalar
Galileon interactions whereas the mixed interactions with n 6= 0 need to be constructed in a
similar way as before, in other words the magnetic field of the gauge field should be allowed only
to couple to the second time derivatives of π. This leads uniquely to

Lp=2
dec ∼ c2,0,2(∂π)2

(∂α∂
απ)2 − (∂µ∂νπ)2

M2Λ4
S

+ c0,2,2F̃
µνF̃αβ

∂µ∂απ∂ν∂βπ

M2Λ4
S

, (15)

with the coefficients being arbitrary functions of (∂π2). The first type interactions is the
purely quartic Galileon interactions, which are the leading order terms of the interactions
f4(A

2)
[
(∂ ·A)2 − ∂ρAσ∂σAρ

]
in L4 whereas the second type of interactions are the leading

order mixed terms of f6(A
2)F̃αβF̃µν∂αAµ∂βAν in L6 in the decoupling limit. Finally, the cubic

order interactions in ∂∂π with p = 3

Lp=3
dec ∼

∑
m,n

cm,n,3

(
∂π

MΛM

)m( F

Λ2
F

)n(
∂∂π

MΛ2
S

)3

(16)

contain only the pure Galileon interactions and there is no consistent mixing between the scalar
field and the gauge field at this order. One can not construct any new interactions with n 6= 0.



Note also, that the series stop here and hence the decoupling limit Lagrangian has a finite order
of allowed interactions for the mixed couplings. From these decoupling limit Lagrangian one
can obtain the full interactions by performing ∂µπ → Aµ and ∂µ∂νπ → Sµν . They correspond
to the same exact interactions that we constructed above using the Levi-Civita tensors. The
total Lagrangian written in terms of the symmetric and antisymmetric parts is Lgen.Proca =∑5
n=2 αnLSn with

LS2 = f2(Aµ, Fµν , F̃µν)

LS3 = f3(A
2)[S]

LS4 = f4(A
2)
(
[S]2 − [S2]

)
LS5 = f5(A

2)
(
[S]3 − 3[S][S2] + 2[S3]

)
+ f̃5(A

2)F̃αµF̃ βµSµν

LS6 = f6(A
2)F̃αβF̃µνSαµSβν . (17)

For the construction of these interactions the requirement of second order equations of motion
and the absence of any dynamics for the temporal component of the vector field were very
crucial. The latter condition reflects itself in the absence of higher order equation of motion for
the scalar field once the broken gauge field is reintroduced using the Stückelberg trick. For more
details see 9,11.

3 Curved background

The interactions we constructed above were so far on a flat background and it would be crucial
to promote these interactions to the curved background case for different applications. In the
presence of gravity the interactions have to be adjusted by counter-terms in order to maintain
the property of second order equations of motion. If we simply replace the partial derivatives by
covariant derivatives, then this would result in higher order equations of motion. In fact, specific
non-minimal couplings have to be added for some of the interactions in order to guarantee
the nature of second order equations of motion. For the construction of these non-minimal
couplings the divergenceless tensors of the gravity sector play an important role. The pure
Stückelberg field should this time possess the scalar Horndeski interactions 33. This helps to
construct the interactions for the vector field in curved backgrounds. The Lagrangian becomes
Lcurvedgen.Proca =

√
−g

∑6
n=2 βnLn with 9,11

L2 = G2(Aµ, Fµν)

L3 = G3(X)∇µAµ

L4 = G4(X)R+G4,X

[
(∇µAµ)2 −∇ρAσ∇σAρ

]
L5 = G5(X)Gµν∇µAν −

1

6
G5,X

[
(∇ ·A)3

+ 2∇ρAσ∇γAρ∇σAγ − 3(∇ ·A)∇ρAσ∇σAρ
]

− g5(X)F̃αµF̃ βµ∇αAβ

L6 = G6(X)Lµναβ∇µAν∇αAβ +
G6,X

2
F̃αβF̃µν∇αAµ∇βAν , (18)

where we have now the covariant derivatives ∇ instead of partial and the vector field couples to
the Ricci scalar, Einstein tensor and the double dual Riemann tensor Lµναβ = 1

4ε
µνρσεαβγδRρσγδ

in order to counter balance the corresponding derivative interactions of the vector field. Note,
that the interaction G̃5(Y )F̃αµF̃ βµ∇αAβ does not require the introduction of a non-minimal
coupling.



4 Extensions of Generalized Proca theories

The interactions we constructed so far satisfy the condition of second order equations of motion
for both the vector field and the graviton. One could alleviate this restriction and construct more
general interactions. In accordance with the beyond Horndeski construction for scalar fields34,35,
one can construct similar beyond generalized Proca interactions allowing higher order nature
of the equations of motion but still maintaining the correct number of propagating degrees of
freedom 25,26. The interactions need to be constructed such that the presence of a constraint
equation is not jeopardised. With these less restrictive conditions one can for instance construct

new beyond generalized Proca interactions LN = LN4 + LN5 + L̃N5 + LN6 , where in terms of the
Levi-Civita tensors their novelty becomes apparent 25

LN4 = f4(X)δ̂β1β2β3γ4α1α2α3γ4A
α1Aβ1∇α2Aβ2∇α3Aβ3 , (19)

LN5 = f5(X)δ̂β1β2β3β4α1α2α3α4
Aα1Aβ1∇α2Aβ2∇α3Aβ3∇α4Aβ4 , (20)

L̃N5 = f̃5(X)δ̂β1β2β3β4α1α2α3α4
Aα1Aβ1∇α2Aα3∇β2Aβ3∇α4Aβ4 , (21)

LN6 = f6(X)δ̂β1β2β3β4α1α2α3α4
∇β1Aβ2∇α1Aα2∇β3Aα3∇β4Aα4 , (22)

where we introduced δ̂β1β2γ3γ4α1α2γ3γ4 = εα1α2γ3γ4ε
β1β2γ3γ4 . The presence of these interactions results

in a detuning between the relative coefficients of the non-minimal couplings to gravity and the
derivative self interactions of the vector field and gives rise to higher order equations of motion.
However, due to the constraint equation one still has five propagating degrees of freedom, namely
the two transverse graviton modes and the three vector modes. Instead of using the systematical
construction in terms of the Levi-Civita tensors, one can on a similar footing write down all the
possible interactions between the fields and their derivatives with a priori arbitrary coefficients
and put constraints on them afterwards coming from the vanishing of the determinant of the
Hessian matrix as we did in 1.1 for the interactions in flat space-time. This reasoning was applied
in 26 to construct the corresponding interactions up to L4 on curved space-time.

Another natural extension of the generalised Proca interactions can be constructed by pro-
moting the broken gauge symmetry from U(1) to the SU(2) case. By breaking the non-abelian
gauge symmetry, can we construct derivative self-interactions for a set of massive vector fields?
One can indeed do that by following the same construction scheme using the antisymmetric
Levi-Civita tensors and demanding that the equations of motion for Aaµ remain second order
while keeping the zero components non-dynamical 28,29,30,31. Some of these interactions will
correspond to the straightforward generalisation of the single Proca field to the multi-Proca
interactions with global SO(3) symmetry 29

L2 = G2(A
a
µ, F

a
µν) (23)

L4 = G4R+G′
4δab

SaµνS
bµν − Saµµ Sbνν

4

L6 = G6L
µναβF aµνFaαβ +

G′
6

2
F̃ aαβF̃µνa SbαµSbβν .

It is worth to mention at this point that the restriction of the global SO(3) symmetry diminishes
the allowed interactions and for that reason one can not construct the analog of L3 and L5
interactions of the single Proca. Besides these direct extensions, there will be also genuine new
interactions, which do not have the single Proca field analog 29

L3 = SaµνAbµA
d
νA

c
αA

eαδdeεabc

L4 = εαβγδF̃ aαλS
bλ
βA

a
γA

b
δ

L5 = εabcA
a
µA

µdF̃ανd F̃ bβν Scαβ . (24)



In difference to the interactions L4 and L6 in (23), these genuine new interactions do not require
the presence of non-minimal interactions. All these different extensions of the generalised Proca
interactions offer promising routes to investigate further and may offer richer phenomenology.

5 Cosmological applications of generalized Proca theories

If one deals with massless abelian gauge fields, then the only possible cosmological application
can be realised by considering N vector fields that are randomly distributed. In the case of
a non-abelian vector field, one can construct interactions with global SO(3) symmetry and
consider field configurations where three vector fields point along the spatial directions. In
the context of massive vector fields, one can achieve isotropic expansion with yet another field
configuration. One can use the temporal component of the vector field as an auxiliary field in
order to construct homogeneous and isotropic solutions. Compatible with the background of the
metric ds2 = −dt2 + a2(t)d~x2, one can assume the following field configuration for the vector
field:

Aµ = (φ(t), 0, 0, 0) . (25)

From the action one can easily obtain the corresponding Einstein field equations for the back-
ground 18,20

G2 −G2,Xφ
2 − 3G3,XHφ

3 − 6(2G4,X +G4,XXφ
2)H2φ2

+6G4H
2 +G5,XXH

3φ5 + 5G5,XH
3φ3 = ρM , (26)

G2 − φ̇φ2G3,X + 2G4 (3H2 + 2Ḣ)− 2G4,Xφ (3H2φ+ 2Hφ̇+ 2Ḣφ)

−4G4,XXHφ̇φ
3 +G5,XXH

2φ̇φ4 +G5,XHφ
2(2Ḣφ+ 2H2φ+ 3Hφ̇) = −PM , (27)

where H = ȧ/a is the Hubble function. In a similar way, the vector field equations can be
obtained in a straightforward way

φ
(
G2,X + 3G3,XHφ+ 6G4,XH

2 + 6G4,XXH
2φ2 − 3G5,XH

3φ−G5,XXH
3φ3

)
= 0 , (28)

where ρM and PM represent the energy density and pressure of the matter fields. One immediate
observation is that the temporal component of the vector field has only an algebraic equation
and hence we can integrate it out in terms of the Hubble function. One also sees that the
de Sitter solutions will correspond to Ḣ = 0 and φ̇ = 0, and will be attractor de Sitter fixed
points. This type of cosmological solutions will be very relevant for the dark energy applications.
However, because of their attractor nature, these solutions will not be so interesting for the
early universe applications. Instead, a better application will be delivered from the multi-Proca
generalisations. Apart from the standard field configurations Aai = A(t)δai , as it was for instance
considered in non-abelian gauge theories, one can assume that the vector fields rather acquire the
field configurations Aaµ = φa(t)δ0µ + A(t)δaµ. These new field configurations open new promising
possibilities for cosmological scenarios for the early universe, that have not been considered so
far in the literature 29.
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