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PREFACE

Since 1999, the RAGtime meetings have been organized by the Relativistic Astrophysics
Group (RAG) at the Institute of Physics, the Faculty of Philosophy and Science of the
Silesian University in Opava in order to provide opportunities for discussing the recent ad-
vances and developments in the field of relativistic astrophysics. During the past sixteen
years, RAGtime has grown from a small workshop to become a regular international con-
ference that brings together collaborators of the Opava’s reseach group who are coming
from EU, USA, China and Japan. It has also provided a starting point for many new collab-
orations. Among the involved institutions are the Astronomical Institute of the Academy
of Sciences of the Czech Republic, the Faculty of Mathematics and Physics of the Charles
University in Prague, the International School for Advanced Studies and the Abdus Salam
International Centre for Theoretical Physics in Trieste, the Institute of Astrophysics at the
University of Oxford, the Department of Astrophysics of the University in Gothenburg, the
Institute of Astronomy of the Polish Academy of Sciences, the Massachusetts Institute of
Technology, the Harvard University, the Cornell University, the Hiroshima University, the
Fudan University, and the Xiamen University.

Concordantly, the scope of the topics discussed at the meetings has widened consider-
ably in recent years. New results have been presented at the conference from different areas,
such as the alternative theories of gravitation and their astrophysical implications, physics
of plasma and magnetic fields in the presence of a strong gravity and X-ray variability
modelling connected, but not limited, to the proposed ESA X-ray missions ATHENA and
LOFT. However, the main focus of the meeting remains on the general physical phenom-
ena connected to accretion processes onto black holes and neutron stars and the internal
structure of neutron stars and quark stars.

The RAGtime workshops and conferences have always provided an important and unique
opportunity for undergraduate and graduate students of the Silesian University to meet and
discuss problems with the world’s leading astrophysicists. Among the regular guests are
Marek Abramowicz, John Miller, Włodzimierz Kluźniak, and Vladimír Karas, Jeff Mc-
Clintock, Shoji Kato, Ron Remillard, Didier Barret, Luciano Rezzolla, Yasufumi Kojima,
Wen Fei Yu.

We would like to thank all the authors for a careful preparation of their contributions. This
publication has been made possible through the support provided in the framework of the
project “Supporting Integration with the International Theoretical and Observational Re-
search Network in Relativistic Astrophysics of Compact Objects”, CZ.1.07/2.3.00/20.0071.
The project is co-financed by the European Social fund and state budget of the Czech Re-
public.

Opava, Prague, December 2014 Z. Stuchlík, G. Török and T. Pecháček
editors
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Simulating Compton Scattering using Monte
Carlo method: COSMOC library

Karel Adámek1 and Michal Bursa2

1Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-74601 Opava, Czech Republic

2Astronomical Institute, Academy of Sciences of the Czech Republic,
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ABSTRACT
In the following article we present properties and functionality of the COSMOC
library designed to exploit basic features of Compton scattering process and its
computational modelling. Basic physics of Compton scattering is pointed out, ac-
companied by various procedures accessible by user. The COSMOC library uses
Monte Carlo method to perform single photon scattering. Special care is given to
emphasize use of proper random number generator for Monte Carlo method.

Keywords: Monte Carlo – Compton scattering – C++

1 INTRODUCTION

Scattering of photons on free charged particle is called Compton scattering. It was first
observed in year 1923 by Arthur H. Compton when he was examining scattering of X-ray
photons on stationary electrons. The Compton scattering was found to be useful in many
areas of science and astrophysics is no exception. Its influence can be found in spectra
produced by many astrophysical objects and phenomena. This is especially true in low
densities of matter where Compton scattering is dominating in comparison with other
types of scatterings. By scattering on non-relativistic electrons the photons can only loose
energy on the other hand scattering by relativistic electrons can result in increased energy
of the scattered photons. Even moderately energetic electrons can contribute to the resulting
spectra by multiple scatterings of photons, this behaviour is called comptonization.

The Compton scattering is suspected to be responsible for power law shaped spectra
emitted by many astrophysical objects. Scattering of synchrotron photons is considered in
explaining non-thermal (power law) parts of the spectra of sources like blazars or radio
quasars. The comptonization has considerable effect in X-ray emission in hard (low) and
soft (high) spectral states of black-hole binaries.

Effects of the Compton scattering on observed spectra can by more easily simulated by
Monte Carlo method. One of the first Monte Carlo simulations of the Compton scattering
and its effect on observed spectra is work by (Pozdnyakov et al., 1983). Full relativis-
tic treatment of the Compton scattering was recently done by (Dolence et al., 2009) or

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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2 K. Adámek and M. Bursa

(Schnittman and Krolik, 2013). Polarisation was also introduced into Compton scattering
codes, for more details see works by (McNamara et al., 2008) or (Krawczynski, 2012). Aim
of our code is to calculate Compton scattering in Kerr space-time with help of Monte Carlo
method. The code is in form of C library.

This library is concerned only with Compton scattering on free electrons and does not
consider any modifications needed for scatterings on bounded electrons. It is also limited to
gases which can be approximated by equation of state for ideal gas. It also does not consider
polarization. Polarization should be first candidate for improvements of the library in the
future. The COSMOC library was written using GSL 1.16. The GSL is an abbreviation of
GNU Scientific Library and it is a numerical library for C and C++. It provides wide variety
of numerical methods for scientific purposes.

2 COMPTON SCATTERING

2.1 Compton Scattering

The Compton scattering is an inelastic scattering process, where photon is scattered by free
charged particle, usually electron. Since the scattering is inelastic photon looses energy in
favour of the scattering particle. The differential cross-section is described by the Klein–
Nishina formula (Rybicki and Lightman, 1985)

dσ
dΩ
=

1
2

r2
0

ε2
f

ε2
i

(
εi

ε f
+
ε f

εi
− sin2(θ)

)
, (1)

where r0 is classical electron radius, εi is the energy of the incident photon and ε f is the
energy of the scattered photon. This equation also gives probability distribution function
pdfC(θ) for scattering angle θ of the Compton scattering.

The energy of the scattered photon is given by following relationship (Rybicki and
Lightman, 1985)

ε f =
εi

1+ εi
mec2

(
1− cos(θ)

) . (2)

The total cross-section is an integral of differential cross-section (1) over spatial angleΩ
and it is given by

σ =

∫
dσ
dΩ

dΩ =
∫ 2π

0
dϕ
∫ π

0
dθ

dσ
dΩ

sin(θ) . (3)

After we perform integration we arrive at (Rybicki and Lightman, 1985)

σ = σT
3
4

[
1+ x

x3

(
2x(1+ x)

1+ 2x
− ln(1+ 2x)

)
+

1
2x

ln(1+ 2x)−
1+ 3x
(1+ 2x)2

]
, (4)

where x = εi/(mec2) and σT = (8π/3)r2
0 is Thomson total cross-section.
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To obtain cumulative distribution function cdfC(θ) we must integrate Eq. (1) over scat-
tering angle θ , where ε f is given by Eq. (2). This gives

cdfC(θ) =
r2

0
4x2

[
2θ −

2B arctan
(
−
√

1+ 2x tan(θ/2)
)√

(1+ 2x)5

]
+

+
r2

0
4x2

 x3 sin(θ)

(1+ 2x)
(

1+ x
(
1− cos(θ)

))2

+ r2
0

4x2

 x
(
3x3
+ 11x2

+ 8x + 2
)

sin(θ)

(1+ 2x)2
(

1+ x
(
1− cos(θ)

))
 ,

(5)

where B = 11x4
+ 4x3

− 12x2
− 10x − 2.

Implementation in the code

The implementation of Compton scattering consists of following subroutines. Equation (1)
can be invoked by calling functionCM diffcr, total cross-section Eq. (4) is returned by func-
tion CM totcr. To obtain values of the cdfC(θ) for different values of scattering angle θ one
must call function CM EDiE cdf. These functions are used by procedure for generating ran-
dom numbers with Klein–Nishina distribution Random num icdf bisection CM EDiE.
This function implements bisection to search for value of the inverse cdfC(θ) and produces
one random number per call.

2.2 Thomson Scattering

The Thomson scattering is a special case of Compton scattering, it is an approximation of
the Compton scattering for low photon energies. This approximation can be used as long as
incident photon energies εi �511 keV (electron rest energy). The differences in probability
distribution functions pdfC(θ) for distinct photon energies are shown in the Figure 1. Since
energy of the incident photon is much smaller than electron rest energy εi �mec2 we can
neglect denominator in Eq. (2) and get

ε f = εi , (6)

which means that photon energy εi is not changed by the scattering. Using this approxi-
mation we can simplify the differential cross-section given by the Klein–Nishina Eq. (1) to
(Rybicki and Lightman, 1985)

dσ
dΩ
=

1
2

r2
0
(
1− cos2(θ)

)
, (7)

and the total cross-section is then reduced to

σT =
8π
3

r2
0 . (8)

The cdfTH(θ) can be obtained by integration of the Eq. (7) and it has form

cdfTH(θ) =
1
8

r2
0
(
6θ + sin(2θ)

)
. (9)
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Figure 1. Differential cross-section dε/dΩ of Compton scattering for low energy photons as it
depends on scattering angle. The cross-sections are normalized. Chosen photon energies demonstrate
deviation of dε/dΩ with increasing photon energy. Differential cross-section for photons with energy
above ε = 51 keV starts to deviate from Thomson limit (photons with ε = 2.75 eV).

Implementation in the code

As with Compton scattering the library contains similar functions for Thomson approxima-
tion. To get differential cross-section (7) call of function TH diffcr is appropriate. Thom-
son total cross-section is stored at variable TH totcr since it is independent on incident
photon energy. To get the value of the cdfTH(θ) one must call the function TH cdf value.
However since we do not have direct expression for inverse cdfTH(θ), the Thomson approxi-
mation is not useful in a sense of performance. In other words using Thomson approximation
for evaluation of low energy photons we would not gain any increase in performance.

2.3 Inverse Compton Scattering

If we restrict ourselves just to scattering particle at rest we are confined to Compton scattering
frame where photons can only loose energy. To increase energy of the scattered photons
we need to take into account motion of the scattering particle as well. Since we are able
to calculate Compton scattering only in the frame where the scattering particle is at rest
we must transform photon’s momentum by Lorentz transformation into this rest frame first.
This transformation involves two effects: The first effect is relativistic aberration or beaming
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effect. This effect changes the angle α between scattering particle’s velocity and incident
photon direction. This transformation reads (Rybicki and Lightman, 1985)

cos(ᾱ) =
cos(α)+ β

1+ β cos(α)
, (10)

where β = |ve|/c and |ve| is electron velocity. This effect is applied to both incident and
radiated photons.

The second phenomenon is the Doppler effect which modifies photon frequency thus
causes increase or decrease of its energy as measured by observer comoving with electron.
The energy of the interacting photon is transformed as follows (Rybicki and Lightman,
1985)

ε̄i = εiγ
(
1− β cos(α)

)
, (11)

where again β = |ve|/c. This transformation must be performed before as well as after
scattering took place.

3 ELECTRON VELOCITY

3.1 Maxwell–Boltzmann Distribution

Maxwell–Boltzmann distribution gives distribution of velocities of particles of ideal gas.
We assume point-like, non-relativistic particles with negligible inter-particle forces. Many
gases in astrophysics behave as ideal gas or they are similar to it. In Compton scattering
scheme we are mostly dealing with rarefied real gasses. For these, at ordinary temperatures,
the Maxwell–Boltzmann distribution is a good approximation.

The probability of particle having magnitude of velocity p within a gas with temperature
T is given as (Bradt, 2014)

pdfMB(v) =

√( m
2πkT

)3
4πv2 exp

(
−

mv2

2kT

)
, (12)

where k is Boltzmann constant k = 8.61 × 10−5 eV/K and m is mass of the gas particle
(in this case electrons me = 9.11× 10−31 kg). To acquire cumulative distribution function
cdfMB(v) we must integrate (12)

cdfMB(v) = erf

√mv2

2kT

−
√

2mv2

πkT
exp

(
mv2

2kT

)
, (13)

where erf(x) is Error function.

Implementation in the code

Maxwell–Bolzmann distribution is implemented in these routines: MB pdf returns value
of pdfMB(v) Eq. (12), MB cdf gives cdfMB(v) Eq. (13). The function for random electron



6 K. Adámek and M. Bursa

speed is called Random num icdf bisection MB and it returns electron speed sampled
from Maxwell–Boltzmann distribution. To evaluate cdfMB(v) we are using GSL library
implementation of Error function erf(x) by calling gsl sf erf().

If the temperatures throughout the simulation do not exceed TB = 2×108 K the Maxwell–
Boltzmann distribution can be used reasonably well. However if the temperature T > TB
we recommend using Maxwell–Jüttner distribution for whole computation.

3.2 Maxwell–Jüttner Distribution

The Maxwell–Jüttner distribution is a generalization of the Maxwell–Boltzmann distribution
for ideal non-interacting gas. For low temperatures T and in limit of small velocities this
distribution becomes identical with the Maxwell–Boltzmann distribution.

Probability distribution for γ of the electrons within the gas with temperature T such
that kT approaches or exceeds mc2 is given by (Kershaw et al., 1986)

f (γ ) =
γ 2β

τK2(1/τ)
exp−

γ

τ
, (14)

where β = v/c, τ = kT /mc2, K2 is Bessel function of the second kind and c is speed of
light.

Integral through all velocities must be∫
∞

−∞

f (γ ) = 1 . (15)

Behaviour of the distribution for low temperatures can be seen in the Fig. 2.

Implementation in the code

In the code we implement the distribution using logarithmic expression ln f (γ ). This
is advantageous because we can express Bessel function K2 in its logarithmic form thus
reducing possible errors due to round-off error. For calculating Bessel function we are using
GSL library by calling function gsl sf bessel lnKnu(). After we got value ln f (γ ) we
return exp (ln f (γ )).

Random number with Maxwell–Jüttner distribution

Implementation of random number generation, which produces random numbers with
Maxwell–Jüttner distribution is similar to the technique described in Section 4.2. There is
slight modification of the binary search starting position which is determined by the function
get points MJ(). This function returns approximation of the peak of the distribution and
end point of the distribution (which is a point where f (γ ) < 10−30). The aim is to decrease
searching time and number of evaluations of the cdf(x) (which involves integrals) by setting
middle point to the peak thus near most probable random value.
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Cut-off Temperature

From the Fig. 2 we can see that for temperatures T < 2 × 108 K the distribution has its
maximum very near γ = 1. Thus no relativistic effects are noticeable. Putting cut off
temperature to Tcut = 2× 108 K is reasonable.
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Figure 2. Maxwell–Jüttner distribution for different temperatures. Probability P(γ ) is normalized to
unity.

4 NUMERICAL METHODS

Our simulation, in current state, is intended to follow single photons by using Monte Carlo
method. The Monte Carlo method heavily depends on random numbers and thus good
random number generator is needed for accurate results.

4.1 Random Number Generators

On computer using algorithms it is very hard if not impossible to get truly random unbiased,
uncorrelated random numbers with uniform distributions in multiple dimensions. When
using computer we are using a pseudo-random numbers produced by the pseudo-random
number generators like rand in standard C. However some generators are better then others.
The ‘good’ random number generator should pass number of theoretical and empirical tests.
More can by found in (L’Ecuyer and Simard, 2007).
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For our Monte Carlo simulation we choose to use GSL library random number generator
MT19937. This generator has unusually long period of P = 219937

− 1 numbers. This algo-
rithm has been developed with special attention to the most significant bits. This property
makes it especially well suited for Monte Carlo simulations (Matsumoto and Nishimura,
1998). With performance comparable to the standard C rand it is ideal pseudo-random
number generator for our needs. It also performed well in tests conducted by (L’Ecuyer and
Simard, 2007).

4.2 Random Numbers with Distribution

Standard random number generator produces uniformly distributed random numbers in
range (0, 1). To obtain random numbers with desired custom distribution we must project
this range onto some other which is defined by cdf(x). For this projection we need to
find an inverse cumulative distribution function cdf(x)−1 of our custom distribution. To
check if our custom distribution of random numbers does agree with cdf(x) we have used
Kolmogorov–Smirnov test for random number distribution (Wall and Jenkins, 2003).

Inverse cdf method

Assuming we have probability density function pdf(x) with property∫
∞

−∞

pdf(x ′) dx ′ = 1 , (16)

we can construct cumulative distribution function cdf(x) given as

cdf(x) =
∫ x

−∞

pdf(x ′) dx ′ . (17)

Taking into consideration the Eq. (16) we can see that cdf(x) ∈ [0, 1]. To generate
random numbers with distribution given by pdf(x) we need to construct inverse cumulative
distribution function cdf(x)−1 and project generated random numbers in interval (0, 1) by
the cdf(x)−1 to get random number with desired custom distribution. If we cannot find
cdf−1(x) than we have to find appropriate function value by using root-finding algorithm.
Since cdf(x) is strictly increasing in the interval (0, 1) we can apply bisection to find the
value of the cdf−1(x).

5 IMPLEMENTATION

5.1 Structures and constants

The COSMOC library uses these classes:

• kn par class is directly used by user and it holds all variables connected with the
scattering of the photon. For example it holds energy of the incident photon kn par::nu i,
energy of the scattered photon kn par::nu f, scattering angles kn par::theta f and
kn par::phi f. These are variables most likely to be accessed by the user.
• prop, approx and Max dis int are internal classes and user does not need to interact
with them.
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Figure 3. Broadening of iron spectral line with initial energy ν = 6400 eV. On x axis we see energy
of the scattered photon, y axis shows normalized count. The scattering is performed on electrons with
different temperatures, where k is Boltzmann constant and Te is electron temperature. Temperatures
are distinguished by different colours.

5.2 Scattering

The whole process of scattering is performed by function scatter EDiE, which then makes
use of other internal functions of COSMOC library. These internal functions are accessible
by user. Whole library as of now has a form of includable .h and .cpp file and it is not
en-capsuled into a class. The declaration of function scatter is following:

void scatter EDiE(
kn par *par – information about incident photon,
double eT – temperature of the gas,
approx *mj app – internal class which must be initiated at the beginning of the code,
int mj size – size of mj app,
gsl rng *rnd – GSL library handle for random numbers
gsl integration workspace *w – GSL library handle for integration,
int force relativistic=0 – optional switch to force relativistic treatment

).

The procedure scatter EDiE works in three modes, which mode is triggered depends on
temperature of the gas. For temperatures T > 2.0×108 K the relativistic treatment is used.
This includes beaming effect Eq. (10) and Doppler effect Eq. (11). For electron velocities
the Maxwell–Jüttner distribution is used.

The second mode is for temperatures 300 K < T < 2.0× 108 K. In this mode Maxwell–
Boltzmann distribution is used and only Doppler effect is taken into account.

Last mode is for stationary electrons for temperatures below T = 300 K, where only
Compton scattering without any additional effects is performed.

The effect of Doppler shift can be seen on spectral line broadening, which is shown in
the Fig. 3. The figure shows broadening of iron ν = 6.4 keV spectral line.
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SUMMARY

The COSMOC library simulates Compton scattering by following single photon by Monte
Carlo method. It includes Compton as well as inverse Compton scattering. We have
implemented Maxwell–Boltzmann distribution of electron velocities and it’s relativistic
version the Maxwell–Jüttner distribution. The random number generator used is MT19937.
The accuracy of generated distribution (Klein–Nishina, Maxwell–Boltzmann, Maxwell–
Jüttner) were tested by using Kolmogorov–Smirnov test. The functions in COSMOC library
can also be used separately.
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ABSTRACT
We consider equatorial motion of test particles around a rotating Kerr naked sin-
gularity in the Randall–Sundrum braneworld scenario and its implications for the
properties of Keplerian accretion disks. We demonstrate existence of some unex-
pected phenomena related to properties of spacetimes having positive braneworld
tidal charges. This new phenomenon can be an interesting explanation for extremely
high energy cosmic radiation.

Keywords: Randall Sundrum – Brane-world

1 INTRODUCTION

In recent years, one of the promising approaches to the higher-dimensional gravity theories
seems to be the string theory and particularly M-theory (Hořava and Witten, 1996; Hořava
and Witten, 1996). This new idea is describing gravity as a truly higher-dimensional interac-
tion becoming effectively 4D at low enough energies. Also these theories inspired so called
braneworld models, in which the observable universe is a 3-brane on which the standard-
model fields are confined, while gravity enters the extra spatial dimensions (Arkani-Hamed
et al., 1998). The braneworld models provide an elegant solution to the hierarchy problem of
the electroweak and quantum gravity scales, as these scales could become to be of the same
order (TeV) due to large scale extra dimensions (Arkani-Hamed et al., 1998). Future collider
experiments can test the braneworld models quite well, including even the hypothetical mini
black hole production (Dimopoulos and Landsberg, 2001). The braneworld models could
be tested observationally since they predict relevant astrophysically important properties of
black holes. Gravity can be localized near the brane even with a non-compact, infinite size
extra dimension with the warped spacetime satisfying the 5D Einstein equations as shown
by Randall and Sundrum (1999). The rotating brany black hole spacetimes are represented
by the Kerr-Newman geometry (without an electromagnetic field). The standard studies of
black hole and naked-singularity geodetical motion (Stuchlík, 1981; Stuchlík and Calvani,
1991; Stuchlík and Hledík, 2000) can thus be fully applied for brane-world black holes and
naked singularities with positive tidal charge.
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2 ORBITAL MOTION IN THE BRANEWORLD KERR SPACETIMES

Using standard Boyer–Lindquist coordinates (t, r, θ, ϕ) and geometric units (c = G = 1),
we can write the line element of a rotating (Kerr) black hole or naked singularity on
the 3D-brane in the form

ds2
= −

(
1−

2Mr − b
Σ

)
dt2
−

2a(2Mr − b)
Σ

sin2θ dt dϕ

+
Σ

∆
dr2
+Σ dθ2

+

(
r2
+ a2

+
2Mr − b
Σ

a2sin2θ

)
sin2θ dϕ2 , (1)

where

∆ = r2
− 2Mr + a2

+ b , (2)
Σ = r2

+ a2cos2θ , (3)

M and a = J/M are the mass parameter and the specific angular momentum of the back-
ground, and the braneworld parameter b, called the “tidal charge”, represents the imprint of
non-local (tidal) gravitational effects of the bulk space (Aliev and Gümrükçüoğlu, 2005).
The physical “ring” singularity of the braneworld rotating black holes (and naked singular-
ities) is located at r = 0 and θ = π/2, as in the Kerr spacetimes.

The form of the metric (1) is the same as that of the standard Kerr–Newman solution of
the 4D Einstein–Maxwell equations, with the tidal charge b being replaced by the squared
electric charge Q2 (Misner et al., 1973). The following discussion can then be separated
into these cases:

a) b = 0 in which we are dealing just with the standard Kerr metric.
b) b > 0 in which we are dealing with the standard Kerr–Newmann metric.
c) b < 0 where we are in the domain of new physics.

In the brany K-N spacetimes the geodetic motion is also relevant to charged test particles.

3 EFFECTIVE POTENTIAL AND RADIAL FUNCTION

The radial function R(r) of the geodesic motion is defined by:

R(r) ≡ −sign(m)+
E2gϕϕ + 2E Lgtϕ + L2gt t

g2
tϕ − gt t gϕϕ

, (4)

and the effective potential of the brany Kerr spacetimes takes the form:

VEff(r, a, b, L) =
−aL(b − 2r)± r

√
∆

√
L2r2 + r4 + a2

(
r2 + 2r − b

)
r4 + a2

(
r2 + 2r − b

) , (5)

where L is the specific angular momentum as measured by an observer at infinity, E is
the specific energy and m is the mass of the test particle. Circular motion is discussed in
Stuchlík and Kotrlová (2009).
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Figure 1. Brany Kerr black holes and naked singularities are divided into ten classes according to
the properties of circular photon orbits. The corresponding regions of the b–a2 plane are denoted by
I–X; the number in parentheses gives the number of circular photon orbits in the respective class. See
also Stuchlík (1981); Balek et al. (1989).
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Figure 2. Classification of accretion disks with respect to parameters a and b. Classic: stands for
those combinations of a and b where the ISCO coincides with the marginally stable orbit. Stable
photon orbit: the ISCO for particles coincides with the stable circular photon orbit (the efficiency of
accretion can then theoretically tend to infinity). Stable photon orbit and r = b: the ISCO is located
at r = b and the effective potential has a minimum for all positive values of L (this minimum is
always higher than r = b and is unimportant for accretion processes). Region r = b: the ISCO is
located at r = b. The depicted star points correspond to chosen examples given in Fig. 3.
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Figure 3. Examples of the effective potential from each region.

4 PHOTONS

In the case of photon orbits in the equatorial plane, the radial function R(r) is determined
by Eq. (4) with m set to zero (Schee and Stuchlík, 2009a,b):

R(r)
E2 =

[
r2
− a(λ− a)

]2
−∆(λ− a)2

r2∆
, (6)

where the impact parameter is defined by λ = L/E .



Some Aspects of Brany Kerr Spacetimes Relevant to Accretion Processes 15

The photon orbits depend only on the impact parameter λ. The character of the photon
motion is given by the number of circular orbits. We can distinguish ten cases of the brany
Kerr spacetimes (Fig. 1).

5 EFFECTIVENESS OF ACCRETION

We discuss here some properties of thin Keplerian accretion disks. We will focus on disks
orbiting naked singularities. The circular orbits can exist from infinity down to the radius
of the limiting circular photon orbit, determined by the condition

r2
− 3r + 2b ± 2a

√
r − b = 0 . (7)

At this point E goes to ±∞ and L goes to ±∞, but the impact parameter λ = L/E
remains finite.

The loci of the stable circular orbits are given by the condition

∂2 R
∂r2 ≤ 0 , (8)

where the case of equality corresponds to the r coordinates of the marginally stable circular
orbits rms. This procedure of finding the marginally stable orbit as an inflexion point of
the effective potential given by the condition (8), is what we will be calling a “standard
treatment”. We obtain1

r
(
6r − r2

− 9b + 3a2)
+ 4b

(
b − a2)

∓ 8a
(
r − b

)3/2
= 0 . (9)

This standard treatment works perfectly for the black holes, but as we shall demonstrate,
does not work as well for counter-rotating disks around naked singularities.

The innermost stable circular orbit (ISCO) does not always correspond to the marginally
stable orbit defined by Eq. (9).2 This is demonstrated in Fig. (3, e) where we have depicted
the effective potentials VEff(r, a, b, L). We can clearly see that sometimes the marginally
stable orbit defined by Eq. (9) is not the innermost stable circular orbit. The ISCOs are
actually located at r = b. The reason for this is that there can be a stable circular orbit at
r = b, but not at r < b. This makes it possible to have an ISCO which is not an inflexion
point of the radial function (4), which is the reason why the “standard treatment” (8) has to
be treated very carefully. Of course, for accretion processes, the marginally stable circular
orbits, i.e. the stable orbits with lowest energy, are relevant as the orbiting matter loses
energy (and angular momentum) during accretion.

In the Figure 2 we have shown the classification of parameter space spanned by spin a
and tidal charge b. This parameter space is divided into several areas according to following
physical properties:

(1) existence of stable circular orbits in spacetime,

1 Formally the same results, relevant for Kerr–Newman spacetime, can be found in Aliev and Galtsov (1981).
2 In some of the naked-singularity spacetimes (Reisner–Nordström, Kehagias–Sfetsos), two marginally stable
orbits (ISCO and OSCO) can appear, (Pugliese et al., 2013; Stuchlík et al., 2014; Stuchlík and Schee, 2014; Vieira
et al., 2014). However, this is not the case for the Kerr spacetimes (Stuchlík, 1980). See also Favata (2011).
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(2) existence of ISCO at r = b which is different than marginally stable orbit found by
classic treatment,

(3) existence of ISCO which is identical with marginally stable orbit found by classic
treatment.

Most interesting situation in Fig. 2 is lightly shaded area, where there are no present any
ISCO’s or marginally stable orbits. All orbits are stable up to a photon circular orbit, what
is new phenomenon which can theoretically leads to unbound effectiveness of accretion.

6 CONCLUSIONS

We have shown an interesting new behaviour of the effective potential with regard to the
stable circular photon orbits. These stable orbits can exist in the case of naked singularities
in the Randall–Sundrum II brane-world scenario and in the case of classical Kerr–Newman
naked singularities with quite a large amount of charge. This new phenomenon can be an
interesting explanation for extremely high energy cosmic radiation.
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Vieira, R. S. S., Schee, J., Kluźniak, W., Stuchlík, Z. and Abramowicz, M. (2014), Circular geodesics
of naked singularities in the Kehagias-Sfetsos metric of Hořava’s gravity, Phys. Rev. D, 90(2),
024035, arXiv: 1311.5820.

1303.6250
hep-th/9906064
0810.4445
0812.3017
0803.2539
0812.5066
1402.2891
1311.5820




Proceedings of RAGtime 14–16, 18–22 Sept./15–18 July/11–19 Oct., '12/ '13/ '14, Opava, Prague, Czech Republic 19
Z. Stuchlík, G. Török and T. Pecháček, editors, Silesian University in Opava, 2014, pp. 19–30

Rotational Evolution of the Magnetic
White Dwarfs in Intermediate Polars

V. V. Breus,1,a I. L. Andronov,1,b P. Dubovský,2 Yonggi Kim,3,4

L. L. Chinarova,5 Jiwon Park,3,4Joh-Na Yoon,3,4 Yong-Hee Kim,4

K. Petrík,6 S. Zola,7,8S. V. Kolesnikov,5 K. A. Antonyuk,9

A. R. Baransky,10P. Beringer,11 T. Hegedüs,11

J. W. Robertson12 and I. Kudzej,2
1 Department “High and Applied Mathematics”, Odessa National Maritime University,

Odessa, Ukraine
2 Vihorlat Astronomical Observatory, Humenne, Slovakia
3 University Observatory, Chungbuk National University, Cheongju, Korea
4 Department of Astronomy and Space Science, Chungbuk National University, Cheongju, Korea
5 Astronomical Observatory, Odessa National University, Odessa, Ukraine
6 Astronomical Observatory and Planetarium, Hlohovec, Slovakia
7 Astronomical Observatory of the Jagiellonian university, Krakow, Poland
8 Mt. Suhora Observatory, Pedagogical University, Krakow, Poland
9 Crimean Astrophysical Observatory, Nauchny, Ukraine
10Astronomical Observatory of Taras Shevshenko National University, Kiev, Ukraine
11Baja Astronomical Observatory, Baja, Hungary
12Arkansas Tech University, Russellville, USA
avitaly.breus@gmail.com
bil-a@mail.ru

ABSTRACT
We provide the results of the long-term multicolour photometric monitoring of se-
lected intermediate polars MU Cam, V405 Aur, FO Aqr, EX Hya, V1323 Her, V2306
Cyg, obtained at different observatories. We analysed variability of the spin period
of the white dwarf using our observations and previously published spin maxima
timings. We found that some of these stars show spin-up, some show spin-down,
sometimes we see no spin period variability and sometimes we may see more com-
plicated changes of the spin periods. For some binary systems we studied also orbital
period variations.

Keywords: cataclysmic variables – close binaries – white dwarfs – period variability

1 INTRODUCTION

Intermediate polars, often called DQ Her star, are interacting binary systems with strong
magnetic fields (Patterson, 1994; Warner, 1997; Hellier, 2001). Gravity of the white dwarf
leads to the gravitational capture of the part of the substance of the secondary component
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near the inner Lagrange points. Due to the Coriolis force, plasma flux deviates from
the center line and forms an accretion disk around a white dwarf. A strong magnetic field
destroys the inner part of the disk and leads to the formation of two accretion columns, which
are one of the brightest sources of radiation in a wide spectral range from x-ray to infrared.
The cyclotron radiation is characterized by the presence of polarization. The matter forms
a shock wave heats up and settles on the surface of the white dwarf. Rare outbursts are
possible (e.g. DO Dra (Andronov et al., 2008)). Intermediate polars were often classified
as nova-like stars with relatively small changes in average per night light.

Usually intermediate polars show two kinds of optical variability which are caused by
different physical processes. The orbital period is usually 3–7 hours. The spin variability
is caused by the rotation of the white dwarf with one or two accretion columns with the
period range from few to dozens of minutes. So, the light curve is a superposition of
two different periodic variations and some aperiodic processes like flickering, outbursts,
changes from high to low luminosity state etc. But, in case of V1323 Her we may see no
orbital variability, suggesting a low orbit inclination (Andronov et al., 2011) and in case
of V709 Cas we may see no spin variability because the object is faint, spin period is very
short and time resolution is not sufficient (Hric et al., 2014).

Some of selected intermediate polars exhibit a statistically significant dependence of the
color index on the spin phase, indicating a variable distribution of energy in the spectrum
and necessity of multicolour observations rather than mono-filter or unfiltered ones. During
our monitoring we obtained mainly time series with alternatively changing V and R color
filters.

2 DATA PROCESSING

The CCD frames were processed using C-MuniPack software. In some cases (too few stars
in the field, not enough to match frames automatically) we used the program Winfits written
by V. P. Goranskij. The final time series were obtained using the program MCV (Andronov
and Baklanov, 2004) taking into account multiple comparison stars (Kim et al., 2004), the
same software was used for periodogram analysis. For our objects we analysed all available
photometric data, including long CCD series published in AAVSO database.

To determine extrema timings we used trigonometric polynomial approximation. We
choose 2-periodic variability model for smoothing

m(t) = m0 − r1 cos
(
ω1(t − T01)

)
− r2 cos

(
ω2(t − T02)

)
, (1)

where m(t) – is the smoothed value of brightness at time t , m0 – average brightness
on theoretical curve (generally different from the sample mean (Andronov, 2003), ω j =

2π/Pj , r j – semi-amplitude, T0 j is the epoch for maxima of brightness of photometric
wave with number j and period Pj . We calculated only one moment per set of observations
(i.e. per night) because the accuracy estimate is much better then for individual extrema.
This method is optimal for approximation of observations of intermediate polars and is
often used in case of spin + orbital variability, e.g. EX Hya (Andronov and Breus, 2013),
MU Cam (Kim et al., 2005). For objects that show variability with one period we used
regular trigonometric polynomial approximation. This way we determined spin maxima
and orbital minima timings.
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To study period variations we used O-C analysis. Generally we calculated two O-C
diagrams: for spin maxima and for orbital minima timings. Along with moments determined
using our own data we used all published ones. Contrary to a classical representation of the
“O-C diagram” as a dependence of the timings from an ephemeris, i.e.

O − C = T − (T0 + P · E) (2)

on the cycle number E, we have used phases instead, i.e. φ = (O − C)/P. For a correct
ephemeris, the phases should be concentrated near the zero value. For some objects we
detected cycle miscounts caused by gaps in regular observations and not enough-precisely
determined values of the periods. After correction of it, we smoothed O-C diagram with
a polynomial with statistically-optimal degree. Using coefficients of these polynomials
after many years of monitoring, it is possible to determine the value of the period more
precisely and (in some cases) detect second derivatives of the period, e.g. acceleration of
the spin period of the white dwarf. Sometimes the period increase was turned to a period
decrease (FO Aqr). These changes may be interpreted by a model of precession of a rapidly
rotating white dwarf (Andronov 2005), which predicts chaotic variability of the spin period
at time scales of decades.

3 MU CAMELOPARDALIS

The X-Ray source 1RXS J062518.2+733433 was classified as an Intermediate polar (Araujo-
Betancor et al., 2003; Staude et al., 2003). Later, results of 7 nights of CCD-photometry
obtained using 1.8m telescope in Korea were published (Kim et al., 2005): ephemeris of
the orbital minima

BJD = 2453023.6159(42)+ 0.1966431(33) · (E − 1735) (3)

and improved ephemeris for spin maxima

BJD = 2452893.78477(10)+ 0.01374116815(17) · (E − 15382) . (4)

Hereafter in brackets we provide a statistical error estimate in units of a last digit.
After this publication, photometric monitoring of the system was continued in Korea

(Chungbuk National University Observatory), Slovakia (Astronomical observatory and
planetarium in Hlohovec and Vihorlat observatory in Kolonica, 2007–2014) and Poland
(Jagiellonian university observatory, Krakow, 2013–2014). First we determined the value
of orbital period of the system 0d.1968538 ± 0.0000013 and spin period 0d.01374 which
were close to published earlier values. By now we collected more then 300 spin maxima
timings. We used two-periodic trigonometric polynomial fit. Dependence of phase on time
is presented on the Fig. 1

As we see significant trends and phase shifts, we suggested period variability hypothesis.
Taking into account results obtained for other intermediate polars, where phase variability
was detected on the timescale of years or decades, this dependence should be smooth so we
corrected cycle numbers for MU Cam and found parabolic dependence:

T (E) = 2454085.50721(14)+ 0.0137409414(13) · E − 1.520(13) · 10−12
· E2 . (5)
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Figure 1. Dependence of phase of MU Cam spin maxima on time. Cycle count for constant period
model (top) and variable period model (middle and bottom). Weighted (red) and non-weighted (blue)
polynomial approximation are presented with corresponding error corridors.

The Q coefficient is 114 times higher of it’s error estimate and is statistically significant.
So we may see the decrease of the spin period of the white dwarf (the spin-up of the white
dwarf). The characteristic time of the spin-up is τ = 170± 1.5 thousand years. If we will
take into account individual error estimates of maxima timings (i.e. weighted polynomial
fit) we got slightly different parameters:

T (E) = 2454085.50766(25)+ 0.0137409545(16) · E − 1.635(23) · 10−12
· E2 . (6)

Here the Q coefficient is only 70 times higher of it’s error estimate but still is statistically
significant. The characteristic time of the spin-up is τ = 158.1± 2.2 thousand years. This
value is 30 times smaller then 4.71 million years observed for the intermediate polar EX Hya
(Andronov and Breus, 2013), but only 2 times smaller then 290 thousand years for BG CMi
(Kim et al., 2004)

4 V405 AURIGAE

The intermediate polar V405 Aur was discovered as an optical counterpart of the soft
ROSAT source 1RXS J055800.7+535358 (Haberl et al., 1994). The soft X-Ray flux was
changing with a period of 272.74 s, which was supposed to be a spin period of the white
dwarf. The presence of optical pulsations at a period of 272.785 ± 0.003 s was reported
(Ashoka et al., 1995).
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Later two independent announcements (Allan et al., 1995; Skillman, 1996) were made
that the spin period of the white dwarf in V405 Aur is twice longer (545.45 s). It was
justified by detection of circular polarization with a period of P = 0.006301± 0.000055 d
(544.4 ± 4.8) s and semi-amplitude of 1.80 ± 0.16 percent (Shakhovskoj and Kolesnikov,
1997).

The O-C analysis of the maxima timings obtained in 1994–2007 and second-order poly-
nomial fit to the timings were published (Piirola et al., 2008):

Tmax = HJD ∼ 2449681.46389(5)+ 0.0063131474(4)E + 4(4) · 10−16 E2 . (7)

The quadratic term is formally positive (corresponding to a period increase) it is not
statistically significant.

We analysed photometric CCD observations obtained using different telescopes in Slo-
vakia (Kolonica and Hlohovec), Hungary (Baja), Ukraine (Crimea), USA (Arkansas Tech
University Observatory) and got 93 spin maxima timings (Breus et al., 2013). The O-C
diagram for historical timings (Piirola et al., 2008), maxima timings published later and our
own ones was analysed. Contrary to a suggestion of Piirola et al., the points for the recent
years show a distinct period decrease. We considered 4 models of period variations, the
most probable were the 3-rd order weighted fit to the phases of maxima:

Tmax = HJD 2452867.07807(2)+ 0.006313147760(131) · (E − E0)−

− 502(237)× 10−18(E − E0)
2
− 239(80)× 10−23(E − E0)

3 . (8)

It corresponds to all observations better then quadratic one and fits most recent observations
showing a negative trend (see Fig. 2). Also we checked a hypothesis of periodic change
of O-C. We calculated the periodogram using the approximation combining a 1-st order
trigonometric and a 1-st order algebraic polynomials. The maximum peak at the peri-
odogram corresponds to a period of 2268d

= 6.2 yr. The corresponding fit is

φ = −0.00049(219)+ 0.0000002(14)× (T − 2452881)+
+ 0.0315(32) cos

(
2π · (T − 2452389)/2268

)
. (9)

As these periodic variations are statistically significant (at a level of semi-amplitude of
9.7σ ), we suggested a third body orbiting the inner binary system with a period of≈6.2 yr,
with a distance of the center of masses to the binary of (5.15 ± 0.53) × 109 meters).
The corresponding mass function is F(M) ≈ 0.09 M�, so a third body may be a low-
mass red dwarf (Breus et al., 2013). But, the latest observations show us continuation of
period decrease, thus we should confirm it by new observations and return to the 3-rd order
polynomial fit.

5 FO AQUARII

The intermediate polar FO Aqr is known for many years. Observations were obtained
in Slovakia (Vihorlat Astronomical Observatory) and Hungary (Baja Astronomical Ob-
servatory). Periodogram analysis revealed that the photometric period of the system is
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Figure 2. Dependence of phases of maxima timings of V405 Aur on cycle number of the spin
period: circles – original observations, line – an approximation using 3-rd order polynomial fit with
corresponding ±1σ and ±2σ error corridors.

0d.014312(5) that was a daily alias of the spin period of the white dwarf published before.
So we concluded that the period during our observations was 0d.014521(3) with an initial
epoch for the maximum brightness of 2455068.72430(36) (Breus et al., 2012). The pre-
vious published values of the spin period were 0d.01451905 (Patterson et al., 1998) and
0d.01451718 (Williams, 2003) so, the spin period is significantly shorter than earlier.

We collected spin maxima timings for more then 30 years and carried out the O-C analysis
(see Fig. 3). At the beginning the observations were regular and no cycle miscount was
done. Later on, there was a gap for almost 6 years after which we have started our own
monitoring. So, we have 2 branches on the O-C diagram, which are separated with a gap
and there is no published timings or time series which could help in filling this gap with
points to restore the correct cycle numbering. This shows a very high importance of regular
studies of such short period objects. Opposite to other objects, period variations of FO Aqr
are complicated. From 1981 to 1987, the white dwarf showed a spin-down, then it changed
to a spin-up.

6 EX HYDRAE

The intermediate polar EX Hya is another “old” variable star, according to the SAO/NASA
Astrophysics Data System (ADS) the first publication on it was in 1957. We observed this
object using remotely-controlled telescopes TOA150 (15cm) and BigMak (35cm) at the
Tzec Maun observatories (http://tzecmaun.org/) in 2010–2011. For the O-C analysis
we used as moments of maxima of our own and published patrol observations, as published
moments. In total we used 452 moment of maxima, that cover 49 years.

http://tzecmaun.org/
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Figure 3. Dependence of phase of FO Aqr spin maxima on time with 2 branches – based on own
and compiled observations. Best fit 3-rd order polynomials are shown for different cycle difference
between the branches.

As a result of previous analysis (Mauche et al., 2009) the ephemeris was published:

T (E) = 2437699.8917(6)+ 0.046546484(9) · E−
− 7.3(4) × 10−13

· E2
+ 2.2(6) × 10−19

· E3 . (10)

Authors suggested the presence of a statistically significant cubic coefficient Q3. Using the
program MCV we determined the statistically optimal degree of the polynomial for O-C
approximation and it was equal to two. So, analysed timings do not confirm the assumption
of the presence of a statistically significant cubic term in ephemeris by Mauche (Mauche
et al., 2009). O-C diagram and it’s ±1σ and ±2σ error corridors are shown on Fig. 4.

We obtained the ephemeris for spin maxima

Tmax = 2437699.89079(59)+ 0.0465464808(69) · E − 6.3(2)× 10−13
· E2 . (11)

The Q coefficient corresponds to the characteristic time of the spin-up of τ = 4.67(14)×106

years.

7 V1323 HERCULIS

The intermediate polar V1323 Her (previously known as RXS J180340.0+401214) was
regularly observed in Slovakia (Kolonica and Hlohovec) and Korea (Chungbuk National
University Observatory). The light curve shows that the orbital variability is almost absent,
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Figure 4. O-C diagram for spin maxima of the EX Hya, calculated for the values of the initial epoch
T0 = 2437699.8920 (Vogt et al., 1980) and the period P0 = 0d.046546484 (Mauche et al., 2009).

no eclipses were found, suggesting a low orbit inclination (less then 70 degrees). The pho-
tometric wave is originated due to a spin rotation of the white dwarf, during which the
viewing conditions of the accretion columns are continuously changing. So the variability
seems to be due to the geometric conditions (changing of the angle between stream and
beam of view in the rotation), rather than for the physical ones (instability of the accretion
column – that really is present, but not periodic). One hump shape at the phase light curve
argues for a high inclination of the magnetic axis in this system, so we see mainly an upper
accretion column.

From periodogram analysis of our first observations in 2007 we obtained the value of
the spin period of 1520.4509 ± 0.0022 seconds (25.34 minutes). It had 30 times better
accuracy then published earlier value because of more time series obtained during longer
time interval were used. Later on, the O-C analysis (see Fig. 5) showed the necessity
of improvement of this value. However, due to a published epoch of minimum instead of
maximum (Teichgraeber et al., 2007), previous attempt to fit all timings (Andronov et al.,
2011) were not successive. So, we determined a new linear ephemeris for the spin maxima:

Tmax = 2454604.04449(14)+ 0.017596986(3) · E . (12)

We checked quadratic polynomial approximation. The coefficient Q = (9 ± 5) × 10−14

formally corresponds to characteristic time scale of period variations of τ = (4.6±2.5)×106

years, but the parameter is equal to 1.9 of its error estimate and thus is not statistically
significant (Andronov et al., 2012). So, we conclude that contrary to other intermediate
polars, no spin period variations were detected in V1323 Her.
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Figure 5. O-C diagram of the V1323 Her for the spin maxima timings.

8 V2306 CYG

The pulsating X-ray source 1WGAJ1958.2+3232 was discovered using ROSAT observations
(Israel et al., 1998). From the spectroscopy and photometry an orbital period of 4 h 36 m
and the pulsation period of 733 s were found (Zharikov et al., 2001). Later on, orbital period
5.387 h was reported (Norton et al., 2002), corresponding to the−1 day alias of the previous
value (Zharikov et al., 2001). Just after it, Zharikov et al. repeated the analysis using own
photometric and spectroscopic data along with the data by A. Norton and confirmed their
previously found orbital period of 4 h 35 m (Zharikov et al., 2002). The star was named as
V2306 Cyg in 2003. For V2306 Cyg, we obtained large dataset with the timespan of 4 years
mainly in Hlohovec and Krakow observatories, between 2010 and 2014. Additionally, we
analysed all 14 CCD time series from the AAVSO data archive. Extrema timings were
determined. Unfortunately, short timespan and high error estimates does not allow us to
find spin period variations. We used linear fit to the O-C which shows that the spin period
is 0d.008487557(9) instead of 0d.00848 At the same time, periodogram analysis shows
different peaks, including the published values of the orbital period and it’s aliases, and
many of these peaks are even higher. We built O-C diagram for the orbital minima timings
(see Fig. 6) and found a few cycles per year miscount, which gave us the linear trend on
the O-C. So, we can conclude that the correct orbital period may be 0.2232685(24) days
or 0.181545(3) days, which are daily aliases of each other and are close to (Norton et al.,
2002; Zharikov et al., 2002)respectively.

9 CONCLUSIONS

Period variations are frequently observed in intermediate polars and are typically detectable
at a time scale of decades. Some objects do not show a statistically significant period
change (e.g. V1323 Her (Andronov et al., 2012) and V2306 Cyg), some show a period
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Figure 6. O-C diagram of the V2306 Cyg orbital minima timings.

decrease (e.g. MU Cam, EX Hya (Andronov and Breus, 2013), V405 Aur (Breus et al.,
2013), BG CMi (Kim et al., 2004)), some show more complicated spin period variations
(e.g. FO Aqr (Breus et al., 2012)). From theoretical expectations, the spin periods of the
white dwarf should be equal to some equilibrium value, which is equal to period of “Kepler”
rotation of the inner accretion disk at a distance of the magnetospheric radius (Warner, 1997;
Hellier, 2001). Period variations may be caused by changes of the accretion rate due to
modulation of the mass transfer caused by magnetic activity of the red secondary (Andronov
and Shakun, 1990) fluctuations of the orbital separation (Andronov and Chinarova, 2002),
or precession of the magnetic white dwarf (which will be present either with constant, or
variable accretion rate), (Andronov, 2005). At time scales of decades, one may see only
a part of the curve of cyclic variations. Thus apparently the “O-C” diagram may be not
a “wave”, but a square (for smaller time intervals) or cubic parabola (for larger intervals).
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ABSTRACT
We present a new numerical code for radiation transport in strong gravity regime that
includes arbitrary emission and absorption mechanisms and also electron scattering.
We give a brief description of the methods employed. A simple example of a possible
use is presented that also illustrates the effect of light bending on the comptonized
thermal spectra.

Keywords: Radiation transport – relativity – Compton scattering

1 INTRODUCTION

There has been a growing interest in radiation transport codes in astronomy since the pi-
oneering paper of Shakura and Sunyaev (1973) and there already exists plentiful of such
codes that treat the problem of high photon and electron energies with different level of
accuracy. X-ray sources usually contain a compact object as their central engine and so not
only special relativistic but also general relativistic effects have to be properly included in
the accurate and physically realistic treatment of radiation transport. Such codes must nec-
essarily employ the emitter-to-observer scheme, which is naturally more computationally
expensive. This seem to be the main reason why such codes have been developed only quite
recently. The most advanced codes have been presented by Dolence et al. (2009) and by
Schnittman and Krolik (2013).

In this paper, we introduce our own code for general relativistic radiation transport that
includes arbitrary emission and absorption mechanisms and also electron scattering while
properly taking into account all GR effects. We demonstrate the capabilities of the code on
a simplified model of an accretion disk and comptonizing corona. Such an example will help
us to quantify the effect of gravitation light bending on resulting spectra of comptonized
thermal radiation and so to stress and justify the importance of GR treatment.

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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2 PHOTON GEODESIC MOTION

Motion of photons in the Kerr spacetime can be solved for using several approaches. For
instance, the geodesic equation can be numerically integrated to find a photon trajectory
(e.g. Dovčiak et al., 2004), or one can proceed using Hamilton equations (e.g. Schnittman
and Bertschinger, 2004) or one can write down the equation of motion and try to find
a solution to it, which is possible in terms of elliptic integrals (e.g. Li et al., 2005).

Following Carter (1968), Bardeen et al. (1972) and Merloni et al. (1999), we can write
down equations of motion for a photon in a separable form. In Boyer–Lindquist coordinates,
where we employ a substitution of m = cos θ , they look like

ρ2 dr
dλ
= ±

√
R(r) , (1a)

ρ2 dθ
dλ
= ±

√
M(m) , (1b)

ρ2 dϕ
dλ
= −a +

l
1− m2 +

a
∆

(
r2
+ a2

− a l
)
, (1c)

ρ2 dt
dλ
= −a2(1− m2)

+ a l +
r2
+ a2

∆

(
r2
+ a2

− a l
)
, (1d)

where

R =
(
r2
+ a2

− al
)2
−∆

(
(l − a)2 + Q

)
, (2)

M = Q −
l2 m2

1− m2 + a2m2 , (3)

∆ = r2
− 2r + a2 , (4)

ρ2
= r2
+ a2 m2 (5)

and q = Q/E2
∞ is scaled Carter’s constant, l = L z/E∞ is conserving angular momentum

about the black hole z-axis.
With the help of above equation the photon trajectory can be directly calculated if we

know the initial conditions, i.e. a point on the trajectory and the direction of the photon. As
an example, we can think of a photon that has been emitted from the surface (photosphere) of
an accretion disk. If photons are emitted isotropically, we can randomly choose the initial
direction at a given place, calculate photon’s 4-momentum and constants of motion and
iterate numerically Eq. (1). We will describe the exact procedure in Section 5.

3 COMPTON SCATTERING

If photons have to propagate through a non-empty environment, they may encounter colli-
sions with other particles. In astrophysics, the most relevant process of this type is a collision
of a photon with a (quasi-)free particle, usually with an electron. Such a process is called
Compton scattering after Arthur Holly Compton who observed it for the first time in 1923
while scattering X-ray photons on stationary electrons (Compton, 1923). This experiment
played an important role in persuading physicists that light can behave as a stream of
particle-like objects (quanta) whose energy is proportional to the frequency. Eventually,
Compton earned Nobel Prize for his discovery five years later.
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Often, the term Compton scattering is used to describe the original process in which
an energetic electron scatters off an electron at rest. However, an opposite situation may
happen as well: a lower energy photon is scattered to higher energy by a relativistic electron.
This process is refereed to as Inverse Compton scattering and it is of great importance
in astrophysics. However, as basically both processes share the same mechanism, we are
using the term Compton scattering for both throughout this paper.

The energy of the photon after the scattering event is different from its initial energy,
because some of it is exchanged with the electron. The ratio of photon energy after and
before the collision is

P(Eγ , θ) =
1

1+ (Eγ /mec2)(1− cos θ)
, (6)

where Eγ is the original photon energy before collision, me is mass of an electron and
cos θ is the scattering angle, which itself is given by Klein–Nishina differential cross-
section formula. For incident photon energies much lower than the electron rest energy,
ε � mec2, the energy-dependent Klein–Nishina formula can be replaced by a simpler
Thomson approximation

dσ
dΩ
=

1
2

r2
0
(
1− cos θ

)
, (7)

which does not depend on the photon energy. We should keep in mind that the photon mo-
mentum must be Lorentz-transformed to the electron rest frame, so if we have a distribution
of thermal electrons, there is a factor γ that modifies the photon’s energy in the frame of
the electron. Still, if we consider initial photons with energy .1 keV and .108 K electron
temperature, Thomson approximation can be used safely.

4 COMPGR

In this article, we are introducing a new code, COMPGR, that is capable of calculating effects
of Compton scattering in the regime of strong gravity.
COMPGR combines two existing codes, a code for Compton scattering COSMOC (Adámek

and Bursa, 2014) and a code for relativistic ray-tracing SIM5 (Bursa et al., 2004), in a
readily usable package. COMPGR finds its use in situations where it is necessary to accurately
compute comptonization effects on radiation in a close vicinity of a black hole, where strong
gravitational light bending causes photons to follow curved geodesic trajectories.

The code generates photons according to the specified geometry and distribution and
those are then propagated along geodesics based on their initial conditions. At each step of
the trajectory, the total optical depth to scattering along the travelled path is increased by

dτ = κes ρ dl (8)

and the probability of scattering is evaluated as

PSC = 1− e−τ . (9)
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When the photon does scatter off an electron, we make a coordinate transformation from
coordinate basis to fluid local rest frame (LRF). In LRF we determine the temperature of
the fluid and corresponding electron energy distribution. This gives us particular electron
velocity and direction and after transforming into the rest frame of the electron, we perform
the scattering calculation. The electron velocity is taken from isotropic Maxwell–Jüttner
distribution (Jüttner, 1911)

fMJ(γ ) =
γ 2β

θT K2(1/θT )
exp(−γ /θT ) , (10)

where γ = (1− v2/c2)−1/2, θT = kT/mec2, and K2 is modified Bessel function. After we
determine new photon energy and direction, we make a back-transformation from electron
rest frame to LRF and from LRF to the coordinate frame, we update photon momentum
and constants of motion and the photon is followed along the new trajectory until it scatters
again or until it either escapes sufficiently far or hits the black hole or is destroyed by some
other means depending on the physical setup.

The code can also handle optically thin emission and absorption, such as bremsstrahlung
or synchrotron. In the fluid rest frame, the radiation transport equation is
dIν
dl
= jν − αν Iν , (11)

where dl is the path element and Iν , jν and αν are respectively the specific intensity,
emissivity and absorption of the fluid that are given by the specific radiation process.
The emission and absorption processes are integrated along the photon path so that the
intensity of a particular photon bundle is updated at each step.

5 EXAMPLE

We demonstrate the code on a simple example of a thin Shakura–Sunyaev-type accretion
disk that is surrounded by a optically thin hot corona. We employ a very simple physical
setup that shall demonstrate the effect of light bending on the scattered spectra.

In the case of an accretion disk surrounding a black hole the disk produces a thermal
spectrum with typical energy of few kiloelectronvolts or less (depending on the mass of the
black hole). The lower energy photons emitted from the disk surface are scattered to higher
energies by relativistic electrons in the surrounding corona. This effect is believed to cause
the power law component observed in X-ray spectra of accreting black holes.

In this numerical experiment, we use a non-rotating Schwarzschild black hole with an
accretion disk around it. The disk has a standard inner edge at 6M and we will use
a power-law temperature profile T = T0 r−3/4 for it (flux F(r) ∼r−3), where T0 is fixed at
3 keV.

In addition, there is a radial and spherically symmetric wind with constant temperature
Te = 108 K, constant Ṁ and constant radial velocity ve = 0.1 c. In our simplified setup,
the wind originates from the black hole, but more realistically we can imagine a wind that
is fed by the material from the disk. Density of the wind decreases with radius as

ρ =
Ṁ

4π r2 ve
. (12)
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The total optical depth of the wind along the line of sight is

τ =

∫
∞

r0

ρ σT dr , (13)

which combined with the previous expression gives the density

ρ =
r0

r2
τ

σT
(14)

simply as a function of radius and total optical depth. r0 is the radius of the wind base, that
is of the black hole horizon in our case, r0=2M . Photons are scattered in the wind, but we
assume that after 10 such events the photon is lost (it is likely to be absorbed by an ion).

To illustrate the effect of light bending, we perform two simulations for each setup: one
uses full GR with geodetic photon trajectories, in the second one we follow the photon path
along straight lines in the original direction of emission while preserving other GR effects.
True photon geodesic motion has been described in Section 2. In the simulation, where we
assume straight photon paths, we replace Eq. (1) by its limit version for M = a = 0 and
we solve it. That way, we can follow the marked direction of emitted photon as it would go
through a flat spherically symmetric space until the trajectory escapes far enough from the
black hole, ends up in the black hole, ends up in the disk, or we encounter a scattering event
in corona. No other changes are made and the scattering, g-factor evaluation, etc., still use
standard Kerr metric and GR formalism, so we can say that the the eventual difference in
results is solely due to photons taking bended or straight paths.

What can we expect? When the corona is not considered and photons travel from the disk
to the observer freely without any scatterings, we expect the ‘flat’ spectrum to be identical
to ‘GR’ spectrum at lower energies that are contributed by photons coming from cooler
outer parts of the disk, where relativistic effects do not play much role. At higher energies,
on the other hand, we expect the ‘flat’ spectrum to be slightly harder than the ‘GR’ spectrum
simply because the photons come from the disk to the observer, who has a fixed inclination
of 60◦, on average at slightly more grazing angles than it is the case in GR, where light
bending effect allows for escaping angles nearly parallel to the disk normal from parts of
the disk. Larger emission angles mean larger Doppler boost and thus the spectrum should
harden. The corresponding two spectra (‘GR’ and ‘flat’) are compared in Fig. 1, where the
difference due to light bending can clearly be seen.

With corona present, we eventually expect the difference to go in the opposite direction –
the ‘flat’ spectra should be softer as the corona becomes optically thicker. The density of the
corona decreases with square of the distance from the black hole, so the largest scattering
probability is very close to the black hole. If photons follow true GR geodesics they feel
the ‘attractive force’ of the black hole’s gravity and the strongly bended trajectories cause
photons to stay around the black hole longer then it is the case for ‘flat’ photons that do
not feel such effect. Again, that acts mostly on the most on energetic photons coming from
inner parts of the disk that have more chances to upscatter and harden the ‘GR’ spectra.
Figure 2 shows how the spectrum evolves with increasing optical depth τ = 1, τ = 5 and
τ = 10. When the optical depth is too high and the corona is largely optically thick, the
difference in the two spectra should diminish.
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Figure 1. Observed spectra when no corona is assumed. Photons travel from the disk to the observer
freely without any scatterings. Solid line represents the true spectrum with all GR effects taken
account properly. Dashed line shows how would the spectrum look like if there was no relativistic
light bending and photons were following straight lines as in a flat space (all other GR effects are
preserved).
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Figure 2. Observed spectra (lines in bold black) for total optical depths τ = 1 (left), τ = 5 (middle)
and τ = 10 (right). Gray lines show the spectra from Fig. 1 without corona for reference. Corona
temperature is 108 K and its density decreases with square of radius.

6 SUMMARY

We have presented a new numerical code, COMPGR along with some technical details
behind its treatment of general relativistic radiation transport. Its capabilities include namely
Compton scattering with proper treatment of geodesic photon propagation between collision
events and as such it finds its use in setups involving scattering regions close to a black hole,
where gravitational effects on light propagation play a strong role.

We have demonstrated the importance of GR effect on the simple example of scattering
soft thermal photons in the radial wind of hot electrons. The results clearly justify the need
for a proper GR treatment of radiation transport.
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ABSTRACT
In this paper we provide a set of practical formulae that are helpful in calculating
the orientation of polarization vectors that are parallel transported from a region of
strong gravitational field of a Kerr black hole to a distant observer.

Keywords: Polarization – black hole – electromagnetic radiation – synchrotron
radiation

1 INTRODUCTION

Polarization of light is an important phenomenon in physics and astronomy makes no excep-
tion. When technology allowed astronomers to extend their view of the universe from optical
to other spectral bands of electromagnetic spectrum, they also realized that electromagnetic
waves carry some more information than just intensity and wavelength. It is the information
about polarization of the waves. But it took time until detectors were build able to detect
polarization properties of electromagnetic waves.

Polarization of solar radio emission was discovered already in 1939, but was published
only in 1946 (Hey, 1946; Reber, 1946). It was followed by discovery of polarization of
starlight by Hall (1949) and Hiltner (1949). Radio polarization of Crab nebula was detected
in 1954 (Dombrowskii, 1954) and shortly after that Jupiter radiation belt polarization was
reported in 1956 (Franklin and Burke, 1956). On the largest scale, polarization of radio
galaxies and of the Milky Way was reported in 1962 (Wielebinski et al., 1962; Westerhout
et al., 1962).

Highly polarized radiation of synchrotron origin is often observed from active galactic
nuclei, where it originates from ejections of jets by super-massive black holes. A super-
massive black hole, Sgr A*, rests also in the center of our Galaxy and it is a source of
compact non-thermal radio emission (Rogers et al., 1994), which is believed to originate
from a synchrotron emitting region closely surrounding the black hole (Beckert and Duschl,
1997; Aitken et al., 2000). Near-infrared observations of Sgr A* from past years revealed
repeating simultaneous NIR and X-ray flares of partially polarized (in NIR) emission
(e.g. Eckart et al. 2004) that may be produced by synchrotron self-Compton mechanism
(Eckart et al., 2008).
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Models that deal with an emission region that is closer than some ∼ 30 rg from the
central black hole must take into account relativistic effects such as gravitational red-shift
and lensing, beaming and light bending, and also the change of polarization angle. For
the change of polarization angle, authors usually use the method described by Connors and
Stark (1977) and Connors et al. (1980). In this paper, we present a derivation of a simple
formula for the change of polarization angle of a linearly polarized synchrotron radiation
during parallel transport along the photon path from the point of emission to infinity. The
formula is still based on the approach of Connors, Stark and Piran, but hides the details of
the parallel transport.

Throughout this paper we use geometrical units with G = c = M = 1. According to
Misner et al. (1973), we denote 4-vectors either as Xµ or with bold face as X depending on
whether we mean their components in a specific basis or we mean an invariant geometrical
object independent of coordinate system, respectively. For scalar products of two 4-vectors
A and B we use a simplified notation AµBµ = AµBνgµν = A · B = (A B).

2 DESCRIPTION OF POLARIZED LIGHT

In the geometrical optics approximation, which is appropriate whenever the wavelength
of an electromagnetic wave is much lower than both the typical radius of curvature of
the spacetime and the typical length over which wave characteristics like amplitude or
wavelength vary, three fundamental assumptions are made: (a) light rays are null geodesics,
(b) the number of photons is conserved, and (c) the polarization vector is perpendicular to
the rays and is parallel transported along the rays (Misner et al., 1973).

In Maxwell’s theory, a monochromatic wave is described by the vector potential

A = <
{

a eı̇θ
}
, (1)

which satisfies the source-free wave equation ∆A = 0 and the Lorentz gauge condition
∇ A = 0. Here, a is a slowly varying complex amplitude of the wave and θ is a rapidly
varying real phase that is proportional to the distance the wave has travelled and inversely
proportional to its wavelength. In general, the amplitude vector a consists of a main part,
which is independent of the wavelength λ, plus eventually small corrections that depend on
λ and that represent any deviations from pure geometrical optics due to finite wavelength
(we will ignore those here).

When seeking for a solution of the wave equation with gauge condition, it is useful to
introduce three quantities that describe the electromagnetic wave: wave vector k = ∇θ ,
scalar amplitude of the wave a = (a · ā)1/2, and polarization vector f = a/a. If we then
insert the vector potential (1) into the Lorentz gauge condition, we get

0 = Aµ
;µ
= <

{[
ikµaµ + aµ

;µ

]
eiθ
}

(2)

from which we see that kµaµ = 0 or equivalently that

k · f = 0 , (3)
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meaning that the polarization vector is perpendicular to the wave vector. From the definition
of f we see that it also satisfies

f · f = 1 . (4)

The polarization state of electromagnetic radiation can be described by a set of Stokes
parameters [I, Q,U, V ] proposed by Stokes (1852) or alternatively in terms of its total
intensity I , (fractional) degree of polarization δ, and the shape parameters of the polarization
ellipse ψ and χ .

Both descriptions use total intensity of radiation I as one parameter and the relation
between the remaining three Stokes parameters and polarization ellipse parameters is

Q/I = δ cos 2ψ cos 2χ , (5)
U/I = δ sin 2ψ cos 2χ , (6)
V/I = δ sin 2χ , (7)

or inversely

δ =

(
Q2
+U 2

+ V 2)1/2
I

, (8)

tan 2ψ =
Q
U
, (9)

sin 2χ =
V(

Q2 +U 2 + V 2
)1/2 , (10)

where the factor of two before ψ reflects the rotational symmetry of the ellipse (rotation
by 180◦) and the same factor before χ reflects another symmetry of 90◦ rotation and
swapping axes.

Stokes’ description has the advantage over other ways that Stokes parameters can be
expressed in units of spectral density I (ν), which is what is measured at the end, and that
they can be added, which is useful when summing up contributions from many elements of
the solid angle.

Most processes in astrophysics produce linearly or highly linearly polarized light. If we
only focus on a case of linearly polarized wave (χ = 0), then the polarization ellipse
degenerates into a line and instead of two parameters for its description we only need one,
which is the polarization angle ψ . The relation between Stokes parameter and polarization
ellipse parameters then simplifies into

Q/I = δ cos 2ψ , (11)
U/I = δ sin 2ψ , (12)
V/I = 0 (13)
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and

δ =
(
Q2
+U 2)1/2/I , (14)

ψ =
1
2

tan−1 Q/U . (15)

When we denote

fX = Q/I , fY = U/I , (16)

then both fX and fY range from−1 to+1 and can be viewed as components of a polarization
vector f relative to a chosen basis (X,Y), where X and Y are unit space-like vectors
orthogonal to wave-vector k. The choice of the polarization plane basis can be arbitrary.

The angle between one of the polarization basis vectors and the polarization vector then
defines the polarization angle. While polarization degree is a Lorentz invariant, polarization
angle is somewhat loosely defined as it depends on the orientation of an at-will chosen basis.

When a different basis (X ′,Y ′) is chosen, which is rotated against the original basis
(X,Y) by an angle β, the polarization vector ( fX , fY ) changes to(

f ′X
f ′Y

)
=

(
cos 2β sin 2β
− sin 2β cos 2β

)(
fX
fY

)
=

(
fX cos 2β + fY sin 2β
− fX sin 2β + fY cos 2β

)
(17)

Assume that the original basis is conveniently chosen in such a way that one of its base
vectors coincides with the polarization vector (X = f , Y ⊥ X). Then fY = 0 and the
above expression simplifies to

f ′ =
(

fX cos 2β,− fX sin 2β
)
, (18)

which after applying some goniometric relations becomes(
f ′X
f ′Y

)
=

(
( f ·X)2 − ( f ·Y)2

2( f ·X)( f ·Y)

)
=

(
fX

2
− fY

2

2 fX fY

)
, (19)

where fX = f · X = cosβ and fY = f · Y = cos (90◦ − β) = sinβ.
Although we started from a special case of conveniently oriented polarization basis, due

to its invariant form, the final expression (19) is valid generally.

3 PARALLEL TRANSPORT OF POLARIZATION VECTOR

Kerr spacetime has two obvious symmetries that arise from the fact that it does not depend
on time and azimuthal coordinate. This enables one to find two corresponding Killing
vectors associated with those differentiable symmetries that satisfy Killing equation∇µKν+
∇νKµ = 0. The Kerr solution also admits a hidden symmetry represented mathematically
by the existence of a Killing tensor field K ′µν – a symmetric tensor field satisfying condition
∇(αK ′µν) = 0 (that the trace-free part of the symmetrization of ∇K vanishes).

According to Noether’s theorem (Noether, 1918), all spacetime symmetries are related to
conserved quantities. Each Killing vector corresponds to a quantity that is conserved along
geodesics, meaning that the product of the Killing vector and the geodesic tangent vector is
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conserved along the geodesic so that d(Kµ dxµ/dλ)/dλ = 0, where λ is an affine parameter
of the geodesic. However, these two constants of motion would not be enough to solve non-
equatorial geodesic motion. There exists a third constant of motion, Carter’s constant Q
(Carter, 1968), which is associated with Killing tensor (Q = K ′µνuµuν). Physically, the
three constants correspond to the conserved energy, the angular momentum with respect to
the symmetric axis of the black hole, and the square of the total angular momentum along
the geodesic (Bardeen et al., 1972; Wald, 1984) and enable to solve general geodesic motion
in Kerr spacetime (Misner et al., 1973; Chandrasekhar, 1983) analytically.

In addition, Kerr spacetime, as well as other {2, 2} vacuum spacetimes, posses a con-
formal Killing spinor, which helps to determine parallel propagation of vectors that are
perpendicular to geodesics, e.g. ‘polarization vectors’ (Walker and Penrose, 1970; Chan-
drasekhar, 1983). Walker and Penrose proved that if kµ(λ) is a null geodesic and f µ is a
vector such that

kµ fµ = 0 and (20a)
f µ fµ = 1 (20b)

(unit vector orthogonal to kµ; c.f. Eqs. (3) and (4) and parallel propagated along kµ, then
the quantity

KWP = 2
[
k · l f · n− k · m f · m̄

]
Ψ
−1/3
2 , (21)

is conserved along the geodesic, i.e. kµ∇µKWP = 0. Here lµ, nµ, mµ, m̄µ are compo-
nents of Newmann–Penrose orthonormal tetrad and Ψ2 is the only non-zero Weyl scalar
representing the gravitational monopole of Kerr metric.

Since Ψ2 is a complex scalar, we can write KWP in the form

KWP = K1 + ı̇ K2 (22)

and in Boyer–Lindquist coordinates (see e.g. Walker and Penrose 1970; Connors and Stark
1977; Chandrasekhar 1983; Li et al. 2009 for details) we find that

K1 + ı̇ K2 = (A − ı̇ B)(r − ı̇a cos θ) , (23)

where

A =
(
kt f r
− kr f t)

+ a sin2 θ
(
kr f φ − kφ f r ) , (24)

B =
[(

r2
+ a2)(kφ f θ − f φkθ

)
+ a

(
kt f θ − kθ f t)] sin θ . (25)

If we evaluate KWP at any given point, we can then solve the parallel transport of vector f
along the whole geodesic. Equation (23) is equivalent to two real equations plus we have the
condition of orthogonality (20a) that does not follow from Walker–Penrose theorem and is
an independent one. With these three equations we can fix three space-like components of
vector f . The time-like component of f can be chosen arbitrarily at a fixed point, because
f is defined only up to an additive multiple of k. This follows trivially from the fact that k
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is a null vector and that for f ′ = f + αk both conditions (20a) and (20b) are satisfied. The
polarization vector can be thus written without loss of generality, e.g. as

f µ =
(
0, cosψ X i

+ cosψ Y i ) , (26)

for some polarization basis characterized by space-like vectors (X,Y) orthogonal to k.
When the above choice of f µ is plugged into Eq. (23) and the set of equations is solved

for a null geodesic that passes through a point (t, r, θ, φ), it is possible to express the final
polarization vector at infinity in terms of photon’s constants of motions λ and Q. The
relative change of polarization angle due to parallel transport is then (Connors et al., 1980)

∆χ = tan−1
(
−S K2 + T K1

−S K1 − T K2

)
, (27)

where

S =
λ

sin θobs
− a sin θobs = −α − a sin θobs , (28)

T = sgn
(
kθ
)
∞

(
Q − λ2 cot2 θobs + a2 cos2 θobs

)1/2
= β (29)

with a, α, β and θobs being respectively the black-hole spin, the horizontal and vertical
impact parameters of the null geodesic on the observer’s image plane and the observer’s
inclination angle.

4 APPLICATION TO SYNCHROTRON RADIATION

4.1 Synchrotron emission

When high-energy charged particles (especially electrons) move fast through magnetic fields
while they move along magnetic field lines), synchrotron radiation is produced. Synchrotron
radiation is like standard cyclotron radiation with the difference that the energetic particles
have relativistic speeds and the observed frequency of radiation is affected by the Doppler
effect and by the Lorentz factor γ . Another factor γ comes from the relativistic length
contraction, which can put the radiation spectrum into the X-ray range. The radiated power
is given by the relativistic Larmor formula while the force on the emitting electron is given
by the Abraham–Lorentz–Dirac force.

Two main characteristics of astronomical synchrotron radiation include non-thermal
power-law spectra and polarization. Following Rybicki and Lightman (1979), a power-
law distribution of electrons n(E) dE ∼ E−p dE has the specific intensity distribution
I (ν) ∼ν−s , where s = (p− 1)/2 is the spectral index and maximal degree of polarization

δ =
s + 1

s + 5/3
=

p + 1
p + 7/3

. (30)

The simplified model of local synchrotron emissivity (taking into account only the power-
law part of the synchrotron spectrum) is then gives spectral density

I (ν) = I0

(
ρ

ρ0

) (
B
B0

sinϑ
)1+s

ν−s , (31)

where ϑ is the local angle between the magnetic field and the direction of emission and the
relation is valid up to the critical frequency νc.
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4.2 Polarization vector for linearly polarized radiation

In this section we derive practical formulae for determining initial polarization vector f at
a point of emission.

Let us assume a packet of synchrotron radiation emitted from a certain place by electrons
that pass this place moving along magnetic field lines of intensity B. Photons from the packet
that eventually reach an observer at infinity all have 4-momentum P The electrons have
some local distribution of energies and velocities, but they are part of a fluid with bulk
motion characterized by 4-velocity U .

From the properties of synchrotron radiation we know that the radiation will be partially
linearly polarized and that the direction of polarization will be perpendicular to the projec-
tion of magnetic field onto the polarization plane.

The polarization plane contains polarization vector f (it is the plane in which electric
and magnetic field vectors oscillate) and it is perpendicular to the direction of photon
propagation. We can determine the polarization plane by constructing its normal vector
Z pointing in the direction of propagation of the wave. From the the concept of ideal
magneto-hydrodynamics (perfectly conducting fluid) it follows that B is a space vector
(B · U = 0) and so Z and f must be space-vectors too.

Because the direction of propagation is given by photons’ 4-momentum P , we are looking
for a unit vector in a form

Z ∼ P + α1U , (32)

that has to satisfy Z · Z = 1 (unit vector) and Z · U = 0 (space vector). It is easy to find
that

Z = U +
U

(U P)
. (33)

Now, with the help of Z, we can find a projection of magnetic field vector B onto the
polarization plane simply as

B⊥ = B − α2 Z , (34)

where α2 Z = B‖ stands for the component of B parallel with the direction of propagation.
The factor α2 can be fixed from the condition B · P = 0 and so we have

B⊥ = B −
(B P)
(U P)

Z . (35)

Our polarization vector f can be then chosen in the direction of B⊥.

f =
B⊥
|B⊥|

=
(U P) B − (P B) Z[

(U P)2 B2 − (P B)2
]1/2 . (36)

4.3 Linear polarization at infinity

For a practical calculation of parallel transport of polarization vector, we are going to need
to define a set of base vectors in the polarization plane.
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We have free will in setting up the polarization plane basis and that can be done in
a number of ways. Since one usually constructs an orthonormal basis that defines a local
reference frame of the fluid (LRF), we may use that frame for construction of our polarization
basis. Because LRF is a Cartesian frame by definition, we may choose a completely random
vector r̃ , from which we derive two other vectors V and W that are both perpendicular to
P and they are also perpendicular one another.

V = r̃ × P and W = V × P . (37)

The choice of the initial random vector r̃ can be simply made as r̃ (a) = (0, r1, r2, r3) in LRF,
where r1, r2, r3 are non-zero independent random numbers (the time component is zero for
the vector to be a space vector). Due to the fact that scalar product of vectors is invariant,
vectors V , W and P remain perpendicular in any frame of reference.

We must still make sure that the base vectors of our polarization plane are unit vectors
and that they lie in the plane. For that reason we introduce another set of vectors X and Y ,
where

X = V + α3 P , (38a)
Y = W + α4 P (38b)

and we require that |X|= |Y | = 1 and that X · U = Y · U = 0. The later condition allows
us to fix α3 and α4 and we have

X =
(

V −
(V U )
(P U )

P
)

1
(V V )1/2

, (39a)

Y =
(

W −
(W U )
(P U )

P
)

1
(W W )1/2

. (39b)

These are the base vectors of our polarization plane. It is easy to verify that X · Y = 0.
The last thing we need to do is to project polarization vector f into our polarization plane

basis:

fX = f · X =
(U P)(B V )− (B P)(U V )[

(U P)B2 − (P B)2
]1/2

(V V )1/2
, (40a)

fY = f · Y =
(U P)(B W )− (B P)(U W )[

(U P)B2 − (P B)2
]1/2

(W W )1/2
. (40b)

Coming back to Eq. (16) and (19), we can express the angle between polarization plane
and our polarization basis (X,Y) (the polarization angle) as

χ =
1
2

tan−1

(
2 fX fY

f 2
Y − f 2

X

)
. (41)
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and its change due to strong gravity effects from Eq. (27) as

∆χ = tan−1
(
−S K2 + T K1

−S K1 − T K2

)
. (42)

The final set of Stokes parameters for a single light-ray is then

I (ν) = g3 I0(ν/g) , (43a)
Q(ν) = I (ν) δ cos(2χ + 2∆χ) , (43b)
U (ν) = I (ν) δ sin(2χ + 2∆χ) , (43c)
V (ν) = 0 , (43d)

where g is the relativistic red-shift factor relating the place of emission and infinity, δ is the
conserved polarization degree and I0 is the specific intensity of the emission (see Eqs. 30
and 31).

5 SUMMARY

We have presented a detailed description of the theory of parallel transport of polarized
light in Kerr spacetime with an emphasis on the example of parallel transport of linearly
polarized light.

In case of linear polarization induced by synchrotron radiation produced in a fluid with
a magnetic field, we give useful and practical formulae for numerical computation of the
observed polarization angle. The procedure can be summarized to a step-by-step guide of
how to proceed:

(1) At a given point (t, r, θ, φ) evaluate the vector of magnetic field B, 4-velocity U of
the fluid, and the photon 4-momentum vector P .

(2) Set up an orthonormal tetrad for the local rest frame (LRF) based on U and in LRF
construct a random vector r̃ and from that two vectors V and W that are perpendicular to
each other and to the direction of P (Eq. 37).

(3) Calculate the necessary scalar products (U · P , B · P , B · B and U · V , U · W ,
V ·V , W ·W ) and with the help of those evaluate the components fX , fY of the polarization
vector (Equation 40).

(4) Evaluate the polarization angle and its change due to parallel transport using
Eqs. (41) and (42).

(5) Integrate the resulting Stokes parameters at the detector using Eq. (43).
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ABSTRACT
In X-ray spectra of several active galactic nuclei and Galactic black hole binaries
a broad relativistically smeared iron line is observed. This feature arises by fluores-
cence when the accretion disc is illuminated by hot corona above it. Due to central
location of the corona the illumination and thus also the line emission decrease with
radius. It was reported in the literature that this decrease is very steep in some of the
sources, suggesting a highly compact corona.

We revisit the lamp-post setup in which the corona is positioned on the axis
above the rotating black hole and investigate to what extent the steep emissivity
can be explained by this scenario. We show the contributions of the relativistic
effects to the disc illumination by the primary source – energy shift, light bending
and aberration. The lamp-post radial illumination pattern is compared to the widely
used radial broken power-law emissivity profile. We find that very steep emissivities
require the primary illuminating source to be positioned very near the black hole
horizon and/or the spectral power-law index of the primary emission to be very high.
The broken power-law approximation of the illumination can be safely used when
the primary source is located at larger heights. However, for low heights the lamp-post
illumination considerably differs from this approximation.

We also show the variations of the iron line local flux over the disc due to the
flux dependence on incident and emission angles. The former depends mainly on
the height of the primary source while the latter depends on the inclination angle of
the observer. Thus the strength of the line varies substantially across the disc. This
effect may contribute to the observed steeper emissivity.1

Keywords: accretion, accretion discs – black hole physics – line: formation – line:
profiles – relativistic processes – X-rays: galaxies – X-rays: binaries

1 This paper summarises the work done for the workshop Ragtime 12 held in 2010.
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1 Introduction

The broad iron line in the X-ray spectra of active galactic nuclei (AGN) and Galactic X-
ray binaries has been studied by various authors for more than two decades. The first
mention of the relativistic broadening of spectral lines due to high orbital velocities of
the accretion disc, where the iron Kα line arise by fluorescence, dates as far as 1989
when Fabian et al. studied the X-ray spectrum of Cygnus X-1 observed by EXOSAT
in 1983. Since then the relativistically broadened line was discovered in systems with
diverse masses: in AGN with central supermassive black holes (e.g. Risaliti et al., 2013), in
X-ray binaries with the black hole of several solar masses (e.g. Miller et al., 2013) and even
in systems with a neutron star (e.g. Cackett and Miller, 2013). Although the broad lines
seem very well established, one should mention that there exist an alternative explanation
of the phenomena – partially covering scenario proposed by Miller and Turner (2013).
However, recent X-ray reverberation studies of AGN support the reflection scenario, see
e.g. Fabian et al. (2013).

The shape of the observed line is determined by several factors: by the geometry of
the illuminating and reflecting region, by the physical properties of the re-processing
matter and by the properties of the central gravitating body. The shaping of line, mainly its
broadening, by the black-hole gravitation acting on photons emitted in the inner accretion
disc is used to measure the spin of the black hole. Actually, high energy redshift due to
large gravity near the centre is completely responsible for the extreme width of the line.
The other components can modify the overall line profile, yet, they are not able to change
the width of the line by themselves. Still their contribution may be important in determining
the spin value. This is caused by the particular shape of the relativistically broadened line –
the line flux gradually decreases with the decreasing energy, thus the lower edge of the line
is not easily pinpointed, its determination depends on how strong the line’s red wing is and
the contribution of the mentioned components may be important.

One of the inevitable components, that makes the formation of the fluorescent line
possible, is the illuminating corona. Its geometry will affect the illumination of the disc
and consequently also the emission of the line from different parts of the disc. This will
eventually alter the overall line profile. Usually the corona is supposed to be either extended
(e.g. Wilkins and Fabian, 2012) over large area above the disc or concentrated in a compact
region (e.g. Fabian et al., 2011). In the first case the illumination of the disc is often assumed
to be a broken power-law function of the radius, with more intensive illumination and
resulting higher line emission in the inner parts of the disc. Sometimes the observed radial
power-law near the black hole is quite steep (Wilkins and Fabian, 2011) and it was suggested
(Svoboda et al., 2012) that it could be caused by the second possible scenario, i.e. sort
of a lamp-post configuration, where the compact patch of the corona located above the
black hole illuminates the accretion disc, sometimes referred to as an aborted jet scenario
(Ghisellini et al., 2004) or a light bending model (Miniutti and Fabian, 2004). In this
geometry, the illumination of the disc is due to a compact primary source and photon
trajectories close to the centre are bent by strong gravity of the black hole. Consequently,
the radial profile of the line emission takes a particular form that depends on the height of
the lamp-post.
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In this paper we compare the two radial profiles of the line emission – the broken power-
law dependence and illumination in the lamp-post scenario. We concentrate mainly on the
question if the observed steep radial decrease of the emissivity could be interpreted in terms
of the lamp-post geometry. To this purpose we at first assume very simple local physics of
the emission, particularly, the emission does not depend on incident and emission angles,
and the flux in line is isotropic and proportional to the incident flux. Then, we also apply
the emission directionality given by the numerical modelling of radiative transfer (using
Monte Carlo multi-scattering code NOAR, see Dumont et al., 2000).

2 Relativistic lamp-post geometry

The lamp-post geometry has been introduced to describe the observed emission from X-ray
irradiated accretion discs by Matt et al. (1991) and Martocchia and Matt (1996). The model
consists of an X-ray source (‘lamp’) producing the primary irradiation and representing an
optically thin corona that is thought to extend above the optically thick medium of a standard
accretion disc (Frank et al., 2002). This scheme has proved to be very popular in the context
of accreting supermassive black holes in cores of AGN (Peterson, 1997). Location of the
primary source on the black hole axis can be imagined, e.g. as a site of action where jets
are initially accelerated (Biretta et al., 2002) or where the shocks in an aborted jet collide
(Ghisellini et al., 2004). A down-scaled version of the model has been also invoked to
describe microquasars (Mirabel and Rodríguez, 1998).

The lamp-post geometry (on or off-axis) has already been studied in various context
by several authors – AGN variability was studied by (Miniutti and Fabian, 2004) and
Niedźwiecki and Miyakawa (2010), the polarisation properties were investigated by Dovčiak
et al. (2011) and the X-ray reverberation mapping by Emmanoulopoulos et al. (2014) and
Cackett et al. (2014). Recently, Dauser et al. (2013) has studied disc reflection due to
illumination by a jet, i.e. radially extended region moving along the axis.

Despite the fact that realistic corona must be a very complex, inhomogeneous and tur-
bulent medium, the lamp-post model captures the main components of a typical AGN
spectrum, and it allows us to search for the parameter values. In particular, the slope of
the primary power-law continuum, and the skewed and redshifted profile of the broad iron
line around 6–7 keV that has been interpreted in terms of relativistically smeared reflection
spectrum.

It has been shown (Wilms et al., 2001) that a steep emissivity profile of ' 4.3–5.0 of
the iron-line and reflection features are required in XMM-Newton observation of MCG -6-
30-15. This has been interpreted in terms of highly central concentration of the irradiating
flux, in a much more compact nuclear region than predicted by pure accretion disc models.
Similarly steep emissivity profile has been reported in 1H0707-495 (Fabian et al., 2009)
and IRAS13224-3809 (Ponti et al., 2009). In order to explain the unusually steep spectrum,
Wilms et al. (2001) invoke some additional X-ray source that is presumably associated with
the extraction of the black hole spin energy, perhaps via some kind of magnetic coupling
(Blandford and Znajek, 1977).

The main aim of the present investigation is to verify whether the relativistic effects
can produce the steep emissivity required by the mentioned observations. To this end we
consider Kerr metric for the gravitation of a rotating black hole, and we allow for both
prograde and retrograde rotation of the accretion disc with respect to the black hole spin.
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A complex interplay of the energy shifts, aberration, boosting and light-bending effects
acts on the primary as well as reflection components of the X-ray spectrum, especially when
the source of irradiation is placed at a small height near above the horizon and if the black
hole rotates rapidly, so that the inner edge of the disc is at a small radius. As a result of this
interplay, it is not obvious at all whether the resulting emissivity comes out significantly
steeper in comparison to the non-relativistic limit of an irradiated standard disc.

To study the radial emissivity we first turn our attention to the reflected line component.
We assume the line flux to be proportional to the incident flux and the photons will be
emitted isotropically in local frame co-rotating with the Keplerian disc, no matter what
the incident and emission angles are. In this way we are going to study the effect of the
relativistic lamp-post geometry only, separating it from the effects due to the dependence
of the local physics on geometry of the incident and emission light rays.

In this approach the local line emission in the disc is proportional to the normalization of
the power-law incident flux. We assume the primary emission to be isotropic in local frame
and that it is a power law with the photon index Γ , i.e. fl(El) = Nl E−Γl . Then the incident
flux, fi, is a power law with the same photon index but with a different normalization

fi(Ei) = Ni(r)Nl E−Γi . (1)

Here, the normalization Ni(r) is given by the curved geometry of the light rays and rela-
tivistic shift of the energy. It can be expressed in the following way (see e.g. Dovčiak, 2004)

Ni(r) = gΓi
dΩl

dSi
=

gΓ−1
i

U t
l

dΩl

dS
. (2)

The primary photons emitted by the lamp-post into the local solid angle dΩl fall down onto
the disc area measured in the frame co-moving with the disc dSi = piµUµ dS = gi U t

l dS.
These photons are shifted to the incident energy Ei from the emission energy El by the
energy shift gi = Ei/El = piµUµ/plµUµ

l which is responsible for the factor of gΓi
in the above equation. We have denoted the four-momentum of the incident photons by
pµi , the four-velocity of the static lamp-post by Uµ

l = (U
t
l , 0, 0, 0) and the four-velocity of

the disc by Uµ. We assume the disc to be Keplerian above the marginally stable orbit and
freely falling below it with the constant energy and momentum that the matter had at this
orbit. The area element dS = r dr dϕ is evaluated in Boyer–Lindquist coordinates.

The normalization of the incident flux, Ni, is a function of radius, and thus it determines
the radial emission profile of the line flux. We can separate this function into several
components

Ni(r) =
1
r

dµn

dr
×

gΓ−1
i

U t
l
×

dµ
dµn
×

dµl

dµ
. (3)

The first component is chosen in such a way that it represents exactly the Newtonian
value of Ni(r)

N n
i (r) ≡

dΩn

dS
=

1
r

dµn

dr
=

h(
r2 + h2

)3/2 . (4)
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Figure 1. Left: The sketch of the lamp-post geometry. Middle: Due to the light bending the photons
illuminating the same area of the disc are emitted by the primary source into different solid angles
in the relativistic and the Newtonian cases. Right: The photons emitted isotropically in the rest frame
of the primary source are beamed perpendicularly to the rotation axis because of the strong gravity
near the black hole.

In the above, we have introduced the Newtonian angle of emission, θn, as the angle under
which the primary photon has to be emitted from the lamp-post at height h in the Newtonian
non-curved space so that it falls down onto the disc at the radius r and µn ≡ cos θn.

The second component, gi(r)Γ−1/U t
l , is connected with the energy shift of the incident

photons and it should be emphasized that it depends on the primary flux via the photon
indexΓ . For Keplerian discs in the Kerr space-time it can be expressed above the marginally
stable orbit as

N s
i (r) =

(
r2
+ a
√

r

r
√

r2 − 3r + 2a
√

r

)Γ−1 (
1−

2h
h2 + a2

) Γ
2
. (5)

The third component,

N b
i (r) ≡

dΩ
dΩn
=

dµ
dµn
=

sin θ
sin θn

dθ
dθn

, (6)

represents the effects of the light bending in the curved space-time. It compares the solid
angle dΩ in the Boyer–Lindquist coordinates with the Newtonian value, defined above, into
which primary photons have to be emitted to illuminate the disc area dS at the disc radius r .

The fourth component represents the “gravitational aberration”. Due to the fact that the
local observers on the axis measure the distances differently along the axis and perpen-
dicular to it, the local isotropic emission will be beamed in Boyer–Lindquist coordinates
in the direction perpendicular to the axis. We can express it by comparing the solid angle
in local frame of the lamp-post with the solid angle in Boyer–Lindquist coordinates

N a
i (r) =

dΩl

dΩ
=

h
√
∆h

[
1+

(
∆h

h2 − 1
)

cos2 θl

]3/2

, (7)

where ∆h ≡ h2
− 2h + a2 and the photon’s local emission angle θl is a function of the

radius r at which such a photon strikes the disc. One can see that the solid angle dΩ is
amplified by the factor h2/∆h > 1 along the axis (θl = 0◦ or θl = 180◦) and it is diminished
by the factor

√
∆h/h < 1 in the direction perpendicular to the axis (θl = 90◦).
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Figure 2. The radial profile of the incident flux Ni(r) (top) and its radial power-law index q(r) (bottom)
in the relativistic lamp-post geometry with the illuminating primary source at heights h = 1.1, 2 and
6 GM/c2 (from left to right). The primary flux is a power law with the index Γ = 2 and the Kerr black
hole rotates extremely with the spin a = J/M = 1 GM/c. The contributions from the Newtonian,
energy shift, light bending and gravitational aberration parts are shown. The solid black line (Einstein)
depicts the overall incident flux and its radial power-law index.

On the top panels of Fig. 2 we show the radial profile of the function Ni(r) and its
components for extremely rotating black hole and for several heights of the primary source.
In Newtonian case the illumination of the disc is flat below the lamp-post and decreases
with the radius with the third power far from the centre. The energy shift component is
higher than unity for the radius lower than the height of the lamp-post (however, due to
the Doppler shift and black hole spin the transition radius is somewhat shifted) and it is
lower than unity above this radius. It is due to the fact that in the first case the photon
falls closer to the black hole, gaining the energy, whereas in the second case it climbs out
of the gravitational potential well, losing its energy. As a result, the shift gains very high
values for small radii close to the horizon and quite low values far from the black hole if
the height of the primary source is low.

The effect of light bending is stronger closer to the black hole. Thus the photon trajectory
that is nearer to the black hole is more curved, the difference in bending of two close trajec-
tories gets smaller farther away from the centre. This results in light bending component
N b

i (r) to be a decreasing function of radius.
Due to the fact that the gravitational aberration decreases the solid angle, which photons

are emitted into, the most in the direction perpendicular to the axis, the incident flux will be
amplified for those radii where the photons emitted in this direction strike the disc. That is
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why the component N a
i (r) first increases with the radius and then decreases. The maximum

moves farther away from the black hole for higher lamp-post. For very low heights of the
primary source, the photon trajectories emanating perpendicularly to the axis are bend so
much that they do not strike the disc, rather they fall onto the horizon. In that case this
component of the incident flux decreases with the radius.

To compare the relativistic lamp-post illumination with the broken power law one, we
define the radial power-law index for the lamp-post geometry as the slope of the radial profile
of Ni(r) in the log-log graph (i.e. slope of the graphs on top panels in Fig. 2). The definition
reads

q(r) ≡
d log Ni(r)

d log r
= −r

d
dr

ln Ni(r) . (8)

The radial power-law index defined in this way clearly depends on the radius. The four
components of the incident flux that has to be multiplied to give the overall illumination
translate into four components of the power-law index q(r) that have to be added to give
the overall relativistic radial power-law index. We show all four components of the index
on bottom panels in Fig. 2.

The index q(r) for large radius is given by the Newtonian value, q(r → ∞) = 3. For
very low radii, close to the horizon, the energy shift component dictates the behaviour of
the q(r). Its influence extend farther for higher primary spectral power-law index. For very
low heights, heights near above the black hole horizon, the component due to gravitational
aberration adds also quite significantly to the index for low radius. For low lamp-post heights
(h . 6 GM/c2), the light bending and gravitational aberration component may create local
maxima in the radial power-law index, depending on the black hole spin and primary
spectral power-law index Γ . More examples of the behaviour of the radial power-law index
q(r) for different parameter values are shown in Fig. A2. Note, that if the line emission
were proportional to the incident flux also below the marginally stable orbit (dotted lines in
Fig. A2), the index q(r) for lower absolute value of the black hole spin, i.e. larger radius of
the event horizon, would be larger. This is due to the energy shift component of the q(r),
which gains large values also at higher radii.

From Figures 2 and A2 it is evident that the relativistic lamp-post illumination is very
different from the broken power law, which would be represented by two constant values
in these figures. For comparison, we show the relativistic lamp-post emission together
with a broken power law in Fig. A1. The graphs in this figure are renormalized in such
a way that they do not intersect each other, here, we are interested in their shape only.
The broken-power-law graphs (depicted by red) have Newtonian value of the index, qout =

3, above the break radius, rb. The break radius and index q below it were chosen by
eye so that they approximately represent the relativistic lamp-post flux. We show their
values in Tables A1–A4. One can see that the broken power law is close enough only
in some radial regions whereas it fails for small radii near the horizon and region around the
break radius. Although the difference between the two is large in these regions (note, that
the graphs are in logarithmic scale), one still cannot jump to the conclusion that the broken
power-law approximation would fail in fitting the spectra originated in the relativistic lamp-
post geometry. The energy of the photons coming to the observer from regions close to
the horizon is strongly shifted to very low values and the troublesome region near the break
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radius may be small enough with respect to the whole disc to change the overall spectrum.
Thus the spectra for the broken power-law emissivity and for relativistic lamp-post geometry
might still be similar sufficiently.

From graphs in Fig. A1 one can see that the illumination profile would actually be much
better approximated with a power-law with two breaks instead of one, especially for higher
locations of the primary source. Comparisons between simple power-law and once or twice
broken power-law are investigated by Wilkins and Fabian (2011).

3 The directionality of the local flux

The flux emitted by the primary source illuminates the disc and the incident photons are
then re-processed in the orbiting material. They scatter on electrons, are absorbed by ions
or neutral atoms or they can be created by the fluorescence when electrons in ions or
neutral atoms change their state. Fluorescent spectral lines, line edges and Compton hump
are typical features of such reflected X-ray spectra (Ross and Fabian, 2005; García et al.,
2013). The most prominent spectral line in this energy band is that of iron (Fe Kα line
doublet for neutral iron is at 6.4 keV) due to its large abundance and high fluorescence
yield. The flux emitted locally in this line depends on number of absorbed photons that
create the vacancies and fluorescent yield which characterises how fast these vacancies fill.
If we assume that there is always enough photons that induce the fluorescence then the flux
in the line is mainly dependent on the absorption. A vacancy at the K level of a neutral iron
line is created when a photon with the energy above the iron K edge (at approx. 7.1 keV)
is absorbed. The efficiency of the absorption quickly decreases with the energy, thus only
photons up to a few keV above this edge are absorbed. This is due to the fact that the
K-absorption cross-section of a photon with energy E above the K-absorption edge at
7.1 keV (measured in the local disc frame) decreases approximately as (Verner et al.,
1993) 1.9 (E/7.1 keV)−3.1

− 0.9 (E/7.1 keV)−4.1 and thus levels off to 1 % of its initial
value already at 37.4 keV. Since the primary spectrum assumed in our model extends to
much higher energies, the flux in the line is simply proportional to the normalisation of the
incident power-law spectrum. We generally assume that both cut-off energies of the primary
spectrum lie outside the energy band where absorption occurs. We give two examples for
extremely rotating Kerr black hole to show how well this assumption is fulfilled:

(1) The lower energy cut-off is shifted to higher energy when the primary source is very
high above the disc. Then the incident photons gain the highest energy if they fall close to
the horizon. For the lamp at height h = 100 GM/c2 and incident radius at ri = 1.035 GM/c2

the photon energy shift is gi = 67. Thus the lower energy cut-off at 0.1 keV would be shifted
to 6.7 keV which is still below the Fe K edge. Note, that the emission below this region will
have very low contribution to the overall spectral shape of the observed broadened line both
due to small emission area and due to small value of the transfer function (that amplifies
local flux when transferred to the observer at infinity), G < 0.1 for inclination θo = 70◦

(and smaller for lower inclinations). The contribution from this region will be shifted by
the factor g < 0.1, thus to energy E < 0.64 keV.

(2) The high energy cut-off is shifted to lower energy when the primary source is very
low above the black hole horizon. Then the incident photons lose the energy when they have
to climb out of deep potential well, thus they lose more if they fall to the disc far away from
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the horizon. For the lamp at height h = 1.3 GM/c2 and incident radius at ri = 1000 GM/c2

the photon energy shift is gi = 0.186. Thus the higher energy cut-off at 200 keV would
be shifted to 37.2 keV which is still high enough above the Fe K edge. Note, that the
emission above this region will have quite low contribution to the overall spectral shape of
the observed broadened line due to radial decrease of the line emissivity as r−3.

We have computed the reflection from a neutral disc in constant density slab approxi-
mation by the Monte Carlo code NOAR (Dumont et al., 2000). The line flux was then
computed by subtracting the interpolated reflected continuum from the reflection spectra.
The line flux includes also the Compton shoulder created by scattering of the fluorescent
photons before they leave the disc. We approximate the line with a narrow box function with
a width of 1 eV (simulating a delta function) that has the numerically computed flux. This
speeds up the code without loss of precision since the relativistically broadened line does
not depend on the exact shape of the locally narrow line. The local Fe Kα flux depends on
incident and emission angles due to the fact that incident photon travels different distances
in different layers during radiative transfer in the disc. On the other hand it does not depend
on the azimuthal angle between incident and emitted light rays. We define the emission
directionality function as the numerically computed flux in line per unit normalisation of
the incident power-law flux

M(µi, µe) ≡
dN

dt dS⊥dΩ dE
=

1
2π µe

∆N
∆µe∆E Ntot

∫ Ec

E0

E−Γ dE , (9)

where∆N is the number of photons emitted into the emission angle bin characterised by its
cosine,∆µe, i.e. into the whole azimuth of 2π , hence the leading factor in the definition, and
into energy bin ∆E . Ntot is the total number of photons used in Monte Carlo computation
and thus we multiply by the integrated energy dependence to normalise it as mentioned
earlier, i.e. for incident power-law being exactly Fi(E) = E−Γ . In the definition (9) there
is one more factor of 1/µe due to the local flux being defined with respect to the area
perpendicular to the emitted light ray while the reflected number of photons was computed
per unit disc area. The sharp low, E0, and high, Ec, energy cut-offs at 2 and 300 keV,
respectively, were used in the computation. With this definition of emission directionality,
the local line flux is defined as

Floc(E) ≡ R(r)M(µi, µe) δ(E − Erest) (10)

with Erest = 6.4 keV being the rest energy of the neutral Fe Kα line and radial dependence
of the normalisation of the incident power-law as discussed in the previous section, R(r) =
Nl Ni(r), see Eq. (1).

We show the emission directionality function, M(µi, µe), in the bottom panel of Fig. 3
for the photon index of the primary radiation Γ = 2. To see which values this function may
acquire we also show the values of cosines of incident and emission angles at the top panel
of the same figure (maps of cosine of emission angles are also shown in Figs. B1, B4 and
B7). One can see that more radiation is emitted when the incident angle is large (measured
from the normal to the disc), i.e. when the photons arrive almost parallelly with the disc.
The same applies for the angular dependence of emissivity which obeys limb brightening
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Figure 3. Top left: The radial dependence of the cosine of the incident angle, µi, for different heights
of the primary source and for the extremely rotating black hole with the spin a = 1 GM/c. Top right:
The dependence of the cosine of the emission angle, µe, on the position on the disc. The spin of the
black hole is a = 1 GM/c and the inclination of the observer is θo = 30◦. Bottom: The emission
directionality function, M(µi, µe), is depicted for the photon index Γ = 2. Notice the high values it
acquires for large incident and emission angles.

law. The brightening is, however, smaller than the limb brightening law derived by Haardt
and Matt (1993), where M(µe) ∼ ln(1+µ−1

e ). Since both the incident as well as emission
angles are very high close above the horizon due to aberration caused by high Keplerian
velocity, the emission directionality will be highest in this region. We show the map of
M(µi(r, ϕ), µe(r, ϕ)) in the equatorial plane for several values of black hole spin, observer
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inclination and height of the primary source in Figs. B2, B5 and B8. One can already
appreciate the importance of the limb brightening effect by comparing the values of this
function with the values of energy shift, g, and transfer function (i.e. the amplification
of the local emission due to relativistic effects), G, shown in Figs. B1, B4 and B7. Thus
we can expect that the shape of the broad iron line may be substantially influenced by
the emission directionality. Moreover, the dependence of the emission directionality on
the radius through the radially dependent incident and emission angles might cause that
the observed radial emissivity profile, characterised by the radial power-law index q , might
be measured with a systematic error if wrong assumption on emission directionality is taken
(Svoboda et al., 2014).

4 The shape of the relativistic line in lamp-post geometry

In the previous two sections we have discussed the local line flux and its dependence on the
disc illumination, that gave us the radial part of the local emission, and local re-processing
in the disc, that determined the emission directionality. The final shape of the observed
spectral line is influenced by the relativistic effects that change the spectral properties of
the local emission when transferred to the observer at infinity. The local spectrum will be
shifted in energy due to Doppler shift and gravitational redshift, and it will be amplified
due to Doppler boosting, gravitational lensing, aberration and light bending (the last two
influence the local emission angle i.e. change the projections of the emitting area). To get
the observed shape of the line one has to integrate the local emission over the whole disc

Fobs(E) ≡
dNobs

dt dΩ dE
=

∫
dS G Floc δ(E − gErest) , (11)

where G is the transfer function (see e.g. Cunningham, 1975; Dovčiak, 2004) characterising
an amplification of the local line flux, Floc = R(r)M(µi, µe), which is shifted to the
observed energy by the g-factor, g = E/Erest. Note, that the δ-function in this equation is
in the observed energy while in the eq. (10) it was in the local energy. The transfer function
for a photon number density flux is G = g2 l µe, where the lensing, l, characterises
amplification due to focusing of the light rays (caused by light bending). As mentioned
in the previous sections, each part that contributes to the overall shape of the observed
line, R(r), M(µi, µe), G(r, ϕ) as well as the energy shift g(r, ϕ) are depicted in the
Appendices A and B. Additionally we also show the overall map of the observed flux
Fobs(r, ϕ) = G R(r)M(µi, µe) in the equatorial plane in Figs. B3, B6 and B9. Note, that
in the Eq. (11) for each observed energy one integrates this function along the energy shift
contour.

The shape of the relativistically broadened spectral line of iron for different assump-
tions on radial emissivity and emission directionality is shown in Fig. 4. One can see that
the broken power-law emissivities result in quite a different line shape only for a very low
locations of the corona when compared with a lamp-post illumination profile, in both cases
an isotropic local emission being assumed. The differences might be very well explained
by comparing the emissivity profiles in Fig. A1. The broken power-law emissivity under-
estimates the flux, the largest deficiency occurs in the region very close to the black hole,
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Figure 4. The comparison between the shape of the line in the lamp-post geometry with numerically
computed angular directionality (blue) and with isotropic emission (red), and with the radial broken
power-law emission with isotropic directionality (green). The height, h, the value of the inner radial
power-law index, q , and the break radius, rb, where it changes to qout = 3, are shown at the top of
each graph. The inclination of the observer is θo = 30◦, the spin of the black hole is a = 1 GM/c
and the photon index of the primary source is Γ = 2.

where the gravitational redshift is large, and around the break radius, rb. Note, that in Fig. 4
the line flux is in all cases normalised to unit total flux, so the spectral line for broken
power-law radial profile is not below that one for the lamp-post geometry for all energies.
One can see, however, that the line flux is much lower in two energy bands, one, where
the energy shift is large with small values of g-factor, g �1, (i.e. for low energies) and one
when the g-factor is widely spread around unity (i.e. energies around iron line rest energy)
that corresponds to the break radius region. Note, that the deficiency in the flux for low
heights changes to an excess in flux for high heights of the primary source.

Further differences in the line shape arise when isotropic emission is compared with
the numerically computed one given by the emission directionality function M(µi, µe).
Again these differences are large only for low heights of the corona. The numerically
computed directionality results in larger flux for low energies and energies around the rest
energy of the line. This is mainly due the incident angle being very high both in the vicinity
of the black hole as well as farther away from the centre (see the top left panel in Fig. 3)
when the emission directionality function acquires higher values (see the bottom panel in
the same figure).

To see how the shape of the relativistically broadened line depends on the height of
the source, let’s compare the line for three different spins and three different heights
(Fig. 5). One immediately sees that the line is much narrower for higher heights even for
the extreme Kerr black hole. This is due to the fact that the disc is illuminated much more
homogeneously from higher lamps and since the area of the inner part of the disc, where
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Figure 5. The comparison between the shape of the line in the lamp-post geometry for the
Schwarzschild (green) and co-rotating (red) and counter-rotating (blue) extreme Kerr black holes
for the primary source height, h = 2.1, 3 and 10 GM/c2. The inclination of the observer is θo = 30◦

and the photon index of the primary source is Γ = 2.

the red wing of the line arises, is very small compared to the area of the whole disc. Thus the
shape of the line changes very little for different black hole spins if the corona is positioned
more than 10 GM/c2 above the centre. Opposite is also true, i.e. if the black hole counter-
rotates with an extreme spin, one would not be able to distinguish between different heights
of the corona if the height is below approximately 10 GM/c2 above the centre. This is due to
the fact that in this case the hole in the disc below marginally stable orbit (rms = 9 GM/c2) is
quite large and the disc illumination for small heights of the primary source changes mainly
below this radius while it does not change that much above the inner edge of the disc.

5 Application to MCG-6-30-15

Using the computations from previous sections we have prepared a new XSPEC model
for the relativistically broadened Iron line in the lamp-post geometry, see the Appendix C
for more details. To find out what value of the height of the primary source one can expect
in real observations where large spin have been observed in the past, we applied our new
lamp-post model to the XMM-Newton spectrum of a nearby Seyfert 1 galaxy MCG-6-30-15.
Very broad iron line was reported in this source by several authors (e.g. Fabian et al., 2002;
Ballantyne et al., 2003; Vaughan and Fabian, 2003; Brenneman and Reynolds, 2006). We
followed the analysis presented in Svoboda et al. (2009) and we employed the same model
for the underlying X-ray continuum. However, we have used the new KYNRLPLI model
instead of the KYRLINE (Dovčiak et al., 2004b) so that we replaced the broken power-law
radial emissivity by the one that corresponds to the lamp-post geometry. In XSPEC syntax
the overall model reads: PHABS*(POWERLAW+ZGAUSS+ZGAUSS+KYNRLPLI). The best-fit
parameter values and their errors are shown in the table in the right panel of Fig. 6.
The parameters not shown in the table were frozen to their best-fit values from the previous
model set-up. The reduced χ2 value was 1.33. The contour plot of the primary source
height versus the black hole spin is shown in the left panel of Fig. 6. The best-fit value for
the height, h = 2.3 GM/c2, confirms our findings that if the primary source of power-law
radiation is static, it has to be located very close to the black hole so that it illuminates
the inner regions by large enough intensity to reveal the imprints of high spin in the observed
spectrum.
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Figure 6. Left: The χ2 contour graphs for the height, h, versus spin, a. Other parameters were kept
frozen. Right: The best fit values and their errors for the parameters of the model.

6 Conclusions

In this paper we have compared two types of iron line radial emissivity profiles, the one
governed by the illumination in the lamp-post geometry and the radial broken power-law
emissivity. We find that

• for the primary source height h & 3 GM/c2 the lamp-post geometry is very well approx-
imated with the broken power-law emissivity with the inner power-law index qin . 4 and
the outer index qout = 3,
• a very high radial power-law index, q > 5, may be achieved in the lamp-post geometry
only for very small heights, h .2 GM/c2, and, the difference in the line shape in the lamp-
post geometry and the broken power-law emissivity becomes large,
• very high q values originate very close to the central black hole, thus it can occur only
in the case of a highly spinning black hole,
• high q values are mainly due to the gravitational redshift for the primary emission with
the spectral index Γ > 1 and due to the gravitational aberration for very small heights;
the contribution of the light bending, as defined in this paper, is moderate.

Further we have investigated how the numerically computed emission directionality
changes the profile of the iron line approximated by isotropic emission. We show that

• the emission from the disc where the incident and emission angles are large is greatly
enhanced (limb brightening effect),
• the local emission directionality changes the shape of the broad line significantly, however,
only for small heights, h .10 GM/c2.

To summarise our modelling we conclude that in the lamp-post geometry with a corona
approximated by a static isotropic point source a very broad iron line profile arises for highly
spinning black holes only for the heights h .5 GM/c2, while for the heights h &10 GM/c2

the non-spinning and extremely spinning black holes are indistinguishable.
Similar conclusions were drawn by Dauser et al. (2013) for a moving elongated jet-

like structure along the axis. Another interesting conclusion in their paper is that such
a vertically extended region may be very well approximated by a point source at some
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effective intermediate height. On the other hand, Wilkins and Fabian (2012) show that such
steep emissivities may still be reached even if the corona is extended horizontally (as far as
30 GM/c2), provided it is very low above the disc (as low as 2 GM/c2). For a more detailed
discussion on the prospects of spin determination using X-ray reflection we refer the reader
to a recent paper by Fabian et al. (2014).
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A The radial illumination profile
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Figure A1. The radial profile of the incident flux, Ni(r), defined in Eq. (2), for the photon index
Γ = 1.5, 2 and 3 (left to right) and the BH spin a = 0, 0.8, 1 and −1 GM/c (top to bottom). For
better clarity, the results shown for different heights, as depicted in each panel, are renormalized so
as not to cross. The red lines represent the approximating broken-power-law profiles with the outer
slope set to −3 (see the Tables A1–A4 for details).
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Figure A2. The radial dependence of the power-law index q(r), defined in Eq. (8), for the photon
index Γ = 1.5, 2 and 3 (left to right) and the BH spin a = 0, 0.8, 1 and −1 GM/c (top to bottom).
The results for different heights, as depicted on each panel, are shown by solid lines above and by
dotted lines below the marginally stable orbit.
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Table A1. The values of the inner slope for the broken power-law, qi, and the break radius, rb, for
different height, h, (rows) and photon index, Γ , (columns) in the case of a non-rotating Schwarzschild
black hole (with the spin a = 0 GM/c, horizon rh = 2 GM/c2 and marginally stable orbit rms =
6 GM/c2). Both the height and the break radius are specified in units of GM/c2. These values
correspond to the broken power-law dependences in the top panels in Fig. A1.

a = 0

Γ 1.5 2 3

h qi rb qi rb qi rb

100 0.3 120 0.33 120 0.39 120
15 0.8 18 1.1 20 1.4 20
6 1.8 7 2.3 6 3.7 6
3 3.5 20 4.3 10 5.0 10

2.1 4.0 12 4.9 9 5.7 9

Table A2. The same as in Table A1 but for the co-rotating Kerr black hole with the spin a = 0.8 GM/c
(horizon rh = 1.6 GM/c2 and marginally stable orbit rms = 2.9 GM/c2). These values correspond
to the broken power-law dependences in the second row panels in Fig. A1.

a = 0.8

Γ 1.5 2 3

h qi rb qi rb qi rb

100 0.3 120 0.33 120 0.39 120
15 0.7 17 1.0 19 1.4 20
6 1.6 7 2.0 6 3.1 8
3 3.4 20 3.7 15 4.7 9
2 4.2 10 4.9 8 5.2 9

1.7 4.6 8 5.2 7 5.3 9
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Table A3. The same as in Table A1 but for the extreme co-rotating Kerr black hole (with the spin
a = 1 GM/c, horizon rh = 1 GM/c2 and marginally stable orbit rms = 1 GM/c2). These values
correspond to the broken power-law dependences in the third row panels in Fig. A1.

a = 1

Γ 1.5 2 3

h qi rb qi rb qi rb

100 0.3 120 0.33 120 0.39 120
15 0.65 17 1.0 19 1.4 21
6 1.3 6 1.8 6 2.6 4
3 3.3 35 3.4 22 4.0 15
2 3.8 15 4.3 10 5.3 8

1.5 5.6 5 6.2 5 7.4 5
1.1 6.7 4 7.5 4 9.1 4

Table A4. The same as in Table A1 but for the extreme counter-rotating Kerr black hole (with the spin
a = −1 GM/c, horizon rh = 1 GM/c2 and marginally stable orbit rms = 9 GM/c2). These values
correspond to the broken power-law dependences in the bottom panels in Fig. A1.

a = −1

Γ 1.5 2 3

h qi rb qi rb qi rb

100 0.3 120 0.33 120 0.39 120
15 0.9 19 1.2 20 1.5 20
6 1.9 7 2.6 6 3.6 9
3 3.5 20 4.3 10 5.4 9
2 5.0 6 6.0 6 7.8 6

1.5 6.2 5 7.4 5 9.7 5
1.1 7.6 4 9.4 4 12.4 4
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B Maps of the transfer function, emission directionality and observed flux
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Figure B1. The equatorial plane map of the energy shift, g, cosine of emission angle,µe, and transfer
function, G, (top to bottom) for the co-rotating Kerr black hole (a = 1 GM/c) and three inclination
angles, θo = 30◦, 60◦ and 85◦ (left to right).
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Figure B2. The equatorial plane map of the local flux emission directionality, M(µi, µe), for the
co-rotating Kerr black hole (a = 1 GM/c) and three inclination angles, θo = 30◦, 60◦ and 85◦ (left
to right), and three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom).
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Figure B3. The equatorial plane map of the observed line flux, Fobs(r, ϕ), for the co-rotating Kerr
black hole (a = 1 GM/c) and three inclination angles, θo = 30◦, 60◦ and 85◦ (left to right), and
three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom).
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Figure B4. The equatorial plane map of the energy shift, g, cosine of emission angle,µe, and transfer
function, G, (top to bottom) for the Schwarzschild black hole (a = 0 GM/c) and three inclination
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Figure B5. The equatorial plane map of the local flux emission directionality, M(µi, µe), for
the Schwarzschild black hole (a = 0 GM/c) and three inclination angles, θo = 30◦, 60◦ and 85◦

(left to right), and three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom).
The marginally stable orbit at rms = 6 GM/c2 is denoted by a black circle.
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Figure B6. The equatorial plane map of the observed line flux, Fobs(r, ϕ), for the Schwarzschild
black hole (a = 0 GM/c) and three inclination angles, θo = 30◦, 60◦ and 85◦ (left to right), and
three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom). The marginally stable
orbit at rms = 6 GM/c2 is denoted by a black circle.
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Figure B7. The equatorial plane map of the energy shift, g, cosine of emission angle, µe, and
transfer function, G, (top to bottom) for the counter-rotating Kerr black hole (a = −1 GM/c) and
three inclination angles, θo = 30◦, 60◦ and 85◦ (left to right). The marginally stable orbit at
rms = 9 GM/c2 is denoted by a black circle.
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Figure B8. The equatorial plane map of the local flux emission directionality, M(µi, µe), for the
counter-rotating Kerr black hole (a = −1 GM/c) and three inclination angles, θo = 30◦, 60◦ and
85◦ (left to right), and three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom).
The marginally stable orbit at rms = 9 GM/c2 is denoted by a black circle.
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Figure B9. The equatorial plane map of the observed line flux, Fobs(r, ϕ), for the counter-rotating
Kerr black hole (a = −1 GM/c) and three inclination angles, θo = 30◦, 60◦ and 85◦ (left to right),
and three heights of the primary source, h = 3, 10 and 100 GM/c2 (top to bottom). The marginally
stable orbit at rms = 9 GM/c2 is denoted by a black circle.
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C The relativistic iron line model for the lamp-post geometry
To be able to use the lamp-post scheme with the data we have developed the model

for XSPEC (Arnaud, 1996) – KYNRLPLI (KY Non-axisymmetric Relativistic Lamp-Post
LIne). This model is based on the non-axisymmetric version of the KY package of models
(Dovčiak et al., 2004a,b; Dovčiak, 2004).

The model approximates the corona above the disc by a static isotropic point source
located on the rotational axis at height, h, above the disc (measured from the centre of
the black hole). Thus the radial emissivity profile is given by the illumination from such
corona. All relativistic effects are taken into account all the way from the primary source
to the disc and from the disc to the observer.

The local flux angular dependence, M(µi, µe), is computed with the Monte Carlo code
NOAR (Dumont et al., 2000), see also Fig. 3 and Appendix B.

As is usual in non-axisymmetric KY models, it is possible to choose that the radiation
comes only from a segment of the disc to simulate an emission from a spot. The inner and
outer radius might be set either in physical units of GM/c2 or as a multiple of the marginally
stable orbit, rms.

On the other hand we have added a possibility to obscure part of the disc by a circular
cloud in the observer’s sky (i.e. farther away from the centre). The centre of the cloud is
set in impact parameters, α and β, where α is positive for approaching side of the disc and
β is positive above the black hole and negative below it (in the observer’s sky).

Table C1. Description of the KYNRLPLI parameters par1–par9.

param. param. unit possible description
number values

par1 a GM/c −1–1 black hole angular momentum
par2 θo deg 0–89 observer inclination

(0◦ – pole, 90◦ – disc)

par3 rin GM/c2 1–1000 inner disc edge
par4 ms 0, 1, 2 changes definition of inner edge

0: rin = par3
1: rin = par3 but if par3< rms

then rin = rms
2: rin = par3×rms, rout = par5×rms

par5 rout GM/c2 1–1000 outer disc edge
par6 ϕo deg −180–180 lower azimuth of the disc segment
par7 ∆ϕ deg 0–360 width of the disc segment

par8 h GM/c2 1–100 height (location) of the primary
par9 Γ 1.1–3 primary energy power-law index

The model can be used also for computing polarisation in a very simple toy model where
all the local line polarisation in the disc is fully polarised perpendicularly to the disc.
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Table C2. Description of the KYNRLPLI parameters par10–par20.

param. param. unit possible description
number values

par10 αc GM/c2 α-position of the obscuring cloud

par11 βc GM/c2 β-position of the obscuring cloud

par12 rc GM/c2 radius of the obscuring cloud
par13 zshift overall Doppler shift
par14 ntable 80 defines fits file with tables

par15 nr 1–104 number of radial grid points
par16 division 0, 1 type of step in radial integration

(0 – equidistant, 1 – exponential)

par17 nϕ 1–2× 104 number of azimuthal grid points
par18 smooth 0, 1 smooth the resulting spectrum

(0 – no, 1 – yes)
par19 Stokes 0–6 output of the computation:

0: photon number density flux
(Stokes parameter I/E)

1: Stokes parameter Q/E
2: Stokes parameter U/E
3: Stokes parameter V/E
4: degree of polarization
5: linear polarization angle,
χ = 1

2 atan U
Q

6: circular polarization angle,
ψ = 1

2 asin V√
Q2+U 2+V 2

par 20 nthreads 1–100 number of computation threads

Due to the fact that the non-axisymmetric models integrate the emission over the disc
and thus are slower, the model may be run in multiple threads to use all CPU cores available
for computing. In this case the XSPEC may need to be run with a preloaded thread library
(e.g. LD PRELOAD=libpthread.so.0 $HEADAS/bin/xspec)

As usual for spectral line models inside XSPEC, also the KYNRLPLI model is normalised
to the unit total photon flux.

The model parameters, their definitions and possible values are summarised in Tables C1
and C2.
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ABSTRACT
We consider the evolution of millisecond radio pulsars in binary systems with a main-
sequence or evolved stellar companion. Evolution of non-accreting binary systems
with “eclipsing” millisecond pulsars was described by Kluźniak, Czerny and Ray
(1992) who predicted that systems like the one containing the Terzan 5 PSR 1744-
24A will in the future become accreting low mass X-ray binaries (LMXBs), while
PSR 1957+20 may evaporate its companion. The model presented in the current
paper gives similar results for these two objects and allows to obtain diverse evo-
lutionary tracks of millisecond pulsars with low mass companions (black widows).
Our results suggest that the properties of many black widow systems can be ex-
plained by an ablation phase lasting a few hundred million years. Some of these
sources may regain Roche lobe contact in a comparable time, and become LMXBs.

Keywords: millisecond pulsar – redback – black widow – binary evolution – abla-
tion – LMXBs – gravitational waves

1 INTRODUCTION

Millisecond pulsars are probably intimately connected with LMXBs, as was realized soon
after their discovery: it was suggested that millisecond pulsars have been spun up in
LMXBs and will end their history in the radio pulsar phase (Radhakrishnan and Srini-
vasan, 1982; Alpar et al., 1982). However, with the discovery of the eclipsing pulsars it
was realized that some millisecond pulsars currently ablating their companions may re-
enter the LMXB phase in a later epoch (Bisnovatyi-Kogan, 1989; Ergma and Fedorova,
1991; Kluźniak et al., 1992). Recent discoveries of many ablating binary systems have led
to a rekindling of these ideas, and to the necessity of explaining the evolutionary status of
these black widows and redbacks, as they are called (e.g. Roberts et al., 2014).

We are presenting an evolutionary model describing a binary system composed of a pul-
sar and its stellar companion. The model includes effects like gravitational wave emission
by the binary, ablation of the companion, and pulsar spindown. In general, part of the ab-
lated matter may accrete onto the neutron star and another part may leave the system.
The computed evolutionary tracks begin with the pulsar turn-on at the conclusion of the
standard epoch of accretion in a semi-detached phase. Throughout most of the computed
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evolutionary history, the separation between the pulsar and the companion star is large
enough for the latter to be below its Roche lobe. Therefore the only mechanism of mass
loss considered in our model is ablation by the pulsar wind.

2 MODEL DESCRIPTION

The period of a binary system including a pulsar of mass M and its companion of mass
m is

P =
2π J 3(M + m)

G2 M3m3 , (1)

where J denotes total orbital angular momentum. The rate of change of the companion
mass m is assumed to be proportional to the spin-down flux

ṁ ∝
Ė

4πd2 ma Pb , (2)

where Ė is the energy loss of the pulsar primary owing to its spindown, d is the sepa-
ration between the primary and the secondary, and a, b are model dependent exponents.
In the simple model assumed in Kluźniak et al. (1992) a = b = 0. However, in Brook-
shaw and Tavani (1995) one may find a = 1/6 and b = −4/3. We will adopt the latter
values. The change of mass of the primary is in principle connected with ṁ as Ṁ = −βṁ.
The coefficient β describes how much of the mass lost by the companion is accreted by
the neutron star, and how much is lost from the binary in a wind, thus 0 ≤ β ≤ 1 with 0
corresponding to no accretion and 1 to no wind. We will take β = 0.

The change of angular momentum [first term in Eq. (5)] is connected with two processes:
emission of the gravitational waves (GW) and mass loss from system. We take the rate
of angular momentum loss to gravitational waves to be described by (e.g. Shapiro and
Teukolsky, 1983)

J̇GW = −
256π3

5
G
c5

J 2

P3 . (3)

If we assume that specific angular momentum carried away by a wind escaping from the
system is j = αM J/[m(m + M)], we have

J̇ṁ = α(1− β)
M J

(M + m)
ṁ
m
. (4)

Both Equations (3) and (4) conribute to the rate of change of the angular momentum:
J̇ = J̇ṁ + J̇GW. By differentiating Eq. (1) with respect to time we get the rate of change of
the period
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Ṗ
P
= 3

J̇
J
−

2M + 3m
M + m

Ṁ
M
−

3M + 2m
M + m

ṁ
m
, (5)

ṁ = γ
Ėm1/6 P−4/3

4πd2 , (6)

Ṁ = −βṁ , (7)

J̇
J
=
α(1− β)M

m + M
ṁ
m
−

256π3G J
5c5 P3 . (8)

Equations (5), (6), (7) and (8) constitute a system of first-order ordinary differential equa-
tions, which we proceed to solve with various assumptions and different initial conditions.

In the simple case of no accretion onto the primary star, negligible companion mass,
m�M , and hence negligible gravitational wave emission, the equations reduce to (Kluź-
niak et al., 1992)

Ṗ
P
= 3(α − 1)

ṁ
m
, (9)

and can be easily integrated, yielding

P(m) ∝ m3(α−1) . (10)

With suitable initial conditions the evolutionary paths on the P vs. m plot described by this
equation can be made to pass through the current positions of some of the known pulsars,
e.g. PSR 1957-20 (see the Appendix, Fig. A1).

The source of the energy driving the ablation process is pulsar spindown. From the mag-
netic dipole formula (e.g. Shapiro and Teukolsky, 1983) we have

Ė = −
B2 R6Ω4 sin2 θ

6c3 , (11)

where B denotes the surface magnetic field near the pole,Ω is the pulsar spin rate (the pul-
sar period being P0 = 2π/Ω), R is the pulsar radius and θ denotes the angle between
the magnetic and the rotation axes (for simplicity we take sin2 θ = 1 and R = 10 km).
On the other hand we have Ė = IΩΩ̇ , where I is the moment of inertia of the pulsar.
These two equations provide

Ω(t) =
Ω0

√
2t/τ + 1

, (12)

where Ω0 = Ω(0) is the initial angular velocity of the pulsar and τ = −Ω(0)/Ω̇(0)
is the characteristic age of the pulsar (at time t=0). Equations (11) and (12), are used in
Eq. (6) to find ṁ as a function of time.

When the secondary star is sufficiently close to the pulsar that it fills the Roche lobe,
accretion through the inner Lagrangian point starts. This situation is not described by our
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model, although our tracks may bring the system to this point. When the radius of the com-
panion is equal to Roche lobe radius, the relation between orbital period P and companion
mass m is

P = 2π

√
A3

B3G
m(3n−1)/2 , (13)

where B ≈0.462. The values of n and A correspond to the radius of the companion through
r = Amn . For degenerate stars like white dwarfs, n = −1/3, and for a hydrogen white
dwarf A = 2.82 × 104 M1/3

� km (Shapiro and Teukolsky, 1983), while from Hamada and
Salpeter (1961) one obtains A = 8.80 × 103 M1/3

� km for a helium white dwarf. One may
also obtain this coefficient for a carbon white dwarf, which is A = 8.72 × 103 M1/3

� km
(Hamada and Salpeter, 1961), it is almost indistinguishable from the helium one. Lines
corresponding to Eq. (13) indicate where the evolutionary track may terminate in a Roche-
lobe overflowing LMXB, depending on the companion type (Fig. 1).

3 RESULTS OF NUMERICAL CALCULATIONS

Using Mathematica, we solved numerically the system of four differential equations, i.e.
Eqs. (5), (6), (7) and (8) discussed above. We consider a model with no accretion (β = 0),
we assume γ = 2.5× 104 s10/3 g−1/6 (cf., Chen et al., 2013) and, following Kluźniak et al.
(1992), we take α = 0.86. For the initial point on the (m, P) plane we use one of two points
on the track of Tauris and Savonije (1999), which describes the evolution of a LMXB with
an evolved companion. For the PSR 1957+20 and B1744-74A (Terzan 5) tracks we use
the starting point of Kluźniak et al. (1992), corresponding to the point at which magnetic
braking is supposed to lose importance in the evolution of binaries with a main sequence
companion. Current system parameters are taken from ATNF Database (2014); Manchester
et al. (2005), and they can be found in Table 1, together with other data, for the six tracks
which are presented in Fig. 1.

Derived times of evolution are tev '7×108 y for PSR 1957+20 and tev '5.5×109 y for
Terzan 5. For PSR 1957+20, evolution is steady, whereas for Terzan 5 one can distinguish
three stages of evolution. The first stage, when the evolution curve is nearly a straight line,
lasts about 4.5 × 108 y. The second one, when the evolution path “turns downwards” on
the P vs m plot, lasts 2.4× 109 y. The last stage, when gravitational radiation is dominant,
lasts 2.6 × 109 y. Objects with convex evolution curves evolve comparably fast: e.g. for
J1807-2459A the evolution time is tev ' 5.7 × 108 y. The values of tev in parentheses in
Table 1 (for the Terzan 5 pulsar and J1023+0038) correspond to the time it will take for
the system to regain the line of Roche-lobe contact starting from the present position.

4 EVOLUTIONARY TRACKS

Evolution of the system depends on the ratio between angular momentum losses caused by
ablation and gravitational wave emission. There seem to be three types of tracks.

In the case where gravitational waves emission can be neglected (like in the PSR 1957-
20 system) the track is well described by the formula of Eq. (10). The system very nearly
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Table 1. System parameters

Quantity PSR 1957+20 B1744-74A/Terzan 5
Initial Present Initial Present

P[hr] 2.9 9.2 3.0 1.82

m[M�] 0.235 0.022 0.235 0.087

M[M�] 1.7 1.7 1.4 1.4

ṁ[g/s] −2.0× 1017
−7.6× 1014

−1.1× 1017
−3.1× 1014

P0[ms] 0.92 1.60 1.95 11.56

B[G] 4.0× 108 1.3× 109.0

µ
[
G× cm3] 4.0× 1026 1.3×1027

tev[y] 6.72×108 5.52×109 (5.90×109)
Quantity J1807-2459A J2241-5236

Initial Present Initial Present

P[hr] 1.75 1.71 1.75 3.50

m[M�] 0.115 0.009 0.115 0.012

M[M�] 1.4 1.4 1.4 1.4

ṁ[g/s] −4.5× 1015
−2.6× 1015

−1.4× 1016
−1.1× 1015

P0[ms] 2.91 3.06 1.98 2.19

B[G] 2.9× 108 2.4× 108

µ
[
G×cm3] 2.9× 1026 2.4× 1026

tev[y] 5.60×108 7.88×108

Quantity J1311-3430 J1023+0038
Initial Present Present Predicted

P[hr] 1.75 1.56 4.73 0.31

m[M�] 0.115 0.008 0.136 0.061

M[M�] 1.4 1.4 1.4 1.4

ṁ[g/s] −3.6× 1015
−3.0× 1015

−2.2× 1016 LMXB

P0[ms] 2.48 3.56 1.67 11.09

B[G] 2.0× 108 7.9× 108

µ
[
G× cm3] 2.0× 1026 7.9× 1026

tev[y] 5.44×108 (
1.8×1010)
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Figure 1. Large dots correspond to the present parameters of the observed pulsar systems for which
the evolutionary tracks have been computed (dashed blue lines). Small dots are other objects taken
from the ATNF Database (2014). Solid lines correspond to Roche lobe contact for a cold companion.
The short-dashed red line, taken from Tauris and Savonije (1999), corresponds to LMXB evolution
of a system with an evolved companion. Also shown (thin horizontal line segments) are the positions
of two short-period LMXBs. The filled triangles mark plausible initial points of the evolutionary
tracks.

follows a straight line on a log P versus log m plot. The slope of this line depends only on
the parameter α. The track may be deflected a little bit due to vestigial gravitational wave
emission.

Another possible track passes through the Terzan 5 pulsar B1744-24A. In the initial
phase of system evolution the track is similar to the one described in the previous paragraph.
The difference is that at a certain moment, owing to pulsar spindown, gravitational wave
emission starts to dominate over ablation. If, from that point on, mass loss were neglected
(i.e. the evolution were driven by GW emission alone), the track would be a vertical line on
the log P–log m plot. In fact, a residual effect of ablation is still felt, and the track deviates
slightly in the direction of lower companion mass (to the left in the figures).
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Neglecting mass loss from and mass transfer in the system (γ = 0 in Eq. (6)) one easily
obtains the time elapsed in the evolution from binary period Pi to period P:

T =
5c5

2048π3G Ji

(
P8/3 P1/3

i − P3
i
)
, (14)

where Ji is the initial angular momentum (corresponding to Pi ). Time scales of evolution
obtained from this equation are similar to the numerical values for the nearly vertical tracks
in Fig. 1.

Tracks similar to those described above were already obtained by Kluźniak et al. (1992).
They cover situations in the limit where one of the effects, ablation or GW emission, dom-
inates over the other along each major segment of the trajectory (although, as remarked
above in Section 3, PSR B1744-74A spends most of its evolutionary time in transition be-
tween two such states). It seems that systems with an evolved very low mass companion
(m < 0.04M�) cannot evolve this way. For instance, obtaining a “Terzan-like” evolution
track for these systems leads to evolution time amounting to several dozens of billion years.
A third type of evolutionary track seems to be required.

We have found evolutionary tracks connecting the currently observed binary parameters
of the pulsars J2241-5236, J1807-2459A and J1311-3430 with a plausible initial point and
having reasonable time scales of evolution. These evolutionary tracks are characterized by
angular momentum loss to both GW emission and ablation effects, and have a convex shape
on a log P versus log m plot (Fig. 1). Eventually, the separation of the system components
becomes large enough that GW emission loses importance, and the track becomes parallel
to that of PSR 1957+20.

5 DISCUSSION

We have considered the evolution of millisecond radio pulsars with binary low-mass com-
panions assuming simple formulae for the ablation rate of the companion by the pulsar
wind. For the starting point of each evolutionary track that we considered we have taken
a plausible moment of pulsar turn-on in an erstwhile LMXB, either along the standard
evolutionary curve familiar from discussion of cataclysmic variables and the period gap,
i.e. a binary with a main-sequence companion (Paczyński and Sienkiewicz, 1983), or along
an evolutionary track with an evolved companion Tauris and Savonije (1999). Pulsar turn-
on (or turn-off) in (potentially) accreting low mass binaries was discussed in Kluźniak et al.
(1988).

We have reproduced the results of Kluźniak et al. (1992) who performed a similar
study for the only two known eclipsing pulsars at the time (PSR 1957+20 and B1744-74A
in Ter 5), and found that there are periods of their evolutionary history in the ablation phase
when either one or the other of two major angular momentum loss mechanisms dominates
(mass loss from the system or GW emission). We note that evolutionary tracks that we
now find based on the Brookshaw and Tavani (1995) evaporation formula, Eq. (2), imply
shorter initial pulsar periods than previously obtained, this can be seen from a comparison
of the entries in Table 1 with the description of tracks (b) and (e) in the Appendix, Fig. A1.
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We find that we are able to reproduce the current positions of typical millisecond radio
pulsars with a low mass binary companion, typically this involves an ablation phase lasting
several hundred years. However, we find that for the majority of the black widow pulsars
known today the relative importance of the two considered angular momentum loss mech-
anisms is comparable in their evolutionary history, i.e. unlike in the case of PSR 1957+20
and B1744-74A, neither GW emission nor mass loss dominates the other over major por-
tions of the evolutionary track in the period-mass diagram (Fig. 1).

We confirm the conclusion of Kluźniak et al. (1992), who predicted that some ms pul-
sars may become accreting LMXBs at the end of their evolution. Two of the tracks pre-
sented in this paper end very close to the line of Roche-lobe contact, in the current position
of PSR J1807-2459A and PSR J1311-3430. These two pulsars seem to be close to the end
of a 5× 108 y ablation phase.

We note that detailed binary evolutionary calculations, which included an ablation phase
similar to the model considered here were presented recently in Chen et al. (2013).

ACKNOWLEDGEMENTS

We thank Dr. Thomas Tauris, as well as the anonymous referee, for many detailed com-
ments on the manuscript. This work was supported in part by NCN grant 2013/08/A/ST9/
00795.

REFERENCES

Alpar, M. A., Cheng, A. F., Ruderman, M. A. and Shaham, J. (1982), A new class of radio pulsars,
Nature, 300, pp. 728–730.

ATNF Database (2014), http://www.atnf.csiro.au/research/pulsar/psrcat/.
Bisnovatyi-Kogan, A. S. (1989), Two Generations of Low-Mass X-Binaries and Recycled Radio

Pulsars, Astrofizika, 31, p. 567.
Brookshaw, L. and Tavani, M. (1995), Outflow Hydrodynamics of Eclipsing Pulsar Binaries, ASP

Conference Series, 72, pp. 244–252.
Chen, H.-L., Chen, X., Tauris, T. M. and Han, Z. (2013), Formation of Black Widows and Redbacks–

Two Distinct Populations of Eclipsing Binary Millisecond Pulsars, Astrophys. J., 775, 27, arXiv:
1308.4107.

Ergma, E. V. and Fedorova, A. V. (1991), An 11-ms pulsar in the globular cluster TER 5 - A possible
test for determination of the progenitor of millisecond pulsars, Pisma v Astronomicheskii Zhurnal,
17, pp. 433–439.

Hamada, T. and Salpeter, E. (1961), Models for Zero-Temperature Stars, Astrophys. J., 134, pp. 683–
698.
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APPENDIX A: APPENDIX

For ease of reference, we reproduce Figure 1 and its caption from the pre-arXiv contribution
of Kluźniak, Czerny and Ray (1992).

Figure A1. ‘Figure 1. Possible evolutionary tracks of systems with “evaporative” mass loss. The
decimal logarithm of the orbital period in hours is plotted versus the decimal logarithm of the mass
of the companion in units of Solar mass. Likely location of the eclipsing pulsars (filed circles)
as well as possible positions of the X-ray binaries 4U 1916-05 and 4U 1820-30 are also indicated
(dash-dot-dash lines). The thick straight line segments correspond to systems with a main-sequence
or a cold degenerate dwarf companion in Roche-lobe contact. According to the standard theory of
their evolution, cataclysmic variables follow the thin curve (in the direction of decreasing companion
mass, m). When this theory is applied to canonical LMXBs, the dotted tracks ensue, see Section 5 for
details. The lines (a) through (e) differ only in the properties of the pulsar ablating its companion: in
the strength of the magnetic dipole moment and in the initial value, P0, of the rotational period of the
neutron star. The values of P0 and log(B/Gauss), where B ≡ µ× 10−18 cm−3, are respectively (a)
5.0 ms, 9.5; (b) 3.4 ms, 8.9; (c) 2.0 ms, 9.0; (d) 2.0 ms, 8.6; (e) 1.25 ms, 8.1. We assumed that 10 %
of the energy flux impinging on the companion is converted into kinetic energy of the evaporative
plume, and we took β = 0.86.’

N.B. The parameter “β” in the quoted caption corresponds to our α.
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Frequency spectrum of axisymmetric horizontal
oscillations in accretion disks

Luca Giussani,1 Włodek Kluźniak2 and Bhupendra Mishra2
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ABSTRACT
We present the spectrum of eigenfrequencies of axisymmetric acoustic-inertial os-
cillations of thin accretion disks for a Schwarzschild black hole modelled with a
pseudo-potential. There are nine discrete frequencies, corresponding to trapped
modes. Eigenmodes with nine or more radial nodes in the inner disk belong to
the continuum, whose frequency range starts somewhat below the maximum value
of the radial epicyclic frequency. The results are derived under the assumption that
the oscillatory motion is parallel to the midplane of the disk.

Keywords: Relativistic stars: black holes – structure stability – oscillations – rela-
tivity – gravitation – accretion disks – hydrodynamics

1 ACOUSTIC-INERTIAL MODES

We consider acoustic-inertial modes of oscillation in the inner part of an accretion disk,
closely following the formalism of Nowak and Wagoner (1991, 1992). Trapping of the fun-
damental axisymmetric mode with no nodes in the vertical (z) direction was first demon-
strated by Kato and Fukue (1980) in the Schwarzschild geometry. Nowak and Wagoner
(1991) derive the equations of motion in a Lagrangian pseudo-Newtonian formalism and
specialize to purely horizontal perturbed motions of the disk deriving eigenmodes and
eigenfrequencies for the m = 0 (axisymmetric) and m = 2 (quadrupole) modes. Khanna
et al. (2014) computed in an improved pseudo-potential the lowest radial modes (with up
to three radial nodes) for azimuthal numbers m = 0 through m = 4. Here, we present the
complete spectrum of horizontal axisymmetric acoustic-inertial disk modes in a pseudopo-
tential which reproduces the properties of the Schwarzschild-metric epicyclic frequency
(Kluźniak and Lee, 2002; Khanna et al., 2014). The eigenfrequencies could be related
to the quasi-coherent frequencies (QPOs) observed in the X-ray flux from black hole and
neutron star systems (for a review see van der Klis M., 2000), as well as in cataclysmic
variables (Woudt and Warner, 2002, and references therein).
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2 EQUATION OF MOTION AND THE BOUNDARY CONDITION

We model the Schwarzschild metric with a Newtonian pseudo-potential that reproduces the
Schwarzschild ratio of κ2(r)/Ω2(r) = 1− 6G M/(rc2):

ΦKL(r) = −
(
c2/6

)
exp

(
6G M
rc2 − 1

)
. (1)

We have dropped an additive constant and renormalized the original Kluźniak and Lee
(2002) potential by a factor of 1/e to guarantee the correct Schwarzschild value ofΩ(rms).
The orbital frequency can be obtained from Ω2(r) = r−1∂ΦKL/∂r , the radial epicyclic
frequency from κ2

= (2Ω/r)d(r2Ω)/dr and the marginally stable orbit is at the zero of
κ , at rms = 6G M/(rc2). Figure 1 compares our κ2(r) with the Schwarzschild form and
two other well-known pseudo-Newtonian models (Paczyński and Wiita, 1980; Nowak and
Wagoner, 1991).

In this contribution we assume axisymmetric (m = 0) horizontal modes, with the per-
turbation vector in cylindrical coordinates (ξ r

∗ , ξ
φ
∗ , ξ

z
∗) = (ξ r , ξφ, 0) exp(iσ t). We use

the equation of motion for Ψ (r) ≡
√
γ Pr ξ r (r) derived in the Lagrangian formalism of

Friedman and Schutz (1978) by Nowak and Wagoner (1991)

c2
s d2Ψ/dr2

+
(
σ 2
− κ2)Ψ = 0 ,

who also show that in the WKB approximation the azimuthal component of the equation
of perturbed motion for thin disks reduces to ξφ = 2 i(Ω/σ)ξ r .
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Figure 1. The Schwarzschild epicyclic frequency (squared) and its Newtonian models, from top to
bottom: Paczyński and Wiita (1980); Nowak and Wagoner (1991), our Eq. (1).
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Following Khanna et al. (2014) we rewrite the equation of motion, and the boundary con-
dition that the Lagrangian perturbation of pressure vanishes at the unperturbed boundary,
in dimensionless form as

d2Ψ

dx2 +

(
a
H

)2 (
σ̃ 2
− κ̃2

)
Ψ = 0 , (2)

with the boundary condition at x = 0

dΨ
dx
= −

Ψ

2
, (3)

where H is the half-thickness of the disk, a = rms, and the dimensionless variables are
given by r = a(1 + x), σ̃ = σ/Ω(a), κ̃(x) = κ(r)/Ω(a). The speed of sound cs =√
γ P/ρ was eliminated with the condition of vertical hydrostatic equilibrium.

3 THE EIGENFREQUENCY SPECTRUM

We have numerically solved the eigenvalue problem given by Eqs. (2) and (3), for a thin
disk of H/a = 10−3, and present in Table 1 the eigenfrequencies for modes with µ =
0, 1, . . . , 9 radial nodes in the inner disk. The lowest nine eigenfrequencies (µ = 0 through
8), exhausting the discrete spectrum, correspond to oscillations which are trapped in the
inner disk. As already noted by Kato and Fukue (1980), for eigenfrequencies exceeding
the maximum of the epicyclic frequency, σ 2 > κ2

max, the acoustic wave ranges throughout
the disk (see also Kato et al., 1998), these frequencies belong to the continuum spectrum.
The tenth entry in Table 1, with µ = 9 radial nodes in the inner disk, also belongs to
the continuum, although it has a frequency below the maximum of the epicyclic frequency
σ 2 < κ2

max (Figs. 2, 3).

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.02

0.04

0.06

0.08

r�a- 1

fr
eq
u
en
cy

2
Ha

3
�G

M
L

0.00 0.05 0.10 0.15 0.20 0.25

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20 0.25

r�a- 1

Y
Ha
rb
it
ra
ry

sc
al
eL

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.02

0.04

0.06

0.08

r�a- 1

fr
eq
u
en
cy

2
Ha

3
�G

M
L

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-2

-1

0

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

r�a- 1

Y
Ha
rb
it
ra
ry

sc
al
eL

Figure 2. Two radial overtones for m = 0 horizontal oscillations of a thin (H/a = 10−3) accretion
disk. Left Panel: A trapped oscillation with µ = 8 radial nodes. Right Panel: An oscillation penetrat-
ing the epicyclic barrier (with µ = 9 radial nodes in the inner accretion disk and an unlimited number
of radial nodes in the outer disk). Plotted are the radial wavefunction Ψ ∝ r1/2ξr : solid blue line
(left scale); eigenfrequency (squared) and the epicyclic frequency (squared), both normalized to or-
bital frequency at the inner edge of the disk, σ 2/Ω2(rms): dashed-dotted green line, κ2(r)/Ω2(rms):
dashed red line (right scale).
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Table 1. Spectrum of eigenfrequencies for horizontal modes

mode radial nodes eigenfrequency mode
m µ σ ×

√
(a3/G M) status ref.

0 0 0.0988290000 trapped Khanna et al. (2014)
0 1 0.1721372560 trapped Khanna et al. (2014)
0 2 0.2049091375 trapped Khanna et al. (2014)
0 3 0.2269122200 trapped Khanna et al. (2014)
0 4 0.2433069000 trapped this work
0 5 0.2561130000 trapped this work
0 6 0.2663460000 trapped this work
0 7 0.2745830000 trapped this work
0 8 0.2811589000 trapped this work
0 9 0.2862229000 not trapped this work

In the Figure 2 we present the two eigenmodes corresponding to the last two entries in Ta-
ble 1. The equations being linear in Ψ , we normalize the wavefunction to unity at the inner
edge of the disk: Ψ (rms) = 1 for illustration purposes. The left panel shows the highest-
frequency eigenmode in the discrete portion of the spectrum of axisymmetric (m = 0)
horizontal disk oscillations, the wavefunction of this mode has µ = 8 radial nodes. Note
that the wave becomes evanescent for σ 2 < κ2, thus trapping the µ = 8 mode to the left of
κmax. Some of the lower overtones have been illustrated in Khanna et al. (2014).

The right panel of Fig. 2 illustrates one of the lowest frequency modes in the continuum.
Here, σ < κmax and is so close in value to κmax that the wave is transmitted through the
epicyclic barrier to the outer disk, where it has an unlimited number of radial nodes in
addition to the µ = 9 radial nodes in the inner disk. As far as we are aware, this is a new
finding, which has never been reported before. It may have an interesting astrophysical
consequence. If the oscillations arise close to the marginally stable orbit, as suggested
by Paczyński (1987), the ones transmitted to the outer disk are likely to be more easily
observable, in that they may modulate the emission from large parts of the disk.

4 DISCUSSION

We consider accretion disk oscillations in a Newtonian model of the Schwarzschild met-
ric, Eq. (1), which accurately models the radial epicyclic frequency, at least close to the
marginally stable orbit, see Fig. 1. No model is perfect, so although we correctly reproduce
the ratio of epicyclic to orbital frequency κ(r)/Ω(r) =

√
1− 6G M/(rc2), and the cor-

rect value of orbital frequency at the marginally stable orbit, Ω(rms) = c3/(
√

216 G M),
the maximum of κ occurs at r = (3 +

√
21)(G M/c2) ≈ 7.58(G M/c2) instead of the

Schwarzschild value r = 8(G M/c2). Further, the equations of motion for the oscillation
of the disk fluid were derived in a Newtonian formalism, not in full GR. These departures
from GR may limit the quantitative accuracy of the presented results when applied to real
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Figure 3. The spectrum of m = 0 (axially symmetric) horizontal oscillations of a thin (H/a = 10−3)
accretion disk for the potential of Eq. (1). Plotted are the epicyclic frequency (dashed red curve), and
the eigenfrequencies σ in the discrete set (dashed-dotted green lines) and in the continuum (shaded
blue region). All frequencies were scaled with (G M/a3)1/2. Here, and throughout the paper, a =
rms.

black hole (or neutron star) accretion disks. An additional assumption which may not be
quite accurate is that the oscillations of the disk are strictly parallel to the midplane of the
disk, i.e. that the perturbation vector has a zero vertical component, ξ z

= 0.
We find that the spectrum of horizontal oscillations is composed of nine discrete fre-

quencies and a continuum (Fig. 3). For the discrete spectrum the wave propagation region
corresponds to those regions where σ 2 > κ2(r) and is separated into the inner region of
trapped oscillations, from r = rms to r ≈ (7/6) rms, and an outer region extending to
r � rms (Kato et al., 1998). However, the lowest frequency modes in the continuum,
which satisfy σ < κmax, are transmitted through the epicyclic barrier, and thus fluctuations
in the inner disk may be transmitted to the outer disk for frequencies close to the maximum
of the epicyclic one, σ 2

≈ κ2
max.
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ABSTRACT
General relativity combined with a non-linear electrodynamics enables to find regular
black hole solutions. The best known solution of this kind is described by the Bardeen
spacetime with spacetime parameters giving gravitational mass m and magnetic
charge g. For ratio g/m large enough, the Bardeen spacetime describes a no-horizon
regular solution. Here we demonstrate properties of the Bardeen spacetimes by the
embedding diagrams of the equatorial plane of the ordinary geometry, and the optical
geometry enabling reflection of properties of test particle motion.

Keywords: Bardeen geometry – black hole – embedding diagram

1 INTRODUCTION

Black holes predicted by the general relativity contain a physical singularity with diverging
Riemann tensor components. Regular black hole solutions of the Einstein gravity have
been found that eliminate the physical singularity from the spacetimes having an event
horizon, but these are not vacuum solutions of the Einstein equations, but contain necessarily
a properly chosen additional field, or modified gravity.

The well known regular spherically symmetric black hole solution containing a magnetic
charge as a source has been proposed by Bardeen (1968). The magnetic charge is related to
a non-linear electrodynamics (Ayón-Beato and García, 2000). The solution is characterized
by the mass parameter m and the charge parameter g. Their geodesic structure is governed
by the dimensionless ratio g/m. For properly chosen charge parameter g/m, the Bardeen
solution allows for existence of fully regular spacetime, without an event horizon. We call
it Bardeen “no-horizon” spacetime.

A detailed discussion of the geodesic structure of the regular Bardeen black hole and no-
horizon spacetimes and its implication to optical phenomena were presented in Stuchlík and
Schee (2014a). It has been shown that the geodesic structure of the regular Bardeen black
holes outside the horizon is similar to those of the Schwarzschild or Reissner–Nordström
(RN) black hole spacetimes, but under the inner horizon, no circular geodesics can exist.
The geodesic structure of the Bardeen no-horizon spacetimes is similar to those of the naked
singularity spacetimes of the RN type, or the Kehagias–Sfetsos (KS) type (Kehagias and
Sfetsos, 2009; Stuchlík and Schee, 2014b; Stuchlík et al., 2014) that is related to the solution
of the modified Hořava quantum gravity (Hořava, 2009a,b). In all of these no-horizon and
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naked singularity spacetimes, an “antigravity” sphere exists consisting of static particles
located at stable equilibrium points at a given “static” radius that can be surrounded by
a Keplerian disc Stuchlík and Schee (2014b).

The basic properties of the Bardeen black hole and no-horizon spacetimes can be reflected
by the embedding diagrams that illustrate in a proper way the curvature of the spacelike
(constant time) surfaces and give for the ordinary space geometry an overall insight into its
nature – (see e.g. Kristiansson et al. (1998); Stuchlík and Hledík (1999, 2002)). In the case
of the optical geometry, the embeddings can give an illustration of some hidden proper-
ties of the geodesic structure of the spacetime (Stuchlík et al., 2000). Here we present
the embeddings for both the Bardeen black hole and no-horizon spacetimes.

2 BARDEEN SPACETIMES

The spherically symmetric geometry of the regular Bardeen black-hole or no-horizon space-
times is characterized in the standard spherical coordinates and the geometric units (c=G=1)
by the line element

ds2
= − f (r) dt2

+
1

f (r)
dr2
+ r2(dθ2

+ sin2 θ dφ2) , (1)

where the “lapse” f (r) function depends only on the radial coordinate, the gravitational
mass parameter m and the charge parameter g. The Bardeen spacetimes are constructed to
be regular everywhere, i.e. the components of the Riemann tensor, and the Ricci scalar are
finite at all r ≥0 (Ayón-Beato and García, 1999).

The lapse function f (r) reads

f (r) = 1−
2mr2(

g2 + r2
)3/2 . (2)

The event horizons of the Bardeen black hole spacetimes, determined by the condition
f (r) = 0, are given by

g6
+
(
3g2
− 4m2)r4

+ 3g4r2
+ r6
= 0 . (3)

The critical value of the dimensionless parameter g/m separating the black-hole and the “no-
horizon” Bardeen spacetimes reads

(g/m)NoH/B = 0.7698 . (4)

In the “no horizon” Bardeen spacetimes the metric is regular at all radii r ≥ 0. We assume
r = 0 to be the site of the self-gravitating charged source of the spacetime.

The optical geometry of the Bardeen spacetimes is given by the line element (Kristiansson
et al., 1998)

ds2
opt = −dt2

+
dr2

f (r)2
+

1
f (r)

r2 dθ2
+

r2

f (r)
sin2 θ dϕ2 . (5)
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3 THE EMBEDDING PROCEDURE

We make the embedding of the equatorial plane, θ = π/2, of the t = const spacelike
sections of the spacetime and its optical geometry. For the ordinary, simply projected
space, the 2D equatorial plane can be cast in the form

dl2
ord =

dr2

f (r)
+ r2 dϕ2 , (6)

while for the optical geometry we find

dl2
opt =

dr2

f (r)2
+

r2

f (r)
dϕ2 . (7)

The plane has to be embedded into the 3D flat space with line element

dl2
3D = dR2

+ R2 dφ2
+ d z2 . (8)

The 3D flat space is expressed in the standard cylindrical coordinates R, z, φ. The em-
bedding is realized by the function Z = Z(R) that implies the line element of the 2D
embedding surface in the form

dl2
2D = dR2

+ R2 dφ2
+

( dz
dR

)2
dR2 . (9)
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Figure 1. Embeddability limits of equatorial plane of directly projected (left) and optical (right)
Bardeen geometry. Green colour indicates area that can be embedded.

4 EMBEDDING DIAGRAMS OF DIRECTLY PROJECTED GEOMETRY

In this case we can make the trivial identification

φ = ϕ , R = r (10)
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that implies the relation(
1+

(
dz
dr2

)2 )
=

1
f (r)

. (11)

The embedding formula then takes a simple form

z =
∫ √

1
f (r) − 1 dr . (12)

The embeddability conditions read

1
f (r)
− 1 ≥ 0 , f (r) ≥ 0 . (13)

Clearly, the region between the horizons is not embeddable. The regions are given in de-
pendence on the spacetime parameter g/m in Fig. 1. The embedding diagrams are for rep-
resentative values of the parameter g/m given in Fig. 2.

5 EMBEDDING DIAGRAMS OF THE OPTICAL GEOMETRY

In the case of the optical geometry, the identification of the radial coordinate is not trivial,
we have to define

φ = ϕ , R =
r

f 1/2(r)
. (14)

Such an identification implies the relation((
dR
dr

)2

+

(
dz
dr2

)2
)
=

1
f 1/2(r)

(15)

and the embedding formula takes the form

z =
∫ √

1
f 2(r) −

(
dR
dr

)2
dr . (16)

The embeddability condition of the optical space reads

1
f 2(r)

−

(
dR
dr

)2

≥ 0 . (17)

The limits on the embeddability are given in Fig. 1, while the typical embedding diagrams
of the optical space are illustrated in Fig. 3.

Recall that the turning points of the embeddings of the optical space reflect an impor-
tant information on the geodesic structure of the spacetime, namely they represent loci
of the photon circular orbits (Stuchlík et al., 2000).
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Figure 2. Embedding diagrams of directly projected geometry for different values of g/m. The in-
tegration in (12) ends slightly before horizons, because on the horizons there is dZ/dr = 0. Top
part corresponds to g/m = 0 (Schwarzschild geometry), g/m = 0.5 (Bardeen black hole) and
g/m = 0.7698 (extreme Bardeen black hole). Bottom part corresponds to q/m = 0.8 (there are two
turning points in optical geometry, see Fig. 3), g/m = 0.858665 (there is one turning point in optical
geometry) and g/m = 1.0 (there are no turning points in optical geometry).
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Figure 3. Embedding diagrams of optical geometry for different values of g/m. The integration
in (16) ends slightly before embeddability limits for the same reason as in the normal case. The g/m
values are exactly the same as on Figure 3.
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6 CONCLUSIONS

We have constructed the embedding diagrams of the equatorial plane of the spherically
symmetric regular Bardeen black-hole and no-horizon spacetimes for both the ordinary
projected space, and the optical space. We have found the limits of embeddability of these
spaces. The embeddability limits appear to be more extended in the vicinity of the coordinate
origin r = 0 while compared to those related to the embeddings of the Kehagios–Sfetsos
spacetimes that are spherically symmetric solutions of modified Hořava quantum gravity
(Goluchová et al., 2014). This is rather surprising result, as the Kehagias–Sfetsos space-
times are singular at r = 0, while the Bardeen spacetimes are regular there. The reason
is related to different character of the “antigravity” region occurring near the origin of both
Kehagias–Sfetsos and Bardeen spacetimes (Vieira et al., 2014; Stuchlík and Schee, 2014b,a).
The gravitation repulsion in the Bardeen spacetimes occurring near the coordinate origin is
of the de Sitter character, while in the case of the Kehagias–Sfetsos spacetimes, it is much
weaker, being of a quintessential character Stuchlík and Schee (2014b,a).
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ABSTRACT
Runaway instability operates under certain conditions in fluid tori around black holes.
When active, it affects systems close to the critical (cusp overflowing) configuration.
Here we start from our previous discussion of the role of runaway instability within
a framework of an axially symmetric model of perfect fluid endowed with a purely
toroidal magnetic field. The gradual accretion of material over the cusp transfers
the mass and angular momentum onto the black hole, thereby changing the intrinsic
parameters of the Kerr metric. By contributing to the total pressure, the magnetic
field causes small departures from the corresponding non-magnetic configuration in
the early phases of accretion. We showed that the toroidal magnetic component inside
an accretion torus does not change the frequency of its oscillations significantly. We
identified these oscillations as the radial epicyclic mode in our example. Nevertheless,
these weak effects can trigger the runaway instability even in situations when the
purely hydrodynamical regime of the torus is stable. On the other hand, in most cases
the stable configuration remains unaffected, and the initial deviations gradually decay
after several orbital periods. We showed examples of the torus evolution depending
on the initial magnetization β, the slope q , and the spin a.

Perturbations in the vertical direction may lead to vertical oscillations. Here we
propose that these oscillations could be enhanced (especially for an intermediate-
mass black hole) by an orbiting star with a trajectory crossing the torus. First the
oscillation of the torus material is triggered. Then the mass of the torus is dragged
high enough above the equatorial plane and gradually accelerated along spin axis.

Keywords: Accretion: accretion discs – black-hole physics

1 INTRODUCTION

Toroidal equilibria of perfect fluid in permanent rotation were introduced a long time ago
as an initial step on the way towards an astrophysically realistic description of accretion
of gaseous material onto a black hole in active galactic nuclei and black hole binaries
(Fishbone and Moncrief, 1976; Abramowicz et al., 1978; Pugliese et al., 2013). These
axially symmetric and stationary solutions are subject to various types of instability (e.g.
Abramowicz and Fragile, 2013). Here we concentrate on a global type of instability caused
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by an overflow of material over the cusp of a critical equipotential surface (Daigne and
Mochkovitch, 1997; Abramowicz et al., 1998; Korobkin et al., 2013). It was suggested that
this may lead to specific features that should be observable in the radiation emitted from
such a system (Zanotti et al., 2003).

The effect of the mentioned instability can be catastrophic under certain conditions.
In particular, a black-hole torus becomes runaway unstable if the angular momentum profile
within the torus does not rise sufficiently fast with radius (Abramowicz et al., 1998; Lu
et al., 2000). The role of general relativity effects on the runaway mechanism was studied
in Font and Daigne (2002) in the context of gamma-ray burst sources. These authors found
that by allowing the mass of the black hole to grow by accretion, the disc becomes unstable.
However, the parameter space of the problem is much richer than what could be taken
into account in early works. For example, the self-gravity of the fluid tends to act against
the stability of non-accreting tori (Goodman and Narayan, 1988; Masuda et al., 1998;
Montero et al., 2010; Korobkin et al., 2011). Furthermore, the spin parameter can play a
role for accretion onto a rotating black hole. In astrophysically realistic models, an interplay
of mutually competing effects have to be taken into account.

The role of magnetic fields is known to be essential for accretion. Even the Rayleigh-
stable tori (Seguin, 1975) with a radially increasing profile, dl/dR > 0, become dynamically
unstable because of turbulence in the presence of a weak magnetic field (Balbus and
Hawley, 1991). Komissarov (2006) has developed a suitable analytical (toy) model of such
a magnetized torus described by a polytropic equation of state in Kerr metric. In this
model the magnetic field only enters the equilibrium solution for the torus as an additional
pressure-like term. We employed this solution as an initial configuration, which we then
perturbed and evolved numerically by using a two-dimensional numerical scheme (HARM;
see Gammie et al., 2003).

From the mass estimates based on scaling relations that use high-frequency characteristic
timescales, the mass of the black hole in M82 X-1, the bright X-ray source in the starburst
galaxy M82, was estimated to be 400 solar masses (Pasham et al., 2014). Accretion tori
of such intermediate-mass black holes could be perturbed by an orbiting star which could
tear out considerable amount of mass above the equatorial plane and amplify the amplitude
of vertical oscillations so that the overflow from an equipotential surface could occurs. As
the mass approaches the horizon, centrifugal forces decelerate the mass, which causes an
increase of pressure, and consequently this gas pressure accelerates the mass to create an
outflow. We simulated this process effectively in 2D approach, assuming that the size of
the perturbing star is approximately one fourth of the radial extent of accretion torus.

2 OSCILLATIONS OF MAGNETIZED RELATIVISTIC TORI

2.1 Axisymmetric accretion of magnetized fluid tori

The magnetized ideal fluid can be described by the energy-momentum tensor (e.g. Anile,
1989)

Tµν =
(
w + b2)uµ uν +

(
Pg +

1
2

b2
)

gµν − bµ bν , (1)
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where w is the specific enthalpy, Pg is the gas pressure, and bµ is the projection of the
magnetic field vector (b2

= bµbµ). From the energy-momentum tensor conservation,
Tµν
;ν
= 0, it follows for a purely axially rotating fluid (Abramowicz et al. 1978; 2013)

ln |ut | − ln |ut in | +

∫ Pg

0

dP
w
−

∫ l

0

Ω dl
1−Ωl

+

∫ P̃m

0

dP̃
w̃
= 0 , (2)

where ut is the covariant component of the four-velocity (subscript “in” corresponds to the
inner edge of the torus), Ω = uϕ/ut is the angular velocity and l = −uϕ/ut is the angular
momentum density. By assuming a suitable polytropic equation of state and the rotation
law of the fluid, Eq. (2) can be integrated to obtain the structure of equipotential surfaces
of the equilibrium configuration (Hamerský and Karas, 2013).

We assume that the above-described initial stationary state is pushed out of equilibrium.
This leads to the capture of a small amount of material by the black hole, which increases
the black-hole mass, and so the accretion occurs. Abramowicz et al. (1998) argued that tori
with radially increasing specific angular momentum are more stable. The algorithm of the
numerical experiment proceeds as follows. At the initial step the mass of the black hole was
increased by a small amount, typically by about few percent of central object mass. After the
time step δt , the elementary mass δM and angular momentum δL = l(Rin) δM are accreted
across the horizon, r = r+ ≡ [1+

√
1− a2]G M/c2. The mass increase δM is computed

as a difference of the mass of torus Md =
∫
V ρ dV at t and t + δt , where dV = ut√

−g d3x
is taken over the spatial volume occupied by the torus. The corresponding elementary spin
increase is δa = l δM/(M + δM). Therefore, at each step of the simulation we updated
the model parameters by the corresponding low values of mass and angular momentum
changes: M → M + δM , a→ a + δa. The inner cusp moves accordingly.

Figure 1 shows the dependence of the torus mass on time for different values β of the ratio
between thermodynamical and magnetic pressure (plasma parameter), β ≡ Pg/Pm, for a
torus with the radially increasing distribution of angular momentum, l(R) = lK, R=Rin [1+
ε(R − Rin)]

q with q > 0, 0 < ε � 1. This means that the reference level of the specific
angular momentum is set to l = const = lK(Rin), motivated by the standard theory of
thick accretion discs, where the constant value is a limit for stability. A radially growing
profile then helps to stabilise the configuration. From the graph we see that the amount
of accreted mass is generally larger for smaller β. The plot also shows that the overall
gradually decreasing trend is superposed with fast oscillations. After the initial drop of the
torus mass (given by the magnitude of the initial perturbation, δM ' 0.01 M) phases of
enhanced accretion change with phases of diminished or zero accretion.

Figure 2 compares the magnetized vs. non-magnetized tori for the same spin (a = 0.3).
In the top panel we show the time dependence of the radial coordinate of the point with
the highest mass density R = Rc (hence the highest pressure) of these two tori, and in the
bottom panel the dependence of the highest mass density is captured as a function of time.
In the limit of a non-magnetised slender torus (Rc � 1) these oscillations correspond to
the situation that has been treated previously by analytical methods (Blaes et al., 2006).
Although the amplitude of Rc oscillations is quite small in these examples (because the
oscillations were initiated by a weak perturbation and the torus centre is relatively far from
the black hole), the outer layers of the torus are affected more significantly and can be
accreted across the inner edge.
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Figure 1. Torus mass, Md(t), relative to the black-hole mass as a function of time. The initial rapid
accretion rate results in a drop of Md that becomes partially stabilised during the subsequent evolution.
Time is given in dimensionless units of G M/c3. The orbital period is close to its Keplerian value
near the inner edge, i.e. about ∆t (R) ' 100 for the material near R = Rin. Left panel: The case
of spin a = 0.1 is shown for different values of magnetisation parameters β = 3 (dashed), β = 80
(dotted), and β →∞ (i.e. a non-magnetized case; solid line). Right panel: as above, but for a = 0.9.
Figure adopted from (Hamerský and Karas, 2013).

Figure 2. Oscillation of the torus centre R = Rc (left panel; radius is expressed in geometrized units
G M/c2 on the vertical axis), and of the central density ρ = ρc (right panel); density is relative
to its peak value at the centre, ρc = ρ(Rc). The solid line is for a non-magnetized case (β � 1),
the dotted line denotes the magnetized configuration (β = 3). Figure adopted from (Hamerský and
Karas, 2013).

2.2 Triggered oscillations and destruction of the torus

Vertical and radial oscillations of accretion tori may cause an overflow of matter onto
the black hole because during these oscillations some parts of the torus occurs outside
the equipotential surface for the initially stable torus. We assumed a following scenario
of the periodically perturbed torus. At the beginning we perturb the distribution of mass
inside the torus so that it would oscillate. Then we prescribe additional perturbations in
the vertical direction which simulate the crossing of a star through the torus. This scenario
is reasonable for intermediate-mass black holes since we can assume that the size of the
torus and of the star are of the same order. This situation can be still treated without taking
the self-gravity into account. During these crossings of the star mass is dragged up from
the equatorial plane and consequently accreted. Before reaching the horizon the material
is accelerated to create an outflow. Naturally, the interpretation of star-torus interaction is
only tentative, because we use the 2D (azimuthally averaged) scheme.



Triggered oscillations and destruction of magnetized relativistic tori in 2D 111

t = 0 t = 10

t = 16 t = 22
Figure 3. Distribution of mass density in various phases of the simulation (the colour scale in arbitrary
units normalized to the maximum density). On the left-top panel there is a perturbed distribution of
mass at time t = 0. Next panels show the profile of the torus after increasing the number of “star
crossings”. Coordinates on the axes are identical to coordinates defined in HARM 2D numerical
scheme (Gammie et al., 2003). Geometrical units are used, where time is scaled by G M/c3.

Figure 3 shows the time evolution of the torus with additional perturbations. On these
images the regions of constant radius correspond to vertical lines parallel to the vertical
axis (HARM coordinates are used). The top and the bottom rim of the image correspond
to rotation axis of the central Kerr black hole.

On the top part of the right-bottom panel in Fig. 3 one can see the outflow directed
away from the horizon. This image is shown in Cartesian coordinates in Fig. 4 where the
arrows express a direction and a magnitude of the velocity of the mass. The velocity of
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Figure 4. Distribution of mass (colour-coded in arbitrary units) with corresponding velocities indicated
by red arrows. While the torus oscillates mainly in the vertical direction, some part of mass high
above the equatorial plane has positive radial velocities. (X,Y) are Cartesian coordinates scaled with
respect to Rg .

accelerated mass can reach values about 0.3 c. We compared the non-magnetized case with
the magnetized one. When we assumed the purely toroidal magnetic field present inside
the torus according to the Komissarov solution (Komissarov, 2006) with the magnetization
parameter β = 3 there was more mass accreted compared to non-magnetized case and
velocities of accelerated mass were higher approximately by 12 %. We also tried to add a
vertical component of the magnetic field to our simulations. However the strength of this
field was not higher than 10 % of the strength of the toroidal magnetic field because for
stronger fields numerical problems in the code arise.

3 CONCLUSIONS

Within the framework of an axially symmetric magnetized fluid torus model we have ex-
tended the previous results on the onset of runaway instability of relativistic configurations
near a rotating black hole. The numerical approach allows us to consider also large am-
plitude perturbations that can lead to significant outflows and even the torus destruction.
We concentrated on systems with radially increasing specific angular momentum that are
threaded by a purely toroidal magnetic field. We neglected self-gravity of the gaseous ma-
terial (the mass of the torus was set to be at most several percent of the black-hole mass),
nevertheless, we allowed for a gradual change of the Kerr metric mass and spin parameters
by accretion over the inner edge. The angular momentum distribution within the torus was
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also allowed to evolve, starting from the initial power-law profile. The mass transfer influ-
ences the location of the cusp of the critical configuration, which can lead to the runaway
instability. The process of accretion is not perfectly monotonic, instead, there are chang-
ing phases of enhanced accretion rate and phases where the mass of torus remains almost
constant. The overall gradual decrease of the torus mass is superposed with oscillations
that can be seen by following the central density variations on the dynamical time-scale and
the position of the centre of the torus. The oscillation amplitude is sensitive to the initial
perturbation, but the frequency is not, namely, a small change of the metric coefficients
does not affect the oscillation frequency. A large-amplitude perturbation leads to the torus
complete destruction.

The toroidal magnetic field plays a more important role in the early phases of the accretion
process until the perturbed configuration finds a new equilibrium or disappears because of
the runaway instability. We showed that additional perturbations in the vertical direction
can lead to relativistic outflows if the perturbations are strong enough so that the mass could
get far from the equatorial plane. Otherwise the mass is accelerated dominantly in the radial
direction and it moves back to the torus. We showed that the presence of magnetic field
supports the acceleration of mass and consequently outflows can reach higher velocities.
For further details see Hamerský and Karas (2014, in preparation).
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Regularity of pulsar glitches
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ABSTRACT
Glitches are sudden changes (usually increases) of pulsars rotation rates, whose
causes are still unknown. Study of glitches and their properties may lead to indepen-
dent view to the physics of pulsars and to the properties and structure of neutron stars.
In this contribution we present preliminary results of our analysis of the inter-glitch
intervals. The studied data sample contains 30 pulsars with a number of detected
glitches higher than four. Analysis of the data shows that there could exist linear cor-
relation between glitch amplitudes and inter-glitch intervals in the case of 11 pulsars
from studied data sample. These results alone may suggests that the global processes
may be responsible for glitches.

Keywords: Pulsar – glitches – neutron stars

1 INTRODUCTION

Isolated pulsars are rotating neutron stars characterized by high rotational stability. Nowa-
days, we can obtain many important informations about astrophysical processes inside
neutron stars and in their vicinity. Precise analysis of long-scale pulsar timing shows
that rotational frequencies of the pulsars slowly decrease. Moreover, sometimes sudden
change (usually increase) of rotational frequency ν may occur and this phenomena is called
glitch. Relative amplitudes of glitches ∆ν/ν ranges 10−11

≤∆ν/ν≤10−5 (Espinoza et al.,
2011). Since the first glitch detection at the end of 1970’s (Vela pulsar, Radhakrishnan
and Manchester (1969)), 439 glitches in 213 pulsars have been detected until today1 (see
online database of Jodrell Bank observatory2 (Espinoza et al., 2011)). Glitches are de-
tected in about one tenth of whole of 2302 discovered pulsars (Manchester et al., 2005).3

Histogram of glitch amplitudes is shown in the left panel of Fig. 1. We can see two peaks
at about∆ν/ν ≈10−8 and∆ν/ν ≈10−6. The right panel of Fig. 1 shows all detected glitch
amplitudes against characteristic age for all glitching pulsars. We can see that the glitches
with large amplitude are occurring mostly in pulsars with characteristic age τ ≈104 years.

1 October 2013
2 Actual version of Jodrell bank (JB) online database: http://www.jb.man.ac.uk/pulsar/glitches.html
3 http://www.atnf.csiro.au/research/pulsar/psrcat/
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Figure 1. Statistical properties of glitch amplitudes. Left: Histogram of glitch amplitudes. Right: Re-
lation between glitch amplitudes and characteristic ages of pulsars. The data were taken from on-line
databases JB and ATNF.

On the other hand, glitches with amplitudes about∆ν/ν ≈10−8 (left peak on the left panel
of Fig. 1) are occurring at all glitching pulsars independently on their characteristic age.

During the glitch not only the rotational frequency ν but also its time derivative (spin-
down rate) ν̇ is changed. Glitches are usually followed by slow relaxation of spin-down rate
and frequency to their pre-glitch values. However in some cases, the post-glitch behaviour of
ν is more complicated. For example, the J0534+2200 (Crab) pulsar glitches were followed
by persistent change of ν̇ (Lyne et al., 1993). Moreover, some glitches of the J0358+5413
pulsar were followed by permanent change of rotational rate ν (Lyne, 1987).

A physical mechanism of glitches is still under discussion (see e.g. a review of a contem-
porary theories of glitch mechanisms in the bachelor’s thesis (Juryšek, 2014) and references
there in). However, it is generally accepted that the glitches are caused by variable coupling
between neutron star’s crust and its superfluid interior (Gosh, 2007). Pulsar glitches are
occurring sparsely and the inter-glitch intervals are long. The most glitching pulsars are
J0537-6910, J0729-1448, J1740-3015 and J1341-6220 and their mean inter-glitch intervals
range from λ ≈ 138 days to λ ≈ 272 days. That is the reason why the total amount of
detected glitches increases very slowly and statistical relevance’s of obtained results are rel-
atively poor. Despite the weak statistics of glitch data it is very important to study glitches
thoroughly, because the glitch behaviours can provide immensely valuable perspective on
the properties of the pulsar and consequently on internal structure of neutron stars.

Based on generally accepted models of glitches it is possible to expect the existence
of linear correlation between glitch amplitudes ∆ν/ν and inter-glitch intervals (or glitch
waiting times) ∆t . Almost all previous analysis of glitch waiting times which have been
carried out by many authors, see e.g. Wong et al. (2001); Yuan et al. (2010); Wang et al.
(2000, 2012), have shown absence of any of the expected correlations, with the exception
of two pulsars – J0537-6910 (Middleditch et al., 2006) and J1645-0317 (Shabanova, 2009).
Furthermore, several authors (e.g. Wang et al. (2012) and Wong et al. (2001) in the case
of the J0534+2200 pulsar or Melatos et al. (2008) using their sample of nine pulsars) have
shown that the individual glitches are independent of each other. In the case of correlations
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between∆ν/ν and∆t the global processes in the neutron star’s crust would be responsible
for glitches. On the other hand time independence of glitches may be result of local
relaxations of mutually isolated momentum reservoirs.

In our own analysis, we focused on a glitch waiting times and our preliminary results are
listed below in Section Data analysis and results, we finish our contribution with Summary
and future work.

2 DATA ANALYSIS AND RESULTS

Since last studies of correlations between∆ν/ν and∆t were published, many new glitches
were detected and that is why we repeated analysis of correlation on a large sample of pulsars
and glitches. We have chosen 30 pulsars with four or more glitch detections (NG ≥ 4) with
an effort to use the largest possible sample of pulsars. We have used on-line JB database
and the ATNF catalogue as the source of glitch amplitudes and times of arrival.

If origin of glitches is related to process of global character we can expect that larger
glitch occurs after longer accumulation of momentum (e.g. in the crust of neutron star)
and all accumulated momentum could be released. In this case correlation between glitch
amplitudes∆ν/ν and time interval preceding the glitch∆tP should exist. Basically, longer
time of accumulation of momentum leads to larger glitch amplitude. Additionally, a glitch
trigger mechanism may be completely independent on glitches themselves (e.g. accretion
of matter or some other external processes). On the other hand, if there is some threshold
value that accumulated momentum needs to overcome to trigger the glitch and if only part
of the whole momentum reservoir is released during the glitch then correlation between
glitch amplitude and waiting time after the glitch ∆tF should exist. This threshold value
could be e.g. limit value of difference between rotation velocity of the crust and the interior
superfluid. In this case the correlation is because the waiting time till next glitch is affected
by the glitch amplitude of the preceding glitch (or equivalently by the amount of momentum
from the reservoir that is released during the glitch).

In our study, we search for correlation between ∆ν/ν and time intervals ∆tP and ∆tF
on the whole sample of 30 pulsars. Correlations have been quantified using Pearson’s
correlation coefficients Ccor, which have been calculated using ‘corrcoef’ function imple-
mented in MATLAB (2012) software. The resulting values of correlation coefficients are
listed in the Table 1. The most significant correlations are marked using bold typeface.
In some cases, high values of Ccor < 0 are due to one outlying point in waiting time – glitch
amplitude space and after we removed this point the correlation disappeared. Only those
pulsars for which this case did not happened are marked in the Table 1. As we can see,
there are 11 pulsars with significant correlations between amplitudes and glitch waiting
times besides two previously published cases. There are both types of correlations between
∆ν/ν and ∆tP /∆tF in the cases of J1731-4744 and J1801-2451 pulsars. Moreover, both
dependencies∆ν/ν on∆tF are surprisingly giving the Ccor < 0. This contradicts the intu-
itive idea of gradual increase of stress in a global reservoir. Dependency of ∆ν/ν on ∆tP
at the J2301+5852 pulsar is also showing Ccor < 0.

3 SUMMARY AND FUTURE WORK
Based on our analysis of 30 pulsars with NG ≥ 4 we can state that 13 of them show significant
correlations between ∆tP/F and ∆ν/ν. These results are surprising in comparison with
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Table 1. Correlations between ∆tP/F and ∆ν/ν at 30 pulsars with NG ≥ 4. The most significant
correlations are marked using bold typeface.

PSR NG ∆tP/F Ccor PSR NG ∆tP/F Ccor

J0205+6449 4 P -0.3352 J1708-4009 6 P -0.1101
F 0.9902 F 0.5002

J0358+5413 6 P -0.2719 J1731-4744 4 P 0.9452
F 0.9907 F -0.9144

J0528+2200 4 P 0.9844 J1740-3015 33 P -0.027
F 0.3780 F 0.4209

J0534+2200 25 P 0.0341 J1801-2304 11 P 0.6257
F 0.0266 F 0.7127

J0537-6910 23 P 0.0431 J1801-2451 5 P 0.8835
F 0.9421 F -0.9817

J0631+1036 15 P -0.0913 J1803-2137 5 P 0.1490
F 0.7009 F 0.8901

J0729-1448 5 P -0.3489 J1814-1744 7 P -0.4347
F 0.6838 F 0.7564

J0742-2822 7 P 0.1180 J1833-1034 4 P 0.9874
F -0.0818 F 0.1560

J0834-4511 17 P 0.4787 J1825-0935 6 P -0.2448
F 0.3724 F -0.1525

J1048-5832 6 P -0.4760 J1826-1334 5 P -0.2183
F 0.5806 F 0.9606

J1105-6107 5 P -0.3693 J1902+0615 6 P -0.3142
F 0.8685 F 0.4899

J1341-6220 23 P -0.0818 J1952+3252 6 P 0.8883
F 0.2931 F 0.7052

J1413-6141 7 P 0.4147 J2225+6535 5 P -0.3249
F 0.8433 F 0.9983

J1420-6048 5 P 0.6533 J2229+6114 5 P -0.2524
F 0.2333 F 0.9798

J1645-0317 7 P 0.2863 J2301+5852 4 P -0.8873
F 0.9888 F 0.4054

previously published analyses. These results are in agreement with theories suggesting that
a global processes in the neutron star’s crust play the key role in the glitch mechanisms.
In the case of a small number of detected glitches, the statistic reliability of obtained results
is essential question and we will focus on this issue in the subsequent work (Juryšek and
Urbanec, in prep.). There is need for further analysis in order to distinguish between local
and global causes of glitches. At first, it is necessary to investigate mutual independence of
individual glitches. We are working on more detailed analysis and we plan to include more
significant results in the prepared paper.
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ABSTRACT
Modified Newtonian potentials have been proposed for the description of relativistic
effects acting on particles and fluids in permanent orbital motion around black holes.
Here we further discuss spherically symmetric potentials like the one proposed by
Artemova, Björnson & Novikov (1996, Astrophysical Journal, 461, 565), and we
illustrate their virtues by studying the acceleration along circular trajectories. We
compare the results with exact expressions in the spacetime of a rotating (Kerr) black
hole.

Keywords: Accretion: accretion discs – black-hole physics

1 INTRODUCTION

The motion of material around black holes, both particles and fluids, is of particular
importance for the present-day models of some astronomical objects, such as galactic X-ray
sources and active galactic nuclei. In these systems, matter may be found rather close to
the black-hole horizon, at a few gravitational radii (rg = 2G M/c2

; where M is the mass
of the central black hole), and the effects of general relativity on the motion must be taken
into account. (We will here set c = G = 1; in addition, we will measure lengths in
units of M , so that rg = 2 hereafter.) The relevant framework for discussing such fluids
is then the Kerr spacetime of a rotating black hole (we consider here only test particles
and fluids around the black hole, as is often done for astrophysical situations; however,
for exact solutions of the Einstein equations with rotating bodies, see e.g. Islam (1985),
and for more astrophysically realistic numerical solutions with self-gravitating material, see
Lanza (1992); Nishida and Eriguchi (1994)). The relativistic effects for this matter can be
ascribed mainly to two characteristic properties of motion around black holes: (i) presence
of the marginally stable orbit (r = rms) and the marginally bound orbit (r = rmb) which
determine the regions of stable and energetically bound motion (their location determines
also the inner edge of the toroidal fluid configurations; the exact location of rmb and rms
can be found by studying the effective potential; see Bardeen et al. (1972)); (ii) the frame
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dragging of non-equatorial orbits (Lense–Thirring precession, often called the Wilkins
(1972) effect in the case of motion close to a Kerr black hole). In order to incorporate
these effects within the Newtonian framework (which is of course technically easier than
a fully relativistic self-consistent approach), numerous authors have adopted the original
idea of Paczyńsky and Wiita (1980) and employed modifications of the Newtonian potential
(Nowak and Wagoner, 1991; Artemova et al., 1996; Crispino et al., 2011).1

In this Note we want to discuss simple (spherically symmetric) potentials appropriate
for the description of matter in purely rotational motion, neglecting frame-dragging effects.
This simplifies our discussion; see Semerák and Karas (1999) for detailed discussion and
references concerning how to modify the Newtonian potential for including the effects of
dragging. In previous studies, the main concern was about how to reproduce correctly the
marginally bound and marginally stable orbits, since the properties of fluid tori are sensitive
to the location of both of these orbits (cf. Muchotrzeb and Paczyński, 1982; Abramowicz
et al., 1988; Kato et al., 1988; Chakrabarti, 1990). See also Tejeda and Rosswog (2013) and
Barausse and Lehner (2013) for a recent discussion and new developments.

The Paczyński–Wiita potential, ΦPW = −1/(r − rg), reproduces the correct location of
rmb and rms for a non-rotating black hole. Another form of the modified potential around
a non-rotating black hole was used by Nowak and Wagoner (1991) to study relativistic
wave-modes in accretion discs: ΦNW = −r−1

+ 3r−2
− 12r−3 reproduces rms and the

epicyclic frequency of radial oscillations κ . These two potentials ΦPW and ΦNW are not
however applicable in the case of a rotating black hole. This situation has been treated by
several authors, most recently and successfully by Artemova et al. (1996). Here we will
further discuss the form of the potential which appears most convenient for modelling tori
around rotating black holes. Note that tori rotate with non-Keplerian orbital velocity and
they may extend well out of equatorial plane (Frank et al., 1992). One thus needs to consider
also accelerated motion, though still in permanent rotation about the common axis of the
black hole.

2 MODIFIED NEWTONIAN POTENTIAL FOR ROTATING BLACK HOLES

2.1 Motivation

The need for a practical and accurate modified potential leads to constraining its form
according to the following conditions:

(i) The modified potential should be a simple scalar function of the spherical radius r ;
(ii) The potential should reduce to ΦPW in the limit of zero rotation (black-hole angular
momentum parameter a = 0);
(iii) The locations of rms and rmb should be correctly reproduced both for the non-rotating
case (a = 0, rms = 6, rmb = 4) and for the extreme rotating case (a = 1, rmb = rms = 1).

1 A different approach was adopted in Keres (1967); Israel (1970); de Felice (1980), where some properties of the
Kerr metric are described in terms of an axially symmetric (non-spherical) potential which reflects the asymptotic
properties of test particle motion.
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These requirements are satisfied by the function

Φ = −
1

(r − r+)β̄ r1−β̄
, (1)

where r+ = 1+
√

1− a2 is the black hole outer horizon, and the parameter β̄(a) is a free
function. The choice for this is constrained by imposing that the values of rmb and rms
should be exact in the Schwarzschild case and in the extreme Kerr case. We then adopt the
simplest linear form: β̄ = 1 − a. Although, for β̄ = 0, Eq. (1) reduces to the Newtonian
potential which does not have marginally bound and marginally stable orbits, the correct
location of rmb = rms = 1 is nevertheless obtained in the limit of a→ 1 (the extreme Kerr
case).

One can verify that the properties of the potential (1) are almost identical with those of
the potential ΦABN of Frank et al. (1992) which corresponds to their Eq. (13) for the force:

F5 = −
1

r2−β (r − r+)β
, (2)

with β = (rms/r+)− 1. Expression (2) follows from the following conditions:

(i) The free-fall acceleration has a similar form to that for a Schwarzschild black hole;
(ii) The free-fall acceleration diverges to infinity near r = r+.
(iii) The marginally stable orbit is reproduced exactly for all values of a (0 ≤ a ≤ 1).

Although the position of the important orbit r = rmb is not mentioned in the derivation of
F5, one can verify that the correct sequence is maintained for all a: r+ ≤ rmb ≤ rms ≤ 6
(indeed, the accuracy is very good as we will see in the next paragraph). The potential
corresponding to F5 is

ΦABN =
1

(1− β)r+

(
1−

r+
r

)1−β
−Φ∞ , (3)

with Φ∞ = (1− β)−1r+−1.

2.2 Acceleration along circular orbits

We will now argue that the results for purely rotational motion of fluids in potentials (1)
and (3) should be extremely similar and close to the exact relativistic treatment in the Kerr
metric. This conjecture can be illustrated in two steps: first we will see that rms and rmb
are well reproduced (for both Φ and ΦABN ), and then we will study acceleration along
non-Keplerian circular orbits (relevant for modelling tori).

We now illustrate the differences in the marginally bound radius as a function of the
marginally stable radius. Figure 1 compares our modified Newtonian ratios y = rmb/r+
and x = rms/r+ (evaluated by using Eq. 1) with the corresponding values of the Boyer–
Lindquist radial coordinate in the Kerr metric. In both cases 1 ≤ x(a) ≤ 3 and 1 ≤ y(a) ≤ 2
when the angular-momentum parameter varies in the range 1 ≥ a ≥ 0. Figure 1a shows
that the two curves of y(x) (i.e. the modified Newtonian and Kerr cases) are practically
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Figure 1. Radii of important orbits in the modified Newtonian potential Φ compared with the Kerr
case: (a) the radius of the marginally bound orbit y plotted as a function of the radius of the marginally
stable orbit x , both measured in units of the black hole outer horizon radius r+; (b) the normalized
marginally bound radius Y (x) = f y; (c) the relative difference δ(x) between the modified Newtonian
and Kerr cases (see text for definitions).

indistinguishable. In order to amplify the tiny difference, we introduce Y = f · y where
the normalization factor is given by f = 1 − (x − 1)/4. The curves of Y (x) are plotted
in Fig. 1b. We complement these graphs by showing (Fig. 1c) δ =

√
[δx]2 + [δy]2 where

δx(a), δy(a) are the differences in x and y between the modified Newtonian and Kerr
cases. It can be seen that δ ∼< 0.25, which indicates an accuracy of x and y better than
about 20 %. The error is a maximum at x ≈1.4 and it goes sharply to zero for both x = 1
(a = 1) and x = 3 (a = 0). One can construct analogous graphs for ΦABN but the results
are very similar to those for Φ. It is therefore a matter of taste which potential to choose
for studying toroids in modified Newtonian potentials, but ΦABN is perhaps more practical
as it has already been used by other authors (Miwa et al., 1998).

The structure of relativistic tori is determined by the radial acceleration along circular
trajectories, and of course by the pressure gradient which, however, depends on the equation
of state. We will therefore now discuss the radial acceleration for different r = const and
different angular velocity ω, and again we will compare the case of the modified Newtonian
potential with that of the Kerr metric (free circular orbits in the equatorial plane have
ω = 1/(r3/2

+ a) and acceleration magnitude A = 0, but we do not restrict only to such
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Figure 2. The acceleration magnitude A is plotted as a function of the angular velocity ω along
circular orbits with different radii: (a) the Schwarzschild case; (b) the modified Newtonian case ΦPW
(the two plots are clearly different in the shaded area corresponding to r < rmb but they are quite
similar outside that region, i.e. in the bottom part of the plots); (c) and (d) show the relative difference
∆ between the two cases for radii in the range rmb ≤ r ≤ 15 ρ. Acceptable accuracy of |∆| ∼< 0.1
corresponds to |w| ∼< 0.5 and r ∼> 1.9 rmb.

cases). First, to explain how the graphs are constructed, we compare the acceleration for
ΦPW and for the Schwarzschild metric in Fig. 2. Each curve gives the magnitude of the
acceleration A along r = const orbits in the equatorial plane (θ = 90◦) of the Schwarzschild
metric. (Only the radial component contributes to the acceleration in the equatorial plane;
a general expression valid also outside of the equatorial plane in Kerr spacetime was
given explicitly by Semerák (1994)). The radius progressively increases for the individual
curves going from top to bottom of the plot. It has been widely discussed in the literature
(Abramowicz and Prasanna, 1990) that A(ω) = const at the photon orbit; this is indicated
by a thick horizontal line in Fig. 2a. In fact, for applications to tori, we are mainly interested
in orbits with radii greater than that of the marginally bound orbit, and therefore the whole
portion of the graph corresponding to r < rmb is covered by shading. (In this region the
modified Newtonian potential approach is not accurate.) One can compare the shape of the
curves in the Schwarzschild case to the modified Newtonian case of ΦPW in Fig. 2b. The
relative difference ∆ between corresponding A’s from graphs 2a and 2b is plotted in the
next two graphs, 2c–d, showing∆(ω) and∆(w) (w denotes the speed in the local frame of
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Figure 3. As in Fig. 2 but for the Kerr a = 0.5 case (a), and for the equivalent ΦABN case (b).
Quite naturally, |∆| is on average large for the orbits with small radius. Comparing with analogous
graphs for ΦPW , potential ΦABN diminishes |∆| to smaller values, and is thus more accurate when
a is nonzero. The graph here is not symmetrical about ω = 0 (due to frame-dragging in the Kerr
metric); accuracy is maintained to higher |w| for corotating motion. Here, an acceptable accuracy of
|∆| ∼

< 0.1 corresponds to |w| ∼< 0.5 and r ∼> 1.6 rmb.

a non-rotating observer, which corresponds to angular velocity ω; −1 < w < 1; r > rmb).
Here, the dimensionless quantity ∆ is defined as

∆ =
AExact(ω)− AModified Newtonian(ω)

AExact(ω = 0)
(4)

which is to be evaluated for fixed r , θ and a. The outermost curve in Fig. 2c (with the
largest magnitudes of ∆) corresponds to r = rmb, while the innermost one (passing close
to ω = 0, ∆ = 0) corresponds to r = 15 r+.

Figure 3 is constructed in the same way as Fig. 2, but now it compares the Kerr a = 0.5
case with the equivalent modified NewtonianΦABN case. By inspecting graphs with different
a we checked that the accuracy of the modified Newtonian potentials ΦPW and ΦABN (as
measured by ∆) is comparable in the non-rotating case but ΦABN is better as soon as
a is non-negligible. A similar conclusion can be drawn for Φ from Eq. (1), and also for
circular orbits outside the equatorial plane. Analogous plots to those in Figs. 2–3 have been
constructed with other sets of parameters. We find that acceptable accuracy of about 10 %
in terms of ∆ is guaranteed whenever r ∼> 1.5 rmb.
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3 CONCLUSIONS

We have systematically checked and briefly illustrated that general relativistic effects on
purely circular orbits can be imitated in a modified Newtonian potential. We have verified
the accuracy of such models for the potentialsΦ (Eq. 1) andΦABN (Eq. 3), finding that these
two are comparable and that both offer higher accuracy than the usual Paczyńsky and Wiita
(1980) potential when the angular-momentum parameter a is nonzero. By using our criterion
concerning the relative accuracy of the acceleration along circular orbits, |∆| ∼< 0.1, we see
that one can use the potential ΦABN of Artemova et al. (1996) satisfactorily for modelling
tori in permanent orbital motion around a rotating black hole. The error increases very close
to rmb. The same conclusion holds for analogous potentials (such as the one proposed in
this note, Eq. 1) which reproduce the important orbits and accelerations for motion around
a rotating black hole with an acceptable accuracy.
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ABSTRACT
We discuss a possibility that a tidal disruption event near a dormant supermassive
black hole (SMBH) can give rise to spectral features of iron in 6–7 keV X-ray signal:
a relativistic line profile emerges from debris illuminated and ionised by an intense
flash produced from the destroyed star. This could provide a unique way to determine
parameters of the system.

We consider a model where the nuclear stellar population acquires an oblate
shape (i.e. a flattened distribution) in the inner region near a supermassive black
hole, and also the primary irradiation flare is expected to occur more likely near
the equatorial plane, co-planar with the infalling material. This suggests that the
reprocessing of primary X-rays results in a transient profile that should be relevant
for tidal-disruption events (TDE) in otherwise under-luminous (inactive) galactic
nuclei, i.e. with no prior accretion disc.

Resonance mechanisms of the stellar motion can increase the orbital eccentric-
ity for some stars in the nuclear cluster and help to bring them close to the tidal
radius, where they can give rise to TDEs. The proposed scenario appears to be
distinguishably different from the standard scheme of lamp-post model for the origin
of the relativistic line in active galaxies, where the source is thought to be located
predominantly near the symmetry axis.

Keywords: accretion: accretion discs – black-hole physics – galaxies: nuclei – tidal
disruption events

1 INTRODUCTION

Near a supermassive black hole (SMBH) tidal disruptions occur during close encounters
when a plunging star on an eccentric orbit reaches the critical (tidal) radius R = Rt ∼

1011 (M•/M∗)1/3 (R∗/R�) cm, where M∗ and R∗ denote the mass and the radius of the
satellite star, M• is the SMBH mass (Evans and Kochanek, 1989; Luminet and Marck,
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1985; Rees, 1988). Stars approach the event horizon, and at a certain moment they become
disrupted by tidal forces of the SMBH, producing a bright flash of intense radiation that
illuminates the surrounding interstellar medium and a temporary accretion disc or a ring
formed by the debris (Cannizzo et al., 1990). According to the standard picture of galactic
nuclei, we can imagine a nuclear cluster around a galactic core as a system consisting of
a central SMBH, an accretion disc and a dense stellar cluster, possibly of a flattened shape
in its inner region (Kunneriath et al., 2014; Schödel et al., 2014). The fall-back rate of the
remnant debris onto SMBH is expected to be influenced by relativistic effects (Cheng and
Bogdanović, 2014).

The authors of ref. (Clausen et al., 2012) demonstrate that the photoionised debris
of a tidally disrupted star can account for the emission lines observed in some optical
spectra. In their case, the super-Eddington phase lasts about one to two hundred years;
reproducing the line ratios requires an intermediate-mass black hole of M• . 200 M�.
Various characteristics of TDEs depend strongly on the stellar type (MacLeod et al., 2012),
although the gradual decay of the light curve adopts a generic profile that is determined by
the viscous processes. The emission of an X-ray irradiated flow, known as the reflection
spectrum, can be expected, including a superposition of the continuum emission and spectral
lines, including the prominent fluorescent emission lines of iron that have the rest energy
around 6–7 keV (Karas, 2006; Karas et al., 2000, 2001; Ross and Fabian, 1993). In another
context of X-ray emission lines, a method for O stars to determine the shock-heating rate
by instabilities in their radiation-driven winds has been recently developed (Cohen et al.,
2014). For this paper, we just remind the reader that the relativistically smeared spectral line
emission from a black-hole accretion disc in a few keV band may be intrinsically narrow
and unresolved in energy; it is the observed profile that becomes broadened and skewed (by
a combination of Doppler and light-bending effects) when integrated over the azimuthal
extent of accretion rings, and generally red-shifted by strong gravity of the central black
hole.

One of the most constraining X-ray spectral information on a tidal disruption event (TDE)
has resulted from the campaign on a quiescent galaxy SDSS1201+30 (Saxton et al., 2012).
This is most likely an object without a prior accretion disc. The X-ray spectra are very soft,
and can hardly be explained with standard accretion disk models. The strong variability
was seen in the light curve and related to clumpy accretion with a combination of flaring
and absorption events.

X-ray photons from TDE can illuminate, ionise and perturb the gaseous material infalling
from the fresh accretion flow. In reference Zhang et al. (2014) we propose that the relativistic
iron line from the TDE irradiated inflow can provide a unique way to determine parameters
of the system, namely, the dimensionless black-hole spin a (−1 ≤ a ≤ 1), the angle of
the observer i (inclination, 0 ≤ i ≤ 90 deg; i = 0 corresponds to pole-on view along
the rotation axis), and the expansion velocity vexp of ionisation front, which propagates
outwards at velocity close to the speed of light and modulates the ionisation parameter of
the medium. Hence, it affects also the iron-line emissivity.

According to the model, the line emission is triggered and modulated by the same,
virtually instant TDE event. Unlike the case of continuously variable X-ray spectrum of
active galactic nuclei (Esquej et al., 2012; Saxton et al., 2012), a quiescent source would be
preferred, so that the transient relativistic line can be revealed.
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2 HYPOTHESIS OF A RELATIVISTIC SPECTRAL LINE FROM
TDE-IRRADIATED REMNANT ACCRETION DISC

In reference Šubr et al. (2004) we modelled the structure of the nuclear star cluster that is
expected to arise as a result of the mutual interaction of main components of the galactic
nucleus, i.e. a supermassive black hole, stars, and a gaseous/dusty torus that helps to bring
stars towards the tidal disruption. An interesting conclusion from that paper concerns the
formation of a flattened (oblate) stellar subsystem in the inner region surrounding the central
SMBH (Just et al., 2012; Vilkoviskij and Czerny, 2002), which is a reminiscence on much
smaller scales of the structure originally reported on the kiloparsec scale of the bulge of the
Milky Way (Launhardt et al., 2002). In the other words, TDE from such a stellar population
can be expected to occur predominantly in the equatorial plane of the system. Therefore,
also the irradiation flash should arise with a higher chance within the plane, i.e. at large
inclination angle with respect to a distant observer.

In our scenario for TDE, the flattened stellar system is associated with the effect of
hydrodynamical dissipation of the stellar orbits by the dusty/gaseous torus. Further down,
at very small radii near the horizon, also gravitational radiation can play a role. Moreover,
a subset of stars on eccentric orbits is brought close to the central black hole where they
plunge quickly below the tidal radius. Studying such a TDE would shed light on the accretion
physics and the stellar dynamics in galactic nuclei, as well as the role of tidal disruptions
for feeding and growth of SMBHs.

We put forward a possibility that the source of intense energy deposition occurs near
the inner edge of the accretion disc, which resembles a radially narrow ring that gradually
spreads by viscous forces and eventually disappears once the fraction of captured material
is accreted. Basic form of the relativistic line from a narrow ring were investigated in
ref. (Sochora et al., 2011). Following TDE, the spectral line is modulated via changing
ionisation state of a remnant accretion disc that is created from the debris. This remnant
accretion ring can be identified with a structure that has been proposed to arise around
the circularisation radius at transient accretion events with low (sub-Keplerian) angular
momentum (Bu and Yuan, 2014; Czerny et al., 2013; Hayasaki et al., 2013).

A non-negligible radial infall velocity of the accreted material is likely, and so the
ionisation front moves radially outward through the material of the remnant disc at v =
vexp(r) that is not exceeding the speed of light (although it should be very close to it).
We can set vexp ' const as one of free model parameters. The corresponding mass fall-
back rate (denoted by the subscript ‘fb’ hereafter) proceeds as a characteristic power-law
profile (Rees, 1988), Ṁ(t) ∝ K t−5/3 (K ≡ M?/tfb = const), which can significantly
exceed the Eddington accretion rate for a period of weeks to years for the black hole mass
M• . 107 M� (Strubbe and Quataert, 2009).

The hypothesis about an enhanced capture rate and tidal disruptions of stars in the
equatorial plane is supported also by simulations of the structure flattening in the inner
regions of the nuclear cluster. In reference Šubr and Karas (2005b) a scenario was discussed
based on a combination of simultaneous gravitational and hydrodynamical effects of the
gaseous environment on orbiting stars, which are assumed to lead to an oblate, disc-like
configuration. While the direct star-disc hydrodynamical interaction causes a continuous
dissipation of the stellar orbital energy (and it is anyway very small in the Milky Way’s
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Figure 1. The intrinsic emissivity profile (arbitrary units) around the 6–7 keV spectral feature, as
predicted by the model for hot parts of the ionisation front (Karas et al., 2000). The three curves
correspond to different values of the ionisation parameter ξ . As the ionisation front expands through
the infalling remnant disc, the changing ionisation state is revealed by the corresponding change of the
iron line rest energy and intensity, until the emission feature disappears when the complete ionisation
is reached.

central regions), gravity of the stellar ring, a self-gravitating accretion torus, or a flattened
nuclear star-cluster all can lead to recurring variations of the orbital elements. An example
of this evolution is plotted in Fig. 2, where we show the long-term orbital changes due to both
the hydrodynamical and gravitational influence of the disc. As an example, parameters of
that simulation were set to be consistent with the values reported for S2 star in the Galactic
center (in this scheme it is the orbital trajectory of the star which defines the relevant plane).
Alternatively, tidal disruption of stars by supermassive central black holes from dense star
clusters has been modelled by high-accuracy direct N-body simulations (Zhong et al., 2014).

We note that in the X-ray and optical/UV bands, almost two dozens candidate TDEs have
been already reported (Gezari et al., 2012; Greiner et al., 2000; Komossa and Greiner, 1999).
These events are characterized by the thermal emission with temperature of ∼ 104–105 K,
and the peak bolometric luminosity about 1043–1045 erg · s−1. For the events with good
coverage during the decay, the flux decline was found consistent with a power-law (index
−5/3), as predicted for canonical TDEs. Compared with the quiescence state, the flux can
increase by a factor of & 150 during outbursts.

Detections of the fluorescent iron line from TDE are only tentative so far (Evans and
Kochanek, 1989), however, finding this spectral signature should provide very valuable
information. The expected properties of the reflection line depend sensitively on the ionisa-
tion state of the irradiated material (Ross and Fabian, 1993). Since in TDEs the continuum
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Figure 2. Temporal evolution of semi-major axis and eccentricity of the orbit of a star from a nuclear
star cluster interacting with a disc (Šubr and Karas, 2005a). Dashed line corresponds to the case
when the effect of disc gravity is neglected. Solid line (in the left panel) and dots (in the right panel)
represent a simulation where both the hydrodynamical and gravitational interaction were considered.
According to this scheme, TDE event is triggered at the moment of close encounter (zero time on the
horizontal axis) between the star and SMBH (M• ' 4× 106 M�).

flux can vary by a large amplitude, we need to take also the variation of the ionisation
parameter ξ(t) into consideration (see Fig. 1). For M• ≈ 106 M� SMBH, the peak mass
fall-back rate can reach∼ 1.5M� yr−1, corresponding to luminosity of 8.5× 1045 erg · s−1

(assuming the radiation efficiency of η ' 0.1). Therefore, the rise of the illumination is
significant by orders of magnitude compared to the quiescent state of a dormant nucleus.

3 DISCUSSION AND CONCLUSIONS

Gravitational effects act on the spectral features from the remnant TDE accretion disc by
smearing the spectral features and moving the observed energy centroid across energy
bins. In this way gravity exerts the influence on the ultimate form of the spectrum (Karas,
2006). The reprocessed radiation reaches the observer from different regions of the system.
Furthermore, as strong-gravity plays a crucial role, photons may even follow multiple
separate paths, joining each other at the observer at different moments. Individual rays
experience unequal time lags for purely geometrical reasons and for relativistic time-dilation.

Time delay from a TDE flare to the moment of arrival of the observed iron line signal
consists of two components: the expansion time texp = r/vexp, and the time interval from
the disc to the observer, tdelay. At large radius where the spacetime is flat to a good
precision, tdelay ' −r sinφ + const, where φ is the azimuthal angle on the disc plane
(Karas et al., 2001). As vexp is of order unity (i.e. comparable to the speed of light), the
two quantities become comparable, and the delay interval is dominated by the longer one.
At large inclination angles, the photons from the disc located in front of the black hole
reach the observer first, then those from disc near the inner edge, and at last those from disc
behind black hole.

In the cases of high expansion velocity combined with high inclination angle, a “nose”
occurs ahead of the rings main signal (Zhang et al., 2014). The length of the nose increases
with the inclination angle and with the expansion velocity. The line emission ceases once
the accretion flow becomes highly ionised to a larger distance. On a phenomenological
level of our model, the intrinsic emissivity of the remnant accretion ring and the expansion
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velocity of the ionisation front are two degrees of freedom that allow us to capture the
lamp-post scheme as well as the TDE-induced illumination in a common scenario. We
note that the remnant accretion rings resulting from a TDE event are likely lacking axial
symmetry. Therefore, as a next step to explore more realistic situations, spectral line profiles
from elliptically shaped and tilted structures need to be taken into account (Chang and Choi,
2002; Eracleous et al., 1995; Fragile et al., 2005).

We conclude by stating that the proposed idea poses an observational challenge (because
the iron line flux is expected to be only a weak and variable components of the X-ray signal
from tidal-disruption events), nevertheless, it suggests a promising opportunity to verify
the parameters of central black holes by an independent method. Moreover, it offers and
interesting complement to the standard scenario for the origin of relativistically broadened
spectral lines.

In the context of Galactic centre, let us remark that the 6–7 keV emission of iron has
been extensively studied (Ponti et al., 2010; Wang et al., 2006) and the light-echo effect
reported. However, the detection concerns a wider region (molecular clouds within the
Central Molecular Zone surrounding the SMBH) than the immediate vicinity of the black-
hole horizon, which we imagine here.

While in the lamp-post model the irradiating source is (usually) considered to be (almost)
axially symmetric and located around the rotation axis, in the present scheme the primary
excitation is more likely to occur from the equatorial region near the innermost stable
circular orbit, commonly denoted as ISCO, which is about the minimum radius to which
the accretion discs can extend. A convincing case of such a transient relativistic spectral
feature from TDE is still to be found in X-rays.
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ABSTRACT
The hydrodynamical drag by interstellar gaseous environment can influence the
orbital motion of stars near a supermassive black hole on long time-scales, even if
the medium is diluted. This effect is generally more important for bodies with a large
geometrical cross-sectional area, such as supergiants interacting with a relatively
dense accretion disc in active galactic nuclei, whereas it is entirely negligible for
compact stars embedded in a rarefied accretion flow in low-luminosity galactic
nuclei.

We discuss whether a strong magnetic field of a neutron star can significantly
enhance the drag effect by increasing the effective cross-sectional area for the mutual
interaction, especially in the case of the hypersonic motion. We find that the increase
due to magnetic forces is still far too small to be important, e.g. for the long term
orbital evolution of the putative population of neutron stars in the Galactic centre,
where the environment density is very low.

Keywords: Accretion: accretion discs – black-hole physics

1 INTRODUCTION

The problem of accretion onto a star or a black hole in the presence of magnetic fields has
been investigated since many years: for the original account and basic ideas relevant to our
present discussion, see e.g. Bisnovatyi-Kogan and Ruzmaikin (1974, 1976); Ghosh and
Lamb (1978); Kluźniak and Rappaport (2007). Most attention has been focused towards
the accretion fed via an accretion disk. It has been recognized that the accretion process can
proceed in various modes, depending mainly on the star compactness and rotation period,
the accretion rate, and the magnetic field strength and orientation. In the past, somewhat
less attention has been focused towards the magnetic version of the Bondi–Hoyle–Lyttleton
problem of accretion onto isolated stars moving rapidly through the interstellar medium
(e.g. Toropina et al., 2001, 2006).
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The hydrodynamical drag can be safely ignored in late stages of a compact star inspiraling
in a standard disc; see Karas and Šubr (2001). In that paper we considered also giant stars for
which the drag is more important simply because of much larger geometrical cross-sectional
area for the direct interaction with the disc material. Neutron stars and stellar-mass black
holes were suspected to be too tiny and very weakly interacting in this respect (Narayan,
2000).

However, the effective cross section of a magnetized neutron star can be significantly
larger and it can lead to an increased drag. We thus summarize formulae describing the
interaction of a rotating magnetic star with accretion plasma (for a textbook account of the
subject, see Lipunov (1987); also Romanova et al. (2005)).

2 BASIC ESTIMATES BASED ON CRITICAL RADII

Accretion of material by a star or a compact object has been studied since the late 1930s.
First, astrophysicists investigated axially symmetric accretion onto a star moving through a
cloud of interstellar medium (see “The evolution of stars” by Hoyle and Lyttleton (1939) and
“On the effect of interstellar matter on the motion of a star” by Dodd and McCrea (1952)). A
possibility was proposed of terrestrial climatic effects being due to density variations of the
medium in the solar neighbourhood. Next, in the 1950s, the theory of spherical accretion
of gas was developed (Bondi, 1952, “On spherically symmetric accretion”). This line of
research has continued with more complicated studies of gas transport between individual
components in binary systems, and led to the idea of accretion disks in the late 1960s.

A trivial order-of-magnitude estimate of the gravitational potential energy which can in
principle be released in the course of accretion of a test mass m onto a spherical body with
mass M and radius R∗ gives

∆Eacc =
G Mm

R∗


†
≈ 1020 M

M�
m
1 g

10 km
R∗

[erg] ,
‡
≈ 1053 M

108 M�
m

M�
10−4 pc

R∗
[erg] .

(1)

Typical values for a neutron star (†) and for a super-massive black hole (‡) have been used
in numerical estimates. Let us compare ∆Eacc with the energy which could be extracted
from the same mass m by nuclear fusion reactions. Hydrogen-to-helium burning, the most
important case from the astrophysical viewpoint, gives

∆Enuc = ∆mc2

≈ 5× 1018 m
1 g [erg]

†
≈ 0.1∆Eacc ,

≈ 1052 m
M�

[erg]
‡
≈ 0.1∆Eacc .

(2)

Energy potentially releasable by accretion is very sensitive to a dimension-less compact-
ness parameter,

ε ≡
2G M
R∗c2 . (3)

Order-of-magnitude estimates of parameter ε: (i) Neutron stars – R∗ ≈ 10 km, ε ≈ 0.1;
(ii) White dwarfs – R∗ ≈ 104 km, ε ≈ 10−4 (as an example we mention binary systems
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consisting of a white dwarf which accretes matter from a close, usually main sequence
companion; these are cataclysmic variables); (iii) Solar-type stars – R∗ ≈ 106 km, ε ≈
10−6
; for example standard main-sequence stars in a binary system (symbiotic stars) belong

to this category; (iv) Black holes – R∗ ≈ Rg ≡ 2G M/c2
≈ 3(M/M�) km, ε & 0.1

(black holes have no rigid surface. Under suitable conditions, R∗ coincides with the last,
innermost stable orbit below which material falls freely into the black hole. In the case of
a non-rotating, Schwarzschild black hole, R∗ = 3 Rg, ε = 1/3.)

Another dimensionless quantity is also frequently designated as the compactness param-
eter in the theory of accretion onto compact objects. It takes into account the radiation
luminosity L of the object:

ε̃ ≡
L ΞT

R∗mec3 . (4)

(The Thomson cross-section for electrons is ΞT = 6.65 246× 10−25 cm2.)

In many situations, the accreted matter has apparently a non-negligible value of angular
momentum which invalidates the basic assumption of the spherical approximation. Non-
spherical accretion was originally investigated in the case of an interstellar medium captured
by a moving object, e.g. a star in a nebula (Bondi and Hoyle, 1944).

Let us consider a magnetic star moving as a “bullet” along an inclined trajectory across
the accretion disc plane. In the case of supersonic motion, the relevant interaction radius is
called the Shvartsman radius (e.g. Lipunov, 1987; Romanova et al., 2001),

RSh ' 9.4× 1015 B12 P−2
1 v−1

7 n−1/2 [cm] . (5)

Notation for relevant variables follows the standard practice (e.g. Lipunov, 1987), in partic-
ular, B12 denotes the magnetic intensity scaled to the units of 1012 Gauss.

Here one assumes that two conditions, RSh > Racc and RSh > Rlc, are both satisfied,
where the light cylinder is

Rlc = c/Ω∗ ' 4.8× 1012 P3[cm] , (6)

and the Bondi–Hoyle radius (Edgar 2004) is

Racc =
2G M
w2 = 9.4× 1011 M1.4

w2
200

[cm] , (7)

w200 =

√
c2

s + v
2

200 km/s
(8)

(cs is the sound speed, v is relative velocity).
The above given formula for RSh follows from the equality between the magnetic pressure

Pm (due to a rotating dipole luminosity Lm),

Pm =
Lm

4πR2c
=

κtµ
2

4πR4
lc R2

(9)
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(κt ∼ 1/2), and the ram pressure

Pram = ρv
2
'

Ṁv5

G2 M2 . (10)

Alternatively, one can write

R2
Sh =

κtµ
2Ω4
∗G2 M2

2Ṁv5c4
. (11)

In these circumstances the accretion rate is small (much less than what would correspond
to the direct accretion onto RSh > Rlc � R∗ sphere), but the momentum exchange can still
be significantly large, causing possibly a non-negligible drag.

On the other hand, in case of a star embedded in the disc plane, the relative velocity
is small with respect to the surrounding medium, and so the characteristic cross-section
is now given by the Alfvén (stopping) radius, RA. For the latter one can derive different
formulae depending on the exact situation:

Furthermore,

RAg =

(
κgµ

2

ṀBHL

)2/7

, (12)

where κg ∼ (2G M)−1/2/2 is a constant, µ = B∗R3
∗/2 is the magnetic moment. The

asterisk denotes quantities that correspond to the star surface (in case of a dipole field on
finds B∗ at the pole = 2B∗ at equator; the numerical factor is somewhat uncertain in κg).

The Bondi–Hoyle–Lyttleton accretion rate (BHL, assumed in the above-given relation)
is

ṀBHL =
σπG2 M2ρ∞

w3 = πR2
accwρ∞/2 , (13)

σ ∼ 4. The equation for RAg is relevant in the situation when RAg < Racc and RAg < Rlc
both hold.

Finally,

RAp =

(
κpµ

2G2 M2

ṀBHLw5

)1/6

, (14)

κp ∼1 or 2. The latter relation for RAp is relevant when RAp > Racc and RAp < Rlc. In this
case one can expect the accretion rate to be given roughly by ṀBH, but the momentum
exchange is smaller than it was in the previous case (however, it takes continuously, while
the star is embedded with the disc medium).

The above given derivation contains various parameters evaluated at the star surface
– apart from the magnetic intensity B∗ (or the magnetic dipole moment µ), it is the linear
velocity of the star motion v, radius of the star R∗, the mass M , and the period of rotation P .
It also contains the density of the environment ρ (resp. n), and the corresponding velocity
of sound, cs.
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In order to derive specific conclusions about the drag efficiency, one has to fix several
parameters at their typical values or to set the typical values expected in the accretion
disk. Only then one is prepared to investigate the dependency on B∗, which is the relevant
information that we seek.

The magnetic field depends on the rotation period, so it is interesting to examine also the
time dependence Ω∗(t). The most prominent deceleration effect of this kind is expected to
occur in case of magnetars (e.g. Toropina et al., 2006) – they slow down on the time-scale of
103–104 yrs. One can involve the power-law deceleration according to Mori and Ruderman
(2003):

I Ω̇ = −κµn1ρn2vn3Ωn , (15)

where n1 = (3 + n)/3, n2 = (3 − n)/6, n3 = (3 − 4n)/3, κ = const, n = const
(−1 < n < 2).

We can thus conclude that the magnetic star effective radius can be much larger than
the geometrical one. However, the characteristic radii do not capture the entire reality;
they only partly reflect the basic operation of the drag, which needs to be confirmed by
computations carried out under more realistic assumptions. Obviously, the astrophysically
realistic modelling needs MHD numerical simulations, such as those described by, e.g.
Romanova et al. (2003); Spitkovsky (2006); Toropina et al. (2008), where the complex
structure of the magnetosphere can be properly modelled.

3 CONCLUSIONS

The drag force is exerted on a moving star by the ambient medium. We can roughly estimate
the effect by the cross-sectional area for the mutual interaction between the moving body and
the surrounding interstellar gas. Compared with the geometrical radius, the magnetic “stand-
off” radius (given by the equilibrium between the magnetic pressure and the hydrodynamic
pressure) is significantly larger; it is the greatest one of several characteristic radii. One can
expect that the stand-off radius determines the magnitude of the total drag force. To see
this more clearly we listed different characteristic radii of the problem; these depend on the
type of drag force that one takes into account (due to the thermal pressure versus the ram
pressure acting against the star linear motion), and how quickly the magnetic effects decay
with the distance from the star (dipole field versus the radiation field of a fast rotator).

Under realistic conditions of the supermassive black hole in the Galactic centre and similar
low-luminosity (highly sub-Eddington) nuclei, however, the order-of-magnitude estimation
of the characteristic radii for the interaction as well as numerical experiments show that
the magnetic field of a compact star does not enhance the drag force significantly (Karas
and Šubr, 2001), and so the orbital mechanics of magnetic compact stars comes out only
slightly altered in comparison with the non-magnetised case. This conclusion ensures that
the drag forces on compact stars can be safely neglected in calculations of orbital evolution
of the neutron-star population near the Galactic centre.

Nonetheless, the interaction is still relevant in the context of creation of bow-shock struc-
tures (van Marle et al., 2011; Meyer et al., 2014). These have been revealed in several cases
also in the Galactic centre (Mužić et al., 2010), where a dense cluster of fast-moving stars
on close orbits exists and should include the tentative population of compact magnetized
objects close to the supermassive black hole (Zajaček et al., 2014).
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ABSTRACT
We present eigenfrequencies and eigenfunctions of trapped acoustic-inertial oscil-
lations of thin accretion disks for a Schwarzschild black hole and a rapidly rotat-
ing Newtonian star (a Maclaurin spheroid). The results are derived in the formal-
ism of Nowak and Wagoner (1991) with the assumption that the oscillatory motion
is parallel to the midplane of the disk. The first four radial modes for each of five
azimuthal modes (m = 0 through m = 4) are presented. The frequencies and wave-
functions of the lowest modes may be accurately approximated by Airy’s function.

Keywords: Relativistic stars: black holes – structure stability – oscillations – rela-
tivity – gravitation – accretion disks – hydrodynamics

1 TRAPPED MODES

Kato and Fukue (1980) showed that acoustic-inertial modes may be trapped in the inner
parts of an accretion disk. This occurs when the (radial) epicyclic frequency κ has a max-
imum, as is the case in the Schwarzschild metric of general relativity (GR) considered
by the authors. Okazaki et al. (1987); Kato (1989) and Nowak and Wagoner (1991, 1992)
consider a model of a black hole accretion disk in hydrostatic equilibrium, and derive a dis-
persion relation for modes with n = 0, 1, 2, 3, . . . nodes along the z-axis (the symmetry
axis of the disk). The trapping occurs for oscillation frequencies below the maximum
of the epicyclic frequency ω < κmax. Here ω(r) = mΩ(r) + σ is the frequency in
the frame co-rotating with the fluid (at angular frequency Ω), m is the azimuthal mode
number, σ is the eigenfrequency of the mode, and κ2

= (2Ω/r) d(r2Ω)/dr . The n = 0
modes will be trapped between the inner edge of the disk, close to the ISCO at κ(rms) = 0,
and the lowest radius r satisfying ω(r) = κ(r), while for n = 1 trapping occurs close to
the maximum of κ , between those two radii at which ω = κ . Further discussion can be
found in the textbook by Kato et al. (1998). In this contribution we only consider the n = 0
trapped modes.

Currently, the main interest in disk oscillations is related to the observed frequencies in
the X-ray flux from black hole and neutron star systems (for a review see van der Klis M.,
2000). For black hole disks the modes thought to be offering the most promising expla-
nation (Wagoner et al., 2001) of the highest observed frequencies are the g-modes and
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c-modes, investigated in full GR by Perez et al. (1997); Silbergleit et al. (2001), although
a different explanation seems to be required for the observed 3:2 ratio of the highest fre-
quencies in the microquasars (Abramowicz and Kluźniak, 2001; Kluźniak et al., 2004;
Török et al., 2005). Thus, the modes investigated here are not prime candidates for a the-
oretical counterpart to the observed high frequency QPOs (quasi-periodic oscillations) in
black hole systems. However, similar phenomena are observed in white dwarf systems
(Woudt and Warner, 2002), and while their harmonic content may be explained by a reso-
nance (Kluźniak et al., 2005), the origin of the observed frequencies remains obscure. For
this reason we would like to discuss disk oscillations in a framework valid equally in a GR
and non-GR context.

2 EQUATION OF MOTION AND THE BOUNDARY CONDITION

We will be closely following the approach of Nowak and Wagoner (1991) who describe per-
turbations with a Lagrangian displacement vector in cylindrical coordinates (ξ r

∗ , ξ
φ
∗ , ξ

z
∗) =

(ξ r , ξφ, ξ z) exp[i(mφ + σ t)] in the formalism of Friedman and Schutz (1978), and show
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Figure 1. The fundamental and the first three radial overtones for m = 0 trapped horizontal oscilla-
tions of a thin (H/a = 10−3) accretion disk for the potential of Eq. (4). Plotted are the wavefunction:
solid (blue) line (arbitrary normalization, left scale); ω2(r)/Ω2(rms): dashed-dotted (green) line and
κ2(r)/Ω2(rms): dashed (red) line (logarithmic scale, right).
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that in the WKB approximation the azimuthal component of the equation of perturbed mo-
tion for thin disks reduces to ξφ = 2i

(
Ω/ω)ξ r . In this contribution we assume horizontal

motion, implying that ξ z
∗ ≡ 0 and ∂ξ r

∗/∂z ≡ 0. In terms of Ψ (r) ≡
√
γ Pr ξ r (r) the

remaining component of the equation of motion then gives

d2Ψ

dr2 +

(
ω2
− κ2)
c2

s
Ψ = 0 , (1)

where c2
s = γ P/ρ is the speed of sound squared; the boundary condition is that the La-

grangian perturbation of pressure vanishes at the unperturbed boundary, ∆P ≡ γ P∇ξ∗ =
0, which reduces to
1
r
∂

∂r

(
rξ r
∗

)
+

1
r
∂

∂φ

(
ξ
φ
∗

)
= 0

assuming that P 6= 0 (Nowak and Wagoner, 1991). Neglecting derivatives of P this
gives our final boundary condition at the inner edge, at r = a, which we will take to
be at the marginally stable orbit (ISCO) at a = rms,

dΨ
dr
= −

Ψ

2r

(
1− 4mΩ/ω

)
.
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K-L: σ=-0.880519, m= 1, µ=0
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K-L: σ=-0.78715071, m= 1, µ=1
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K-L: σ=-0.73584411, m= 1, µ=2
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K-L: σ=-0.697637, m= 1, µ=3

Figure 2. Same as Figure 1, but for m = 1.
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In dimensionless form, with r = a(1 + x), ω̃(x) = ω(r)/Ω(a), κ̃(x) = κ(r)/Ω(a),
σ̃ = σ/Ω(a), and cs = HΩ(a), the perturbation (wave) equation takes the form

d2Ψ

dx2 +

(
a
H

)2 (
ω̃2
− κ̃2

)
Ψ = 0 , (2)

with the boundary condition at x = 0

dΨ
dx
= −

Ψ

2

(
1− 4m/ω̃

)
. (3)

In the last equation ω̃ = σ̃ + m. Recall that in general ω̃(x) = σ̃ + mΩ(r)/Ω(a).
In this contribution we are providing an atlas of eigenfrequencies and eigenfunctions for

the fundamentals and the first three radial overtones of horizontal disk oscillations (labelled
with the number of radial nodes, µ = 0, 1, 2, 3) for m = 0, 1, 2, 3, 4.

3 MODELS OF A SCHWARZSCHILD BLACK HOLE

Bohdan Paczyński showed that it is possible to capture essential qualitative features of
motion in the Schwarzschild metric in a Newtonian model with a simple pseudo-potential
Φ(r) = −G M/(r − 2rg) (Paczyński and Wiita, 1980), with rg = G M/c2. Nowak and
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K-L: σ=-1.863574, m= 2, µ=0
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K-L: σ=-1.753540503, m= 2, µ=1
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K-L: σ=-1.688476883, m= 2, µ=2
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K-L: σ=-1.63874694, m= 2, µ=3

Figure 3. Same as Figure 1, but for m = 2.
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Wagoner (1991) found the eigenfrequencies and eigenfunctions of Eq. (1) for the funda-
mental oscillations with m = 0, and m = 2, using values of κ2(r) following from their
own pseudo-potential Φ(r) = −(G M/r)[1− 6rg/r + 12(rg/r)2].

Here, we model the Schwarzschild metric with a Newtonian pseudo-potential designed
expressly to reproduce the Schwarzschild ratio of κ2(r)/Ω2(r) = 1− 6rg/r :

ΦKL(r) = −(c2/6) exp(6 rg/r − 1) . (4)

As we are only interested in the inner parts of an accretion disk, we have dropped an
additive constant. We have also renormalized the original form of the potential (Kluźniak
and Lee, 2002) by a factor of 1/e to guarantee the correct value of Ω(rms). The angular
frequency of orbital motion follows from Ω2(r) = r−1∂ΦKL/∂r and, as for the other
two potentials, the marginally stable orbit comes out to be at rms = 6G M/c2. We have
numerically solved the eigenvalue problem given by Eqs. (2) and (3), for H/a = 10−3.
The equations being linear in Ψ , we normalize the wavefunction to unity at the inner edge
of the disk: Ψ (rms) = 1. Figure 1 presents the eigenfrequencies σ and the eigenfunctions
Ψ (r) for m = 0 and µ = 0, 1, 2, 3, while Figs. 2, 3, 4 and 5 present the same quantities, as
well as ω̃2, for m = 1, 2, 3, 4, respectively.
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K-L: σ=-2.848839, m= 3, µ=0
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K-L: σ=-2.72410649, m= 3, µ=1
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K-L: σ=-2.64751865, m= 3, µ=2
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K-L: σ=-2.58827147, m= 3, µ=3

Figure 4. Same as Figure 1, but for m = 3.
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4 ESSENTIALS OF ACOUSTIC-INERTIAL OSCILLATIONS

4.1 Wave equation

Dust orbiting an axially symmetric gravitating body in its equatorial plane (z = 0) would
settle in stable circular orbits. The orbit of each dust particle being stable, it corresponds to
“rest” (we are only concerned with radial motion in this section) at a fixed radial distance
from the center of the body in the minimum of the effective potential, V (r, z) = Φ(r, z)+
l2/(2r2), l ≡ r2Ω(r) being the conserved angular momentum of a given particle, andΦ the
gravitational potential of the body, both per unit mass. Consider small radial perturbations
δr of motion of a dust disk (such as the rings of Saturn). Neglecting particle collisions,
the perturbed dust would be executing radial harmonic (epicyclic) motion with respect
of the stable orbits. The square of the frequency of this radial motion, κ2

= ∂ 2V/∂ 2r
corresponds to the strength of the restoring force per unit mass: −κ2ψ∗ (if we denote
the radial displacement δr = ψ∗). If the dust disk is replaced by a fluid, there will be
an additional restoring force corresponding to pressure perturbations.

It is well known that sound waves in a homogeneous medium can be described by a har-
monic function both in space and in time, with a constant and uniform amplitude if at-
tenuation is neglected. Thus, the acoustic displacement of the fluid satisfies both a wave

1.00 1.01 1.02 1.03 1.04 1.05
r/a

0.0

0.2

0.4

0.6

0.8

1.0

ξ r
 (

a
rb

it
ra

ry
 s

ca
le

)

ξr

κ2

ω2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

fr
eq
u
en
cy

2
  
(a

3
/G

M
) 

 

K-L: σ=-3.83567, m= 4, µ=0
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K-L: σ=-3.6975638, m= 4, µ=1

1.00 1.02 1.04 1.06 1.08 1.10
r/a

−1.0

−0.5

0.0

0.5

1.0

1.5

ξ r
 (

a
rb

it
ra

ry
 s

ca
le

)

ξr

κ2

ω2 10-6

10-5

10-4

10-3

10-2

10-1

100

fr
eq
u
en
cy

2
  
(a

3
/G

M
) 
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K-L: σ=-3.543276974, m= 4, µ=3

Figure 5. Same as Figure 1, but for m = 4.
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equation

∂2ψ∗

∂y2 + k2
sψ∗ = 0 , (5)

and an oscillator equation

∂2ψ∗

∂t2 + ω
2
sψ∗ = 0 , (6)

corresponding to a restoring force −ω2
sψ∗. The frequency of the sound wave is related to

the wave vector through the linear dispersion relation

k2
s = ω

2
s /c

2
s . (7)

Clearly, taking into account in the oscillator equation both the “inertial” (epicyclic)
and the acoustic restoring forces, and neglecting for the moment the difference between
the cylindrical co-ordinate r and the Cartesian co-ordinate y, the acoustic-inertial displace-
ment of the fluid can be described by a displacement ψ∗(y, t) = ψ(y) exp(iωt), with ω2

=
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Figure 6. Same as Figure 1, but for the potential of a Maclaurin spheroid with ellipticity e =
0.834583178.
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Figure 7. Left Panel: A simple approximation to the eigenfrequency σ̃0 of the axisymmetric funda-
mental mode (m = 0, µ = 0): a quarter wavelength fits in the inner region of the disk (σ̃ 2

0≥κ̃
2) before

the wave becomes evanescent. The vertical dotted line indicates the value of x at which σ̃ 2
0 and x

must intersect for this condition to be met: σ̃ 2
0 = κ̃2(x0) ≈ x0, with x0 = (π/2)2/3 · (H/a)2/3.

The diagonal solid (black) line corresponds to the linear approximation κ̃2(x) = x + O(x2), which
is valid for the potential of Eq. (4). See Equation (9) and Section 4.2 for details
Right Panel: A better approximation is obtained from the location of the extrema of Airy’s function
Ai(X ). Note that the shape of Ai(X ) closely resembles the shape of the numerically found Ψ (x).

κ2
+ ω2

s (or, in the form written down by Binney and Tremaine, 1987, ω2
= κ2

+ k2
s c2

s ).
Substituting this new dispersion relation into Eq. (7), we see that Eq. (5) takes the form

d2ψ

dy2 +
ω2
− κ2

c2
s

ψ = 0 . (8)

Remarkably, this is the same equation that was rigorously derived by Nowak and Wagoner
(1991), i.e. Eq. (1). In the remainder of this paper we will be discussing numerical solutions
of its dimensionless version, Eq. (2), subject to the boundary condition Eq. (3), for a thin
disk (H/a = 0.001) in two different models of the gravitating body, i.e. for two different
epicyclic frequencies κ(r).

4.2 Estimates of the eigenfrequencies

It is possible to understand the values of the eigenfrequencies σ and the shape of the wave-
functions in a simple model of Eq. (2). For axially symmetric modes, m = 0 and hence
ω = σ . The wave equation has oscillatory solutions for ω2 > κ2, while the wave is evanes-
cent for ω2 < κ2. Thus the mode is trapped between a = rms (i.e. x = 0) and r = r0 such
that σ 2

= κ2(r0) (Fig. 7).
As σ 2

� κ2
max for the fundamental mode and κ2(rms) = 0 we can model κ2 with

a linear approximation (Nowak and Wagoner, 1991), which for the potential of Eq. (2) has
the simple form κ̃2

= x . Thus, the wave becomes evanescent at r0/a − 1 = x0 ≈ σ̃
2. We

can take the boundary condition on the wave to correspond to that of a banner flapping in
the wind, with a crest at the edge [of the disk (x = 0)] and a node close to x0. Perhaps a
quarter wavelength of a sinusoid between x = 0 and x = x0 is a fair approximation (Kato
and Fukue, 1980).
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With the above approximations, we have ax0 = λ/4, and σ̃ 2
= x0. Now, k = 2π/λ ≈

σ/cs so λ/4 ≈ πcs/(2σ) = πHΩ/(2σ). Recall that σ̃ = σ/Ω(a). Finally, we obtain
σ̃ 3
= πH/(2a), yielding

σ̃ ≈

(
πH
2a

)1/3

≈1.16
(

H
a

)1/3

. (9)

For H/a = 10−3 this yields σ̃ ≈0.116, while the numerically obtained value for the correct
functional form of κ2 is σ̃0 ≈0.0988. Thus, this crude estimate of the eigenfrequency is off
by less than 20 %. However, as we will see directly below, we have obtained the correct
scaling of the eigenfrequency with the dimensionless thickness of the disk (Kato and Fukue,
1980).

A more accurate estimate of the eigenfrequency can be obtained by noting that in the
linear approximation to κ2 (which for the potential of Eq. (4) is simply κ̃2

= x), Eq. (2)
corresponds to Airy’s equation (Nowak and Wagoner, 1991). Indeed, with the substitution
X = (x − σ̃ 2)(a/H)2/3, Eq. (2) becomes d2Ψ/dX2

= XΨ, with the Airy function as the
solution: Ψ (X) = Ai(X). In the exact waveforms of Fig. 1, one can recognize the shape of
Airy’s function, to a good accuracy. The (implicit) eigenvalues σ̃ can now be found directly
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Figure 8. Same as Figure 6, but for m = 1.
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from the boundary condition, Eq. (3), in the form

1
Ψ

dΨ
dX
=

(
H
a

)2/3 1
2

(
4m/ω̃ − 1

)
.

Now, for H � a, the boundary condition (at x = 0) becomes d logΨ/dX � 1, i.e. it is
approximately that X corresponds to one of those Xµ for which Ai(Xµ) has an extremum,
dAi/dX |Xµ = 0. Thus, σ̃ 2

µ ≈ −(H/a)
2/3 Xµ, µ = 0, 1, 2, 3, . . . We can compare these

approximate eigenfrequencies (Table 1) with the numerically found eigenvalues for the
correct form of κ2. For the fundamental the agreement is quite good, but the accuracy of
the Airy approximation gradually degrades as σµ approaches the value κmax.

Table 1: Exact and approximate eigenvalues of Eqs. (2) and (3)

m = 0 , H/a = 0.001 µ = 0 µ = 1 µ = 2 µ = 3

σ̃µ for κ2 of Eq. (4) 0.0988. . . 0.172. . . 0.205. . . 0.227. . .
Airy approx.:

√
−0.01Xµ 0.101. . . 0.180. . . 0.229. . . 0.248. . .

Accuracy of approximation 2 % 5 % 7 % 9 %

We thank Mr. Luca Giussani for providing us with the values of Airy’s extrema.

Table 2: Eigenvalues of Eqs. (2) and (3)

H/a = 0.001 µ = 0 µ = 1 µ = 2 µ = 3

KL Eq. (4), m = 0. σ̃µ = 0.098829 0.172137 0.204909 0.226912
Maclaurin, m = 0. σ̃µ = 0.120977 0.210409 0.250446 0.277417

KL Eq. (4), m = 1. σ̃µ = -0.880519 -0.787151 -0.735844 -0.697637
Maclaurin, m = 1. σ̃µ = -0.576951 -0.478477 -0.429558 -0.394588

KL Eq. (4), m = 2. σ̃µ = -1.86357 -1.753541 -1.688477 -1.638747
Maclaurin, m = 2. σ̃µ = -1.275666 -1.168932 -1.112464 -1.07094

KL Eq. (4), m = 3. σ̃µ = -2.848839 -2.724106 -2.647519 -2.588271
Maclaurin, m = 3. σ̃µ = -1.974981 -1.860566 -1.797395 -1.750153

KL Eq. (4), m = 4. σ̃µ = -3.83567 -3.697564 -3.610833 -3.543277
Maclaurin, m = 4. σ̃µ = -2.674776 -2.553138 -2.483865 -2.431476

5 TRAPPED OSCILLATIONS IN AN ACCRETION DISK AROUND A
MACLAURIN SPHEROID

In previous sections, following Nowak and Wagoner (1991) we were discussing the trapped
acoustic-inertial oscillations of a pseudo-Newtonian model of an accretion disk around
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Mac: σ=-1.11246392, m= 2, µ=2
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Mac: σ=-1.07094, m= 2, µ=3

Figure 9. Same as Figure 6, but for m = 2.

a Schwarzschild black hole. Interestingly, the same trapping phenomenon occurs in strictly
Newtonian gravity, for disks orbiting sufficiently oblate bodies. Kluźniak et al. (2001),
and Zdunik and Gourgoulhon (2001) pointed out that oblateness of a gravitating body can
destabilize orbits close to it, while Amsterdamski et al. (2002) showed that the marginally
stable orbit exists in the Newtonian potential of classic Maclaurin spheroids for a suffi-
ciently large ellipticity of the spheroid, i.e. a sufficiently large rotation rate of the spheroid.
Kluźniak and Rosińska (2013) give explicit expressions for the angular velocity in circular
orbits and for the corresponding epicyclic frequencies as a function of orbital radius and
the ellipticity of the Maclaurin spheroid. Gondek-Rosińska et al. (2014) compare these
analytic expressions with exact numerical solutions (in GR) of rapidly rotating quark stars,
while Mishra and Vaidya (2014) give accretion disk solutions in the gravitational field of
Maclaurin spheroids, which are reminiscent of the Shakura and Sunyaev (1973) black hole
accretion disks.

Without further ado, we are presenting the eigenfrequencies and eigenvalues of trapped
acoustic-inertial modes for an accretion disk around a Maclaurin spheroid of ellipticity
e = 0.834583178. We are using the same equation and boundary conditions as before,
Eqs. (2) and (3), with the functional form of κ2(r) and Ω2(r) appropriate for the chosen
Maclaurin spheroid. The only other change is that we need to reinterpret H : the condition
of hydrostatic equilibrium is cs = hΩ⊥, with h being the half-thickness of the disk, and
Ω⊥ the vertical epicyclic frequency which we absorb into an effective half-thickness H =
hΩ⊥(a)/Ω(a). The results are summarized in Figs. 6, 8, 9, 10, 11 for modes with m =
0, 1, 2, 3, 4, respectively. The frequencies are compared in Table (2) with those obtained in
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Mac: σ=-1.97498059845, m= 3, µ=0
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Mac: σ=-1.860566061, m= 3, µ=1
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Mac: σ=-1.7973948, m= 3, µ=2
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Mac: σ=-1.7501528, m= 3, µ=3

Figure 10. Same as Figure 6, but for m = 3.

1.00 1.01 1.02 1.03 1.04 1.05
r/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ξ r
 (

a
rb

it
ra

ry
 s

ca
le

)

ξr

κ2

ω2

10-3

10-2

10-1

fr
eq
u
en
cy

2
/Ω

(a
)2

  

Mac: σ=-2.6747760843, m= 4, µ=0
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Mac: σ=-2.553137782, m= 4, µ=1
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Mac: σ=-2.48386537, m= 4, µ=2
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Mac: σ=-2.4314756, m= 4, µ=3

Figure 11. Same as Figure 6, but for m = 4.
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the previous sections for the black-hole disk. For both the GR (“KL”) and the Newtonian
(Maclaurin) m = 0 model the ratio of the µ = 2 frequency to the fundamental is very close
to 2:1.
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ABSTRACT
We study oscillations of an electric current-carrying and axially-symmetric string
loop in the vicinity of a Schwarzschild black hole embedded in an asymptoti-
cally uniform magnetic field. The radial profiles of frequencies of small oscillations
of the string loop around stable equilibrium points are given for the radial and vertical
harmonic modes that are relevant also in the quasi-periodic stages of the oscillations.
Their properties in dependence on the uniform magnetic field intensity and angular
momentum parameters of the string loops are determined. We examine the relevance
of resonant phenomena of the radial and vertical string-loop oscillations at their fre-
quency ratio 3:2. The oscillatory frequencies of the string loops are compared with
the frequencies of high-frequency quasi-periodic oscillations (HF QPOs) observed in
the microquasars GRS 1915+105, XTE 1550-564, GRO 1655-40 containing a black
hole. We have demonstrated that the influence of the uniform magnetic field does
not allow us to explain all the observed data for non-rotating black holes. Clearly,
rotation of the black hole is necessary to explain the all the observed frequencies in
the microquasars by the string loop oscillations.

Keywords: string loop oscillations – X-ray variability – HF QPO observations

1 INTRODUCTION

Relativistic current-carrying string loops moving axisymmetrically along the symmetry axis
of the Kerr or Schwarzschild–de Sitter black holes have been recently studied extensively
(Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2010, 2013). Such a configuration was
also studied in (Larsen, 1994; Frolov and Larsen, 1999). Tension of such string loops
prevents their expansion beyond some radius, while their worldsheet current introduces
an angular momentum barrier preventing them from collapsing into the black hole. There is
an important possible astrophysical relevance of the current-carrying string loops (Jacobson
and Sotiriou, 2009), as they could in a simplified way represent plasma that exhibits
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associated string-like behaviour via dynamics of the magnetic field lines in the plasma
(Christensson and Hindmarsh, 1999; Semenov et al., 2004), or due to thin isolated flux tubes
of magnetized plasma that could be described by an one-dimensional string (Spruit, 1981;
Semenov and Bernikov, 1991; Cremaschini and Stuchlík, 2013). Motion of electrically
charged string loops in combined external gravitational and electromagnetic fields has been
recently studied for a Schwarzschild black hole immersed in a homogeneous magnetic field
(Tursunov et al., 2013, 2014).

Understanding of the dynamics of charged particles in the combined electromagnetic
and gravitational fields is necessary for the modelling of the MHD processes. The single-
particle dynamics is relevant also for collective processes modelled in the framework of
kinetic theory (Cremaschini and Stuchlík, 2013; Cremaschini et al., 2013; Cremaschini
and Stuchlík, 2014). The oscillatory motion of charged particles around equatorial and
off-equatorial circular orbits could be relevant in formation of magnetized string loops
(Cremaschini and Stuchlík, 2013; Kovář, 2013). The string-like configurations of magne-
tized plasmas could occur in the accretion discs due to an instability or irradiation creating
an ansamble of charged particles in epicyclic motion giving rise to the stringy structure
due to kinetic dynamo effect. A nearly uniform and stable magnetic field can be naturally
generated by a distant magnetar Kovář et al. (2014) a strongly magnetized star.

The astrophysical applications of the current carrying string loops have been focused on
the problem of acceleration of string loops due to the transmutation process (Jacobson and
Sotiriou, 2009). Since the string loops can be accelerated to ultra-relativistic velocities in
the deep gravitational potential of compact objects (Stuchlík and Kološ, 2012a,b), the string
loop transmutation can be well considered as a process of formation of ultra-relativistic
jets, along with the standard model based on the Blandford–Znajek process (Blandford
and Znajek, 1977). Here we concentrate out attention on the inverse situation of small
oscillations of string loops in the vicinity of stable equilibrium points at the equatorial plane
of black holes that was proposed as a possible model of HF QPOs observed in black hole
and neutron star binary systems (Stuchlík and Kološ, 2012b).

In the black hole systems observed in both Galactic and extragalactic sources, strong
gravity effects have a crucial role in three phenomena related to the accretion disc that
is the emitting source: the spectral continuum, spectral profiled lines, and oscillations of
the disc; clearly, strong gravity has an important role also in the binary systems containing
neutron (quark) stars. HF QPOs of X-ray brightness had been observed in many Galactic
Low Mass X-Ray Binaries (LMXB) containing neutron stars (see e.g. van der Klis, 2000;
Barret et al., 2005; Belloni et al., 2007) or black holes (see e.g. McClintock and Remillard,
2006; Remillard, 2005; Remillard and McClintock, 2006). Some of the HF QPOs are
in the kHz range and often come in pairs of the upper and lower frequencies (νU, νL) of
twin peaks in the Fourier power spectra. Since the peaks of high frequencies are close
to the orbital frequency of the marginally stable circular orbit representing the inner edge
of Keplerian discs orbiting black holes (or neutron stars), the strong gravity effects must be
relevant in explaining of HF QPOs (Török et al., 2005).

It has been shown in (Stuchlík and Kološ, 2014) that the frequencies of the twin peak
oscillations observed in spectra of three different microquasars can be explained by the os-
cillations of string loop in the field of a Kerr black hole. Here we aim to extend previous
research to the case of Schwarzschild black hole immersed in external uniform magnetic
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field. Assuming small oscillations of a string loop near an equilibrium position correspond-
ing to a minimum of the effective potential, the Hamiltonian of string loop motion can be
perturbed with the first order term corresponding to linear harmonic oscillators in two un-
coupled radial and vertical orthogonal modes (Stuchlík and Kološ, 2014). The higher order
terms correspond to the non-linear phenomena causing coupling of the radial and vertical
oscillatory modes and determine transition to chaotic motion through quasi-periodic stages
of the oscillatory motion. The frequencies of the radial and vertical harmonic oscillations
are relevant also in the quasi-periodic stages of the oscillatory motion (Kološ and Stuchlík,
2013).

2 MODEL OF STRING LOOP OSCILLATIONS

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric, characterized by the gravitational mass M ,

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2) , A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ) , y = r cos(θ) . (2)

The string loop is threaded onto an axis of the black hole chosen to be the y-axis. Due to
the assumed axisymmetry of the string loop motion, one point path can represent whole
movement of the string. Trajectory of the string can be represented by a curve in the 2D x-y
plane. The string loop can oscillate, changing its radius in the x-z plane, while propagating
in the y direction.

We assume static, axisymmetric and asymptotically uniform magnetic field. Since the
Schwarzschild spacetime is flat at spatial infinity only nonzero covariant component of
the potential of the electromagnetic field takes the form (Wald, 1974)

Aφ =
B
2

r2 sin2 θ =
B
2

x2 . (3)

The symmetries of the considered background gravitational and magnetic fields, corre-
sponding to the t and φ components of the Killing vector, imply the existence of two
constants of the motion, namely the string loop energy E and the string loop angular
momentum L (Tursunov et al., 2013, 2014).

Dynamics of an axisymmetric current-carrying string loop in a given axially symmetric
and stationary Kerr spacetime in the absence of electromagnetic fields has been discussed
in detail in (Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2013; Stuchlík and Kološ,
2014). In the spherically symmetric spacetime (1) immersed in external magnetic field the
Hamiltonian governing the string loop dynamics can be expressed in the form (Tursunov
et al., 2013)

H =
1
2

f (r)P2
r +

1
2r2 P2

θ −
E2

2 f (r)
+

Veff

2 f (r)
, (4)
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with an effective potential for the string loop motion in the combined gravitational and
magnetic fields

Veff = f (r)
{

B2x3

8
+

(
Ω J B
√

2
+ µ

)
x +

J 2

x

}2

. (5)

In accordance with (Jacobson and Sotiriou, 2009), we have introduced new parameters
that are conserved during the motion of string loop in the Schwarzschild spacetime combined
with the uniform magnetic field,

J 2
≡

j2
σ + j2

τ

2
, ω ≡ −

jσ
jτ
, Ω ≡

−ω
√

1+ ω2
, (6)

where the parameters jτ , jσ determines current of the string. The parameter J is always
positive, J > 0, the dimensionless parameter ω runs in the interval−∞ < ω <∞, and the
dimensionless parameterΩ varies in the range −1 < Ω < 1 (Tursunov et al., 2013, 2014).

We shall use for simplicity the dimensionless radial coordinate r/M → r , dimensionless
time coordinate t/M → t , and we make the rescaling E/µ→ E and J/

√
µ→ J .

The equations of motion for µ ∈{r, θ} are given by the Hamilton equations relating the
position 4-vector and 4-momentum of the string loop

dXµ

dζ
=
∂H
∂Pµ

,
dPµ
dζ
= −

∂H
∂Xµ

. (7)

The properties of the effective potential Veff(r, θ), (5) were discussed in great details
in (Tursunov et al., 2013, 2014), here we give a short overview. The local extrema of the
effective potential cannot be located out of the equatorial plane corresponding to y = 0.
Then the extrema of the angular momentum parameter of the string loop correspond to

J = JE±(x; B,Ω) ≡
BΩx2(x − 1)∓

√
G

2
√

2(x − 3)
(8)

where

G(x;Ω, B) = B2(x − 1)2x2Ω2
+ B2(x − 3)(3x − 5)x2

+ 8(x − 3)(x − 1) . (9)

The behaviour of the functions JE∓(x; B,Ω) is discussed in detail in (Tursunov et al.,
2013).

There are four different types of the boundaries for string loop motion given by the
condition

Veff(x, y) = E2
= const. , (10)

for the string loop dynamics in the background constituted by a Schwarzschild BH immersed
in an uniform magnetic field. We can distinguish them according to two properties: possi-
bility of the string loop to escape to infinity in the y-direction, and possibility to collapse to
the black hole. A detailed discussion can be found in (Kološ and Stuchlík, 2010; Tursunov
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Figure 1. String-loop oscillatory frequencies νr (thin curves) and νθ (thick curves), calculated in case
of the Schwarzschild black hole with mass M = 10M� for the absence (left plot) and the presence
(right plot) of external magnetic field. We demonstrate extension of the frequency radial profiles for
the complete range of the string loop parameter Ω ∈ 〈−1, 1〉 for B = 0.2 case (greyed area). The
B = 0 case is independent of the string loop parameter Ω . Due to the symmetry of the uniform
magnetic field, the vertical frequency νθ is independent of the parameter B. The area inside the
horizon is dashed.

et al., 2013). The first case corresponds to no inner and outer boundary – the string loop
can be captured by the black hole or escape to infinity. The second case corresponds to the
situation with an outer boundary – the string loop must be captured by the black hole. The
third case corresponds to the situation when both inner and outer boundary exist – the string
loop is trapped in some region forming a potential “lake” around the black hole. The fourth
case corresponds to an inner boundary – the string loop cannot fall into the black hole but
it must escape to infinity. For our following discussion only the third case, corresponding
to the possibility of the string loop to be trapped in some region, will be relevant.

2.1 Frequency of the radial and vertical harmonic oscillatory modes

The Hamiltonian (4) can be written as a sum of the dynamic and potential parts

H = HD + HP =
1
2

grr P2
r +

1
2

gθθ P2
θ + HP(r, θ) . (11)

The string loop harmonic oscillations around a stable equilibrium position with fixed co-
ordinates r0 and θ0 = π/2 have the locally measured angular frequencies of the radial and
vertical oscillatory motion given by (Stuchlík and Kološ, 2014)

ω2
r =

1
grr

∂2 HP

∂r2 , ω2
θ =

1
gθθ

∂2 HP

∂θ2 . (12)
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The partial derivatives of the potential part of the Hamiltonian are calculated at the local
minimum of the energy boundary function (effective potential) at r0 and θ0 = π/2 which
is governed by the angular momentum parameter J of the string loop.

The locally measured angular frequencies are connected with the angular frequencies
measured by a distant observer,Ω(r,θ), by the gravitational redshift transformation (Stuchlík
and Kološ, 2014) has the form

Ω(r,θ) =
ω(r,θ)

P t . (13)

If the angular frequencies Ω(r,θ), or frequencies ν(r,θ), are expressed in the physical units,
their dimensionless form has to be extended by the factor c3/G M . Then the frequencies of
the string loop oscillations measured by the distant observers are given by

ν(r,θ) =
1

2π
c3

G M
Ω(r,θ) . (14)

This is the same factor as the one occurring in the case of the orbital and epicyclic fre-
quencies of the geodesic motion in the Kerr spacetime (Aliev and Galtsov, 1981; Török and
Stuchlík, 2005; Stuchlík and Schee, 2012). The order of magnitude and the mass-scaling
of the frequencies of the radial and vertical oscillations are the same for both the current-
carrying string loops and test particles and one can expect that the string loop oscillations
could serve as an explanation of the HF QPOs observed in the strong gravity regions of
black holes and neutron stars. The angular frequencies of the string loop oscillations related
to a distant observer take the following dimensionless form

Ω2
r (r;Ω, B) =

1

r4
(
B2r4 + 4

√
2B JEr2Ω + 8J 2

E + 8r2
)2

×

[
16J 2

Er3
(

B2r
(
r2
− 6r + 4

)(
2Ω2
+ 1

)
− 16

)
+ 256r4

+ 16
√

2B JEr4Ω
(

3B2r4
− 13B2r3

+ 4
(
3B2
+ 1

)
r2
− 24r + 16

)
+ r4

(
15B4r6

− 62B4r5
+ 12B2(5B2

+ 8
)
r4
− 416B2r3

− 384r
)

+ 64r6(6B2
+ 1

)
− 128

√
2B J 3

Er3Ω + 64J 4
E
(
3r2
− 14r + 12

)]
,

(15)

Ω2
θ (r) =

1
r3 , (16)

where the function JE(r;Ω, B) is given by (8). Due to the symmetry of the uniform
magnetic field (3), the horizontal frequency Ω2

θ is independent of the effect of magnetic
field given by the magnetic intensity parameter B and hence also independent of the string
parameter Ω .

In the Schwarzschild spacetime without magnetic field, the harmonic oscillations have
frequencies (15–16) relative to distant observers given by expressions relatively very simple
for both string loops and test particles. In the case of string loops they read (in dimensional
form)

Ω2
r (r) =

3M2
− 5Mr + r2

r4 , Ω2
θ (r) =

M
r3 , (17)
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while for the epicyclic motion of test particles there is

Ω2
r(geo)(r) =

M(r − 6M)
r4 , Ω2

θ(geo)(r) =
M
r3 . (18)

It is quite interesting that the latitudinal frequency of the string loop oscillations in the
Schwarzschild or other spherically symmetric spacetimes equals to the latitudinal frequency
of the epicyclic geodetical motion as observed by distant observers – for details see (Stuchlík
and Kološ, 2012b). Therefore, only gravity is responsible for this frequency in both cases.

Dependencies of the radial and vertical frequencies of the string loop harmonic oscil-
lations on the distance from the black hole are illustrated in Fig. 1 for the characteristic
values of the magnetic field intensity B = 0, 0.2. In the Schwarzschild spacetime without
magnetic field both the frequencies are independent on the parameter Ω , see Fig. 1 (left).
In the Schwarzschild spacetime with magnetic field B, the range of the radial and vertical
frequencies depends on the string-loop parameter Ω , and the parameter B of the magnetic
field. Clearly, the range of allowed frequencies increases with increasing the strength of
magnetic field B for the full range of the angular momentum parameterΩ , see Fig. 1 (right).

3 TWIN HF QPOS IN BLACK HOLE SOURCES

The quasi-periodic character of the motion of string loops trapped in a toroidal space
around the equatorial plane of a Schwarzschild black hole suggests interesting astrophysical
application related to the HF QPOs observed in binary systems containing a black hole
or a neutron star, or in active galactic nuclei. Some of the HF QPOs come in pairs of
the upper and lower frequencies (νU, νL) of twin peaks in the Fourier power spectra.
Since the peaks of high frequencies are close to the orbital frequency of the marginally
stable circular orbit representing the inner edge of Keplerian discs orbiting black holes (or
neutron stars), the strong gravity effects must be relevant in explaining HF QPOs (Török
et al., 2005). Usually, the Keplerian orbital and epicyclic (radial and latitudinal) frequencies
of geodetical circular motion (Török and Stuchlík, 2005; Kotrlová et al., 2008; Stuchlík and
Kotrlová, 2009) are assumed in models explaining the HF QPOs in both black hole and
neutron star systems.

Before the twin peak HF QPOs have been discovered in microquasars (first by Strohmayer,
2001), and the 3:2 ratio pointed out, (Kluzniak and Abramowicz, 2001) suggested on
theoretical grounds that these QPOs should have rational ratios, because of the resonances
in oscillations of nearly Keplerian accretion disks; see also (Aliev and Galtsov, 1981). It
seems that the resonance hypothesis is now well supported by observations, and the 3:2
ratio (2νU = 3νL) is seen most often in twin peak QPOs in the LMXB containing black
holes (microquasars). Here we concentrate on the case of 3:2 frequency ratio oscillations
observed in three microquasars, GRO 1655-40, XTE 1550-564 and GRS 1915+105, that
were discussed in recent literature (Török et al., 2011).

Unfortunately, neither of the recently discussed models based on geodesic oscillatory
motion is able to explain the HF QPOs in all the microquasars (Török et al., 2011).
Therefore, it is of some relevance to let the string loop oscillations, characterized by
their radial and vertical (latitudinal) frequencies, to enter the play, as these frequencies
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Figure 2. The upper string-loop oscillation frequency νU at the 3:2 or 2:3 resonance radii, calculated
in the framework of the string-loop model with maximal range of the string-loop parameter Ω as
a function of the black hole mass for typical values of magnetic field B = 0, 0.05, 0.2, 0.5, and
compared to the mass-limits obtained from observations of the three microquasars GRO 1655-40,
XTE 1550-564, GRG 1915-105 independent of HF QPO observation and depicted by the horizontal
thick lines. Hatched areas cover the whole interval ofΩ ∈〈−1, 1〉. The vertical red hatch corresponds
to the 3 : 2 frequency ratio νθ/νr, while the horizontal blue hatch corresponds to the 2:3 frequency
ratio. The frequency νU can appear in both 3:2 or 2:3 resonance radii.

are comparable to the epicyclic geodetical frequencies, but slightly different, enabling thus
some relevant corrections to the predictions of the models based on the geodetical epicyclic
frequencies νθ , νr. We again keep the assumption of the resonance phenomena occurring
in the oscillatory motion. The resonant phenomena (parametric or forced) are discussed
in standard textbooks (Landau and Lifshitz, 1969; Nayfeh and Mook, 1979), discussion of
their relevance to the accretion phenomena can be found, e.g. in (Stuchlík et al., 2013).



Oscillations of string loop in uniform magnetic field 167

We can assume applicability of the parametric resonance, discussed in (Landau and
Lifshitz, 1969), focusing attention to the case of the frequency ratios νθ : νr = 3:2 or
νθ : νr = 2:3, as the observed values of the twin HF QPO frequencies for GRO 1655-40,
XTE 1550-564 and GRS 1915+105 sources show clear ratio

νU : νL = 3 : 2 (19)

for the upper νU and lower νL frequencies. We identify directly the frequencies νU, νL with
νθ , νr or νr, νθ frequencies. In contrast to the resonance epicyclic model, the string loop
oscillation model allows both frequency ratios

νθ : νr = 3 : 2 , νθ : νr = 2 : 3 . (20)

Since r3:2 < r2:3, we call the first resonance radius, where νθ : νr =3:2, the inner one, and
the second resonance radius, where νθ : νr =2:3, the outer one.

For the fixed magnetic field B and fixed string loop parameter ω the upper frequency of
the twin HF QPOs can be given as a function of the black hole mass M . If the black hole
mass is restricted by independent observations, as is usually the case, we can obtain some
restrictions on the string-loop resonant oscillations model, as illustrated in Fig. 2, where the
situation is demonstrated for some values of magnetic field B = 0, 0.05, 0.2, 0.5. One can
see from these plots that the string loop model can well fit the HF QPOs in GRO 1655-40
and GRS 1915-105 sources and gives the limitation on the magnetic field strength. However
the observed frequencies for given mass are always lower then the frequencies given by the
string loop model. Despite the fact that the parameter Ω widens the frequency range of
vertical oscillations, increasing of the magnetic field B implies again increasing frequencies.
In other words, for any set of parameters of the model there is no possibility to decrease the
frequencies of the string loop oscillations by the parameter of magnetic field B which leads
to opposite result than required. In particular the results show that in order to fit all the
sources with one model, it is not enough to consider the spherically symmetric black holes
with the uniform magnetic field, i.e. a mechanism of decreasing of string loop frequencies
is necessary. The role of such a mechanism can play, e.g. the rotation of the black hole,
which has been already tested in our previous papers. Other possibility, is to consider more
complex configuration of the magnetic field. Preliminary results with the dipole magnetic
field configuration shows that the string loop model can explain the observed HF QPOs and
allows us to predict the magnetic field intensities in the vicinity of testing sources. More
detailed discussion about the oscillations of the string loop near the black hole embedded
in an external dipole magnetic field will be given in a future work.

4 CONCLUSIONS

We have calculated the frequencies of the radial and vertical string-loop oscillations in the
field of a Schwarzschild black hole immersed in an uniform magnetic field. Unfortunately,
it turns out that the effect of the magnetic field is opposite to our expectations and the
frequencies obtained by our model in given configuration cannot explain the observed
data for all the microquasars GRS 1915+105, XTE 1550-564, GRO 1655-40, see Fig. 2.
Clearly, rotation of the black hole is necessary to explain all the observed frequencies in the
microquasars by the string loop oscillations (Stuchlík and Kološ, 2014).
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Török, G., Abramowicz, M. A., Kluźniak, W. and Stuchlík, Z. (2005), The orbital resonance model
for twin peak kHz quasi periodic oscillations in microquasars, Astronomy and Astrophysics , 436,
pp. 1–8.

Török, G., Kotrlová, A., Šrámková, E. and Stuchlík, Z. (2011), Confronting the models of 3:2
quasiperiodic oscillations with the rapid spin of the microquasar GRS 1915+105, Astronomy and
Astrophysics , 531, A59, arXiv: 1103.2438.

Török, G. and Stuchlík, Z. (2005), Radial and vertical epicyclic frequencies of Keplerian motion in
the field of Kerr naked singularities. Comparison with the black hole case and possible instability
of naked-singularity accretion discs, Astronomy and Astrophysics , 437, pp. 775–788, arXiv:
astro-ph/0502127.

Tursunov, A., Kološ, M., Ahmedov, B. and Stuchlík, Z. (2013), Dynamics of an electric current-
carrying string loop near a Schwarzschild black hole embedded in an external magnetic field, Phys.
Rev. D , 87(12), 125003.

hep-th/9309086
astro-ph/0510699
astro-ph/0408371
astro-ph/0104487
1206.5658
1309.6879
1403.2748
0812.5066
1305.3552
1103.2438
astro-ph/0502127


170 M. Kološ, Z. Stuchlík, A. Tursunov

Tursunov, A., Kološ, M., Stuchlík, Z. and Ahmedov, B. (2014), Acceleration of electric current-
carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform
magnetic field, Phys. Rev. D , 90(8), 085009, arXiv: 1409.4536.

van der Klis, M. (2000), Millisecond Oscillations in X-ray Binaries, Annual Review of Astronomy and
Astrophysics, 38, pp. 717–760, arXiv: astro-ph/0001167.

Wald, R. M. (1974), Black hole in a uniform magnetic field, Phys. Rev. D , 10, pp. 1680–1685.

1409.4536
astro-ph/0001167


Proceedings of RAGtime 14–16, 18–22 Sept./15–18 July/11–19 Oct., '12/ '13/ '14, Opava, Prague, Czech Republic 171
Z. Stuchlík, G. Török and T. Pecháček, editors, Silesian University in Opava, 2014, pp. 171–179

Centaurus A as a source of ultra high energy
cosmic rays

Volodymyr Marchenko,1,a Oleh Kobzar,2 Oleksandr Sushchov2

and Bohdan Hnatyk3

1Astronomical Observatory, Jagiellonian University, 171 Orla Str., 30-244 Krakow, Poland
2T. G. Shevchenko Chernihiv National Pedagogical University,
53 Hetman Polubotok Str., 14013 Chernihiv, Ukraine

3Astronomical Observatory, Taras Shevchenko Kyiv National University, 3 Observatorna Str.,
04053 Kyiv, Ukraine

amarchenko@oa.uj.edu.pl

ABSTRACT
The propagation of ultra high energy cosmic rays in Galactic and extragalactic
magnetic fields is investigated in the present paper. The motion of charged particles
of different energies and chemical composition is simulated using different Galactic
magnetic field models. Positions for the real sources of events registered at the Auger
Observatory are calculated taking into account the influence of both Galactic and
extragalactic turbulent fields. The possibility of their correlation with the Centaurus
A radio galaxy is analysed.

Keywords: Ultra-high energy cosmic rays – cosmic magnetic fields – propagation
of UHECRs

1 INTRODUCTION

Cosmic rays (CR) are known as fluxes of high-energy subatomic particles, photons or
neutrino generating extended atmospheric showers of secondary particles that interact with
molecules of nitrogen and oxygen which are prevalent in the Earth atmosphere’s upper strata.
CR possessing the energy E > 1019 eV arrive at the Earth with the interval of less than
one event per year over 1 km2 in π steradian (i.e. with the energy flux of 30 eV/cm2/sec)
(Greisen, 1966).

Ultra high energy cosmic rays (UHECR) are believed to be of extra-galactic origin
due to the absence of sources powerful enough to provide their sufficient acceleration
within our Galaxy as well as due to almost isotropic large-scale distribution of CR along
the lines of their entering the atmosphere (The Pierre Auger Collaboration: J. Abraham
et al., 2009). The hypothesis concerning UHECR’s astrophysical nature is also supported
by registering the Greisen–Zatsepin–Kuzmin (GZK) effect (Greisen, 1966) in the HiRes
experiment (Abbasi et al., 2008), as well as in observations carried out at the Auger
observatory (Abraham et al., 2008).
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The correlation between CR and galaxies from the active galactic nuclei (AGN) Veron-
Cetti-Veron (VCV) catalogue (Véron-Cetty and Véron, 2010) can be accepted as a possible
explanation of UHECR’s nature, provided their origin is extragalactic while their horizon
is energy dependent which agrees with the data on GZK-cutoff.

According to the analysis of the refreshed data from the Auger observatory (Abreu et al.,
2010), the registered UHECR’s correlation with the galaxies from the VCV catalogue has
diminished from level 3 σ to 2 σ compared to the previous version of data update. As the
result only 30 % of UHECR potentially correlate with the directions towards AGN whereas
the rest manifest the signs of isotropic distribution. The only exception is the neighbourhood
of the closest to the Earth active galaxy Centaurus A where the registered set of ultra energy
events appeared to be a lot more volumetric than it could be statistically correct to expect.

In this paper we verify the possibility of the observed in the area of Centaurus A events
being UHECR accelerated in this galaxy. Therefore we solve the reversed task by modelling
CR’s trajectory on the basis of present data from Auger observatory. The model takes into
account the influence of Galactic and extragalactic magnetic fields as well as the CR
chemical composition.

2 MODELING

Magnetic field distorts the CR’s charged particles trajectory via Lorenz force. If the field is
static it does not affect the particle’s energy. Considering the fact that typical values of CR
energy far exceed the particles’ rest energy we assume that they spread with velocity close
to the speed of light. In this case the equations describing the motion of ultra-relativistic
particles in the magnetic field B(r) are:

dv
dt
=

qc2

E
[v × B] ,

dr
dt
= v , (1)

where q is particle’s charge, E – its energy, provided the Lorenz factor γ �1 and velocity v.

3 MAGNETIC FIELDS

Modelling the motion of UHECR we considered influence of Galactic as well as extragalac-
tic magnetic fields. Galactic magnetic field consists of regular and random components.
The regular component’s structure is believed to generally follow the matter’s distribution
in the Galaxy (Han, 2009). Nowadays the source and structure of extragalactic magnetic
field are not exactly clear. Thus while solving specific tasks it is defined as having random
structure (Beck, 2001).

3.1 Galactic magnetic field

Regular component. There are several models describing regular Galactic magnetic field
(Sutherland et al., 2010). They differ in both parameters’ numeric values and presence and
structure of the field’s components. The regular component of Galactic magnetic field is
rather conveniently described via the spiral structure of 2π -symmetry (axisymmetric spiral
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(ASS)) or π -symmetry (bisymmetric spiral (BSS)) (Stanev, 1997). In our research we
have applied the most recent models (Prouza and Šmída, 2003), (Kachelrieß et al., 2007)
and (Pshirkov et al., 2011). They present the magnetic field as a superposition of the disc
component and the field of Galactic halo. In (Prouza and Šmída, 2003) and (Kachelrieß
et al., 2007) BSS symmetry is used for describing the disc field whereas in (Pshirkov et al.,
2011) both ASS and BSS disc field’s symmetry types are considered (henceforth we treat
them off as different models).

The disc field comprises radial and azimuth components which are set in cylindrical
coordinates in the disc’s area by expressions

Br = B(r, θ) sin(p) , Bθ = B(r, θ) cos(p) , (2)

where pitch angle p is the angle between the magnetic vector at a certain point and the
normal to radius-vector r in this point.

The function B(r, θ) is set by the equation of logarithm spiral:

B(r, θ) = B(r) cos
[
θ −

1
tan p

ln
(

r
ξ0

)]
, (3)

or

B(r, θ) = B(r) cos
[
θ −

1
tan p

ln
(

r
R8

)
+ ϕ

]
. (4)

Parameters in formulae (3) and (4) are set by expressions

ϕ =
1

tan p
ln
(

1+
d
R8

)
−
π

2
, ξ0 = (R8 + d) exp

(
−
π

2
tan p

)
, (5)

where R8 = 8.5 kpc is the distance from the Galactic center to the Solar system, d is the
distance from the Solar system to the closest field’s inversion point.

The function of the radial profile B(r) is set by

B(r) =


B8

R8

r cosϕ
= B0

R8

r
r > RC ,

B8
R8

RC cosϕ
= B0

R8

RC
r < RC ,

(6)

where R8 is local field near the Solar system.
The vertical profile of the disc field above the Galactic plane and under it is considered

exponentially decreasing:

B(r, θ, z) = B(r, θ) exp
(
−
|z|
z0

)
. (7)

In models (Prouza and Šmída, 2003) and (Kachelrieß et al., 2007) the field of Galactic halo
comprises poloidal and toroidal components while model (Pshirkov et al., 2011) contains
the toroidal component only. For the description of the toroidal field we use the model of
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discs located above and under the Galactic plane. The toroidal field’s parameters are set by
expressions

Bx = −BT sign(z)

[
1+

(
|z| − h
w

)2
]−1

cos θ , (8)

By = BT sign(z)

[
1+

(
|z| − h
w

)2
]−1

sin θ , (9)

where h is the height of discs above and under the Galactic plane, ω is half-width of Lorenz
distribution.

The function BT in model (Prouza and Šmída, 2003) is given by the following expression

BT = BT max

[
Θ(RT − r)+Θ(r − RT ) exp

(
−

r
RT

)]
, (10)

while in model (Kachelrieß et al., 2007)

BT = BT max

[
Θ(RT − r)+Θ(r − RT ) exp

(
−

RT − r
RT

)]
, (11)

where Θ is Heaviside function, RT is toroid’s characteristic radius.
In model (Pshirkov et al., 2011)

BT = BT max
r

RT
exp

(
RT − r

RT

)
. (12)

The field’s dipole component is described by standard equations:

Bx = −3µG cosφ sinφ sin θ/ρ3 , (13)
By = −3µG cosφ sinφ cos θ/ρ3 , (14)
Bz = µG(1− cos2 φ)/ρ3 , (15)

where ρ =
√

r2 + z2, cosφ = z/ρ, sinφ = r/ρ, µG is the magnetic dipole momentum.
Random component. It is assumed (Pierre Auger Collaboration et al., 2012) that Galactic

magnetic field’s random component’s impact primarily results into widening the range of
UHECR’s possible arrival directions relative to the direction defined by the deflection of the
trajectory in the regular field. In this case the real location of CR’s source is not explicated.
Furthermore, under certain conditions the so called “lensing effect” in the magnetic field
may occur and generate several images of CR’s source (Giacinti et al., 2011a). Yet studying
this kind of impact may be fruitful for exploring the properties of Galactic magnetic field
and CR’s propagation.

CR’s ultra high energy is marked by the value of Larmor radius that by far exceeds the
length of field’s coherence l0, the latter understood as the distance at which the field’s
random re-orientation occurs. Thus to estimate the effect caused by the random magnetic
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field it is sufficient to consider two parameters: l0 and field’s magnitude Brms (Giacinti
et al., 2010). The field Brms is characterized by exponentially decreasing vertical profile
Rrms = B0 exp(−|z|/z0) (Giacinti et al., 2011b).

According to the observation data Galactic magnetic field’s random component is com-
mensurable to the regular one (Prouza and Šmída, 2003). In this paper we employ the
values l0 = 50 pc, B0 = 4µG, z0 = 3 kpc (Giacinti et al., 2011a).

CR deflection ϑ in the random magnetic field on the covered distance L is set by the
following expression (Berezinsky et al., 2004)

〈ϑ2
〉 =

2
9

(
Ze
E

c
)2

〈B2
〉L l0 , (16)

where Ze is particle’s charge, E is its energy.
The distance covered by UHECR (those registered by the Earth-located detectors) in the

Galactic turbulent field can be estimated as

Lgal = min
(

z0

sin bG
; Lmax = 20 kpc

)
, (17)

where bG is Galactic latitude of CR’s arrival direction. Thus we acquire the value of CR’s
final deflection

ϑ = 22◦ Z
(

Lgal

1 kpc

)1/2 ( E
1018 eV

)−1

. (18)

3.2 Extragalactic magnetic field

There are structures in the Universe comprising clusters of galaxies, filaments, layers
of increased density and voids with low density. It is assumed that in entities of this
kind magnetic field is boosted due to the formation of large scale structures. Diverse
numeric modelling of the said process demonstrates correspondence extragalactic magnetic
field’s distribution with that of matter (Sigl et al., 2004). Astrophysical objects, UHECR’s
sources in particular, are normally located within the structured areas. Thus these magnetic
structures as well as the Galactic magnetic field necessarily impact the propagation of CR.
The structured extragalactic magnetic field influences both CR’s deflection and the time of
their reaching the observer.

According to the recent research of the gamma-ray range, extragalactic magnetic field
possesses the value of approximately 10−15 G in the voids (Ando and Kusenko, 2010). Al-
though this estimation is rather contradictory; the prior estimation of magnetic field’s lower
limit being 10−17–10−15 G (Taylor et al., 2011). In the suggested calculations we employ the
simplest model in which space is divided into cubic cells of size lc. The field is considered
uniform within one cell while its direction varies randomly in between the cells. To limit the
size of field B we used the value resulting from observation data concerning distant objects
polarization plane’s Faraday’s rotation (Kronberg, 1994) 〈B〉

√
l0 ≤ 10−9 G Mpc1/2, where

l0 is magnetic field’s coherence length. Generally l0 does not equal lc strictly, though this
difference is not significant for estimating UHECR’s propagation in extragalactic magnetic
field. For random extragalactic magnetic field like in the case of Galactic magnetic field’s
random component, CR’s deflection is calculated through formula (16).
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Table 1. “CR – Cen A” correlation. Magnetic field components: RG – regular Galactic, RRG –
regular + random Galactic, RRGE – regular + random Galactic + extragalactic.

Energy, EeV
CR’s chemical composition for different models

(Prouza and Šmída, 2003) (Kachelrieß et al., 2007)
RG RRG RRGE RG RRG RRGE

142 Mg Mg-Ar Ne-Ca – Ca-Fe S-Fe
79 He He-Li p-Be He-Li He-C He-N
77 N-O C-Ne B-Ne – Mg-Ar Ne-Ar
68 p p p-He p p-He p-He
66 – p p p p p
61 – – – Ne-Mg O-S N-S

Energy, EeV
CR’s chemical composition for different models

(Pshirkov et al., 2011) – ASS (Pshirkov et al., 2011) – BSS
RG RRG RRGE RG RRG RRGE

68 p p p – – p
66 p p p – – p

Considering the limitations over the value of extragalactic magnetic field we acquire
numeric values of deflection for CR with energy E and charge Z , located at the distance
L0 from random sources:

ϑ = 25◦ Z
(

L0

1 Mpc

)1/2 ( E
1018 eV

)−1

. (19)

4 CENTAURUS A

The Auger observatory registered a set of UHECR in the region of Centaurus A galaxy
which is the closest to the Solar system active one. The origin of the registered CR is
most likely affiliated with the said galaxy (Abreu et al., 2010). We have modelled the CR’s
motion in the magnetic field using the above-described methodology.

Figure 1 demonstrates the results of calculations carried out on the basis of various
models of the regular Galactic magnetic field. Circles with figures denote the set of events
registered by the Auger facility. Circles with the chemical elements symbols correspond to
the calculated locations of UHECR’s sources for the indicated particle types. Radii of all
circles reflect the Auger detectors’ experiment error within the confidence interval of 1 σ .
Results depicted in Fig. 1a were obtained via the use of model (Prouza and Šmída, 2003);
those in Fig. 1b were achieved as the result of using model (Kachelrieß et al., 2007). The
figures also demonstrate the outline of Centaurus A radiation areas. These areas are known
to have conditions for accelerating CR up to ultra high energies (Rieger and Aharonian,
2009). Overlapping of the circles corresponding to the calculated sources’ location and
the image of Centaurus A was chosen as the criterion for defining the correlation of the
analysed events and the said galaxy.
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Figure 1. Source positions for different models of regular Galactic magnetic field: a – (Prouza and
Šmída, 2003), b – (Kronberg, 1994).

Considering the Galactic field’s random component as well as the extragalactic field,
Eqs. (18) and (19) can lead to widening the area of the source’s possible localization from
few degrees (for light elements) up to 10◦–15◦ (for heavy elements), but without actually
changing its location.

We have found out that out of all CR coming from Centaurus A area only six can in
fact originate in this galaxy – those with the energy of 61, 66, 68, 77, 79 and 142 EeV.
Table 1 demonstrates chemical composition of the particles with the indicated energy. These
particles correlate with Centaurus A following the two chosen models of the Galactic field
and considering the impact of the magnetic field’s various components.

5 CONCLUSIONS

Centaurus A may be the source of the events in its nearby region registered by the Auger
observatory. Models (Prouza and Šmída, 2003) and (Kachelrieß et al., 2007) provide similar
results. According to the calculations carried out on the basis of model (Prouza and Šmída,
2003) five events correlate with Centaurus A. When model (Kachelrieß et al., 2007) is em-
ployed six such events correlate with Centaurus A. The common tendency of shifting CR’s
chemical composition towards heavier nuclei at the boost of energy of the corresponding
event is noted in all cases of possible correlation with the object under investigation. It is
relevant for both models.
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ABSTRACT
This is a write-up of a talk given at the Opava RAGtime meeting in 2011, but
it has been updated to include some subsequent related developments. The talk
focused on discussion of some aspects of black hole and cosmological horizons
under rather general circumstances, and on two different topics related to formation
of cosmological structures at different epochs of the universe: virialization of cold
dark matter during standard structure formation in the matter-dominated era, and
primordial black hole formation during the radiative era.

Keywords: black hole physics – early universe – large-scale structure of the universe

1 INTRODUCTION

This presentation focuses firstly on two different types of causal horizon: those for black
holes (where no causal signal can get out from inside), and that for the universe (where
no causal signal can get in from outside). Also, we discuss some topics connected with
formation of structure in the universe in the matter-dominated and radiative eras. We follow
the convention of using units for which c = G = 1 except in Section 3.1, where the
treatment is entirely Newtonian and it is convenient to retain G.

In all of these discussions, we will make the (major) simplification of considering just
spherical symmetry but, apart from that, we will remain rather general. We start from
the Friedman–Robertson–Walker metric for describing a homogeneous and isotropic back-
ground universe and we use the spatially-flat form of it, in line with current observations:

ds2
= −dt2

+ S2(t)
[
dr2
+ r2(dθ2

+ sin2 θ dϕ2)] , (1)
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where r is a co-moving radial coordinate and S(t) is the scale factor. This can be written in
the alternative form

ds2
= −dt2

+ S2(t) dr2
+ R2

(
dθ2
+ sin2 θ dϕ2

)
, (2)

where R = S(t)r is a circumference coordinate (invariantly defined as being the proper
circumference of a circle, centred on the origin, divided by 2π ). This is the same quantity
as used for the radial coordinate in the standard form of the Schwarzschild metric.

The above description is for a uniform medium; when we have a (spherically symmetric)
deviation away from this, the metric can then be written in the generalised form

ds2
= −a2 dt2

+ b2 dr2
+ R2

(
dθ2
+ sin2 θ dϕ2

)
, (3)

with a, b and R all being functions of r and t . Using a diagonal form of the metric like this
(with no cross terms involving dr dt , etc.) implies a particular choice of time slicing, and
the time coordinate here is often called “cosmic time”. The form of metric (3) can be used
in principle for any spherically-symmetric space-time, although it is often more convenient
in practice to use other kinds of slicing.

2 CAUSAL HORIZONS

In this section, we discuss how the concepts of black-hole and cosmological horizons
emerge from a general treatment of outgoing and ingoing null rays. We continue to assume
spherical symmetry and take the medium to be a perfect fluid, but our discussion is general
in the sense that it is independent of the equation of state used for the matter and we make
no assumptions of homogeneity (with reference to the cosmological case), or of stationarity,
asymptotic flatness and the presence of vacuum exteriors (with reference to the black holes).
It can be interesting to see how well-known results emerge in this approach.

First, we consider the general treatment of radial null rays, using the cosmic time form of
the metric (3) introduced above. Along the path of any radial null ray, we have ds = dθ =
dφ = 0 and so

dr = ±
a
b

dt , (4)

with the plus corresponding to an outgoing ray and the minus to an ingoing one. Note
that here “outgoing” and “ingoing” are defined with respect to the comoving frame of local
matter. This convention is used throughout the present section.

The general expression for changes in R along a radial worldline is

dR =
∂R
∂t

dt +
∂R
∂r

dr , (5)

and so along a radial null ray

dR =
(
∂R
∂t
±

a
b
∂R
∂r

)
dt . (6)
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Following the classic paper of Misner (1969), we now introduce the operators

Dt ≡
1
a
∂

∂t
and Dr ≡

1
b
∂

∂r
. (7)

Applying these to the circumference coordinate R, one then defines the quantities

U ≡ Dt R and Γ ≡ Dr R , (8)

where U is the radial component of four-velocity in the “Eulerian” frame, with respect to
which the fluid is moving, and Γ is a generalized Lorentz factor (which reduces to the
standard one in the special relativistic limit). In terms of these,

∂R
∂t
= aU and

∂R
∂r
= bΓ . (9)

Inserting these into Eq. (6) gives the expression for how R changes with time along a radial
null ray:

dR
dt
= a (U ± Γ ) , (10)

where the plus is again for a ray which is outgoing (with respect to the matter) while the
minus is for an ingoing one.

To find an expression for Γ , we need to use the Einstein field equation. As usual, we
approximate the matter to behave as a perfect fluid with the stress-energy tensor

Tµν = (e + p)uµuν + pgµν , (11)

where e is the energy density, p is the pressure and uµ is the four-velocity. The G0
0 and G1

1
components of the Einstein equation then give

4πR2eR,r =
1
2

(
R + RU 2

− RΓ 2
)
,r
, (12)

and

4πR2apU = −
1
2

(
R + RU 2

− RΓ 2
)
,t
, (13)

with the commas representing partial derivatives. It is convenient to make the definition

m ≡
1
2

(
R + RU 2

− RΓ 2
)
. (14)

Integrating equation (12) then gives

m =
∫

4πR2e dR , (15)

(corresponding to the interpretation of m as the mass contained within radius R), while
Eq. (13) gives

Dt m = −4πR2 pU , (16)
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(representing the change of energy resulting from work done against pressure during ex-
pansion or contraction). Rearranging the terms in (14) then gives

Γ 2
= 1+U 2

−
2m
R
. (17)

Returning now to Eq. (10), the limiting surface at which an outgoing radial light ray
cannot move to larger R, is given by(

dR
dt

)
out
= a(U + Γ ) = 0 , (18)

implying

Γ = −U . (19)

This corresponds to the so-called “apparent horizon” of a black hole. Similarly, the limiting
surface at which an ingoing radial light ray cannot move to smaller R is given by(

dR
dt

)
in
= a(U − Γ ) = 0 , (20)

implying

Γ = U . (21)

This corresponds to the cosmological (Hubble) horizon. Note that the surfaces for which
(19) and (21) hold are marginally trapped surfaces and so are representations of a concept
(Penrose, 1965) which plays a fundamental role in general relativity.

Conditions (19) and (21) are different, of course, but for both of them

Γ 2
= U 2 , (22)

and so, using (17), they both correspond to the condition

R = 2m , (23)

which is a familiar result! Although we have used cosmic-time slicing in this derivation, the
final result is actually independent of the slicing used. We stress again that our derivation
here does not depend on any assumptions of homogeneity (with reference to the cosmolog-
ical case), or of stationarity, asymptotic flatness and the presence of vacuum exteriors (with
reference to black holes).

3 COSMOLOGICAL STRUCTURE FORMATION

In this section, we discuss some topics concerning cosmological structure formation at two
different stages in the history of the universe: in the matter-dominated and radiative eras.
The main interest is in the consequences of perturbations which started as small quantum
fluctuations in the very early universe and were then inflated onto supra-horizon scales,
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eventually re-entering the horizon as the universe continued to expand, and becoming
causally connected again. (“Horizon” here refers to the cosmological horizon.) We focus
on the case of an over-density surrounded by a compensating under-density. Once the
over-density has re-entered the horizon, there is a possibility that it could then evolve into a
persisting condensed structure. A perturbation originating at a very early time, such as those
mentioned above, may have begun with a mixture of growing and decaying components,
but any decaying part would soon have faded away so that by the time of horizon re-entry,
only the growing part would remain. Growing-modes are special; they have a particular
combination of density and velocity perturbation which makes them “hold together” as they
evolve.

We discuss below the re-entry of perturbations during the matter-dominated era, when
the matter is commonly described as pressureless, with p = 0 (although we will have
more to say about that), and during those parts of the radiative era (defined as being
when only relativistic zero-rest-mass particles are important) in which p = e/3 is a good
approximation. The first case can lead to formation of galactic or pre-galactic equilibrium
structures, whereas in the second case primordial black holes (on a much smaller scale) are
the only condensed structures that can be formed.

3.1 Virialization in the matter-dominated era

Cosmologists like to use equations of state of the form p = we, where w is a constant. The
cases p = e/3 and p = 0 do fit with this, of course, but it is questionable whether taking p =
0 actually makes sense in general for the matter-dominated era. For calculating the evolution
of a uniform background universe, it is indeed satisfactory, but it becomes problematic when
dealing with structure formation beyond the regime of linear perturbations. For cold dark
matter (CDM) particles, it is frequently said that they must be pressureless because of being
effectively collisionless, but this misses the point that pressure comes from the random
motion of particles and is only indirectly influenced by collisions between them. If CDM
particles have a non-zero velocity dispersion, then they automatically have a non-zero
pressure and this is generally not irrelevant even if it may be small. The role of collisions is
in assisting the particle distribution function to relax towards an isotropic Maxwellian, not
directly in producing the pressure. A completely collisionless medium can certainly have a
finite pressure (although that will generally not be isotropic).

In this subsection, we investigate the phenomenology of the “turn-round radius” and the
“virialization radius” for perturbations when they re-enter the cosmological horizon and
begin to feel their self-gravity. Initially, the over-density is continuing to expand along with
the rest of the universe (although slightly more slowly because of the velocity perturbation
in a growing mode) but, as it progressively begins to feel its self-gravity more, it slows
down further and eventually reverses its expansion into a contraction. Its radius when that
happens is called the turn-round radius. We will follow here just the subsequent behaviour
of the dark matter component, which is more or less collisionless. As the contraction
proceeds, the random velocities of the constituent particles progressively increase until
eventually the effect of their random motions is sufficient to balance gravity (possibly aided
by rotation) and the configuration settles into an equilibrium state. Its radius then is called
the virialization radius (we explain this more below). In numerical simulations, it is often
found that this virialization radius is roughly half of the turn-round radius.
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Clearly, structure formation is in general a three-dimensional problem, but could one
get a reasonable approximate picture for the above process by using a simple spherically-
symmetric toy model? If so, that could be useful for trial inclusion of further effects
(dynamical scalar fields, etc.). Our idea is to include the random motions of the CDM
particles in terms of an effective temperature T and insert that into a model equation of
state, giving a pressure p. We proceed as follows. CDM particles are non-relativistic and
so the thermal energy per particle is given by

u =
3
2

kBT , (24)

(assuming local isotropy; kB is Boltzmann’s constant). The thermal energy density is then

ρε =
3
2

nkBT , (25)

(where ρ is the rest-mass density, ε is the specific internal energy, and n is the particle
number density). The ideal gas law p = nkBT then gives

p =
2
3
ρε , (26)

which leads to

p = K (s)ρ5/3 , (27)

using the first law of thermodynamics. This is the well-known polytropic relation for a
monatomic non-relativistic gas (here K (s) is a function of the specific entropy s and goes
to a constant for adiabatic processes).

Next, we recall the considerations leading to a simple form of the virial theorem, following
Tayler (1970). (Note that the treatment in this subsection is entirely Newtonian and it is
convenient to retain the G in the equations for this part; also r is here the standard classical
radial coordinate.) The equation of hydrostatic equilibrium

dp
dr
= −

Gmρ
r2 , (28)

where m is the mass contained within radius r , can be rearranged to give

4πr3dp = −
(

Gm
r

)
4πr2ρ dr . (29)

We now integrate Eq. (29) over the volume of the spherical object:∫
3V dp =

∫
Φ dm , (30)

where V is the volume contained within radius r and Φ = −(Gm/r) is the gravitational
potential at radius r . Integrating the left-hand side by parts then gives

3
[

pV
]
− 3

∫
p dV = Ω , (31)
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where Ω is the gravitational potential energy of the object. Taking the pressure at the
surface to be zero and inserting the equation of state expression (26) for p, one obtains

−3
∫

2
3
ρε dV = −2U = Ω , (32)

where U is the total internal energy of the object. The overall total energy is then

E = U +Ω =
1
2
Ω , (33)

which is negative, as it must be for a gravitationally-bound object. When Equation (33) is
satisfied, the configuration is said to be virialized.

We will now use these ideas for studying the issue of the turn-round radius and virial-
ization radius within our simple toy model. We will use the subscripts tr and v to denote
“turn-round” and “virial” respectively. The configuration starts off (at the turn-round radius
Rtr) out of hydrostatic equilibrium and not satisfying Eq. (33). As the contraction proceeds,
the pressure plays an increasing role in counteracting gravity until eventually equilibrium
is reached and the virial condition (33) is satisfied. The radius at which this happens is the
virialization radius (Rv) mentioned earlier.

Assuming conservation of the total energy during the contraction,

E = Uv +Ωv = Utr +Ωtr . (34)

At the turn-round radius, the energy in the random motions of the CDM particles is still
going to be small (it grows later as the contraction proceeds) and so it seems safe to assume
that the initial total internal energy term Utr can be neglected. Doing this, and using
expression (33) at the virial radius, we have

E =
1
2
Ωv = Ωtr . (35)

If we now make the (rough) assumptions that the total mass M does not change during the
contraction and that, throughout, we can write

Ω = −
G M2

R
× constant , (36)

then Ωv/2 = Ωtr gives

G M2

2Rv
=

G M2

Rtr
, (37)

and so

Rv =
1
2

Rtr , (38)

in agreement with the numerical results.
Our purpose here has been to suggest that this type of “fluid” treatment of cold dark

matter might be a useful approach in some circumstances. Clearly, implementations could
be made much more detailed than the one which we have sketched above.
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3.2 The radiative era and primordial black holes

Objects composed of matter for which p = e/3 have an adiabatic index of 4/3 and are
fundamentally unstable. Because of this, collapsing perturbations in the radiative era do not
produce equilibrium condensed structures, but either form black holes (if the perturbation
amplitude δ is greater than a certain critical threshold value δc) or bounce and return back
into the roughly uniform medium from which they came. Black holes formed then could
have lower masses than ones formed today by the collapse of stars. Since this type of matter
has no intrinsic scale, the question arises of whether the phenomenon known as “critical
collapse” (Choptuik, 1993) might occur under these circumstances despite the background
being that of the expanding universe. The standard form of critical collapse is characterised
by the property that, for values of (δ − δc) which are positive but sufficiently small, the
mass of the black hole formed, MBH, is related to (δ − δc) by a scaling law, i.e.

MBH ∝ (δ − δc)
γ , (39)

(with γ being a constant) when the nature of the unperturbed background is kept fixed and
the perturbations introduced differ in amplitude but not in shape. This sort of behaviour has
been seen in quite a wide range of numerical simulations treating idealised circumstances
(see the review by Gundlach and Martín-García, 2007) but its occurrence under “real-
world” circumstances is less clear. It seemed possible that the radiative era of the early
universe might provide an arena for this, although a potential problem comes from the fact
that the universe itself has an intrinsic scale (the cosmological horizon scale) which might
or might not interfere with the scaling behaviour. Niemeyer and Jedamzik (1999) made
calculations which demonstrated the presence of a scaling law under these circumstances
over a restricted range of (δ − δc) but when more extensive calculations were made, going
closer to the critical limit (Hawke and Stewart, 2002), it was found that the scaling law
eventually broke as the behaviour became more extreme near to the critical limit. We
then reinvestigated this ourselves (Musco et al., 2009), focusing particularly on the use of
perturbations containing only a growing-mode component (following on from the discussion
at the beginning of Section 3). For our calculations, we used a purpose-built numerical GR
hydro code implementing an AMR technique within a null-slicing approach, and able to go
down to extremely small values of (δ − δc). Using growing-mode initial data, without any
decaying component (following the methodology of Polnarev and Musco, 2007), we found
that the scaling behaviour did go all the way down to the smallest values of (δ − δc) that
we were able to treat, well beyond the breaking point found previously. Results are shown
in Fig. 1. In our work, we define δ as being the relative mass excess inside the over-dense
region at the time when it re-enters the cosmological horizon, and measure MBH in units of
MH, the cosmological horizon mass at that time, so that the results are independent of epoch
within the radiative era. Note that black holes produced like this would have typically lower
masses when formed earlier rather than later (related with the value of MH at the time).

In the literature on critical collapse, a key feature is the occurrence of similarity solutions
accompanying the scaling laws (Evans and Coleman, 1994). As (δ − δc) → 0, a critical
solution is approached where all of the matter in the original contracting region is progres-
sively shed during the contraction which ends, with zero matter, at a time referred to as
the critical time tc. The later stages of this follow a similarity solution. For small positive
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Figure 1. Scaling behaviour for MBH as a function of (δ− δc). MBH is measured in units of MH, the
mass within the cosmological horizon when the perturbation re-enters it. For MBH .MH, the points
are well fitted by a scaling law with γ = 0.357, which matches well with the corresponding result
obtained semi-analytically by Maison (1996) for standard critical collapse with this type of matter.

values of (δ − δc), the similarity solution is closely approached but eventually there is a
divergence away from it, with the remaining material then collapsing to form a black hole.
It is interesting to see how this plays out in our case, where the collapse occurs within the
background of an expanding universe. We have investigated this in some detail (Musco
and Miller, 2013). Figure 2 shows our results from a run with δ − δc ∼ 10−9, which is
rather close to the critical limit; the four-velocity U is plotted as a function of the similarity
coordinate ξ = R/(tc − t) at a succession of times (solid curves), with the higher peaks
corresponding to the later times. Note the shedding of material occurring via a relativistic
wind. One can see the progressive approach of the simulation results towards the similarity
solution (dashed curve), with the range of the zone of agreement increasing with time.
At the last time shown, the similarity solution is being closely approximated over all of
the contracting region, where U is negative (although it is quite hard to see this as being
negative in the figure because of the scale), and also over the part of the surrounding region
out to the maximum of U ; beyond this, the simulation results diverge completely away from
the similarity solution and eventually merge into the surrounding Friedmann–Robertson–
Walker universe. The similarity behaviour breaks soon after the last time shown here, with
the start of the final collapse leading to black hole formation. We should stress that the use
of a logarithmic coordinate in Fig. 2 has the effect of making features appear much more
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Figure 2. Simulation results for the velocity U (from a run with δ − δc ∼10−9) plotted against the
similarity coordinate ξ = R/(tc − t). The plot shows curves for a succession of times during the
close approach to the similarity solution, with the higher peaks corresponding to the later times. The
precise similarity solution for the collapsing matter is marked with the dashed curve, which is partly
covered by the solid curves.

abrupt than they would do with a standard linear coordinate. The almost vertical parts of
the curves are nowhere near to being shocks and correspond to smoothly varying features
when viewed on a linear scale.

4 CONCLUSIONS

We have touched here on a number of topics. Firstly, a unified treatment has been given of
black-hole and cosmological horizons in terms of co-moving trapped surfaces. This does
not depend on any assumptions of homogeneity (in the cosmological case), or of stationarity,
asymptotic flatness and the presence of vacuum exteriors (for the black holes). We then
went on to discuss two topics concerned with cosmological structure formation: virialization
of cold dark matter during standard structure formation in the matter-dominated era, and
primordial black hole formation during the radiative era. In the first case, we presented
a simple toy model which serves as an analytic demonstration of phenomena observed in
numerical simulations; in the second case, we presented results showing that black-hole
formation by collapse of cosmological perturbations in the radiative era completely follows
the well-known phenomenology of critical collapse, as long as the perturbations are of the
growing-mode type when they re-enter the cosmological horizon.
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Z. Stuchlík, G. Török and T. Pecháček, editors, Silesian University in Opava, 2014, pp. 193–204

Geometrically thin accretion disk around
Maclaurin spheroids

Bhupendra Mishra1 and Bhargav Vaidya2

1Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland
2Dipartimento di Fisica ‘Amedeo Avogadro’ Università degli Studi di Torino
Via Pietro Giuria 1, 10125 Torino, Italy

ABSTRACT
We studied a semi-analytic and numerical model of geometrically thin disk around
Maclaurin spheroid. We are mainly interested in the inner region of the so called
alpha-disk, alpha being the viscosity parameter. We found minor changes in the emit-
ted spectra from the disk for a change in eccentricity of Maclaurin spheroid. We also
found that change in eccentricity of Maclaurin spheroid changes various disk param-
eters like disk thickness, surface density and central temperature. Numerical work
has been carried out to see the viscous time evolution of the non-stationary accre-
tion disk around Maclaurin spheroid. In numerical model we showed that if the
eccentricity of the Maclaurin spheroid is high the matter will diffuse slowly during
the disk evolution.

Keywords: accretion – accretion disk – hydrodynamics – stars: neutron

1 INTRODUCTION

Geometrically thin accretion disks have been studied intensively in last few decades using
some very robust models. The best known analytic models for describing the accretion disk
were proposed by Shakura and Sunyaev (1973), Novikov and Thorne (1973) and Lynden-
Bell and Pringle (1974). Shakura and Sunyaev (1973) considered Newtonian potential
around spherically symmetric body (black hole). To investigate relativistic effects due to
strong gravity in the accretion process a different choice of potential or metric is required.
Novikov and Thorne (1973) considered thin accretion disk around rotating black holes
using Kerr space-time. Novikov and Thorne (1973) solutions are extension of Newtonian
results by Shakura and Sunyaev (1973) to relativistic regime.

Using relativistic approach Kovács et al. (2009) solved the non-stationary thin accretion
disk around quark stars. Gondek-Rosińska et al. (2014) calculated the effect of eccentricity
of quark-star on the orbital frequencies to investigate the quasi periodic oscillations (QPOs).
Recently Khanna et al. (2014) computed trapped horizontal modes in accretion disk around
Maclaurin spheroids. Bisnovatyi-Kogan (1993) studied the correlation between mass ac-
cretion rate and eccentricity of the rapidly rotating star. In the same trend we performed
a semi-analytic and numerical study of viscous (constant ‘alpha’) accretion disk around
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a Maclaurin spheroid. We used Maclaurin spheroid potential for a constant density and
mass central object. This model describes that how the Maclaurin spheroid potential will
affect the dynamics of accreting matter. We are focused only close to Maclaurin spheroid
to have the effects of multipoles in our calculations. As a first attempt we assumed constant
α viscosity prescription to proceed with analytic and numerical work.

In Maclaurin spheroid potential there occurs an innermost stable circular orbit (ISCO)
even in Newtonian dynamics (Amsterdamski et al., 2002; Kluźniak and Rosińska, 2013).
We chose a constant density and mass Maclaurin spheroid and assumed that it is rotating
rapidly. Rapid rotation of Maclaurin spheroid can change its eccentricity and so semi-major
axis. In Kluźniak and Rosińska (2013), it has been shown that if the eccentricity is less than
a critical value of ec = 0.8345, the ISCO will lie on the equator of the accreting source
but if it is higher than this value it will be detached from the surface of the star. Keeping
this change in mind we investigated the cases where eccentricity is less than critical limit.
We see a change in inner radius of the accretion disk with change in eccentricity because
the semi-major axis of the accreting Maclaurin spheroid is changing. We also simulated
the non-stationary accretion disk around Maclaurin spheroid by solving the diffusion equa-
tion for the accreting matter. We again assumed the Maclaurin spheroid potential to proceed
with the study of non-stationary disk.

The article is organized in the following manner. In Section 2 we describe physical model
of accretion disk which covers steady thin disk and also numerical study of the time evo-
lution of the accretion disk. Section 3 is devoted for describing all the results we obtained
analytically and numerically. In Section 4 we discuss all the results described in Section 3
and we conclude in Section A with future applications of our accretion disk model around
Maclaurin spheroids. A more general and detailed description of this article can be found
in Mishra and Vaidya (2015).

2 PHYSICAL MODEL

2.1 Maclaurin Spheroid

We considered Maclaurin spheroid potential and followed Shakura and Sunyaev (1973)
alpha disk model. We assumed ideal gas equation of state for computing the gas pres-
sure. The semi-major axis a of the Maclaurin spheroid changes with eccentricity because
we assume constant density and mass Maclaurin spheroid. We also assumed that the disk
terminates at the surface of the Maclaurin spheroid. This assumption causes a change
in semi-major axis and so inner radius of the accretion disk due to change in eccentricity.
The semi-major axis of the Maclaurin spheroid is defined as a function of its radius for
e = 0.0,

a = R0/
(
1− e2)1/6 , (1)

where a is the semi-major axis of the Maclaurin spheroid and R0 is the semi-major axis of
Maclaurin spheroid for eccentricity, e = 0.0. The maximum value of eccentricity we chose
in this paper is e = 0.8345. There is a reason behind choosing this limit, in case of potential
for Maclaurin spheroid the radial epicyclic frequency has maximum at r =

√
2ae for
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spheroid eccentricities e > 1/
√

2 but it vanishes for ec = 0.83458318 at the equator of
the star (Kluźniak and Rosińska, 2013). With further increase in the eccentricity e > ec,
the innermost stable circular orbit (ISCO) will be separated from the equator of star and it
will be at rms = 1.198203 ae (Kluźniak and Rosińska, 2013). Following this assumption
we always kept the inner radius at no-torque boundary (the radius at which the viscosity is
zero) which coincides with the variable semi-major axis of Maclaurin spheroid. One can
increase the eccentricity further to investigate the accretion disk for which the inner radius
does not lie at the surface of Maclaurin spheroid but in this paper we shall not discuss it.
The angular velocity (orbital frequency) in case of Maclaurin spheroid potential is given by

Ω2 (e, r) = 2πGρ∗
(
1− e2)1/2e−3 [γr − cos γr sin γr ] , (2)

where γr = arcsin(ae/r), a is the semi-major axis of Maclaurin spheroid and ρ∗ is constant
density of the Maclaurin spheroid (Kluźniak and Rosińska, 2013). Now we have angular
velocity of the matter for Maclaurin spheroid potential, next goal is to follow Shakura and
Sunyaev (1973) alpha disk model and do the calculations for angular velocity calculated
from Eq. (2). This analytic approach gave us various disk parameters like, half-thickness,
surface density, temperature and radial velocity in the inner, middle and outer region of the
accretion disk.

2.2 Steady thin accretion disk

We considered a thin accretion disk (height of disk is much smaller than its radial width)
around Maclaurin spheroid. Calculations are done in cylindrical coordinate system (r, φ, z),
assuming azimuthal symmetry. The goal of this model is to study the steady-state disk and
see the behaviour of disk parameters and emitted spectra of the stationary accretion disk.
To proceed the calculations for steady-state disk we used Eqs. (2) and (3) to analytically
calculate disk parameters in inner region of the accretion disk. The angular momentum
equation in terms of angular velocity of accreting matter is given by

−vrΣ
dΩr2

dr
=

1
r

d
dr

Wrφr2 , (3)

where vr is the radial velocity, Wrφ is the stress between adjacent layers (Shakura and
Sunyaev, 1973), which is assumed to be a function of sound speed vs and surface densityΣ .

Σ = 2
∫ z0

0
ρ dz , (4)

Wrφ = −αΣv
2
s , (5)

where α is constant viscosity coefficient. In stationary disk model Ṁ = −2πΣvrr = const
and vr < 0. Integrating Eq. (3) gives

ṀΩr2
= −2πWrφr2

+ C , (6)
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Figure 1. Plot shows the region of interest (inner region). The vertical axis shows the ratio of radiation
pressure Prad to gas pressure Pgas. The horizontal axis corresponds to radial distance from the center
of the star. Three different eccentricities e = 10−4 (black dotted-dashed curve), e = 0.2 (red dashed
curve) and e = 0.8345 (solid blue curve) have been shown in the plot.

where C is constant which we calculated by using no-torque boundary condition (Shakura
and Sunyaev, 1973). Finally we get the equation to calculate disk parameters in all three
regions of the accretion disk.

Ṁ
(
Ωr2
−Ω(a)a2

)
= 2παΣv2

s r2 . (7)

Now the energy flux radiated from the surface unit as function of Ω(e, r) is given by

Q = −
Ṁ
(
Ωr2
−Ω(a)a2)

4πr
dΩ
dr

. (8)

using Eq. (7) and Eq. (8) together with assumption of radiation pressure dominated region
we calculated disk thickness, surface density, temperature and radial velocity in the inner
(radiation pressure dominated) region of the accretion disk.

2.2.1 Radiation pressure dominated region

In the same fashion like Shakura and Sunyaev (1973), we formulated three different regions
in the accretion disk, the inner one is radiation pressure dominated where in the interaction
of matter and radiation electron scattering on free electrons has dominating contribution.
Figure 1 verifies our claim that we are studying the inner radiation pressure dominated
region. We substituted Ω(e, r) in Eq. (7) and Eq. (8) from Eq. (2) to calculate the disk
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parameters like disk half thickness z0(r), surface density Σ(r), central temperature T (r)
and radial velocity vr(r) of the matter. We expressed the analytic expression in terms of
defined parameters γr , γa , pr , pa and k1 to abbreviate the complicated expressions.

z0(r) = σ Ṁ sin2 γr tan γr (8π pr c)−1

(
1−

(
pa

pr

)1/2(a
r

)2
)
, (9)

Σ(r) = 32πc2 p3/2
r tan2 γr

(
ασ 2k1/2

1 Ṁ
)−1

(
1−

(
pa

pr

)1/2 (a
r

)2
)−1

, (10)

ε(r) = 6cp3/2
r k1/2

1

(
ασ sin2 γr tan γr

)−1
, (11)

T (r) =
(
ε(r)/b

)1/4
, (12)

τ(r) =
√

0.11σTT (r)−7/2n(r)Σ(r) , (13)
n(r) = Σ(r)/2mpz0(r) , (14)
vr (r) = −Ṁ/2πΣ(r)r , (15)

where,

k1 = 2πGρ∗
(
1− e2)1/2e−3, (16)

γr = arcsin (ae/r) , (17)
γa = arcsin(e) , (18)
pr = (γr − sin γr cos γr ) , (19)
pa = (γa − sin γa cos γa) . (20)

Ṁ is mass accretion rate, σ is opacity, b = 3σb/c where σb is Stefan Boltzmann constant,
σT is Thomson cross-section of electron, z0(r) is half-thickness of the disk, Σ(r) is the
radial distribution of surface density, ε(r) is radial distribution of energy density, T (r) is
radial distribution of the central temperature, τ(r) is optical thickness, n(r) is the number
density and vr(r) is the radial velocity of the matter in the steady thin accretion disk.

2.3 Non-stationary accretion disk

In this model we numerically solved the time evolution of the geometrically thin accre-
tion disk around Maclaurin spheroid. The viscous friction causes a transport of angular
momentum outwards and matter accretion on to the Maclaurin spheroid. We numerically
integrated the diffusion equation Eq. (21) with constant viscosity ν as a first approximation.
We used Crank–Nicolson method which is described in Birnstiel et al. (2010) to solve the
diffusion-advection equation in code units. The equation we present here can be used to
solve the time evolution of accretion disk around different potentials or orbital frequency.

∂Σ

∂t
= −

1
r
∂

∂r

[
1

2π
(
r2Ω

)′ ∂G
∂r

]
, (21)
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vr =
1

2πrΣ(r2Ω)′
∂G
∂r

, (22)

where,

G(r, t) = 2πrνΣr2Ω ′ (23)

is the torque exerted by two adjacent rings to each other in the accreting matter. Now if
we choose the Keplerian angular velocity the above equations reduce to diffusion equation
used for study of accretion disk evolution by various models based on Newtonian potential
of a spherically symmetric body (Lynden-Bell and Pringle, 1974).

∂Σ

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r

(
νΣr1/2

)]
, (24)

vr = −
3

Σr1/2
∂

∂r

(
νΣr1/2

)
, (25)

where Σ is the surface density, ν is kinematic viscosity and vr is the radial velocity. Now
using Eqs. (2), (21) and (22) we shall compute the time evolution of the accretion disk for
different eccentricities e of the Maclaurin spheroid. Depending on eccentricity e, matter
can be diffused either rapidly or slowly.

3 RESULTS

3.1 Steady state disk

In our calculations the radius of Maclaurin spheroid for e = 0.0 is R0 = 106 cm. This
radius will also work for our scaling of radial distance. The constant density of Maclaurin
spheroid is ρ∗ = 1015 g·cm−3. In this article we kept accretion rate fixed at Ṁ = 1017 g·s−1

and changed the eccentricity e of the central object to see the effect on the disk thickness,
surface density, temperature and radial velocity of accreting matter in the inner region of
accretion disk. We chose three values of eccentricity which are e = 10−4, e = 0.8345 with
an intermediate value of e = 0.2. Figure 2 presents the radial variation of the half-thickness
z0(r), surface density Σ(r), central temperature T (r) and radial velocity vr(r). In this fig-
ure the inner grid point of the plot for all the parameters is 2R0 to avoid singularities at
the inner boundary of the disk. We see from upper left panel a difference in the half thick-
ness of the accretion disk for different eccentricities e = 10−4 (black dashed-dotted curve),
e = 0.2 (red dashed curve) and e = 0.8345 (solid blue curve). Higher eccentricity e of the
star corresponds to lower disk thickness at a particular radial distance from the center of
Maclaurin spheroid. The upper right panel shows the logarithmic variation of the surface
density distribution in the inner region of the accretion disk. We see that for higher eccen-
tricities the surface density is higher than for the lower eccentricities. The surface density
Σ(r) also increases with radial distance in the inner region of the accretion disk. The lower
left panel shows the radial variation of central temperature T (r) in the accretion disk. The
lower right panel shows the radial velocity profile vr(r) in the accretion disk. We see a very
small difference in radial velocity for different eccentricities e.
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Figure 2. Multiplot shows radial variation of height z0(r), surface density Σ(r), central temperature
T (r) and radial velocity vr(r). The different chosen eccentricities are shown by e = 10−4 (black
dotted-dashed curve), e = 0.2 (red dashed curve) and e = 0.8345 (solid blue curve). This color
convention for chosen eccentricities is same throughout the article. The right upper panel shows the
logarithmic radial variation of the surface density Σ(r). The left lower panel shows the logarithmic
radial variation of the central temperature T (r). The lower right panel shows the logarithmic radial
variation of the radial velocity vr(r) of the accreting matter.

3.2 Emitted Spectra from the disk

A very useful quantity for observational interest is emitted spectra from the accretion disk.
Emitted spectra also corresponds to the size of accretion disk. We computed spectra using
surface temperature of the disk. We chose a fixed outer radius of the accretion disk to
see the behaviour of the emitted spectra with change in eccentricity. The accretion disk we
assumed here is optically thick in the z direction therefore we can assume that each element
of the disk emits as black body with surface temperature Ts(r). Using angular velocity from
Eq. (2) and equating the dissipation rate per unit area to the black body flux we computed
surface temperature Ts(r) of the accretion disk. Using the calculated temperature we can
calculate intensity and with intensity emitted spectra of the accretion disk.

Ts(r) =
[

ṀrΩT1(r)
4πσ

dΩ
dr

]1/4

(26)
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Figure 3. Logarithmic plot shows the emitted spectra from the accretion disk. Black dotted dashed
curve corresponds to e = 10−4, red dashed curve corresponds to e = 0.2 and blue solid curve
correspond to e = 0.8345.

where T1(r) is defined as

T1(r) = 1−
Ω(a)a2

Ω(r)r2 (27)

approximating the disk emitted spectra with black body we have

I (ν) = Bν[Ts(r)] =
2hν3

c2
(
ehν/kTs (r) − 1

) , (28)

using Eq. (27) we computed flux emitted from accretion disk by integration over the whole
disk.

F(ν) = 2π
∫ Rout

a(e)
I (ν)r dr (29)

the integration of Eq. (29) gives emitted spectra from the disk. Figure 3 shows the logarith-
mic variation of emitted spectra from the accretion disk for eccentricities e = 10−4 (black
dashed curve) e = 0.2 (red dashed curve) and e = 0.8345 (solid blue curve). We found
difference in emitted spectra at low frequencies. At high frequencies the difference is very
small for changes in eccentricity of Maclaurin spheroid.

3.3 Evolution of surface density

We studied the non-stationary accretion disk using model described in Section 2.3. We as-
sumed an initial Gaussian density distribution of matter at a radial distance of r = 1.5 a
as the initial condition to solve the diffusion equation (Eq. 21). In all the results of non-
stationary disk the time is in viscous time scale, tvisc = a2/ν, a being the semi-major axis



Geometrically thin accretion disk around Maclaurin spheroids 201

1 1.5 2 2.5 3
r/a

0

0.5

1

1.5

2
π

a
2
Σ

(r
)/

m
τ = 0.005
τ = 0.01
τ = 0.015
τ =0.0

e = 0.2

1 1.5 2 2.5 3
r/a

0

0.5

1

1.5

2
τ = 0.005
τ = 0.01
τ = 0.015
τ = 0.0

e = 0.8345

1 1.5 2 2.5 3
r/a

0

0.5

1

1.5

2
τ = 0.005
τ = 0.01
τ = 0.015
τ = 0.0

e = 0.0001

Figure 4. Time evolution of the ring of matter at a radial distance of r = 1.5 a. The vertical axis
shows the surface density scaled with initial surface density of ring of matter with mass m. The
horizontal axis corresponds to radial distance form the center of star.

of the star. In our model we are interested for constant viscosity prescription therefore the
kinematic viscosity coefficient ν = 0.01 (in code units) is constant throughout our numer-
ical computation. In Figure 4 we plotted the time evolution of surface density for the ring
of matter at r = 1.5 a for e = 10−4, e = 0.2 and e = 0.8345. The vertical axis shows the
surface density Σ(r) scaled with initial surface density. The horizontal axis corresponds
to radial distance from the center of star scaled with semi-major axis a of the Maclaurin
spheroid.

We also tested our numerical code by reducing the code parameters to the limiting case
of spherically symmetric potential. In the appendix various code parameters are defined
in which we chose parameter D (Eq. A2) which corresponds to the diffusion of matter.
Figure 5 shows the variation of D with radial distance for eccentricities e = 10−4 (black
dotted-dashed curve), e = 0.2 (red dashed curve) and e = 0.8345 (solid blue curve).
The limiting value in case of Keplerian angular velocity or e = 0.0 is D = −3.0. We
see from Fig. 5 that as we decrease the eccentricity, parameter D is converging to D =
−3.0. Also for larger radial distance the parameter D converges to the limit of spherically
symmetric potential (D = −3.0).

4 DISCUSSION AND CONCLUSIONS

We conclude that our implementation of Maclaurin spheroid potential causes changes in
the steady state disk parameters like half thickness of the disk. We also see that the change
in eccentricity of the Maclaurin spheroid gives small change in central temperature of the
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Figure 5. Plot shows the test of our code in the limiting case when e → 0 (spherically symmetric
object). The vertical axis shows the variation of the parameter D defined in Eq. (A2). The horizontal
axis shows the radial distance form the center of star. Three different eccentricities e = 10−4 (black
dotted-dashed curve), e = 0.2 (red dashed curve) and upper limit in our model e = 0.8345 are
plotted.

accretion disk. The radial velocity in case of steady state disk is inversely proportional to
the corresponding surface density profile. This gives a very minor change in radial velocity
profile for different eccentricities.

We computed the disk spectra for three values of eccentricity e = 10−4, e = 0.2 and
e = 0.8345. We know from the existing results that a change in the disk area changes
the emitted spectra. In this paper the only parameter we changed is the eccentricity and
a change in the eccentricity of the Maclaurin spheroid is changing the semi-major axis
of the star as well as surface temperature Ts(r). This small change in inner radius of the
disk due to change in semi-major axis and change in surface temperature Ts(r) causes a
change in emitted spectra from the inner region of the accretion disk. The emitted spectra
is affected only at high frequency region because this is emitted from inner parts of the
accretion disk where Maclaurin spheroid potential dominates.

The results of non-stationary accretion disk are also dependent on eccentricity of Maclau-
rin spheroid. We found that if the eccentricity of the central object is lower the viscous evo-
lution of the accretion disk will be more rapid as compare to high eccentricity. The choice
of initial location of Gaussian distribution of matter is also important in our numerical
model. We kept initial distribution of matter at r = 1.5 a, which is very close to the
Maclaurin spheroid. If we start at large radial distance as we can see from Fig. 5, the ef-
fect of eccentricity change will not be significant. From this result we can also explain
that a spin-up or spin-down of the rapidly rotating Maclaurin spheroid can change the vis-
cous evolution of the accretion disk. Maclaurin spheroid potential can also affect observed
variability in the accretion disks around quark stars or white dwarfs. Change in viscous
evolution and emitted spectra from disk can also observationally help in discriminating the
neutron stars from quark stars, which is open astrophysics problem in scientific community.
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APPENDIX A: NON-STATIONARY ACCRETION DISK

In this section we shall describe the different terms which we calculated for our model to
fit with Eq. (A1)

∂Σ

∂t
+
∂

∂r
(Σu)−

∂

∂r

[
h D

∂

∂r

(
ν
Σ

h

)]
= LΣ , (A1)

where

D = rΩ ′/
(
2Ω + rΩ ′

)
, (A2)

u = νΩ ′/
(
2Ω + rΩ ′

)
, (A3)

h = 1/r3Ω ′ , (A4)

L = −νr3Ω ′

[
3

r4l1
+

3Ω ′ + rΩ ′′

r3l2
1

]
, (A5)

where again,

l1 =
(
2Ω + rΩ ′

)
. (A6)
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Numerical simulations of thin accretion discs
with PLUTO

Varadarajan Parthasarathya and Włodek Kluźniak
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avarada@camk.edu.pl

ABSTRACT
Our goal is to perform global simulations of thin accretion discs around compact
bodies like neutron stars with dipolar magnetic profile and black holes by exploiting
the facilities provided by state-of-the-art grid-based, high resolution shock capturing
(HRSC) and finite volume codes. We have used the Godunov-type code PLUTO to
simulate a thin disc around a compact object prescribed with a pseudo-Newtonian
potential in a purely hydrodynamical (HD) regime, with numerical viscosity as a
first step towards achieving our goal as mentioned above.

Keywords: Accretion discs – pseudo–Newtonian – PLUTO – hydrodynamics –
compact objects – black holes

1 INTRODUCTION

Disc like structures are ubiquitous as known from several astronomical observations. It is
now understood that these are the result of accretion flows, which have been studied by the
astrophysical community since 1968. The first analytic solution was obtained by Shakura
and Sunyaev (1973), hereafter SS, preceded by a numerical solution obtained by Pren-
dergast and Burbidge (1968). The model of SS was geometrically thin steady accretion
discs and since 1973, their approach has become a standard framework, which assumes
that irrespective of the physics involved in the production of stress, the result scales with
the pressure. The main features of the SS model are the α viscosity prescription and the
assumption of vertical extent of the disc being smaller than its radial scale. This gives rise
to a small parameter or disc-aspect ratio ε ≡ cs/Ωr , where cs is the sound speed and Ω is
the Keplerian angular velocity, which allows detailed solutions for the flow (Kluźniak and
Kita, 2000; Regev and Gitelman, 2002). The origin of viscosity in accretion discs and the
exact mechanism of angular momentum transport is still not understood with clarity, since
α prescription is valid for vertically averaged thin discs, however it is worth noting that
Balbus and Hawley (1991) have proposed the magneto-rotational instability (MRI) as the
origin of MHD turbulence, which is efficient in transporting angular momentum. There is
a consensus that MRI is the origin of viscosity in accretion discs.

Our motivation to perform numerical simulations is to determine an appropriate model in
three dimensional time-evolution scenario, which incorporates known physical ideas along
with a robust numerical scheme.

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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2 NUMERICAL CODE: PLUTO

PLUTO (Mignone et al., 2007) is a Godunov-type shock-capturing code, constructed to
integrate system of conservation laws given as

∂U
∂t
= −∇ · T(U)+ S(U) , (1)

where U represents a state vector of conserved quantities, T(U) represents fluxes of each
component of state vector and S(U) defines the source terms. PLUTO provides a modu-
lar environment capable of simulating hypersonic flows in presence of discontinuities in
multi-dimensional Cartesian and curvilinear coordinates. The code in its current version
(v4.0) is equipped with four independent physics modules, namely hydrodynamics (HD),
magnetohydrodynamics (MHD), relativistic hydrodynamics (RHD) and relativistic magne-
tohydrodynamics (MHD), which perform numerical integration of the Euler/Navier–Stokes
equations, ideal/resistive MHD equations, energy-momentum conservation laws of special
relativistic perfect gas, and equations of special relativistic magnetized ideal plasma.

In the HD module we numerically solve the following equations:

∂ρ

∂t
+∇ · (ρv) = 0 , (2)

∂ρv
∂t
+∇ ·

(
ρvv+ pI

)
= −ρ∇Φ , (3)

∂E
∂t
+∇ ·

[
(E + p)v

]
= ρv · g , (4)

where the conservative variables, fluxes and source terms are

U =

 ρ

m
E

 , T(U) =

 ρvT

ρvv+ pI
(E + p)vT

 , S(U) =

 0
−ρ∇Φ

ρv · g

 . (5)

The mass density is ρ, momentum density is m = ρv, pressure is p, acceleration vector is
g and the total energy density E is

E = ρε +
m2

2ρ
, (6)

where an equation of state provides the closure p = p(ρ, ε). For a polytrope1, with
γ = 5/3, the total energy density is

E =
p

γ − 1
+

m2

2ρ
. (7)

In PLUTO, the numerical integration of Eq. (1) is performed with high-resolution shock-
capturing scheme (HRSC), where the algorithm employed will capture the discontinuities

1 In this code adiabatic index is same as polytropic index, hence γ = Γ .
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in the solution and smear them over few grid cells, without producing spurious oscilla-
tions near the discontinuities, using finite volume methods in which discrete data is repre-
sented as averages over a control volume on structured grids. Generically, the paradigm of
HRSC was developed by merging Godunov-type methods with advanced numerical meth-
ods, capable of obtaining higher order accuracy in smooth parts of the solution and provide
higher resolution of discontinuities without large smearing over grids.

3 NUMERICAL SIMULATIONS

3.1 Initial Conditions

We perform simulations in spherical coordinates (R, θ), in 2.5 dimensions (2.5D) assuming
axisymmetry around the rotation axis of the disc. The 2.5D considers two spatially inde-
pendent coordinates, but all three components of velocities (also magnetic fields if present).
The setup (Zanni and Ferreira, 2009) consists of a thin disc, a corona and a compact body
at the center whose gravitational potential (Kluźniak and Lee, 2002) we take to be

Φ(R) = −
1
6

exp
(

6rg

R
− 1

)
, (8)

where gravitational radius rg = 1. The initial density and thermal pressure of the disc are
determined by the vertical hydrostatic equilibrium

ρd =

(
2

5ε2

[
1
R
−

(
1−

5ε2

2

)
1
r

])3/2

, (9)

pd = ε
2ρ

5/3
d , (10)

where cylindrical radius is given as r = R sin(θ), γ = 5/3, ε = 0.1. The azimuthal
velocity is obtained from the radial equilibrium

vφd =

√
exp

( 6
r − 1

)
r

(11)

and the meridional flow is given as

vRd = −αε
2
[

10−
32
3
Λα2
−Λ

(
5−

1
ε2 tan2 θ

)]√
1

R sin3 θ
, (12)

with α = 0.01 andΛ = 11/5
(
1+ 64α2/25

)
. The corona is a non-rotating polytrope, with

density and pressure given as

ρc = ρa

(
1
R

) 1
γ−1

, pc =
γ − 1
γ

(
1
R

) γ
γ−1

. (13)

The density contrast between corona and disc is set by the parameter ρa = 0.01.
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3.2 Computational Domain and Boundary Conditions

The computational domain is a two dimensional box in (R, θ), angular coordinate spanning
the sector [0, π/2] and delimited by the radial coordinate extending over [3, 20]. Both the
radial and angular coordinates are discretized with 127 points on a uniform grid. As we
perform 2.5D simulation there is axisymmetry about the rotation axis and planar symmetry
with respect to the disc mid-plane. At the inner edge of the disc, we employ outflow (zero
gradient) boundary condition and at the outer edge of the disc we prescribe a numerical
condition, such that the flow from the inner boundary is fed back to the outer boundary,
which aids in conserving the mass by preventing the disc from being drained.

3.3 A Note On Viscosity

In the simulation reported here we have not employed a physical prescription for viscosity,
which in PLUTO is achieved by adding viscous stress tensor to Eq. (1)

∂U
∂t
+∇ · T = ∇ ·Π + S , (14)

where Π is the viscous stress tensor, with components

(
Π
)

i j = 2
η

hi h j

(
vi; j + v j;i

2

)
+

(
ηb −

2
3
η

)
∇ · vδi j , (15)

where η, ηb are shear and bulk coefficient of viscosity, vi; j , v j;i are covariant derivatives,
and hi , h j are geometrical elements in the corresponding directions respectively.

The most conspicuous phenomenon while performing numerical simulations of the equa-
tions of fluid dynamics is shock waves, which physically is a transition zone across which
ram pressure is converted into thermal pressure and kinetic energy into enthalpy. Numeri-
cal treatment of shocks2 is a complicated issue, which was dealt with by adding large but
non-physical value of viscosity to the algorithms such that the narrow transition zones got
thickened and it was possible to handle shocks computationally. This is known as artificial
viscosity, introduced for numerical purposes for ease in computational treatment of physi-
cal processes. It is to be noted that artificial viscosity is different from numerical viscosity
which is a result of smoothing effect.

Convective flux exchanges momentum between neighbouring elements and the resultant
in a given element is then added to the existing momentum in order to get an average for
that element. As the time step advances the previously calculated average value is passed
to the next element and consecutive steps of such smoothing effect will create a diffusion
of momentum along the flow. However such a numerical diffusion which depends only on
fluid convection, does not work like viscous stress as shown in Eq. (15) which satisfies well
known physical laws. We still exploit numerical viscosity for our simulation by simply
trusting the robustness of the approximate numerical schemes in PLUTO, that has been
tested against several benchmark test problems.

2 Personal communication with numerical experts.
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Figure 1. The initial appearance of disc and corona. Colours represent logarithmic density.

3.4 Discussion of Simulations

Our simulation is intended to be a substrate on which we plan to work further and not a
scientific result at present. We perform the simulation for about 100 orbital periods corre-
sponding to the innermost stable circular orbit. We observed that the part of the disc within
the innermost stable circular orbit was not stable and in a few rotations the disc relaxed
by shedding some of its mass, which through our boundary condition was fed back to the
disc, thereby preventing the disc from being drained. As expected the disc finally reaches
stationary state with the inner edge at the innermost stable circular orbit (r = 6). As men-
tioned previously we have used numerical viscosity, which is responsible for transporting
angular momentum outwards. We have delimited the angular sector such that the radial
grid starts three units from the origin due to numerical reasons. While testing our routines
further, we are able to overcome this issue by physical prescription of viscosity, however
due to constraints in time we are yet to perform simulations with physical viscosity.

We present the results obtained from our simulation as follows. Figure 1 shows the
initial appearance of the disc and corona described by Eqs. (9) and (13). The evolution of
the disc into a steady state following a relaxation process is shown in Figs. 2 and 3 and the
distribution of density at the midplane of the disc is plotted in Figs. 4 and 5 respectively.
The profiles of the azimuthal velocity at the midplane of the disc are plotted in Figs. 6
and 7, comparison of these two figures shows the stability of the velocity profile at t ≥10.

4 CONCLUSIONS

We have performed numerical simulations using the hydrodynamical module in PLUTO
to obtain steady thin discs around a compact object prescribed with a pseudo-Newtonian
potential. The disc relaxes in few rotations and reaches a steady state with its inner edge
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at innermost stable circular orbit. The profile of the azimuthal velocity remains Keplerian
throughout. We plan to improve our routines in the code and successfully perform global
simulations of thin discs around neutron stars with dipolar magnetic field.
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Radiating perfect fluid tori in static braneworld
spacetime: frequency shift map of torus image

Jan Schee, Pavlína Adámková and Zdeněk Stuchlík
Institute of Physics, Faculty of Philosophy & Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

ABSTRACT
The imprints of the tidal-charge parameter b are determined for the spectral line
profiles generated by radiation from the surface of optically thick perfect-fluid tori
orbiting a spherically symmetric braneworld black holes. We assume that each point
on the surface radiates isotropically at a fixed spectral line frequency. We give the
direct and indirect image of a torus and the spectral line profile in dependence
on the impact parameter for a large inclination angle to the distant observer when
the relativistic effects are strongest. We give the map of the frequency shift across
the surface and dependence of the maximal and minimal frequency shift of the ra-
diation from the tori surface, giving thus a relevant information on the tidal charge
parameter b.

INTRODUCTION

The quantum gravity effects take place in the Planck energy scale where the classical Einstein
theory of gravity breaks down. The classical black hole and big bang physical singularities
are assumed to be removed by the quantum gravity. However, traces of the quantum gravity
effects can be expected even on the energy scales substantially below the Planck scale
making the quantum gravity potentially testable. Among many candidates to quantum
gravity there are two leading theories, namely the M-theory and the loop quantum gravity.
In this paper we consider some effects predicted by the Randall–Sundrum (RS) model that
arises from the M-theory (Randall and Sundrum, 1999). The RS model assumes a large
scale hidden dimension and can be considered as a practical framework to study possible
imprints of the string theory in astrophysical phenomena, using the simple modifications of
the standard models of self-gravitating objects like black holes or naked singularities. In the
case of the so called braneworld models of black holes the effect of gravity in the hidden
dimension is reflected by a single parameter, called tidal charge due to the formal analogy
with the electromagnetic effects (Dadhich et al., 2000; Aliev and Gümrükçüoğlu, 2005;
Schee and Stuchlík, 2009a,b; Stuchlík and Kotrlová, 2009). The astrophysical phenomena
can then put restrictions on the parameters of the braneworld models of black holes.
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1 STATIC AND SPHERICALLY SYMMETRIC BRANEWORLD BLACK HOLE

In the framework of M-theory (string theory), gravitation is truly higher-dimensional inter-
action that becomes effectively 4D at energies low enough, E < EPl. In the braneworld
models, the observable universe is a 3-brane to which the electromagnetic, weak and strong
forces (non-gravitational matter fields), described by the standard model, are confined while
gravity can enter the extra spatial dimension. The size of such dimension can be much larger
than lPl '10−33 cm.

Randall and Sundrum (1999) have shown that gravity can be localized near the brane
at low energies even in the case of non-compact, infinite size extra spatial dimensions.
The corresponding warped spacetimes satisfy 5D Einstein field equations which induce
braneworld field equations. The braneworld constrained equations can be given in the form
of modified Einstein equations containing additional terms which reflect the bulk effects
onto the brane. The vacuum, spherically symmetric solution of the constrained braneworld
equations, in the standard Schwarzchild coordinates, reads (Dadhich et al., 2000)

ds2
= − f (r) dt2

+
1

f (r)
dr2
+ r2dθ2

+ r2 sin2 θ dφ2 , (1)

where the lapse function takes the form

f (r) = 1−
2M
r
+

b̃
r2 = 1−

2
r
+

b
r2 . (2)

Parameter b̃ ≡ bM2 is the braneworld parameter called tidal charge that is reflecting the
back reaction of the bulk gravity on the brane. Usually, b < 0 is assumed, but b > 0 is also
considered (see Schee and Stuchlík, 2009a).

The loci of event horizons are given by the condition

f (r) = 0 , (3)

which yields

• two horizon black hole

rH± = 1±
√

1− b for b < 1 , (4)

• one horizon black hole

rH = 2 for b = 1 , (5)

• naked singularity for b > 1.

2 MOTION OF PHOTONS

The test particle and photon equations of motion are given by the geodesics of the spacetime
and in the metric (1) they are separable by Hamilton–Jacobi method. In the case of massless
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particles (photons) they read

dr
dw
= ±

√
1− f (r)

λ2 + q
r2 , (6)

dθ
dw
= ±

1
r2

√
q − λ2 cot2 θ , (7)

dt
dw
=

1
f (r)

, (8)

dφ
dw
=

λ

r2 sin2 θ
, (9)

where we have introduced constants of motion λ = −pφ/pt and q reflecting the compo-
nents of the angular momentum of the particle. In the spherically symmetric spacetimes,
the motion occurs always in a central plane of the geometry.

The turning points of the radial motion, if they exists for given constants of motion λ
and q , are represented by the roots of the polynomial equation

r2
− f (r)L = r4

+Lr2
− 2Lr +Lb = 0 . (10)

L = λ2
+ q represents the total angular momentum of the particle.

In the case of the latitudinal motion, the turning points occur at

θ = tan−1
√

q
λ2 . (11)

3 TEST PERFECT FLUID TORI

The structure and shape of test perfect fluid tori is determined by the relativistic Euler
equation. It can be obtained by the following procedure (Kozlowski et al., 1978; Stuchlík
et al., 2000):

• The perfect fluid energy-momentum tensor components Tµν relative to coordinate basis
read

Tµν = (p + ρ)UµUν − pgµν , (12)

where p (ρ) is the perfect fluid pressure (energy density) and gµν are the metric components.
• The elements of the perfect fluid move along circular trajectories, i.e. their four-velocity
components read

Uµ
=
(
U t , 0, 0,Uφ

)
. (13)

• The Euler equation can be cast as

∇µ p
p + ρ

= −∇µ ln(Ut )+
Ω∇µl
1−Ωl

, (14)
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where Ω(l) is the angular velocity (angular momentum) of the fluid element, being de-
fined by

Ω =
Uφ

U t , l = −
Uφ
Ut

. (15)

For barotropic fluid (p = p(ρ)) it follows from Eq. (14) that there exists an invariant
function Ω = Ω(l) and surfaces of constant pressure are given by Boyer’s condition∫ p

0

dp
p + ρ

= W (p)−W (0) = − ln
Ut

(Ut )in
+

∫ l

lin

Ω dl
1−Ωl

. (16)

• To obtain a particular structure, one has to specify the functionsΩ = Ω(l) and l = l(r, θ).
In the case of a marginally stable torus, the specific angular momentum of the fluid element
remains constant across the toroid, l = l0 = const. The angular velocity of the fluid then
reads

Ω = −
gt t

gφφ
l0 =

f (r)
r2 sin2 θ

l0 . (17)

Under these assumptions, the function W = W (r, θ) takes the simple form

W (r, θ) = ln Ut , (18)

where Ut follows from normalization of the four-velocity Uµ, −1 = UµUµ, and reads

(Ut )
−2
=

gφφ + l2
0 gt t

gt t gφφ
=

r2 sin2 θ − f (r)l2
0

f (r)r2 sin2 θ
. (19)

The final form of the potential given by Eq.(18) reads

W (r, θ) =
1
2

ln U 2
t =

1
2

ln

[
f (r)r2 sin2 θ

r2 sin2 θ − f (r)l2
0

]
. (20)

4 FREQUENCY SHIFT MAP ON THE TORUS IMAGE

In order to illustrate imprints of the braneworld tidal charge parameter b in radiation emitted
from the surface of toroidal configurations orbiting the braneworld spherically symmetric
black hole, we use several assumptions that simplify the situation to give clear signatures
of the tidal charge. We assume the torus to be marginally stable, having l = const, being
optically thick, and radiating from the surface where the elements of orbiting torus radiate
isotropically and at a frequency fixed across the whole surface. We give the shape and
frequency shift map of the radiation from the surface of the torus. Since the frequency of
the surface radiation is assumed to be constant, we can construct the profiled spectral lines
related to such toroidal configuration. We give also the map of the maximal and minimal
frequency shift from the torus surface in dependence on the tidal charge parameter. In our
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Figure 1. Illustrative example of the torus image and the frequency-shift map. The braneworld
parameter is put to b = −6 and the observer inclination angle is θo = 85◦. The colour of the torus
depicts the frequency shift labeled by the colour code covering the frequency-shift range g ∈(0, 1.4).

calculations we use the techniques developed for the braneworld black hole spacetimes in
our previous works (Schee and Stuchlík, 2009a,b; Stuchlík and Kotrlová, 2009).

The frequency shift of the radiation is determined by the formula

g =
(kµUµ)obs

(kµUµ)em
=

[
f (r)−Ωr2 sin2 θ

]1/2
1− λΩ

, (21)

where λ is the impact parameter of the received photon and Ω is the angular velocity
of the radiating element relative to distant observer.

For a series of braneworld parameter b, we have constructed corresponding series of the
perfect fluid tori using the following procedure:

• for given braneworld parameter b the Keplerian marginally bound orbit of radius rmb is
determined,
• the corresponding angular momentum of the fluid element in the torus is calculated,
ltorus = lK(rmb, b) where lK is angular momentum of the Keplerian orbit and is given by
the formula (Stuchlík and Kotrlová, 2009)

lK =
r2

f (r)
ΩK , ΩK =

√
r − b

r4 , (22)

• the value of ltorus is used to specify value of the potential W at the torus surface

Wsurf = hW (rAtMin, π/2; ltorus) , (23)
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Figure 2. Spectral line profile of radiation from thick tori as detected by observer with inclination θo =
85◦ generated for four representative values of braneworld parameter b = −6 (dotted), −4 (dashed),
−1 (thin), and 0 (thick).

where we have chosen h = 0.9 and rAtMin is the location of the minimum of the potential W ,
determined from the condition
dW
dr
= 0⇒ l2

torus
[
b + (r − 2)r

]2
+ (b − r)r4

= 0 . (24)

Having determined the surface of the marginally stable torus for particular brane-world
parameter b, we integrate the equations of motions of photon having impact parameters
(λ, q) corresponding to (α, β) detector plane coordinates and look for intersection of such
null geodesic with the torus surface, (ri , θi ); the corresponding frequency shift g = g(ri , θi )

has been calculated from (21) – for details see (Schee and Stuchlík, 2009a,b).

5 RESULTS

As an illustrative example the image of the marginally stable (l = const) torus seen by
a distant observer having inclination θo = 85◦ is shown in Fig. 1. The frequency-shift map
is given by the colour varied across the surface of the torus.

Using the methods presented in (Schee and Stuchlík, 2009b), the profiled spectral lines of
radiation from whole the torus surface are given in Fig. 2 for some characteristic values of
the tidal charge parameter b. We can see that the imprint of the tidal charge is quantitative
only, but it is well measurable in principle.

There are minimal, gmin, and maximal, gmax, values of the frequency shift of radiation
from the torus surface having a fixed frequency. The qualitative and quantitative effect of
braneworld parameter is reflected in the plots of the gmin (gmax) values for series values
of braneworld parameter b given in Fig. 3.
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Figure 3. The frequency minimal (maximal) shift gmin (gmax) plotted in the left figure and the
frequency shift differences ∆g(b) = gmax(b) − gmin(b) and ∆̃g = gmax(b) − gAtMax(b) plotted
in the figure on the right. The parameter gAtMax is the frequency shift corresponding to maximal
specific flux of the profiled line. The observer inclination is θo = 30◦ (top), 60◦ (middle) and 85◦

(bottom).

The values of gmin and gmax determine the width of the profile of spectral line∆g. From
the Figure 2 (left column plots and solid lines in the plots in right column), one can conclude
that the value of ∆g increase with increasing value of braneworld parameter b. So for the
case of b = 0 the width ∆g is largest while for b = −6 it reaches the smallest value.

We have defined also a new parameter

∆̃g = gmax(b)− gAtMax(b) (25)

reflecting more subtle character of profiled spectral line. One can see that for small and
intermediate inclination angles its behaviour is similar to ∆g. However in the case of high
inclination angle, θo = 85◦, there is discontinuity in ∆̃g reflecting the change of position
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of the flux maximum, as we vary the value of braneworld parameter. The maximum moves
from the right for b = −6 to middle for b = 0 as one can see also in Fig. 2. To determine how
much the choice of the tori sequence influence this effect we shall run another sequences
which we postpone to a future work.

6 CONCLUSIONS

We can conclude that the toroidal configuration orbiting in the field of the braneworld
black holes can give clear signatures of the influence of the tidal charge parameter of the
braneworld. The most useful seem to be the maps of the frequency shift. However, the
profiled spectral lines can give a relevant information too.
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ABSTRACT
We present Newtonian model of non-conductive charged perfect fluid tori orbit-
ing in combined spherical gravitational and dipolar magnetic fields, focusing on
stationary, axisymmetric toroidal structures. Matter in such tori exhibits a purely
circulatory motion and the resulting convection carries charges into permanent rota-
tion around the symmetry axis. As a main result we demonstrate possible existence
of off-equatorial charged tori and equatorial tori with cusps enabling outflows of
matter from the torus also in Newtonian regime. From astrophysical point of view,
our investigation can provide an insight into processes determining vertical structure
of dusty tori surrounding accretion discs.

Keywords: dust tori – electric charge – magnetic field – equilibrium – outflows

1 INTRODUCTION

Supermassive black holes of typical masses M• ' 106–108 M� are frequently present in
nuclei of galaxies, being surrounded by a torus of obscuring material (dust). Moreover,
different types of active galactic nuclei in Seyfert galaxies can be unified by introducing some
form of obscuring tori, which are believed to encircle the central black hole (Antonucci and
Miller, 1985; Urry and Padovani, 1995). The presence of a geometrically and optically thick
dusty structure is an essential component of the unification scheme (Hönig and Kishimoto,
2010). The torus structure is thought to be inhomogeneous, in the form of molecular/dusty
clumps (clouds).

Equilibrium figures of gaseus tori have been studied in great detail, e.g. in Kozlowski
et al. (1978); Abramowicz et al. (1978); Kato et al. (2008), however, the vertical component
of the pressure gradient, required to maintain the equilibrium, does not seem to be sufficient
in dusty tori (e.g. Murphy and Yaqoob, 2009 and references cited therein). Despite of the
fact that signatures of obscuration (especially those seen in X-ray spectra) and variability
properties strongly indicate the need for a significant vertical extent of obscuring tori in
many Seyfert type 2 galaxies, the physical model for the tori remains uncertain and the
vertical structure of dusty tori needs further discussion. For example, it has been proposed
by Czerny and Hryniewicz (2011) that vertical motions of the dust clumps play an important
role.
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Due to complex electromagnetic processes like photoionisation or plasma electron and
ion currents entering the grain surface, the dust particles should possess some net electric
charge. In this case, the electrostatic charge is one of the essential parameters that control
the dynamics of dust grains embedded in the surrounding cosmic plasma. It was shown,
that when electromagnetic forces are taken into account, electrically charged matter can
establish vertically extended structures that “levitate” above and under the equatorial plane.
The Newtonian study of charged dust grains orbiting in planetary magnetospheres and
forming halo orbits were published, e.g. in Howard et al. (1999); Dullin et al. (2002), while
the question, if such halo orbits can survive also in strong gravitational fields near compact
objects, was successfully answered in Kovář et al. (2008); Stuchlík et al. (2009); Kovář et al.
(2010), using both pseudo-Newtonian and general relativistic studies. Of course, in many
astrophysical scenarios such simple test-particle approaches fail because of higher densities
of charged matter in reality. Then possible approaches follow from the kinetic theory
(suitable for lower density matter) or from hydrodynamics (suitable for higher densities).

In this overview we present Newtonian hydrodynamic model of perfect fluid tori with
electric charge spread through the fluid of infinite resistivity, which is an opposite limit to
the well known ideal magnetohydrodynamics with zero resistivity commonly used to model
many astrophysical plasmas (e.g. Punsly, 2001). In more details, the topic presented here is
treated in Slaný et al. (2013). General relativistic version of our approach was published in
Kovář et al. (2011, 2014) where the charged perfect-fluid tori of infinite resistivity encircling
the Reissner–Nordstrøm black hole (without any magnetic field) and Schwarzschild black
hole embedded in a homogeneous magnetic field, respectively, were analysed. The kinetic
approach suitable for modelling toroidal structures is outlined in Cremaschini et al. (2013).

2 NEWTONIAN MODEL FOR INCOMPRESSIBLE FLUID

The Euler equation for a perfect fluid orbiting in gravitational and electromagnetic fields
has the form:

%m
(
∂tvi + v

j
∇ jvi

)
= −∇i P − %m∇iΦ + %e

(
Ei + εi jkv

j Bk) , (1)

where %m and %e are mass-density and charge-density, respectively, P denotes pressure,
v is velocity field in the fluid, and Φ corresponds to the gravitational potential. The elec-
tromagnetic field is described by its electric part E and magnetic part B.

Here, we assume stationary, axisymmetric flow of test charged perfect fluid in external
spherical gravitational and dipolar magnetic fields. In spherical polar coordinates (r, θ, ϕ)

Φ = −
G M

r
, (2)

Ei = 0 , i = (r, θ, ϕ) , (3)

Br = 2µ
cos θ

r3 , Bθ = µ
sin θ
r3 , (4)

where M is the mass of central object and µ > 0 corresponds to magnetic dipole moment
of external magnetic field. For stationary, axisymmetric flow

vr = vθ = 0 , vϕ = vϕ(r, θ) . (5)
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The condition of hydrostatic equilibrium is described by two partial differential equations,
following from Euler’s equation:

∂P
∂r
= −%m

G M
r2 + %m

v2
ϕ

r
− %evϕµ

sin θ
r3 , (6)

1
r
∂P
∂θ
= %m

v2
ϕ

r
cot θ + 2%evϕµ

cos θ
r3 . (7)

In order to solve this set of equations, it is useful to assume charge density in the form

%e = %m q(r, θ) , (8)

where q(r, θ) describes specific charge distribution in the fluid. Further we need an equation
of state.

The simplest and also very illustrative is the case of incompressible fluid characterized
by condition

%m = const . (9)

Analysis of integrability conditions for the set of PDEs (6) and (7) reveals that the orbital
velocity vϕ could be of the same form as in the uncharged case, i.e.

vϕ(r, θ) = K2(r sin θ)K1 , (10)

where K1 and K2 are constants which have to be specified. Assuming that the specific
charge can be written in a separated form q(r, θ) = q1(r) q2(θ), we obtain 4 families of
specific charge distribution:

(1) q(r, θ) = C r−3(K1−1)/2 ,
(2) q(r, θ) = C r3/2(sin θ)−3K1 ,
(3) q(r, θ) = C r−3K1/2 sin3 θ ,
(4) q(r, θ) = C (sin θ)3(1−K1) ,

where C is another constant.
In the centre of the torus, the pressure is expected to be maximal, descending monoton-

ically to zero value at the torus surface. Analysis of the condition ∇P = 0 reveals that in
the case of charged tori there are two possibilities for torus location: (i) equatorial torus
with its centre in the equatorial plane (θ = π/2), (ii) off-equatorial torus with the centre at
θ 6= π/2.

2.1 Equatorial tori

Uncharged perfect-fluid tori are presented in many classical textbooks on accretion discs,
see, e.g. Frank et al. (2002) where also their Newtonian version is presented. These struc-
tures are characterized by their equipotential surfaces of “gravito-centrifugal” potential
governing the motion of a barotropic fluid in prescribed gravitational field. The equipo-
tential surfaces coincide with isobaric surfaces, P = const. In Newtonian regime, there
are closed toroidal surfaces around the circle corresponding to the centre of the torus.
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Figure 1. Charged Newtonian tori with cusps. The left panel shows negatively charged torus with
cusps out of the equator (physically relevant torus is the small one on the left), while the right panel
shows positively charged torus with the cusp in the equator.

Abramowicz and co-workers showed (Abramowicz et al., 1978; Kozlowski et al., 1978) that
in relativistic regime, one of equipotential surfaces can be marginally closed containing
the critical point, so-called cusp, in the inner edge in the equatorial plane, which enables
outflow of matter from the torus and, in fact, accretion onto central compact object. Next,
Stuchlík and co-workers showed, see e.g. (Stuchlík et al., 2000; Slaný and Stuchlík, 2005)
that cosmic repulsion, represented by the cosmological term in Einstein equations, leads to
the existence of another cusp in the structure of equipotential surfaces, now being located
at the outer edge in the equatorial plane. For current value of the cosmological constant,
however, the outer cusp could be relevant only for very huge toroidal structures of galactic
dimensions around supermassive black holes.

In the case of charged tori, we have shown that the cusps can exist also in Newtonian
regime and, moreover, that their location is not bound to the equatorial plane only. Structure
of isobaric surfaces for cases with cusps is presented in Fig. 1. The left panel describes
negatively charged 1st-family torus1 with uniform distribution of the specific angular mo-
mentum `(r, θ) = K2 = const2 and spherical distribution of the specific charge. The right
panel presents positively charged 4th-family torus with uniform distribution of the specific
angular momentum and radial distribution of the specific charge.

2.2 Off-equatorial tori

For negatively charged fluid of the 2nd, 3rd and 4th family-type there exists the possibility of
stable off-equatorial tori located symmetrically above and under the equatorial plane. The
situation for tori with uniform distribution of the specific angular momentum (K1 = −1)

1 In all presented situations we will expect positive rotation of the torus, i.e. vϕ > 0 for all fluid elements. In
the case of negative rotation, the electric charge of the torus would be opposite.
2 Tori with constant specific angular momentum correspond to the choice K1 = −1.
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Figure 2. Off-equatorial negatively charged tori with cylindrical (left panel) and radial (right panel)
distribution of the specific charge.

is presented in Fig. 2 where the left panel shows tori with cylindrical distribution of the
specific charge (2nd-family) while the right panel shows tori with radial distribution of the
specific charge (4th-family).

3 COMMENTS

For any perfect fluid, the basic set of partial differential equations (PDEs) (6) and (7) has
the form

1
%m

∂P
∂r
= A(r, θ) , (11)

1
%m

∂P
∂θ
= B(r, θ) . (12)

If we define a new function

h(r, θ) =
P
%m

, (13)

the above set of PDEs can be written for incompressible fluid in the form

∂h
∂r
= A(r, θ) , (14)

∂h
∂θ
= B(r, θ) . (15)

Now we can think about more general fluid described by polytropic equation of state,
P = K%γm. Since surfaces P(r, θ) = const coincide with surfaces %m(r, θ) = const, due to
which they coincide also with surfaces h(r, θ) = const, we can use the function h instead of
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pressure P in the analysis of stationary configurations also for the polytropic fluid. In this
case the set (11) and (12) takes the form

∂h
∂r
=
γ − 1
γ

A(r, θ) , (16)

∂h
∂θ
=
γ − 1
γ

B(r, θ) , (17)

being just rescaled version of analogical set (14) and (15) for incompressible fluid. We
conclude, therefore, that the results obtained for incompressible fluid are fully relevant also
for the polytropic fluid.
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ABSTRACT
In the past several years, estimations of black hole spin in the three Galactic mi-
croquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried
out based on several models of 3:2 high-frequency quasi-periodic oscillations (HF
QPOs). When compared to spin predictions obtained by spectral fitting methods,
the different approaches fail to provide consistent results. Most of the so far cal-
culated QPO estimates are implied by models that deal with geodesic accretion
flow. In the present work, we assume a non-geodesic flow defined by the model of a
pressure-supported perfect fluid torus. We consider several QPO models and explore
influence of the consideration of presence of the pressure forces on the predicted
QPO frequencies and spin predictions. Our results indicate that in some cases the
influence can be quite significant. This is in particular true for the so-called “vertical
precession resonance” model and the warped disc resonance model. In other cases,
on the other hand, the model predictions do not much vary from those corresponding
to geodesic calculations. This applies namely for the model assuming m = −1 radial
and m = −2 vertical disc-oscillation modes. The same is true for the epicyclic reso-
nance (Er) model, but only providing that a .0.9. When it is a &0.9, the situation
changes and the influence of pressure forces becomes stronger. Such behaviour leads
to very interesting conclusions. Within the Er model framework, individual sources
with a moderate spin should exhibit a smaller spread of the measured 3:2 QPO fre-
quencies than sources with a near-extreme spin. This should be further examined
using the data available through the proposed Large Observatory for X-ray Timing
(LOFT).

1 INTRODUCTION

Studying the X-ray spectra and variability provides a useful tool for putting constraints on
the properties of compact objects like is the mass or spin of a black hole. One of the standard
ways to measure the spin is through fitting the X-ray spectral continuum or the relativistically
broadened Fe K alpha lines (see e.g. McClintock et al., 2006, 2007; Middleton et al., 2006;
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Table 1. Properties of the three microquasars GRO 1655-40, GRS 1915+105, and XTE 1550-564.
The individual columns display the frequencies of the lower and upper QPO peaks (Strohmayer, 2001;
Remillard et al., 2002, 2003), the mass estimates (Greene et al., 2001; Greiner et al., 2001; Orosz
et al., 2002; McClintock and Remillard, 2003), and the spin predictions carried out by the spectral
fitting methods.

Source νL [Hz] νU [Hz] Mass [M�] a

GRO 1655-40 300 450 6.0–6.6 0.65–0.80∗

0.97–0.99†

GRS 1915+105 113 168 10.0–18.0 0.98–1.00∆

∼ 0.7∇

XTE 1550-564 184 276 8.4–10.8 0.75–0.77	

∗From McClintock et al. (2007). †From Miller et al. (2009). ∆From McClintock et al. (2006).

∇ From Middleton et al. (2006). 	From Miller et al. (2009).

Done et al., 2007; Miller, 2007; Shafee et al., 2008; McClintock et al., 2010, 2011, 2014).
Within the recent years, another approach has been gaining popularity – the determination
of their properties through the theory of high-frequency quasi-periodic oscillations (HF
QPOs).

The quasiperiodic modulation of the X-ray flux, which occurs at frequencies comparable
to frequencies of orbital motion, has been observed in the X-ray power density spectra of the
low-mass X-ray binaries for several decades (see, e.g. van der Klis, 2006; Belloni and Stella,
2014, for a review). In the black hole systems, the HF QPOs appear at frequencies that
often form rational ratios with a preferred ratio of 3:2 (Abramowicz and Kluźniak, 2001;
McClintock and Remillard, 2003, see Table 1). A significant amount of models proposed
to explain the 3:2 HF QPOs deal with orbital motion and some oscillatory modes of the
accretion disc. Such models relate the observed QPO frequencies to the corresponding
orbital and disc-oscillation frequencies that are often defined by certain combination of
the orbital Keplerian frequency and the radial and vertical epicyclic frequencies. In Kerr
geometry, these frequencies depend on mass and spin of the black hole, and it is therefore
possible to determine the black hole mass or spin from the observed 3:2 QPO frequencies
and the specific QPO model. Such spin estimations have been carried out by several authors
in the past (Wagoner et al., 2001; Abramowicz and Kluźniak, 2001; Kato, 2004; Török
et al., 2005, 2011).

Most of the so-far obtained black hole spin estimations based on the QPO models have
been obtained considering a geodesic accretion flow. In the case of more general flows,
non-geodesic effects connected to, e.g. pressure gradients, magnetic fields or other forces
may have potentially significant impact on the spin predictions implied by these models.
Here we aim to quantify such impact in the particular case of non-geodesic influence
introduced by pressure forces that are present in a specific type of accretion flow modelled
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Figure 1. After Šrámková et al. (2015a). Frequencies ν∗r and ν∗θ of m = 0 radial and vertical disc-
oscillation modes calculated at the centre of the torus, r = rc, plotted for various torus thickness (β)
and black hole spin a. The calculated frequency values tend to decrease with increasing torus size.

by a pressure-supported, perfect fluid torus. The properties of epicyclic modes of torus
oscillations, e.g. modifications to their frequencies due to pressure gradients present in the
torus, were calculated by Blaes et al. (2007) in the pseudo-Newtonian approximation and
later generalised by Straub and Šrámková (2009) for Kerr geometry.

We assume here several QPO models that were discussed by Török et al. (2011) who
calculated spin values predicted by the models dealing with purely geodesic flow for
three Galactic microquasars displaying the 3:2 twin-peak HF QPOs – GRS 1915+105,
GRO J1655-40, and XTE J1550-564. Using the results of Straub and Šrámková (2009), we
carry out the estimates of black hole spin based on the several previously assumed QPO
models considering non-geodesic accretion flow of the pressure-supported torus. In this
paper, we provide a short summary of the current findings explored by Šrámková et al.
(2015a,b).

2 MODEL OF EQUILIBRIUM PRESSURE-SUPPORTED TORUS

The slightly non-geodesic accretion flow considered in this work is modelled by an equi-
librium, slightly non-slender pressure-supported perfect fluid torus, which orbits a rotating
Kerr black hole and has a constant specific angular momentum distribution. A detailed
description of such model of torus is given in Straub and Šrámková (2009). In this accretion
flow, the radial and vertical epicyclic oscillations of the fluid are modified by the pressure
forces. These modifications were explored by Straub and Šrámková who calculated explicit
formulae for the pressure corrections to epicyclic frequencies in a slightly non-slender con-
stant specific angular momentum torus orbiting a Kerr black hole. In Figure 1, we illustrate
how the pressure effects modify the frequencies of the axisymmetric m = 0 oscillation
modes.

3 DISC-OSCILLATION QPO MODELS

We focus our attention on the so-called ‘disc-oscillation’ QPO models that involve various
oscillatory modes of accretion disc oscillations. The list of the considered models and
their corresponding frequency relations of the lower and upper QPO is summarised in
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Figure 2. Left: After Török et al. (2011). Curves M(a) implied by the individual geodesic models.
The light yellow rectangle indicates the observationally determined interval of νU×M including each
of the individual microquasars. The colour boxes are drawn for the QPO independent mass and spin
estimates given by different authors. Right: Pressure corrections implied for the RP1 and WD model.
The geodesic case is marked by the blue line. In the case of WD model, the corrections grow with
increasing torus thickness (the value β∗ corresponds to the maximal allowed thickness). For the RP1
model, the situation is more complicated. For each value of a, there is a specific limit value of the
torus thickness that does not allow the required frequency ratio. The resulting estimates indicated by
the shadow area are then carried out numerically.

Table 2. It comprehends the “warped disc” (WD) model (Kato, 2004) that in general
assumes oscillation modes in a warped accretion disc. Then there is the “3:2 epicyclic
resonance” model of Abramowicz and Kluźniak that attributes the twin-peak HF QPOs to a
non-linear resonance between two axisymmetric epicyclic accretion disc oscillation modes.
Furthermore, there are another two resonance models that we denote as the “RP1” model
(Bursa, 2005) and the “RP2” model (Török et al., 2011). Both of these models deal with
a certain combination of non-axisymmetric disc-oscillations modes. More details on these
models can be found in Török et al. (2011).

4 SPIN ESTIMATES IMPLIED BY THE NON-GEODESIC QPO MODELS

We use here the formulae for pressure corrections to epicyclic frequencies calculated by
Straub and Šrámková. From the 3:2 observed QPO frequencies and estimated ranges of
mass of the three microquasars, we infer the spin predicted by the QPO models. For our
calculations, we take into account relevant properties of the three microquasars summarized
in Table 1. Outputs of these calculations are illustrated in Figs. 2 and 3. The intervals of
spin predicted by the individual QPO models carried out for the non-geodesic case are listed
in Table 2 and compared to spin predictions calculated by Török et al. (2011).
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Figure 3. Left: Pressure corrections implied for the Ep and the RP2 model. The geodesic case is
marked by the blue line. The corrections are rather small except for the case of the Ep model when
considering high spin values. Right: Frequencies of the m = 0 radial epicyclic mode calculated for
tori with cusp tend to increase with increasing spin up to a ∼0.95. For high values of a, they rapidly
decrease with increasing a.

5 DISCUSSION AND CONCLUSIONS

Several groups of authors have applied different spectral fitting methods to measure the
black hole spin in the three microquasars. We display the intervals of mass and spin of
these sources implied by the spectral methods in the mass-spin diagram in the left panel
of Fig. 2. The intervals are illustrated in the figure using the several coloured boxes. It is
clear from the Figure that the spin predictions carried out by different authors are somewhat
inconsistent.

Comparing the spin measurements obtained by the spectral methods to those predicted
by theoretical QPO models may help to shed some light on the present puzzling situation.
We present such comparison within the mass-spin diagrams displayed in Figs. 2 and 3.
The individual curves in the Figures correspond to spin values predicted by the several
QPO models given in Table 2. In the left panel of Fig. 2, we show curves corresponding
to geodesic-flow estimates calculated by Török et al. (2011), while in the right panel of
Fig. 2 and left panel of Fig. 3 we compare these estimates to estimates predicted by QPO
models that involve non-geodesic flow described by the equilibrium, pressure-supported
fluid torus. Different curves correspond to different torus thickness, which is marked using
parameter β∗. Within the adopted notation, the curves marked by β∗ = 0 correspond to
the case of a slender torus limit for which the epicyclic frequencies are equal to those of
free test particles of geodesic motion. The curves marked by β∗ = 1 then correspond to the
case of a torus with cusp.1

It is apparent from the Figures that presence of the pressure forces in the accretion flow
may imply relatively large modifications to the QPO frequencies and consequently also to
spin intervals previously predicted for the geodesic flow. This holds namely for the case of
the WD and the RP1 model, both of which are shown in the right panel of Fig. 2.

1 In the right panel of Fig. 3, we illustrate behaviour of the frequencies of m = 0 radial epicyclic mode calculated
for β∗ = 1.



234 E. Šrámková and G. Török

Table 2. Frequency relations corresponding to individual QPO models and the spin of the three
microquasars implied by these models for the geodesic (a) and non-geodesic (a∗) case. The relations
are expressed in terms of three fundamental frequencies of the perturbed circular geodesic motion.
These are the Keplerian frequency, and the radial and vertical epicyclic frequencies, which are denoted
by νK, νr and νθ , respectively.

Model Frequency Relations a ∼ a∗ ∼

WD νL = 2 (νK − νr) νU = 2νK − νr <0.45 <0.45

Ep νL = νr νU = νθ 0.7 – 1 0.6–1

RP1 νL = νK − νr νU = νθ <0.80 0–1

RP2 νL = νK − νr νU = 2νK − νθ <0.45 <0.45

The behaviour of curves illustrated in Fig. 3 shows that for the RP2 model assuming
m = −1 radial and m = −2 vertical disc-oscillation modes the non-geodesic effects
related to pressure do not cause any significant impact. For the Ep model, the results are
similar when it is a . 0.9. The situation becomes different for a & 0.9, in which case
the predicted QPO frequency rapidly decreases as the torus thickness rises. This leads
to an interesting conclusion for the Ep model. Within the model framework, individual
sources with a moderate spin (a .0.9) should exhibit a smaller spread of the measured 3:2
QPO frequencies than sources with a near-extreme spin, such as GRS-1915+105 (a ∼ 1).
Clearly, this could be further examined using the large amount of high-resolution data
available through the proposed Large Observatory for X-ray Timing (LOFT; Feroci et al.,
2012).
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ABSTRACT
We are investigating singularity structure of the rotating black hole and naked sin-
gularity spacetimes in the Randall–Sundrum second type (RSII) of the brane-world
scenario. We will show that structure of this singularity is very similar to its classical
counterpart, even in the cases of negative tidal charge, which is equivalent to the
Kerr–Newman black hole with the complex charge Q (with zero real part). We also
study behaviour of the ergosphere and will show that this region can exists under
specific situation.

Keywords: Randall Sundrum – Brane-world

1 INTRODUCTION

In recent years, one of the promising approaches to the higher-dimensional gravity the-
ories seems to be the string theory and particularly the M-theory (Hořava and Witten,
1996; Hořava and Witten, 1996). This new idea is describing gravity as a truly higher-
dimensional interaction becoming effectively 4D at low enough energies. These theories
inspired so called braneworld models, in which the observable universe is a 3-brane on
which the standard-model fields are confined, while gravity enters the extra spatial dimen-
sions, the size of which may be much larger than the Planck length scales `P ∼ 10−33 cm,
(Arkani-Hamed et al., 1998). The braneworld models could therefore provide an elegant
solution to the hierarchy problem of the electroweak and quantum gravity scales, as these
scales become to be of the same order (TeV) due to large scale extra dimensions, (Arkani-
Hamed et al., 1998). Therefore, future collider experiments can test the braneworld models
quite well, including the hypothetical mini black hole production on the TeV-energy scales,
(Dimopoulos and Landsberg, 2001). On the other hand, the braneworld models could be
observationally tested since they influence astrophysically important properties of the black
holes. Gravity can be localized near the brane at low energies even with a non-compact,
infinite size extra dimension with the warped spacetime satisfying the 5D Einstein equations
with negative cosmological constant as shown by, (Randall and Sundrum, 1999). In this
paper we investigate the influence of the (RSII) brane-world effects on the singularity
structure in a Kerr black hole. We also study extension of the ergosphere.

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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2 GEOMETRY

Using standard Boyer–Lindquist coordinates (t, r, θ, ϕ) and geometric units (c = G = 1),
we can write the line element of the rotating (Kerr) black hole on the 3D-brane in the form

ds2
= −

(
1−

2Mr − b
Σ

)
dt2
−

2a(2Mr − b)
Σ

sin2θ dt dϕ +

+
Σ

∆
dr2
+Σ dθ2

+

(
r2
+ a2

+
2Mr − b
Σ

a2sin2θ

)
sin2θ dϕ2 , (1)

where

∆ = r2
− 2Mr + a2

+ b , (2)
Σ = r2

+ a2cos2θ , (3)

M and a = J/M are the mass parameter and the specific angular momentum of the back-
ground, while the braneworld parameter b, called “tidal charge”, represents the imprint of
non-local (tidal) gravitational effects of the bulk space, (Aliev and Gümrükçüoğlu, 2005).

3 SINGULARITY

Our goal is to find out whether the brane parameter b has strong influence onto the structure
of the Kerr-like ring singularity at r = 0 , θ = π/2. The Kretschmann’s scalar K =
Rαβγ δRαβγ δ is a good tool to probe the structure of spacetimes singularities. Using Eq. (1)
we get

K =
8(

r2 + a2t2
)6

(
r4 A − 2a2r2 Bt2

+ a4Ct4
− 6a6 M2t6

)
, (4)

where1

t = cos θ , (5)
A =

(
7b2
− 12bMr + 6M2r2) , (6)

B =
(
17b2
− 60bMr + 45M2r2) , (7)

C =
(
7b2
− 60bMr + 90M2r2) . (8)

The Kretschmann scalar is formally same as in the case of the Kerr–Newmann metric
with Q2

→ b (Henry, 2000). Naturally, the negative values of brane parameter would
have some effect onto K , but we can see from the denominator of Eq. (4), that it has no
effect onto position of the physical singularity. As an example there is a plot of K with
(M = 1 , a = 0.8 , b = −0.8) at Fig. 1.

1 Substitution t = cos θ is used here just to tremendously fasten computation of the Kretschmann scalar by
program Mathematica v8.0.
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Figure 1. Example of the Kretschmann’s scalar K for M = 1 , a = 0.8 , b = −0.8 to illustrate it’s
similarity to the Kerr–Newmann case.

Discussion about singularity can be more effectively done if we transform our metric into
the so called Kerr–Schild form

gµν = ηµν + lµlν , (9)

where ηµν is a flat metric and lµ is a null vector with respect to ηµν . Using substitution

dt = dx0
+

(
r2
+ a2

∆
− 1

)
dr , (10)

dϕ = dϕ̃ +
a
∆

dr , (11)

x =
(
r cos(ϕ̃)+ a sin(ϕ̃)

)
sin θ , (12)

y =
(
r sin(ϕ̃)− a cos(ϕ̃)

)
sin θ , (13)

z = r cos θ , (14)

and after burdensome calculation we end up with metric in a form:

ds2
= −

(
dx0)2

+ (dx)2 + (dy)2 + (dz)2 +
(2Mr − b)r2

r4 + a2z2 ×

×

{
dx0
−

1
r2 + a2

[
r(x dx + y dy)+ a(x dy − y dx)−

1
r

z dz
]}2

, (15)
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Figure 2. Upper Left: Polar slice through the brany Kerr spacetime in Cartesian Kerr–Schild
coordinates. Spin parameter a is fixed to value 1 and brany parameter b is appropriately chosen to
demonstrate its influence on ergosphere. Upper Right: Polar slice through the brany Kerr spacetime
in Cartesian Kerr–Schild coordinates. Brany parameter b is fixed to value 0.9 and spin parameter a
is appropriately chosen to demonstrate its influence on ergosphere. Middle: Maximal possible angle
α = arctan(z/x) for a particular ergosphere.

where r is defined, implicitly, by

r4
− r2(x2

+ y2
+ z2
− a2)

− a2z2
= 0 . (16)

The metric (15) is analytic everywhere except at

x2
+ y2

+ z2
= a2 and z = 0 . (17)

This condition is same as in the case of the standard Kerr black hole so we clearly can
see that brany parameter b has no influence to singularity of the space-time what so
ever. The physical “ring” singularity of the braneworld rotating black holes (and naked
singularities) is located at r = 0 and θ = π/2, as in the Kerr spacetimes. For completeness
we also enlist components of Ricci tensor. Ricci scalar is exactly zero, but the braneworld
black hole spacetime is not Ricci flat.
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Components of Ricci tensor are:

Rt t = 4b
a2
+ 2∆− a2 cos(2θ)(

a2 + 2r2 + a2 cos(2θ)
)3 , (18)

Rtϕ = −8ab

(
a2
+∆

)
sin2 θ(

a2 + 2r2 + a2 cos(2θ)
)3 , (19)

Rϕt = Rtϕ , (20)

Rrr = −
Rθθ
∆

, (21)

Rθθ =
2b

a2 + 2r2 + a2 cos(2θ)
, (22)

Rϕϕ = 4b sin2(θ)
3a4
+ 2r4

+ a2(b − 2Mr + 5r2)
− a2∆ cos(2θ)(

a2 + 2r2 + a2 cos(2θ)
)3 . (23)

4 ERGOSPHERE

The ergosphere of Kerr black hole and naked singularities plays a crucial role in astrophysical
phenomena related, e.g. to the Penrose process (Penrose and Floyd, 1971), or the ultra high-
energy particle collisions. A specially interesting phenomena occur in the case of the na-
ked-singularity spacetimes, (Stuchlík, 1980; Stuchlík and Schee, 2013). Here we explore
how the ergosphere extension depends on the tidal charge b and spin a. Ergosphere is
a closed area of space with border defined by the condition:

gt t = 0 . (24)

It is more convenient to investigate ergosphere in the Kerr–Schild coordinates (15). We
can use spacetime symmetry and focus only on polar slice with y = 0. In this case
the condition for border of ergosphere is simply given by (see for example Visser, 2007)

x2
=

(
a2
+ r2)∆
a2 ,

z2
=
(2Mr − b)r2

− r4

a2 . (25)

In the Figure 2 we give some examples of the ergosphere’s shape. Figures illustrate
the influence of the brany parameter b on the ergosphere. From expression for z2 we see
that existence of ergosphere is conditioned by (in M = 1 units)

b < 1 . (26)

We can also infer that ergosphere is getting larger as brane parameter is getting smaller.



242 M. Blaschke and Z. Stuchlík

The ergosphere completely surrounds the ring singularity in the black hole cases only.
To illustrate this phenomenon we have defined maximal possible angle of ergosphere viewed
from the origin of coordinate system:

α = Max : arctan
z
x
, (27)

where z, x are coordinates of point which belongs to ergosphere (see Fig. 2).
For every positive spin a > 0 there always exists an ergospehere, but as spin increases,

the volume of the ergosphere and the maximal angle α decreases. The ergosphere is in
a sense pushed away from the ring singularity by increasing spin.

5 CONCLUSIONS

We have shown that tidal charge b representing influence of the bulk space on the brane-
world has no effect on the effective structure of singularity of the rotating Kerr black hole
existing on the brane. Also we have shown how this parameter influences the ergosphere.
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ABSTRACT
Axisymmetric string loops oscillating around a stable equilibrium position in the Kerr
background are applied to explain the special set of frequencies related to the
high-frequency quasiperiodic oscillations observed in the low mass X-ray binary
XTE J1701-462 containing a neutron star. Frequencies of the radial and vertical string
loop oscillations are determined by the mass M and dimensionless spin a of the neu-
tron star, and by dimensionless parameterω describing combined effects of the string
loop tension and its angular momentum. Equilibrium position of the string loop is
given by its angular momentum and energy. The string-loop oscillation model can
explain the observed kHz frequencies, but the stringy parameterω cannot be the same
for all the three HF QPO observations in the XTE J1701-462 source; the limits on
the acceptable values of ω are given in dependence on the spacetime parameters M
and a. However, the model implies restrict ion M > 3.3M� on the neutron star mass
that is too high to be compatible with the standard theory of neutron stars. A proper
correction on the mass-limit can be generally introduced due to the electromagnetic
interaction of an electrically charged string loop with magnetic field of the neutron
star.

Keywords: string loops – quasiperiodic oscillations – XTE J1701-462 – X-ray
binary

1 INTRODUCTION

The axisymmetric current-carrying string loops are governed by their tension and angular
momentum. Tension prevents their expansion beyond some radius, current introduces an
angular momentum preventing them from collapse. First, cosmic strings were introduced
as remnants of some phase transitions in the very early universe – see (Vilenkin and Shellard,
1995) for a review. Later strings represented as superconducting vortices were introduced
by (Witten, 1985). However, the current-carrying string loops could represent also plasma
exhibiting a string-like behaviour due to dynamics of the magnetic field lines (Semenov
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et al., 2004; Christensson and Hindmarsh, 1999), or due to the thin flux tubes of magnetized
plasma simply described as 1D strings (Semenov and Bernikov, 1991; Cremaschini and
Stuchlík, 2013; Cremaschini et al., 2013; Cremaschini and Stuchlík, 2014; Kovář, 2013).

It has been demonstrated that the current-carrying string loops moving axisymmetrically
along the symmetry axis of the Kerr or Schwarzschild–de Sitter black holes have signif-
icant astrophysical applications (Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2010;
Stuchlík and Kološ, 2012a; Kološ and Stuchlík, 2013; Stuchlík and Kološ, 2014b,a). Trans-
mission of their oscillatory internal energy into energy of the translational motion causes an
outward-directed acceleration of the string loops in the strong gravity of stars or compact
objects, as neutron stars, black holes, or naked singularities (Jacobson and Sotiriou, 2009;
Stuchlík and Kološ, 2012a,b; Kološ and Stuchlík, 2013). Such an effect can be important
also for the electrically charged string loops moving in combined gravitational and elec-
tromagnetic fields (Tursunov et al., 2013). Since the resulting translational motion can be
ultra-relativistic, the transmutation of the string loop energy can serve as an alternative
explanation of relativistic jets.

Quite recently, it has been demonstrated that small oscillations of a string loop around
stable equilibrium positions in the equatorial plane of the Kerr geometry can be considered
in the lowest approximation as two uncoupled linear harmonic oscillators governing the
radial and vertical oscillations of the string loop (Kološ and Stuchlík, 2013). The fre-
quencies of the radial and vertical harmonic oscillations of the string loops were given and
discussed in (Stuchlík and Kološ, 2014b). It has been shown that the string loop harmonic or
quasi-harmonic oscillations can explain frequencies of the twin high-frequency quasiperi-
odic oscillations (HF QPO) observed in the three Galactic microquasars GRS 1915+105,
XTE 1550-564, GRO 1655-40, i.e. low-mass X-ray binary (LMXB) systems containing
a black hole (Stuchlík and Kološ, 2014b). Moreover, they can explain also the special
frequency set of kHz QPOs observed in the peculiar source XTE J170-407 containing
a neutron star, where a single HF QPO and two twin HF QPOs with the frequency ratio 3:2
were observed (Pawar et al., 2013; Stuchlík and Kološ, 2014a). Here we apply the string
loop oscillation model for an analogical data set observed in the source XTE J1701-462
containing a neutron star.

The radial profiles of the string loop oscillations qualitatively differ from those related to
the radial and vertical oscillations of the geodesic, epicyclic motion of test particle in the
Kerr geometry. Especially, there is a crossing point of the radial and vertical frequencies
in the Kerr black hole spacetimes for the string loop oscillation allowing for creation of
single-frequency peaks to be observed in the field of black holes or neutron stars, while for
the test particle oscillations such a crossing is possible only in the Kerr naked singularity
spacetimes (Török and Stuchlík, 2005; Stuchlík and Schee, 2012).

2 HF QPOS IN XTE J1701-462

A detailed analysis of the HF QPOs in the source XTE J1701-462 has been reported in
(Homan et al., 2007). The results are rather unexpected and very interesting, since a very
special set of frequencies has been discovered in this study. In one of the three observational
events a single HF QPO has been detected at a characteristic frequency

f(A)L = f(A)U = 800 Hz . (1)
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In the other two observations, twin HF QPOs has been detected at characteristic frequencies

f(B)L = 600 Hz , f(B)U = 900 Hz , (2)
f(C)L = 450 Hz , f(C)U = 750 Hz , (3)

where we use the index U for the upper and the index L for the lower of the twin frequen-
cies observed simultaneously. The first one of the twin peaks demonstrates precisely the
frequency ratio 3:2, while the second one has the frequency ratio 5:3.

We shall use the special character of the radial profiles of the frequencies of the harmonic
radial and vertical oscillations of axially symmetric string loops in order to explain the fre-
quency set observed in the source XTE J1701-462 containing a neutron star. We shall
assume that the exterior of the neutron star can be well described by the standard Kerr
spacetime. Such an assumption is correct for massive neutron stars having mass M > 2M�
(Urbanec et al., 2013).

3 DYNAMICS OF STRING LOOPS

Dynamics of an axisymmetric current-carrying string loop in a given axially symmetric
and stationary, Kerr, spacetime with metric gαβ has been studied in detail in (Jacobson
and Sotiriou, 2009; Kološ and Stuchlík, 2013). Harmonic or quasiharmonic oscillations of
string loops in the Kerr spacetimes have been studied in (Stuchlík and Kološ, 2014b). Here
we give a short overview.

The string loop motion is governed by barriers due to the tension and the angular
momentum that are modified by the gravitational field. Dynamics of the string loop is
determined by the action

S =
∫

d2σ
√
−h
(
µ+ habϕ,aϕ,b

)
, (4)

where ϕ,a = ja determines current of the string loop,µ > 0 reflects the string tension, and
hab represents the metric induced on the string worldsheet. The worldsheet stress-energy
tensor density Σ̃ab can be expressed in the form (Jacobson and Sotiriou, 2009; Kološ and
Stuchlík, 2013),

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (5)

The parameters J 2
= j2

τ + j2
σ and ω = − jτ /jσ describe the angular momentum of the

string loop (Kološ and Stuchlík, 2010; Stuchlík and Kološ, 2012b)
As demonstrated in (Larsen, 1993), the string loop motion can be described by the

Hamilton equations related to the 4-momentum Pµ with the Hamiltonian

H =
1
2

grr P2
r +

1
2

gθθ P2
θ +

1
2

gφφ
(
Σττ

)2
+

gφφ
(
E + gtφΣ

στ
)2

2
(
gt t gφφ − g2

tφ
) . (6)
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The Hamiltonian can be written as a sum of dynamic and potential parts

H = HD + HP =
1
2

grr P2
r +

1
2

gθθ P2
θ + HP(r, θ) . (7)

Using the conserved energy E = −pt and the angular momentum parameters J and ω (5),
the potential part of the Hamiltonian reads

HP =
1
2

gφφ

(
J 2

gφφ
+ 1

)2

+
1
2

gφφ
gt t gφφ − g2

tφ

(
E +

gtφ

gφφ

2J 2ω

ω2 + 1

)2

. (8)

The boundary of the string loop motion is given by the condition HP = 0 that implies
the energy boundary function Eb(r, θ) in the form (Kološ and Stuchlík, 2013; Stuchlík and
Kološ, 2014b),

E = Eb(r, θ) =
√

g2
tφ − gt t gφφ Σ̃ττ

− gtφΣ̃
στ . (9)

The energy boundary function Eb(r, θ) governs the dynamics of the string loops, serving
as an effective potential of their motion. The rescaling E/µ→ E and J/

√
µ→ J implies

that the energy boundary function in the standard Boyer–Lindquist r, θ coordinates (Carter,
1973) takes the form

Eb(r, θ; a, J, ω) =
4aωJ 2r(
ω2 + 1

)
G
+
√
∆

(
J 2 R2

G sin(θ)
+ sin(θ)

)
, (10)

where

G(r, θ; a) =
(

a2
+ r2

)
R2
+ 2a2r sin2(θ) . (11)

In the Kerr metric

R2
= r2
+ a2 cos2 θ , ∆ = r2

− 2Mr + a2 , (12)

where a denotes spin and M mass parameters of the Kerr spacetimes. Of course, for the
exterior of neutron stars we have to consider only the part of the Kerr spacetime limited by
the condition r ≥ Rsurface > r+.

In the following, we shall use for simplicity the dimensionless radial coordinate r→r/M ,
dimensionless time coordinate t→ t/M and dimensionless spin a→a/M ; this is equivalent
to using of M = 1 in the metric tensor. We will return to the dimensional quantities in the
Section 5.

Detailed discussion of the properties of the energy boundary function Eb(r, θ) is pre-
sented in (Kološ and Stuchlík, 2013) for both the Kerr black hole and naked singularity
spacetimes. Here we focus on the properties in the black hole spacetimes that can be
relevant for rotating neutron stars as demonstrated in (Urbanec et al., 2013; Török et al.,
2008) – in this case the local extrema of the energy boundary function can be located in the
equatorial plane only.
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Figure 1. String-loop oscillatory frequencies νr (thin curves) and νθ (thick curves), calculated for
the Kerr metrics with M = 2M�. Their radial profiles are illustrated for values of dimensionless spin
a = 0, 0.4 that are characteristic of our study of neutron star system. We demonstrate extension of
the frequency radial profiles for the complete range of the string loop parameter ω ∈ 〈−1, 1〉. The
vertical frequency curves are restricted to the region of existence (zero point) of the corresponding
radial frequency curves – the relevant region is greyed.

The local extrema of the energy boundary function Eb(r; a, J, ω), governing the equi-
librium positions of the string loops in the equatorial plane (θ = π/2), are determined by
the function J 2

E(r; a, ω) defined by (Kološ and Stuchlík, 2013; Stuchlík and Kološ, 2014b)

J 2
E(r; a, ω) =

(r − 1)
(
ω2
+ 1

)
H2

4aω
√
∆
(
a2 + 3r2

)
+
(
ω2 + 1

)
F
, (13)

where

H(r; a) = r3
+ a2(2+ r) , F(r; a) = (r − 3)r4

− 2a4
+ a2r

(
r2
− 3r + 6

)
. (14)

A detailed discussion of the properties of the energy boundary function Eb(r; a, J, ω)
and the string loop motion can be found in (Kološ and Stuchlík, 2013; Stuchlík and Kološ,
2014b). We have to concentrate on the situations when for a string loop with fixed values
of the angular momentum parameters J and ω a stable equilibrium position of the string
loop exists being given by the equation

J 2
= J 2

E(r; a, ω) . (15)

Around such stable equilibrium positions, small oscillations of string loops occur, if their
energy slightly exceeds the minimal value of the effective potential at the stable equilibrium
positions.
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4 RADIAL AND VERTICAL OSCILLATIONS OF CURRENT-CARRYING
STRING LOOPS AND THEIR FREQUENCIES

The analysis of the oscillatory motion of string loops around their stable equilibrium
positions, based on the perturbative treatment of the Hamiltonian, can be found in (Kološ
and Stuchlík, 2013; Stuchlík and Kološ, 2014b). The generally chaotic motion of the string
loops can be in the first approximation of the motion around the stable equilibrium position
considered as a regular motion – the corresponding part of the perturbative Hamiltonian
represents two uncoupled linear harmonic oscillatory modes for the motion in the radial
and vertical directions.

For string loop harmonic oscillations around a stable equilibrium position the variations
of the radial and latitudinal coordinates are governed by the equations

δ̈r + ω2
r δr = 0 , δ̈θ + ω2

θ δθ = 0 . (16)

The locally measured angular frequencies are given by (Stuchlík and Kološ, 2014b) and
read

ω2
r =

1
grr

∂2 HP

∂r2 , ω2
θ =

1
gθθ

∂2 HP

∂θ2 , (17)

where the partial derivatives of the potential part of the Hamiltonian are calculated at the
local minimum of the energy boundary function. The locally measured angular frequen-
cies are connected to the angular frequencies related to distant observers, Ω(r,θ), by the
gravitational redshift transformation (Stuchlík and Kološ, 2014b),

Ω(r,θ) =
d f(r,θ)

dt
=
ω(r,θ)

P t . (18)

If the angular frequencies Ω(r,θ), or frequencies ν(r,θ), of the string loop oscillation are
expressed in the physical units, their dimensionless form has to be extended by the factor
c3/G M . Then the frequencies of the string loop oscillations measured by the distant
observers are given by

ν(r,θ) =
1

2π
c3

G M
Ω(r,θ) . (19)

This is the same factor as the one occurring in the case of the orbital and epicyclic frequencies
of the geodesic motion in the Kerr spacetime (Aliev and Galtsov, 1981; Török and Stuchlík,
2005; Stuchlík and Schee, 2012). The order of magnitude and the mass-scaling of the
frequencies of the radial and vertical oscillations is the same for both the current-carrying
string loops and test particles, therefore the string loop oscillations could serve as an alternate
explanation of the HF QPOs observed in the strong gravity regions of black holes and neutron
stars.

The angular frequencies of the string loop oscillations related to distant observers take
the dimensionless form

Ω2
r (r; a, ω) =

JE(ex)

(
2aω
√
∆
(
a2
+ 3r2)

+
(
ω2
+ 1

)
F1

)
2r
(
a2(r + 2)+ r3

)2 F2
3

, (20)
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Ω2
θ (r; a, ω) =

√
∆
(

2aω
√
∆
(
2a2
− 3a2r − 3r3)

+
(
ω2
+ 1

)
F2

)
r2
(
a2(r + 2)+ r3

)
F3

, (21)

where

F1(r, a) = a2r3
− a2∆+ r5

− 2r4 , (22)
F2(r; a) = a4(3r − 2)+ 2a2(2r − 3)r2

+ r5 , (23)
F3(r; a, ω) = 2aω

(
a2
+ 3r2)

+
√
∆
(
ω2
+ 1

)(
r3
− a2) , (24)

JE(ex)(r; a, ω) =
(
ω2
+ 1

)
H(r − 1)

(
6a2r − 3a2r2

− 6a2
− 5r4

+ 12r3
)

+ 4aωH∆−1/2
[(

a2
+ 3r2)(∆− (r − 1)2

)
− 6∆r(r − 1)

]
−
(
ω2
+ 1

) [
F H + 2F

(
a2
+ 3r2)(r − 1)

]
+ 8aω

√
∆
(
a2
+ 3r2)2(r − 1) . (25)

The function JE(ex)(r; a, ω) governs the local extrema of the function JE(r; a, ω). Its
zero points determine the marginally stable equilibrium positions of the string loops. The
conditions

JE(ex) = 0 and J 2
E ≥ 0 , (26)

satisfied simultaneously, put the limit on validity of the formulae giving the angular fre-
quencies of the radial and vertical oscillations – for details see (Stuchlík and Kološ, 2014b).

The radial profiles of the frequencies of the radial and vertical string loop harmonic os-
cillations are demonstrated in Fig. 1 for two characteristic values of the Kerr spin parameter
a = 0, 0.4. In the Schwarzschild spacetime (a = 0), both the frequencies are independent
of the parameter ω. In the Kerr spacetimes, the range of the radial and vertical frequencies
depends on the string-loop parameter ω, and the spin parameter a of the spacetime. Exten-
sion of the range of allowed frequencies increases with increasing spin. For all values of the
spin and at each radius where the two oscillatory modes can occur, the vertical frequency
has its maximum (minimum) for string loops with ω = −1 (ω = +1), while the radial
frequency has its maximum (minimum) for string loops with ω = +1 (ω = −1); see Fig. 1.

5 STRING-LOOP OSCILLATIONS AS A MODEL OF HF QPOS IN THE
XTE J1701-462 SOURCE

The rotating neutron stars can be conveniently described by the Hartle–Thorne geometry.
Recently it has been demonstrated that agreement of the external Hartle–Thorne and Kerr
geometries is sufficiently high for neutron stars with the mass M > 2M�, the dimensionless
spin a < 0.5, and the relative quadrupole moment q/a2 < 2 (Urbanec et al., 2013). Here we
assume that the XTE J1701-462 neutron star is at a state enabling description of its exterior
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Table 1. Four possible combinations of HF QPOs observed in the XTE J1701-462 source.

f(A) f(B) f(C)

case 1 νr : νθ 1:1 3:2 5:3
case 2 νr : νθ 1:1 3:2 3:5
case 3 νr : νθ 1:1 2:3 5:3
case 4 νr : νθ 1:1 2:3 3:5

by the Kerr geometry – we shall see that the predictions of the string loop oscillation model
put high limits on the mass and dimensionless spin of the neutron star, in agreement with
this assumption.

The upper theoretical constraint on the neutron star mass based on realistic equations of
state of the subnuclear matter reads

M < MmaxNS = 2.8 M� , a < 0.5 (27)

(see e.g. Akmal and Pandharipande, 1997; Akmal et al., 1998; Chamel et al., 2013). The
upper theoretical limit on the neutron star spin reads amaxNS ∼0.7, (Lo and Lin, 2011).

For a given twin HF QPOs observed in a given source, we have to consider fixed values
of the string parameter ω and the spacetime parameters M and a. If several twin HF QPOs
are observed in the source, the spin and mass parameters have to be fixed, but the string loop
parameter ω can be varied, as different twin frequency observations could be generated by
different string loops that could be created and decayed successively with different parameter
ω reflecting locally different conditions in the source. Therefore, the string-loop oscillation
model naturally introduces a possibility of significant scatter in distribution of frequencies
of the twin HF QPOs. The range of the scatter increases with increasing spin of the Kerr
geometry.

Here we assume relevance of resonant phenomena, e.g. a parametric resonance (Landau
and Lifshitz, 1969), at all of the three HF QPO events observed in the XTE J1701-462 source.
We consider the rational frequency ratios νθ : νr = 3:2 or νθ : νr =5:3 for the twin HF
QPOs, and νθ : νr =1 : 1 for the single HF QPO, to be directly related to the observed values
of the QPO frequencies in the XTE J1701-462 source. We identify the frequencies νU, νL
with νθ , νr or νr, νθ frequencies. There are four possible combinations of this identification,
enabled by the properties of the string loop oscillation model. The resonant phenomena
between the radial and vertical oscillatory modes can occur at resonant radii r1:1, r3:2, r2:3,
r5:3, r3:5. The four possible cases of their combination are presented in Table 2.

The fitting of the string loop oscillation frequencies to the observed frequencies is pre-
sented in Fig. 2. for all the four cases of possible combinations of the resonant radii of the
string loop oscillations. At each of the three observed events, and each of the resonant radii,
the fitting is related to the upper of the observed frequencies (or the common frequency
at r1:1); the precision of the frequency measurement is also taken into account. The fitting
procedure determines for each of the observed events a region of the M−a parameter space,
determined by the limiting values of the string loop parameter ω ∈ 〈−1, 1〉. Due to the de-
generacy of the radial profiles of the string loop oscillation frequencies in the Schwarzschild
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Figure 2. Restrictions on the mass M and spin a parameters of the neutron star in the XTE J1701-462
source implied by the string loop oscillation model applied to the three observational events of HF
QPOs at the source. We assume that the three observational events occur at the resonant points of the
radial and vertical string loop oscillations. Four different cases of the combinations of the resonant
points related to the three observational events are possible – see Table 1. The upper branches are for
parameter ω = +1 and the lower branches for parameter ω = −1, allowed regions of the spacetime
parameters M, a are hatched. The most promising is the second case, where we consider the 1:1
resonance with frequency ν1:1 = 800 Hz combined with 3:5 and 3:2 resonances with frequencies
ν3:5 = 750 Hz and ν3:2 = 900 Hz.

spacetimes (a = 0), the fitting predicts only one value of the mass parameter M for the spin
a = 0 at each observational event. Extension of the allowed region related to the whole
interval of string loop parameterω ∈ 〈−1, 1〉 (the interval of allowed values of M) increases
with increasing spin a. The string loop oscillation model thus implies a “triangular” limit
on the spacetime parameters M, a for each of the observed events of HF QPOs, as shown
in Fig. 2. The limits have to be satisfied simultaneously, and we thus directly obtain the
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Table 2. Restriction on the parameters of the neutron star in the XTE J1701-462 source implied by
the string loop oscillation model of HF QPOs. Presented values correspond to the hatched regions
from Fig. 2.

case 1:

a = 0.48 a = 0.5 a = 0.7

M/M� 3.72 3.70 – 3.75 3.55 – 4.09

ω1:1 1 0.69 – 1 0.27 – 1
ω3:2 0.33 0.29 – 0.34 0.09 – 0.44
ω5:3 -1 -1 – -0.61 -1 – -0.08

case 2:

a = 0.22 a = 0.5 a = 0.7

M/M� 3.40 3.20 – 3.75 3.07 – 4.09

ω1:1 1 0.03 – 1 -0.08 – 1
ω3:2 0.01 -0.24 – 0.34 -0.31 – 0.44
ω3:5 -1 -1 – 0.19 -1 – 0.39

case 3:

a = 0.57 a = 0.5 a = 0.7

M/M� 3.64 @ 3.55 – 3.84

ω1:1 0.44 @ 0.27 – 0.49
ω2:3 1 @ 0.45 – 1
ω5:3 -1 @ -1 – -0.27

case 4:

a = 0.32 a = 0.5 a = 0.7

M/M� 3.32 3.20 – 3.54 3.07 – 3.84

ω1:1 0.26 0.03 – 0.40 -0.08 – 0.49
ω2:3 1 0.22 – 1 0.06 – 1
ω3:5 -1 -1 – -0.03 -1 – 0.22

region of allowed values of the spacetime parameters, if the theoretical restrictions on the
spin (a < 0.5 related to the Hartle–Thorne model of neutron stars) are also taken into
account. (We demonstrate in Fig. 2. also the limit related to the fully general-relativistic
restriction on the neutron star spin, a < 0.7). Along with the restrictions on the spacetime
parameters M and a, restrictions on the stringy parameter ω are obtained simultaneously.
The results representing the limits on the spacetime and string loop parameters M, ω are
presented in Table 2 for the characteristic limiting values of the spin parameter a. Of course,
the restrictions on the radii where the resonant oscillations occur have to be also taken into
the account, if we test the Hartle–Thorne models of the neutron star for concrete equations
of state.

Our results indicate that only the cases 2 and 4, with both the resonant radii related to
r3:5, are physically realistic, as the other two cases, where the radius r5:3 enters the play,
give unrealistic values of the neutron star spin. Using the results obtained in the case 2,
we can see that for the lowest value of the spin, a = 0.2, we obtain the unique value of
the neutron star mass, M = 3.4 M�. In the edge of the allowed range of spin (a = 0.5),
we can obtain the mass M = 3.2 M�. This is above the range of neutron star mass applied
by realistic equations of state, being on the theoretical limit given by general restrictions on
the neutron star mass as discussed in (Ruffini, 1973). Note that a similar situation, with one
single and two twin HF QPOs, occurs for the neutron star source XTE J1701-407, but in
this case the restrictions implied by the string loop oscillation model on the spin and mass
of the neutron star are in accord with realistic equations of state, as shown in (Stuchlík and
Kološ, 2014a). The resonant radii are depicted along with the radial profiles of the radial
and vertical frequencies in Fig. 3 for some characteristic allowed values of the spacetime
parameters M and a.
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Figure 3. Examples of the radial profiles of the string-loop oscillatory frequencies νr (thin curves)
and νθ (thick curves) as related to the three observational events are given for two representative
situations allowed by the combination of the resonant points in the case 2 and 4. The parameters of
the Kerr metric are mass M = 3.4 M� and spin a = 0.25 for the first row (case 2), M = 3.3 M�
and spin a = 0.35 for the second row (case 4). The related values of the parameter ω are depicted in
all the subfigures. Relevant resonant frequencies are also given.

6 CONCLUSIONS

We have demonstrated that the three HF QPOs observed in the XTE J1701-462 LMXB
source containing a neutron star can be formally explained by the string loop oscillating
model introduced in (Stuchlík and Kološ, 2014b) for the oscillations in the Kerr spacetime.
This model, reflecting oscillations of string loops governed by interplay of tension and
angular momentum, gives relevant restrictions on the spacetime parameters M, a and the
string loop parameter ω that must be varied for the three observational events. We cannot
fit the observed data assuming only one string loop having a fixed value of the parameter ω
reflecting locally different conditions in the source.

The string-loop oscillation model implies that the neutron star spacetime parameters are
restricted to the intervals 0.2 < a < 0.4 and 3.3 < M/M� < 3.6 predicting thus a very
massive and fast rotating neutron star. Since the neutron star has to be very massive, we
can conclude that the application for the Kerr geometry in the fitting procedure could be
justified, as for the near-maximum-mass neutron stars the exterior Hartle–Thorne geometry
has to be close to the exterior Kerr geometry, giving close predictions of the physical phe-
nomena occurring in their vicinity. However, the predicted mass is too high to be acceptable
for realistic equations of state. Therefore, our results indicate that if the string loop oscil-
lation model has to be relevant for the HF QPOs observed in the XTE J1701-462 source,
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an electrically charged string loop interacting with the neutron star magnetic field has to be
invoked in order to allow for mass acceptable due to the Hartle-Thorne model using realistic
equations of state (Tursunov et al., 2014; Stuchlík and Kološ, 2014a).
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ABSTRACT
We discuss methods for modelling eclipsing binary stars using the “physical”, “sim-
plified”, and “phenomenological” models. There are few realizations of the “physi-
cal” Wilson–Devinney (1971) code and its improvements, e.g. Binary Maker, Pho-
ebe. A parameter search using the Monte-Carlo method was realized by Zola et al.
(2010), which is efficient in expense of too many evaluations of the test function.
We compare existing algorithms of minimization of multi-parametric functions and
propose to use a “combined” algorithm, depending on if the Hessian matrix is pos-
itively determined. To study methods, a simply fast-computed function resembling
the “complete” test function for the physical model. Also we adopt a simplified
model of an eclipsing binary at a circular orbit assuming spherical components with
an uniform brightness distribution. This model resembles more advanced models in
a sense of correlated parameter estimates due to a similar topology of the test func-
tion. Such a model may be applied to detached Algol-type systems, where the tidal
distortion of components is negligible.

Keywords: variable stars – eclipsing binaries – algols – data analysis – time series
analysis – parameter determination

1 INTRODUCTION

Determination of the model parameters of various astrophysical objects, comparison with
observations and, if needed, further improvement of the model, is one of the main directions
of science, particularly, of the study of variable stars. And so we try to find the best method
for the determination of the parameters of eclipsing binary stars. For this purpose, we
have used observations of one eclipsing binary system, which was analysed by (Zola et al.,
2010). This star is AM Leonis, which was observed using 3 filters (B, V, R). For the
analysis, we used the computer code written by Professor Stanisław Zoła (Zola et al., 1997).
In the program, the Monte-Carlo method is implemented. As a result, the parameters were
determined and the corresponding light curves are presented in the paper (Andronov and
Tkachenko, 2013)

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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Figure 1. Scheme of eclipsing binary system with spherical components. Number 1 corresponds to
a larger star, which eclipses the smaller star at phases close to 0.

With an increasing number of evaluations, the points are being concentrated to smaller
and smaller regions. And, finally, the “cloud” should converge to a single point. Practically
this process is very slow. This is why we try to find more effective algorithms. At the
“potential – potential” diagram (Andronov and Tkachenko, 2013), we see that the best
solution corresponds to an “over-contact” system, which makes an addition link of equal
potentials Ω1 = Ω2 and corresponding decrease of the number of unknown parameters.

Such a method needs a lot of computation time. We had made fitting using a hundred
thousands sets of model parameters. The best 1500 (user defined) points are stored in the
file and one may plot the “parameter – parameter diagrams”. Of course, the number of pa-
rameters is large, so one may choose many pairs of parameters. However, some parameters
are suggested to be fixed, and thus a smaller number of parameters is to be determined.

Looking for the “parameter–parameter” diagrams, we see that there are strong correla-
tions between the parameters, e.g. the temperature in our computations is fixed for one
star. If not, the temperature difference is only slightly dependent on temperature, thus both
temperatures may not be determined accurately from modelling. So the best solution may
not be unique; it may fill some sub-space in the space of parameters.

This is a common problem: the parameter estimates are dependent. Our tests were made
on another function, which is similar in behaviour to a test function used for modelling of
eclipsing binaries.

To determine the statistically best sets of the parameters, there are some methods for
optimization of the test function which is dependent on these parameters (Cherepashchuk,
1993; Kallrath and Milone, 2009). As for the majority of binary stars the observations
are not sufficient to determine all parameters, for smoothing the light curves may be used
“phenomenological fits”. Often were used trigonometric polynomials (=“restricted Fourier
series”), following a pioneer work of (Pickering, 1881) and other authors, see (Parenago
and Kukarkin, 1936) for a detailed historical review. Andronov (2010, 2012) proposed a
method of phenomenological modelling of eclipsing variables (most effective for algols,
but also applicable for EB and EW – type stars).

Below we discuss the “simplified” and “phenomenological” models.
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Figure 2. A set of theoretical light curves for the “simplified” model generated for R1 in a range from
0.2 to 0.55 with a step of 0.05 for fixed values of other parameters listed in the text.

2 “SIMPLIFIED” MODEL

The simplest model is based on the following main assumptions: the stars are spherically
symmetric (this is physically reliable for detached stars with components being deeply in-
side their Roche lobes); the surface brightness distribution is uniform. This challenges the
limb darkening law, but is often used for teaching students because of simplicity of the
mathematical expressions, e.g. (Andronov, 1991). Similar simplified model of an eclipsing
binary star is also presented by Dan Bruton (http://www.physics.sfasu.edu/astro/
ebstar/ebstar.html). The scheme is shown in Fig. 1. The parameters are L1, L2 (pro-
portional to luminosities), radii R1, R2, distance R between the projections of centres to
the celestial sphere.

The square of the eclipsed segment is S = S1 + S2

S1 = R2
1(α1 − sinα1 cosα1) , (1)

S2 = R2
2(α2 − sinα2 cosα2) , (2)

where the angles a1, a2 may be determined from the cosine theorem:

cosα1 =
R2
+ R2

1 − R2
2

2R1 R
=

R2
+ η

2R1 R
, (3)

cosα2 =
R2
+ R2

2 − R2
1

2R1 R
=

R2
− η

2R2 R
, (4)

where obviously η = R2
1−R2

2 and |R1−R2| ≤ R ≤|R1+R2|. The total flux is L = L1+L2,
if R ≥ R1 + R2 (i.e. both stars are visible, S = 0). For R ≤ R1 + R2, S = πR2

2 (assuming
that R2 ≤ R1). Generally, L = L1 + L2 − L j S/πR2

j , where j is the number of star

http://www.physics.sfasu.edu/astro/ebstar/ebstar.html
http://www.physics.sfasu.edu/astro/ebstar/ebstar.html
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which is behind another, i.e. j = 1, if cos 2πφ ≤ 0, and j = 2, if cos 2πφ ≥ 0. Here
φ is phase (φ = 0) corresponds to a full eclipse, independently on which star has larger
brightness). For scaling purposes, a dimensionless variable l(φ) = L(φ)/(L1 + L2) is
usually introduced. For tests, we used a light curve generated for the following parameters:
R1 = 0.3, R2 = 0.2, L1 = 0.4, L2 = 0.6 and i = 80◦. The phases were computed with a
step of 0.02. This light curve as well as other generated for a set of values of R1 is shown
in Fig. 2. As a test function we have used:

F =
n∑

i=1

(
xi − αxc(φi )

)2
σ 2

i
, (5)

where xi (or li ) are values of the signal at phases φi with a corresponding accuracy estimate
σi , and xc are theoretical values computed for a given trial set of m parameters. For nor-
mally distributed errors and absence of systematic differences between the observations and
theoretical values, the parameter F is a random variable with χ2

n−m a statistical distribution
(Anderson, 1984; Cherepashchuk, 1993). For the analysis carried out in this work, we used
a simplified model with σi = 1. This assumption does not challenge the basic properties
of the test function. The scaling parameter is sometimes determined as x(0.75)/xc(0.75),
i.e. at a phase where both components are visible, and the flux (intensity) has its theo-
retical maximum (in the “no spots” model). To improve statistical accuracy, it may be
recommended to use a scaling parameter computed for all real observations:

α =

∑n
i=1

xi

σ 2
i∑n

i=1
xc(φi )

σ 2
i

, (6)

This corresponds to a least squares estimate of a scaling parameter, i.e. the model value
of the out–of–eclipse intensity L = L1 + L2 may be theoretically an any positive number,
and these parameters may be “independent”. By introducing l1 = L1/L and l2 = L2/L ,
we get an obvious relation l2 = 1 − l1, i.e. one parameter. For L sometimes are used
values at the observed light curve at the phase 0.75 (i.e. when both stars are to be visible
so maximal light). We prefer instead to use all the data with scaling as in Eq. (6). Even
in our simplified model, the number of parameters is still large (4). At Figure 4, the lines
of equal levels of F are shown. One may see that the zones of small values are elongated
and inclined showing a high correlation between estimates of 2 parameters. In fact this
correlation is present for other pairs of parameters. This means that there may be relatively
large regions in the multi-parameter space which produce theoretical light curves of nearly
equal coincidence with observations.

In the software by Zola et al. (2010), the Monte-Carlo method is used, and at each trial
computation of the light curve, the random parameters Ck, k = 1, 2, 3, 4 are used in a
corresponding range: Ck = Ck,min + (Ck,max − Ck,min) rand, where rand is an uniformly
distributed random value. Then one may plot “parameter – parameter” diagrams for “best”
points after a number of N trial computations. The “best” means sorting of sets of the pa-
rameters according to the values of the test function F . Initially, the points are distributed
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Figure 3. The “parameter–parameter” diagram. The best (according to the value of the test function)
100 points after 102, 103, 104, 105 trial computations, respectively.

Figure 4. Lines of equal values of the test function F for fixed values of other parameters. The arrow
shows position of the “true” parameters used to generate the signal.

uniformly. With an increasing N , “better” (with smaller F) point concentrate to a mini-
mum. There may be some local minima, if the number of parameters will be larger (e.g.
spot(s) present in the atmosphere(s) of component(s)). We had made computations for an
artificial function of m(= 1, 2, 3) variables (Andronov and Tkachenko, 2013). The mini-
mal value δ (as a true value was set to zero), which was obtained using N trial computations
in the Monte-Carlo method is statistically proportional to

δ ∝ N−2/m , (7)

i.e. the number of computations N ∝ δ−m/2 drastically increases with both an increasing
accuracy and number of parameters. For our simplified model, the numerical experiments
statistically support this relation. Also, the distance between the “successful computations”
(when the test function becomes smaller than all previous ones) ∆N ∝ N . Obviously, it
is not realistic to make computations of the test function for billions times to get a set
of statistically optimal parameters. In the “brute force” method, the test functions are
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computed using a grid in the m – dimensional space, so the interval of each parameter
is divided by ni points. The number of computations is N = n1n2 . . . nm should be still
large. Either the Monte Carlo method, or the “brute force” one allow to determine positions
of the possible local extrema in an addition to the global one. However, if the preliminary
position is determined, one should use faster methods to reach the minimum. Classically,
there may be used the method of the “steepest descent” (also called the “gradient descent”),
where the new set of parameters may be determined as

Ck+1,i = Ck,i − λhk,i , (8)

where Ck,i is the estimated value of the coefficient Ci at k-th iteration, hk,i – proposed
vector of direction for the coefficient Ci , and λ is a parameter. Typically one may use
one of the methods for one-dimensional minimization (Press et al., 2007; Korn and Korn,
1968), determine a next set of the parameters Ck,i , recompute a new vector hk,i and again
minimize λ. In the method of the steepest descent, one may use a hk,i = ∂F/∂Ci gradient
as a simplest approximation to this vector. Another approach (Newton–Raphson) is to
redefine a function F(λ) = F(Ci , i = 1 . . . m), compute the root of equation ∂F/∂λ = 0,
and then to use a parabolic approximation to this function. Thus

λ =
(
∂F/∂λ)/(∂2 F/∂λ2

)
. (9)

There may be some modifications of the method based on a decrease of λ, which may
be recommended, if the shape of the function significantly differs from a parabola. In the
method of “conjugated gradients”, the function is approximated by a second-order poly-
nomial. Finally it is usually recommended to use the (Marquardt, 1963) algorithm. We
tested this algorithm with a combination of the “steepest descent” (when the determinant
of the Hessian matrix is negative) and “conjugated gradients” (if positive), which both are
efficient for a complex behaviour of the test function.

3 PHENOMENOLOGICAL MODELLING

Besides physical modelling of binary stars, there are methods, which could be introduced
as “phenomenological” ones. In other words, we apply approximations with some phe-
nomenological parameters, which have no direct relation to physical parameters – masses,
luminosities, radii etc. The most often used are algebraic polynomial approximations, in-
cluded in the majority of computer programs (e.g. electronic tables like Microsoft Office
Excel, Libre/Open Office Calc, GNUmeric etc.). For periodic processes, one can use a
trigonometric polynomial (also called “restricted sum of Fourier series”)

xc(φ, s) = C1 +

s∑
j=1

(
C2 j cos(2 jπφ)+ C2 j+1 sin(2 jπφ)

)
= C1 +

s∑
j=1

R j cos
(
2 jπ(φ − φ j )

)
.

(10)
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Figure 5. Trigonometrical polynomial approximations of the phenomenological light curve. The
degree s is shown by numbers near corresponding curves.

Figure 6. The model light curve and its approximation by parabola at the intervals of phases centered
on mainima and maxima, as proposed by (Papageorgiou et al., 2014)

The upper Equation is used for determination (using the Least Squares method) of the
parameters Cα , α = 1 . . . m, where the number of parameters is m = 1 + 2s, where the
lower converts the pairs of the coefficients C2 j+1, C2 j+1 for each ( j − 1)-th harmonic
according to usual relations

C2 j = R j cos(2 jπφ0) ,

C2 j+1 = R j sin(2 jπφ0) , (11)
R j =

(
C2

2 j + C2
2 j+1

)1/2
,

φ j = atan(C2 j+1/C2 j )/2π + 0.25
(
1− sign(C2 j )

)
.

Here j = 1 . . . jmax, jmax = n/2 for even n and jmax = (n − 1)/2 for odd n. Using
the Least Squares algorithm, it is possible to determine parameters Cα even for irregularly
spaced data e.g. (Andronov, 1994). Only under strong conditions φk = φ0 + k/n, where
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k = 0 . . . n − 1, n is the number of observations, one may obtain simplified expressions
for the “Discrete Fourier Transform” (DFT) as an extension of the original Fourier (1822)
method:

C0 =
1
n

n−1∑
k=0

xk ,

C2 j =
2
n

n−1∑
k=0

xk cos(2 jπk/n) , (12)

C2 j+1 =
2
n

n−1∑
k=0

xk sin(2 jπk/n) .

If j = n/2, then

Cn =
1
n

n−1∑
k=0

(−1)k xk , (13)

Cn+1 = 0 .

For irregularly spaced data, there are at least 6 different modifications of the method, which
are called themselves as “Fourier Transform”, and give same correct results only under
assumptions listed above for the DFT. For irregularly spaced data The links may be found
in (Andronov, 2003).

Theoretically, the degree of the trigonometric polynomial s is infinite for continuous
case (number of data n →∞) and should be s = jmax = int(n/2), i.e. may be a large
number. For this case, one will get an interpolating function. For lower degree s < jmax,

the function is smoothing, and one may use different criteria for choosing the statistically
optimal value, e.g. the Fischer’s criterion (or equivalent one based on the Beta-type dis-
tribution), the criterion of minimum of r.m.s. error estimate of the smoothing function (at
the moments of observations; integrated over all interval; or at some specific value of the
argument), or the maximum of the “signal–to–noise” ratio.

However, these sums may show apparent waves (so called Gibbs phenomenon). It may
be illustrated in Fig. (5) for a sample function. One may see different approximations.
With an increasing s, the approximation xc(φ, s) becomes closer (in a sense of the Least
Squares), but the apparent waves are well pronounced at m �n.

To decrease the number of parameters, (Andronov, 2010, 2012) proposed an approx-
imation combined from a second-degree trigonometric polynomial and a local function
modelling the shape of the eclipses:

xc(φ) =C1 + C2 cos(2πφ)+ C3 sin(2πφ)+
+ C4 cos(4πφ)+ C5 sin(4πφ)+
+ C6 H(φ − φ0,C8, β1)+ C7 H(φ − φ0 + 0.5,C8, β2) .

(14)
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Figure 7. Dependencies of the light curves (intensity vs. phase) on the parameters C8 = D/2 (left)
and C9 = β1 (right). The relative shift in intensity between subsequent curves is 0.1. The thick line
shows a best fit curve

Figure 8. Dependencies of the light curves on the parameters C10 = β2 (left) and C11 = φ0 (right).

H(φ,C8, β) =

{
V (z) =

(
1− |z|β

)3/2 if |z| < 1 ,
0 if |z| ≥ 1 ,

(15)

where z = 2φ/D, φ = E − int(E + 0, 5) – phase, E = (t − T0)/P – (non-integer) cycle
number, t – time, T0 – initial epoch, P – period, D – full duration of minimum in units
of P .

Papageorgiou et al. (2014) made a statistical study of a sample of eclipsing binaries.
They have used an oversimplified approximations of the light curves, approximating the
my a parabolic fit over overlapping intervals [−0.2,+0.2], [0.1, 0.4], [0.3, 0.7], [0.6, 0.9],
[0.8, 1.2]. Obviously, the first and last interval correspond to the same observations. In
Figure 6 we show their fit to our sample light curve. One may see a relatively good approx-
imation of the out–of–eclipse part of the light curve, and a bad approximation of the zone of
minimum. A better coincidence of the fit near minima may be expected for EW-type stars,
whereas for EA-type stars our NAV algorithm produces significantly better approximation
for all phases.

To illustrate the dependence of the “best fit” light curves on the “non-linear” parameters
C8 . . . C11, we show corresponding approximations in Fig. 7 and Fig. 8. The thick line in
the middle of each figures corresponds to the curve for the sample parameters 1, −0.04,
0.01, −0.05, 0.01, −0.8, −0.6, 0.11, 2, 3.3, 0 for C1 . . . C11, respectively.
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One may see the significant variations of the shape of the curve and, for each real ob-
servations, the best fit solution is expected to be unique. As in previous cases, the solution
may be determined using different methods.

4 CONCLUSIONS

The “simplified” and “phenomenological” models are discussed. The behaviour of the test
functions resembles that of the test-function for the “physical” model based on the Wilson
and Devinney (1971) code and its improvements. Few algorithms for the statistically opti-
mal determination of the parameters have been tested on these test functions, and we prefer
to use a “combined” algorithm, where the best method for an estimate of the next set of the
parameters is chosen at each step, making the convergence of the numerical solution as fast
as possible.

The specified shapes – either for the “simplified” model, or the “phenomenological”
one – are much more effective for the EA-type stars with narrow minima, but also can be
applied to EB-type and EW-type stars with smooth variations.

We developed the software realizing various methods for study of variable stars. The
results of this study will be used in the frame of the projects “Ukrainian Virtual Observa-
tory” (UkrVO) (Vavilova et al., 2012) and “Inter-Longitude Astronomy” (Andronov et al.,
2010).
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ABSTRACT
Twin-peak quasiperiodic oscillations (QPOs) are observed in the X-ray power-density
spectra of several accreting low-mass neutron star (NS) binaries. In our work we con-
sider several QPO models and focus especially on the atoll source 4U 1636-53 with
its large set of QPO measurements. We find that the considered models require the
QPO excitation radii in 4U 1636-53 to be close to the inner-most stable circular orbit
of the accretion disc. We explore and summarize mass-angular-momentum relations
and limits on NS compactness implied by individual QPO models. We confront these
relations with NS parameters given by various NS equations of state (EoS). The appli-
cation of concrete EoS removes the degeneracy in the mass and angular momentum
determined from the QPO models when the spin frequency is known. Moreover, the
applied NS EoS are compatible only with some of the considered QPO models. In
our work we compare simplified calculations that assume Kerr background geometry
to the detailed calculations considering NS oblateness influence in Hartle–Thorne
spacetimes.

Keywords: X-rays: binaries – Accretion, accretion disks – Stars: neutron – Equation
of state

1 INTRODUCTION

Accreting neutron stars (NSs) are believed to be the compact component in more than 20 low
mass X-ray binaries (LMXBs). In these systems, the mass is transferred from the companion
by overflowing the Roche lobe and forming an accretion disk that surrounds the NS. The
disk contributes significantly to high X-ray luminosity of these objects while the most of
the radiation comes from its inner parts and disk-NS boundary layer. According to their
X-ray spectral and timing properties, the NS LMXBs were further classified into Z and atoll
sources, whose names were inspired by the shapes of tracks they trace in the color-color
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diagram (e.g. van der Klis, 2005). While the Z sources are generally more stable and brighter,
the atoll sources are weaker and shows significant changes in X-ray luminosity. Both classes
exhibit a variability over a large range of frequencies. Apart of irregular changes, their power
spectra contain also relatively coherent features known as quasiperiodic oscillations (QPOs).

So called low frequency QPOs have frequencies in the range of 1–100 Hz. In the case
of Z-sources they have been further classified into horizontal, flaring, and normal branch
oscillations (HBO, FBO and NBO, respectively) according to the position of the source
in the color-color diagram. Oscillations of similar properties to HBOs were observed also
in several atoll sources (see van der Klis, 2006 for a review). Much attention among theorists
is however attracted to the kilohertz QPOs (100–1000 Hz) because their high frequencies are
comparable to the orbital timescale in a vicinity of a NS. It is believed that this coincidence
represents a strong indication that the corresponding signal originates in the innermost
parts of the accretion disks or close to the surface of the NS itself. This believe was also
supported by means of Fourier-resolved spectroscopy (e.g. Gilfanov et al., 2000).

The kHz QPOs have similar properties in both Z and atoll sources. They are frequently
observed in pairs often called twin peak QPOs. Their ‘upper’ and ‘lower’ QPO frequencies
(νu and νl, respectively) exhibit a strong and remarkably stable positive correlation and
clustering around the rational ratios. These ratios are emphasized either due to the intrinsic
source clustering or weakness of the two QPOs outside the limited frequency range (sug-
gesting possible resonant energy exchange between two physical oscillators Abramowicz
et al., 2003a; Belloni et al., 2005, 2007; Török et al., 2008a,b,c; Barret and Boutelier, 2008;
Horák et al., 2009; Boutelier et al., 2010). The other properties of each oscillation (e.g. the
rms-amplitude and the quality factor) seem to depend mostly on its frequency, and the way
how they vary is different between the upper or lower oscillation. These differences often
help to identify the type of kHz QPO in cases when only one peak is present in power
spectra (Barret et al., 2005, 2006; Méndez, 2006; Török, 2009).

Many models have been proposed to explain the rich phenomenology of twin peak QPOs
(Alpar and Shaham, 1985; Lamb et al., 1985; Miller et al., 1998; Psaltis et al., 1999; Wagoner,
1999; Wagoner et al., 2001; Abramowicz and Kluźniak, 2001; Kluźniak and Abramowicz,
2001; Kato, 2001; Titarchuk and Wood, 2002; Abramowicz et al., 2003b,c; Rezzolla et al.,
2003; Kluźniak et al., 2004; Pétri, 2005; Zhang, 2005; Bursa, 2005; Török et al., 2007;
Kato, 2007, 2008; Stuchlík et al., 2008; Čadež et al., 2008; Kostić et al., 2009; Germanà
et al., 2009; Mukhopadhyay, 2009 and several others). While any acceptable model should
address both the excitation mechanism and subsequent modulation of the resulting X-ray
signal as well as their overall observational properties, most of the theoretical effort has
been so far devoted to the observed frequencies. Clearly, their correlations serve as a first
test of the model viability.

Comparison between the observed and expected frequencies can reveal the mass and
angular momentum of the NS. These can be confronted with models of rotating NS based
on a modern equation of state (EoS, e.g. Urbanec et al., 2010b). Here we extend the
work started by Török et al. (2010, 2012). We explore and summarize findings on mass-
angular-momentum relations and limits on NS compactness implied by several QPO models.
We confront these findings with NS parameters given by various EoS. Our paper briefly
sketch some results from the prepared publication of Török et al. (2015).
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2 TWIN PEAK QPO MODELS AND THEIR APPROXIMATION IN KERR
SPACETIMES

Within the framework of many QPO models, the observable frequencies can be expressed
directly in terms of epicyclic frequencies. Formulae for the Keplerian, radial and vertical
epicyclic frequency in Kerr spacetimes were first derived by Aliev and Galtsov (1981). In
a commonly used form (e.g. Török and Stuchlík, 2005) they read

ΩK =
F

j + x3/2 , νr = ΓΩK , νθ = ∆ΩK , (1)

where

Γ =

√
−3 j2 + 8 j

√
x + (−6+ x) x
x2 , ∆ =

√
1+

j
(
3 j − 4

√
x
)

x2 , (2)

x ≡ r/M , and the “relativistic factor” F reads F ≡ c3/(2πG M). We note that Kerr
geometry represents an applicable approximation of NS spacetimes when the compact
object mass is high (Török et al., 2010; Urbanec et al., 2013).

2.1 Twin peak QPO Models

Here we investigate a subset of models which have been previously considered in studies of
Török et al. (2011, 2012). Below we briefly outline the list of these models.

RP model. The relativistic precession model explains the kHz QPOs as a direct manifesta-
tion of modes of relativistic epicyclic motion of blobs at various radii r in the inner parts of
the accretion disc (Stella and Vietri, 1999). For the RP model, one can easily solve relations
defining the upper and lower QPO frequencies in terms of the orbital frequencies to arrive
at an explicit formula which relates the upper and lower QPO frequencies in units of Hertz
as (Török et al., 2010, 2012)

νL = νU

1−

[
1+

8 jνU

F − jνU
− 6

(
νU

F − jνU

)2/3

− 3 j2
(

νU

F − jνU

)4/3
]1/2

 . (3)

TD model. Concept similar to RP model where QPOs are generated by a tidal disruption
of large accreting inhomogenities (Germanà et al., 2009). The evaluation of the explicit
relation between the two observed QPO frequencies is possible in a way similar to the RP
model (Török et al., 2012),

νU = νL

1+

[
1+

8 jνL

F − jνL
− 6

(
νL

F − jνL

)2/3

− 3 j2
(

νL

F − jνL

)4/3
]1/2

 . (4)

WD model. Oscillation model that assumes non-axisymmetric modes (Kato, 2001). The
upper and lower QPO frequencies for the WD model can be expressed as

νU = 2 (1− Γ )ΩK , νL = (2− Γ )ΩK . (5)



272 G. Török et al.

RP1 and RP2 models. Models dealing with non-axisymmetric disc-oscillation modes
whose frequencies almost coincide with the frequencies predicted by the RP model (Bursa,
2005; Török et al., 2010). For the RP1 model they can be written as

νU = ΩK∆, νL = (1− Γ )ΩK , (6)

and for the RP2 model as

νU = (2−∆)ΩK , νL = (1− Γ )ΩK . (7)

3 MASS AND SPIN OF NS IN ATOLL SOURCE 4U 1636-53 (ESTIMATES
ASSUMING HIGH NS COMPACTNESS)

Observations of the peculiar Z-source Circinus X-1 display unusually low QPO frequencies.
On the contrary, the atoll source 4U 1636-53 displays the twin-peak QPOs at very high
frequencies (see the left panel of Fig. 1). In Török et al. (2011, 2012) we have assumed
high mass (Kerr) approximation of NS spacetimes and demonstrated that

• For each twin-peak QPO model and source, the model consideration results in a specific
relation between the NS mass M and angular-momentum j rather than in their single
preferred combination.
• The data of sources displaying high QPO frequencies (or low frequency ratios, e.g.
4U 1636-53) are much more useful for testing the orbital QPO models than the data of
sources displaying low QPO frequencies (or high frequency ratios, e.g. Circinus X-1).
• The considered QPO models require the QPO excitation radii in 4U 1636-53 to be close
to the inner-most stable circular orbit of the accretion disc (ISCO).
• The inferred mass of NS in 4U 1636-53 is rather high, above 1.8 M�, when geodesic
models are assumed.

For the atoll source 4U 1636-53 there is a good evidence on the NS spin frequency
based on the X-ray burst measurements. Depending on the (two- or one-) hot spot model
consideration, the NS spin frequency equals either 291 Hz or 582 Hz (Strohmayer and
Markwardt, 2002). Thus, one can in principle infer the angular momentum j and remove
the M- j degeneracies related to the individual twin-peak QPO models.

3.1 Twin Peak QPO Models vs. NS EoS

Following Török et al. (2012) we calculate χ2 maps resulting from fitting of the 4U 1636-53
data for various twin-peak QPO models. These maps are compared to the M- j relations
calculated from several NS EoS assuming that the spin frequency is either 290 Hz or
580 Hz (depending on the consideration of one or two hot-spot model for X-ray bursts).
In our calculations we follow the approach of Hartle (1967); Hartle and Thorne (1968);
Chandrasekhar and Miller (1974); Miller (1977); Urbanec et al. (2010a). We assume the
following set of EoS:

• SLy 4 (Říkovská Stone et al., 2003).
• APR (Akmal et al., 1998).
• AU-WFF1, UU-WFF2 and WS-WFF3 (Wiringa et al., 1988; Stergioulas and Friedman,
1995).
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Figure 1. After Török et al. (2012). Left: Frequencies of kHz QPOs in various NS sources. Right:
The χ2 map of RP model vs. mass-angular momentum relations predicted by NS EoS. The χ2 map
results from the fits of RP model to the kHz QPO data of 4U 1636-53. The green line indicates the
best χ2 for a fixed M while the dashed green line denotes its quadratic approximation. The white lines
indicate corresponding 1σ and 2σ confidence levels. The dashed-yellow line indicates a simplified
estimate on the upper limits on M and j assuming that the highest observed upper QPO frequency in
4U 1636-53 is associated to the ISCO. The NS EoS are assumed for the rotational frequency inferred
from the X-ray burst measurements. The blue spot roughly indicates the combination of mass and
spin resulting from the consideration of the spin frequency 290 Hz, several concrete equations of state
and given QPO model. The red spot indicates the same but for the spin frequency 580 Hz.

In the right panel of Fig. 1 we illustrate the potential of such approach in the case of the
relativistic precession QPO model while other models are considered in Fig. 2. Related
indicative estimates of NS parameters are summarized in Table 1.

4 CALCULATIONS IN HARTLE–THORNE SPACETIMES CONSIDERING NS
OBLATENESS

So far we have neglected influence of NS oblateness assuming that the star is very compact
having thus oblateness factor q̃ ≡q/j2 close to the Kerr limit, i.e. it has been assumed that
q̃ ∼ 1. In a more general case of q̃ > 1, one can assume NS spacetime approximated by
Hartle–Thorne geometry (Hartle, 1967; Hartle and Thorne, 1968).

Based on this approximation, the Keplerian orbital frequency can be expressed as
(Abramowicz et al., 2003a)

ΩK =
F

x3/2

[
1−

j
x3/2 + j2 F1(x)+ q F2(x)

]
, (8)

where

F1(x) =
[
48− 80x + 4x2

− 18x3
+ 40x4

+ 10x5
+ 15x6

− 15x7](
16(x − 2)x4)−1
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F2(x) =
5
(
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− 3x3
+ 3x4)

16(x − 2)x
− A(x) ,

A(x) =
15
(
x3
− 2

)
32

ln
(

x
x − 2

)
.
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Figure 2. The χ2 map of RP model vs. mass-angular momentum relations predicted by NS EoS.
The green line indicates the best χ2 for a fixed M while the dashed green line denotes its quadratic
approximation. The white lines indicate corresponding 1σ and 2σ confidence levels. The dashed-
yellow lines indicate simplified estimates on the upper limits on M and j assuming that the highest
observed upper QPO frequency in 4U 1636-53 is associated to the ISCO. The NS EoS are assumed for
the rotational frequency inferred from the X-ray burst measurements. The blue spot roughly indicates
the combination of mass and spin resulting from the consideration of the spin frequency 290 Hz,
several concrete equations of state and given QPO model. The red spot indicates the same but for the
spin frequency 580 Hz.

Radial and vertical epicyclic frequency are then described by the following terms

ν2
r =

F 2(x − 6)
x4

[
1+ j F1(x)− j2 F2(x)− q F3(x)

]
, (9)

ν2
θ =

F 2

x3

[
1− jG1(x)+ j2G2(x)+ qG3(x)

]
, (10)

where

F1(x) =
6(x + 2)

x3/2(x − 6)
,

F2(x) =
[
8x4(x − 2)(x − 6)

]−1[384− 720x − 112x2
− 76x3

−

− 138x4
− 130x5

+ 635x6
− 375x7

+ 60x8]
+ A(x) ,

F3(x) =
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x
x − 2

)
,

(11)
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Table 1. Neutron star parameters implied by consideration of twin peak QPO models in Kerr space-
times. The displayed values result from the confrontation of these models with outcomes of NS
modelling shown in Figs. 1 and 2.

Model,
frequencies M(290 Hz) j(290 Hz) M(580 Hz) j(580 Hz)

RP
νL = νK − νr, 1.9 M� 0.11 2.1 M� 0.21
νU = νK

TD
νL = νK, 2.3 M� 0.10 − −

νU = νK + νr

WD
νL = 2(νK − νr), − − − −

νU = 2νK − νr

RP1
νL = νK − νr, 1.8 M� 0.11 2.0 M� 0.21
νU = νθ

RP2
νL = νK − νr, 2.0 M� 0.11 2.2 M� 0.20
νU = 2νK − νθ

G1(x) =
6

x3/2 ,

G2(x) =
[
8x4(x − 2)

]−1[48− 224x + 28x2
+ 6x3

− 170x4
+ 295x5

−

− 165x6
+ 30x7]

− B(x),

G3(x) =
5
(
6+ 34x − 59x2

+ 33x3
− 6x4)

8x(x − 2)
+ B(x),

B(x) =
15(2x − 1)(x − 2)2

16
ln
(

x
x − 2

)
.

4.1 Results for RP Model (Hartle–Thorne Spacetimes)

Assuming the formulae above we calculated 3D-χ2 maps for the RP model. In the left panel
of Fig. 3 we show behaviour of the best χ2 as a function of M and j for several color-coded
values of q̃. For each value of q̃ there is a preferred M- j relation. We find that, although
such a relation has a global minimum, the gradient of χ2 is always much lower along the
relation than the gradient in the perpendicular direction. In other words, χ2 maps for a fixed
q̃ are of the same type as that calculated in Kerr spacetime. It follows then that there is
a global M- j-q̃ degeneracy in the sense discussed by Török et al. (2012).

As emphasized by Urbanec et al. (2010b), Török et al. (2010), Kluźniak and Rosińska
(2013), Török et al. (2014), and Rosińska et al. (2014), newtonian effects following from the
influence of quadrupole moment act on orbital frequencies in opposite way than relativistic
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Figure 3. Left: Behaviour of the best χ2 as a function of M and j for several values of q̃ . Dots denote
global minima for each value of q̃ (see however the main text – Section 4.1, for a comment on this).
Right: The 2D surface in the 3D M- j-q̃ space given by SLy4 EoS.

effects when the angular momentum is increased. The behaviour of the relations shown in
the left panel of Fig. 3 is determined by this interplay. Because of this, we can see that
high NS oblateness can compensate the increase of the estimated mass due to high angular
momentum.

5 CONSIDERATION OF CONCRETE EOS

The relations for RP model drawn in the left panel of Fig. 3 result from fitting of 4U 1636-53
datapoints considering the general Hartle–Thorne spacetime. The consideration does not
include strong restrictions following from NS modelling. It can be shown that a concrete
NS EoS covers only a 2D surface in the 3D M- j-q̃ space. Thus, when a given EoS is
assumed, only corresponding 2D surface is relevant for fitting of datapoints by a given QPO
model. Following Urbanec et al. (2013), we illustrate such a surface in the right panel of
Fig. 3 for SLy4 EoS. The color-coding of the plot is the same as that on the left panel of the
same Figure. The corresponding final M- j-χ2 map for the RP model is shown in the left
panel of Fig. 4. The right panel of this Figure then shows equivalent χ2 map drawn for the
NS mass and spin frequency.

6 CONCLUSIONS

Using Kerr spacetime approximation valid for NS with high compactness (high mass) we
find that fitting of twin peak QPO data results rather in mass-angular-momentum (M- j)
relations rather than preferred combinations of M and j specific for a given model and
source. We also demonstrate that the application of concrete EoS removes the degeneracy
in the mass and angular momentum determined from the QPO models when the spin
frequency is known. Moreover, the applied NS EoS seem to be compatible only with some
of the considered QPO models.
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Figure 4. Left: The final M- j-χ2 map for the RP model. Global minimum is denoted by red marker.
The dark colour area denotes 1σ confidence level, the light colour area denotes 2σ confidence level.
Right: The same map, but drawn for the NS spin frequency. The horizontal blue line denotes the
higher possible spin frequency measured from X-ray bursts (i.e. 580 Hz). The horizontal red line
denotes the lower possible spin frequency measured from X-ray bursts (i.e. 290 Hz).

Detailed consideration of rotating NS spacetimes including the influence of NS oblateness
reveal M- j relations similar to the case of Kerr approximation. Finally, inspecting the left
panel of Fig. 4, we can see that the concrete EoS, SLy4, considered for RP model then
implies a clear M- j relation. This relation exhibits a shallow minimum. The right panel
of the same Figure shows the equivalent relation between the NS mass and spin frequency
as well as its shallow minimum. Taking into account the favoured spin frequency inferred
from X-ray bursts, 580 Hz, we can see that the NS mass and angular momentum have to be
around

M ∼ 2.05 M� , j ∼ 0.2 . (12)

These values are in good agreement with those inferred from the simplified consideration
using Kerr spacetimes given in Table 1. Considering the shallow χ2 minima denoted in
Fig. 4, it can be interesting that its frequency value almost coincides with the measured spin
frequency of 580 Hz.

In the Figure 5 we show several relations between the mass and spin frequency obtained
for RP model and miscellaneous EoS. These relations are similar to the one discussed above.
However, we can see that in several cases given EoS does not provide any match for the
spin 580 Hz or even for the spin 290 Hz. This can rule out the considered QPO model and
EoS combination. The selection effect comes from the limits on maximal mass allowed
by individual EoS. Full discussion of these results will be presented in Török et al. (2015)
along with an analogical consideration of the other models examined here in Section 3 and
listed in Table 1.
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Figure 5. The mass-spin χ2 maps for the RP model and 12 different EoS. Global minima are denoted
by red marker. The dark colour areas denote 1σ confidence levels, the light colour areas denote
2σ confidence levels. The horizontal blue lines denote the higher possible spin frequency measured
from X-ray bursts (i.e. 580 Hz). The horizontal red lines denote the lower possible spin frequency
measured from X-ray bursts (i.e. 290 Hz).
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Kostić, U., Čadež, A., Calvani, M. and Gomboc, A. (2009), Tidal effects on small bodies by massive
black holes, Astronomy and Astrophysics, 496, pp. 307–315, arXiv: 0901.3447.

Lamb, F. K., Shibazaki, N., Alpar, M. A. and Shaham, J. (1985), Quasi-periodic oscillations in bright
galactic-bulge X-ray sources, Nature, 317, pp. 681–687.

Méndez, M. (2006), On the maximum amplitude and coherence of the kilohertz quasi-periodic
oscillations in low-mass X-ray binaries, Monthly Notices Roy. Astronom. Soc., 371, pp. 1925–1938,
arXiv: astro-ph/0607433.

Miller, J. C. (1977), Quasi-stationary gravitational collapse of slowly rotating bodies in general
relativity, Monthly Notices of the Royal Astronomical Society, 179, pp. 483–498.

Miller, M. C., Lamb, F. K. and Psaltis, D. (1998), Sonic-Point Model of Kilohertz Quasi-periodic
Brightness Oscillations in Low-Mass X-Ray Binaries, Astrophys. J., 508, pp. 791–830, arXiv:
astro-ph/9609157.

Mukhopadhyay, B. (2009), Higher-Order Nonlinearity in Accretion Disks: Quasi-Periodic Oscilla-
tions of Black Hole and Neutron Star Sources and Their Spin, Astrophys. J., 694, pp. 387–395,
arXiv: 0811.2033.

Pétri, J. (2005), An explanation for the kHz-QPO twin peaks separation in slow and fast rotators,
Astronomy and Astrophysics, 439, pp. L27–L30, arXiv: astro-ph/0507167.

Psaltis, D., Wijnands, R., Homan, J., Jonker, P. G., van der Klis, M., Miller, M. C., Lamb, F. K., Ku-
ulkers, E., van Paradijs, J. and Lewin, W. H. G. (1999), On the Magnetospheric Beat-Frequency and
Lense-Thirring Interpretations of the Horizontal-Branch Oscillation in the Z Sources, Astrophys.
J., 520, pp. 763–775, arXiv: astro-ph/9903105.

Rezzolla, L., Yoshida, S. and Zanotti, O. (2003), Oscillations of vertically integrated relativistic tori -
I. Axisymmetric modes in a Schwarzschild space-time, Monthly Notices Roy. Astronom. Soc., 344,
pp. 978–992, arXiv: astro-ph/0307488.
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ABSTRACT
We propose a new model of twin-peak quasi-periodic oscillations. This model con-
siders an oscillating torus with cusp that changes location of its centre around radii
very close to innermost stable circular orbit. Preliminary results of analytically and
computationally complex calculations indicate that the model can provide very good
fits of data and matches several neutron star equations of state.

Keywords: X-rays: binaries – Accretion, accretion disks – Stars: neutron – Equation
of state

1 INTRODUCTION

Many models have been proposed to explain a phenomenon of twin peak quasi-periodic
oscillations observed in neutron-star low-mass X-ray binaries (QPOs in LMXBs). It is
believed that QPOs are carrying signatures of strong gravity and dense matter composition.
Serious theoretical effort has been devoted to explain the observed frequencies and their
correlations. The brief introduction to twin peak QPOs and their models can be found in
paper of Török et al. (2014) in this Volume.

One of the first QPO models, the so called relativistic-precession model (RP model)
identifies the twin-peak kHz QPO frequencies νU and νL with two fundamental frequencies
of a nearly circular geodesic motion: the Keplerian orbital frequency and the periastron-
precession frequency,

νU = νK , νL = νper = νK − νr , (1)

where νr denotes the radial epicyclic frequency. The correlations among them is then
obtained by varying the radius of the underlying circular orbit in a reasonable range. Within
this framework it is usually assumed that the variable component of the observed X-ray signal
originates in a bright localized spot or blob orbiting the neutron star on a slightly eccentric
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orbit. The observed radiation is then periodically modulated due to the relativistic effects. It
has been shown that the model is roughly matching the observed νU(νL) correlations (Stella
and Vietri, 1999; Belloni et al., 2007; Török et al., 2012). Nevertheless the RP model also
suffers some theoretical difficulties. It is not clear whether the modulation of a radiation
from a small localized spot can produce sufficiently strong signal modulation to explain
a relatively large observed QPO amplitudes. It is then expected that larger spots (giving
higher amount of modulated photons) can undergo a serious shearing due to the differential
rotation in the surrounding accretion disk. This does not agree with a high coherence of
the QPO signal which is often observed. The model also lacks an explanation of inferred
existence of preferred orbits which should be responsible for appearance of QPO pairs and
clustering of their frequencies.

Only slightly later, Abramowicz and Kluźniak (2001); Kluźniak and Abramowicz (2001)
proposed concept of orbital resonance models. Within this concept, QPOs originate in
resonances between oscillation modes of the accreted fluid. The most quoted, so called 3:2
epicyclic resonance model identifies the resonant eigenfrequencies with frequencies νθ and
νr of radial and vertical epicyclic axisymmetric modes of disc (or torus) oscillations. It is
assumed that

νU = νθ , νL = νr ⇔ νU/νL = 3/2 , (2)

while the correlation νU(νL) arises from resonant corrections to the eigenfrequencies
(Abramowicz et al., 2005a,b). We stress that the model deals with a collective motion
of the accreted matter. Moreover, the oscillation modes of innermost region of the accretion
flow can modulate the amount of matter transferred to NS surface through the boundary
layer (Paczynski, 1987; Abramowicz et al., 2007; Horák, 2005). Therefore, it may naturally
explain both high amplitudes and coherence of the kHz QPOs. Nevertheless, it is question-
able whether the resonant corrections to the eigenfrequencies can be large enough to explain
the whole observed range of νU and νL. Furthermore, it was shown that the model implies
large range of NS masses and has difficulties when confronted to models of rotating NS
based on up-to-date equations of state (EoS, see Urbanec et al., 2010; Török et al., 2012).

Motivated by partial success of above models and their complementary difficulties, we
present a modified framework for interpreting twin peak QPOs. Our paper sketch results
from the prepared publication of Török et al. (2015).

2 OSCILLATING TORI

Our model is largely based on the theoretical work of Straub and Šrámková (2009). Through-
out this Section we adopt Kerr geometry as description of slowly rotating compact NS. We
assume that the innermost region of accretion flow is hot enough to form a pressure sup-
ported torus of a moderate thickness. Assuming a non-relativistic polytropic equation of
state and neglecting the poloidal components of the fluid velocity (so that the fluid follows
circular orbits), the equilibrium torus shape and its structure are completely determined
by the Lane–Emden function, which is given by a simple analytic formula (Straub and
Šrámková, 2009; Abramowicz et al., 2006)

f = 1−
1

nc2
s0

ln
E

E0
. (3)
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In this equation, E = (−gt t
+ 2`gtφ

− `2gφφ)−1/2 denotes the energy of a particle on a
(non-geodesic) circular orbit having the specific angular momentum `. We assume that
the angular momentum is constant in the whole volume of the torus, ` = `0 = const. As
we assume that the torus is located in the vicinity of the innermost stable circular orbit
(ISCO) where also Keplerian angular momentum is nearly constant, we believe that it is a
reasonable approximation. Meaning of other symbols in Eq. (3) is straightforward: n is the
polytropic index (n = 3 for a radiation pressure dominated fluid), gµν are the contravariant
component of Kerr metric (we employ the (−+++) signature) and cs0 is the sound speed
at the center of the torus located at radius r0 in the equatorial plane, where the pressure
gradient vanishes and where the energy E takes the value E0. Vanishing of the pressure
forces in the torus center implies that the streamline r = r0, θ = π/2 is a geodesic line and
therefore the fluid angular momentum takes the Keplerian value at that radius, `0 = `K(r0).

The surfaces of constant density and pressure coincide with those of constant f and their
values can be calculated from f by ρ = ρ0 f n and p = p0 f n+1, where ρ0 and p0 refer to
the values at the torus center that corresponds to f = 1. On the other hand, the surface of
the torus, where both pressure and density vanishes is given by the condition f = 0. It is
also worth to note that the position of the center r0 and a shape of these surfaces are entirely
given by the value of `0 and the spacetime geometry, while the particular values of p and ρ
and therefore also the location of the overall surface of the torus are set by the central value
of the sound speed cs0.

Straub and Šrámková (2009) introduce a dimensionless parameter β that characterizes a
size of the torus,

β =

√
2ncs0

r0E0
(
`0gφφ0 − gtφ

0
) . (4)

This parameter is roughly proportional to the Mach number of the flow at the torus center
as can be seen from its Newtonian limit β =

√
2n(cs/rΩ)0 (compare with Blaes, 1985). In

addition, it is also roughly proportional to the ratio of the radial (or vertical) extension of the
torus to its central radius r0. Hence, the sound-crossing time and the dynamical timescale
of the torus are roughly similar.

2.1 Marginally overflowing tori (cusp tori)

The stationary solution does not exist for an arbitrary large value of β (Abramowicz et al.,
1978). Apart of the obvious limit β ≤ 1, there is much stronger constrain coming from
general relativity. Large enough tori that extend below the ISCO radius, may be terminated
there by a “cusp”, where the rotation of the flow becomes Keplerian again. This is a
consequence of the fact that the Keplerian angular momentum close to a relativistic object
reaches its minimum at ISCO and raises up again bellow.

The cusp corresponds to a saddle point of the Lane–Emden function and the corre-
sponding self-crossing equipotential limits the surface of any stationary rotating fluid
configuration with given angular momentum `0. Fluid that appear outside this surface, is
accreted onto the central star on the dynamical timescale driven by gravity and pressure
forces without need of viscosity Paczynski (1977). Abramowicz et al. (1978) calculated
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analytically the accretion rate from a slightly overflowing torus, his result agrees very well
with numerical simulations.

The critical value of the β-parameter giving a marginally overflowing torus follows from
Eqs. (3) and (4),

βc(r0) =

√
2 ln (Ec/E0)

r0E0
(
`0gφφ0 − gtφ

0
) , (5)

where Ec = E(rc) is the particle energy at the cusp. Its location r = rc can be found
by equating the Keplerian angular momentum to the fluid angular momentum `0. This
procedure leads to the third-order algebraic equation (in

√
rc), giving the position of the

cusp in terms of the location of the torus center,

r3/2
c −

(
2r1/2

0 − j M1/2
) (

r1/2
0 − j M1/2

)
(

r3/2
0 − 2Mr1/2

0 + j M3/2
)

M1/2

(
rc − r1/2

0 r1/2
c

)
+

+ j
r0

(
r1/2

0 − j
)

r3/2
0 − 2Mr1/2

0 + j M3/2
= 0 , (6)

where r0 ≥ rISCO( j). If the stellar spin is neglected ( j = 0), this equation is reduced to the
quadratic one and its solution can be expressed as

rc = r0

(
M +
√
(2r0 − 3M)M

r0 − 2M

)2

, r0 ≥ 6M (7)

and the critical β-parameter reads

βc =
(r0 − rc)(r0 − 2M)2

[
r0rc − 2M(r0 + 2rc)

]1/2

rcr0(rc − 2M)1/2(r0 − 3M)1/2
. (8)

2.2 Frequencies of epicyclic oscillations

Abramowicz et al. (2006) pointed out the existence of the radial and vertical epicyclic
modes that describes a global motion of the torus. They have found that, in the limit of
infinitesimally slender tori β → 0, frequencies of this modes νR and νV measured in the
fluid reference frame coincide with the epicyclic frequencies of test particles,

νr =

(
1−

6M
r
+

8 j M3/2

r3/2 −
3 j2 M2

r2

)1/2

νK , (9)

νθ =

(
1−

4 j M3/2

r3/2 +
3 j2 M2

r2

)1/2

νK , (10)

while at fixed azimuth their frequencies are given by νR,m = νr+mνK and νV,m = νθ+mνK

with m being the integer azimuthal wave number. In particular, the m = −1 radial and
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Figure 1. Illustration of the equipotential surfaces of an accretion torus. The yellow colour denotes a
non-accreting equilibrium torus. The orange colour denotes the case of the cusp torus.

vertical modes give the frequencies of the periastron and nodal precession of a weakly
eccentric and tilted torus. It is also worth to note that they now describe a collective motion
of the fluid, rather then a motion of individual particles.

In a more realistic case, when β ≥ 0, the pressure gradients start to contribute to the
restoring force of the perturbed torus shifting their frequencies to new ‘corrected’ values,

νR,m(r0, β) = νr(r0)+ mνK(r0)+∆νR,m(r0, β) , (11)
νV,m(r0, β) = νθ (r0)+ mνK(r0)+∆νV,m(r0, β) . (12)

The pressure corrections ∆νR,m and ∆νR,m have been calculated by Straub and Šrámková
(2009) using perturbation expansion in β-parameter. They found that a first non-zero
corrections are of the order of β2.

3 FREQUENCY IDENTIFICATION

We identify the observed QPO frequencies with frequencies of the epicyclic modes of torus
oscillations. We propose that the upper kilohertz QPO frequency is the Keplerian orbital
frequency of the fluid at the center of the torus, where both pressure and density peaks and
from which the most of torus radiation emerges. The lower kilohertz QPO corresponds to
the frequency of the non-axisymmetric m = −1 radial epicyclic mode. Overall, there is

νU ≡ νK(r0) , νL ≡ νR,−1(r0, β) . (13)

The QPO frequencies are then strong functions of the position of the center of the torus
r0 and its thickness β. Obviously, a choice β = 0 (slender tori) recovers the RP model
frequencies completely, as the QPO frequencies would be now given entirely by the geodesic
frequencies. In addition, in the case of a finite thickness β > 0, they also weakly depend on
the value of the polytropic index n. In the following discussion, we fix n = 3 as the inner
parts of the accretion flow are believed to be radiation-pressure dominated.
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We assume the cusp configuration

β(r0)
.
= βc(r0) . (14)

In other words, we expect that for given r0 is the torus always close to its maximal possible
size, just filling its ‘Roche-like’ lobe.

Thus, our model predicts that QPO frequencies are function of single parameter, the
position of the center of the torus r0,

νu ≡ νK(r0) , νl ≡ νR,−1 [r0, βc(r0)] . (15)

Therefore, one obtains a unique correlation among them by changing this parameter in a
reasonable range. In the next section we compare this predicted correlation with the data
of the atoll source 4U 1636-53.

4 APPLICATION TO TWIN PEAK QPOS IN 4U 1636-53

Török et al. (2012, 2014) have confronted several QPO models to the data of atoll source
4U 1636-53. They have outlined a comparison between individual matches of the model
to the data as well as quantitative estimates of inferred NS parameters. We apply the same
fitting procedure to the discussed cusp torus model.

4.1 Non-rotating approximation

First, we investigate the case of a simple one parametric fit assuming non-rotating NS
approximated by Schwarzschild geometry. In this way we can obtain a comparison to the
RP model and a rough estimate of the NS mass implied by our cusp torus model.

In the left panel of Fig. 2 we plot the sequence of equipotential contours of cusp tori
which provides the best match of 4U 1636-53 data. In the right panel of the same Figure
we show this best fit. The RP model best fit is included for comparison. Clearly, the cusp
torus model matches the observed trend better than the RP one. In more detail, the related
χ2 improvement is about∆χ2

≈80 %. The NS mass inferred from the cusp torus model is
then

M0 = 1.69 [±0.01]M� , (16)

where the scatter in the estimated mass corresponds to the 2σ confidence level. Considering
results of Török et al. (2012, 2014), we can expect that the mass (16) belongs to a mass-
angular momentum relation implied by the model.

4.2 Consideration of NS rotation

The results of the two-dimensional fitting of the parameters M and j are shown in the
left panel of Fig. 3. The Figure illustrates χ2 behaviour in the form of color-coded map.
Remarkably, the best fits are reached when M and j are related through the specific relation
denoted by the green line.
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indicates the best fit by RP model for the same angular momentum, j = 0.22.
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Figure 4. Combinations of β and r exactly matching individual data points vs. cusp torus relation.

5 DISCUSSION AND CONCLUSIONS

There is good evidence on the NS spin frequency of 4U 1636–53 based on X-ray burst
measurements. Depending on the (two- or one-) hot-spot model consideration, the spin
νS reads either νS

.
= 290 Hz or νS

.
= 580 Hz (Strohmayer and Markwardt, 2002). The

value of 580 Hz is usually preferred. In the left panel of Fig. 3 we include several mass-
angular momentum relations expected from models of rotating NS (see Török et al., 2014
for details) assuming this spin. We can see that there are overlaps between these relations
and the relation inferred from the cusp torus model.

In the right panel of Fig. 3 we show the best fit of the model to the data for j = 0.22
corresponding to

M0 = 2.00 [±0.02]M� , (17)

where the scatter in the estimated mass corresponds to the 2σ confidence level. We choose
j = 0.22 as a referential value since it roughly corresponds to three different EoS. Further-
more, as discussed by Urbanec et al. (2013), the NS oblateness factor is decreasing along
the displayed EoS relation towards the low values close to the Kerr limit. Thus, the Kerr
approximation adopted here should be well applicable. In the same panel, the RP model
best fit drawn for j = 0.22 is included for a comparison. In analogy to the non-rotating
case, the cusp torus fit is better than a fit based on RP model. Having these results we
also attempted to fit the data by the discussed torus frequencies but considering any torus
thickness and fixed M = 2 M� and j = 0.22. We searched for the combinations of β
and r matching each individual data point. The result of this procedure is shown in Fig. 4.
Clearly, the obtained values are distributed very close to the cusp relation.

Overall, there is a strong indication that twin peak QPOs can be identified with a particular
non-axisymmetric m = −1 radial epicyclic mode and Keplerian orbital motion associated
to the cusp torus. These modes may naturally give strong modulation of both emerging
radiation and the accretion rate. They are therefore very good candidates for explaining
high amplitudes of QPO. In addition, their eigenfrequencies change only weakly on the
spatial scale of the turbulent motion, therefore it may be expected that they may survive
also in highly turbulent media typical for accretion flows.
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Finally, we note that the presented concept has also potential to explain the observed
low frequency QPOs. As noticed by Rosińska et al. (2014); Kluźniak and Rosińska (2013)
the frequencies of vertical epicyclic modes seem to be very sensitive to the NS quadrupole
moment. Their consideration thus rather exceeds the framework of Kerr spacetime ap-
proximation adopted here. Nevertheless, we roughly investigated also the frequencies of
non-axisymmetric m = −1 vertical epicyclic mode of cusp tori. Assuming the same mass,
angular momentum and radii as those in Figs. 3 and 4 we obtained values of tens of Hertz.
These are of the same order as the observed frequencies of low frequency QPOs. The
m = −1 vertical epicyclic mode may therefore play the same role in the framework of cusp
torus model as the Lense–Thirring precession in the framework of RP model.
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oscillations of fluid bodies: II. Strong gravity, Classical Quantum Gravity, 23, pp. 1689–1696,
arXiv: astro-ph/0511375.
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ABSTRACT
We consider a uniformly luminous radiating sphere and a static black hole located
in the center of that sphere. We give analytic formulas for radiation stress-energy
tensor components in such a configuration, for the observer located at an arbitrary
distance from the static black hole horizon.

Keywords: black hole – radiation in general relativity – stress-energy tensor

1 INTRODUCTION

In Abramowicz et al. (1990) an analytic formula for the stress-energy tensor of uniformly
radiating static relativistic star was found, for ZAMO (zero angular momentum observer)
at the arbitrary distance from the star surface. The result is very useful for investigations
of the test particle motion in a curved spacetime, under the radiation four-force influence
and several groups pursue this branch of research in recent years, see e.g. Bini and Geralico
(2010); Sok Oh et al. (2011); Stahl et al. (2012); Wielgus et al. (2012); Stahl et al. (2013).
Here we consider the extended problem, i.e. the observer may be located inside the uniformly
radiating luminous sphere of radius R. In that way we complete the solution of Abramowicz
et al. (1990), allowing for any ratio of the radiating sphere’s and observer’s radii in the
Schwarzschild spacetime (it is assumed that the radiating sphere does not contribute to
the spacetime curvature). But the problem is not only interesting for the reason of the
mathematical completeness of this solution. Such a solution is particularly well suited to
describe the interactions between black hole and the Cosmic Background Radiation, which
corresponds to the uniformly luminous sphere located at infinity. The extended solution is
also physically relevant when we consider the radiation from numerous, randomly spread
sources, that can be approximated by a homogeneous luminosity. That can be the case
of a black hole located in the center of a spherical galaxy, for instance, or the radiatively
efficient spherical accretion on the black hole.

978-80-7510-127-3 © 2014 – SU in Opava. All rights reserved.
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2 CASE OF THE LUMINOUS INNER SPHERE

Let us first review the solution for an observer located above the static luminous sphere in
Schwarzschild spacetime, given by Abramowicz et al. (1990). We follow a slightly different
approach, giving some more general formulas, in order to make a very smooth extension
to the case of r < R (observer located at radius r inside the luminous sphere of radius
R) in the next section. Assuming homogeneous, isotropic radiation flux in the emitter’s
rest frame we conclude that the luminosity observed by any static observer located at a
given radial location is constant over the observed sphere surface. Thus, the problem of
calculating the radiation stress-energy tensor components in the static ZAMO frame reduces
to the calculation of the constant specific intensity moments. Hence, radial dependence
of the following two quantities need to be established

(1) specific intensity I (r) (value to be integrated over the observer’s local sky),
(2) sphere viewing angle α0 (boundary for the specific intensity integration).

Specific intensity as seen by the observer located at radial distance r corresponds to the
surface intensity I (R) of the radiation source, gravitationally redshifted by the presence of
the central mass. The quantities that are conserved along the particular light ray travelling
through the curved spacetime are the photon energy

E = pαηα = 0 = const. , (1)

for the photon four-momentum pα and Killing vector ηα = δαt , and the redshifted intensity

I0 =
I (r)(

pαvα
)4 = const. , (2)

for the stationary observer’s four-velocity vα = ηα(|gt t |)
−1/2, see Misner et al. (1973)

section 4.22 for some more details. Hence, we find

I (r) = I (R)
(

1− 2M/R
1− 2M/r

)2

, (3)

so clearly I (r) < I (R) for r > R. Viewing angle α0 corresponds to the largest possible
value of angle α in the Fig. 1, which occurs for the largest possible emission angle δ0 for
which the photon can be observed. For R ≥ 3M δ0 = π/2, i.e. all emitted photons are able
to escape from the star vicinity. This is not true for 2M < R < 3M , where

sin2 δ0 = 27(1− 2M/R)/R2 . (4)

This result will be explained a little further. The relevant angles can be defined using the
photon four-velocity in the local orthonormal frame u(α), i.e.

tanα =

[
u(ϕ)

u(r)

]
OB

=

[
gϕϕ

(
uϕ
)2

grr
(
ur
)2
]1/2

OB

; tan δ =

[
u(ϕ)

u(r)

]
EM

=

[
gϕϕ

(
uϕ
)2

grr
(
ur
)2
]1/2

EM

, (5)
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Figure 1. Photon emitted from the star surface R with the emission angle δ.

lower subscripts OB and EM denoting the location of the photon emission and observation,
respectively. Using the normalization uαuα = 0 it is easy to show that the following
equation always holds

r2 sin2 γ

1− 2M/r
= −

uϕ
ut
= ` = const. , (6)

where tan γ = u(ϕ)/u(r), γOB = α and γEM = δ, from which we find that

sin2 α0 =

(
R
r

)2 ( 1− 2M/r
1− 2M/R

)
sin2 δ0 (7)

and since α0(r) must decrease with radius, the only solution is

α0(r) =



arcsin
[

R
r

(
1−2M/r
1−2M/R

)1/2
]

for 3M ≤ R ≤ r

arcsin
[

3
√

3M(1−2M/r)1/2
r

]
for R < 3M < r

π − arcsin
[

3
√

3M(1−2M/r)1/2
r

]
for R < r < 3M

(8)

Finally, having calculated the I (r) and α0(r) distributions, the stress-energy tensor ZAMO
components are found by the integration over the observer’s local sky

T (α)(β)(r) = I (r)
∫

n(α)n(β)dΩ ; n(α) = p(α)/p(t) (9)

to give

T (t)(t) = 2π I (r)(1− cosα0) , (10)
T (t)(r) = π I (r) sin2 α0 , (11)
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T (r)(r) =
2
3
π I (r)

(
1− cos3 α0

)
, (12)

T (θ)(θ) = T (ϕ)(ϕ) =
1
3
π I (r)

(
2− 3 cosα0 + cos3 α0

)
. (13)

All other components are simply equal to zero.

3 LUMINOUS OUTER SPHERE

The case of the observer located inside the luminous sphere is similar to certain extent,
since in the static spacetime photons may travel along the same null geodesic trajectory
in both directions. Hence, the relation (3) holds all the same, only difference being that
I (r) > I (R) for R > r , i.e. radiation is now blueshifted in the static observer’s frame.
Equation (3) also ensures that the observer’s local sky is uniformly bright with exception of
the part occluded by the black hole. Hence, the remaining part is to calculate the angular
diameter of the black hole as a function of radius. For the analogy with the previous case,
we denote this quantity with 2α0, see Fig. 2. Note that it follows from the Eq. (6) that
photons always cross the horizon r = 2 M with angle γ = 0, i.e. perpendicularly to the
horizon surface. Let us now investigate the relation (6) in more details. One may notice that
for a photon trajectory to extend from r0 � 2 M to the black hole horizon it is necessary
that we are able to define a meaningful photon radial four-velocity component for every
r0 > r > 2 M , i.e. if

ur ur > 0 H⇒ uϕuϕ + ut ut < 0 H⇒ `2
≤ −

gϕϕ
gt t
≤ 27 . (14)

The number 27 is a value of a global maximum of −gϕϕ/gt t that occurs for r = 3 M . This
means that only photons with ` < 3

√
3 fall into the black hole and putting the maximum

value of ` into Eq. (6), we find Eq. (4) (remember that the outgoing trajectory in the case of
inner luminous sphere corresponds to the ingoing trajectory in the outer luminous sphere
case). Considering that α0 must decrease monotonously with r , the only solution for α0(r)

δ

α

rR

EM

(φ)

u

EM

(r)

u

OB

(r)

u
OB

(φ)

u

2M

Figure 2. Photon emitted from the outer sphere surface R with the emission angle α.
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that satisfies Eq. (6) is

α0(r) =


arcsin

[
3
√

3M(1−2M/r)1/2
r

]
for r ≥ 3M ,

π − arcsin
[

3
√

3M(1−2M/r)1/2
r

]
for r < 3M ,

(15)

which is the same as the Eq. (8) in the case of inner radiating sphere radius R < 3 M . Note
that the formula for α(r) does not depend on luminous sphere radius R. Finally, after the
local sky integration, we find

T (t)(t) = 2π I (r)(1+ cosα0) , (16)
T (t)(r) = −π I (r) sin2 α0 , (17)

T (r)(r) =
2
3
π I (r)

(
1+ cos3 α0

)
, (18)

T (θ)(θ) = T (φ)(φ) =
1
3
π I (r)

(
2+ 3 cosα0 − cos3 α0

)
. (19)

This system is quite similar to the result of Abramowicz et al. (1990), yet the flux is of
a different sign, and the angle is substituted α0 → π − α0. It is interesting to observe, that
α0 → π as r → 2 M , so the area of integration (bright sky region) goes to zero as the
observer approaches the horizon. On the other hand, I (r) given by Eq. (3) diverges in such
a limit. So does the result of integration, the stress-energy tensor components, vanish in the
limit of the horizon, diverge or have some finite limit? The answer to this question and its
implications are discussed in details by Wielgus et al. (2014).

4 CONCLUSIONS

We presented the extension of the classic analytic calculation of a static luminous star
radiation stress-energy tensor to the case of a luminous sphere observed from the inside.
We found out that because of the symmetries involved, such a problem has a very similar
solution. Analysis of the Cosmic Background Radiation field properties close to the black
hole horizon is one example of application of the presented formulas.
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ABSTRACT
We report on numerical calculations of orbital and epicyclic frequencies in nearly
circular orbits around rotating neutron stars and strange quark stars. The FPS equa-
tion of state was used to describe the neutron star structure while the MIT bag model
was used to model the equation of state of strange quark stars. The uniformly rotat-
ing stellar configurations were computed in full general relativity. We find that the
vertical epicyclic frequency is very sensitive to the oblateness of the rotating star.
For models of rotating neutron stars of moderate mass, as well as for strange quark
star models, the sense of the nodal precession of test particle orbits close to the star
changes at a certain stellar rotation rate. These findings may have implications for
models of kHz QPOs.

Keywords: epicyclic frequencies – neutron star – strange star – quark star – general
relativity – numerical relativity – quasi-periodic oscillations

1 INTRODUCTION

The discovery of kHz Quasi-periodic oscillations (QPOs) is among the most important
scientific result of Rossi X-ray Timing Explorer (RXTE). To date, kHz QPOs have been
discovered in about 20 neutron star low-mass X-ray binaries (LMXBs), which typically
exhibit two high frequency peaks in the power spectra of the X-ray flux. The QPO phe-
nomenon promises to be a probe of the innermost regions of accretion disks around com-
pact objects such as white dwarfs, neutron stars and black holes, although the promise has
not yet been fully realized (see van der Klis, 2000, for a review). Most models of kHz
QPOs involve orbital and epicyclic frequencies (Kato and Fukue, 1980; Nowak and Wag-
oner, 1991, 1992; Perez et al., 1997; Stella et al., 1999; Wagoner, 1999; Abramowicz and
Kluźniak, 2001; Silbergleit et al., 2001; Kluźniak, 2005; Stuchlík et al., 2012, 2013).

In the case of Newtonian gravity of a spherically symmetric body the three basic fre-
quencies associated with nearly circular motion, i.e. the orbital (ΩK), radial epicyclic (ωr ),
and vertical epicyclic (ωz) frequencies are equal to each other. In the case of black holes,
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the radial epicyclic frequency is lower than the orbital one, both in the Schwarzschild and
the Kerr metrics. For prograde orbits of the Kerr black hole, the vertical epicyclic fre-
quency is lower than the orbital frequency, but higher than the radial epicyclic one, while
for retrograde orbits the vertical epicyclic is larger than the orbital frequency (Perez et al.,
1997).

However, in Newtonian gravity the degeneracy between the three frequencies can be
broken by rotation. It has been shown that for extremely oblate bodies in strictly Newtonian
gravity the radial epicyclic frequency may even go to zero at a certain distance from the
body (and be imaginary closer to it), so that no stable orbits will exist close to a very
rapidly rotating fluid configuration (Kluźniak et al., 2001; Zdunik and Gourgoulhon, 2001).
In particular, no stable circular orbits exist right outside Maclaurin spheroids of ellipticity
e >0.834583178 (Amsterdamski et al., 2002). Further, it has been shown that in Newton’s
gravity, the ordering of the frequencies around an oblate body such as a Maclaurin spheroid
is ωr <ΩK < ωz (Kluźniak and Rosińska, 2013). In summary, the Newtonian effects of
oblateness are the opposite of those of frame-dragging in Kerr geometry for prograde orbits:
the innermost stable circular orbit is pushed away from the gravitating body and the vertical
epicyclic frequency is increased.

For rotating bodies in general relativity (GR) there is a competition between frame-
dragging and effects of oblateness (Stergioulas et al., 1999). Effects of oblateness of the
gravitating rotating body have also been noted in GR in the context of the “relativistic
precession model” of neutron star kHz QPOs, which relies on the differences between the
orbital and epicyclic frequencies (Morsink and Stella, 1999). In the case of rapidly rotating
strange quark stars Gondek-Rosińska et al. (2014), computed the frequencies for two stellar
masses (M = 1.4 M� and M = 1.96 M�), and showed that the vertical epicyclic frequency
and the related nodal precession rate of inclined orbits are very sensitive to the oblateness of
the rotating star. In particular, for rotating stellar models of moderate and high-mass strange
quark stars, the sense of the nodal precession (given by the sign of ΩK − ωz) changes at
a certain rotation rate. We defer a discussion of the potential astrophysical implications of
this finding till Section 3.

We report on numerical calculations of orbital and epicyclic frequencies for rotating
strange quark stars and neutron stars for a wide range of masses and two rotation rates. We
have used the RNS code for our calculations (Stergioulas and Friedman, 1995). In this con-
tribution we are discussing the similarities between the behaviour of epicyclic frequencies
in strange stars and in neutron stars modelled with the FPS equation of state.

2 PROPERTIES OF CIRCULAR ORBITS IN THE METRIC OF ROTATING
NEUTRON STARS AND QUARK STARS

We have performed all of our numerical calculations of strange quark stars in the framework
of the MIT bag model (Farhi and Jaffe, 1984). In this model quark matter is composed of
massless up and down quarks, massive strange quarks and electrons. We use the simplest
MIT bag model with massless strange quarks, with the equation of state given by P =
a(ρ − ρ0)c2, where P is the pressure, ρ is mass-energy density, and c is the speed of light.
We take a = 1/3 and ρ0 = 4.2785× 1014 g/cm3.
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Figure 1. Squares of the orbital and epicyclic frequencies (scaled with 2πGρ) at r = 1.3 a versus
gravitational mass for uniformly rotating neutron stars (left panel), and strange quark stars (right
panel), rotating at a fixed frequency frot = 600 Hz. The solid (green) line corresponds to orbital
frequency, the dashed (red) line to vertical epicyclic frequency and the dotted (blue) line to radial
epicyclic frequency.

For computing neutron star models we have used a modern version of FPS equation of
state (see Cook et al., 1994, for a review) proposed by Friedman and Pandharipande (1981).

The orbital and epicyclic frequencies are exhibited for a wide range of masses of strange
stars and neutron stars, for two stellar rotation rates, 600 Hz and 900 Hz. In the former
case (Fig. 1) we present the frequencies squared for orbits at some distance from the star
(at r = 1.3 a), while in the latter (Fig. 2) the same quantities are displayed for orbits grazing
the stellar equator (r = a).

The effects of oblateness on the epicyclic frequencies in numerical solutions for a neu-
tron star rotating at 400 Hz has been clearly seen in the unusually small difference ΩK −

ωz > 0 between the orbital frequency and the vertical epicyclic one (Kluźniak et al., 2004).
It had been expected that frame-dragging effects dominate those of oblateness (Kluźniak,
1998; Morsink and Stella, 1999). However, we now show for the first time that the vertical
epicyclic frequency in prograde circular orbits around a neutron star may be even larger
than the orbital frequency (ωz − ΩK > 0). As this occurs for astrophysically interesting
masses, the effect could have important consequences for models of QPOs (see Section 3),
some of which have already been studied for quark stars (Gondek-Rosińska et al., 2014).

Figure 1 shows the scaled orbital and epicyclic frequencies versus gravitational mass
(in units of mass of the Sun) at r = 1.3 a for uniformly rotating neutron stars (left panel)
and strange quark stars (right panel) rotating at a fixed frequency frot = 600 Hz. While at
the astrophysically expected masses of M > M� the vertical epicyclic frequency is less
than the orbital one (ωz < ΩK) for the neutron star modelled with the FPS equation of
state (as expected for a metric close to the Kerr one), for lower masses the opposite relation
holds, ωz > ΩK, as a result of stellar oblateness. However, for higher masses effects of
strong gravity, such as frame dragging, dominate the qualitative behaviour of the frequency
curves. For the quark star model, the results are qualitatively similar, except that the change
in sign of ωz−ΩK takes place at a higher mass value (M ≈1.1 M� for the quark star versus
M ≈ 0.9 M� for the FPS neutron star).
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Figure 2. Squares of the orbital and epicyclic frequencies (scaled with 2πGρ) at the stellar equator
(r = a) versus gravitational mass for uniformly rotating neutron stars (left panel), and strange quark
stars (right panel), rotating at a fixed frequency frot = 900 Hz. The solid (green) line corresponds to
orbital frequency, the dashed (red) line to vertical epicyclic frequency and the dotted (blue) line to
radial epicyclic frequency.

Figure 2 shows the same effects for more rapidly rotating stars ( frot = 900 Hz). The
frequencies are presented for r = a, i.e. at the stellar equator. Interestingly, the effects of
oblateness on the epicyclic frequencies are now seen to qualitatively affect the ordering of
the frequencies at typical pulsar masses (ωz > ΩK for the FPS neutron stars with values
of M up to the canonical mass of 1.4 M�, while for quark stars this is true up to 1.7 M�).
In part this is because of the higher rotation rate for these models, i.e. their larger oblate-
ness, and in part because the orbits are closer to the star in Fig. 2 than in Fig. 1 – the higher
multipoles decay rapidly with the radial distance, so their effect is more pronounced near
the star.

3 DISCUSSION AND CONCLUSIONS

The purpose of this work is to study in GR the influence of oblateness on the orbital and
epicyclic frequencies for rapidly rotating neutron stars and to compare the results to analo-
gous results for strange quark stars (Gondek-Rosińska et al., 2014). Surprisingly, we have
found that effects of oblateness familiar from Newtonian studies (Kluźniak and Rosińska,
2013), such as decreasing of the radial epicyclic frequency with the stellar rotation rate
and the vertical epicyclic frequency exceeding the orbital one (ωz > ΩK), are present for
realistic models of rotating neutron stars in general relativity.

Epicyclic frequencies determine the properties of oscillation modes of thin accretion
disks (Kato and Fukue, 1980; Wagoner, 1999). One of the most promising modes that
may correspond to the observed QPOs, the c-mode, is described by a corrugation of the
disk precessing at a frequency close to ΩK − ωz , and it may be present only if ωz < ΩK
(Silbergleit et al., 2001). Our results indicate that for some neutron stars (at least for the
FPS equation of state) the latter condition may not hold throughout the inner accretion disk.
This could indicate the necessity of revisiting the QPO models. In another class of models
(e.g. Kluźniak, 2008), one of the kHz QPOs could correspond directly to motion with the
frequency ωz . One possibility that could now be taken into account is that the higher of the
twin kHz QPO frequencies may have a value larger then the orbital frequency (ωz > ΩK).
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Abramowicz, M. A. and Kluźniak, W. (2001), A precise determination of black hole spin in GRO
J1655-40, Astronomy and Astrophysics, 374, pp. L19–L20.
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ABSTRACT
We numerically investigate thermally unstable accretion discs around non-spinning
and fast-spinning black holes. We adopt an additional evolutionary viscosity equa-
tion, based on the results of recent MHD simulations, which replaces the standard
α-prescription. We find oscillations which arise from the sonic point and propagate
outwards. By directly integrating the cooling flux on each radius we obtain light-
curves, calculate their PSD, and find a series of harmonics with base frequency very
close to the predicted frequency of a p-mode in QPO theory.

Keywords: accretion, accretion disks – gravitation – relativistic processes – stars:
black holes – X-rays: bursts

1 INTRODUCTION

High-frequency quasi-periodic oscillations (HFQPOs) have been observed in some black
hole (BH) X-ray binaries. They appear only in the “steep power law” state at high lumi-
nosities (L > 0.1 LEdd) and are in range of 40 to 450 Hz. These frequencies are comparable
to the orbital frequency of the innermost stable circular orbit (ISCO) of a stellar-mass BH.
It is believed that the mechanism behind them are closely related to the dynamics of inner
regions of BH accretion disks (see Remillard and McClintock, 2006; Kato et al., 2008;
Belloni et al., 2012, for reviews).

In order to study oscillations of thermally unstable accretion disks, we solve their evolu-
tion using a non-stationary, 1+1 dimensional, general relativistic spectral code, and imple-
ment a new prescription for viscosity, motivated by recent MHD simulations. Our work is
similar to Chen and Taam (1995), who used the standard α-prescription, and a comparison
between our model and theirs will be given in Section 3.
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2 EVOLUTIONARY VISCOSITY

In our previous paper (Xue et al., 2011), we have described a code and relevant equations
for the axisymmetric relativistic accretion flows around spinning black holes. The viscos-
ity in that code is described by the standard α-prescription (Shakura and Sunyaev, 1973).
The viscous stress (only rφ-component is non-vanishing) can be written as (The asterisk
denotes the standard α-prescription)

S∗rφ = −
νΣ A3/2γ 3

2r3∆1/2
∂Ω

∂r
, (1)

ν =
2
3
αH

√
p
ρ
, (2)

where Σ , p, ρ and Ω are the mass surface density, total pressure, mass density and rotat-
ing angular velocity of accreted gas respectively, and γ , A and∆ are the relativistic factors
whose detailed definitions can be found in Xue et al. (2011). This famous prescription has
been used extensively since 1973. It is perfectly simple but may not closely accord with ac-
tual accretion flows. The MHD shearing box simulation of Hirose et al. (2009) implied that
there is certain time-delay between the viscous stress and total pressure. Penna et al. (2013),
relying on several relativistic MHD global simulations, pointed out that the parameter α is a
function of radius, and is not constant in the inner disk region. Therefore, following Hirose
et al. (2009) and Penna et al. (2013), we update the code by adopting an additional time-
dependent stress equation instead of the α-prescription. This time-dependent equation can
be written as

nτ̃
∂Srφ

∂t
= S∗rφ − Srφ , (3)

τ̃ = −

(
γ 2 AΩ

r4
∂ lnΩ
∂ ln r

)−1

, (4)

where τ̃ is the typical time-delay (in practice, we scale it up with the n factor in Eq. (3).
When n → 0, Eq. (3) implies Srφ = S∗rφ , which is equivalent to Eq. (1). It means that the
α-prescription is a trivial case of Eq. (3).

To mimic the radial dependence of the parameter α observed by Penna et al. (2013), we
apply the following α-profile:

α = α0

(
1− 2Mr−1

+ a2r−2

1− 3Mr−1 + 2aM1/2r−3/2

)6

, (5)

where M and a are the mass and spin of black hole, respectively. The radial factor, includ-
ing the exponent 6, was suggested by Penna et al. (2013). Under this profile, α is almost a
constant α0 in outer disc region with large r and increases to higher value radially inwards.
We set α0 = 0.1 and fix the mass supplying rate ṀS = 0.06 ṀEdd at the outer boundary
in this work. These settings are sufficient to make the disc thermally unstable since we
observe the limit-cycle outbursts from running code. The impact of viscous time-delay on
the thermal instability may be unremarkable since we always observe the similar outbursts
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on the models with different time-delay parameters n in the range 0 to 4. This confirms the
analysis of Lin et al. (2011) and Ciesielski et al. (2012) on this kind of delay. However,
we find that this time-delay may determine the appearance of the oscillation in the discs
(detailed paper in preparation).

3 RESULTS AND DISCUSSION

In Figure 1 we show the power spectral densities (PSDs) of oscillating light-curves for two
typical models (around non-spinning and fast-spinning ∼10 M� black holes). The funda-
mental frequency (the lowest frequency of harmonics) is ∼ 74.9 Hz for the non-spinning
model and ∼ 285.6 Hz for the fast-spinning model, which are both close to 71.3 Hz and
300 Hz predicted by the p-mode theory (see below).

The spectrum shows harmonics with frequencies in a regular integer series 1:2:3, . . . The
relative strength between harmonics for the fast-spinning model looks much more irregu-
lar than the non-spinning one. If there were some background noise in those spectrum of
Fig. 1, one might see the losing of some harmonics. For example, in the right panel of
Fig. 1, the peak C would be easier to be overwhelmed by noise than peak D. These inter-
esting features are potentially useful for explain the observational QPO pairs. However,
direct comparison would require more careful treatment. One should carefully consider the
gravitational redshift and ray-bending of the emitted photons. However, for convenience,
we only construct the lightcurves by directly integrating the radiation cooling flux at each
radius in this work. In order to roughly demonstrate the effects of gravitational red-shift or
other blocking effects on radiation emitted from the inner disk region, we show, in Fig. 2,
four PSDs made from the light-curves without the radiation contribution from a certain in-
ner cutting region. It is remarkable that the fundamental harmonic (inside the rectangle in
all four panels) can not be easily removed from PSDs because of the outward propagation
of the oscillation from ISCO. It implies that the measurement of black hole spin with QPO
will be very robust even in a case when modulation of the innermost disk is not visible.

Similar oscillations were observed by Chen and Taam (1995) who used the regular vis-
cosity prescription with Srφ ∝ αpgas. Perhaps this difference in the treatment of viscosity
leads to the different PSDs of our models and theirs. In our models multiple harmonics of
the base frequency are observed.

We argue that the oscillations observed in our models could be the trapped p-modes,
which are excited by the sonic-point instability in a transonic accretion flow across ISCO
(Kato, 1978; Kato et al., 2008). Kato (1978) and Kato et al. (2008) point out that the sonic-
point instability requires large α. The α-profile implemented in our code implies that the
effective α in the inner disk region is large enough to trigger the sonic-point instability.

We directly inspect the numerical light-curves and their PSDs obtained from our code.
We observe oscillations only in the limit-cycle outburst state (L & 0.2 LEdd) when the
inner disk region has switched to slim disk mode. On the contrary, there are no oscillations
observed in the limit-cycle quiet state (L ∼ 0.01 LEdd). This is consistent with the QPO
observations (Kato et al., 2008), but not with the sonic-point instability theory which does
not discriminate between accretion rates. Recently, the shearing box simulation of Hirose
et al. (2014) implied that the effective α is enhanced by the vertical convection during the
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Figure 1. PSDs of light-curves. The left panel is for the disk around a non-spinning black hole
(a∗ = 0, M = 10 M�, n = 1). The right panel is for the disk around a fast-spinning black hole
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outburst, which is similar to the conception of Milsom et al. (1994). Thus, large α required
by the HFQPO may be caused by the outburst, explaining why HFQPOs are observed only
in high luminosity state.
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ABSTRACT
Astrophysical black holes observed from Earth have a very small apparent size in
the sky. The largest of all is the supermassive black hole, Sagittarius A*, in the
centre of our Galaxy with an apparent diameter of 53µas (micro-arcseconds). We
construct a model of magnetized accretion torus surrounding the central black hole
in Sgr A* in two different geometries of the magnetic field. For the toroidal one
(“the Komissarov model”) we assume stationarity, axial symmetry, constant specific
angular momentum, polytropic equation of state and small optical depth. The last
assumption allows one to use the ray-tracing technique to calculate the transfer of
radiation. For the mass and spin of the Sgr A* black hole we adopt M = 4×106 M�
and a = 0.5.

Keywords: Galaxy: centre – Accretion, accretion discs – Black hole physics –
Relativistic processes

1 INTRODUCTION

Sagittarius A* was first observed in the radio band (Balick and Brown, 1974), but its
observed emission ranges from radio to X-ray energies. The most remarkable feature of
Sgr A* is its complex variability at all observable wavelengths. The luminosity fluctuations
increase with increasing wave energy, from a factor of a few at radio to a few orders of
magnitude in the X-ray band (see e.g. Genzel et al., 2010, for a review). The spectral peak
lies in the millimetre radio band and brings forth a peak luminosity of . 1036 erg·s−1.
The accretion structure around Sgr A* is thus extremely dim given its enormous mass.
Therefore, adequate disc models describe a radiatively inefficient emitter like an advection
dominated accretion flow (ADAF, Narayan and Yi 1995) or an ion torus (see Straub et al.,
2012, and references therein). The term advection means here that a large part of the
gravitationally liberated thermal energy is not converted into radiation but carried inward
with the ionised, hot accretion flow.
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In the millimetre radio range, i.e. at wavelengths corresponding to the spectral peak of
Sgr A*, the Event Horizon Telescope (EHT), operational in 2015–2020, and the orbital
telescope RadioAstron, launched in 2011, will be able to perform high resolution Very
Large Baseline Interferometry (VLBI) observations. Like this, images of the immediate
environment of the black hole will be obtained, in particular those of the accretion flow.

These new observational possibilities on Sgr A* have stimulated a lot of recent research,
reviewed, e.g. by Broderick et al. (2014). The hope is that a detailed knowledge of theoret-
ically predicted observational appearance of the structure of the accretion flow in Sgr A*
will provide powerful and reliable tools to test Einstein’s general relativity at its strong
field limit. While eventually sophisticated numerical models (Global General Relativistic
Radiation Magnetohydrodynamics – GGRRMHD etc.) of Sgr A* will be used to make
a meaningful comparison between theory and observations, in the foreseeable future simple
analytic models will be invaluable as a secure guide in the vast parameter space that needs
to be explored.

Following this idea, we have recently constructed an analytic optically thin Polish Dough-
nut model of Sgr A* (Straub et al., 2012). It assumed that the magnetic field in Sgr A* had
no global structure, but instead was chaotic, i.e. locally isotropic. In this paper we make the
next logical step by considering a model with a globally ordered (toroidal) magnetic field.
We use the Komissarov (2006) analytic model of a magnetized optically thin Polish Dough-
nut and follow all its assumptions. In the Komissarov model, all general relativistic effects,
and influence of the (toroidal) magnetic field are fully and exactly taken into account. They
are calculated from the first principles with no approximation. The presence of a magnetic
field is important in calculations of the synchrotron radiation emissivity, which is also done.
We consider here a torus-shaped, barotropic, and stationary disk with axisymmetry and
constant angular momentum around a Kerr black hole. The disk is fully ionized. These
assumptions reflect the basic physics of the real object.

We summarize the basic features of the magnetized torus model and its synchrotron
radiation in Sections 2 and 3, respectively. Section 4 presents conclusions and perspectives.

2 MAGNETIZED ACCRETION TORUS

2.1 Toroidal magnetic field (the Komissarov model)

We constructed a magnetized accretion torus at the Galactic centre using the model devel-
oped by Komissarov (2006), which describes analytically a polytropic accretion torus with
toroidal magnetic field in the Kerr spacetime. The magnetized accretion flow is described
by the conservation law that takes the form,

∇αT αβ = 0 , T αβ =
(
h + b2)uαuβ +

(
p +

b2

2

)
δαβ − bαbβ , (1)

where h = p + ρ is the enthalpy, with p and ρ being the pressure and energy density of
the fluid, and b is the magnitude of the magnetic field. The induction equation is

∇α

(
∗Fαβ

)
= 0 , ∗Fαβ = uαbβ − bαuβ (2)
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and the equation of continuity

∇α(nuα) = 0 . (3)

The fluid 4-velocity is assumed to be

u =
(
ut , 0, 0, uϕ

)
, (4)

using Boyer–Lindquist coordinates. We assume a constant specific angular momentum

`0 ≡−uϕ/ut . (5)

This quantity is expressed in terms of the dimensionless specific angular momentum

λ =
`0 − `ms

`mb − `ms
, 0 ≤ λ ≤ 1 , (6)

where `ms and `mb are the specific angular momentum at the marginally stable and bound
orbits respectively. These assumptions fully determine the 4-velocity.

The gas and magnetic pressures p and pm are assumed to follow the polytropic prescrip-
tion

p = κhk , pm = κmLk−1hk , (7)

where κ and κm are polytropic constants, k is the polytropic index (assumed identical for
gas and magnetic pressures), and L ≡ g2

tϕ − gt t gϕϕ where gµν is the Kerr metric.
The conservation of stress-energy leads to

Ws −W +
k

k− 1

(
κ + κmLk−1

)
hk−1

= 0 (8)

where the potential W = −ln|ut | is used. We assume that the torus fills its Roche lobe,
which fixes the central radius of the torus and its surface, thus the values of the potential at
the centre, Wc, and at the surface, Ws, of the torus. This immediately gives

h = hc

(
ω
κ + κmLk−1

c
κ + κmLk−1

)1/(k−1)

, (9)

where ω = (W −Ws)/(Wc −Ws) and Lc is the value of L at the centre of the torus.
The polytropic constants κ and κm can be expressed according to

κ = h1−k
c (Wc −Ws)

k− 1
k

βc

1+ βc
, κm =

L1−k
c
βc

κ , (10)

where βc is the central magnetic pressure ratio, βc ≡ pc/pm,c. The electron number density

ne =
h − κhk

µemu
(11)

is then known analytically.



314 W. Yan et al.

The magnetic field in Boyer–Lindquist frame is assumed to be toroidal: bα = (bt , 0, 0, bϕ).
Using the definition of the magnetic pressure, pm = bαbα/2, and assuming that bαuα = 0
(i.e. the magnetic field 4-vector is in the rest space of the comoving observer), it is easy
to get

bϕ =

√
2pm

gϕϕ + 2`0gtϕ + `
2
0gt t

, bt
= `0bϕ , (12)

which is fully known analytically.1 The magnitude of the magnetic 3-vector field B mea-
sured by an observer comoving with the fluid is then ||B|| =

√
bαbα . Let us consider one

synchrotron photon emitted at a given point of the torus. Let p be the 4-vector tangent
to the photon geodesic and l be its projection orthogonal to u. The angle ϑ between the
magnetic field B and the direction of emission is given by l · B = ||l|| ||B|| cosϑ , it is
known analytically as well.

We now note that such an accretion torus cannot be made of a perfect gas. If it were, then
pmu/(ρkB) = T/µe where T is the electron temperature and kB is the Boltzmann constant.
However, it is easy to see that p/ρ is independent of the central value of the enthalpy hc.
Thus the temperature would be independent of hc as well, and would be purely determined
by the geometry of spacetime, which does not make sense. We will still assume that there
exists a relation T = Cp/ρ where C is a constant, but does not take its perfect-gas value.
Rather, we choose Tc at the centre of the torus and define the constant C by Tc = Cpc/ρc.
Then

T = Tc

(
ρ

ρc

)k−1

(13)

depends on the choice of Tc, and no longer only on spacetime geometry.

2.2 Isotropic magnetic field

An accretion torus with isotropic (i.e. chaotic) magnetic field has already been studied
around Sgr A* by Straub et al. (2012). This model is simply the limit of the Komissarov
(2006) model with κm = 0. The section above thus directly applies to this simpler case. The
magnetic field strength is obtained by assuming that the magnetic pressure is everywhere
related to the gas pressure through

pm =
1
β

p (14)

thus, the β parameter is valid in the whole torus, not only at its centre. Then the magnetic
field strength is given by

B2
= 2pm . (15)

1 Note that bt is proportional to bϕ is a natural result of setting br
= 0.
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3 SYNCHROTRON RADIATION

Millimetre-wavelength emission coming from Sgr A* has been attributed to a region close
to the event horizon of the supermassive black hole and can be explained by thermal
synchrotron radiation (see, e.g. Genzel et al., 2010).

3.1 Toroidal magnetic field

Wardziński and Zdziarski (2000) show that for a mildly relativistic Maxwellian electron
distribution,

ne(γ ) =
ne

θe

γ
(
γ 2
− 1

)1/2
K2
(
1/θe

) exp
[
−
γ

θe

]
, (16)

where θe = kBT/(mec2), me being the electron mass, γ = (1 − v2/c2)−1/2 is the Lorenz
factor and K2 is a modified Bessel function, the emission coefficient is

jdir
ν =

πe2

2c
(νν0)

1/2X(γ0)ne(γ0)

(
1+ 2

cot2 ϑ
γ 2

0

)
×

×

[
1 −

(
1 − γ−2

0
)

cos2 ϑ
]1/4

Z(ϑ, γ0) , (17)

where ν0 ≡ eB/(2πmec) is the cyclotron frequency. The superscript dir means that this
emission coefficient depends on the angle between the magnetic field and the direction of
emission, no angle averaging has been performed. Then,

γ0 =



1+
(

2νθe

ν0

)(
1+

9νθe sin2 ϑ

2ν0

)− 1
3

1
2

θe . 0.08 ,

[
1+

(
4νθe

3ν0 sinϑ

) 2
3
] 1

2

θe & 0.08

(18)

is the Lorenz factor of those thermal electrons that contribute most to the emission at ν, and

X(γ ) =



[
2θe(γ

2
− 1)

γ (3γ 2 − 1)

]1/2

, θe . 0.08(
2θe

3γ

)1/2

, θe & 0.08

(19)

t ≡
(
γ 2
− 1

) 1
2 sinϑ , n ≡

ν
(

1+ t0
(
γ0
)2)

ν0γ
, Z(ϑ, γ ) =


t exp

[(
1+ t2)− 1

2
]

1+
(
1+ t2

) 1
2


2n

. (20)
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Synchrotron radiation becomes self-absorbed below a critical frequency νc where the
plasma becomes optically thick. The emitted spectrum below this frequency will follow
the Rayleigh–Jeans emission law. Following Narayan and Yi (1995) we determine the self-
absorption critical frequency by asking that at this frequency and at the current radius r , the
synchrotron emission over the volume of the sphere with radius r equates the Rayleigh–Jeans
emission from the surface of this sphere, i.e.

4
3
πr3 jdir

ν (νc) = πBν(νc) 4πr2 , (21)

where Bν = 2kBT ν2/c2 is the Rayleigh–Jeans emission law. The synchrotron emitted
spectrum is then smoothly connected with a Rayleigh–Jeans spectrum below νc.

3.2 Isotropic magnetic field

Wardziński and Zdziarski (2000) give the angle-averaged limit of the synchrotron emission

javg
ν =

21/6π3/2e2neν

35/6cK2(1/θe)v1/6 exp

[
−

(
9v
2

)1/3
]
, (22)

where v = ν/(ν0θ
2
e ). The superscript avg now refers to an emission coefficient after angle

averaging. There is a multiplicative correction factor a in this expression in Wardziński and
Zdziarski (2000), which is close to unity, and which we do not take into in this work as we
are not interested in very precise values of synchrotron fluxes. We note that the equation
above is only valid for a mildly relativistic plasma, θe .1. This condition is satisfied in our
model.

The self-absorbed synchrotron is treated in the same way as for the toroidal magnetic
field case.

Figure 1 illustrates the synchrotron images of a Komissarov torus at 1.3 mm and demon-
strates that for some values of spin and inclination, the size of the emitting zone satisfies
the VLBI constraints imposed by Doeleman et al. (2008).

4 CONCLUSION AND PERSPECTIVES

We have constructed a millimetre-wavelength synchrotron radiative model for Sgr A* based
on the fully general relativistic, analytical magnetized torus model of Komissarov (2006),
who assumes a purely toroidal magnetic field. Our work presented here is only theoretical. It
will be useful to construction of a multi-dimensional network of Komissarov’s models. For
each model of the network one calculates the theoretical silhouette (in different wavelengths)
and theoretical electromagnetic spectra of Sgr A*, as could be found in another paper of
the same authors (Vincent et al., 2014). This may be then compared with the observed
silhouette and spectra. The best fit may give an estimate the black hole spin, and other
parameters.
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Figure 1. Images (maps of specific intensity) at 1.3 mm of a torus satisfying the millimetre spectral
constraints for Sgr A* (see Vincent et al., 2014, for details). The dotted circle show the 1σ confidence
domain from Doeleman et al. (2008). The thin solid curve encompass the region containing 50 % of
the total flux. Here a and i are the black hole spin and inclination. The color bar is common to all
panels, and graduated in cgs units (erg · s−1 cm2 str−1 Hz−1).

We believe that the Komissarov model for Sgr A* as developed in this work may be of
interest for the future data analysis linked with the EHT project. In particular, this model
may be a suitable test bed for investigating the observational counterparts of compact objects
alternative to the Kerr black hole.

In order to further test the possibility to constrain the magnetic field geometry in the
vicinity of Sgr A*, future work will be dedicated to investigating the polarization predictions
of the Komissarov and chaotic models. Future work will also be dedicated to developing
a full analysis of the parameter space of the Komissarov model in order to provide a robust
fit to observed data.
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