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Abstract

We propose a simple gauged U(1)B−L extension of the minimal supersymmetric Standard

Model (MSSM), where R-parity is conserved as usual in the MSSM. The global B−L (baryon

minus lepton number) symmetry in the MSSM is gauged and three MSSM gauge-singlet

chiral multiplets with a unit B−L charge are introduced, ensuring the model free from gauge

and gravitational anomalies. We assign an odd R-parity for two of the new chiral multiplets

The scalar component of the R-parity even superfield plays the role of a Higgs field to

beak the U(1)BL symmetry through its negative mass squared which is radiatively generated

by the renormalization group running of soft supersymmetry (SUSY) breaking parameters.

Because of our novel R-parity assignment, three light neutrinos are Dirac particles with one

massless state. Since R-parity is conserved, the lightest superpartner (LSP) neutralino is a

prime candidate of the cosmological dark matter. In particular, the B−L gauge boson (Z ′),

once discovered at the Large Hadron Collider, will be a novel probe of the Dirac nature of the

light neutrinos since its invisible decay processes include the final states with one massless

(left-handed) neutrino and two Dirac neutrinos, in sharp contrast with the conventional

B−L extension of the SM or MSSM, where the right-handed neutrinos are heavy Majorana

particles and decay to the SM leptons. We generalize a variation to the SUSY Left-Right

symmetric model based on the gauge group SU(3)c × SU(2)L × SU(2)R × U(1)BL. The

charge conjugate SU(2)L singlets are put into SU(2)R doublets, mirroring the former. We

only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. We

calculate renormalization group evolutions of soft SUSY parameters at the one-loop level

down to low energy. We find that an SU(2)R slepton doublet acquires a negative mass

squared at low energies, so that the breaking of SU(2)R × U(1)BL → U(1)Y is realized by
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a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses

are produced through neutrino mixings with gauginos. Mass limits on the SU(2)R×U(1)BL

sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing

bounds from the LEP precision data.

iii



Dedication

In memory of David J. Miller

iv



List of Abbreviations and Symbols

SU(N) N -dimensional Special Unitary Group

U(N) N -dimensional Unitary Group

EW Electroweak

EWSB Electroweak Symmetry Breaking

c Speed of light

GN Gravitational Constant

αem Fine structure

h̄ Reduced Planck constant

QED Quantum Electrodynamics

QCD Quantum Chromodynamics

h.c. Hermitian conjugate

SM Standard Model

VEV Vacuum Expectation Value

CKM Cabibbo-Kobayashi-Maskawa Matrix

PMNS Pontercorvo-Maki-Nagawa-Sakata Matrix

Mpl Planck Mass

SUSY Supersymmetry

eV Electronvolts

GeV Giga-electronvolts

v



TeV Tera-electronvolts

/Rp R-parity breaking/violating

LSP Lightest Superpartner

LHC Large Hadron Collider

LR Left-Right

LRM Left-Right Model

RGE Renormalization Group Equation

GUT Grand Unified Theory

LEP Large Electron-Positron Collider

δij Kronecker delta

εij Levi-Civita Symbol

vi



Acknowledgements

I want to thank first and foremost my advisor Nobu Okada who taught me most of what I

know about physics, especially high energy physics. His mentoring helped shape and achieve

my goals and ambitions. I am very grateful to my committee members Kaustubh Agashe,

Paulo Araujo, Ben Harms, Conor Henderson, and Allen Stern, who have been with me since

I took my preliminary exam and challenged me every step of the way.

I would like to thank the Department of Physics at the University of Alabama for over

the years managing all the forms, emails, and information related to me obtaining this degree

as well as supporting me through travel funds and teaching assistantships.

vii



Contents

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

2 The Standard Model: A Review 3

2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 ElectroWeak Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Reasons for going Beyond the Standard Model (BSM) . . . . . . . . . . . . . 8

2.3.1 Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Gauge Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 EWSB Mechanism and Higgs Potential Stability . . . . . . . . . . . . 9

3 Baryon minus Lepton Number 10

4 Supersymmetry 13

4.1 Superfield Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.2 Soft Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . . 17

viii



4.2 The Minimal Supersymmetric Standard Model . . . . . . . . . . . . . . . . . 18

4.2.1 Extending the Standard Model with SUSY . . . . . . . . . . . . . . . 18

4.2.2 Soft SUSY Breaking in the MSSM . . . . . . . . . . . . . . . . . . . 20

4.2.3 EWSB in the MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.4 Radiative Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.5 Beyond the MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 SUSY B − L 27

6 R-parity Conserving Minimal Supersymmetric B-L Model 30

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Minimal SUSY B − L model with a conserved R-parity . . . . . . . . . . . . 33

6.3 Radiative B − L symmetry breaking . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Right-handed neutrino dark matter . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Implication of Dirac neutrinos to LHC physics . . . . . . . . . . . . . . . . . 42

7 Radiative Breaking of the Minimal Supersymmetric Left-Right Model 46

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Particle Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 RGE Analysis and Radiative LR symmetry breaking . . . . . . . . . . . . . 49

7.4 Mass bound on SU(2)R gaugino . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.5 SM fermion mass matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusions 57

8.1 R-parity Conserving Minimal Supersymmetric B-L Model . . . . . . . . . . . 57

8.2 Radiative Breaking of the Minimal Supersymmetric Left-Right Model . . . . 59

REFERENCES 61

ix



A APPENDIX A: Renormalization Group Equations 65

A.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1.1 Gauge couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1.2 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 The Minimal Supersymmetric Standard Model . . . . . . . . . . . . . . . . . 66

A.2.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2.2 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2.3 Soft SUSY couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 The B − L Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3.2 Yukawaw Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3.3 Soft SUSY Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.4 The Left-Right Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.4.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.4.2 Yukawaw Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.4.3 Soft SUSY couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B APPENDIX B: SUSY Algebra 75

B.1 Grassman Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



List of Tables

2.1 The number of gauge bosons for a SU(N) is N2−1. The W i
µ and Bµ will mix

after EWSB into the W±
µ , Zµ, and Aµ, the photon. The lower case g’s are the

couplings for each group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The particle content of the Standard Model. The generation index here is
assumed and will be further suppressed to make our notation a bit easier. . . 5

3.1 Particle charges under U(1)BL. Here we suppress the generation indicies for
the fields here. The Φ is the B − L Higgs. . . . . . . . . . . . . . . . . . . . 11

4.1 Particle content of the MSSM. Here, we suppress the generation indices on
the quark and lepton superfields. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 The R-parity assignments. We explicitly write the gauge index on the gauginos
to differ them from our three lambda R-parity violating couplings. . . . . . . 20

5.1 We list the supersymmetric version of Table 3.1. . . . . . . . . . . . . . . . . 27

5.2 Neutralino decays corresponding to Figure 5.1 . . . . . . . . . . . . . . . . . 29

6.1 Particle content of the minimal SUSY B−L model with a conserved R-parity.
In addition to the MSSM particles, three right-handed neutrino superfields (Φ
and N c

1,2) are introduced. We assign an even R-parity for Φ. i = 1, 2, 3 is the
generation index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Particle content of our SUSY LR model. . . . . . . . . . . . . . . . . . . . . 48

7.2 List of soft masses at µ = 1012 GeV (inputs) and at µ = 20 TeV (outputs).
Mg̃, ML, MR and MBL are gaugino masses corresponding to SU(3)c, SU(2)L,
SU(2)R and U(1)BL, respectively. . . . . . . . . . . . . . . . . . . . . . . . 51

xi



List of Figures

3.1 One-loop corrections like this must disappear for U(1) to be anomaly free.
This comes from the requirement that U(1) gauge bosons do not self-interact. 10

3.2 After the B − L Higgs, Φ, gets its VEV, we move to integrate out the heavy
neutrino mass, MNc . After we integrate out N c, the diagram on the left
becomes an effective 4-point interaction on the right. . . . . . . . . . . . . . 12

4.1 The plots above shows the gauge couplings versus the log µ. The left plot is
the SM while the right plot is the MSSM. . . . . . . . . . . . . . . . . . . . 24

4.2 The plot of m2
hu

and m2
hd

with energy. While m2
hd

remains positive while m2
hu

runs negative at low energies, the Bµ term causes former to becomes negative
at the EWBS scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Here we have three diagrams for the R-parity violating decay of the MSSM
neutralino LSP, the neutralino. We call Diagram 1 on the left and Diagram 2
in the middle and Diagram 3 on the right . . . . . . . . . . . . . . . . . . . . 28

6.1 The RG evolution of the soft SUSY breaking mass m2
φ from MU to low energies. 35

6.2 The relic abundance of the dark matter particle as a function of the dark
matter mass (mDM) for gBL = 0.250, mZ′ = 3.5 TeV and cos2 θ = 0.8. The
two horizontal lines denote the range of the observed dark matter relic density,
0.1183 ≤ ΩDMh

2 ≤ 0.1213 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 The differential cross section for pp→ e+e−X + µ+µ−X at the 14 TeV LHC
for mZ′ = 3.5 TeV and gBL = 0.250. The solid and dashed curves correspond
to the results for N(νR) = 2 and 0, respectively. The horizontal long-dashed
line represents the SM cross section, which is negligible compared with the Z ′

boson mediated process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 The RGE evolution of the soft mass squared for L̃c3, which becomes negative
at low energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



1 Introduction

We use quantum field theory to describe interactions between several different species of

fundamental particles. The Standard Model (SM) is the best description of this in that every

free parameter has been experimentally measured. Though there is physics that cannot be

explained solely with the SM. It suffers from a gauge hierarchy problem, no neutrino masses,

and no dark matter candidates to say the least. We introduce an additional global symmetry

between fermions and bosons to try and rectify these open problems. The Lie algebra of

the Lorentz group is called Poincaré algebra. If we further extend this algebra with two

Weyl spinors, it is a Super-Poincaré algebra1 called supersymmetry (SUSY). By doing this

we can extend the SM to the Minimal Supersymmetric Standard Model (MSSM). This adds

a scalar partner to every fermion and fermion partners for the Higgs and gauge fields. These

additional fields add new interactions that solve the gauge hierarchy and has a dark matter

candidate. The MSSM must be further extended to explain neutrino oscillation, lack of right-

handed neutrinos and absence of low energy superpartners. In this thesis, we introduce new

gauge groups to explain neutrino observations as well adhere to the experimental constraints.

In any high energy model the strength of the couplings that govern particle interactions

are on a sliding scale with respect to energy. The fine structure coupling, αEM ≈ 1/137,

becomes larger as the center of mass energy of the system increases through radiative correc-

tions. By analyzing every coupling of the MSSM, the soft mass squared for the up-type Higgs

becomes negative at low energies if ran backwards from very high energies. This generates

a non-gauge invariant vacuum and breaks the Electroweak gauge symmetry. If we introduce

new gauge groups, they must be broken at low energies.

1Also known as a Z2 graded algebra.
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In chapter 1 we briefly review the SM and Electroweak Symmetry Breaking (EWSB).

Following that we discuss a very common extension based on gauging baryon minus lepton

number (B − L), which is an anomaly free global symmetry in the SM. In Chapter 3 we

introduce the MSSM and the tools we will need for our work. We propose in Chapter 4

and 5 a minimal SUSY B − L extension to the MSSM. Chapter 5 and 6 are original works

where the former is under the review process and the later has been accepted into Physics

Letters B[2, 3]. In chapter 6 we study a minimal SUSY Left-Right (LR) model and perform

a radiative analysis on it. In both chapters 5 and 6 we show we can recover the SM after

radiative breaking of all the additional gauge symmetries.
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2 The Standard Model: A Review

2.1 Mathematical Formulation1

I shall take the Kenneth Wilson’s approach by setting the fixed point for our discussion

at the end of the 1960s. The current understanding of the nature of so called ”weak” in-

teractions was taking shape as the Glashow-Weinberg-Salam model. Today we call it the

Electroweak interaction and it’s built on the neutral and charged current interaction with

the charged fermions. This is a a result of a broken SU(2)× U(1) symmetry[4, 5], which is

broken by a scalar doublet (now known as the Higgs field)[6, 7, 8]. The understanding of

the strong nuclear force was formulated by many, but its current understanding was formed

somewhere by the end of the 1970s[9].

The Standard Model is based on the Yang-Mills theory of a non-Abelian gauge invari-

ant Lagrangian. Quantum Electrodynamics (QED) has shown remarkable success using an

Abelian gauge invariant Lagrangian to describe relativistic electromagnetic interactions[12].

The Standard Model (SM) is based on the Yang-Mills theory of a non-Abelian gauge in-

variant Lagrangian. The SM is composed of three gauge group; hypercharge (Y ), the weak

(only acts on left-handed particles), and the colored strong nuclear force. We write this as

GSM = U(1)Y ×SU(2)L×SU(3)c, respectively. The gauge bosons, which mediate the force,

are represented by the adjoint representation of their respective group. All fields are mass-

less prior to the Electroweak Symmetry Breaking (EWSB). The matter fields are composed

of three generations of fermions: six quarks, six leptons, and one scalar: the Higgs (H). The

six quarks are named up (u), down (d), strange (s), charm (c), bottom (b) and top (t).

For the leptons,the charged leptons are the electron (e), the muon (µ) the tau (τ) and three

1This is textbook material, I refer you to these texts[10, 11]
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SU(3)c Gluons: Gi
µ, i = 1, ..8 Gi

µν = ∂µG
i
ν − ∂νGi

µ − igc[Gj
µ, G

k
ν ]

SU(2)L W i
µ, i = 1, 2, 3 W i

µν = ∂µW
i
ν − ∂νW i

µ − igL[W j
µ,W

k
ν ]

U(1)Y Bµ Fµν = ∂µBν − ∂νBµ

Table 2.1.: The number of gauge bosons for a SU(N) is N2 − 1. The W i
µ and Bµ will mix

after EWSB into the W±
µ , Zµ, and Aµ, the photon. The lower case g’s are the couplings for

each group.

neutrinos (ν) associated with each charged lepton. In the SM there are left and right-handed

copies of each particle, except for neutrinos, as there are no right-handed neutrinos. The

matter interacting under SU(2)L is represented as a doublet in a chiral basis. In QED all

matter is written in the Dirac basis, but in the SM all matter is chiral (Weyl basis). The left

or right-handed chiral wavefunction can be extracted from the Dirac basis using projection

operators

PLψ =
1

2
(1− γ5)ψ = ψL and PRψ =

1

2
(1 + γ5)ψ = ψR .

The left-handed matter is written in their doublets as

QL =

 uL

dL

 ,

 cL

sL

 ,

 tL

bL

 (2.1)

L =

 νe

eL

 ,

 νµ

µL

 ,

 ντ

τL

 (2.2)

H =

 φ+

φ0

 (2.3)

In literature, the SU(2)L doublets will just be called QL i and Li where i runs from left to

right in equations (2.1) and (2.2). The entire particle context of particle models are expressed

as tables with their representations as seen for the SM in Table 2.2. The kinetic sector

of the Lagrangian can be now written down. In an effort to compactify our notation, we

4



SU(3)c SU(2)L U(1)Y

Q 3 2 1/6

uR 3̄ 1 2/3

dR 3̄ 1 -1/3

L 1 2 -1/2

eR 1 1 -1

H 1 2 +1/2

Table 2.2.: The particle content of the Standard Model. The generation index here is assumed
and will be further suppressed to make our notation a bit easier.

define the covariant derivative of a field as Dµ = ∂µ − igAiµλi where λi are the generators

for an SU(N) group, g is the gauge coupling and Aµ’s are the gauge bosons. For SU(3) the

generators are the Gell-Mann matrices, for SU(2) the generators are 1/2σa , and for U(1)

the generator is a charge. Here σa are the Pauli matrices. In the case of a U(1) group a

particle of charge q’s covariant derivative is written as Dµ = ∂µ − igqAµ. The gauge kinetic

terms in the Lagrangian are

(2.4)
L ⊃ QiγµDµQ+ uRiγ

µDµuR + dRiγ
µDµdR + LiγµDµL+ eRiγ

µDµeR

+ (DµH)†(DµH)− 1

2g2
c

Tr (GµνG
µν)− 1

2g2
L

Tr (WµνW
µν)− 1

4g2
Y

FµνF
µν .

The rest of the Lagrangian can be separated into the Yukawa interactions2 and the scalar

potential. The only scalar in the SM is the Higgs, so it may be called the Higgs potential.

In the weak sector the quarks experience a flavor mixing interaction, so for the potential we

shall explicitly write the flavor indicies for the Yukawa terms. The renormalizable potential

is

LY = −Y ij
u Qi aσ

abH†buRj − Y
ij
d Qi ·HdRj − Y ij

e Li ·HeRj (2.5)

VH =
λ

4

(
|H|2−v

2

2

)2

, (2.6)

2fermion-Higgs-fermion interactions
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where the three Y ’s are 3×3 matrices, v is the Higgs VEV, and λ is the Higgs quartic

coupling. Prior to Electroweak Symmetry Breaking (EWSB), all particles are massless. In

total there are 19 free parameters in the SM.

2.2 ElectroWeak Symmetry Breaking

In the Standard Model there is no dynamical source that creates a nonzero VEV for

the Higgs boson. Several simple extensions have been proposed, one famous is known as the

Coleman-Weinberg Mechanism which drives the Higgs quartic coupling negative through loop

corrections[13]. The Higgs mechanism results in the breaking of the unified Electroweak to

quantum electrodynamics (QED), SU(2)L × U(1)Y → U(1)em. The neutral component of

the Higgs doublet develops a nonzero VEV,

〈H〉 =
1√
2

 0

v + h0

 , (2.7)

where h is the physical neutral Higgs. The measured value of v = 246 GeV. There is a change

of basis associated with the EWSB. After breaking, there are two electrically charged gauge

bosons and two neutral gauge bosons. In terms of the EW gauge basis we define the new

EWSB gauge boson basis as

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.8)

and  Aµ

Zµ

 =

 cos θW sin θW

− sin θW cos θW


 Bµ

W 3
µ

 , (2.9)

where θW is the Weinberg angle defined by the EW couplings as

sin θW =
gY√
g2
L + g2

Y

. (2.10)

6



The W± and Z gauge bosons develop masses while the A is the photon in QED. Their masses

are defined in terms of the Higgs VEV and gauge couplings,

mZ =
v

2

√
g2
L + g2

Y ,

mW =
v

2
gL ,

mA = 0 . (2.11)

The charge relation for QED is Qem = 1
2
σ3 + 1

2
QY and the QED coupling by e = gL cos θW .

The fermions all get their masses from the Yukawa sector, except for neutrinos, which remain

massless. The down quarks and charged lepton mass matrices are all measured in the

diagonal basis, while the up quark mass matrix must be diagonalized. The matrix that

does this is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM . Each of the 3x3

matrices are expressed as

Mu =
1√
2
vYuV

†
CKM (2.12)

Md =
1√
2
vYd (2.13)

Me =
1√
2
vYe . (2.14)

This need for diagonalizing the up quark mass matrix comes from observed weak charged

current having flavor mixing interactions with the EW bosons. If this were not observed all

mass matrices would be diagonal.

7



2.3 Reasons for going Beyond the Standard Model (BSM)

With the Higgs boson detection at the Large Hadron Collider (LHC), all parameters of

the SM have been measured[14]. However, there are still many open problems in physics

that the SM does not answer.

2.3.1 Neutrino Oscillation

In weak interactions, the quarks will oscillate between flavors parameterized by the CKM

matrix. It was found that the neutrinos, which were thought to be massless (and thus

should not oscillate), they oscillate as they propagate. There are no right-handed neutrinos

included in the SM either, neutrino oscillation shows us that there must be right-handed

neutrino. Their mixings can be parameterized by the Pontecorvo-Maki-Nakagawa-Sakata

matrix (PMNS matrix) much akin to the CKM matrix, with different rotation angles. In

fact, the CKM matrix is close to unity while the PMNS has much larger rotations. Because

neutrinos are too light to measure their absolute mass, only the mass differences can be

measured, which are sub-eV.

2.3.2 Gauge Hierarchy

Calculating the one-loop corrections to all the parameters of the SM yield logarithmic

divergences (which is well behaved under renormalization) except, for the Higgs mass squared

which diverges quadratically. A high energy cutoff scale is taken to keep the Higgs mass

squared finite which is of the order 1018 GeV. This is the Planck scale, MPl, the highest

energy scale in the SM where MPl =
√
h̄c/8πGN = 2.4 × 1018 GeV/c2. We express the

physical mass, m2
H as a sum of the bare Higgs mass, µ2 in the Lagrangian plus all corrections,

δm2 as

m2
H = µ2 − δm2 . (2.15)
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The problem arises that mH = 125 GeV[15] and as previously stated δm2 ≈ (1018 GeV)
2

then µ2 ≈ (1018 GeV)
2
. This precise cancellation of two 1036 GeV2 terms to produce a 104

GeV2 term is known as the Gauge Hierarchy Problem.

2.3.3 Dark Matter

I we normalized the ratio of mass to luminosity of the Sun and compare this other observed

galaxies, we find there is a large portion of non luminous matter. Further observations of

curves of galaxies show there is massive amounts of mass that doesn’t interact under the

SM, but exerts a significant gravitational pull. The Planck experiment measures many

cosmological parameters that are evidence of the presence of dark matter [16]. Currently,

there is no viable dark matter candidate in the SM. The reader might read further in Ref.

[17].

2.3.4 EWSB Mechanism and Higgs Potential Stability

At present, the SM potential (2.5) has no internal mechanism for the Higgs to develop a

nonzero VEV. In addition, it is the only particle to have a mass term prior to the EWSB.

At large energies, through radiative corrections to the quartic coupling, there is a possibility

that the Higgs could develop a nonzero VEV[18]. If this is the case, the EW symmetry

would be meta-stable. The RGEs for the quartic coupling, λ and the rest of the SM are

found in the Appendix. Possible non-SUSY extensions using an additional U(1) gauge group

can keep the EW symmetry stable at larger energies [19].
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3 Baryon minus Lepton Number

Baryon and lepton number are accidental global symmetries of the SM. If we gauge the

B−L symmetry with a gauge coupling, gBL, the global number symmetries are automatic1.

In this section, we will briefly talk about the model independent aspects of including a

U(1)BL gauge group into the SM. One of the main motivations for introducing a B − L

symmetry is to include SM singlet right handed neutrinos, N c, to generate neutrino mass.

Three generations must be added to cancel out diagrams like Figure 3.1 to cancel out the

SM matter running in the loop and make this model gauge anomaly free. This symmetry

must be broken or there would be additional B − L bosons interacting with our fermions.

We include a B−L Higgs called Φ. The particle contents of the simplest extension are seen

in Table 3.1.

1A published review on this can be found at [20]

Fig. 3.1.: One-loop corrections like this must disappear for U(1) to be anomaly free. This
comes from the requirement that U(1) gauge bosons do not self-interact.
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U(1)BL

Q 1/3

U c −1/3

Dc −1/3

L −1

Ec 1

N c 1

H 0

Φ −2

Table 3.1.: Particle charges under U(1)BL. Here we suppress the generation indicies for the
fields here. The Φ is the B − L Higgs.

In the Lagrangian we can write the neutrino Yukawa interaction as well as the neutrino

B − L Higgs interaction,

− L ⊃ Y D
ij H · LiN c

j + Y M
i ΦN c

iN
c
i , (3.1)

where Y D
ν is the Dirac Yukawa coupling and Y M is the Majorana Yukawa coupling. The

B − L Higgs Φ develops a nonzero VEV of vBL creating a Majorana mass term for the N c

and the Z ′ gauge boson,

〈Φ〉 =
vBL√

2
(3.2)

mZ′ = 2gBLvBL (3.3)

MNc
i

=
√

2vBLYiN
c
iN

c
i . (3.4)

Prior to EWSB the Feynman diagrams for the effective coupling at B − L breaking are

seen in Figure 3.2. As the energy of our system decreases the N c does not propagate and the

interaction becomes an effective 4-point interaction. After EWSB and the SM Higgs develops

11



MNc

L

〈H〉

L

〈H〉

Y D Y D

L

〈H〉

L

〈H〉

(Y D)2

MNc

Fig. 3.2.: After the B − L Higgs, Φ, gets its VEV, we move to integrate out the heavy
neutrino mass, MNc . After we integrate out N c, the diagram on the left becomes an effective
4-point interaction on the right.

a nonzero VEV, this diagram just becomes a mass term for the left-handed neutrinos, νL, of

mν =
v2(Y D)2

2MNc

. (3.5)

This process is called the ”see-saw mechanism” because the large MNc mass in the denomi-

nator with a small Dirac mass in the numerator produces very small neutrino masses. This

was first proposed by Minkowski in reference [21].
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4 Supersymmetry

4.1 Superfield Formalism

4.1.1 Superfields

Here we will give a truncated review of N=1 Supersymmetry. More information can by

seen in a common text in ref [22]. Supersymmetry (SUSY) adds a spacetime symmetry

between bosons and fermions. An electron would have a bosonic superpartner known as a

selectron. In an exact supersymmetry they would have the same mass, but all superpartners

have been ruled out below the TeV energy scale. This means supersymmetry has to be

broken. SUSY breaking will be discussed later on.

We combine a scalar field φ(xµ) with its fermion superpartner, ψA(xµ) into a single chiral

superfield1, Φ, with chiral fermionic superspace coordinates θA and θ̄Ȧ and expand following

the rules in Appendix A to get

Φ
(
y, θ, θ̄

)
= φ(y) +

√
2θψ(y) + θθF (y), (4.1)

Φ†
(
y, θ, θ̄

)
= φ†(y) +

√
2θ̄ψ̄(y) + θ̄θ̄F †(y). (4.2)

The F-term is a product of a Taylor expansion with respect to the superspace coordinates.

It has no degrees of freedom and using the Euler-Lagrange equations it can be shown to

1The subscript A is the chiral index that sums from A = 1, 2. If no index is present, the implicit
contraction is taken.
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contain additional scalar interactions. There exist chiral superderivatives,

D̄Ȧ = − ∂

∂θȦ
+ 2iθBσµ

BȦ

∂

∂yµ
, (4.3)

DA =
∂

∂θA
− 2iσµ

AḂ
θḂ

∂

∂yµ
, (4.4)

that allow us to describe a irreducible chiral superfields that obey D̄ȦΦ = 0 = DAΦ† and

where yµ ≡ xµ − iθσµθ̄. A general Taylor expansion, with substituting xµ back in, on the

superfield’s component fields produce

Φ (y, θ) = φ(x)− iθσµθ̄∂µφ(x)− 1
4
θθθ̄θ̄∂µ∂µφ(x) (4.5)

+
√

2θψ(x) + i√
2
θθ∂µψ(x)σµθ̄ + θθF (x),

Φ†
(
ȳ, θ̄
)

= φ†(x) + iθσµθ̄∂µφ
†(x)− 1

4
θθθ̄θ̄∂µ∂µφ

†(x) (4.6)

+
√

2θ̄ψ̄(x)− i√
2
θ̄θ̄θσµ∂µψ̄(x) + θ̄θ̄F †(x).

We introduce a real superfield known as the ”vector superfield” that contains the gauge

superfields. This contains the gauge bosons, Aµ, the gauginos, λ, and the D-term, D which

shares the similar properties as the F-term. This vector superfield in terms of yµ is

V (y, θ, θ̄) = θσµθ̄Aµ(y) + θθθ̄λ̄(y) + θ̄θ̄θλ(y) (4.7)

+
1

2
θθθ̄θ̄

(
D(y) + i

∂

∂yµ
Aµ(y)

)
,

V (ȳ, θ, θ̄) = θσµθ̄Aµ(ȳ) + θθθ̄λ̄(ȳ) + θ̄θ̄θλ(ȳ) (4.8)

+
1

2
θθθ̄θ̄

(
D(ȳ)− i ∂

∂ȳµ
Aµ(ȳ)

)
.
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With this we define one final field, the chiral spinorial field-strength superfields that hold

the kinetic gauge terms using the chiral superderivatives,

WA = −1

4
D̄D̄DAV (y, θ, θ̄), (4.9)

W̄Ȧ = −1

4
DDD̄ȦV (ȳ, θ, θ̄). (4.10)

These fields follow the same chiral properties as the superfields such that DBW̄Ȧ = 0 =

D̄ḂWA. In this thesis we will omit the full expression for the chiral field strengths; their use

will be apparent in the Lagrangian.

We can now write down a gauge and SUSY invariant Lagrangian. We write the kinetic

terms for superfields, known as the Khaler potential. To include gauge interactions we insert

the vector superfield and Taylor expand (V n = 0 for n ≥ 3) to achieve the component

Lagrangian shown below,

L ⊃
∫
d4θΦ†e2igiQiViΦ (4.11)

= |F |2+(Dµφ)†(Dµφ) + iψ̄γµDµψ + giQiD|φ|2−
√

2giQi(ψ̄λ̄φ+ h.c.). (4.12)

The gi is the gauge coupling corresponding to a gauge group and Qi is the charge of the

superfield under this gauge group. It is summed over multiple gauge groups. For non-

Abelian gauge groups the charge is replaced to the generators. The new SUSY additions to

the kinetic terms are the F-term squared, D-term-scalar-scalar and gaugino-fermion-scalar

interaction. The kinetic gauge fields are written as

1

2

∫
d2θTr[WAWA] +

1

2

∫
d2θ̄Tr[WȦW

Ȧ] (4.13)

=
1

2
DaDa − 1

2
Tr[FµνF

µν ] + Tr[λ̄σ̄µDµλ],
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where we assume a non-Abelian form. For an Abelian group the covariant derivative, Dµ →

∂µ. Combining (4.14) and (4.12) we obtain a gauge invariant Lagrangian. Notice there are

no derivatives on the D-term, D. We can use Euler-Lagrange Equations to find

Da = −giφ†Qa
i φ. (4.14)

Now we describe the interaction between superfields in a holomorphic superpotential,

L =
∫
d4θΦ†e2igiQiViΦ +

(∫
d2θWAWA + h.c

)
+
(∫

d2θW(Φi) + h.c.
)
, (4.15)

W(Φi) = hiΦi + 1
2
mijΦiΦj + 1

3!
fijkΦiΦjΦk. (4.16)

If the F-term related couplings are computed from the superpotential and combined with

|F |2 from the Kahler potential in the Lagrangian we find

LF = FiF
†
i + Fi

∂W
∂Φi

∣∣∣
θ=θ̄=0

+ F †i
∂W†

∂Φ†i

∣∣∣
θ=θ̄=0

. (4.17)

From this we can use Euler-Lagrange Equations to find in general

Fi = −∂W
†

∂Φ†i

∣∣∣
θ=θ̄=0

. (4.18)

The fermion masses can be written down in terms of superpotential derivatives as

LY ukawa = −1

2

(
ψiψj

∂2W
∂Φi∂Φj

∣∣∣
θ=θ̄=0

+ h.c.

)
. (4.19)

The F-term and D-terms are purely made of scalar fields. They combine to become the

scalar potential,

V (φ, φ†) = |F |2+
1

2
DaDa. (4.20)
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The superscript on the D-term is the non-Abelian gauge index that sums over the generators

(a = 1, 2, 3 for SU(2) and a = 1, 2..8 for SU(3) etc). Because SUSY is still exact, the scalar

masses are described canonically as m2
ij =

∂2V (φi,φj)

∂φi∂φj
and one can notice that scalars and

fermions have the same mass.

4.1.2 Soft Supersymmetry Breaking

To have a phenomenologically viable SUSY model, the fermion and scalar fields in a

superfield must have some mass splitting. We introduce ”soft” SUSY breaking terms to

obtain mass splitting while remaining small in compared to the supersymmetric part of the

Lagrangian. The term ”soft” means that SUSY is explicitly broken by the terms, but still

free from quadratic divergences. The mechanism behind SUSY breaking is unknown to us

in detail, so we assume there is a hidden sector of nature that communicates to the visible

sector via a non-dynamical ”spurion” superfield, S = θ2FS, to generate the soft masses.

This an explicit breaking that obeys the correct mass dimensions and gauge invariance. The

scalars obtain a soft mass m2, the gauginos a Majorana mass, M and the bilinear scalar

term of B. We also introduce a trilinear scalar coupling, A that still obeys all the gauge

symmetries. The soft SUSY breaking terms in the Lagrangian are

LSOFT = −m2
ijφ
†
iφj −

1

2
(Mλaλa + h.c.)− 1

2
(Bijφ†iφj + h.c.) +

1

3!
(Aijkφiφjφk + h.c.) . (4.21)

The importance of SUSY breaking and its role in EWSB of the Minimal Supersymmetric

Standard Model (MSSM) will be discussed in the next section.
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Chiral Superfield SU(3)c SU(2)L U(1)Y

Q =

(
u

d

)
3 2 1/6

U c 3̄ 1 −2/3

Dc 3̄ 1 1/3

L =

(
ν

e

)
1 2 −1/2

Ec 1 1 1

Hu =

(
h+
u

h0
u

)
1 2 1/2

Hd =

(
h0
d

h−d

)
1 2 −1/2

Table 4.1.: Particle content of the MSSM. Here, we suppress the generation indices on the
quark and lepton superfields.

4.2 The Minimal Supersymmetric Standard Model

4.2.1 Extending the Standard Model with SUSY

The MSSM is broken into three parts: the kinetic gauge and matter (Kähler Potential)

terms, the superpotential, and the soft SUSY breaking terms. We promote all the matter

fields from the SM to chiral superfields with the addition of a second Higgs superfield to

maintain gauge invariance and holomorphy for the superpotential (recall the conjugate Higgs

in the Yukawa potential). The particle content is listed in Table 4.1 for the MSSM with gauge

groups U(1)Y ×SU(2)L×SU(3)C with couplings gY , gL, and g3 respectively. In addition, to

the usual particles of the SM all new matter superpartners will be noted with a tilde, using

Ec for example as

Ec = ẽc +
√

2θec + θθFEc .
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We denote the gauginos for U(1)Y × SU(2)L × SU(3)C as λY , λaL, and λa3 respectively. We

will not write out the complete kinetic sector, but rather state (4.12) and (4.14) are easily

extendable to the particle contents in Table 4.1.

The superpotential for the MSSM is

W = −Y u
ijQi ·HuU

c
j − Y d

ijHd ·QiD
c
j − Y e

ijHd · LiEc
j + µHd ·Hu, (4.22)

with the same Yukawa matrices from the SM and we introduce the Higgsino mass parameter

µ. We use the SU(2) spinor notation F · G = εABF
AGB. There are no quartic couplings

in the superpotential because the mass dimension of W is 3. The SM has an accidental

symmetry of baryon and lepton number conservation. In the MSSM we can write down

some baryon and lepton number violating terms that still respect the gauge symmetries. We

introduce a Z2 parity known as R-parity to forbid the following lepton and baryon number

violating terms. The R-Parity breaking, /Rp, superpotential is

W /Rp = −εiLi ·Hu +
1

2
λijkLi · LjEc

k + λ′ijkLi ·QjD
c
k +

1

2
λ′ijkU

c
iD

c
jD

c
k, (4.23)

where i, j, k are flavor indices. The coupling εi has mass dimension of one while the others

are dimensionless. The couplings εi, λijk, and λ′ijk violate lepton number while λ′ijk violate

baryon number. R-parity, R, for a field of baryon number B, lepton number L and spin S is

defined as

Rp = (−1)3(B−L)+2S. (4.24)

If R-parity remains exact, then the lightest superpartner (LSP) remains stable. This allows

for a cold dark matter candidate in the MSSM.
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(S)Particle Spin Rp

Quark q 1/2 +

Squark q̃ 0 −

Lepton l 1/2 +

Slepton l̃ 0 −

Higgs hu,d 0 +

Higgsino h̃u,d 1/2 −

Gauge boson Aaµ 1 +

Gaugino λa 1/2 −

Table 4.2.: The R-parity assignments. We explicitly write the gauge index on the gauginos
to differ them from our three lambda R-parity violating couplings.

4.2.2 Soft SUSY Breaking in the MSSM

The absence of the superpartners at the LHC[23] means that SUSY is broken at low

energies. We extend equation (4.21) for the MSSM and separating it into VSOFT for the

scalars and the gaugino mass terms

VSOFT =(m2
q̃)ij q̃

†
i q̃j + (m2

ũc)ijũ
c†
i ũ

c
j + (m2

d̃c
)ij d̃

c†
i d̃

c
j+ (4.25)

(m2
l̃
)ij l̃
†
i l̃j + (m2

ẽc)ij ẽ
c†
i ẽ

c
j +m2

u|hu|2+m2
d|hd|2+

(Auij q̃i · huũcj + Adijhd · q̃id̃cj + Aeijhd · l̃iẽcj + h.c.)+

(Bµhd · hu + h.c),

Lλ =
1

2
MY λY λY +

1

2
MLλ

a
Lλ

a
L +

1

2
Mcλ

a
cλ

a
c , (4.26)

where, in general, the soft masses for scalars need not be diagonal. The introduction of the

soft masses, specifically the Higgs soft masses, solves the hierarchy problem. The quadratic
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divergences for the Higgs by fermions runnning in a one-loop correction are canceled out by

the sfermion running in a loop. Another effect the Higgs soft masses produce is a mechanism

to generate EWSB which will be discussed later on. Now we move to discussing the details

of EWSB in the MSSM.

4.2.3 EWSB in the MSSM

The two neutral scalar components of both Higgs doublets acquire a nonzero VEV that

is related to the known SM VEV, v = 246 GeV, by

v2
u + v2

d = v2 = (246 GeV)2, (4.27)

where we can parameterize their ratio by

tan β =
vu
vd
. (4.28)

The nondiagonalized fermion mass matrices are then described as

(Mu)ij =
vu(Yu)ij√

2
, (Md)ij =

vd(Yd)ij√
2

, (Me)ij =
vd(Ye)ij√

2
. (4.29)

The relations for the EW gauge boson masses, m2
Z and m2

W , remain unchanged. The neutral

Higgs scalar potential is a combination of (4.20) and the Higgs soft masses is

V 0
H =

1

8
(g2
Y +g2

L)(|h0
d|2−|h0

u|2)2 + (m2
u+ |µ|2)|h0

u|2+(m2
d+ |µ|2)|h0

d|2−Bµ(h0
dh

0
u+h.c.), (4.30)

which has a minimum of

V min
H =

1

32
(g2
Y + g2

L)(v2
d − v2

u)
2 +

1

2
(m2

u + |µ|2)v2
u +

1

2
(m2

d + |µ|2)v2
d −Bµvuvd, (4.31)
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when 〈h0
u〉 = vu/

√
2 and 〈h0

d〉 = vd/
√

2. We can get the following relations from ∂V min
H /∂vd =

0 = ∂V min
H /∂vu

−2Bµ = (m2
d −m2

u) tan 2β +m2
Z sin 2β, (4.32)

|µ|2=
m2
u sin2 β −m2

d cos2 β

cos 2β
− 1

2
m2
Z . (4.33)

There are five physical Higgs bosons in the MSSM since two complex scalar doublets have

eight degrees of freedom and three are eaten by the gauge bosons through the Higgs mecha-

nism. In the neutral sector there are two CP even Higgs, h0 and H0, and one CP odd Higgs,

A0. The charged sector has two charged Higgs, H±. There are two free parameters in the

Higgs sector, tan β and the mass of A0, m2
A. Including the W± and Z boson masses, mW

and mZ respectively, the other four masses are defined as

m2
H± = m2

A +m2
W , (4.34)

m2
h0,H0 = 1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)
. (4.35)

If mA is very large, the heavy neutral Higgs, H0, decouples and the lighter neutral Higgs,

h0, acts like the SM Higgs with mass

m2
h0 ≈ m2

Z cos2 2β, (4.36)

This obviously presents a problem since mZ = 91.2 GeV and mh = 125 GeV. This can be

resolved by including one-loop corrections from the top quark mass, mt, and the top squark

mass, mt̃. At one-loop

m2
h0 ≈ m2

Z +
3m4

t

4π2v2
ln

(
m2
t̃

m2
t

)
. (4.37)

where the mass of the top squark must be O(1-10 TeV) to raise the tree level mass up to

125 GeV for the Higgs.
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Through the new SUSY gauge couplings for the Higgs with the gauginos and higgsinos,

EWSB will generate masses for new fermionic mass eigenstates. We first express a = 1, 2 of

the SU(2)L gauginos, λaL, as λ±L = 1√
2
(λ1

L ∓ λ2
L). Gathering the charged terms we get the

mass term

−Lχ± = ( λ−L h̃−d
)

 ML

√
2mw sin β

√
2mW cos β µ


 λ+

L

h̃+
u

 (4.38)

= M̃±
1 χ̄

+
1 χ

+
1 + M̃±

2 χ̄
+
2 χ

+
2 , (4.39)

where χ+
1,2 are called charginos and written in the diagonal basis. The neutral higgsinos and

neutral gauginos mix in a Majorana basis and are diagonalized. We show the mixing mass

matrix as

Mχ0 =



MY 0 −mZcβsW mZsβcW

0 ML mZcβcW mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβcW −mZsβcW −µ 0


, (4.40)

which can be diagonalized in the Lagrangian as

Lχ0
1,2,3,4

= −1

2
(ψ0)TMχ0ψ0 = −1

2

4∑
i

M̃0
i χ

0
iχ

0
i , (4.41)

where

(ψ0)T = ( λY λ3
L h̃0

d h̃0
u

). (4.42)
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Fig. 4.1.: The plots above shows the gauge couplings versus the log µ. The left plot is the
SM while the right plot is the MSSM.

The above diagonalized mass terms will not be given here because of their complicated

nature; numerically solving them is much easier. The lightest neutralino, χ0
1, we identify as

the LSP a dark matter candidate.

4.2.4 Radiative Corrections

If radiative corrections to one-loop are taken into account in the MSSM several new

features are produced. First in Figure 4.1 there are the three gauge couplings plotted with

respect to energy. We solve the RGEs (A.1)-(A.3) for the SM and (A.10)-(A.12) for the

MSSM using EW data. The introduction of the superpartners changes the running of the

gauge couplings to higher energies to unify at the GUT scale, motivating unification theories.

We take this notion of high energy unification to minimize the number of free parameters

in the model. At the GUT scale we use m0 for all scalar masses, m1/2 for all the gaugino

masses, and A0 for all trilinear couplings. In addition to these three parameters we have

tan β and sign(µ). This is the minimal amount of freedom we have in the MSSM. Taking
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Fig. 4.2.: The plot of m2
hu

and m2
hd

with energy. While m2
hd

remains positive while m2
hu

runs negative at low energies, the Bµ term causes former to becomes negative at the EWBS
scale.

into account all the one-loop corrections to m2
hu

we can approximate (A.19) as

dm2
hu

dt
≈

3|Yt|2m2
hu

8π2
(4.43)

because the Y 33
u = Yt is much larger than all other Yukawa terms and Y33 > g2

L > g2
Y at low

energies. If this is run from the GUT scale down to the EW scale we see in Figure 4.2 that

m2
hu
< 0.

4.2.5 Beyond the MSSM

At the end of chapter one there were several shortcomings listed for the SM. By intro-

ducing SUSY and extending the SM to the MSSM we removed the hierarchy problem with

sparticle cancellations, introduce a natural mechanism for EWSB through radiative correc-

tions to the Higgs soft mass, and propose the LSP neutralino as a dark matter candidate.

In addition, the MSSM gives motivation for a grand unified theory at very high energies

through gauge coupling unification.
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The MSSM still has no right handed neutrinos and does not account for neutrino oscilla-

tion and currently there are no hints of SUSY at the LHC. The recently measured Higgs mass

is still within the acceptable parameter region for the MSSM phenomenologically. There is

still no origin of R-parity in the MSSM, there are possibilities in extending the MSSM.
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5 SUSY B − L

We supersymmeterize the B−L model as an extension to the MSSM. To maintain gauge

invariance and holomorphy we introduce a second B − L Higgs superfield Φc. The particle

contents are in Table 5.1. We can write down the terms relevant for the neutrino physics

U(1)BL

Q 1/3

U c −1/3

Dc −1/3

L −1

Ec 1

N c 1

Hu 0

Hd 0

Φ -2

Φc 2

Table 5.1.: We list the supersymmetric version of Table 3.1.

and the Higgs sector,

WNc = Y D
ij Hu · LiN c

j + Y M
i ΦN c

iN
c
i , (5.1)

WHiggs = µHu ·Hd + µΦΦΦc. (5.2)
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ψ1

ψ̄2

ψ3
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χ0
1 ψ̄1

ψ2

ψ3

φ

χ0
1

ψ1

ψ2

ψ3

Fig. 5.1.: Here we have three diagrams for the R-parity violating decay of the MSSM
neutralino LSP, the neutralino. We call Diagram 1 on the left and Diagram 2 in the middle
and Diagram 3 on the right

When Φ and Φc develops nonzero VEVs, the B − L symmetry is broken. In most models

at least one generation of N c gets a nonzero VEV[24, 25]. In the upcoming chapters this

reason will be further elaborated on, but for now we will just analyze the vacuum potential.

The Z ′ mass is described by

mZ′ = gBLvBL, (5.3)

where

v2
BL = 〈N c

3〉2 + 4〈Φ〉2 + 4〈Φc〉2. (5.4)

Since Ñ c
3 develops a nonzero VEV, R-parity is broken. The Dirac Yukawa coupling for

the right-handed neutrinos after the sneutrino develops a VEV is

W ⊃ vBL(Y D)3i√
2

Li ·Hu = εiLi ·Hu. (5.5)

Once this bilinear R-parity violating term is generated, the other lepton number violating

terms from (4.23) are generated through mixings with either L or Hu. In Figure 5.1 are the

Feynman diagrams for the LSP neutralino decays1. Here we consider four end main decays

1Neutralinos are no longer stable, gravitinos can be a dark matter candidate.
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χ0
1 φ ψ1ψ2ψ3

ẽj ej ēiνk

d̃j dj d̄iνk

Diagram 1 ν̃j νj ēiek

ν̃j νj d̄idk

ũj uj d̄iek

ẽj ej d̄iuk

Diagram 2 ẽj ēiejνk

d̃j d̄iejνk

d̃j d̄iujek

Diagram 3 ũj uidkdj

d̃j diukdj

Table 5.2.: Neutralino decays corresponding to Figure 5.1

with different mediating sfermions: χ0
1 → ēiejνk, d̄idjνk, d̄iujek, uidjdk. In Table 5.2 we list

all permutations of the decay.
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6 R-parity Conserving Minimal

Supersymmetric B-L Model

6.1 Introduction

The B − L (baryon number minus lepton number) is the unique anomaly-free global

U(1)BL symmetry in the Standard Model (SM). This symmetry is easily gauged, and the

so-called minimal B − L model is a simple gauged B − L extension of the SM, where three

right-handed neutrinos and an SM gauge singlet Higgs field with two units of the B − L

charge are introduced. The three right-handed neutrinos are necessarily introduced to make

the model free from all gauge and gravitational anomalies. Associated with a B−L symmetry

breaking by a Vacuum Expectation Value (VEV) of the B −L Higgs field, the B −L gauge

field (Z ′ boson) and the right-handed neutrinos acquire their masses. After the electroweak

symmetry breaking, tiny SM neutrino masses are generated via the seesaw mechanism [21].

Although the scale of the B − L gauge symmetry breaking is arbitrary as long as phe-

nomenological constraints are satisfied, a breaking at the TeV scale is probably the most

interesting possibility in the view point of the Large Hadron Collider (LHC) experiments.

However, mass squared corrections of the B − L Higgs (any Higgs fields in 4-dimensional

models, in general) are quadratically sensitive to the scale of a possible ultraviolet theory,

and as a result the B−L symmetry breaking scale is unstable against quantum corrections.

As is well-known, supersymmetric (SUSY) extension is the most promising way to solve this

vacuum instability. Very interestingly, SUSY extension of the minimal B − L model offers

a way to naturally realize the B − L symmetry breaking at the TeV scale. With suitable

inputs of soft SUSY breaking parameters at a high energy, their renormalization group (RG)
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evolutions drive the B − L Higgs mass squared negative and therefore the B − L gauge

symmetry is radiatively broken [26, 24, 25]. Since the scale of the negative mass squared is

controlled by the soft SUSY breaking parameters, the B − L breaking scale lies at the TeV

from naturalness.

SUSY extension opens a further possibility. As has been proposed in Ref. [24], it is not

necessary to introduce the B − L Higgs field, since the scalar partner of a right-handed

neutrino can play the same role as the B − L Higgs field in breaking the B − L gauge

symmetry. Hence, we can define the minimal SUSY B − L model by a particle content,

where only three right-handed neutrino chiral superfields are added to the particle content

of the minimal SUSY SM (MSSM). It is interesting that such a particle content can be

derived from heterotic strings [27, 28]. In Ref. [29], a negative soft mass squared of a

right-handed sneutrino is assumed to break the B − L gauge symmetry, so that the B − L

symmetry breaking occurs at the TeV scale. Associated with this symmetry breaking, R-

parity is also spontaneously broken, and many interesting phenomenologies with the R-parity

violation have been discussed [30, 31, 32, 33]. Through the non-zero VEV of the right-

handed sneutrino, mixings between neutrinos, MSSM Higgsinos, MSSM neutralinos and

B−L gaugino are generated. Although the neutrino mass matrix becomes very complicated,

it has enough number of degrees of freedom to reproduce the neutrino oscillation data with

a characteristic pattern of the mass spectrum [34, 35].

In this chapter, we propose the minimal SUSY B−L model with R-parity conservation.

The particle content is the same as the one of the minimal SUSY B − L model discussed

above, while we assign an even R-parity to one right-handed neutrino chiral superfield (Φ)

and an odd R-parity to the other two right-handed neutrino chiral superfields. The R-parity

assignment for the MSSM fields is as usual. Because of this parity assignment and the gauge

symmetry, the chiral superfield Φ has no Dirac Yukawa coupling with the lepton doublet

fields. In fact, it does not appear in the renormalizable superpotential. We consider the case

that the B − L symmetry breaking is driven by a VEV of the R-parity even right-handed
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sneutrino. Phenomenological consequences in this model are very different from those of the

conventional minimal SUSY B−L model. As usual in the MSSM, R-parity is conserved and

hence the lightest neutralino is a candidate of the dark matter. In addition to the lightest

neutralino in the MSSM, the model offers a new candidate for the dark matter, namely, a

linear combination of the fermion component of Φ and the B − L gaugino. Since Φ has no

Dirac Yukawa coupling, no Majorana mass term is generated in the SM neutrino sector, and

as a result, the SM neutrinos are Dirac particles. With only the two right-handed neutrinos

involved in the Dirac Yukawa couplings, the Dirac neutrino mass matrix leads to three

mass eigenstates, one massless chiral neutrino and two Dirac neutrinos. A general 2-by-3

Dirac mass matrix includes a number of free parameters enough to reproduce the neutrino

oscillation data. This Dirac nature of the SM neutrinos are quite distinctive from those in

the usual B −L model, where the right-handed neutrinos are heavy Majorana particles and

the mass eigenstates are different from the light SM neutrinos. If the Z ′ boson is discovered

at the LHC, this difference could be tested through its decay products and the decay width

measurements.

This chapter is organized as follows. In the next section, we define our minimal SUSY

B − L model with a novel R-parity assignment. Then, we introduce superpotential and

soft SUSY breaking terms relevant for our discussion. In Sec. 5.3, we discuss a way to

radiatively break the B − L gauge symmetry, while keeping R-parity manifest. Focussing

on the B − L sector, for simplicity, we perform a numerical analysis for the RG evolutions

of the soft SUSY breaking masses of the right-handed sneutrinos, and show that the B − L

gauge symmetry is radiatively broken at the TeV scale by a VEV of the scalar component

of Φ. In Sec. 5.4, we consider a new dark matter candidate which is a linear combination

of the scalar component of Φ and the B − L gaugino. We show a parameter set which can

reproduce the observed dark matter relic density. We also briefly discuss an implication of

the Dirac neutrinos to the LHC phenomenology through the Z ′ boson production in Sec.

5.5.
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Chiral Superfield SU(3)c SU(2)L U(1)Y U(1)BL R-parity

Qi 3 2 +1/6 +1/3 −

U c
i 3̄ 1 −2/3 −1/3 −

Dc
i 3̄ 1 +1/3 −1/3 −

Li 1 2 −1/2 −1 −

Φ 1 1 0 +1 +

N c
1,2 1 1 0 +1 −

Ec
i 1 1 −1 +1 −

Hu 1 2 +1/2 0 +

Hd 1 2 −1/2 0 +

Table 6.1.: Particle content of the minimal SUSY B − L model with a conserved R-parity.
In addition to the MSSM particles, three right-handed neutrino superfields (Φ and N c

1,2) are
introduced. We assign an even R-parity for Φ. i = 1, 2, 3 is the generation index.

6.2 Minimal SUSY B − L model with a conserved R-

parity

The minimal SUSY B − L model is based on the gauge group of SU(3)c × SU(2)L ×

U(1)Y × U(1)BL. In addition to the MSSM particle content, we introduce three chiral

superfields which are singlet under the SM gauge groups and have a unit B−L charge. The

new fields are identified as the right-handed neutrino chiral superfields, and their existence

is essential to make the model free from all gauge and gravitational anomalies. Unlike direct

supersymmetrization of the minimal B − L model, the B − L Higgs superfields are not

included in the particle content. The key of our proposal is that we assign an even R-parity

to one right-handed neutrino chiral superfield, in contrast with the minimal SUSY B − L
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model proposed in Ref. [29], where all the right-handed neutrino superfields are R-parity

odd as usual. The particle content is listed in Table 6.1.

The gauge and parity invariant superpotential which is added to the MSSM one is only

the neutrino Dirac Yukawa coupling

WBL =
2∑
i=1

3∑
j=1

yijDN
c
i LjHu. (6.1)

Note that the Yukawa coupling for Φ is forbidden by the parity, and Φ has no direct coupling

with the MSSM fields. After the electroweak symmetry breaking, the neutrino Dirac mass

matrix is generated. Since this is a 2-by-3 matrix, one neutrino remains massless. Therefore,

we have one massless neutrino and two Dirac neutrinos in the model. The 2-by-3 Dirac mass

matrix has a sufficient number of free parameters to reproduce the neutrino oscillation data.

Although we have introduced the special parity assignment, this may be unnecessary in the

practical point of view. Without the parity assignment, the superpotential in Eq. (6.1) can

include

WBL ⊃
3∑
j=1

yjDΦLjHu, (6.2)

which are unique direct couplings between Φ and the MSSM fields. Let us now take a limit

yjD → 0, which switch off the direct communication of Φ with the lepton and Higgs doublets.

In this sense, our parity assignment can be regarded as a result of symmetry enhancement

caused by this limit. Since the neutrinos are Dirac particles, the Dirac Yukawa coupling

constants must be extremely small in order to reproduce the observed neutrino mass scale.

We will discuss a possibility to naturally realize such small parameters in the last section.
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Fig. 6.1.: The RG evolution of the soft SUSY breaking mass m2
φ from MU to low energies.

Next, we introduce soft SUSY breaking terms for the fields in the B − L sector:

Lsoft = −
(

1

2
MBLλBLλBL + h.c.

)
−

(
2∑
i=1

m2
Ñc
i
|Ñ c

i |2+m2
φ|φ|2

)
, (6.3)

where λBL is theB−L gaugino and Ñ c
i and φ are scalar components ofN c

i and Φ, respectively.

Since the Dirac Yukawa couplings are very small, we omit terms relevant to the couplings.

In the next section, we analyze the RG evolutions of the soft SUSY breaking masses and find

that m2
φ is driven to be negative and the U(1)BL symmetry is radiatively broken. Although

we do not assume the grand unification of our model, we take MU = 2 × 1016 GeV as a

reference scale at which the boundary conditions for the soft masses are given.
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6.3 Radiative B − L symmetry breaking

It is well-known that the electroweak symmetry breaking in the MSSM is triggered by

radiative corrections which drives the soft mass squared of the up-type Higgs doublet nega-

tive. Because of this radiative symmetry breaking, the electroweak scale is controlled by the

soft SUSY breaking mass scale and the SUSY breaking scale at the TeV naturally results

in the right electroweak scale of O(100 GeV). Similarly to the MSSM, a radiative B − L

symmetry breaking occurs by the RG evolution of soft SUSY breaking parameters from a

high energy to low energies. However, the mechanism that drives m2
φ negative is different

from the one in the MSSM where the large top Yukawa coupling plays a crucial role.

To make our discussion simple, we consider the RG equations only for the B−L sector.1

RG equations relevant for our discussion are

16π2µ
dMBL

dµ
= 32g2

BLMBL, (6.4)

16π2µ
dm2

Ñc
i

dµ
= −8g2

BLM
2
BL + 2g2

BL

(
2∑
j=1

m2
Ñc
j

+m2
φ

)
, (6.5)

16π2µ
dm2

φ

dµ
= −8g2

BLM
2
BL + 2g2

BL

(
2∑
j=1

m2
Ñc
j

+m2
φ

)
, (6.6)

where the B − L gauge coupling obeys

16π2µ
dgBL
dµ

= 16g3
BL. (6.7)

In Eq. (6.5) the contributions from very small Dirac Yukawa couplings are omitted. In

fact, the second term in the right-hand side of Eq. (6.6), which originates from the D-term

interaction, plays an essential role to drive m2
φ negative. Since squarks and leptons have

1 See Refs. [36, 37] for more elaborate analysis and parameter scans to identify parameter regions which
are consistent with current experimental results.
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B − L charges, their soft squared masses also appear in the RG equations, but we have

omitted them, for simplicity, by assuming they are much smaller than m2
Ñc
i

and m2
φ.

To illustrate the radiative B − L symmetry breaking, we numerically solve the above

RG equations from MU = 2 × 1016 GeV to low energy, choosing the following boundary

conditions.

gBL = 0.311, MBL = 8.13 TeV, mÑc
1

= mÑc
2

= 20.0 TeV, mφ = 3.25 TeV. (6.8)

Fig. 6.1 shows the RG evolution of m2
φ. The mass squared of φ becomes negative at low

energies as shown in this figure, while the other squared masses remain positive. The mass

squared hierarchy mÑc
i
� m2

φ is crucial to drive m2
φ < 0. We now analyze the scalar potential

with the soft SUSY breaking parameters obtained from the RG evolutions. We choose the

VEV of φ as vBL =
√

2〈φ〉 = 14 TeV as a reference, at which the solutions of the RG

equations are evaluated as follows:

gBL = 0.250, MBL = 5.25 TeV, mÑc
1

= mÑc
2

= 19.6 TeV, |mφ|= 2.47 TeV. (6.9)

The scalar potential is given by

V = m2
Ñc

1
|Ñ c

1 |2+m2
Ñc

2
|Ñ c

2 |2+m2
φ|φ|2+

g2
BL

2

(
|Ñ c

1 |2+|Ñ c
2 |2+|φ|2

)2

. (6.10)

Solving the stationary conditions, we find (in units of TeV)

〈Ñ c
1〉 = 〈Ñ c

2〉 = 0, 〈φ〉 =

√
−2m2

φ

gBL
' 14√

2
. (6.11)

This result is consistent with our choice of vBL = 14 TeV in evaluating the running soft

masses.
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In our parameter choice, the Z ′ boson mass is given by

mZ′ = gBLvBL = 3.5 TeV. (6.12)

The ATLAS and CMS collaborations at the LHC Run-2 have been searching for the Z ′

boson resonance with the dilepton final state and have recently reported their results which

are consistent with the SM expectaions [38, 39]. In Ref. [40], the ATLAS and CMS search

results are interpreted to a constraint on the Z ′ boson in the minimal B − L model, where

an upper bound of the the B − L gauge coupling as a function of Z ′ boson mass has been

obtained. We refer the results in Ref. [40] where it is shown that gBL ≤ 0.328 and 0.350 for

mZ′ = 3.5 TeV from the ATLAS and CMS results, respectively.2 Our parameter choice of

gBL = 0.250 for mZ′ = 3.5 TeV is consistent with the recent LHC Run-2 results.

6.4 Right-handed neutrino dark matter

As we here show in the previous section, the B−L gauge symmetry is radiatively broken

by the RG effects on the soft SUSY breaking masses. Since the breaking occurs by the

VEV of R-parity even scalar field φ, R-parity is still manifest, by which the stability of

the lightest R-parity odd particle is ensured. Thus, as usual in the MSSM, the lightest

neutralino is a candidate of the dark matter. In addition to the MSSM neutralinos, a new

dark matter candidate arises in our model, namely, the fermion component of Φ (ψ). We

can call ψ R-parity odd right-handed neutrino. In this section, we study phenomenology of

the right-handed neutrino dark matter.

A scenario of the right-handed Majorana neutrino dark matter was first proposed in [42]

in the context of the non-SUSY minimal B − L model, where a Z2 parity is introduced and

2 It is also shown in Ref. [40] that the ATLAS bound at the LHC Run-2 is more severe than the bound
obtained from the LEP2 data [41] for mZ′ ≤ 4.3 TeV.
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an odd parity is assigned to one right-handed neutrino while the other fields are all parity-

even. Because of the Z2-parity conservation, the parity-odd right-handed neutrino becomes

stable and hence the dark matter candidate. Phenomenology of this dark matter has been

investigated [42, 43, 44]. Recently, in terms of the complementarity to the LHC physics, the

right-handed neutrino dark matter has been investigated in detail in [40]. Supersymmetric

version of the minimal B − L model with the right-handed neutrino dark matter has been

proposed in [25].

Our dark matter scenario that we will investigate in this section shares similar properties

with the scenario discussed in [25]. However, there is a crucial difference that ψ has no

Majorana mass by its own, but it acquires a Majorana mass through a mixing with the

B − L gaugino (λBL). After the U(1)BL symmetry breaking, a mass matrix for ψ and λBL

is generated to be

Mχ =

 0 mZ′

mZ′ MBL

 . (6.13)

The mass matrix is diagonalized as ψ

λBL

 =

 cos θ sin θ

− sin θ cos θ


 χ`

χh

 (6.14)

with tan 2θ = 2mZ′/MBL. Let us assume that the lighter mass eigenstate (χ`) is the lightest

neutralino. Since ψ and λBL are the SM gauge singlets, possible annihilation processes of the

dark matter are very limited. Furthermore, given a small B−L coupling and the Majorana

nature of the dark matter particle, the annihilation process via sfermion exchanges is not

efficient. We find that a pair of dark matter particles can annihilate efficiently only if the
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dark matter mass is close to half of the Z ′ boson mass and the Z ′ boson resonance in the s-

channel annihilation process enhances the cross section. Let us set MBL ' (3/2)mZ′ , so that

the lightest mass eigenvalue is found to be mDM ' mZ′/2 and cos2 θ ' 0.8. Our parameter

choice in the previous section is suitable for this setup, MBL = (3/2)mZ′ = 5.25 TeV for

mZ′ = 3.5 TeV.

Let us now calculate the dark matter relic abundance by integrating the Boltzmann

equation given by
dY

dx
= − s〈σv〉

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (6.15)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and 〈σv〉 is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the

quantities involved in the Boltzmann equation are as follows:

s =
2π2

45
g?
m3
DM

x3
,

H(mDM) =

√
4π3

45
g?
m2
DM

MPl

,

sYEQ =
gDM
2π2

m3
DM

x
K2(x), (6.16)

where MPl = 1.22 × 1019 GeV is the Planck mass, gDM = 2 is the number of degrees of

freedom for the Majorana dark matter particle, g? is the effective total number of degrees of

freedom for particles in thermal equilibrium (in the following analysis, we use g? = 106.75

for the SM particles), and K2 is the modified Bessel function of the second kind. In our

scenario, a pair of dark matter annihilates into the SM particles dominantly through the Z ′

boson exchange in the s-channel. The thermal average of the annihilation cross section is
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given by

〈σv〉 = (sYEQ)−2 mDM

64π4x

∫ ∞
4m2

DM

ds σ̂(s)
√
sK1

(
x
√
s

mDM

)
, (6.17)

where the reduced cross section is defined as σ̂(s) = 2(s− 4m2
DM)σ(s) with the total annihi-

lation cross section σ(s), and K1 is the modified Bessel function of the first kind. The total

cross section of the dark matter annihilation process χ`χ` → Z ′ → ff̄ (f denotes the SM

fermions plus two right-handed neutrinos) is calculated as

σ(s) =
5

4π
g4
BL cos2 θ

√
s(s− 4m2

DM)

(s−m2
Z′)

2 +m2
Z′Γ

2
Z′
, (6.18)

where all final state fermion masses have been neglected. The total decay width of Z ′ boson

is given by

ΓZ′ =
g2
BL

24π
mZ′

[
15 + cos2 θ

(
1− 4m2

DM

m2
Z′

) 3
2

θ

(
m2
Z′

m2
DM

− 4

)]
. (6.19)

Here, we have assumed that all sparticles have mass larger than mZ′/2.

Now we solve the Boltzmann equation numerically, and find the asymptotic value of the

yield Y (∞). Then, the dark matter relic density is evaluated as

ΩDMh
2 =

mDMs0Y (∞)

ρc/h2
, (6.20)

where s0 = 2890 cm−3 is the entropy density of the present universe, and ρc/h
2 = 1.05×10−5

GeV/cm3 is the critical density. In our analysis, only three parameters, namely gBL, mZ′

and mDM , are involved.3 As mentioned above, a sufficiently large annihilation cross section

is achieved only if mDM ' mZ′/2. Thus, we focus on the dark matter mass in this region and

in this case cos2 θ ' 0.8. For gBL = 0.250, mZ′ = 3.5 TeV and cos2 θ = 0.8, Fig. 6.2 shows

the resultant dark matter relic abundance as a function of the dark matter mass mDM , along

with the bound 0.1183 ≤ ΩDMh
2 ≤ 0.1213 (65) from the Planck satellite experiment [1] (two

3 The mixing angle θ is determined once mZ′ and mDM are fixed.
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Fig. 6.2.: The relic abundance of the dark matter particle as a function of the dark matter
mass (mDM) for gBL = 0.250, mZ′ = 3.5 TeV and cos2 θ = 0.8. The two horizontal lines
denote the range of the observed dark matter relic density, 0.1183 ≤ ΩDMh

2 ≤ 0.1213 [1].

horizontal dashed lines). We have confirmed that only if the dark matter mass is close to

half of the Z ′ boson mass, the observed relic abundance can be reproduced.

6.5 Implication of Dirac neutrinos to LHC physics

Because of our R-parity assignment, the SM neutrinos are Dirac particles in our model.

This is quite distinct from usual B − L extension of the SM, where right-handed neutrinos

are heavy Majorana states. Since the right-handed neutrinos are singlet under the SM gauge

groups and the Dirac Yukawa coupling constants are very small in both Dirac and Majorana

cases, the right-handed neutrinos can communicate with the SM particles only through Z ′

boson exchange.

As we mentioned above, the search for Z ′ boson resonance is underway at the LHC Run-

2. Once discovered at the LHC, the Z ′ boson will allows us to investigate physics of the
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right-handed neutrinos through precise measurements of Z ′ boson properties. In this section

we consider an implication of the Dirac neutrinos to LHC physics.

When the right-handed neutrinos are heavy Majorana particles as in the minimal B −L

model, a pair of right-handed Majorana neutrinos, if kinematically allowed, can be produced

through Z ′ boson decays at the LHC. The right-handed neutrino subsequently decays to

weak gauge bosons/Higgs boson plus leptons. Because of the Majorana nature of the right-

handed neutrino, the final states include same-sign leptons. This is a characteristic signature

from the lepton number violation, and we expect a high possibility to detect such final states

with less SM background. For a detailed studies, see, for example, [45].

The Majorana neutrinos are heavy and can be produced only if they are kinematically

allowed, while the Dirac neutrinos in our model are always included in the Z ′ boson decay

products. However, they cannot be detected just like the usual SM neutrinos produced at

colliders. This process may remind us of the neutrino production at the LEP through the

resonant production of the Z boson. It was a great success of the LEP experiment that

the precise measurement of the Z boson decay width and the production cross section at

energies around the Z boson peak has determined the number of the SM neutrinos to be

three [41]. We notice that the Z ′ production is quite analogous to the Z production at

the LEP. Although the right-handed neutrinos produced by the Z ′ boson are completely

undetectable, the total Z ′ boson decay width carries the information of the invisible decay

width. A precise measurement of the Z ′ boson cross section at the LHC may reveal the

existence of the right-handed Dirac neutrinos. To illustrate this idea, we calculate in the

following the differential cross section for the process with the dilepton final states, pp→ `+`−

with ` = e, µ mediated by photon, Z boson and Z ′ boson at the LHC with a collider energy
√
s = 14 TeV.
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Fig. 6.3.: The differential cross section for pp → e+e−X + µ+µ−X at the 14 TeV LHC for
mZ′ = 3.5 TeV and gBL = 0.250. The solid and dashed curves correspond to the results
for N(νR) = 2 and 0, respectively. The horizontal long-dashed line represents the SM cross
section, which is negligible compared with the Z ′ boson mediated process.

The differential cross section with respect to the final state dilepton invariant mass Mll

is described as

dσ(pp→ `+`−X)

dMll

=
∑
a,b

∫ 1

−1

d cos θ

∫ 1

M2
ll

E2
CMS

dx1
2Mll

x1E2
CMS

× fa(x1, Q
2)fb

(
M2

ll

x1E2
CMS

, Q2

)
dσ(q̄q → `+`−)

d cos θ
, (6.21)

where ECMS = 14 TeV is the center-of-mass energy of the LHC. In our numerical analysis, we

employ CTEQ5M [46] for the parton distribution functions (fa) with the factorization scale

Q = mZ′ . The reader may refer to the Appendix in Ref. [47] for the helicity amplitudes to

calculate dσ(q̄q → `+`−)/d cos θ. For the Z ′ boson mediated process, we consider two cases,
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N(νR) = 0 and N(νR) = 2, where N(νR) is the number of right-handed (Dirac) neutrinos.

For our case with N(νR) = 2, the total Z ′ boson decay width is given in Eq. (6.19), while

the number 15 in the bracket must be replaced to 12 for N(νR) = 0.

Fig. 6.3 shows the differential cross section for pp → e+e−X + µ+µ− for mZ′ = 3.5 TeV

and gBL = 0.250, along with the SM cross section mediated by the Z-boson and photon

(horizontal long-dashed line). The solid and dashed curves correspond to the results for

N(νR) = 2 and 0, respectively. The dependence of the total decay width on the number of

right-handed neutrinos reflects the resultant cross sections. When we choose a kinematical

region for the invariant mass in the range, MZ′−100 ≤Mll(GeV) ≤MZ′+100, for example,

the signal events of 892 and 1049 for N(νR) = 2 and 0, respectively, would be observed

with the prospective integrated luminosity of 1000/fb at the High-Luminosity LHC. The

difference between N(νR) = 2 and 0 are distinguishable with a 4− 5σ significance.
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7 Radiative Breaking of the Minimal

Supersymmetric Left-Right Model

7.1 Introduction

Nature at low energies can be described by a vector-like model known as Quantum

Electrodynamics (QED). Adding the strong interactions into the mix, nature retains its

indifference to a fields’ handedness. At higher energies, we encounter the Standard Model

(SM) which is a chiral theory that is broken down into QED via Electroweak Symmetry

Breaking (EWSB). Among the fermions in the SM only left-handed fields interact under

SU(2)L. This question of why does such a parity violation exist as well many others are

not cannot be answered by the SM alone. Motivation for nature returning to vector-like at

TeV scales and higher has led to Left-Right symmetric Models (LRMs) being introduced.

The first LRM was a broken Pati-Salam model [48] introduced in [49] with the gauge group

SU(3)c × SU(2)L × SU(2)R × U(1)BL. The LR symmetry must be broken at low energies,

TeV scale LRMs are being once again considered from the view point of the Large Hadron

Collider (LHC) experiments. The current lower bound on the SU(2)R charged gauge boson

(WR) is found to be around 3 TeV [50] (see also [51] on the lower bound from rare decay

processes).

Historically the first type of LR symmetry breaking was done by a SU(2)R doublet Higgs

field[52, 53]. After the introduction of the seesaw mechanism [21], breaking LR symmetry

by SU(2)L and SU(2)R triplets was considered. This case has new sets of unnaturalness

problems with keeping the SU(2)L triplet vacuum expectation value (VEV) at the neutrino

mass scale [54]. Its minimal superymmetric (SUSY) extensions have been suggested before,
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however broken by triplet superfields [55, 56, 49]. Triplet Higgs superfields lead to a U(1)em

violating vacuum [57, 58]. To keep a U(1)em invariant vacuum, at least one generation of

right-handed scalar neutrino Ñ c must acquire a nonzero VEV. If we consider a supersymmet-

ric LRM with the gauge group SU(3)c × SU(2)L × SU(2)R × U(1)BL, the the right-handed

slepton doublet plays a role of the SU(2)R doublet Higgs field and a VEV of right-handed

scalar neutrino Ñ c can break the LR symmetry down to the SM one [59]. It has been shown

[29] that in the B-L extension of the minimal suspersymmetric Standard Model (MSSM),

the gauge group SU(3)c × SU(2)L × U(1)Y × U(1)BL is successfully broken down to to the

SM one by 〈Ñ c〉. In this context of the U(1)BL extension of the MSSM, radiative symmetry

breaking can occur when Ñ c’s mass squared becomes negative at low energies [60, 61]. Gen-

erally the seesaw mechanism comes about from a triplet scalar VEV inducing a Majorana

mass term for the right-handed neutrino. However in this model, the seesaw is induced by

the mixing between gaugino and neutrino [34, 35].

The main focus of this section is to propose a class of supersymmetric LRMs, where only

a second Higgs bidoublet superfield is newly introduced, and the LR symmetry is radiatively

broken into the MSSM purely by the VEV of the neutral component of the right-handed

slepton doublet. The LR symmetry breaking without any additional Higgs fields has been

considered before [59], where a negative mass squared for the right-handed slepton doublet

is assumed. Here we calculate the renormalization group equations (RGEs) at the one-loop

level and evolve them from some intermediate scale down to the TeV scale. We find that

the mass squared of the right-handed slepton becomes negative and hence the LR symmetry

is radiatively broken. After the breaking, a charged lepton mixes with a charged gaugino,

creating a sever bound on the gaugino mass from the electroweak precision measurements.

The neutral lepton component mixes with neutral gauginos and creates a heavy neutrino

with a TeV scale mass. After EWSB the seesaw mechanism works to produce sub-eV scale

neutrino masses. With the additional Higgs bidoublet, there are enough free parameters to

reproduce realistic SM fermion mass matrices.
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SU(3)c SU(2)L SU(2)R U(1)BL

Q =

 u

d

 3 2 1 1/3

Qc =

 uc

dc

 3̄ 1 2 −1/3

L =

 ν

e

 1 2 1 −1

Lc =

 νc

ec

 1 1 2 1

Φi =

 φ+ φ0
1

φ0
2 φ−

 1 2 2 0

Table 7.1.: Particle content of our SUSY LR model.

7.2 Particle Content

The particle content remains largely unchanged from the MSSM as can bee seen in

Table 7.1. We extend the particle content in [59] by an extra Higgs bidoublet, which is

necessary to obtain the realistic SM fermion mass matrices, otherwise there is no flavor

mixing in the model. The superpotential can be written down (flavor sums implied) as

W = YqQ
T τ2Φ1τ2Q

c + Y ′qQ
T τ2Φ2τ2Q

c

+ YeL
T τ2Φ1τ2L

c + Y ′eL
T τ2Φ2τ2L

c + µiiTr
(
ΦT
i τ2Φiτ2

)
, (7.1)

where we work the diagonal basis for the Higgs bidoublet without loss of generality. We

can integrate a heavy Higgs bidoublet out at lower energies, and a lighter bidoublet to be

approximately identified as the MSSM Higgs.
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The scalar potential with soft SUSY breaking masses is given by

Vsoft = m2
L̃
|L̃|2+m2

L̃c
|L̃c|2+m2

Q̃
|Q̃|2+m2

Q̃c
|Q̃c|2 (7.2)

+ m2
ijTr

(
Φ†iΦj

)
+BµijTr

(
ΦT
i τ2Φjτ2

)
.

Here we have omitted A-terms, for simplicity, since their effects are not important in the

following discussions. While the SUSY mass term for the two bidoublet Higgs superfields

µij is diagonal in Eq. (7.1), here we have introduced the off-diagonal Bµij term, which will

be tuned in order for the heavy Higgs bidoublet to develop a sizable VEV.

7.3 RGE Analysis and Radiative LR symmetry break-

ing

In our RGE analysis, we use a mixture of low energy data for the Standard Model gauge

and Yukawa couplings mixed with high energy inputs inspired by the MSSM. For Yukawa

couplings we only consider the 3rd generation. Using the RGEs of the SM [62] at the one-

loop level we run them from µ = MZ to µ = 1 TeV. Taking the outputs of the previous

SM RGE runnings at µ = 1 TeV as inputs for the RGEs of the MSSM [63] at the one-loop

level, we solve the MSSM RGEs until LR symmetry breaking scale vR. In this section, we

fix vR = 20 TeV as a reference value. At the one-loop level the soft mass terms do not affect

the runnings of the gauge and Yukawa couplings. At the LR symmetry breaking we have

the relations between the hypercharge gauge coupling (gY ) and the LR gauge couplings (gR

and gBL) as

gY = gR sin θR , tan θR = 2
gBL
gR

. (7.3)

In this analysis we choose, for simplicity, θR = 65◦, gBL = 0.438, and gR = 0.408, which

are evaluated at vR = 20 TeV based on Eq. (7.3) from the known MSSM gauge couplings.
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The values of the tau and top Yukawa couplings from the MSSM RGEs at µ = 20 TeV are

evaluated as Yτ ' 0.01 and Yt ' 0.8. As a matter of simplicity we choose Yq = 0.7 Yt and

Yq′ = 0.3Yt and Yl′ = Yl = Yτ/2 as inputs at µ = 20 TeV. We run the RGEs for the Yukawa

couplings and gauge couplings (see Eqs. (A.41)-(A.47) in Appendix A) from 20 TeV up to a

SUSY breaking mediation scale which we choose to be an intermediate scale µ = 1012 GeV,

for simplicity. At the scale of 1012 GeV, we take all gaugino masses to be 2.5 TeV except for

the SU(2)R gaugino which is 100 TeV to keep the guagino-lepton mixing within the current

experimental bound. This bound will be discussed below. The RGE invariant relation in

Eq. (A.42) is used for the gaugino masses. We calculate the RGE evolutions in Eqs. (A.48)-

(A.53) for the soft masses at the one-loop level and run them down from µ = 1012 GeV to

µ = 20 TeV. We use the evaluated Yukawa and gauge couplings at µ = 1012 GeV as inputs

into the soft mass RGEs. To realize the LR symmetry breaking the non-universal soft mass

inputs are crucial. See Table 7.2 for our inputs at µ = 1012 GeV and outputs at µ = 20 TeV.

Our choices for the masses are a result of straightforward numerical calculation of RGEs.

At µ = 1012 GeV, gBL is the largest coupling so Yukawas can be ignored except for the

RGEs for the bidoublet Higgs mass squares. Because of this size, the sign in front of the

D-term trace given in Eq. (A.54), which is involved in the RGEs of Eqs. (A.48)-(A.53), will

dominate and could drive the soft mass square of L̃c negative at low energies.

The running mass squared for L̃c3 is shown in Fig 7.1. We see that it becomes negative at

low energies. Here we consider the case that the 3rd generation right-handed slepton doublet

acquires the negative mass squared. The potential for L̃c3 is described as

V = m2
L̃c3
|L̃c3|2+

1

8

(
g2
R + 4g2

BL

)
|L̃c3|4 , (7.4)
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µ = 20 TeV µ = 1012 TeV

M2
L̃c1

2.0× 109 GeV2 2.5× 109 GeV2

M2
L̃c2

2.0× 109 GeV2 2.5× 109 GeV2

M2
L̃c3
−4.7× 107 GeV2 2.1× 104 GeV2

M2
Q̃c3

3.1× 109 GeV2 2.5× 109 GeV2

M2
Q̃3

1.3× 1010 GeV2 1.4× 1010 GeV2

M2
L̃3

4.2× 109 GeV2 2.5× 109 GeV2

M2
Φ1

1.0× 106 GeV2 2.1× 108 GeV2

M2
Φ2

3.4× 109 GeV2 2.5× 109 GeV2

Mg̃ 5000 GeV 2500 GeV

ML 2300 GeV 2500 GeV

MR 105 GeV 105 GeV

MBL 800 GeV 2500GeV

Table 7.2.: List of soft masses at µ = 1012 GeV (inputs) and at µ = 20 TeV (outputs).
Mg̃, ML, MR and MBL are gaugino masses corresponding to SU(3)c, SU(2)L, SU(2)R and
U(1)BL, respectively.

and the right-handed scalar neutrino Ñ c
3 develops its VEV at the potential minimum as

〈Ñ c
3〉 = vR/

√
2, where

vR =

√
−8m2

L̃c3

g2
R + 4g2

BL

. (7.5)

The numerical value in this model for the VEV is 20 TeV and m2
L̃c1

is evaluated at 20 TeV.

Since the SU(2)R × U(1)BL symmetry is broken by the SU(2)R doublet VEV, the gauge

boson mass relations are very similar to those in the SM. One gauge boson remains massless

which is identified as the U(1)Y gauge boson while the three massive ones and a charge
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Fig. 7.1.: The RGE evolution of the soft mass squared for L̃c3, which becomes negative at
low energies.

relation are

MWR
=

1

2
gRvR , (7.6)

MZR =
1

2

√
g2
R + 4g2

BLvR , (7.7)

QY =
QBL

2
− T 3

R . (7.8)

The gauge boson masses based on our runnings of the couplings and the above VEV come

out to be 4.1 TeV and 9.6 TeV, respectively, which satisfies the LHC bound of MWR ∼> 3

TeV [50].

7.4 Mass bound on SU(2)R gaugino

In the above, we stated that there is a bound on the SU(2)R gaugino mass. This bound

is unique to this model where the LR symmetry is broken by the VEV of the right-handed

neutrino. After the breaking of the LR symmetry, the right-handed tau is mixed with the
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SU(2)R gaugino. The relevant terms are

L ⊃MRλ̃
+λ̃− +

1√
2
gRvRλ̃

−Ec = MRλ̃
+λ̃− +

√
2MWR

λ̃−Ec . (7.9)

We diagonalize the mass matrix as

ξ+
1 = cosφλ̃+

R + sinφEc and ξ+
2 = cosφEc − sinφλ̃+

R (7.10)

with a mixing angle

tanφ =

√
2MWR

MR

. (7.11)

The neutral current for the charged leptons in the SM is now modified as

JµZ =
2mZ

v

[(
−1

2
+ sin2 θW

)
τLγ

µτL + sin2 θW cos2 φ τRγ
µτR

]
, (7.12)

where v = 246 GeV, θW is the weak mixing angle, and mZ = 91.2 GeV. Using the precision

data at the LEP experiment for Z → τ+τ− decay width uncertainties, the modification of

the weak neutral current must not change the width by more than |δΓ|= 0.22 MeV [41].

Using Eq. (7.12), we calculate the change of the decay width as

δΓ =
m3
Z sin4 θW
6πv2

(cos4 φ− 1) ≈ −m
3
Z sin4 θW
6πv2

(
4M2

WR

M2
R

)
, (7.13)

where we have used Eq. (7.11) and |φ|� 1. Now we interpret the LEP bound as MR ∼>

25MWR
. At the scale of vR=20 TeV we calculate MWR

=4.1 TeV, so the mass MR = 100

TeV shown in Table 7.2 is consistent with the LEP bound.
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7.5 SM fermion mass matrices

We first examine the neutral fermion sector to analyze the mixing between the gaugi-

nos and leptons from the SUSY gauge interaction after L̃c develops a nonzero VEV. The

hypercharge QY = 0 sector of the Lagrangian after LR symmetry breaking is

L ⊃ gBLvRν
cλBL +

1

2
gRvRν

cλ3
R +

1

2
MRλ

3
Rλ

3
R +

1

2
MBLλBLλBL, (7.14)

where λ3
R is the gaugino corresponding to the SU(2)R generator T 3

R. The mass matrix after

the LR symmetry breaking is found to be

Mλ̃3R,λ̃BL,ν
c =


MR 0 1

2
gRvR

0 MBL gBLvR

1
2
gRvR gBLvR 0

 . (7.15)

Because of the LEP bound MR � MWR
, λ3

R is decoupled, while the right-handed neutrino

(νc) acquires its Majorana mass of O(1 TeV) through the mixing with the B-L gaugino with

MBL, gRvR, gBLvR = O(1 TeV). With this right-handed neutrino mass of O(1 TeV), the

seesaw mechanism works in our model.

After EWSB, the SM fermion mass matrices can be expressed as

Mt =
1√
2
YQvu +

1√
2
Y ′Qv

′
u = MQ +M ′

Q , (7.16)

Mb =
1√
2
YQvd +

1√
2
Y ′Qv

′
d = cMQ + c′M ′

Q , (7.17)

MD
ν =

1√
2
YLvu +

1√
2
Y ′Lv

′
u = ML +M ′

L , (7.18)

Mτ =
1√
2
YLvd +

1√
2
Y ′Lv

′
d = cML + c′M ′

L , (7.19)
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where c = vd/vu and c′ = v′d/v
′
u, and we have considered the 3rd generation to simplify

our discussion. Since there are two Higgs bidoublets creating four nonzero VEVs, they

can all be paramterized on a 4-sphere, allowing for 3 free parameters under the constraint

v2
u + v2

d + v′2u + v′2d = (246)2 GeV2. We tune Y ′L so that there is a cancellation in Eq. (7.18)

to produce the neutrino Dirac mass, MD
ν = O(10−3 GeV), while allowing for the tau lepton

Dirac mass Mτ = O(1 GeV). In the quark sector we tune the quark Yukawa coupling, Y ′Q,

so that there is a cancellation in Eq. (7.17) to produce Mb = O(1 GeV) while the top quark

mass equation produces Mt = O(100 GeV). Our discussion here is easily extended to the

three generation case, and we can reproduce realistic SM fermion mass matrices.

The Dirac mass term for the neutrinos will further mix with the Higgsinos and neutral

gauginos from the EW sector as well to produce a neutralino mass matrix

0 µ11 0 0 YL
vR√

2
0 0 0

µ11 0 0 0 0 0 0 0

0 0 0 µ22 Y ′L
vR√

2
0 0 0

0 0 µ22 0 0 0 0 0

YL
vR√

2
0 Y ′L

vR√
2

0 0 MD
ν 0 0

0 0 0 0 MD
ν 0 MWR

tan θR MWR

0 0 0 0 0 MWR
tan θR MBL 0

0 0 0 0 0 MWR
0 MR



. (7.20)

For simplicity we took the one generation case. This can be easily extended to the 3 gen-

eration case by promoting the Yukawa couplings to 3× 3 matrices. Since MR � MWR
, the

SU(2)R gaugino is decoupled. To understand the seesaw mechanism in our model, we focus

on the block-diagonal 3 × 3 matrix composed of the elements MD
ν , MWR

tan θR and MBL.

Since MWR
tan θR, MBL = O(1 TeV)�MD

ν = O(1 MeV), we find a mass eigenvalue for the
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light neutrino as

mν '
(
MD

ν

)2

MBL

= O(0.1 eV) (7.21)

through the seesaw mechanism.1

1 It is interesting to notice that if MBL � MWR
the block-diagonal matrix has a “double seesaw”

structure, leading to mass eigenvalues approximately given by (MD
ν )2/M̃ , M̃ ' (MWR

tan θR)2/MBL and
MBL.
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8 Conclusions

In this final chapter we state the conclusions for our two proposed models. Section 7.1

discusses Chapter 5 and Sections 7.2 discusses Chapter 6.

8.1 R-parity Conserving Minimal Supersymmetric B-

L Model

We have proposed a simple gauged U(1)B−L extension of the MSSM, where R-parity is

conserved as usual in the MSSM. The global B − L symmetry in the MSSM is gauged and

three right-handed neutrino chiral multiplets are introduced, which make the model free from

all gauge and gravitational anomalies. No B − L Higgs field is introduced. We assign an

even R-parity to one right-handed neutrino superfield Φ, while the other two right-handed

neutrino superfields are odd as usual. The scalar component of Φ plays a role of the B − L

Higgs field to beak the U(1)B−L gauge symmetry through its negative mass squared which

is radiatively generated by the RG evolution of soft SUSY breaking parameters. Therefore,

the scale of the U(1)B−L symmetry breaking is controlled by the SUSY breaking parameters

and naturally be at the (multi-)TeV scale. We have shown that this radiative symmetry

breaking actually occurs with a suitable choice of model parameters. Because of our novel

R-parity assignment, three light neutrinos are Dirac particles with one massless state. Since

R-parity is conserved, the lightest neutralino is a prime candidate of the cosmological dark

matter. Depending on its mass, the lighter Majorana mass eigenstate (χ`) of a mixture of

the B −L gaugino and the fermionic component of Φ (R-parity odd right-handed neutrino)

appears as a new dark matter candidate. Assuming χ` is the lightest R-parity odd particle,

we have calculated the dark matter relic abundance. When the mass of χ` is close to half
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of the Z ′ boson mass, the pair annihilation cross section of the dark matter particle is

enhanced through the Z ′ boson resonance in the s-channel process and the observed dark

matter relic abundance is reproduced. We have also discussed LHC phenomenology for the

Dirac neutrinos. The Z ′ boson, once discovered at the LHC, will be a novel probe of the

Dirac nature of the light neutrinos since its invisible decay processes include the final states

with one massless (left-handed) neutrino and two Dirac neutrinos, in sharp contrast with

the conventional B−L extension of the SM or MSSM, where the right-handed neutrinos are

heavy Majorana particles and decay to the weak gauge bosons/Higgs boson plus leptons.

With a discovery of Z ′ boson, the High-Luminosity LHC may reveal the existence of the

right-handed neutrino.

Since the neutrinos are Dirac particles in our model, their Dirac Yukawa coupling must

be extremely small. It is an important issue how to naturally realize such a small Yukawa

coupling, or a huge hierarchy between the neutrino Yukawa coupling and those of the other

SM fermions, in a reasonable theoretical framework. In addition, the mass squared hierarchy

between φ and the other right-handed neutrinos is crucial to achieve the radiative B−L gauge

symmetry breaking. Realizing this hierarchy in a natural way is an additional issue. In order

to solve these hierarchy problems, we may extend the model to the brane-world framework

with 5-dimensional warped space-time [64]. Arranging the bulk mass parameters for the bulk

hypermultiplets corresponding to the matter and Higgs fields in the minimal SUSY B − L

model, we can obtain large hierarchy among parameters in 4-dimensional effective theory

with mildly hierarchical parameters in the original 5-dimensional theory. This direction is

worth investigating.
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8.2 Radiative Breaking of the Minimal Supersymmet-

ric Left-Right Model

We have considered a SUSY Left-Right symmetric model based on the gauge group

SU(3)c×SU(2)L×SU(2)R×U(1)BL, where in addition to the quark and lepton superfields

only two Higgs bidoublets are introduced. With suitable soft mass inputs at a SUSY breaking

mediation scale, where scalar squared masses are all positive, we have found that a right-

handed slepton doublet mass squared becomes negative in its RG evolution, and as a result,

the LR symmetry is radiatively broken to the SM gauge group by a right-handed neutrino

VEV. The right-handed neutrino VEV also generates a mass mixing between the SU(2)R

gaugino and SM right-handed lepton. This is a unique feature of our model, and the mass

mixing is severely constrained by the LEP electroweak precision data. We have found the

mass ratio of MR ∼> 25MWR
from the LEP bound. Realistic SM fermion mass matrices can be

reproduced by the introduction of the two Higgs bidoublets and suitable tunings of Yukawa

matrices. The right-handed neutrinos acquire Majorana masses of O(1 TeV) through its

mixing with the B-L gaugino, and the seesaw mechanism works to generate a light neutrino

mass of sub-eV scale.

In our model, R-parity is also broken by the right-handed sneutrino VEV, so that the

lightest superpartner (LSP) neutralino, which is the conventional dark matter candidate in

SUSY models, becomes unstable and no longer remains a viable dark matter candidate. As

discussed in [65, 61], even in the presence of R-parity violation, an unstable gravitino if

it is the LSP has a lifetime longer than the age of the universe and can still be the dark

matter candidate. Hence, as a simple way to incorporate a dark matter candidate in our

model, we can consider the LSP gravitino scenario. However, with the given mass hierarchy

MR = 100 TeV � MBL = 800 GeV, it is difficult to naturally provide the LSP gravitino

in 4-dimensional supergravity mediated SUSY breaking. For a simple realization, we may

consider a gravity mediated SUSY breaking in a warped 5-dimensional supergravity [66],
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where gravitino is always the LSP with a SUSY breaking mediation scale being “warped

down” from the Planck mass. This gravity mediation at low energies fits the choice of the

SUSY breaking mediation scale to be µ = 1012 GeV in our RGE analysis.
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A APPENDIX A: Renormalization

Group Equations

A complete study can be found in [62] for the SM and [63] for the MSSM. In the scheme

of GUT theories the U(1) associated isn’t the hypercharge exactly. Some literature uses the

gauge group U(1) normalization of 3
5
g2
y = g2

1.

A.1 The Standard Model

A.1.1 Gauge couplings

The RGEs for the gauge couplings of the SM are

16π2dgY
dt

= 41
6
g3
Y , (A.1)

16π2dgL
dt

= −19
6
g3
L, (A.2)

16π2dgc
dt

= −7g3
c , (A.3)

where t = lnµ and µ is the energy scale.

A.1.2 Yukawa Couplings

Each bold Yukawa couplings is a 3x3 complex matrix. The indicies explicitly written in

the main body of this document are understood. They are

dYi

dt
=

Yi

16π2
βi (A.4)
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where

βu =
3

2
(|Yu|2−|Yd|2) + Tr[3|Yu|2+3|Yd|2+|Ye|2]−

(
17

12
g2
Y +

9

4
g2
L + 8g2

c

)
, (A.5)

βd =
3

2
(|Yd|2−|Yu|2) + Tr[3|Yu|2+3|Yd|2+|Ye|2]−

(
5

12
g2
Y +

9

4
g2
L + 8g2

c

)
, (A.6)

βe =
3

2
|Ye|2+Tr[3|Yu|2+3|Yd|2+|Ye|2]−

(
45

12
g2
Y +

9

4
g2
L

)
. (A.7)

The RGE for the Higgs quartic coupling is

dλ

dt
=

βλ
16π2

(A.8)

where the one-loop beta function is

βλ =12λ2 −
(
3g2

Y + 9g2
L

)
λ+

9

4

(
1

3
g4
Y +

2

3
g2
Y g

2
L + g4

L

)
(A.9)

+ 4λTr[3|Yu|2+3|Yd|+|Ye|2]− 4Tr[3|Yu|4+3|Yd|4+|Ye|4].

A.2 The Minimal Supersymmetric Standard Model

In SUSY because of the degree of symmetry, there are no vertex corrections only wave

function renormalization contributions. The additional factor of scalars running in loops

produce slightly different equations.
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A.2.1 Gauge Couplings

The gauge couplings RGEs for the MSSM are

16π2dgY
dt

= 11g3
Y , (A.10)

16π2dgL
dt

= g3
L, (A.11)

16π2dgc
dt

= −3g3
c . (A.12)

A.2.2 Yukawa Couplings

The Yukawa couplings follow the same form as (A.4) with beta functions

βu = 3|Yu|2+|Yd|2+3Tr[|Yu|2]−
(

13

9
g2
Y + 3g2

L +
16

3
g2
c

)
, (A.13)

βd = 3|Yd|2+|Yu|2+Tr[3|Yd|2+|Ye|2]−
(

7

9
g2
Y + 3g2

L +
16

3
g2
c

)
, (A.14)

βe = 3|Ye|2+Tr[3|Yd|2+|Ye|2]−
(
3g2

Y + 3g2
L

)
. (A.15)

A.2.3 Soft SUSY couplings

The trilinear and soft masses are calculated as

dAije
dt

=
1

16π2
[ 4(YeY

†
e)
ikAkje

Y kj
e

Y ij
e

+ 5Aike
Y ik
e

Y ij
e

(Y†eYe)
kj − 3

Aije
Y ij
e

(YeY
†
eYe)

ij

+ 2(Akme |Y km
e |2+3Akmd |Y km

d |2)− 6(g2
YMY + g2

LML) ] , (A.16)

dAijd
dt

=
1

16π2
[ 4(YdY

†
d)
ikAkjd

Y kj
d

Y ij
d

+ 5Aikd
Y ik
d

Y ij
d

(Y†dYd)
kj − 3

Aijd
Y ij
d

(YdY
†
dYd)

ij

+ (Aikd − A
ij
d )(Y†uYu)

kj Y
ik
d

Y ij
d

+ 2(YdY
†
u)
ikAkju

Y kj
u

Y ij
d

+ 2(Akme |Y km
e |2

+ 3Akmd |Y km
d |2)− 14

9
g2
YMY − 6g2

LML −
32

3
g2
cMc ] , (A.17)
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dAiju
dt

=
1

16π2
[ 4(YuY

†
u)
ikAkju

Y kj
u

Y ij
u

+ 5Aiku
Y ik
u

Y ij
u

(Y†uYu)
kj − 3

Aiju
Y ij
u

(YuY
†
uYu)

ij

+ (Aiku − Aiju )(Y†dYd)
kj Y

ik
u

Y ij
u

+ 2(YuY
†
d)
ikAkjd

Y kj
d

Y ij
u

+ 6Akmu |Y km
u |2

− 26

9
g2
YMY − 6g2

LML −
32

3
g2
cMc ] , (A.18)

dm2
hu

dt
=

1

8π2
[
∑
i,j

3|Y ji
u |2(m2

hu +m2
q̃i

+m2
ũcj

+ |Ajiu |2) +
1

2
g2
Y Tr{Y m2} − g2

YM
2
Y

− 3g2
LM

2
L ] , (A.19)

dm2
hd

dt
=

1

8π2
[
∑
i,j

(
|Y ji
e |2(m2

hd
+m2

l̃i
+m2

ej
+ |Ajie |2) + 3|Y ji

d |
2(m2

hd
+m2

q̃i
+m2

d̃cj

+ |Ajid |
2)
)
− 1

2
g2
Y Tr{Y m2} − g2

YM
2
Y − 3g2

LM
2
L ] , (A.20)

dm2
ẽci

dt
=

1

8π2
[
∑
j

2|Y ij
e |2(m2

hd
+m2

ẽci
+m2

l̃j
+ |Aije |2)

+g2
Y Tr{Y m2} − 4g2

YM
2
Y ] , (A.21)

dm2
l̃i

dt
=

1

8π2
[
∑
j

|Y ji
e |2(m2

hd
+m2

l̃i
+m2

ẽcj
+ |Ajie |2)− 1

2
g2
Y Tr{Y m2}

− g2
YM

2
Y − 3g2

LM
2
L ] , (A.22)

dm2
d̃ci

dt
=

1

8π2
[
∑
j

2|Y ij
d |

2(m2
hd

+m2
d̃ci

+m2
q̃j

+ |Aijd |
2) +

1

3
g2
Y Tr{Y m2}

− 4

9
g2
YM

2
Y −

16

3
g2
cM

2
c ] , (A.23)

dm2
ũci

dt
=

1

8π2
[
∑
j

2|Y ij
u |2(m2

hu +m2
ũci

+m2
q̃cj

+ |Aiju |2)− 2

3
g2
Y Tr{Y m2}

− 16

9
g2
YM

2
Y −

16

3
g2
cM

2
c ] , (A.24)
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dm2
q̃i

dt
=

1

8π2
[
∑
i,j

(
|Y ji
u |2(m2

hu +m2
q̃i

+m2
ũcj

+ |Ajiu |2) + |Y ji
d |

2(m2
hd

+m2
q̃i

+m2
d̃cj

+ |Ajid |
2)
)

+
1

6
g2
Y Tr{Y m2} − 1

9
g2
YM

2
Y − 3g2

LM
2
L −

16

3
g2
cM

2
c ] , (A.25)

Tr{Y m2} =

ng∑
i=1

(m2
q̃i
− 2m2

ũci
+m2

d̃ci
−m2

l̃i
+m2

ẽci
) +m2

hu −m
2
hd
. (A.26)

A.3 The B − L Model

A.3.1 Gauge Couplings

The RGEs for the gauge couplings are

16π2 d gi
d(lnµ)

= big
3
i , (A.27)

where bi = (16, 11, 1,−3) for U(1)BL ×U(1)Y × SU(2)L × SU(3)c respectively. The gaugino

masses can be simply defined using the RGE invariant quantity

d

d(lnµ)

(
Mi

g2
i

)
= 0 . (A.28)

A.3.2 Yukawaw Couplings

RGEs for the Yukawa couplings at the one-loop level are described as

16π2 dYi

d(lnµ)
= Yiβi , (A.29)
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where the beta functions for each Yukawa are defined as

βYu = 3Y†uYu + Y †d Yd + Tr
(
3Y†uYu + Y†νYν

)
− 16

3
g2

3 − 3g2
2 −

1

9

(
4g2

BL + 13g2
Y

)
(A.30)

βYd = Y†uYu + 3Y†dYd + Tr
(

3Y†dYd + Y†eYe

)
− 16

3
g2

3 − 3g2
2 −

1

9

(
4gBL

2 + 7gY
2
)
](A.31)

βYe = Y†νYν + 3Y†eYe + Tr
(

3Y†dYd + Y†eYe

)
− 3g2

2 −
(
4gBL

2 + 3gY
2
)

(A.32)

βYν = 3Y†νYν + Y†eYe + Tr
(
3Y†uYu + Y †ν Yν

)
− 16

3
g2

3 − 3g2
2 −

(
4gBL

2 + gY
2
)
] (A.33)
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A.3.3 Soft SUSY Masses

We describe the soft masses as ignoring trilinear terms from the neutrinos

dm2
hu

dt
=

1

8π2
[
∑
i,j

3|Y ji
u |2(m2

hu +m2
q̃i

+m2
ũcj

+ |Ajiu |2) + |Y ji
ν |2(m2

hu +m2
l̃i

+m2
Ñc
j
)

+
1

2
g2
Y Tr{Y m2} − g2

YM
2
Y +

1

2
g2
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L ] , (A.34)
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=
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2
L ] , (A.35)
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=
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We define the hypercharge trace the same as in (A.26) and the B − L trace as

Tr{QBLm
2} =

ng∑
i=1

(2m2
q̃i
−m2

ũci
−m2

d̃ci
− 2m2

l̃i
+m2

ẽci
+m2

Ñc
i
). (A.40)
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A.4 The Left-Right Model

A.4.1 Gauge Couplings

The RGEs for the gauge couplings are

16π2 d gi
d(lnµ)

= big
3
i , (A.41)

where bi = (16, 1, 1,−3) for U(1)BL×SU(2)L×SU(2)R×SU(3)c respectively. The gaugino

masses can be simply defined using the RGE invariant quantity

d

d(lnµ)

(
Mi

g2
i

)
= 0 . (A.42)

A.4.2 Yukawaw Couplings

RGEs for the Yukawa couplings at the one-loop level are described as

16π2 dYi

d(lnµ)
= Yiβi , (A.43)

where the beta functions for each Yukawa are defined as

βq = 4Y†qYq + Tr[3Y†qYq + Y†l Yl + (3Y†qY
′
q + Y†l Y

′
l + h.c.)]

−
(

4

9
g2
BL + 3g2

R + 3g2
L +

16

3
g2

3

)
, (A.44)

βq′ = 4Y′
†
qY
′
q + Tr[3Y′

†
qY
′
q + Y′

†
l Y
′
l + (3Y†qY

′
q + Y†l Y

′
l + h.c.)]

−
(

4

9
g2
BL + 3g2

R + 3g2
L +

16

3
g2

3

)
, (A.45)
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βl = 4Y†lYl + Tr[3Y†qYq + Y†l Yl + (3Y†qY
′
q + Y†l Y

′
l + h.c.)]

−
(
4g2

BL + 3g2
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, (A.46)
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)
. (A.47)

A.4.3 Soft SUSY couplings

The soft mass RGEs are
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For equations (A.48)-(A.53), the trace terms are defined as

Tr
[
QBLm

2
]

= 2
∑
i

(
m2
Q̃i
−m2

Q̃ci
−m2

L̃i
+m2
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)
. (A.54)
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B APPENDIX B: SUSY Algebra

B.1 Grassman Algebra

The superspace coordinates θ and θ̄ are chiral coordinates. We can explicitly write the

spinor index, θA and θ̄Ȧ where θAθA = θ̄Ȧθ̄
Ȧ = 0. In the main body of this document we use

covariant bilinear notation where θθ 6= 0. Three or more factors of θ or θ̄ will be zero. We

use the Pauli Matrices, σµ as well the following identities:

εAB =

 0 1

−1 0

 , (B.1)

εAB =

 0 −1

1 0

 , (B.2)

θAθB = −1

2
εABθθ, (B.3)

θAθB =
1

2
εABθθ, (B.4)

θ̄Ȧθ̄Ḃ = −1

2
εȦḂ θ̄θ̄, (B.5)

θ̄Ȧθ̄Ḃ =
1

2
εȦḂ θ̄θ̄, (B.6)

θσµθ̄ = θAσµ
AḂ
θ̄Ḃ, (B.7)

d2θ = −1

4
dθAdθA, (B.8)

d2θ̄ = −1

4
dθ̄Ȧdθ̄

Ȧ, (B.9)

d4θ = d2θd2θ̄, (B.10)

75



∫
d2θ =

∫
d2θ̄ =

∫
d2θθA =

∫
d2θ̄θ̄Ȧ = 0, (B.11)∫

d2θθθ =

∫
d2θ̄θ̄θ̄ = 1, (B.12)∫

d4θθθθ̄θ̄ = 1. (B.13)

The mass dimension of θ and θ̄ are -1/2 while dθ and dθ̄ are +1/2.
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