
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN – AB DIVISION

CERN-AB-2004-001 (CO)

The CESAR Project
using J2EE for Accelerator Controls

V. Baggiolini, P. Bailly, B. Chauchaix, F. Follin, J. Fullerton,
Ph. Malacarne, L. Mateos-Miret, L. Pereira

CERN, Geneva, Switzerland

Abstract

The CESAR1 project team used the Java 2 Enterprise Edition (J2EE) to build a controls
system for the SPS experimental areas at CERN. This article presents the CESAR architecture
and the J2EE platform. It explains the J2EE features relevant for controls and discusses the
experience the CESAR project team made with this technology.

International Conference on Accelerator and Large Experimental
Physics Control System

 ICALEPCS, Gyeongju, Korea, 13-17 October 2003

THE CESAR PROJECT – USING J2EE FOR ACCELERATOR CONTROLS

V. Baggiolini, P. Bailly, B. Chauchaix, F. Follin, J. Fullerton,
 Ph. Malacarne, L. Mateos-Miret, L. Pereira

Abstract
The CESAR* project team used the Java 2 Enterprise
Edition (J2EE) to build a controls system for the SPS
experimental areas at CERN. This article presents the
CESAR architecture and the J2EE platform. It explains
the J2EE features relevant for controls and discusses the
experience the CESAR project team made with this
technology.

INTRODUCTION
The SPS Experimental Areas (SPS-EA) are located in the
North and the West of the SPS accelerator ring at CERN.
They are composed of ten beamlines with a total length of
around 6.3 km, which corresponds roughly to the
circumference of the SPS ring. They serve an overall
community of around 2000 experimental physicists, both
for LHC tests and for SPS experiments. After 25 years of
operation, the whole SPS-EA are undergoing renovation
in the context of the “Renovation Programme of the SPS
Experimental Areas” [1]. The CESAR project (the
acronym stands for the "Cern Experimental areas
SoftwAre Renovation") is a part of the overall
programme, and responsible for replacing the old controls
application software with new software, implemented
with modern tools and methods.

The users of the SPS-EA belong to five different
categories: (1) experimental physicists who use the
beamline to test their detectors and to do their fixed target
research, (2) beamline liaison physicists employed by
CERN who design and set up the beamlines, (3) operators
who monitor the whole installation, act as a first line of
help and coordinate corrective interventions, and finally
(4) hardware and (5) software specialists who are
responsible of setting up and maintaining the whole
infrastructure.

THE CESAR ARCHITECTURE
The CESAR controls system is structured in three layers,
called a “3-tier architecture”, as represented in Figure 1.
At the bottom of this figure is a beamline with various
types of equipment, e.g. magnets, collimators, and
detectors. Each of these is controlled by front-end
computers (VME technology running real-time software,
or PLCs), which are connected to the CERN controls
middleware (CMW) [2]. The core of the system, above
the middleware, consists of two Java 2 Enterprise Edition
(J2EE) [3] application servers running on two UNIX
servers. Two servers are needed to guarantee reliability: if
one server stops working correctly, the other one takes

* CESAR stands for “CERN Experimental areas SoftwAre Renovation”

over. J2EE comes with its own set of middleware
communication tools, represented in the figure by the
arrow “J2EE Communication”. At the top are the
consoles (typically desktop PCs) located in the control
room and in the various barracks in the SPS-EA where
the experimental physicists work. In the vocabulary of 3-
tier architectures, the front-ends are called the “Resource
Tier”, the application servers the “Middle Tier” and the
top layer the “Presentation Tier”.

The CESAR project is in charge of everything above
the controls middleware, i.e., the middle tier and the
presentation tier. However, the rest of this paper will
concentrate only on the middle tier.

Figure 1: The CESAR 3-tier architecture

Why did CESAR choose a 3-tier architecture, instead of
a 2-tier architecture as many other controls systems? The
reason is that the middle tier is a robust and well-
administrated platform that acts as a mediator between
many consoles and many front-ends. In the SPS-EA we
have some 35 client consoles and the same number of
VME front-end computers. The middle tier carries out
common tasks for them, such as data processing and
transformations, as well as tuning tasks and algorithms.
All database access is done from the middle tier, and
transactions and equipment reservations are coordinated
here. It is also the only safe place for security-related
tasks such as authentication and authorization. Last but
not least, redundancy with fail-over from the main server
to the back-up server is implemented here.

THE J2EE PLATFORM
The Java 2 Enterprise Edition is a standard framework for
building 3-tier applications in Java. It provides guidelines

J2EE
Application Server

Frontend Frontend Frontend

J2EE
Application Server

Consoles

J2EE Communication

Controls Middleware (CMW)

Beamline

on how to design and develop 3-tier applications, and a
run-time environment called a “J2EE application server”
on which to deploy them. A J2EE application server has a
so-called “container” inside which software components
(“Enterprise JavaBeans” or EJBs) are deployed. The
container provides a series of services that implement
most of the tasks mentioned above, namely services for
remote access, data persistence, security and access
control, hot stand-by and fail-over, etc.

To develop EJB components, the developer writes code
in Java and adds a so-called “deployment descriptor” in
XML. The deployment descriptor specifies how the EJB
uses the container services: when the component is
deployed, the container configures its services
accordingly. In most cases, it also generates some “glue”
code between the component and the services. This shall
be illustrated with two examples, remote access and
persistence. To make an EJB component accessible to the
client tier, the developer writes the component and
specifies in the deployment descriptor which of its
methods shall be accessible remotely. When deploying
the EJB, the container generates code necessary for
remote access and registers the component with the
remote access service. Similarly, to persist information in
a database, the developer writes an EJB component and
specifies in the deployment descriptor which variables
shall be persisted. At deployment time, the container
generates the necessary SQL statements to retrieve
information from the database and to update it, and
configures the persistence and caching service.

USING J2EE FOR CONTROLS
This section illustrates how J2EE can be used in practice
for accelerator controls by looking at two further services,
transactions (used for settings management) and security.

Settings management is used when the experimental
physicists change the kind of beam delivered by the
beamline. To obtain a particular type of beam at the end
of the beamline (e.g. 120 GeV electrons with a spot size
of 2 mm), the physicists use pre-defined beamline
settings. Such beamline settings contain a set of control
values for all steering equipment in the beamline.

When applying new settings to the beamline, the
control system has to keep the equipment on the beamline
and the database in a consistent state. For this, it can rely
on transactions, which provide “all-or-nothing” behavior.
The whole process of applying new settings is executed
within one transaction. If everything works fine, all
values should be downloaded to the equipment, and the
database updated accordingly. If something goes wrong,
e.g. one of the steering equipments fails, the whole
transaction should be rolled back to the state before, and
nothing, neither the database nor the equipment should be
updated to the new settings.

J2EE provides a transaction service that, in addition to
managing traditional database transactions, can also
integrate external resources into a transaction. To

participate in a transaction, an equipment has to
implement a standard API and handle the “prepare”,
“commit” and “rollback” commands given by the J2EE
transaction manager.

Security and access control is another important feature
of J2EE used for the CESAR control system. The
different user categories of CESAR have different
privileges, which need to be enforced. This requires an
authentication and authorization service. Implementing
such a service is far from trivial, and managing the
usernames and passwords, and the corresponding
privileges is a demanding administration task. J2EE is
mainly aimed at building E-Commerce application for the
Internet. It provides an authentication service that
seamlessly plugs into existing password management
systems as provided by the UNIX and Windows operating
systems. The authorization service implements so-called
“Role-based Access Control” (RBAC). RBAC uses the
“role” of a user as an intermediate concept to group all
users with the same privileges together, instead of
keeping track of privileges for each individual user. This
drastically reduces the administration overhead. Each
SPS-EA user has one or more roles (e.g. operator,
software specialist, experimental physicist), and these
roles are associated with privileges. For instance, if a
person, say “John”, works in the role of an operator, he
has the privileges of an operator, e.g. amongst others, to
load and modify beamline settings.

ASSESSMENT
Based on our experience in the CESAR project, this
paragraph presents pros and cons of using J2EE for
controls, and possible solutions for the drawbacks. It does
not discuss advantages of using a 3-tier architecture in
operations, but focuses on J2EE as the most prominent
implementation of 3-tier technology in Java.

One major advantage of J2EE lies in the fact that it is
an important industry standard with a lot of momentum.
All major software and database vendors sell J2EE
application servers, and also several open source products
are available. Standards prevent vendor lock-in because
applications developed on one application server can be
easily ported to another one. A lot of development
resources are available for the J2EE standard, such as
online documentation, books, courses etc. Finally,
regarding longevity, it is more likely that products
implementing a well-established standard survive over
time, rather than a product of an individual company.

The main technical advantage is that J2EE makes the
development of 3-tier applications easier and faster,
because the developers can rely on existing services
instead of having to develop their own. The J2EE
application servers implement all system services
necessary for building control systems. In general,
developing 3-tier applications is not easy, but with J2EE
it becomes accessible to the average programmer. Most
application servers are delivered with good tools that

greatly facilitate the development and deployment of the
EJB components.

J2EE application servers are industry-strength products,
well-tested and stable, and backed up by the support of
the vendor companies. This is an important issue for
mission critical software such as control systems.

As for disadvantages, it is often said that J2EE requires
developers to go through a non-negligible learning
process. While some learning effort is certainly needed to
get started with J2EE, the real issue, in our experience, is
not specific to J2EE. To develop server-side applications,
(with or without J2EE) knowledge both of Java and of
database design is necessary. A person proficient in one
of these fields has to invest some time learning the other.

In our view, the only main drawback of J2EE is that –
unless special design precautions are taken – a J2EE
application only runs in a 3-tier configuration, inside a
J2EE application server. This makes testing and
debugging more difficult and slower, because the edit-
deploy-debug cycle is much heavier: after each source
code modification the developer has to re-deploy the
application to the application server. In the CESAR
project, we managed to alleviate (but not to solve) this
issue thanks to a development set-up capable of running
the J2EE application server on the development PC itself.

The J2EE developer community has acknowledged this
problem, and recent literature describes design patterns
and mechanisms to solve it [4, 5]. The idea is to make the
business logic (the control system domain software)
independent of the J2EE application server, so that it can
be executed both in 2-tier and 3-tier set-ups. This
combines easy (2-tier) development with robust (3-tier)
operational deployment. The business logic can be
developed and tested efficiently in a 2-tier set-up, without
the overhead of deploying to a J2EE application server.
Later, when most development and unit testing has been
completed, the business logic is deployed to the
operational 3-tier configuration with a J2EE application
server. In the accelerator controls group at CERN we are
currently exploring these directions, and first experience
is very encouraging.

Is there an alternative to J2EE?
So far, we have discussed advantages and disadvantages
of J2EE. In our view, the real question is whether there is
an alternative to using J2EE. This section investigates
possible options and explains why we did not pursue
them.

The first idea that comes to a developer’s mind is to
write parts of J2EE services on his own. This idea should
be discarded immediately, because writing such services
is a difficult and overwhelming task that requires experts.
Accelerator controls experts have neither the mandate nor
the expertise to develop such system services.

Another option might be to select a tool or a library for
each of the J2EE services. One might take the Java RMI
libraries for remote connectivity, an Object/Relational

mapping tool for persistence, a library for multi-
threading, one for caching, a security framework, and so
on. This is better than implementing services from
scratch, but it still represents a lot of work. Finding good
libraries is difficult, and even more so if they have to be
compatible. It then requires a lot of maintenance work to
keep libraries compatible over time, when each of them
evolves independently. Last but not least, one would still
need to implement specialized system services on top of
these libraries, e.g. to provide redundancy and fail-over
functionality. With a J2EE application server, all this
work is done by the vendor.

Another alternative is Microsoft .NET, a 3-tier
development platform that is conceptually very similar to
J2EE [6]. It could certainly be used for building controls
systems, but in our case it was not applicable, because we
have a strong background in UNIX and Java, but little
experience with Microsoft server-side products.

In summary, for developing 3-tier Java applications we
believe that there currently is no good alternative to J2EE.

CONCLUSIONS
This article is based on the experience the CESAR team
gained when using J2EE to build a control system.

J2EE makes development of 3-tier applications
accessible to the average developer. Once a developer is
familiar with the J2EE environment, he can concentrate
on the domain-specific code, without having to
implement all system service functionality needed for a
distributed application. Debugging and testing, however,
are more difficult in a 3-tier environment than in a normal
2-tier set-up. We have acknowledged this problem and are
pursuing work to overcome it.

Last but not least, a key advantage of J2EE is that it is
an industry standard. All major software vendors provide
a J2EE application server, and thanks to the standard, one
is not locked into one vendor’s product but can change.
As all successful standards, J2EE is well supported by
lots of learning material (books, courses) and other
resources (tools, examples, consulting, etc.).

In summary, given the choice of a 3-tier architecture for
accelerator controls systems, and Java as an
implementation language, in our opinion, J2EE is
currently the best solution.

6 REFERENCES
[1] G. Baribaud et al, “The Renovation Programme of

the SPS Experimental Areas at CERN”, this
conference.

[2] K. Kostro et al, “The Controls Middleware (CMW)
at CERN - Status and Usage”, this conference.

[3] Sun Microsystems, “The Java 2 Platform, Enterprise
Edition”, http://java.sun.com/j2ee/

[4] http://www.theserverside.com
[5] Rod Johnson, “Expert one-on-one J2EE Design and

Development”, Wrox Press Ltd, October 2002.
[6] http://www.microsoft.com/net

