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FUNDAMENTALS IN NUCLEAR THEORY 

AUTHORS' CORRECTIONS 
AND NOTE ADDED IN PROOF 

C H A P T E R 2 

Page 94, l ine 10 

F o r nuclei read nucléons 

Page 96, equation (2. 1.1) 

Insert minus sign before 2. 6 

Page 98, equation (2. 2. 5) 

Equation should be: 

< ( j m ) ( j m ) | v | ( j , m ' ) U ' S ' ) > = - G j j . % - ~ MeV 

Page 100, equation (2. 3. 8) 

Equation should be: 

<W 2 J|G| ( j ' ) 2 j ' > = - 6 ( J - J ' ) G n 

Page 101, l ines 8 and 9 

Replace the l ines by the fol lowing: 

N 

Potential energy f o r pair coupling — - — Gf2 

Potential energy f o r aligned coupling HííLZLÜp 

Page 102, 9 l ines f r om bottom 

F o r V „ read u„ 

Page 102, 8 l ines f r om bottom 

F o r U„ read vv 

Page 102, 3 l ines f r om bottom 

F o r V„ read u „ 
F o r U„ read v., 



Page 107, equation (3 .3 .2 ) 

Page 124, equation (6. 1. 3) 

Equation should be: 

Q(t ) = e c o s Ш 1 = | е ( е " 1 ш 1 + е ' ш ) 

Page 126, equation (6 .3 .1 ) 

F o r (u„v„. + u„.v„-) read (u„v„. + u „ . v „ ) 2 

Page 127, equation ( 6 .3 .2 ) 

F o r (u„v„. + u „ . v „ ) read (u^v,,. + u „ . v „ ) 2 

Page 131, i ine 3 

F o r 25 MeV read 50 MeV 

C H A P T E R 8 

Note added in proof 

The conclusion reached in Section 4.4, that the two - l e ve l approximation to S can be unitary 
only if the part ia l width vec tors of the two resonances are orthogonal, is based on the a s -
sumption that the sum of the part ial widths of each resonance equals the corresponding total 
width. If this condition is re laxed, t^t2 is not necessar i ly zero , and the conditions (4. 37) a re 
replaced by these m o r e general ones: 

t | t 2 = ± ( X 2 - l ) i ( E 2 - E * ) , 

11 - Bt * = ± i [ ( X - l ) / ( X + l ) ] i ( t 2 + B t g ) , 

t 2 - B t * = Ti[(X - 1)/(X + l ) ] i ( t j + Bt* ), 

where X, the rat io of the sum of the part ia l widths to the total width, i s the same f o r both 
states and sat is f ies the inequalit ies 

i ¿X2 < l + r ^ n , / I e j - E J 2 . 

In the two-channel case, X2 = 1 and t Jt2 is^ necessar i ly z e r o . 
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FOREWORD 

One of the principal aims in setting up the International Centre for 
Theoretical Physics was the development of physics in its various aspects 
and a quest for a deeper sense of the scope and unified nature of the subject 
as a whole. In pursuance of this the International Centre has followed 
a policy of organizing extended research seminars with a comprehensive 
and synoptic coverage. The f i rs t of these - lasting over a month - was 
held in 1964 on fluids of ionized part icles and plasma physics; thé second, 
lasting for two months, concerned itself with physics of elementary particles 
and high-energy physics. The third, of three months' duration, October-
December 1966, covered nuclear theory. The present volume records the 
proceedings of this research seminar. The long duration of these seminars 
allows the completeness of presentation of a conference together with the 
relaxed atmosphere necessary for discussionandreview. Since the seminars 
were attended as far as possible not only by physicists who were working 
at the Centre but also by participants f rom other disciplines, the presen-
tation natural ly emphasized the in ter - re la t ion of dif fer ing disciplines, for 
example of nuclear theory with particle physics, covering both the techniques 
used, l ike Regge poles, sum rules and group theory, as wel l as the basic 
conceptual f ramework . 

The seminar course was directed by Professors A . de-Shalit and 
C. V i l l i . It is the intention of the Centre to continue the tradit ion of these 
extended seminars and make them an annual feature of its work. 

Abdus Salam 



EDITORIAL NOTE 

The papers and discussions incorporated in the proceedings published 
by the International Atomic Energy Agency are edited by the Agency's edi-
torial staff to the extent considered necessary for the reader's assistance. 
The views expressed and the general style adopted remain, however, the 
responsibility of the named authors or participants. 

For the sake of speed of publication the present Proceedings have been 
printed by composition typing and photo-offset lithography. Within the limi-
tations imposed by this method, every effort has been made to maintain a 
high editorial standard; in particular, the units and symbols employed are 
to the fullest practicable extent those standardized or recommended by the 
competent international scientific bodies. 

The affiliations of authors are those given at the time of nomination. 
The u s e in these Proceedings of particular designations of countries or 

territories does not imply any judgement by the Agency as to the legal statue 
of such countries or territories, of their authorities and institutions or of 
the delimitation of their boundaries. 

The mention of specific companies or of their products or brand-names 
does not imply any endorsement or recommendation on the part of the Inter-
national Atomic Energy Agency. 
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CHAPTER 1 

PHENOMENOLOGICAL DESCRIPTION OF 
NUCLEAR SCATTERING AND DIRECT 
INTERACTIONS 

W . E . F R A H N . 

A. Elastic scattering. 1. Introduction. 1.1. S-matrix. 1.2. Spin-0 and spin-| particles. 
1.3. The elastic submatrix. 1.4. Coulomb effects. 1.5. Phenomenological methods. 2. Scattering 
by a complex potential. 2.1. Spinless particles. 2.2. Coulomb interaction. 2.3. Particles with 
spin. 2.4. Spin-i and spin 1 particles. 2.5. Isobaric spin coupling. 3. The optical model. 
3.1. Non-local interaction. 3.2. Scattering of nucléons. 3.3. Scattering of composite particles. 
4. Approximation methods. 4.1. Born approximation. 4.2. WKB approximation. 4.3. High-energy 
approximation. 4.4. Impact parameter approximation. 4.5. Rainbow scattering approximation. 
5, Diffraction models. 5.1. Strong absorption in nuclear scattering. 5.2. Diffraction model in 
configuration space. 5.3. Diffraction model in angular momentum space. 6. Strong absorption model 
for spin-0 particles. 6.1. Parameterized phase shift models. 6.2. Analytical formulation of the strong 
absorption model. 6.3. "Regge pole" approach. 7. Strong absorption model for spin-i particles. 
7.1. Spin-orbit coupling and polarization. 7.2. Relations between differential cross-section and 
polarization. 7.3. Relations between spin-orbit interaction parameters. 7.4. Isobaric spin coupling. 
7.5. Coulomb effects. 7.6. Total cross-sections. 8. Relations between scattering matrix and complex 
potential. 8.1. High-energy approximation. 8.2. WKB approximation, ( i ) Strong absorption, ( i i ) Weak 
absorption. 8.3. "Model of the optical model". 

B. Direct interactions. 9. Introduction. 9.1. Direct interaction and compound-nucleus reaction 
modes. 9.2. T-matrix. 9.3. Gell-Mann-Goldberger transformation. 10. Distorted-wave Born 
approximation. 10.1. Plane waves and distorted waves. 10.2. Zero-range approximation. 10.3. Finite-
range and non-local effects. 10.4. Extended optical potential. 11. Coupled channels. 12. WKB 
approximation and adiabatic method. 12.1. WKB approximation. 12.2. Adiabatic method. 13. Austern-
Blair theory. 13.1. Relation between inelastic and elastic scattering. 13.2. Distorted waves in elastic 
scattering. 13.3. Extension to inelastic scattering. 13.4. Approximations. 14. Strong absorption model 
for inelastic scattering. 14.1. Single excitation. 14.2. Double and mutual excitation. 14.3. Applications. 
14.4. Odd-A nuclei; core excitation. 15. Conclusion. 15.1. Surface reactions. 15.2. Nucleón 
transfer reactions. 15. 3. Concluding remarks. 

A. E L A S T I C SCATTERING 

1. I N T R O D U C T I O N 

Phenomenological methods mediate between experimental data and 
basic theory. With such methods we t ry to find and correlate the 
systematic contents of measurements. The systematics is formulated 
by means of heuristic concepts and simple assumptions within the 
general f ramework of quantum mechanics. We hope that basic theory 
w i l l eventually justify and "explain" this description in terms of more 
fundamental concepts. 

In nuclear interactions, experiment provides us with eigenvalues 
and transit ion probabilit ies in the form of energy levels and their pro-
pert ies, widths and cross-sections. These quantities are determined 

The author is at the University of Cape Town, Rondebosch, South Africa. 

3 



4 FRAHN 

by the asymptotic behaviour of the wave functions. F o r scattering 
processes al l physical information is contained in the elements of the 
scattering (S-) mat r ix . The S -mat r ix and quantities related to it w i l l 
fo rm the general f ramework for the phenomenological methods to be 
discussed in this course. We start with a brief survey of its properties 
and its relat ion to measurable quantities1. 

1 .1 . S -mat r ix 

Consider the scattering of two particles with spins Sj and s 2 . The 
total wave function has the asymptotic form 

i к • ikr 

+ ) <sm s |F (k , r ) | s ' m ; > X s , s'm" ( 1 . 1 ) 

where 

) < s 1 s 2 m 1 m 2 |sms > X Siiii) ^ s2 m2 ( 1 . 2 ) 

are eigenfunctions of the channel spin s = s - ^ s2. Equation (1. 1) defines 
the amplitude operator F(S, r ) . The channel spin s and the orbital angular 
momentum Í couple to the total spin j = SL + s which is conserved in 
magnitude and direction. Expansion of Eq. (1 . 1) in eigenfunctions of j* 
and SL gives 

< s m s | F ( £ , r ) | s ' m ' s > 

= i - ^ ^ < í s m s | ^ ( é , Í ) | i ' s ' m ' > ( 6 í r ó s s . - S j
c s i í . s . ) (1 .3) 

ii'i 

where 

( i s m s ^ ( S . r j l i ' s ' m ; ) 

^ < i s m c m s | j m j > < i ' s , m | ! m ^ j m j > Y í m í ( r ) Y i v (k) (1 .4 ) 

The quantities S]
£s i v in the part ia l -wave expansion (1 .3) are the elements 

of the scattering mat r ix . General properties of the S -mat r ix follow f rom 
conservation laws. Conservation of angular momentum implies that 
S is diagonal in j and independent of m j . I f par i ty is conserved the 

1 For a comprehensive treatment of scattering processes I recommend the excellent work of 

Goldberger and Watson [1 ] . 
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difference Л - V must be even. F r o m invariance under t ime r e v e r s a l 
i t follows that S is symmet r i c , 

S L . i V = S í v , £s ( 1 - 5 ) 

Conservat ion of probabi l i ty impl ies that the S - m a t r i x is uni tary , 

^ 4 . r s " S í V , í " s " = 6 í í • áss' ( 1 . 6 ) 

t"s" 

I t is convenient to introduce the transit ion operator T which is 
connected with the amplitude operator F by 

T = - T F ( 1 . 7 , 

where M is the reduced mass of the part ic les in the f inal state. In 
the par t ia l -wave representat ion the T - m a t r i x is re lated to the S - m a t r i x 
by 

2 

The di f ferent ia l cross-sect ion for given spin orientations is 

^ | s m S l s ' m ] ) = | ( s m s I F(lt, r ) I s'irij1 (1 .9 ) 

I f the incident beam and the target a re random mixtures of a l l possible 
spin orientations, the measured di f ferent ia l cross-sect ion is an average 
over a l l in i t ia l states and a sum over a l l f inal states: 

d6 1 V do-
d?7= ( 2 s , + 1) ( 2S 2 + 1) L D?7 ( S m s , s 'm- ) (1 .10 ) 

sms,s'mj 

The total cross-sect ion is obtained by integrating over scattering angles 

= F " X ( 2SJ + I ) ( 2 S 2 + 1 ) l 5 « , 6 s s - * s k , c v l 
í í ' j 

2 ( 1 . 1 1 ) 



6 FRAHN 

1 .2 . Spin-0 and sp in - ! particles 

We shall be interested mainly in the scattering of (non-relativistic) 
spin-0 and sp in - ! projecti les by spinless targets. For these physically 
most important cases the scattering formal ism simplif ies considerably. 
In the sp in - ! case the amplitude operator F(îc, r ) s f(0) becomes a 
2 X 2 matr ix in spin space 

f(0) = A(0) 1 + B ( 0 ) i w (1.12) 

where n = k x k ' with k 1 = r and cos0 = к • k \ and cr is the Pauli spin 
operator. The S-matr ix reduces to 

s k r r V s « , ( 1 Л З > 

where j = i ± ! . With the shorter notation 

s! + * = „ ; = e i 2 6 I . s|-* = 4 ; = ei26'« (1.14) 

which defines the rea l phase shifts ô j , the "non-spinflip" amplitude 
A ( 0 ) and the "spin-f l ip"amplitude B(0) become 

A ( e ) = I k X t ( i + 1 ) ( 1 " r , i ) + P H C O S 0 > 
t =o 

(1. 15) 

B ( e ) = " A X ( r » í - n ¡ ) ¿ P f (COS0) 

! = 0 

I t is often convenient to use a special notation for the average and the 
difference of the S -mat r ix elements in the two spin states, 

" î + 2 Ï T T V = " Ï ' "¡ < 1 Л 6 ) 

Scattering in general changes the state of polarization of sp in - ! 
part ic les. We confine ourselves to an unpolarized incident beam. The 
polarization vector is P = P(0)n with the polarization given by 

p ( 0 ) = 2 I m A(0) I m B ( 0 ) + Re A(0) Re B(9) 

|A(0) | 2 + |B(0 ) | 2 

The differential cross-section for elastic scattering of sp in - ! particles 
becomes 

= |A(0) |2 + |B(0) | 2 (1.18) 
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1 . 3 . The elast ic submatr ix 

The col l is ion of composite par t ic les may lead to channels other than 
those corresponding to elast ic scattering: react ion channels. In this 
case the S - m a t r i x connecting elast ic channels is a submatr ix of the 
complete mul t i -channe l S - m a t r i x . Whi le the fu l l S - m a t r i x is uni tary 
the submatr ix is not. F o r s p i n - ! par t ic les this impl ies 

№ 1 * 1 ' 

Th is can be described f o r m a l l y by introducing complex phase shifts 
6l = + i6f>, so that for each spin ¡state 

(1. 19) 

к I , к I =e-*W (1.20) 

The deviation of the elastic S - m a t r i x f r o m uni tar i ty measures the 
depletion of the elastic channels due to the presence of react ion channels. 
Th is depletion we ca l l absorption. 

The tota l c ross-sect ion a t o t is now composed of an elast ic scatter ing 
cross-sect ion a e l and an absorption cross-sect ion ст^ . In the s p i n - ! 
case we have 

= é X t ^ 1 * ! 1 - ч Г + Ф - ч ; ! 2 ] 
I =0 

00 

k2 Yj (2Í + 1) 

abs 

I . . ,2 SL (£ + 1) ,! 
. I 1 " " i l + ( 2 i n p l Ç « l 

I =0 

CO 

¿ y < 2 í + l ) 

í = 0 

i = 0 

1 - k l 2 i ( i + 1 ) 
(2Л + 1)2 |S{| _ 

= i l Jtot k 2 > [ ( í + 1 ) ( l - R e r j p + j e ( l - R e T j ¡ ) ] 
t = o 

27Г y 
k2 ¿ ( 2 Í + 1 ) ( 1 - Re i b ) 

(1.21) 

(1.22) 

( 1 .23 ) 
í =0 

F r o m Eqs. (1. 15) and (1. 21) follows an important re la t ion between 
the total c ross-sect ion and the scatter ing amplitude in the fo rward 
direct ion, the optical theorem, 

Air I m f (0) ( 1 .24 ) 
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For spin-0 particles the scattering amplitude is a scalar and we 
have tj j = rj¿, or r) e = and f f = 0. 

1 .4 . Coulomb effects 

In the presence of Coulomb interaction the incoming and outgoing 
asymptotic waves are distorted and the exponents in Eq. (1.1) are re -
placed by 

li-r -» {к r} = к r + n In ( к r - K?) 
(1.25) 

k r ^ { k r } i к r - n In (2 к r ) 

where n is the Coulomb parameter 

" ^ ( 1 - 2 6 ) 

F r o m the S-matr ix elements we separate the point-charge Coulomb 
effects by replacing 

where the Coulomb phase shifts ст{ are given by 

e i 2 o c = r ( l + I f i n ) 

Г (£+ 1 - in) { 1 - ¿ b > 

F o r instance, the scattering amplitude for spin-0 part icles becomes 

6 = 0 

CO 

= f c (0 ) + ^ Y, ( 2 i + 1 ) ( l - n í ) e i 2 o « P { (COS0) (1.29) 
Í =o 

where 

f C ( 6 ) = " 2k ( s i n I б ) 2 e X p ^ - 2 п 1 п s i n i e + 2CT0] (1 .30) 

is the Coulomb scattering amplitude. 

1 .5 . Phenomenological methods 

The measurable quantities in scattering processes are completely 
determined by the elements of the scattering mat r ix . For most ex-
periments we need only a submatrix of the complete S -mat r ix , such 
as the quantities rj-f in elastic scattering of spin-? particles by spin-0 
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targets. To determine these quantities one can follow different methods. 
On the one hand we can t ry to extract the r]£ as uniquely as possible 
f rom measured cross-sections. This empir ica l method is the phase 
shift analysis. I t is practicable only at low energies where the number 
of relevant part ia l waves is sufficiently smal l . On the other hand one 
can t ry to determine the structure of the S -mat r ix elements as com-
pletely as possible f rom basic principles of quantum mechanics, f rom 
its general characterist ics such as unitarity and symmetry propert ies, 
together with dynamical postulates such as analyticity. This is the 
fundamental approach of dispersion theory. The application of this 
method to complex nuclei is st i l l at an ear ly stage. 

In this situation the description of nuclear processes rel ies heavily 
upon phenomenological methods to bridge the gap between experiment 
and basic theory. The oldest and most popular of these methods is 
based on specific models of the nuclear interaction. I t replaces the 
many-body interaction by a model Hamiltonian containing an effective 
two-body potential operator. The S-matr ix elements are generated by 
solving the wave equation and determining the coefficients of the out-
going spherical waves in the asymptotic region. Absorption is des-
cribed by an imaginary part of the potential operator. This method is 
the complex potential model (CPM) or optical model. 

Another approach has recently been developed which may be re -
garded as intermediate between phase shift analysis and dispersion 
theory, the parameter ized S -mat r ix method. The dependence of the 
S -mat r ix elements on angular momentum and energy is described by 
simple functional forms, characterized by a few parameters. A l -
though this method has been largely stimulated by the C P M , it aims at 
avoiding the potential concept and hopes to find its eventual justification 
in dispersion theory. I t has found its simplest applications so far in 
processes dominated by strong absorption, and in this form is called 
strong absorption model (SAM). However there are indications that 
this approach can be extended to general scattering situations. In these 
lectures we shall describe how the two phenomenological methods are 
applied to elastic scattering and direct interactions and how they are 
related to each other. 

2. S C A T T E R I N G BY A C O M P L E X P O T E N T I A L 

2 . 1 . Spinless particles 

F i r s t we consider the complex potential model for elastic scattering. 
Let us start with the simplest case of uncharged spinless particles 
interacting with a local central potential U( r ) = V ( r ) + iW( r ) . A solution 
of the Schrôdinger equation 

—* л , 2M 

( V ^ k 2 ) ^ = - p - U ( r ) 0 (2 .1) 

which behaves asymptotically as 
¡/Д+'(к, r ) = e + F ( E , ï c ' ) - — (2 .2) 
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satisf ies the in tegra l equation 

ф<+4 к , ? ) = (2 .3 ) 

where G ^ ( r , ? ' ) is the f ree -space Green's function 

< * о 1 г ' т ' ) = -ЬтгТГ ( 2 - 4 ) 
r - r 1 

The asymptotic f o r m of Eq. (2. 3) is 

ф м ( k , r ) = ei?"r———-г- I e ^ ' U(r')i/Л+> ( K , r ' ) d ? ' — (2 .5 ) 
27rh2 J r 

and the elast ic scatter ing amplitude becomes 

F(ïc ,E") = - 2 ^ 5 U ( r ) < / / M ( k , T ) dr 

M <e i k ' , r | u | ^ ( + > ( k , r ) > 
(2.6) 

2 Л 2 

where Í?' = r . Wi th the definit ion (1. 7) we find for the elastic T - m a t r i x 

T ( E , E ' ) = < e i k ' r |u | ¡ / / ( + ) (k , r ) > (2 .7 ) 

Now we expand both sides of Eq. ( 2 . 6 ) in pa r t i a l waves. Inser t ing 

I ' ' e r = j £ ( k r ) Y t m ( r ) Y ; m ( k ) ( 2 .8 ) 
£m 

4тг 

i m 

<//« ( k , r ) = H ) i £ f « ( k , r ) Y t o ( r ) Y * m (k) (2. 9) 

in Eq. (2. 6) , integrat ing over angles and comparing wi th Eq. (1. 29) in 
the f o r m 

F ( k , k ' ) = i Ç ^ ( 1 - 4 | ) Y t m ( k ' ) Y*m (k) (2. 10) 
im 

gives 

r,e = 1 - i ^ f - J j ^ k r ) U ( r ) f (
{

+ ) ( k , r ) r d r (2 .11 ) 
о 



NUCLEAR SCATTERING 11 

This exact expression for the S - m a t r i x elements in t e rms of the potential 
is in i tse l f not v e r y useful for calculat ing the r¡e , except as a star t ing 
point for approximat ion methods. I t contains the fu l l r ad ia l wave function 
ftp (k, r ) which behaves asymptot ical ly as 

f « s i ( н * - 4 l H 4 ) ( 2 . 1 2 ) 

where 

Н 4 ( к г ) = i k r h<¿>(kr)s exp i (кг - i (2. 13) 

and h ^ = j í + in É is the spher ica l Hankel function. In pract ice one 
calculates the r)c by numer ica l integrat ion of the rad ia l wave equation 

dgf f f 
d r 2 

k 2 _ £ ^ ) = M U ( r , f ( ; ) ( 2 . 1 4 ) 

The in terna l solution is generated f r o m a ser ies expansion in powers 
of k r by stepwise integrat ion of Eq . (2. 14), and matched to the externa l 
solution (2. 12) at a radius so la rge that U ( r ) is negl igible. The r){ is 
determined by the condition of equal logar i thmic der ivat ives of f tp at 
the matching radius. 

2. 2 Coulomb interact ion 

F o r charged par t ic les , the r e a l par t of U ( r ) contains the Coulomb 
potential V c ( r ) , usual ly that of a uni form charge distr ibut ion 

2 R C V R 2 y 

V c ( r ) = r й R c 

( 2 .15 ) 

where R c is the Coulomb radius. The Coulomb-distor ted rad ia l wave 
function behaves asymptot ical ly as 

f ( ï > s ! ( H f - u . H Ç j ) (2 .16 ) 

where 

H ^ = G t + iF f = exp i ( { k r } - i I + a ) (2. 17) 

The regular and i r r e g u l a r Coulomb wave functions are denoted by 
Cf: and F . , respect ive ly , and satisfy the rad ia l equation 

d r 2 k2 - 2kn 1 (1+ 1 ) 
HÇ = 0 (2.18) 
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The Coulomb phase shifts ст. a re generated f r o m the recurs ion re la t ion 

'e-1 + arctg ( n / i ) (2 .19 ) 

Again we obtain rj{ f r o m the continuity condition at a suitably chosen 
matching radius. 

2 . 3 . P a r t i c l e s with spin 

F o r par t ic les wi th spins Sj and Sj the procedure remains essential ly . 
the same though the f o r m a l i s m becomes more involved. The interact ion 
potential in genera l depends on S] , s2 and ¿ as we l l as on r , and commutes 
wi th the total angular momentum j*. The wave function ф ^ (к, r ) sat isf ies 
the Schrôdinger equation 

( V 2 + k 2 ) ^ s = U (2 .20) 

Expanding in eigenfunctions of J a n d î , sms 

= 4 * ^ < í s m s | ^ ( k , ? ) | í ' s ' m ; > X s . m . ^ ( 2 2 1 ) 

£i ' j s'rrij 
y ie lds 

d 2 

d r 2 + k 2 - l ' ( l ' + 1) ' f j W 
1ls,l"s" ( k , r ) - IM. V 

" ft2 L 
и ils 

l's'.fs" (Г) С 
£"s" 

. (к , г ) 

(2 . 2 2 ) 

where the in teract ion m a t r i x is given by (see R e f . [ l ] ) 

TTj£s , , .£"-£'2 s + 1 
U jy . i -s" ( r ) = i 2 j + 1 

I Ls'm! 
1 s ' m ; I & i (k, r ) I a sms > * U < i " s" m's' |3^(к, r )|SL sms >d? d5 

(2. 23) 

Equation (2. 11) is genera l ized to 

S is,£V = ô££'ôss' 

a oo 

I / V < k r > U i v . l " ( r > f í v . £ s ( k ' r ) r d r < 2 " 2 4 > 
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The radia l wave functions f ^ , , . , now satisfy a system of 2 s + l coupled 
di f ferent ia l equations (2. 22). I f the interaction is central , we have 
U í V £"s" = 6 í í , 6 ss ' U j í S a n d t h e syste111 (2- 22) gets uncoupled. 

2 . 4 . Sp in - ! and spin-1 part icles 

Le t us now specialize to sp in - ! particles scattered by spinless 
targets. The interaction w i l l in general contain a spin-orbit t e r m of 
the form 

Us ( r ) Í • s (2 .25) 

where Us = Vs + iWs , in addition to the central potential U c ( r ) . The 
eigenvalues of ?• s in the two spin states j = SL + ! and j = SL - ! are 
and - ! ( i + 1), respectively. For the radial wave functions we wri te 

óíS'fí"!±. a n d E q " ( 2 , 2 2 ) b e c o m e s 

f ^ ( k , r ) = [Uc ( r ) + !^US (r)] f « ( k , r ) 

(2. 26) 

4 ? - ( к - г ) = [Uc ( r ) - i ( i + l ) U s ( r ) ] f £ > ( k , r ) 

F o r spin-1 particles there are three states j = £ + 1, £ - 1, in which 
the s p i n - o r b i t operator 1 - s has the eigenvalues SL, - 1 , - ( i + 1), 
respectively. Under the spin-orbit interaction (2 .25) the corresponding 
radia l wave functions f j * ~ x = 6tl, (f j + , f { 0 , f j . ). satisfy three un-
coupled dif ferential equations. However, in addition to the vector 
spin-orbit interaction there may be tensor couplings of the form (see 
R e f . [ 2 ] ) 

(rs)2 - I , (p i ) 2 - I ? 2 , ( I s ) 2 + i l s - jT (2 .27) 

which in general give a set of coupled radial equations. In this Course 
we shall confine ourselves to spin-0 and s p i n - ! projecti les. 

2 . 5 . Isobaric spin coupling 

A formal ism s imi la r to that for ordinary spin applies to the 
isobaric spins t^ and t 2 of the part icles. Lane [3 ,4 ] has suggested 
an extension of the rea l potential by an isobaric spin coupling of the 
form 

Vt ( r ) t - T (2.28) 

which arises f rom the Heisenberg force in the nucleón-nucleón inter -
action and is analogous to the spin-orbit interaction (2. 25). We shall 
find it convenient to include a factor 4 / A in Eq. (2. 28), so the rea l 

_d_ ,2 ЦЛ + D 
d r 2 + K " r 2 

d2 

dr 2 
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potential becomes 

V = V0 + J - V t t - T (2.29) 

F o r nucléons the total isobaric spin can have the values T 1 = T + 5 
and T ' = T - where T = 5 ( N - Z ) . In these states the operator t - f has 
the eigenvalues -|-T and ( T + 1), respectively. Incident neutrons 
(t3 = can only have T + j , while protons can have both T + ! and T - 5 . 
The neutron potential is 

? N - 7. 
Vn = V 0 + X V t T = V0 +v t - j - (2 .30) 

We obtain the mean proton potential as an average of 

v (
P

+ ) = v o + f v . T a n d Y (P = V ° - i v t < T + 1 ) < 2 - 3 1 > 

weighted with (2T+ l )"1 and 2 T ( 2 T + l ) " i respectively, 

VP = 2 т Т Т (VP+) + 2 T V P ) ) = v ° " I v t T = vo - x и г 5 ( 2 - 3 2 ) 

That part of the optical potential which is proportional to ( N - Z ) / A is 
called the symmetry te rm. 

The scattering amplitude has two components, fW(0 ) and f(~)(0), 
and the elastic proton scattering amplitude becomes 

fp p(0) = 2 Т Т Т [ f ( + ) ( 0 ) + 2 T f ( " ) ( 0 ) ] (2 .33) 

To the spin-f l ip amplitude in spin-orbit interaction corresponds a 
charge-exchange reaction amplitude for transit ion to the isobaric 
analogue state of the target nucleus, 

f p n ( 0 ) = g ¿ [ f ( + ) ( 6 ) - f H (0)] (2 .34) 

The dif ferential cross-sections for p -p scattering and p - n reaction 
become 

(2. 35) 

(2 .36) 

respectively. 

f L . (pp) = |fpp(0 ) 12 = - ( 2 Г Т Т F l f ( + ) ( e > + 2 T f " ( e > I2 



NUCLEAR SCATTERING 15 

These formulae are val id only if Coulomb forces may be neglected. 
As the Coulomb interaction is non-central in isobaric spin space, i t 
couples together the equations for the proton and neutron wave functions, 
the space parts of which behave asymptotically as 

• „'{кргр} 
( k p , î p ) s e ' W + f p p ( 0 ) (2. 37) 

P 

(2.38) 

In the isobaric spin coupling we have encountered an "extended" 
potential which can cause transitions to non-elastic channels. We shall 
discuss other interactions of this kind in later lectures. 

3. T H E O P T I C A L M O D E L 

3 . 1 . Non-local interaction 

Basical ly, the interaction between complex nuclei is a many-body 
problem and complex potentials can be calculated, at least in principle, 
f rom given nucleón-nucleón forces. This fundamental approach has 
been developed part icular ly by Brueckner and his co-workers and has 
gone a long way in justifying the phenomenological potential treatment 
of nucleon-nucleus interaction. Though the theory i tself is outside the 
scope of the Course, i ts result has certain features which should be 
incorporated in the phenomenological model. I t turns out that the 
nucleon-nucleus interaction operator for finite nuclei [5] is non-local 
in coordinate space. The interaction is described by a matr ix 

< ( r | v | r ' ) > = K ( r , r ' ) , and the single-part icle Schrodinger equation has 
the form 

-»2 9 2M Г 
(V +k' ) ф (r) = J p / К (г,"?1) ф ( r ' ) d r ' (3 .1) 

In a phenomenological treatment one can describe the effects of 
the non- local i ty without knowing the detailed structure of the interaction 
mat r ix , by introducing the range of non-locality, b, as a phenomeno-
logical parameter . A general fo rm of K ( r , r ' ) can be given by the r e -
quirements of (i) symmetry, K ( r , r ' ) = K ( r ' , r ) , (ii) reduction to a local 
potential K ( i \ ?') -» V ( r ) б (r - r ' ) in the l i m i t b 0, and (i i i ) translation 
invariance in infinite nuclear mat ter , Щ г , r ' ) -> V0 ób (r - r ' ) , where the 
interaction is equivalent to an effective nucleón mass. F r o m these 
conditions, Frahn and L e m m e r [6, 7] have suggested the form 

K ( ? , ? > ) = V ( N ) ( ^ - U b ( r ' - - r ' ) (3 .2) 
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with, for instance, 6b (p) = т т ш b"3 e x p ( - p 2 / b 2 ) , and investigated 
Eq. (3. 1) in effective mass approximation. The rad ia l wave equation 
becomes 

d r 2 + к 2 i { i + 1) î(k>r>=|r J K ^ r . r ' J f j i k . r ' J d r ' ( 3 .3 ) 

where 

K j ( r , r ' ) = 2тггг' J K ( r , r ' ) P { (Ç ) dÇ 
- l 

( 3 .4 ) 

This shows that non- local interact ions are essential ly i -dependent . 
Ansatz (3. 2) has been used by P e r e y and Buck [8] as a non- local 

extension of the complex potential , 

K ( r , r ' ) = v < N ) ( r + T 4 + i w ( N ) / Г + Г' 6„(? - ? ' ) ( 3 .5 ) 

I t is assumed that the non- local f o r m factor 6b (p) has the same 
functional f o r m for both r e a l and imag inary parts of the interact ion. 
F r o m the i r comprehensive analysis of neutron-nucleus scatter ing 
in the energy range 1-25 M e V , P e r e y and Buck conclude that the energy-
dependent local potential is l a rge ly equivalent to an energy-independent 
non- loca l potential . F u r t h e r m o r e , these authors found that the non-
loca l in teract ion is we l l approximated by an energy-dependent "equi -
valent loca l potential" ( r ) , imp l ic i t l y defined by 

U ( N ) ( Ï ) U ( L ) (r ) exp M b ¿ 

2h2 (E - U<L) (?)) (3 .6 ) 

where the non- local i ty for neutrons has a range b >*> 0. 9 fm . I t can 
be shown [9] that this re la t ion follows f r o m the Perey-Saxon approxima-
t ion [10] i f the F o u r i e r t r a n s f o r m of 6b (p) is expanded about the local 
wave number associated wi th the potential ( r ) . 

An a l ternat ive way of defining an equivalent local potential is to 
requ i re that both interact ions give the same scatter ing, i . e . generate 
the same S - m a t r i x elements [11] . This requ i rement has been studied 
in the three -d imens iona l case by F iedeldey [12] . He finds that the 
equivalent loca l potential is v e r y close to U ^ (?) as defined by Eq . (3. 6). 
P e r e y has shown [13] that the non- local wave function in the nuclear 
i n t e r i o r is reduced compared wi th the equivalent local wave function. 
F o r this " P e r e y ef fect" , F iede ldey obtains the expl ic i t expression 

<М
Г

)
 =

 (
r

>
 e x

P i b « U « (?) ( 3 .7 ) 
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He also shows that the equivalent local spin-orbit potential U ^ (r) is 
strongly reduced relat ive to the non-local spin-orbit potential (r) , 

• ^ U ( L ) ( r ) 

where M ( r ) is the energy-dependent effective mass function [9] . 
The non-locality of the nucleón-nucleus interaction resulting f rom 

the Brueckner theory explains most of the observed energy-dependence 
of the r e a l part of the phenomenological potential. However, the energy 
dependence of the imaginary part has a different physical origin. Ab-
sorptive potentials have been calculated in a many-body approach by 
various authors [14-22] . A general result is that (r) increases with 
energy up to about 100 M e V , mainly because nucleón-nucleón scattering 
is less inhibited by the Paul i principle at higher energies. F o r this 
reason i t is difficult to justify Perey and Buck's assumption of equal 
non-local form factors for the rea l and imaginary parts of K ( r , r ' ) . In 
fact i t is not at a l l c lear that the energy dependence of W^L '(r) can be 
completely replaced by a non-locality [23, 24] . We may, nevertheless, 
t r y to describe this dependence phenomenologically by assuming [25] 

K ( r . r - > = V ™ ^ ) ôbR ( ? - ? ' ) + i W < N ) ( ^ ) v \ (?-?.) (3. 9) 

A recent investigation [26] shows that this and s imi lar forms of non-
locality of the imaginary potential give good agreement with neutron 
data over a wide range of energies. 

In general i t appears possible to approximately replace non-local 
effects in nuclear scattering by a suitably defined local potential, which 
is easier to handle in numerical calculations. The equivalence would 
be exact i f i t could be proved that for a given non-local interaction there 
always exists a local potential which generates the same S-mat r ix . 
To my knowledge this is st i l l an open question. In what follows let us 
be satisfied with an approximate equivalence. 

3 . 2 . Scattering of nucléons 

We now turn to applications of the complex potential model to elastic 
nuclear scattering, where i t is usually called the "optical model". You 
w i l l find a comprehensive account in Hodgson's book [27] . Collecting 
the various components considered so far , the optical potential becomes 

U ( r ) = V c ( r ) + i W c ( r ) + [Vs (r) + i ^ ( r ) ] 1 - I + V c ( r ) + | Vt ( r ) t - T (3. 10) 

Each t e r m (except V c ) may be a function of energy E and is wri t ten in 
the form U¡ = - [ V 0 > i g i R ( r ) + i W 0 > i g i I ( r ) ] , where V 0 i i , W0>i are the "depths" 
a n d SíR(r)' g¡i ( r ) t h e radia l shapes of the component i . The radial shapes 
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are usually characterized by two parameters, a radius R = г 0 Аз and a 
diffuseness d. In general, each component w i l l have a different shape 
and different values of r 0 and d. The specific functional forms of g¡(r) 
are not determined by basic theory and are chosen for mathematical 
convenience. In most analyses the rea l central potential Vc (r) is assumed 
to be of Saxon-Woods (SW) shape 

The shape of the absorptive central potential is in general different 
f rom that of the rea l part . At low energies, nucleón-nucleón scattering 
is less inhibited by the exclusion principle in the nuclear surface than 
in the nuclear inter ior and we expect that g c i ( r ) is surface-peaked. This 
simple picture is supported by low-energy neutron scattering data[28-32] 
and confirmed by many-body calculations [18-21] . Possible forms 
describing surface-peaked absorption are of Gaussian or derivative-SW 
shape 

and the imaginary central potential should be a combination of a surface 
and a volume absorption te rm. The relat ive strength of volume absorption 
increases with energy and at.high energies the shape of W c ( r ) becomes 
approximately proportional to the nucleón density distribution. 

F o r the spin-orbit potential one nearly always choses the Thomas 
form 

In the next section we shall see that this assumption can be justified 
in high-energy approximation if gcR ( r ) represents the nucleón density 
distribution. The isobaric spin potential is usually assumed to have 
SW shape [33] , but i t has been suggested [34] that V r ( r ) should be peaked 
in the nuclear surface because the proton and neutron density distr i -
butions have different radi i . 

Extensive optical model analyses of nucleon-nucleus scattering 
data at low and medium energies have been made in recent years. 
A complete analysis should give simultaneous fits of the differential 
cross-sections du/dfl, the integrated cross-sections a t o t and aabs, and 
the polarization P(0). Comprehensive investigations have been made 
of neutron scattering in the range 1-25 MeV by Perey and Buck [8] 
and by Wi lmore and Hodgson [35] , of proton scattering in the range 
9-22 MeV by Perey [36] and at 30 MeV by Bar re t t et al. [37] . The 
most recent and complete analysis has been presented by Rosen et al. [38] . 
These studies show that i t is possible to give a consistent overal l 
description of nucleon-nucleus entrance channel phenomena in the low 
and medium energy range for not too light target nuclei. However, the 

(3.11) 

(3. 12) 

(3. 13) 
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number of phenomenological parameters necessary to obtain satisfactory 
fits is considerable, and usually one cannot determine their values 
without ambiguity. The ambiguities in the nucleon-nucleus potential 
become more serious at higher energies where the absorption is 
stronger. Consider, for instance, the extensive proton scattering data 
of Johansson et al . [39] at 180 M e V . With the usual optical potentials 
i t is diff icult to reconcile the smooth variat ion of the dif ferential cross-
sections at l a rger angles with the pronounced osci l latory behaviour of 
the polarization. One possible solution is to assume [40] that the 
radius of W c ( r ) is about 30% la rger than that of V c ( r ) . S imi lar features 
are observed at 150 MeV [41] and 160 MeV [42] . A re-analysis of the 
180-MeV data by Haybron and Satchler [43] with a 9 -parameter optical 
potential gives improved fits of do/dQ but the polarization fits st i l l 
appear to be unsatisfactory. Recently, Elton [44] has shown that an 
adequate description can be obtained with an entirely different shape 
of V c ( r ) , consisting of an attractive peak in the nuclear surface and 
a repulsive inter ior part . Potentials of this shape are suggested by the 
strong absorption model. Analyses with this model show that at very 
high energies the rea l central potential differs in both shape and sign 
f r o m those found in the region below 100 MeV [45,46] . 

3 . 3 . Scattering of composite particles 

The scattering of composite particles (deuterons, tritons, hel ium-3, 
alpha part icles and heavy ions) is dominated by strong absorption at a l l 
energies above the Coulomb b a r r i e r . I f we want to describe the inter -
action by means of a complex potential we would expect that the inter ior 
is largely shielded by the absorption in the nuclear surface. Igo [47,48] 
was the f i rs t to point out that the scattering of alpha particles is largely 
insensitive to the potential in the nuclear in ter ior . For deuteron 
scattering the extensive analyses by Perey and Perey [49] and by 
Halbert [50] revealed certain ambiguities in the depth of the rea l central 
potential [51] . These have been investigated by Drisko, Satchler and 
Bassel [52] who found that the different V ( r ) that fit the data generate 
essentially the same values of r ¡ t . The potentials V ( r ) in the nuclear 
inter ior have discrete values such that consecutive wel l depths differ 
by one half-wave length of each part ia l wave that contributes to the 
scattering. This is easily understood in terms of Austern's WKB 
calculations (see section 8.2). S imi lar ambiguities are found for 
hel ium-3 and alpha part icles (see Ref. [53] ). 

Can we resolve this ambiguity, is there a cr i ter ion by which we 
can select the "right" optical potential? One might think that combined 
analyses of direct reactions in distorted-wave Born approximation 
(DWBA) and of elastic scattering would lead to a unique potential. The 
radia l integrals in DWBA extend mainly over the nuclear inter ior where 
the distorted radia l waves differ for the different potentials. But so 
do the radia l integrals for elastic scattering, yet they yield the same 
values of r¡¡. We shall see la ter that at least for inelastic scattering, 
and probably for a l l surface reactions of strongly absorbed part icles, 
the radia l integrals can be expressed in terms of the elastic . I t is 
therefore very unlikely that combined elastic and reaction analyses 
w i l l determine a unique potential. A more promising possibility is 
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to calculate V ( r ) for composite projecti les f rom given nucleon-nucleus 
potentials. This has been investigated by Rook [54] . He starts f rom 
Watanabe's expression [55] for the deuteron potential 

Vd (?) = J [ V n ( ? + i x ) + V p ( ? - | x ) ] [cpd(x)]2dx (3.14) 

where Vp and Vn are the proton-nucleus and neutron-nucleus potentials, 
and cpd(x) is the deuteron wave function. I f Vn and V are assumed constant 
in the nuclear inter ior we have Vo d V0 n + V 0 p = N , where V 0 i N 

is the mean nucleon-nucleus potential wel l depth V Q ^ ^ 50 MeV . Rook 
extends this relat ion to heavier projecti les and conjectures 

V 0 , p ~ a R V 0 j N (3 .15) 

where Ap is the mass number of projecti le P. This selects the "deep" 
potentials V 0 i P >*> 100 M e V , 150 MeV and 200 MeV for deuterons, tritons 
and 3 He, and alpha part icles, respectively. One would expect a s imi la r 
relat ion for the depth of the absorptive potential. The ambiguities of 
W ( r ) for composite particles have not received as much attention as 
those of V ( r ) and deserve further study. 

The phenomenological optical model considered so far does not 
explicit ly take into account the contributions to elastic scattering which 
ar ise f rom coupling to inelastic channels. A generalization of the 
optical potential and the calculation of these effects by means of the 
coupled-channels theory wi l l be br ief ly discussed later (see section 11). 

4. A P P R O X I M A T I O N METHODS 

The wave equation (2.1) or (3. 1) cannot be solved in closed form 
except in very few special cases, and solutions have to be obtained 
by numerical integration. I t is however often useful and desirable to 
study the behaviour of wave functions, scattering amplitudes and S-mat r ix 
elements in terms of explicit expressions which can be derived by 
means of approximation methods. We shall now discuss several of these 
methods. 

4 . 1 . Born approximation 

Starting f rom Eq. (2. 6) for the elastic scattering amplitude, we obtain 
the f i r s t - o r d e r t e r m of the Born series expansion by putting 

< / / ( + ) ( í? , r )«e i i r 7 (4 .1) 

This yields 

F ( B ) = - Ш2 d? = - è <4-2) 
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where Ü(q) is the Four ie r t ransform of the complex potential and 
q = k - it' the momentum transfer . This approximation is val id roughly if 

- ^ - k d « 1 (4 .3 ) 

where d is the range over which the potential changes significantly. 
This condition is' however seldom satisfied in nuclear scattering. Much 
more useful is the WKB approximation. 

4 . 2 . WKB approximation 

This method starts f rom the classical l i m i t of the wave equation 
by means of an expansion in powers of h. Since i t describes several 
important non-classical features we may cal l i t a semi-c lassica l 
approximation. The wave function is wri t ten in the form 

^ ( + ) ( k , r ) = e i s ^ , r > (4 .4) 

where S(It, r ) is a complex phase function. Now we wri te 

S(k, r ) = S0 (E, r ) - i h S j (Й, r ) (4 .5) 

insert (4 .4 ) in the Schrodinger equation and compare powers of fi. This 
yields two equations, 

(VS 0 ) 2 = k 2 (?) (4 .6) 

and 

where 

VSQVSJ + ^SQ = 0 (4.7) 

k 2 ( r ) = k 2 - f ^ U (?) (4 .8) 

is the square of the local wave number. Equation (4 .7) reduces to the 
continuity equation for the velocity field v ( r ) = (Ti/ M)H(r ) and the particle 
density \ф\2 . Equation (4 .6) is equivalent to the Hamilton-Jacobi 
equation for the characterist ic function S0(îc, r ) and means that the 
motion proceeds along trajector ies normal to the surfaces S0 = const, 
(geometrical optics approximation). The solution of (4 .6 ) is therefore 

S 0 ( k , r ) = j k ( r ' ) dr ' = J 
class. class-

traject. traject . 

г 
к 2 - - | ^ U ( r ' ) 1 dr ' (4. 9) 
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4 . 3 . High-energy approximation [56] 

I f E » jU I , we may expand the integrand in (4.9) 

S (k , r ) = k - r - j U (?') dr ' (4. 10) 

(where we have dropped the subscript 0). Under the condition kd » 1 
the deviation of the t ra jectory by the potential w i l l be smal l and we may 
replace i t by a straight line in the direction of incidence It which defines 
our z -ax is . Thus r = E> + Itz, where |E>| = b is the impact parameter , 
and (4. 10) becomes 

S(k, r ) = к • r M 
"h^k U (b + kz1 )dz1 (4.11) 

In the relat iv ist ic case the same formula holds, but with M replaced by 
E / c 2 [57] . By inserting (4.11) in Eq. (2.6) we-obtain for the scattering 
amplitude 

F ( k , k ' ) = - ^ Je^-h-T U ( ? ) e x p 
M Г -» A 

• i ^ J U ( b + k z ' ) d z ' dr (4.12) 

At smal l scattering angles such that 9 kd « 1 we have (k-k1) • r ~ (k-k ' ) .b. 
Hence 

M 
F ( k , k - ) = - W j e 1(b) d(2)b (4.13) 

where 

1(b) = J 'U(b + kz) exp . M 
^Wk J u ( b + £ z ' ) d z ' dz (4. 14) 

Now 

T . h 2 k Г d 
I ( b ) = 1 l T J d ï e x P - i ^ J u ( b + Sz ' )dz ' dz 

(4. 15) 

. f t 2 к 
1 " м " i e x p 

• M 

4 2 k U(b + kz ' ) dz1 

and we obtain 

F ( k , k ' ) = ^ J e
i ( k " k , ) ' b [1 - ei26<b)]d(2>b (4 .16) 
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where 

ô(b) = - j u ( S + k z ) d z (4.17) 

I f the potential is symmetrical about the k-axis , ó(b) = 6(b). Then for 
small angles ( k - k ' ) . b ^kb0 cos ф, and using the integral representation 
of the Bessel function 

2тг 
eikbe cos®d(£ ,= 2 f f J q ( k b 0 ) ( 4 < 1 8 ) 

0 

we have 

F ( k , k ' ) = i k j T t l - ei25<b>] Jo(kb0)bdb (4.19) 
о 

Now we consider scattering of sp in- ! particles and assume that the 
potential consists of a central and a spin-orbit part, U(r ) = Uc ( г ) + Ц ( r ) / - s . 
Since i = r X k and s = we may write 

F ( k , k ' ) = ^ Je^"7''^ [ 1 - e i 2 ac ( b 'e i 2 6s(bX^) °] d (2)b (4.20) 

where 6C (b) is gi'ven by (4.1 7) with U = Uc and 

M b ) = - fus(S + î z ) d z ( 4 . 2 1 ) 

i 

By expanding the exponential in the integrand of (4. 20) and using the 
anticommutation properties of the Pauli spin operator we obtain [56] 

F(k , k' ) = 

% f e i ( l W j l - e i 2 W C O s [2kbôs (b)] - i ei26c(b> Sin[2kb6s (b)] (Sx Í )a }d ( 2 ) b 

(4. 22) 

With b x S = (ЙХк') cos ф, Eq. (4. 18) and 

2тг 

J e ikbecose с о зф d(¡¡ = j 2 j r j i ( k b 0 ) 

0 

(4 .23) 
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the amplitude can be wri t ten in the form (1. 12) 

F (S ,k ' ) = f(0) = A(0) + B ( 0 ) m (4.24) 

where 

A.(0) = ik / {1 - e
i2ôc(b) cos [2kbós (b)] } Jo(kb0)bdb 

(4.25) 

B(0) = ik J {ei25c(b) sin [2kbós(b)]} J^kbOJbdb 
о 

4 . 4 . Impact parameter approximation 

Here we start f rom the part ia l -wave expansion (1. 15) of A(0) and 
B(0), 

A(0) ^ ( 2 i + l ) (1 - f j j ) P£ (cos 0) 
í = о 

(4. 26) 

Í = 0 

introduce the semi-c lassica l correspondence £ + \ % kb, and replace 
the summation over i by an integration over impact parameters b. 
Using Szego's asymptotic expression for the Legendre polynomials, 

P i ( c o s 0 ) = ( ¿ ¿ У J o [ ( * + i ) 0 ] (4 .27) 

we obtain for smal l angles 

A(0) = i k J [ l - f i ( b ) ] J0 (kb0 ) bdb 
о 

(4 .28) 

B(0) = I k b ) Jx (kb0) bdb 
о 

Comparison with (4 .25) gives 

ñ (b) = ei25c(b) cos [2kb6 (b)] (4. 29) 
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Ç (b) = i 2 e i 2 5 c ( b ) sin[2kbôs (b)] ( 4 .30 ) 

T M s shows that the functions 6c (b), ôs(b) are the phase shifts for the 
cent ra l and sp in -orb i t potentials, respect ive ly . F o r spher ica l ly -
s y m m e t r i c a l potentials we may r e w r i t e Eqs. (4. 17), (4. 21) in the f o r m 

6C (b) 
M Г U c ( r ) r dr 

( r 2 - b2)^ 
(4 .31 ) 

M b ) = _ _ M _ P Us ( r ) r_dr 

Ï ( r 2 - b 2 / 
(4 .32 ) 

F o r the S - m a t r i x elements 

K = r,it+21+Г 1¡=fle-
£+ 1 
2i+ 1 

(4 .33 ) 

we obtain in impact p a r a m e t e r approximation 

r,+(b) « fj (b) + (b) = exp { i 2 [óc(b) + kbôs(b)]} 

17 (b) « f, (b) - | f ( b ) = exp { i 2 [óc(b) - kbó (b)]} 
(4 .34) 

F o r an independent-part ic le model of the nucleus, Glauber [56] has 
shown that the complex nucleón-nucleus potential can be expressed in 
t e r m s of the nucleón-nucleón scatter ing amplitude as 

U ( r ) = - A 2JTÎI 
M a n ( 0 ) p ( r ) + i b i ( 0 ) -1 dp(r) 

r dr (4 .35 ) 

where A is the target mass number , p ( r ) the nuclear density normal i zed 
to unity, and 

f n ( 6 ) = a n (9 ) + b n (9 )n - a (4 .36 ) 

the nucleón-nucleón scatter ing amplitude (bj, denoting the der ivat ive of 
bn wi th respect to angle). Hence we have 

2wh2 

U c ( r ) = - A ^ - an (0)p(r) (4 .37 ) 

U , ( r ) = - A Í ^ b . ( 0 (4 .38 ) 
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Equation (4. 38) justifies assumption (3. 13) for the form of the spin-
orbit potential. F r o m Eq. (4. 37) we obtain, using the optical theorem, 

2îrh2 fi2 к 
W( r ) = - A — l m a n ( 0 ) p ( r ) = - A — a n p ( r ) (4 .39) 

In the nuclear 
in ter ior , assuming constant nucleón density pQ = Ap(0), we have 

w h 2 k 1 ,л л п , 
W o = l M a " p o = 2 M L ( 4 - 4 0 ) 

where L = (tJnPo)"1 is the classical expression for the nucleón mean free 
path. F r o m Eqs. (4 .29) and (4 .31) we can derive an approximate ex-
pression for the transparency of the nucleus to l o w - i part ia l waves 

| _ / r i . | -2 lm<5n(0) |rj(0)| = e s ' = exp 2M W(r ) dr W 0 R 

e « e"^ 1 (4 .41) 

4 . 5 . Rainbow scattering approximation 

Another semiclassical method based on the WKB approximation has 
been developed by Ford and Wheeler [58] . I t is assumed that the 
nucleus is " semitransparent" and that the interaction can be described 
by a smoothly varying potential with weak absorption in the nuclear 
surface. The classical deflection function 0 ( i ) = 2da c /d i for the 
nuclear plus Coulomb potential has a maximum ôr, the "rainbow angle", 
at a certain angular momentum i r . By means of suitable approximations 
of ®( i ) in the vicinity of the rainbow angle one can derive closed ex-
pressions for the elastic scattering amplitude. This model has been 
applied to alpha particle [58, 59] and heavy-ion scattering [60, 61]. 
Approximate fits can be obtained at large angles where the angular 
distributions are smooth because of strong Coulomb interference, but 
owing to the weak-absorption assumption the rainbow model has con-
siderable difficulties in describing other features of heavy particle 
scattering. However, a recent extension of the Ford-Wheeler method by 
Sabatier [62] appears to be capable of more general applications. 

5. D I F F R A C T I O N MODELS 

5 . 1 . Strong absorption in nuclear scattering 

Far - reach ing approximation methods have been developed which 
can be applied when strong absorption dominates the scattering. Strong-
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absorption situations are encountered quite frequently in nuclear 
reactions at medium and high energy, in part icular for 

(i) nucléons, mesons and hyperons of energy E ^ 100 M e V , 
(ii) composite part icles (deuterons, tr i tons, hel ium-3, alpha 

part icles and heavy ions) above the Coulomb b a r r i e r . 

In terms of the complex potential model we may roughly define a strong 
absorption situation by I (W) ^ | l ( V ) | , where I (U) = / U ( r ) d r is the volume 
integral of the potential. An alternative definition is that the transparency 
should be smal l , e « 1, which by relat ion (4.41) means that the mean 
free path be smal l compared with the nuclear radius 

However, a more appropriate characterizat ion of strong absorption is 
given in terms of the elastic S -mat r ix elements. In section 1 we have 
defined absorption as the depletion of the elastic channels due to the 
presence of open reaction channels, measured by the deviation f rom 
unitari ty of the elastic S-submatr ix . Those part ia l waves are called 
strongly absorbed for which 

In situations (i) and (ii) this condition is satisfied for a range of orbital 
angular momenta below a cr i t ica l value £0 . In these cases the scattering 
is closely s imi la r to diffraction by an opaque obstacle, and approximation 
methods pertaining to such situations are called diffraction models. 
In the time-independent description of scattering processes there are 
two different ways of formulating the strong absorption condition, either 
in configuration space or in angular momentum space. These lead 
to two different diffraction models which are equivalent only in the 
semi-c lassica l l im i t under the correspondence £+ \ » kb. Let us 
f i rs t consider the configuration space description. 

5 . 2 . Dif fract ion model in configuration space 

In the formulation developed by Akhiezer and Pomeranchuk [63, 64] 
we start f rom the impact parameter formula (4.28), neglecting for 
simplicity spin-orbit coupling and Coulomb interaction, 

L « R (5. 1) 

I S¿l « 1 (5 .2) 

(5 .3) 
0 

where rj(b) is given in terms of the complex potential U( r ) by 

(5 .4 ) 
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Assuming a square-wel l potential (sharp-edged nucleus) of radius R, 

U ( r ) = - (V0 + i W 0 ) , r < R 

U( r ) = 0, r > R 
(5 .5) 

the phase function becomes 

6 ( b ) = ^ k ( V 0 + i W 0 ) ( R 2 - b ^ = к|*г-1) + 
2L (R2 - b2)2 ,for r < R , (5 .6) 

6(b) = 0 for r > R 

where n - 1 + V 0 / 2 E is defined as the nuclear refract ive index. F r o m 
this expression follow the cross-section formulae of Fernbach, Serber 
and Taylor [65] . In the l im i t of complete absorption L / R 0, we 
obtain 

rj (b) = 0 for b < R 

rj(b) = 1 for b > R 
(5 .7) 

Insert ion in (5 .3 ) gives 

R 

f(0) = ik J Jo(kb0)bdb = iR J l ^ R 6 ) (5 .8) 
0 

which is the A i r y formula for the amplitude in small -angle Fraunhofer 
diffraction by a black obstacle of radius R. 

Generalizations for incomplete absorption, rounded potentials 
(diffuse-edged nuclei), Coulomb and spin-orbit effects are straight-
forward, but the integration over impact parameters can no longer be 
car r ied out in closed form and must be done either numerical ly or by 
means of approximations. Mathematical methods in the generalized 
impact parameter formal ism, mainly intended for application to high-
energy processes, have been developed in recent papers by Predazz i [66] 
and by Adachi and Kotani [67, 68] . Le t us here consider only the 
effect of Coulomb interaction in the l i m i t of complete absorption. Thus 

f(0) = ik J [ 1 -r](b)e i 2 o ( b )] Jo(kb0)bdb 
о 

OO 

= i R - ik J [ei2o<b> - 1] J0 (kb0 ) b db 
R 

(5 .9 ) 
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where exp[i2tx(b)] is the continuation of Eq. (1. 28) to continuous i = kb. 
I n the l i m i t of s m a l l Coulomb parameters the expansion of the integrand 
in (5.9) y ie lds [64] 

f ( e ) - m M ^ i . | l M ^ £ ) { 5 Л 0 ) 

A m o r e d i rec t der ivat ion of the d i f f ract ion formula star ts f r o m 
Eq . (2. 6) fo r the scat ter ing amplitude 

F ( £ , £ ' ) = - - ¿ £ 2 J V i i 5 ' r U ( r ) i / / + ) ( S , r ) d r (5 .11 ) 

Using the wave equation (2. 1) this can be t rans formed to 

F ( k , k ' ) = - ^ J e" ' 7 ' ' 7 (V 2 + к ( Ê , r ) d ? 
t 

- ' h i [ e " ^ ( v V V ( V 2 e ^ - V + ) ] d ? (5. 12) 
•V 

(since k ' 2 = k 2 ) , where the integrat ion extends over a volume T outside 
of which U ( r ) is assumed to vanish. By means of Green 's theorem we 
can convert this in tegra l into an in tegra l over the surface bounding У , 

F ( E , £ ' ) = - ^ ; J [ e " i i r " T ( W ( + ) ) - ( 5 . 1 3 ) 

S 

This expression corresponds exactly to Kirchhoff 's formulat ion of 
Huygens1 p r inc ip le . I n the high-energy l i m i t kR S> 1 we can divide the 
surface into an i l luminated and a shadow part , = f + &>, on which 
we impose Kirchhoff 's boundary conditions for a black screen, 

on / : ! / /« = e 1 * " 

ong)-. ф (+) = 0 

Thus 

F ( k , k ' ) = - ^ (1 + COS0) J e ^ ' ^ ' ^ d â " 

f 

= 0 
(5. 14) 
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or 

f(0) = ^ kR2 (1 + cose) J l ( x ) 
(5. 15) x 

where x = qR = 2kR sin or x = kR sin0 depending on the approximation 
made in evaluating the integral . Fo r smal l angles Eq. (5. 15) reduces 
to (5. 8). Generalizations of Eq. (5. 15) including reflection, incomplete 
absorption, rea l phase shifts and Coulomb effects can be obtained by-
appropriate changes of the boundary conditions [69, 70] . 

' The simple diffraction formula has been applied to elastic scattering 
of medium energy alpha particles [71] , protons, neutrons and deuterons 
[70] and was found to describe surprisingly wel l the oscil latory patterns 
of the angular distributions. These analyses clear ly indicate that the 
oscillations observed in differential scattering cross-sections for strongly 
absorbed particles arise f rom a diffraction process. However, di f frac-
t ion patterns are found under much wider conditions than those for which 
the configuration space diffraction model has been derived. A more 
general derivation of diffraction formulas can be given in terms of the 
part ia l -wave expansion of the scattering amplitude. We shall see that 
diffraction effects in nuclear processes are more appropriately des-
cribed in angular momentum space than in configuration space, because 
orbital angular momentum and scattering angle form a pair of canonically 
conjugate var iables. 

5 . 3 . Dif fract ion model in angular momentum space 

We now formulate strong absorption for part ia l waves by means 
of condition (5. 2). The simplest case is that of spinless particles in the 
l im i t of complete absorption, 

where Л is the "cutoff" angular momentum. This is known as the B la i r 
model [72] . F o r uncharged part icles the scattering amplitude becomes 

rjt = 0 for i < Л 
(5 .16) 

щ = i f o r i ;>л 

Л-1 

f(0) = h X(2i+1)p« (cos9>~ Л Jx(Ae) _ J^kRg) 
к в в 

(5.17) 

£ = 0 

and the integrated cross-sections 

(5. 28) 
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i f we define the interaction radius R by 

Л = kR (5. 19) 

For charged part icles the B l a i r amplitude is 

Л-1 

f(0) = + l ) e i 2 ° í P ^ c o s S ) (5. 20) 

Di f ferent ia l scattering cross-sections obtained by numerical evaluation 
of (5.20) have been compared with experimental data for medium-
energy alpha part icles [72-74] . The calculated cross-sections show 
strong diffraction oscillations at l a rger angles which are not seen in 
the observed angular distribution. Af ter averaging over these oscil la-
tions, which ar ise f rom the unrealist ic sharp-cutoff assumption (5. 16), 
the B l a i r model fits the data sufficiently wel l to determine interaction 
rad i i by means of the semiclassical relation 

although i t fails to reproduce the sharp decrease of the observed angular 
distributions at large angles. 

In view of its simplici ty i t is surprising that the B la i r model is 
capable of describing the main features in the scattering of heavy 
charged part icles in terms of the single parameter Л. One expects 
that its shortcomings can easily be removed by modifying the idealized 
assumption (5. 16). I t is instructive to consider in a l i t t le more detail 
the implications of this assumption. The amplitude (5. 20) can be 
evaluated in closed form by means of an approximation method which 
I shall br ief ly discuss la ter on. Under the conditions Л » (25т)"1 and 
n » (2гг)-1, the B la i r amplitude (5. 20) is in good approximation re -
presented by [7 5] 

A = kR [ 1 - (2n/kR)p (5 .21) 

f ( 0 ) = f c ( 9 ) + f ^ t e ) for 6 ^ 6 

f(9) = f(¡?(0) for 0 ^ e, for 0 ^ 0 , с 

с 
(5. 22) 

where 

0C = 2 arctg (п/Л ) (5. 23) 
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is the c r i t i c a l angle (the Coulomb scatter ing angle corresponding to 
angular momentum Л) and 

f(i),a\ - i f A V J* 

• L G ( + uv ( л Y в Г в с -i(Ae-f) _ 1 е 1(ле- | ) ) 
{ - ; \ 2 sine У 2 sin i (0 - 0C ) 2 s i n | ( 0 + 0C) J 

(5 .24 ) 

wi th 

Х=Л0 С - 2 n l n s i n | 0 c + 2<70 ( 5 .25 ) 

The function G(u) has the f o r m 

G(u) = тг^е1^ er fc (е*< u) 

Г. /sine, . Y 
+ ( 1 + i f U 2 ) c t g i 

¿ 3 - + ( l + i u 2 ) | Ctgl sine, (5. 26) 

wi th u = (Л/2 sin 0C)' 
defined by 

(6 - 0 C ) , and the complementary e r r o r function is 

er fc (z) = • dr (5 .27 ) 

The m a i n feature of the B l a i r model for charged par t ic les is the c r i t i c a l 
angle which divides the angular distr ibut ion into two regions: 0 < 0C where 
Coulomb scatter ing is dominant, and 0 > 0C where nuclear d i f f ract ion 
scatter ing (shadow scatter ing) preva i ls . In the c lassical l i m i t , 0C is the 
scatter ing angle of par t ic les moving along a t ra jec to ry whose apsidal 
distance equals the interact ion radius R. The d i f ferent ia l cross-sect ion 
divided by the Rutherford cross-sect ion would then be 

dg(0) = Г 1 
dcr. (0 ) " I 0 

for 
for 

0 < 0C 

0 > 0„ 
(5. 28) 
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In wave mechanics this discontinuous l imi t is approached non-uniformly. 
F o r A со at fixed 9C, Eq. (5. 22) reduces in the vicinity of 0C to [76] 

f(0) = !e r f fc (e ' ? u) f c (0 ) (5 .29) 

and the dif ferential cross-section ratio becomes 

= 4 I erfc {é* u) |2 = 2 { [ i - C(w)]2 + [ ! - S(w)]2} (5.30) 

/ ï 
where C(w) and S(w) are the Fresne l integrals of argument w = (2/тг) u = 
= (Л/гг sin0c (0 - 0C). This expression is formal ly identical with the 
fami l ia r formula for Fresne l diffraction of a wave with incidence angle 

-0C by a black obstacle. The scattering of strongly absorbed uncharged 
part icles, Eq. ( 5 . 1 7 ) , and of strongly absorbed charged part icles, 
Eq. (5.29) , corresponds in the classical l im i t A->oo, 0C = const, to 
Fraunhofer and Fresne l diffraction, respectively. Fresnel patterns 
can be seen in a l l angular distributions of heavy charged part icles and 
are part icular ly striking in the scattering of heavy ions [76] . 

6. STRONG ABSORPTION M O D E L FOR SPIN-0 P A R T I C L E S 

6 . 1 . Parameter ized phase shift models 

F o r a real ist ic description of strong absorption scattering we must 
modify the B la i r sharp-cutoff assumption (5. 16). The transition of 
rj{ f rom zero to unity is a gradual one, extending over a range of £ -values 
of width Д in the vicinity of A . This follows semiclassical ly f rom the 
diffuseness of the nuclear interaction region. Part ic les moving along 
classical orbits penetrating the diffuse surface region w i l l be only 
par t ia l ly absorbed. I f Д is the range of orbital angular momentum 
that corresponds to the diffuseness d, we obtain by differentiating 
Eq. (5.19') for neutral part icles 

Д= kd (6. 1) 

or Eq. (5. 21) for charged part icles 

1 - (n/kR) 
A = k d [ 1 - (2n/kR)]* ( 6 ' 2 ) 

We describe the gradual transit ion of rje in i - s p a c e by means of a 
continuous function g(X) which depends on (А-Л) /Д , where X = £ + i and 

3 
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the " cuto f f "A is no longer necessari ly integer. Furthermore, the 
nuclear interaction will in general cause rea l phase shifts ój of each 
partial wave and rie has an imaginary part. Finally, the l o w - i partial 
waves are usually not completely absorbed. This can be described 
in a f i rst approximation by assuming that r)É is constant for all SL -va lues 
up to the vicinity of Л . These three modifications are normally sufficient 
to describe the average, non-resonant effects of strong absorption 
scattering on the rj{ • Simple functional fo rms of which incorporate 
these modifications have been considered by Gre ider and Glassgold [77] 
and Elton [78] for uncharged particles, and by Mclntyre, Wang and 
Becker [79] for charged particles. Gre ider and Glassgold have shown 
that it is possible to derive closed expressions for the scattering ampli -
tude for neutron scattering, if the smoothing function gpi) has certain 
simple f o rms . The summation over partial waves is replaced by an 
integration over a continuous distribution of i - v a l u e s , which is a good 
approximation at high energies where many partial waves are affected 
by the interaction. In the formulation of Mclntyre et al. , the modulus 
and phase of rie = |rjc¡ exp (i 26 t ) are assumed to have the form 

which describes r}t by means of four parameters Л, А, б and A&. 
Coulomb interaction is included, so the S -matr ix elements are given by 
ncexp(i 2CT{) where стс are the Coulomb phases. No analytical formulation 
has been given in this case and the scattering amplitude is calculated by 
numerical summation of the part ia l -wave expansion. This model has 
been successful ly applied to analyse alpha-particle and heavy ion 
angular distributions [79 -81 ] . The analyses show that the modifications 
of r¡i remove most of the shortcomings of the sharp-cutoff assumption, 
and the calculated cross -sect ions describe all essential features of the 
observed angular distributions at not too large angles. In particular, 
the smoothing of r¡e strongly steepens the average slope of da/di2 and 
dampens the large oscillations in the diffraction region. 

6.2. Analytical formulation of the strong absorption model (SAM) 

It is possible to give a completely analytical formulation of the 
parameterized S -matr ix model for very general forms of r)e, with or 
without Coulomb interaction [75, 82] . The real and imaginary parts of 

are represented by 

|l{ I = 1+ exp 
/ Л - X X l " 1 л Г Л - лУ| -l 

(6.3) 

(12.7) 



NUCLEAR SCATTERING 35 

The g are continuously differentiable functions of (Л -А )/Д whose f i rst 
derivatives are symmetrical and peaked at A, but otherwise arbitrary. 
The terms in e describe constant transparency for l o w - i partial waves. 
Ansatz (6.4) covers a l a rge variety of structures of r)£ in strong absorption 
situations : the real part changes f rom finite values at smal l 1 to unity 
at high i through some rapid transition in the vicinity of A; the f o rm 
of the imaginary part is such that real nuclear phase shifts are relevant 
only for partial waves in some vicinity of Л , except for transparency 
contributions at lower i - v a l u e s . The main term in Im?)f is the f i rst 
derivative of g. Higher derivatives in Imrj j and in Rerjf describe possible 
asymmetr ies and more complicated variations in the transition region. 
The functional fo rms of gR and g j may be different, and each of the 
parameters Л , Д and e may have different values in Rerj c and Imr ] £ . 
The Gre ide r -G lassgo ld and Mclntyre forms of r)£ a re special cases of 
(6.4) . 

We shall consider a simplif ied version of (6.4) which is sufficient 
for most practical purposes, 

R e " « = s + P-i + e ( 1 - g ) 

dg d 2 g 
(6 .5 ) 

When we insert this in the part ia l -wave expansion of f(0), the sum over 
i can be evaluated by means of a consistent approximation method. 
Under the conditions 

Л » (2ТГ)"1, Д « A (6.6) 

and because of the properties of g(X), the main contribution to the sum 
over partial waves comes f rom the vicinity of Л, and (cosO) can be 
replaced by the leading term in its asymptotic expansion. In the neutral 
case we use Szegô's expression (4. 27), in the charged case the some-
what s impler f o rm 

i 

The sum over Í is converted into an integral by means of the Poisson 
sum formula . This method has been worked out in detail by Venter [82] . 
I shall now give a generalization of ear l ier results [75] . W e distinguish 
two regions of the Coulomb parameter, n « 1 and n » (2 f ) - i . 

Fo r n « 1, the scattering amplitude becomes 

f (6) = e f c ( 0 ) + f (0) (6.8) 
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where 

w - Ê G e ? ) ' 1 ^ » 

{ [ i ( l - e ) + M 2 0 2 ] ( f ^ x + i p ) j o ( A 0 ) } (6.9) 

with the " form factor" F(A8) defined as the Fourier transform of dg/dX, 

F (AO) = jT e" i x edX (6. 10) 

For n » ( 2 7 Г ) " 1 we obtain 

f(0) = fc(0) + ^ ( e ) for в йвс 

(6.11) 

f(0) = e fç(0) + f ( + ) (0) for 0 ¿ 0C 

where 

fM(0) = i ( л i eix 
n " к \2jt sin0 J 

• { A « F [ A ( 0 - 0 c ) l e " i ( A Ô " f ) - В F [Д(0 + 0С )] е 1 ( Л в " Ь } (6.12) 

with 
i 

А (± ) = ±Gt tu ) U - O ^ I j - ) "Mi +i[p-/u2 (0-0C ) ] 

(6.13) 
в = (i-e) (e + е

с
)"

1

 -i[p+M
2
(0 + е

с
)] 

The functions X and G(u) are defined by Eqs. (5. 25) and (5. 26) 
respectively. 

Formulae (6. 8), (6. 9) and (6. 11)-(6. 13) cover practically the entire 
range of Coulomb parameters. They are valid for all angles such that 
7Г-0 » (4Л) - 1 , which excludes only extreme backward angles. However, 
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s imi lar formulae can be derived which are valid f rom 180° downwards. 
If we compare these expressions with the sharp-cutoff formulae we 

see that the effect of the gradual transition in $.-space is entirely 
contained in the form factors. We can easily understand this in a 
qualitative fashion. In the sharp-cutoff case the only contribution to 
the scattering amplitude comes f rom the cutoff angular momentum Л and 
gives a term proportional to Jj (Л в)/в. Modification of i7{ at neigh-
bouring & -va lues add s imi lar terms which oscillate in в with slightly 
smal le r and l a rge r frequencies. A l l these contributions reinforce the 
original term at fo rward angles but cause destructive interference at 
l a r ge r angles. The net result is that the sharp-cutoff oscillation is 
multiplied by an amplitude factor F (A0 ) which decreases with angle 
the more strongly the wider the band of i - v a l ue s in which rj£ is modified. 
This is a consequence of the uncertainty relation between angular 
momentum and scattering angle, expressed by the Four ie r t rans forma-
tion (6. 10). As a specific fo rm of g(X) it is convenient to choose a 
Saxon shape, thus 

The derivatives of g(X) in (6.4) or (6. 5) give contributions to the 
scattering amplitude whose diffraction oscillations are in phase or out 
of phase with that of the cutoff contribution if their o rder is even or 
odd, respectively, and therefore enhance or dampen the pr imary osc i l la -
tion. Coulomb interference with these terms can cause phase reversa l s 
at certain angles within the angular distribution. 

A la rge number of scattering data for alpha particles, helium-3, 
deuterons and heavy ions have been analysed [83, 84] with a simple 
3 -parameter vers ion of (6. 5), 

The additional derivative terms in (6.5) were f i rst used by Springer 
and Harvey [85] in their analysis of alpha particle scattering. It was 
found that the strong absorption model gives a very satisfactory des -
cription of heavy charged particle scattering above the Coulomb ba r r i e r . 

6 .3 . "Regge pole" approach 

We now turn to an alternative method of evaluating the part ia l -wave 
expansion 

(6. 14) 

dg (6.15) 

f ( 0 ) = l k ^ ( 2 - f + 1 ) ( l - n { ) P { ( c o s e ) (6. 16) 
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which has recently been studied by Er icson [86] and Inopin [87] . Here 
we assume rjj to be an analytic function of complex £. Let us f i rst take 
the simplest version of (6.5) 

П. = g(t) = 1 + exp 
-l 

• 1 - 1+ exp< — ^ 
A 

-l 

where £0 = A - This has simple poles at 

V ± i T m A (m = 1, 3, 5, . . . ) 

(see F ig . 1) with residues 

(6.17) 

(6.18) 

a m = Res [1 - V i m ] = A (6.19) 

I mi 
3Tt A 

тгЛ 
-Reí 

-пД 

-ЗтсД 

FIG. l . Poles of G ( t ) in complex { -p lane 

FIG.2. Integration contours 

Now we make a Watson-Sommerfe ld transformation of (6. 16), 

f (9) = - à l ^ ' ^ i ^ S T - ^ 1 - 0 0 ^ ^ (6. 20) 
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where С is the contour shown i n F i g . 2. If we complete С to the closed 
contour С1 = С + S + В, the integral along С ' is equal to (-27Гi) times 
the sum of the residues at the poles of the integrand, 

/ = s l ^ P * m ( - c o s 6 ) (6.21) 
C* m 

The integral along the semicirc le S vanishes, hence 

/•-/•/ 
С В С ' 

The background integral 

- i + i -

в -¿-¡«о 

-l 
, which is very 

small under the strong absorption condition Л » Д, and we shall neglect 
this contribution. Thus 

m 

д-д P£0iiTtmA(- COS0) 
1 ± 1 7 Г т Л ) sin(7ri0) cosh(jr2 m Д) + i cos(îri0 ) sinh(7r2 m Д) ( 6 ' 2 2 ) 

|т| 

Closer investigation of the terms in this sum show that at sufficiently 
l a rge angles the contribution f rom the nearest poles |m| = 1 dominate. 
Using the asymptotic expression (6.7) with б replaced by 7Г-0, and 
imposing the conditions 

extends over values у in g ( - i + iy) = , Л . у 
1 + e x P l д -

! = « 1 and е " 2 " 2 л « 1 
•'о 

(6. 23) 
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we obtain 

f(6) = 
Л 2яА 1 
к e"As (27rAsin9)i 

[ e i (A9-i ) _ e - i (A9-{ ) (6. 24) 

If we recall that 

sin (ле - 1 D (6. 25) 

and that under our conditions \ е * л е ^ sinh ( тгА9), we find that Eq. (6.24) 
is asymptotically equal to the SAM expression (see Eq. (6. 9)) 

with the form factor F(A0) given by Eq. (6. 14). Ericson [86] has shown 
that inclusion of the Coulomb phases replaces 0 by в - 9C. It appears 
therefore that at large angles the complex pole method is essentially 
equivalent to the SAM formalism. However, it has not yet been 
developed to the same degree of generality. In particular, the nearest-
poles-approximation fails at small angles [88] , 

One way of introducing an imaginary part of r¡e has been suggested 
by Ericson: making the cutoff complex, £0^>£ ( )-ím1, displaces the string 
of poles parallel to the imaginary axis by the amount ¿ij 

(6. 26) 

(6.27) 

Now if jUi/A<C 1, this leads to the simplified SAM assumption 

" i = d£ 

Clearly this works for any form of the g-function 

ne = g( i - h + i/uj) = g (i + + . . (6. 28) 

and we can derive more general forms of r¡e such as (6.5) by introducing 
a generalized "cutoff" A -* A - ( p + i/л ). 
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7. STRONG A B S O R P T I O N M O D E L FOR SPIN -? P A R T I C L E S 

7.1. Spin-orbit coupling and polarization 

The strong absorption model is easily extended to sp in - ! particles 
by different parameterization of n j and r¡¡. This was f i rs t considered 
by Gre ider and Glassgold [77] for high-energy neutrons. The SAM 
fo rma l i sm for neutral and charged s p i n - ! particles has been 
developed by Frahn and Venter [89] and applied in analyses of elastic 
scattering and polarization of 180-MeV protons [90] and of 29 -MeV 
3He particles by nuclei [91] . Closely s imi lar formulations were given 
by Hiifner and de-Shalit [92] fo r medium-energy protons and deuterons, 
and by Dar et al. [93, 94] for high-energy pion-proton scattering. 

In general , each of the parameters in ansatz (6.4) will have a different 
value in the states j = i + ! and j = i - ! , which we distinguish by super -
scripts + and - , and even the g-functions may have different fo rms . 
However, in the optical model, spin-orbit interaction is adequately 
described by a Thomas-type potential which is predominantly real . 
Looking at expression (4. 30) fo r f ^ r j g - r j j i n impact parameter 
approximation, we see that for real 6S the spin-orbit interaction affects 
mainly the imaginary parts of the r¡¡. This follows f rom the potential 
picture: the potentials !^VS ( r ) and - i ( i + 1) Vs ( r ) in the states j = Ü + ! 
and j = i - ! cause different rea l phase shifts, and since Vs ( r ) is con-
centrated in the nuclear surface this will affect only the partial waves 
in the vicinity of the cutoff A . We now make the simplifying assumption 
that only the magnitudes and not the shapes of Im rj-J are different. F r o m 
(6 .5 ) we then have 

where цп = ! etc, and vn = ju* . To simplify matters we 
neglect Coulomb interaction. The SAM fo rma l i sm then yields for the 
amplitudes A (0 ) and B (0 ) , 

ReЛс = g + P + e ( l - g ) , R e § { = 0 

(7.1) 

Im i j { =Ц 

A (0) = C { [ i ( l - ó + ¿ 2 0 2 ] ^ - ^ + 

(7.2) 

B (0 ) = i j [ V l J a (A0) - f20 J0(A6)] 

where 

(7.3) 

When we calculate the differential scattering cross -sect ion and the 
polarization for the general fo rm (6.4) of the r¡l, it turns out [95] that 



42 FRAHN 

the angular dependence of P(0) and its relation to dcr/dn depends 
essentially upon whether Imrj { is a symmetrical or antisymmetrical 
function of X - Л. We confine ourselves to the simplest forms, and 
it will be instructive to consider separately the two cases 

(I): = g + ¿ {l-g)+iü1 (7.4) 

and 

(И): = g + ¿ ( l - g ) + W2 , €f = iv2 (7.5) 

In case (I) we obtain 

Ji(A0) + M2[Jo(A0)] (7.6) 

P ( e ) | = V l i ( l - Ô C ! Ji (A 9) (7.7) 

while in case (II) we have 

Ji(A0)' 
+ ($v2ef [Jo(A0)]2} (7.8) 

P ( 0 ) ^ = - v 2 ( l - i ) C 2 Jj(A0)Jo(Ae) (7. 9) 

The angular dependence of do/dQ and P(0) is quite different in the 
two cases. In case (I) the polarization oscillates only in the range of non-
negative values (if Vy> 0), and in the differential cross-section the 
diffraction oscillations are strongly damped because the refractive 
contribution p\ [J0(A6)]2is out of phase with the shadow scattering term 
[Ja(A0)/0]2 . The remaining weak oscillations in dcj/df2 are approximately 
in phase with the strong oscillations of P(0). This behaviour is charac-
teristic of proton-nucleus scattering for energies above ~ 100 MeV. 
In fact, the simple formulae (7. 6), (7. 7) are found to give a quite 
satisfactory description of the extensive proton scattering data [39] at 
180 MeV [90]. 

On the other hand, in case (II) the polarization oscillates between 
positive and negative values with about equal amplitudes. The differential 
cross-section too is strongly oscillatory, because the refractive con-
tribution is now in phase with the shadow scattering, and the only 
damping comes from the spin-orbit term (| v202)2 [J0 (Afl)]2 . The polari-
zation oscillates approximately like the derivative of dcr/df2. This 
behaviour is found for proton and neutron scattering in the tens-of-MeV 
region. Hüfner and de-Shalit [92] have recently described polarization 
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data in this energy region by assuming 

Im? •- v2 for SL = Л + -j (7.10) 

0 otherwise 

The second-derivative fo rm (7. 5) of !¡e is a "smoothed" version of this 
assumption, and Eq. (7. 9) is the corresponding generalization of the 
expression derived by Hiifner and de-Shalit. 

It appears, therefore, that assumptions (I) and (II) describe simple 
limiting cases of nucleón-nucleus scattering in the medium and high 
energy regions, respectively. 

7. 2. Relations between differential cross -sect ion and polarization 

Rodberg [96] f i rst pointed out that there exists a relation between 
P (0 ) and d<j/df2 of the form 

i 7 - 1 1 ) 

where ¡3 is a constant. This follows immediately f rom the partial -
wave expressions (4.26) if were proportional to (2 £+ 1) (1 -г/ { ) . 
This is usually not the case. However, the medium energy proton 
data on which Rodberg 's conjecture is mainly based are consistent 
with a relation of the type (7. 11) where /3 is a function of в which var ies 
slowly compared with the diffraction oscillations. Such relations can 
be derived under more general conditions. Writ ing Eqs . (7, 7) and 
(7. 9) in the fo rm 

P < e > S r I ^ f u m A ( e ) ] 
(I)-. P (6 ) -^r = f V [ I m А ( 0 ) Г (7.12) 

we see that only in case (II) we have a Rodberg-type relation with 
/3 cc 0 2 . In general , if 

rjt = g(X) + ê [ l - g(X)] + ih (X) , Ç { = i h ( X ) (7.14) 

where h and h are smooth functions of arb i trary shape confined to the 
vicinity of A, it can be shown [95] that in the diffraction region Л0 » 1, 

P ( 0 ) ^ = o-(0)[Im A (0 ) ] 2 + 0 ( 0 ) - ^ [ I m A ( 0 ) ] 2 (7.15) 
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The (slowly varying) functions a{6) and/3(0) are defined in terms of the 
Four ie r t ransform h(0) of h(X) by 

h (0 ) = - [ « (© ) + i2A/3(0)] (7.16) 

such that a (0) is determined by the symmetrical part and |3(0) by the 
antisymmetrical part of h(X) with respect to A, 

7.3. Relations between spin-orbit interaction parameters 

We can derive approximate relations between the parameters vn and 
the strength of the real spin-orbit potential V defined by 

Vs (r) = 
dg c ( r ) 

dr 
(7.17) 

by comparing the smal l -ang le limit of P (0 ) f rom (7. 7) or (7. 9), 

(I): P (0 ) : 
i / i/ ( l - ë ) 

1 + [2Д1/(1 - ё)Л]2 

o r 

m , p f m « 21^/(1- ё ) A 
(II)- p ( e ) i + u^/a-e»]2 

(7.18) 

(7. 19) 

with the Born approximation expression P B ( 0 ) . According to Ko hier [97] 
and Levintov [98] the latter is exact in the smal l -ang le limit, which is 
independently of the shape of g c ( r ) given by 

р в ( е ) * к 1 в ( 7 - 2 o ) 

where Vc 0 and W c are the strengths of the rea l and imaginary central 
potentials. Thus 

1 - е Л 1 - e Wc 0 

and in particular the signs of and of - v2 are the same as that of Vs . 

7.4. Isobaric spin coupling 

The isobaric spin interaction which we have described in section 2.5 
by means of a potential V t ( r ) t - T , can be treated in the SAM formal i sm 
in close analogy to ordinary spin-orbit coupling. Again the щ have 
different parameters in the states T ' = T ± j which we distinguish by 
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superscripts (±). Since V t ( r ) is real and probably confined to the 
nuclear surface . [34] , the isobaric spin interaction will mainly affect 
the imaginary parts of r ) ^ . Fo r simplicity we again assume that only 
the magnitudes ¿/f of 1m r ) ^ are different. With the parameterization 

,C±) + ê (1 - g ) + Ш (±) dg 
dX 

(7. 22) 

and neglecting Coulomb distortion, the amplitudes become 

i ( l - ô i ^ t ^ J o ( A 0 ) ] ( 7 . 2 3 ) f ( ± ) (0 ) = С 

where С is defined by Eq. (7. 3). Hence follow the differential c r o s s -
sections for p -p scattering, Eq. (2. 35), and for the p -n reaction, 
Eq . (2.36), 

^ ( P P ) = C* { ( 1 - i ) 2 Ji(A9)' щф + 2T¿¿Í 
1 + 2T ^ ) [ J o ( A 0 ) ] 2 } (7. 24) 

The strength of the p -n transition is measured by the quantity 

vr = - ^ (7.26) 

and an argument analogous to that leading to (7.21) shows that vT is 
proportional to the strength Vt 0 of the isobaric spin coupling potential. 
According to (7.25), the oscillations of the (p ,n) differential c r o s s -
section are out of phase with the diffraction oscillations of the elastic 
cross -sect ion (7.24). This is in accordance with the phase rules 
derived by B la i r f rom the Fraunhofer diffraction model [99] . Ex -
perimental evidence is provided for instance by the reaction 5 6 Fe 
(®He,3H)5 6Co at 25 M e V . Although the Q-va lue for this reaction is 
considerable (Q = - 8 M e V ) and Coulomb effects by no means negligible, 
the simple formula (7. 25) descr ibes fa i r ly wel l the diffraction oscillations 
and the slope of the observed angular distribution [100] . An optical 
model analysis of these data has been given by Drisko et al. [101] . 

7.5. Coulomb effects 

The effects of Coulomb interaction on the scattering and polarization 
of spin-1 particles have been worked out in detail [89] . As the fo rma l i sm 
is not essentially different f rom that in the spin-0 case we shall only 
mention the qualitative effects on the polarization. The critical angle 
0C again divides the angular distribution into two regions in which P (6 ) 
behaves qualitatively different. Fo r в < вс the destructive Coulomb 
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interference strongly reduces the magnitude of the polarization, and 
P (0 ) oscil lates about zero with small but slowly increasing amplitude. 
In the vicinity of 0C the average polarization r i ses to positive values 
(in case (I) for u1 > 0), and the diffraction minima in the region 0 > 0C 

are fi l led in. This damping of the diffraction oscillations is a general 
effect of Coulomb interaction in strong absorption scattering. It ar ises 
f rom the interference between the terms in 0 - 0C and 0 +0C in Eqs . (6. 12) 
or (5. 25). In the diffraction region, the Coulomb damping factor for 
both dcr/dfi and P (0 ) is quantitatively given by the ratio 

F [ A ( 0 + 0 J ] IF [A(0 - dc)] _ sinh[7TA(0-0 r ) ] s 2 v t B 

0 + 0c j 0 - 0 c sinh [JTA(0 + 0C )] ^ ' ' 

which decreases nearly exponentially with increasing Coulomb para -
meter n. 

P re l iminary measurements of the polarization in elastic scattering 
of 29 -MeV 3He particles by nuclei [102] have been analysed in terms 
of the optical model [53] and the strong absorption model [91] . Estimates 
by means of Eq. (7. 21) indicate that the spin-orbit couplings for 3He and 
for medium-energy protons are of comparable magnitude. 

7.6. Total cross -sect ions 

The integrated cross -sect ions a e l , CTabs and atot in SAM depend only 
weakly upon the imaginary parts of the and are therefore not very 
sensitive to the spin-orbit interaction. Fo r instance in case I, Eq. (7 .4 ) , 
we obtain [89] 

" e l - i t ) U - ) » 

*abs = " ( I ) I 1 - i 2 ) 

i + • 

2Д 7Г2 

A + T 

** K l 3 W J 
7Г 2 /25ч2 1 

+ C7, 

2Д 

(7. 28) 

+ ( 1 - l f - j - h - a , (7.29) 

(7.30) 

where cr¡ is the contribution f rom Im 

ïï A (.2 1 2 1 - Л (7.31) 

and 

< A 
CTl "/V CTtot 

(7. 32) 
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8. RELATIONS B E T W E E N SCATTERING MATRIX A N D C O M P L E X 
P O T E N T I A L 

We now turn to the difficult question of how the elastic S-matr ix 
is connected with the interaction in configuration space. We shall be 
mainly concerned with the SL- dependence of the r¡e in relation to the 
complex potential and shall not consider the much more complicated 
problem of energy dependence. The simplest connection obtains at 
high energies where in the semiclassical limit there is a one-to-one 
correspondence SL + \ «-> kb between orbital angular momentum and 
impact parameter. Another limiting situation where the relation between 
rj£ and the complex potential has been clarif ied is that of strong ab-
sorption. Let us start with the semiclassical limit. 

8.1. High-energy approximation 

The impact parameter approximation led us to relations (4.29)-(4. 34) 
which represent the щ in terms of integrals over the complex potential. 
We split the phase shifts in real and imaginary parts, 6C = 6{4 + , 
6s = 6™ + ió'2) , and f irst disregard spin-orbit coupling, 6S = 0. Writing 
kb = X, we have 

Ren ( 0 ) (X) = e-25c!1 cos 26(1) 

w ( 8 Л ) 

W 0 ) ( X ) = e"25c sin 26™ 

hence 

Imi) '0 ' (X) = tg(2 6 ™ ) Rerj(°)(X) (8.2) 

There fore , under conditions of strong absorption, Imr/0 ' (X) is confined 
to the vicinity of A = kR. 

With spin-orbit coupling included we have 

Rer)™(X) = exp ( - 26 -2X6<2>)cos (2 6(4 +2X6™) 

Im r] (+)(X) = exp ( - 26(2) - 2Хб(2> ) sin (26™ + 2X6™ ) 

(8.3) 

R e r i ^ (X) = exp (- 26(2) + 2Xô(2)) cos (26™ - 2X6™) 

Im r)™(X ) = exp ( - 26(2) + 2Xó(2> ) sin (2б№ - 2X6W ) 

Let us assume Us = rea l . Then 6 ^ = 0, and we obtain 

rjpl ) = cos (2X6(4)n<°>(X) 

i (X) = i2sin(2X6 ( f )Г)(0)РО 
(8.4) 
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? (X) = i 2tg (2X6^)0 (X) (8.5) 

If 2Лб ( 1 )< 1 over the relevant region of X, then í}(X) ^ 1 ( 0 ) (X), and 

? ( X ) ~ 14Хб<Ч(Х)г)(0) (X) (8.6) 

is proportional to VS i 0 , the strength of the spin-orbit potential. Also, 
Ç(X) is confined to the vicinity of Л. F r o m these formulae we can easily 
derive the features of rj+(X), n" (X), or й(Х), ?(X) for given potentials. 

We can fol low the converse procedure and derive potentials f rom 
given phase functions. Inversion of Eqs . (4. 31) and (4. 32) yields 

j j t \ 2 h2k2 r ¿¿(X) dX 
(kr)2 ]^ <8 -7> 

kr 

TT , . 2 h2k2 f 6,'(\)dX 
U s ( r ) I T " J [X2 - (kr ) 2 ] " ( 8 

kr 

where 61 = dô/dX. The same formulae are valid in the relativistic case 
with M replaced by E/c 2 . 

It is of interest to study the form of the potentials derived f rom the 
SAM form (7. 22) for rj£. We confine ourselves to the central potential 
and obtain 

« < ? * > " i a r c t g ^ 
d6 (^(X) 

dX 

6(c2)(X) = - è l n |r){ I, d6(c2>(X) 
dX 

U ~ £ ) [ g g " - (g1 )2 ] + e g" 
1 e2 + 2e (1 - e ) g + (1 - e ) 2g 2 +M2 (g ' )2 

[ e ( l - e ) + (1 - e)2 g + M2g" 
e2 + 2e (1 - e ) g + (1 - e)2 + Piflg7? 

(8.9) 

(8. 10) 

With g(X) of the Saxon shape (6. 14), the integrals (8. 7) cannot be 
evaluated in closed form, but the qualitative behaviour of the potentials 
can be seen by inspection of Eqs . (8. 9) and (8. 10). Thus W ( r ) is 
negative-definite, while the sign of V ( r ) is determined by/Uj . The real 
potential is sur face-peaked and attractive for/Uj > 0, repulsive for 
/лг < 0. F o r finite transparency e, the sign of V ( r ) changes at a certain 
point in the nuclear interior. Elton [44] has recently pointed out that rea l 
potentials of this shape may be more appropriate for proton-nucleus scatter-
ing at higher energies than the conventional monotonie forms of V ( r ) . 

It is possible to derive an analytic expression for the asymptotic 
fo rm of the potential, i. e. f o r r » R. In this limit 

s;(X) = - 2Д f + K 1 - 0 exp 
A - X 

(8.11) 



NUCLEAR SCATTERING 49 

hence 

u„ ( r ) ; - U 0 e A j 
kr 

X 

V e"*dX 

[X2 - (kr )2 ] * 

л 
и „ е л 

кг 
• —r cosh т Л dr 

- U 0 e A K o ( f ' Uo ( I У e x P ( т 

(8. 12) 

where K 0 ( x ) is the modified Hankel function of index zero, and 

Uo tA 
ifl. 
A + i ( l - e ) 

h2k2 

M (8. 13) 

This shows that for the Saxon shape of g(X) the central potential Uc ( r ) 
has approximately the same tail as the Saxon shape of g c ( r ) , so that 
the width parameter d defined by A = kd may be directly compared with 
the diffuseness d defined by Eq. (3. 11). 

8.2. WKB approximation 

At lower energies the relation between rjj and the complex potential 
is much more involved, and no longer unique. Howeve'r, Austera [103] 
has pointed out that in the case of strong absorption the WKB method 
is a good approximation and leads to simple expressions for the rj ^. With 
these expressions Austera has given a lucid description of how the 
£-dependence of for strongly absorbed particles is determined by the 
conditions in the interaction region. 

We start with the radial wave equation (2. 14) ( for neutral spinless 
particles ) which we write in the form 

d 2 9 
f(i(k, r ) + [ k j (r ) ] f { ( k , r ) = 0 (8. 14) 

where 

M r ) = 
1 (1+1 ) 2M 

r 2 ñ 2 U ( r ) (8. 15) 

is the local wave number of the i - t h partial wave. In lowest -order 
W K B approximation the radial wave function is 

e U K r ) - e is£(r) (8. 16) 

where 

s ( r ) = kr + / [k ( r 1 ) - k ] dr ' (8.17) 
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This is a purely ingoing wave which decreases in amplitude as we go 
to smal ler r because of the damping by the imaginary part of U. 

In the lowest -order approximation all reflections are neglected. 
Actually, reflections will occur at the nuclear surface where U ( r ) changes 
appreciably, and at the centrifugal ba r r i e r in the nuclear interior. 
Austern has shown how higher -order WKB corrections can be obtained 
which take this reflection into account. Let us f irst consider the 
centrifugal ba r r i e r and define an approximate turning point r { by 

2 2M . 1(1 + 1) 
k + W V ° (8.18) 

where V0 is the depth of Re U. Fo r r < г { the wave function will be 
very small , and we can replace the turning point approximately by 
the requirement that f|0' = 0 at r = r £ . The wave then consists of an 
ingoing and a reflected part, 

f ^ ( k , r ) = e~iso(r) - e"12*1^ eis«(r) (8. 19) 

so the reflection coefficient is in zero order given by 

=-e12,!<r!> (8. 20) 

To obtain the higher -order reflection corrections, Austern derives an 
integral equation for f c ( k , r ) which can be solved by iteration starting 
with f '°\k, r ) . The once-iterated solution yields the reflection 
coefficient 

eo 

r P = . e - i 2 s í ( r í > + i Г [ e " i 2 s £ f r ' ) . e - i 4 S i ( r c ) e i 2 s { ( r ' ) j k K r ' ) d r , 

£ I k { ( r - ) 

= n (Ьагг) + (surf) 
' i e 

(8.21) 

The second term describes the reflection by U ( r ) in the nuclear surface 
where the logarithmic derivative of k£ ( r ) is appreciable. 

F rom this expression we can see the main features of r)c. 

( i ) Strong absorption 

At low l,r^ba r l ) is small because the ba r r i e r is deep inside the nucleus 
and the wave that reappears at the surface is nearly extinguished by 
absorption; r/|urf) is small because e x p [ - i 2 s f ( r ' ) ] is nearly sinusoidal 
in the surface and phase averaging takes place. 

At higher 17 ¿ becomes la rge because r£ moves into the surface 
region and absorption is no longer effective; r)^urf) becomes more 
appreciable because the b a r r i e r in the surface distorts the sinusoidal 
behaviour of the integrand and phase averaging is upset. Hence r)t 
gradually increases f rom 0 to 1. 

4* 
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(ii ) Weak absorption 

At low £, r¡ ̂ Ьагг' becomes l a r g e r because the ingoing and reflected 
waves are less attenuated; r)^surf) is less appreciable because phase 
averaging is still effective. Thus, fo r l o w - i partial waves, the 
details of the surface are never very important. However, inter-
ference between the two contributions causes fluctuations in rj£ in the 
l o w e r - i region. 

At higher i , „Лап) increases still further; now also becomes 
appreciable because phase averaging is again upset by distortion in the 
surface. 

In general, fo r both strong and weak absorption, the reflection at 
the surface is important only at low energies, such that X ;> d, where 
d is the surface thickness. However, in most cases X d, so the 
relatively smooth change of U ( r ) in the surface gives good "impedance" 
matching". The surface reflection is relatively smal l and it depends 
on the potential in the interior whether the ba r r i e r reflection makes 
4£ smal l or l a rge . 

In terms of Austern 's W K B formal ism, Drisko et al. [ 52] have 
given a simple explanation of the ambiguities of the optical potential 
fo r composite particles. If we neglect surface reflection under 
conditions of good impedance matching we have for low i - v a l ue s 

Г7 «lábaro = - e"i2sí(rí> (8.22) 

and two potentials V and V1 wil l give the same rj£ if the corresponding 
turning points r£ , r1 are such that 

se(r') = se (re)± ттг (m = 1, 2, 3, . . . ) (8.23) 

This condition is satisfied only for certain discrete sets of potential 
depths which can accommodate partial waves that dif fer by one hal f -wave 
in the nuclear interior. 

8.3. "Mode l of the optical model" 

Austern, Prakash and Drisko [ 104] have recently investigated the 
structure of tj £ in greater detail,with the aim of providing a general 
f ramework for parameterized models of rj£ which is independent of the 
potential description and applies to situations in which absorption is 
not necessar i ly strong. 

The region of nuclear interaction is divided into two parts, an 
interior region of uniform properties and a diffuse surface region which 
modifies the effects produced on the wave function by the interior. F i rs t , 
an exact expression for rj { is derived in which the contributions f rom 
the interior and surface regions are separated. Thereafter , successive 
approximations are introduced which lead to parameterized fo rms of r¡.. 
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The radial wave function f ( { + ) is written in the fo rm 

tt, - 1 £ C y (8.24) 

where I { and 0 { are exact solutions of the radial equation (Jost functions) 
with asymptotic behaviour I £= H j f , 0 4 = H£. If we now choose a radius 
r = b which separates the interior and surface regions of the potential 
U ( r ) , the г)£ can be expressed in terms of the logarithmic derivatives of 
f ( { + ) , 0 { and I { at r = b, denoted by R ' ^b ) , L { ( b ) a n d L { ( b ) , respectively, 

, Ijt(b) R ' / ( b ) - L t ( b ) 
~ 0£ (b) R - / ( b ) - L £ ( b ) ( 8 ' 2 5 } 

The interior region r < b determines the Rj1 , the exterior r > b deter-
mines the L { , L t , I£ and O c . The latter quantities can be expressed 
exactly, by means of Green ' s theorem for the interval b ^ r < oo, in 
terms of the asymptotic functions H £ , H * , their logarithmic derivatives 
о о 
L t , L £ , and the functions Ij!, 0 £ themselves. In this expression a 
" B o r n approximation" is introduced by replacing 0 £ , I£ by their asymptotic 
fo rms H t , Н / . A f ter another approximation which is good if b is 
sufficiently large , r¡ becomes 

^Rt1 - L f + J t * + i J,; ' » 2 6 j 

R : 1 - L „ + J„ + i J ' H, 

where the quantities 

J l + i J t J [ V ( r ) + i W ( r ) ] 
H t ( r ) 1 2 

H { ( b ) 
dr (8.27) 

contain the surface effects of the potential, while the other terms in 
r) { contain the volume effects. An important property of the J£ and J¡ 
is that they vary smoothly with £ and that their imaginary parts 
decrease strongly with increasing £. 

At the next stage a specific model is introduced (i) by assuming a 
complex square well in the nuclear interior, and (ii) by assuming simple 
analytic f o rms for the i - dependence of J{ and JJ. In this way many 
different cases can be studied and it can be seen how various features 
of the potential ref lect in properties of rj {. The final parameterized 
expression for rj£ depends on nine adjustable parameters , but simpli f ies 
in certain limiting cases. In particular, in the limit of strong absorption 
it reproduces the fami l iar smooth form of the scattering function in 
i - s p a c e . 
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В. D IRECT INTERACTIONS 

9. I N T R O D U C T I O N 

9. 1. Direct interaction and compound nucleus reaction modes 

In the description of nuclear reactions it is convenient to distinguish 
between transitions involving only a few degrees of f reedom and those 
with excitations of many degrees of freedom. The fo rmer are said to 
proceed via the direct interaction (DI) mode, the latter via the compound 
nucleus (CN) mode. The distinction is not a sharp one and in any 
reaction both modes are present. Under certain conditions, however, 
the DI mode is dominant and in these cases the description of the reaction 
is particularly simple. Fo r a discussion of the conditions under which 
the DI mode is favoured I r e f e r to the comprehensive reviews by Austern 
[69, 105] . Direct interactions feed certain exit channels which have 
strong overlap with the entrance channel. Such reactions are closely 
related to elastic scattering and can be described by simple genera l iza -
tions of the elastic scattering formal i sm. Each of the phenomenological 
methods of Par t A can be extended to direct reactions. The most 
successful of these methods is an extension of the optical model. Here 
the interaction is described by a generalized potential which depends, 
aside f rom the relative coordinate and the spins of the reaction partners, 
on certain internal var iab les . More recently it has been shown that the 
parameter ized S -matr ix method can be extended to certain direct 
reactions because of approximate relations between the transition matrix 
elements for these processes and the S -matr ix elements for elastic 
scattering. 

The main types of direct processes are inelastic scattering, 
stripping and knock-out reactions. As the methods of description are 
basical ly the same for all three types, which dif fer mainly in the 
reaction kinematics, we shall give most attention to inelastic scattering. 
F o r a detailed treatment of other processes I r e f e r to Tobocman's book 

We start by deriving some general expressions for the transition 
matrix. 

9.2. T -mat r i x 

We use symbols a, b, c, . . . to represent the sets of quantum 
numbers which specify the various channels; the entrance channel is 
usually denoted by a. The system is described by a Hamiltonian (in 
channel a) 

consisting of the internal Hamiltonian ha of the reaction partners, the 
kinetic energy K a of their relative motion, and the interaction operator 
<i¿ . We are looking for a solution of the wave equation 

[ 1 0 6 ] . 

H = ha + K a a (9. 1) 

(H - E ) ï ' + ) = 0 (9.2) 
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which consists asymptotically of an incoming f ree -part ic le wave (in 
channel a) and outgoing spherical waves in all channels b (including a), 

•-'• + ) F h ( k ( 9 . 3 ) r. 

This defines the reaction amplitudes Fa b (ka , kb ) for the transition a -* b. 
The internal wave functions фа are eigenfunctions of h a , 

( Ь а - е а ) ф а = 0 (9.4) 

where 

E - £ a = Е а = ^ Г ka 0 - 5 ) 

defines the channel wave number k_ and the reduced mass M , in а л 
channel a. 

The differential cross -sect ion for the transition a-> b is determined 
by the reaction amplitude F a b , 

/ U! VL I 12 
d i T ( a ^ b ) = y ( a - b ) |Fab| (9.6) 

where va is the relative velocity in channel a. 
We expand the total wave function in a complete set of internal 

eigenstates фс, 4 

í ( + ) = ^ ( c + ) ¿ c (9.7) 

The expansion coefficients are obtained by scalar multiplication with 
фь= фъ ( f b ) , integrating over the internal var iables , 

and are functions of the relative coordinate r b . By inserting (9. 7) in 
(9. 2) and on sca lar multiplication with фь we get 

^ < Ф ь | Н - Е | ф с > ^ + ) = 0 (9.9) 
с 

Using Eqs . (9. 1), (9.4) and (9. 5) we obtain 

С 

a system of coupled equations for the expansion coefficients . 
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We convert (9. 10) to the integral form by means of the f r ee - space 
Green ' s function G<q) (r , r1 ) , 

^ 5 * b + ^ / d ? ¿ Go + ) (?b. < K \ % \ К > (в. 11) 
с 

Since 

r*\ 1 e i k b r b 
G ( ? < v ? ¿ > s - é e b ь V - < 9 Л 2 ) 

the asymptotic form of becomes 

b 

Comparison with Eq. (9.3) yields for the reaction amplitude 

M b / ikf,-Tb 
ab = b ' N b K I ^ + ) > (9-14) 

Fo r the transition matrix element (see Eq. (1. 7)) 

Tab = - ^ T F a b (9-15) 
b 

we have 

Tab = < e i k i , , r 4 b | ^ b l ^ ( + ) > (9. 16) 

The differential cross -sect ion in terms of T . becomes 
ab 

dCT (a • Ы - M A M B K B I T J 2 (9 17) dQ (2jrh2)2 ka I l a b I ( 9 - 1 7 ) 

9.3. Ge l l -Mann -Go ldberge r transformation 

Fo r the description of direct reactions it is often convenient to use 
a different representation of the T -mat r i x . We split the full interaction 
operator which depends upon all internal var iables Çb and the relative 
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coordinate r b , into two parts 

Щ, = Ц, (9. 18) 

Although the following transformations are formally valid for arbitrary 
divisions of we shall have in mind special forms of Ub and « b which 
are appropriate for describing direct interactions. We assume that 
Ub represents an average interaction potential which is independent of 
the internal variables, and that eeb is an operator which aside from 
r b depends on only a few of the internal variables | b . Then U b will 
be an "optical" potential which depends on r b (and possibly the channel 
spin s b , etc. ) and causes elastic scattering, while « b is the residual 
interaction which causes transitions to certain exit channels via the 
DI mode. Transitions to CN states are summarily described by ab-
sorption from the entrance channel and represented by an imaginary 
part of Ub . For charged particles, Ub includes the Coulomb potential. 

With these assumptions, the system (9. 10) becomes 

(Eb - к ь - и ь > ^ ь + ) = Х < ф ь K K > ( 9 Л 9 ) 

с 

We convert this to the integral form by means of the Green's function 
G (+ ) (?,,?' ) of the left-hand side of (9. 19), b b 

с 

Here, X^a' is the wave function for elastic scattering by the optical 
potential Ua , i .e . a solution of 

( E a - K a - U a ) X W =0 (9.21) 

which behaves asymptotically as 

-> ' { V a } 
X<;>(£a,?a )^ e l < k & + F e l ( k a . k ¡ ) ^ (9.22) 

a 

where Fe l is the elastic scattering amplitude. The notation{} is defined 
by Eq. (1. 25) and denotes Coulomb distortion. The Green's function 
G(+) has the asymptotic form 

G
( + )

( r
b
, r ^ - ¿ X « * ( k

b
, í ¿ ) ^ (9.23) 

b 

where X(') is the time-reversed scattering wave function and is related 
to XM by the Wigner relation 

x " * (k,r ) = X « (- k , r ) (9.24) 
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F o r ф b we now obtain asymptotically 

1 a 

с 

(9. 26) 

(9. 27) 

Recalling that the elastic T -mat r i x was given by (see Eq. (2. 7)) 

T e l < M b > О - 2 8 ) 

we may write Eq. (9. 27) in the fo rm 

T a b =<е^"7Ьфь |Ub|x (a+^a> + <Х<Ь"> Ф ь к | * ( + ) > O- 29) 

The equivalence of Eqs . (9. 29) and (9. 16) for the general separation 
<8Sb = U b + « b is called the Ge l l -Mann-Go ldberger ( G M - G ) relation [107] . 

These expressions are the starting point for different approximation 
methods. Equation (9. 29) is appropriate if the residual interaction 

can be considered as a perturbation of the average interaction U b , 
that is for Born-type approximations. Equation (9. 16) is formal ly a 
direct generalization of the elastic T -mat r i x and will be a suitable 
basis of approximation for direct reactions which can be considered 
as general ized scattering processes . This is the case if the internal 
motions can be treated as adiabatic, and Eq. (9. 16) is the appropriate 
starting point for adiabatic approximations. 

10. D I S T O R T E D - W A V E B O R N A P P R O X I M A T I O N [69] 

10. 1. Plane waves and distorted waves 

We consider the non-elastic part of Eq, (9. 29), 

and for ¥ 

ï ( + ) ^ + 
i{kb%} 

'b r 

Thus, 

F a b ( k a , k . ) = Fel ( k „ k ' ) 6 
M 

ab* a' b' el N ль Vbl"b 

Tab = < Х ( Л , Ы * ( + ) > (10.1) 
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The simplest approximation is to replace by 

« ф аеШ а ' Г а (10.2) 

This plane-wave Born approximation has the virtue of simplicity and 
describes a number of qualitative features of observed angular 
distributions, particularly in stripping reactions. However, for quan-
titative work it is nearly always essential to take into account the strong 
distortion of the wave functions by the average interaction U b . To f i rst 
order this is achieved by representing as 

« ф аХ (^ (10.3) 

and the distorted-wave Born approximation (DWBA ) expressioñ of Tab 

becomes 

Tab КЧ - ) ( к ь , ? ь )ф ь ( ? ь ) | « ь ( ? ь , | ь - ) |ф а ' ( ? а ) Х « ( к а , Г ) > (10.4) 

The functions are obtained by solving the elastic scattering problem 
(9. 21) for given potentials U ( r ) . This, and the evaluation of (10.4), 
can only be done by numerical computation. Such calculations give 
an accurate description of a l a rge variety of direct processes and have 
almost completely superseded the plane-wave treatments. 

10.2. Z e r o - r a n g e approximation 

Despite the complicated structure of the D W B A matrix elements 
(10.4), the main features of the resulting angular distributions can be 
fa i r ly simply displayed if we make the further approximation 

r b ~ r a = r (10. 5) 

It means that the " initial" interaction takes place at the same point as 
the " f ina l " interaction. This is correct for inelastic scattering and is 
expected to be good in other processes if the range of is smal l com-
pared with the local wave lengths of the distorted waves. In zero - range 
approximation the six-dimensional integration over ra and r b in (10.4) 
is reduced to a three-dimensional one, 

Tab = / X ^ b ^ K W |« ь (? ,€ ь )|ф а (? а )> < + ) ( K a , ? ) d ? (10.6) 

This expression can be simplif ied considerably by introducing the partial -
wave expansion of the distorted waves and a multipole expansion of the 
interaction operator. 

We f i rs t expand « b ( r , f b ) in multipoles, 

LM 



NUCLEAR SCATTERING 59 

so that 

< * ь К к > = Х ч К м к > ( i 0-8 

LM 

The internal wave functions фа and фь are eigenfunctions of the initial 
and final spins, respectively, and ( I a , M a ) couples with (L , M ) to give 
( I b , M b ) . Using the Wigner -Eckar t theorem, 

<ФьКмк>= Оьмь1иш11.м«> 

= < I a L M a M | l b M b > < I b | | u L | | l a > (10.9) 

we obtain 

Tab = X < 1 ^ L M a M | l b M b > TLM ( 1 0 Л 0 ) 

LM 

where 

TLM (10.11) 

and the reduced matrix element is written in the form 

Obl luL l l I a> = c LW L ( r ) (10.12) 

Now we expand X^ and X ^ ' in partial waves, choosing our coordinate 
em such that í a defines the z -ax i s and ka X kb the y - ax i s . Thus 

X « ( k a > ? ) e i o ( « a ) f W ( k a , r ) Y { 0 ( ? ) (10.13) 

X < ; * (E b , ? ) = ^ i - « V ° ^ f ( b ) ( k b , r ) Y r m . (0, 0) Y*.m . (r ) (10. 

where the radial wave functions have the asymptotic fo rm (2. 16) 
Integration over r yields 

14) 

T l u ( 2 L + l ) * c L p - í , ( 2 i . + l ) e 1 ( 0 í > + 0 ^ № | 1 . 
a i,r 

• < i ' L 0 0 | i 0 > < i ' L , - M M | í 0 > Y£, . m ( 0 ,O ) (10.15) 
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with the radial integrals defined by 

R i r = / f ^ t k b . r j u j r j f ^ k , , r ) dr (10. 16) 

The differential cross -sect ion (9. 17) implies an average over 
and a summation over -M b . This yie lds 2 

dg ,n , h v_ M a M b kb W 2 I b + 1 i ,2 n n 1 7 , 
Ж ( a b ) - " ( 2 i W кГ (2Ia + 1) ( 2 L + 1 ) ITlmI < 1 0 - 1 7 > 

L M=-L 

10.3. F inite - range and non-local effects 

The transition elements (10. 15) have a fa i r ly simple structure, and 
we shall see later that in certain cases, such as inelastic scattering 
of strongly absorbed particles, they can be evaluated in closed fo rm. 
Since this simplicity is due to the ze ro - range assumption one must in-
vestigate the quality of this approximation. Finite-range calculations 
have been carr ied out, mainly for stripping reactions, by Austern et al. 
[108] , Dar et al. [109] , Buttle and Goldfarb [110] , Bencze and 
Z imani [111] . It appears that f inite-range effects tend to suppress the 
contributions f rom the nuclear interior. This changes the magnitude 
rather than the shape of the angular distributions. As one might expect, 
there is some resemblance between the effects of finite range and of 
non-locality of the interaction. A non-local interaction changes the 
wave functions in the nuclear interior; this is the " P e r e y effect" which 
we have discussed in section 3.1. Finite -range and non-local effects both 
become more appreciable for processes with large momentum transfer 
than for l ow -Q reactions. 

10.4. Extended optical potential 

Let us now consider a special f o rm of the interaction operator « b . 
An important class of direct reactions is inelastic scattering via 
excitation of collective sur face modes. One way of describing the inter-
action in these cases is to assume that the complex potential " f o l l ows " 
the deformation of the nuclear surface and so becomes a function of 
the collective var iables [112-114] . The spherical optical potential 
U (R , r ) is thus extended to 

1 3/ ( r ,Ç ) = U (R+ <*(?), r ) (10.18) 

where a ( r ) is the displacement in direction r of the nuclear surface f rom 
the spherical shape of radius R. Now we may write 

= U (R, r ) + tc(R, r , a (r ) ) (10.19) 

Л 
No one will confuse the reduced masses in (10.17) with the projection quantum numbers M a , M^. 
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and expand и-in powers of the displacement 

« = « ( * ) § § + i a 2 ( r ) | ^ + . . . (10.20) 

The dynamical collective var iables are defined by the multipole 
expansion 

(10. 21) 

(10. 22) 

and Т ш of Eq . (10. 15) is the transition matrix element for single excita-
tion of multipolarity ( L , M ) . The coefficients cL are the reduced matrix 
elements of the displacement operators f L M , and the f o rm factor is given 
by u L ( r ) = 9U/9R. It is not reasonable to calculate h igher -order excita-
tions, that is contributions f rom higher orders in the expansion (10.20), 
f r om the f i r s t - o rde r D W B A term (10.4) of the transition amplitude. 
Second-order excitations in second-order D W B A have been studied by 
Austern et al. [115] . 

The wel l -known work of Basse l et al. [116] and Rost [117] on 
inelastic scattering of medium-energy alpha particles is a good example 
of how D W B A is applied. One f i rst determines the parameters of the 
central potential by fitting the elastic scattering cross -sect ions . According 
to (10. 15) the fo rm of the inelastic angular distributions is then fixed, 
and the only parameters are the reduced matrix elements cL which are 
determined by normalization. This method of analysis has been very 
successful . 

However, the procedure of determining the elastic parameters 
independently of inelastic scattering may not always be applied. In 
general the elastic and inelastic channels are coupled, and inelastic 
scattering has an effect on the elastic scattering cross -sect ion. In 
cases where this coupling is appreciable the D W B A is insufficient 
and one has to pe r fo rm a coupled channels calculation. 

11. C O U P L E D C H A N N E L S 

Basical ly , we go back to the system (9. 19) of coupled equations for 
the expansion coefficients ф. This infinite system cannot be solved 
exactly, so we make a Tamm-Dancof f type approximation and assume 
that only a finite number of channels are coupled together. The contri-
butions of all other channels are disregarded or described summari ly 
by an imaginary part of the average interaction. 

LM 

To f i rst order , we have f rom (10. 7) 

3U 
uLM( r-?LM' -
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Coupled-channels calculations for collective excitations were f i rst 
suggested by Bohr and Mottelson [118] , and applied to scattering of low-
energy neutrons f rom deformed nuclei by Margo l i s and Troubetzkoy[119] 
and by Chase, Wilets and Edmonds [113] . The elastic and inelastic 
scattering of protons and alpha particles by even-A nuclei has been 
treated by Buck [120-122] . This work was extended to odd-A nuclei 
and very general interaction potentials by Tamura [123] . Let us 
br ie f ly describe the principles of the coupled-channels method for 
inelastic scattering in the general formulation of Tamura . 

W e consider the interaction of a projectile of spin 1 with a target 
nucleus, whose levels are labelled by n = 1, 2, 3 . . . and which are 
characterized by their spin I n , parity irn and e n . The internal wave 
functions ф, ,, are eigensolutions of 

'nMn 

( h - e n ) W = ° (11-1) 

F o r a given channel we f i rst couple the spin of the projectile with the 
orbital angular momentum in to a total spin of the projectile, 

l - s + l n (11.2) 

—> 

and this we couple with the target spin In to the total angular momentum 
of the system 

J = l + I n (11.3) 

This , as wel l as the total parity 

n = ( - / n T n (11.4) 

are conserved quantities. If Xsm¡, is the projecti le spin function, we 
define 

3 \ j n m / r ) m { m s I j n m j > i 4 n m { ( ? ) X s m s (11.5) 

m í m s 

and 

Î ) W „ ( ^ Ç ) = l < ; i n I n m i M n | j M > 3 ' i n i n m j ( 1 1 - 6 ) 

mjMn 

Now we expand the total wave function Y in eigenfunctions of total angular 
momentum, 

Г ^ f n t j ( r > 

У С * , * ) " ) - 7 - Ф п ( r . € ) (11.7) 
¿_i г V n n 

JMní n j n 
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and insert this in 

(H - E ) ¥ = 0 (11.8) 

with 

H = h + K + U (r ) + « ( r , | ) (11.9) 

Scalar multiplication by Ф and integration over the Ç and the angles r 
gives an infinite system of coupled equations for the radial wave 
functions 

where E n = E - en . 
If we assume that only a finite number of states in the target nucleus 

are strongly coupled to the ground state through the interaction u., the 
system (11. 10) can be solved by numerical integration. Fo r the total 
interaction = U + « one assumes an extended optical potential of 
the fo rm (10. 18), whose diagonal part is a complex spherical potential 
plus Coulomb term, spin-orbit term, etc. The important point here 
is that the wave functions for both elastic and inelastic scattering are 
calculated at the same time. It is therefore not necessary f i rst to fit 
elastic scattering in order to determine a phenomenological optical 
potential which is then used to calculate inelastic scattering. The 
agreement of coupled-channels calculations with scattering data for 
nucléons, alpha particles, deuterons and heavy ions is very satisfactory. 
However, the amount of computation is extensive and increases strongly 
with the number of levels that are taken into account. Fortunately, 
it is only at relatively low energies that the D W B A fai ls and coupled-
channels calculations become necessary. Fo r energies above the 
t ens - o f -MeV region the results of the two methods are found to be in 
good agreement with each other [69] . 

12. W K B A P P R O X I M A T I O N A N D AD IABAT IC METHOD 

12. 1. W K B approximation 

At sufficiently high energies the D W B A can be simplified by using 
W K B approximation for the distorted waves. In the D W B A form of the 
transition matrix in ze ro - range approximation, 

(11. 10) 
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T a b ^ b K K * ^ 

= /Л"'* (Ч, г) <фъ ь|фа> (S..Ï) d? 

f+1 

we replace X у by (see Eq. (4. 11)) 

X « (Ka,"r) = exp i к, •~r-

h2ka 
U (В + К z1 ) dz1 

(12.1) 

(12.2) 

and the time-reversed wave by (see Eq. (9. 24)) 

X ^ * ^ , ? ) = exp i - k b - r - /U(b + ê b z ' ) d z ' (12.3) 

If we consider, quasi-elastic processes and small-angle scattering: 
v b ~ v a = v, kb « к a = k, the two integrals in (12. 2) and (12. 3) can be 
combined into a single integral. This yields 

Таь = / e - V 2 6 ( % b K K > d ? (12.4) 

where q = К - ícb is the momentum transfer and 

S(b) = - U ( S + Sz)dz (12.5) 

the phase shift caused by the distorting potential (see Eq. (4. 17)). 
Expression (12.4) has been used extensively, with a number of 

further approximations. If icbis axial-symmetrical, we can carry 
out the azimuthal integration as in section 4. 3., and Eq. (12. 4) becomes 

Tab = 2 l T f e i 2 6 ( b ) « a b ( b )J 0 ( qb )bdb (12.6) 

with the definition 

«ab<b> = < *bl d z k > (12.7) 

Equation (12. 6) is the generalization to direct reactions of the elastic 
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formula (4. 19) in the high-energy approximation. It has been applied 
to high-energy processes , fo r instance by Sopkovich [124] , and by 
Gottfried and Jackson [125] . 

The case of inelastic scattering via collective excitation, with 

( 1 2 . 8 ) 

LM 

has been treated by Bassichis and Da r [126] . They have shown that, 
under conditions of strong absorption, Eq. (12.4) can be reduced to 

a LM 

• / j M ( q b ) | g [e i2¿(b)] bdb (12.9) 
о 

This leads to a relation between inelastic and elastic scattering which 
we shall discuss in more detail later on. Bassichis and Dar include 
Coulomb interaction and use the SAM form (6. 15) for щ =exp [ i26 (b ) ] . 
Equation (12. 9) then yields simple explicit formulae for the inelastic 
scattering cross -sect ions . These are special cases of closed expressions 
which we shall derive in section 14. 

12.2. Adiabatic method 

Under certain conditions we may consider direct processes , in 
particular inelastic scattering, as a generalization of elastic scattering. 
Compare the T -mat r i x in the fo rm (9. 16) 

Tab =<e i kb' rb ф ь | ^ ь | * ( + ) > (12.10) 

with the elastic T -mat r i x (9. 28) 

Tel = < е ^ ' ? Ь |uJx(b+)> (12.11) 

Clear ly , the calculation of Tab would be completely analogous to that 
of Tel if we could regard the internal coordinates f as fixed parameters 
rather than as dynamical var iab les , that is as c -numbers rather than 
as operators . This is possible if the internal motions are slow compared 
with the relative motion, in other words under adiabatic conditions. 
There fore , the natural starting point for the adiabatic approximation is 
Eq. (12. 10) with replaced by 

Ф а ( 5 а ) ^ Г ( к а , г а , ? а ) (12.12) 

5 
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where фк ' is defined as a solution of 

( K a + ^ a -Ъа)ф[+) =0 (12.13) 

This equation does not contain the internal Hamiltonian h a , so it describes 
elastic scattering by a generalized potential < ^ a ( ? a , f a ) which depends 
upon the f a as parameters . Thus in adiabatic approximation the T -mat r i x 
becomes 

Tab = < е ' к { > ' Г * b K M a + ) > < 1 2 - 1 4 > 

which we now may write in the fo rm 

(12. 15) 

(12. 16) 

The adiabatic conditions are most closely approximated in transitions 
to low- ly ing excited states which are of a collective nature. If we now 
consider inelastic scattering, where ra = ?ь = r^ i a = 5> art(^ make 
the further approximationT<a = K, K" = ïc' with |k| = |k' [ , then 

t = < e ^ ' 7 \ & \ Ф М > (12.17) 

is precise ly the T -mat r i x for elastic scattering by the extended optical 
potential <^ ( r , f ) for fixed values of f . A f ter having solved this elastic 
scattering problem we obtain the adiabatic T -mat r i x by forming the 
matrix elements (12. 15). 

F o r calculating t we can in principle use any of the methods described 
in Par t A . The simplest of these is the diffraction approximation 
discussed in 5.2, which is appropriate for strongly absorbed particles 
at high energies . This approach was developed by Drozdov [127] , 
Inopin [128] and B la i r [129] . 

W e introduce instead of t the generalized elastic scattering amplitude 
F ( k , k ' , f ) = - (М/2irh2)t, and follow the same procedure as with Eq. (5. 11) 
fo r 

F ( k , k ' , f ) = - JS i j . Je " i 7 ' , r <^ (? , f ) t f / ( + ) ( S , r , f ) d r (12. 18) 

Using the wave equation (12. 13) and imposing Kirchhoff 's boundary 
conditions (5. 14) for a black screen, we obtain again 

Tab = < * ь к ь 1 * , > 
where 

—* 

F ( £ , k ' , Ç ) = (1 + COS0) J e i ( k " k , ) ' r d 9? (12. 19) 
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where the integration extends over the illuminated part £ . In high-
energy approximation, g is the projection of the nuclear surface on 
the plane perpendicular to the incident direction к . If <2/ has the form 
(10. 18), this projection is bounded by 

p«>) = R + a { - , ( 12 . 20) 

F o r smal l angles в, F ( k , k ' , Ç ) s f ( в, | ) becomes 

2n p(0) 

n e . g ) = % f d d p 
o . o 

(12. 21) 

To f i rs t order in a we write 

R+a 

I ( R + « ) = / e - i k p e c % d p - I ( R ) + a ^ 

о 
( 1 2 . 2 2 ) 

and use the properties 

( l 
A\2' Air 

for L + M even 

for L + M odd 

(12. 23) 

with 

and 

Г - ikpecos0e-iM0d(í) = ± ) l M¡ 2 7 r J i M i ( k p 0 ) (12.24) 

This yields 

+ i k R > i , I 2L+1 

'LM \ 47Г 

LM 
(L+M even) 

^ ) L [ L : M ] J|M|(kR0) (12. 25) 
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The f i rs t term is the elastic diffraction amplitude which is of course 
part of the full adiabatic amplitude. F o r spinless particles exciting a 
state of multipolarity L , the inelastic scattering c ross - sect ionbecomes 

d a m t » I I 2 /> d» 2 2 L + 1 
ш ( 0 - L ) = |cL| (kR) 

L 

I [ L : M ] 2 [ J | M | (kR0) ] 2 (12.26) 

M=-L, -L+2 

where cL is the reduced matrix element 

c L = < < » L | l ? L l k > < i 2 - 2 7 > 

Despite its simplicity, Eq. (12. 26) describes the main features of 
the inelastic scattering of alpha particles f rom low- lying collective 
states. In particular it expresses the B la i r phase rule: In the asymp-
totic region, the diffraction oscillations in the inelastic angular 
distributions for L = even are out of phase with those for L = odd and 
with those for elastic scattering. This rule enables us to determine 
the parity of a collective level by comparing the phase of oscillation 
in an inelastic angular distribution with that in the corresponding 
elastic cross -sect ion. 

Another qualitative feature is the behaviour at fo rward angles, 
where Eq. (12. 26) predicts that da/díí (0 - L ) at в = 0 vanishes for 
L = odd and is finite for L = even, and so expresses the Glendenning-
Kromminga -McCarthy rules [130, 131] . The structure of (12. 26) at 
smal l angles is characteristical ly different f o r different L - v a l ue s . 
Thus, if inelastic cross -sect ion measurements are sufficiently accurate 
at smal l angles it is possible to determine not only the parity but also 
the multipolarity of the excitation, and (12. 26) can be a useful tool in 
nuclear spectroscopy. 

Formula (12.26) is derived with a number of simplifying assumptions. 
It neglects the diffuseness of the nuclear surface, Coulomb effects, 
contributions f rom ReU, and its validity is restricted to single excitation 
and to smal l scattering angles 0. A l l these restrictions can be removed 
by suitably generalizing the derivation [70, 99, 132] . 

Da r has suggested [70] that Eq. (12. 26) applies not only to inelastic 
scattering but is a good approximation for all " su r f ace " processes of 
strongly absorbed particles, such as (d, p) stripping, (a, p) knock-
out and (d,t ) pick-up reactions. He argues that under these conditions 
the outgoing particles emerge only from an annular region of width 
A R around the surface, and he derives an expression which is the same 
as (12. 26) but with к |cL | replaced by [ 1 + (kb/ka ) cos 0] 27rAR. Further, 
to preserve time reversa l invariance, he replaces the argument kR0 
by qR where q = | ka - îcb|. A more detailed diffraction model for 
surface reactions has been worked out by Henley and Yu [134, 135] . In 
this model the reaction kinematics and the correct shadow geometry 
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in configuration space is taken into account. Unfortunately, the 
resulting expressions for the angular distributions become rather 
complicated. 

13. A U S T E R N - B L A I R THEORY • . . 

13. 1. Relation between inelastic and elastic scattering 

It was pointed out by Rost and Austern [136] that there is a close 
relation between the D W B A and the adiabatic method for inelastic 
scattering. A general discussion of this relation has been given in a 
bri l l iant paper by Austern and B la i r [133] . These authors show that 
under rather general conditions the T -mat r i x for inelastic scattering 
can be expressed in terms of the S-matr ix elements for elastic 
scattering. That there exists a close relation between inelastic and elastic 
scattering is a lready apparent f rom the diffraction model and manifests 
itself most c lear ly in the B la i r phase rules . However, the description 
of this relation by means of the diffraction model in configuration space 
is both incomplete and physically unsatisfactory. It is incomplete because 
the diffraction approximation is limited to high energies and restricted 
by rather unrealistic conditions which cannot be lifted without making 
somewhat artif icial assumptions about the "geometry" of the interaction. 
It is physically unsatisfactory because diffraction effects in inelastic 
scattering, as well as in elastic scattering, originate f rom the structure 
of the interaction matrix elements in angular momentum space (see 
Ref. [76] . 

A f i rst attempt to put the diffraction description of inelastic scattering 
on a more satisfactory basis was made by B la i r , Sharp and Wilets [137] , 
who expressed the amplitudes for monopole and quadrupole excitations 
in terms of smoothed parameterized fo rms of the elastic scattering 
coefficients • However, as their formulation is still based on 
"geometr ica l " conditions, it is difficult to general ize to excitations of 
higher multipolarity and to include Coulomb interaction. 

The decisive steps in the work of Austern and B la i r are (i) to 
c lar i fy the relation between the complete D W B A ser ies and the expansion 
of the adiabatic amplitude in powers of the nuclear interaction, and (ii) 
to evaluate the terms of these series by means of approximate relations 
between the D W B A radial integrals and the elastic r)c. Thereby one 
combines the virtues of the two approaches: the "physics" of the D W B A , 
contained in the radial integrals, with the simplicity of the expansion of 
the adiabatic amplitude. 

13.2. Distorted waves in elastic scattering 

The T -mat r i x for elastic scattering by a potential has the form 

T(k, k ' ) =< e l k " r' (13. 1) 

where 

(13.2) 
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and 

â ? ( + ) ( r , r ' ) = ( E - K - ^ C + i e ) " 1 (13.3) 

is the Green ' s function for the potential Now suppose that is 
spherical ly symmetrical and depends on a parameter h, such as the radius 
or the depth of the potential wel l . If we make a spherically symmetrical 
change of h to h + we may write 

- ^ ( h + or, r ) = U(h, r ) + u l h . a , r ) (13.4) 

The change in T caused by the perturbing potential u. can be separated 
f rom the unperturbed contribution by means of a G M - G transformation. 
This yields 

Т(Е,Й ' ) = Т 0 (£,Й' ) + ДТ (К ,Й ' ) (13.5) 

where 

T 0 ( k ,? ' ) = < e i k ' , r I U|X ( + ) ( £ ,? )> (13.6) 

and 

ДТ(Й,£ ' ) = < x ( " ) ( î ' , r ' ) | w ( r , r ' ) | x ( + ) ( l c , r ) > (13.7) 

with 

u ( r , r ' ) = « + (13.8) 

The wave functions X ^ are the exact scattering solutions for the potential 
U, fo r outgoing and ingoing boundary conditions. 

W e want to express the scattering by the full potential <$/ in terms 
of the scattering by the unperturbed potential U. To this purpose we 
f i rst expand the operator w in powers of « by iteration, 

u ( r , r ' ) = « + « G ( + ) « + u G ( + ) « . . . , ' (13. 9) 

where 

G< +>(r , r ' ) = (E - K - U +Í6)"1 (13.10) 

is Green ' s function for the potential U. 
Next we expand the perturbation potential te in a Taylor ser ies with 

respect to the parameter change a, 

n = 1 
(13.11) 
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By inserting this in (13. 9) we obtain 

V n 
u ( r . r ' ) = ^ a n u n ( r , r ' ) (13.12) 

n = l 

where 

9U ! Г и BU _ ( + ) 3U . , ,„ , „ , 
"i = э ь » a h ï + â h G ( ) a F - e t c - < 1 3 л 3 ) 

Finally we expand everything in partial waves. The expansions 
of X(+) andX ( _ ) * are given by Eqs. (10. 13) and (10. 14), and for un we 
define 

U n ( ? < ? 1 ) Y t m ( ? ) Y ^ ( ? ' ) (13.14) 

im 

The evaluation of ЛТ (? , ^ ' ) is quite similar to that of TLM in 10. 2 and 
yields 

Д Т ( к , к ' ) + l ) W 2 a í Y í o ( 0 , O ) ^ a n R ( í n t ) (13.15) 

£ n = l 

where 

r("« J J fi{k-r)un
t
(r.r')ft(k,r')drdr« (13.16) 

о о 

On the other'hand, the partial-wave expansion of T(k,îc') defines the 
scattering coefficients rjÉ (h, a) for the full potential 0/, 

T(íc.S') ^(2-C.+ l ) l [ l - n í ( h ^ ) e 1 2 ° í ] Y|O(0, 0) 
1 (13.17) 

so that 

ДТ(к ,к ' ) 

(477 )^ (2^ + 1)' е2 °Пп£ (Ь,а) -г5 { (Ь,0) ] Y { 0 (6, 0) (13. 18) 

Taylor expansion of r j^h , » ) with respect to a and comparison with (13. 15) 
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yields a relation between the radial integrals (13. 16) and the derivatives 
of the elastic scattering coefficients 

(n) E 1 Э ^ . . . 
К м " 1 2 к 1 П ~ Э № ( 1 3 Л 9 ) 

In particular, for n = 1 we have 

<13.20, 

0 

because ^ is a local operator, <&7>(r-r'), and has the explicit form 
" u l r . r " ) = 0 U / 8 h ) 6 ( r - r ' ) . 

13.3. Extension to inelastic scattering 

Now we regard <i¿ as an extended optical potential, precise ly as in 
(10. 19). The unperturbed potential U is a spherical optical potential, 
fo r the parameter h we choose the nuclear radius R, and a = a (?) becomes 
the displacement operator which depends upon the collective var iables 
through the multipole expansion (10.21). The essential dif ference f rom 
the elastic case is that W and u, are now operators with respect to the 
internal as well as the external var iab les . 

The full T -mat r i x becomes 

Tab =<e i 7b- r ' (13.21) 

where 

= < & + < & [ % - К - < t ¿ - h(Ç) + i e ] _ 1 « i ' (13.22) 

contains the internal Hamiltonian h(| ) in Green ' s function. 
The adiabatic approximation as discussed in section 12.2 consists 

in omitting h(f ) f rom (13. 22) and treating the internal var iables f in и 
as c -numbers . This enables us again to define a generalized elastic 
T -mat r i x tab by 

Tab = < * ь 1 * . ь к > < 1 3 - 2 3 > 

where 

• ik' . r1. . ilT,."r . 
* аь = < е M e > (13.24) 

and is formal ly the same as in (13. 2) with Green 's function (13. 3). 
Now we split off the proper elastic scattering by making a G M - G 

transformation 
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t . b = t e l + * inel ( 1 3 - 2 5 ) 

W e consider only the inelastic part and write t in place of t¡ As in 
section 12. 2 we make the further approximation ka = k, k'b = E' with 
\Щ = |K'|. Thus 

t (k ,k ' ) =<X ( " ) (k ' , г ' )|т(г , r ' ) [ x ( + ) ( i t , r ) > (13.26) 

where 

т ( r , r ' ) = « + t t & W u (13.27) 

If we now expand т in powers of u,, and и is of the form (10. 20), we 
obtain 

with 

т(г, r ' ) = 2 ^ T n ( r , r ' ) (13.28) 

n = l 

This is an expansion in powers of the displacement operator a 
which means, physically, an expansion in orders of excitations. The 
term l inear in a descr ibes single excitation; the quadratic term des-
cribes double excitation and consists of a "one step" (or "d i r ec t " ) and 
a " two -s tep" contribution. As Austern and B la i r emphasize, the 
expansion (13. 28) in a of the adiabatic amplitude corresponds, term 
by term, to the full D W B A ser ies in the limit Q = 0. It would be nice 
if we could evaluate the terms of this ser ies in a fashion analogous 
to the elastic case. This would entail relations, s imi lar to (13. 19), 
between the radial integrals of the D W B A ser ies and the elastic 
scattering coefficients. We can enforce the analogy by means of some 
approximations which turn out to be good in cases of special physical 
interest. 

13.4. Approximations 

Our f i rs t difficulty is that we cannot write т in the form ^ а"иам 

i n 
because a depends on r and therefore does not commute with G™ (?,? ' ) . 
Let ' s pretend a does commute with and write 

T ( ? , Ï ' ) ~ [a" (?)wn ( r , r ' ) + u n ( r , r ' ) a n ( ? ' ) ] (13.30) 
n = l 
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in a symmetrical form to leave т hermitean. Clear ly , this is an 
approximation only for n Ш 2, not for single excitation. Austern and 
B l a i r have discussed their assumption (13. 30) in detail and find it 
reasonably good at least for n = 2 in the case of strongly absorbed 
particles. If we now insert т in (13. 26) and (13. 23), Tab contains matrix 
elements of the f o rm ^фь|<гп|фа)>. Fo r the moment we confine ourselves 
to excitations of multipolarity (L, M) in even-A nuclei. In this case we 
can write 

<ф ь |а п |ф а >= <LM|a « |00> = с п ( Ь ) У ^ ( ? ) (13.31) 

where c n ( L ) is the reduced matrix element for n-th order excitation, and 
the transition element becomes 

T a b = ï X ° n ( L } < X ( ) ' } ' Y " > + > } I X ( + ) ( E ' ? ) > 
n (13.32) 

Again we expand everything in partial waves and obtain, in analogy to 
(10. 15), 

47Г i 
T 3 b = k 2 ( 2 L + 1 ) * 

• ^ ie~v(2£' +1)* eI(oí+oíí<-eiL00|je0><je,L,-MM|je0> 

l,Г 

• Y r , - M ( 0 ' ° > - X > ( L ) R « ( 1 3 - 3 3 > 
n 

where 

R % = J J f r ( k , r ) | [ W n { , ( r , r ' ) + u n t ( r , r ' ) ] f { ( k , r ' ) d rd r - (13.34) 
о 0 

are the radial integrals for n-th order excitation. 
Fo r £ =£ ' these radial integrals are identical with those defined in 

(13. 16) and can be expressed in terms of r)c through the relation (13. 19). 
The second approximation of Austern and B la i r is to extend this relation 
to £ f £ ' and to replace R(n? by RÍ".' where 1= i ( i + i ' ) , 

r,(n) ~ J, (tl) • E 1 э % . „ „ . 
R f t RU x2kn! 3hn 

This approximation is quite accurate for strongly absorbed particles 
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at medium and high energies, if |i - £ '| is not too la rge . It is sur -
prisingly good for \SL - =1 at all values of SL. The main basis for 
its validity is the fact that in strong absorption situations the D W B A 
radial integrals are sharply localized in angular momentum space in 
the vicinity of the cutoff value J « £0 [116, 117] . 

Fo r strongly absorbed particles and sufficiently high energies 
we can make two further simplifying assumptions. First ly , depends 
only on the difference £- St 0 . This is a basic property of rç £ in all 
strong absorption models. Secondly, if we interpret h as the nuclear 
radius R, it is connected with the cutoff angular momentum by the 
semi - c l a s s i ca l relation J20 + 1 œ kR for energies well above the Coulomb 
ba r r i e r . Thus 

and finally 

d£n 

Eqs. (13.33) and (13.37) are the main result of the Auste rn -B la i r theory 
of inelastic scattering. 

14. STRONG A B S O R P T I O N M O D E L FOR I N E L A S T I C S C A T T E R I N G 

Now we go one step further and introduce the SAM form (6.5) of 
rjj in the Aus te rn -B la i r expression (13.37). By means of techniques 
s imi lar to those developed for elastic scattering, we can evaluate the 
sums over £ , £ ' in (13. 33) and derive simple closed formulae for the 
inelastic scattering amplitudes [138] . 

14.1. Single excitation 

Fo r the present we confine ourselves to even-A target nuclei and 
f i rst consider single excitation (n = 1). In this case the differential 
c ross -sect ion is given by 

I Í K ( И Л ) 
M = - L 

where 

M h f ( % \ _ _ M b T ( l ) 

= I с j (L ) (2L + 1)* 2 / - r ( 2 i ' + l ) * 
i . f ' 

• < i , L O O | i O > < i ' L , - M M | ^ 0 > Y t , _M (0,0) (14.2) 
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Under the SAM conditions (6.6), 3rj¡/9Í is confined to a narrow range 
of £-values in the vicinity of the cutoff i Q . Since the summations in 
(14. 2) extend only over values of £, £ ' for which is small , we 
may approximate the Coulomb phases by 

cr£ + tr{. « 2CTj~ 2стд+ P i - Л) 6C (14.3) 

where 

A = i „ + i 

2 С Т = A J 9 Л с 2n In sin i вг + 2<jn - (14.4) 

Hence 

f LM ( e ) =I C j (L ) (2L + 1)^ ei2o/^ i1'1' [2£1 + 1)^ P ( î ) 

M " 

• < í ' L 0 0 | í 0 > < i ' L , - M M j i о > Y r . - м ( в ' ° ) ( 1 4 - 5 ) 

where 

P ( î ) = е 1 ( Х " Л ) е с ^ (14.6) 

Now we expand P ( ï ) in a Taylor ser ies about £' and obtain 

f ( L > ) = è i L + 1 c l ( L ) ( 2 L + 1 ) * e'2°A 

00 

£ (2jP+1)* P « ( i ' ) C « ( * ' ) Y r i . M ( 0 , O ) (14.7) 
r = 0 f 

where 

C L M ( i ' ) = У i £ " r " L T T < i ' L O O | i O > < i . L , - M M | i O > (14.8) 
С 

and P ( t ) ( i ' ) denotes the r - th derivative of P ( î ) at £' . 
Next we assume that the angular momentum transfer is smal l 

compared with the cutoff angular momentum, 

L « £„ (14.9) 
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Because p M (£<) i s localized near Л0 we may disregard the contributions 
to (14. 8) coming f rom Í 1 S L and extend the summation f rom Í 1 - L, to 
i ' + L . Under assumption (14. 9) and the condition Л » (2тг)"1 , the 
Clebsch-Gordan coefficient is a slowly varying function 
of i ' fo r given St - SLX, L and M. Using again the localization of pW ( i ' ) 

which we denote by C ^ . Thus 
near 4 0 , we may in (14.7) replace the C*'(JG1) by their values at i 0 , 

oo 

f ^ (0) = i i ^ C j I L ) ( 2 L + 1)A ei2°A (14. 10) 

r = 0 

where 

C
W 

L 

= У (i/cf < Í 0 L O O | ( Í 0 + k ) , O > < Í 0 L , - M M | ( Í 0 + k ) , O > LM 

K=-L (14.11) 

are rea l coefficients, and 
OO 

S
( r )

= ) (2i' + l)*P(r>(ii)Y (0,0) (14. 12) 

r=o 

The sum (14. 12) can be evaluated in closed fo rm by means of SAM 
techniques. If has the fo rm (6. 5), the result is [138, 139] 

i 
о (Г) = (M-|M|) -i, i f i .r+l Л . ( 0 \ 

M ( ' 20 V sin 0у 

• { [H™ +( - ) г + 1Н ( . 1 ) ] J | M h l (A0) + i[H(+D - ( - ) t + 1 H™] J|M| (Л0 ) } (14. 13) 

where 

Н<±1> = [ ( 1+М 1 Ф ± ) - 1 * ± ( Р + /'2Ф±)] (14.14) 

with the fo rm factors F defined by (6. 10) and ф± = 0C ± 0. 
Finally, after summing over r , Eq. (14. 10) becomes 

• { ( н т + н ( ; ) ) [ а ш ( в ) J| M | (A0) - f ^ W J ^ t A f l ) ] 

+ i ( H № - H W ) [ а ш ( в ) J|M|.1ÍA-0) + 0 l m (в) J|M| (A0)] } (14. 15) 



78 FRAHN 

where 

<We> + « V 0 > 

L 

= ^T i K " L e l 2 0 < i o L O O | ( i o + к), 0 > < Í 0 L , - M M | ( i Q + к ) , 0 > (14.16) 

K = - L 

Let us discuss the structure of Eq. (14. 15) by considering a few 
special cases . Fo r this discussion it is convenient to make one further 
simplification which is consistent with the approximations made so far . 
Under conditions (14. 9) and for |к | « £0 we may replace the Clebsch-
Gordan coefficients in (14. 16) by their asymptotic expressions 

< i 0 L , - M M | ( i 0 + K ) , O > s (14.17) 

(L) 
where d is an element of the rotation matrix. Thus 

а 1 м ( в , + 10L M (0 ) = I ( I ) d « ( | ) & (14. 18) 

K = -L 

and with the symmetry relation 

< f ) = ( - ) L + M d ^ > M ( | ) (14.19) 

we have 

aLM<0> = 0 f o r L + M o d d 

Э ш ( 0 ) = 0 for L + M even 

(14. 20) 

F i r s t we assume vanishing Coulomb interaction: а д = 0 , 0C = 0. 
Then 

H ( i ' = [ ( l i / ^ 0 ) + 10 (p ± цгв)] F (Д0) (14. 21) 

In the sharp-cutoff limit H™ = 1, and at smal l angles such that (|L0) <SC 1 
we have f rom (14. 18) 
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where 

«w°> = i i K - 4 o < f ) < м ( f > ^ : M í < 1 4 - 2 3 > 
K=-L 

In this limit we recover the B la i r -F raunho fe r formula (see Eq. (12. 25)) 
with Л = kR, 

O 0 ) M i c l < L ) ( - ) 1 ( M " | M | ) { 2 L + 1 ) * ^ r [ L : M ] J|м| (A 6) (14.24) 

Equation (14. 15) general izes this result in several respects. As usual, 
smoothing of the cutoff results in a form factor F (A0) , which steepens 
the slope of the differential cross -sect ions with increasing angle. At 
l a r ge r angles the amplitude contains additional terms proportional to 
/3LM(0) which are in-phase with the " B l a i r te rms" proportional to 
а ш ( 0 ) . Whereas the contributions f rom the second derivative in n¡ 
(proportional to /u2) are also in phase, those f rom the f i rst derivatives 
(proportional to /J i and p ) are out of phase with the B l a i r terms and 
therefore cause damping of the Fraunhofer diffraction oscillations. 

F r o m Eqs . (14. 14) and (14. 15) we see that Coulomb interaction 
affects the differential c ross -sect ions through the fo rm factors HO) and 
Н ф . In particular, the phase rules remain intact, although phase 
reversa l s may occur at certain angles within a given angular distribution. 
F o r a more detailed discussion of these features I r e f e r to the papers 
by Potgieter and Frahn [138] , Hahne [140] , and Bassichis and Dar [126] . 
As in elastic scattering, the main effect is the "Coulomb damping" of 
the diffraction oscillations described by Eq. (7. 27). Fo r strong Coulomb 
f ie lds, such as in inelastic scattering of heavy ions by heavy target nuclei, 
the angular distributions become smooth and peaked in the vicinity of 
the critical angle вс [142] . 

14. 2. Double and mutual excitation 

The amplitude for double excitation in the Auste rn -B la i r theory is 
given by the term with n = 2 in Eq. (13.33), 

f (2) ( 0 ) = . M b rp (2) 

4 
с 2 ( Ь ) к (2L + 1) + 0r> 8 Tl (2Í1 + l ) í e £ í 

• < i ' L 0 0 | i 0 > < í ' L , - м м | ^ 0 > Y _m (0, 0) (14. 25) 
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With the same procedure as for single excitation we find [13 9] 

f ( L > ) = V D H ^ - M ' l W i k ( 2 L + ( J ^ J 

• { ( H ® + H ^ ) [ a L M ( e ) J | M | ( A Ô ) - P L M (e )J | M | . a (A0) ] 

+ i(H<2> - H P ) ) [ « J ) j | M | i ( A e ) + 0 L M ( e ) J lM|(A0)]} (14.26) 

where 

Н ( 2 ) = 1ф ±Н (^ (14.27) 

Thus, the essential change from single excitation is contained in the 
form factors. The factors ф± = 0C ± в in Eq. (14. 27) show (i) that the 
phase of the diffraction oscillations for double excitation is reversed 
with respect to that for single excitation, and (ii) that the slope of 
the angular distribution is less steep. This can be seen most clearly 
in the neutral case where for single excitation 

H ( i ) + H ( i ) = 2(1 - iu2e2 ) F(A0) 

= - 2 ( ^ - ip)0 F (Д0) 

(14. 28) 

and the terms dominate over the terms aLM J|M| . whereas 
for double excitation, 

H(2) +h<2> = 2i OLÍ - ip)02F(Д0) 

Б<21 - Н ( 2 ) = - 2i (1 - Í/LÍ202)0F(A0) 

(14. 29) 

and the terms a r e dominant ones. These features are 
well known from D W B A calculations [115] . 

In inelastic scattering of composite particles both reaction partners 
may be excited to levels of multipolarity L j and L 2 , respectively. This 
mutual excitation, too, is a second-order process and is described by 
the same amplitude as for double excitation, except for a factor, 

(2LX+ 1) (2L Z+ 1) 
2L+ 1 

f ^ ( 0 ) 

(14.30) 

The differential cross-section for mutual excitation is given by 

i " - » » 
L M=-L 
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Fo r a permanently deformed axia l ly -symmetr ic nucleus the reduced 
matrix element c 2 ( L ) fo r double excitation is related to that for single 
excitation by [133]. 

14.3. Applications 

The adiabatic strong absorption theory has been extensively applied 
to inelastic scattering of alpha particles and heavy ions and it has 
proved to be a powerful tool in nuclear spectroscopy. Springer and 
Harvey [85, 143] have used the "open" Auste rn -B la i r expression 
(13. 33) with rj j in the fo rm (6. 5)(but e = 0) in analysing the scattering 
of 50. 9 -MeV alpha particles by 4 0 Ca and 2 0Ne. Similar analyses f o r 
42 -MeV alpha particles have been made by Peterson for 48Ca [144] 
and A lster et al. for the lead isotopes [145] and 8 8Sr [146] . The 
closed SAM expression (14. 15) for single excitation has been applied 
with a three -parameter to 64. 3 MeV alphas scattered by 58Ni [138] , 
and with a f i ve -parameter rjj to 50. 9 -MeV alphas scattered by 40Ca 
[13 9] . The latter analysis tests the accuracy of the closed formula 
(14. 15) by comparison with the Spr inger -Harvey analysis [85] in which 
the open expression (13.33) had been used. General agreement was 
found within a few per cent over the entire angular distribution so that 
the explicit expressions are quite reliable for quantitative analyses. 
The advantages of having accurate closed formulae are obvious. Not 
only the physical structure of the inelastic amplitudes and their relation 
to the elastic amplitude becomes transparent, also the practical 
numerical computation of the cross -sect ions and the search for best 
fits are greatly simplified. This is true particularly for heavier 
projecti les (as in heavy ion scattering) and at higher energies where 
direct summations over the large number of partial waves become 
increasingly time-consuming, while the accuracy of the explicit formulae 
improves . 

In these analyses, the elastic and inelastic cross -sect ions are 
fitted simultaneously. The r j j -parameters are determined by a best 
fit to the elastic cross -sect ion using the closed SAM formulae (6. 11)-
(6. 13). A l l inelastic cross -sect ions are then calculated with the same 
parameters and the reduced matrix elements cx ( L ) are obtained by 
normalization. It is customary to express the results in terms of 
deformation distances 6. defined by 

с ( L ) = — , < L ' L 0 0 | L ' 0 > 2 ( 2 L ' + Щ с ^ Ь 1 ) ] 
¿ 1Лтг\Ъ (4тт)г 

2 (14. 32) 

(14. 33) 

L 

where в is the polar angle between the nuclear symmetry axis and the 
field point The 6L are related to the C j ( L ) by 

6 l = ( 2 L + 1 ) ^ C I ( L ) (14.34) 

5 
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and can be compared with the usual spectroscopic deformation parameters 
Í ¡L b y 

6L = (Л/к) /3 L~ Rj3L (14.35) 

Similar analyses have been made by Bassichis and Dar [126] for 
44 -MeV alphas scattered by. 6 2 №. These authors have shown that the 
Aus te rn -B la i r relations can also be obtained in W K B approximation 
(see 12. 1, Eq. (12. 9)), and have derived closed formulae for the 
i.ielastic amplitudes for single, double and mutual excitation which are 
special cases of the SAM expressions (14. 15), (14. 26) and (14. 30). 

The inelastic scattering of heavy ions is of special interest for 
applications of the SAM formal i sm. The strong absorption conditions 
are particularly well satisfied, different types of excitation (mutual 
excitation) can occur, and the Coulomb parameters vary over a wide 
range. Ea r l i e r analyses of inelastic heavy ion scattering have been 
made in D W B A [147, 148] , and by Dar and coworkers [126, 141, 149] using 
their W K B formal i sm. A recent investigation [142] of elastic and 
inelastic scattering in the systems 1 6 0 + 12C at 168 MeV , 12C + 12C at 
127 MeV , and *2C + 208Pb a t 125. 6 MeV , has shown that the closed 
SAM formulae give a satisfactory description of the heavy ion data 
with a consistent set of parameters . In the 12С + 12C system the 
reaction partners are identical bosons and the amplitudes have to be 
proper ly symmetrized. The elastic scattering amplitude f e l (0 ) must 
be replaced by 

f£>(0) = f e l (0 ) + fel(ff - 9) (14.36) 

and the inelastic amplitudes fL M (0) fo r single, double and mutual 
excitation by 

f í,t<e> = f , J e > + H ^ Í J í - e ) (14.37) LM LM LM 

14.4. Odd-A nuclei; core excitation 

Odd-A nuclei can be regarded as consisting of an even-A core 
to which the odd nucleón (particle or hole) is coupled. If we assume 
a model fo r this coupling we can relate the cross -sect ions for collective 
excitation of the odd-A nucleus to those for collective excitation of the 
even core. If the nucleon-core coupling is weak, this relation is given 
by [150] 

where I, I1 are the spins of the ground state and excited state, respective-
ly, and L is the multipolarity of the transition. In this model the odd 
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nucleón is a spectator which does not affect the collective excitation 
of the even-A core. It only produces a splitting of the excited levels 
which is ref lected in the statistical factor in Eq. (14. 38). The ground 
state spin I is given by the shell model angular momentum j of the 
odd particle (hole). One would expect that this model works in good 
approximation for nuclei in the vicinity of closed shells. It has been 
tested by inelastic scattering of alpha particles f rom 63Cu, 65Cu 
(cores 6 2Ni, 6 4Ni) [ 151] ; 15N(160) [152] ; 2 7Al(2 8Si ) [153] ; 2 0 7Pb, 2 0 9Bi 
( 2 0 8 p b ) [ 1 4 5 ] . 8 9 Y ( 8 8 S r ) [146] . These investigations show that core 
excitation does occur in many cases and accounts for the phase relations 
between inelastic angular distributions of neighbouring nuclei. However, 
the detailed predictions of the weak coupling model are often not confirmed, 
and there are odd-A nuclei such as 89Y whose excited states cannot 
be described by pure collective core excitation [146] . 

Fo r nuclei with a permanently deformed core we expect strong 
nucleón-core coupling. In the adiabatic approximation, the inelastic 
cross -sect ion for transitions within the ground-state band is then given 
by [154] 

^ ( L ; I , K - I ' , K ) = < I LK0| l 'K> 2 ( 0 - L ) (14.39) 

where К is the projection of the total angular momentum on the nuclear 
symmetry axis. This model was found to descr ibe satisfactori ly 
the inelastic alpha scattering f rom 2 5 Mg ( 2 4 Mg ) , but it is not successful 
fo r 2 7Al(2 8Si ) [155] . 

At present, then, the excitations of odd-A nuclei are not as well 
understood as those of even-A nuclei for which the adiabatic strong 
absorption theory and the D W B A have been completely satisfactory. 

15. CONCLUS ION 

15. 1. "Sur face " reactions 

In our discussion of direct reactions we have been mainly concerned 
with inelastic scattering of strongly absorbed particles. This is the 
simplest case of so -ca l led surface reactions and it is likely that the theory 
developed for inelastic scattering is the prototype and forerunner of a 
more general description for all " su r f ace " interactions. The latter 
are characterized by the circumstance that the elements of the transition 
matrix are confined to a narrow band of orbital angular momenta around 
a critical value Jt0 . A s this is the basic property which made it possible 
to evaluate the inelastic amplitudes in explicit and closed forms, we 
would expect that s imi lar methods can be applied to other reactions of 
this type. That this expectation is reasonable is indicated by the success 
with which configuration space diffraction and WKB models have been 
extended to describe stripping, knock-out and pick-up reactions of 
deuterons, 3He, alpha particles and other strongly absorbed projecti les 
[70, 134, 135, 156-158] . The angular distributions for these reactions 
often show the marked oscil latory structure that is characteristic of 
diffraction processes . Here again the diffraction would be more appro-
priately described in angular momentum space than in configuration space. 
F r o m the form of the T -mat r i x elements (10. 15) in zero - range DWBA 
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we see that such a description is possible if the radial integrals 
(Eq. (10. 16)) are localized in angular momentum space. This is, by 
definition, the case for all " su r f ace " interactions and we expect that the 
amplitudes for these reactions have a structure which is very s imi lar 
to those given by the Auste rn -B la i r theory for inelastic scattering. In 
particular, f o r reactions which are "quas i -e last ic " in the sense that 
|Q| « E, we can make the adiabatic approximation and directly apply 
the Aus te rn -B la i r formulae. The angular distributions would then be 
the same as those for inelastic scattering and only the reduced matrix 
elements cL would have different values. Good examples of reactions 
f o r which these conditions are wel l satisfied are the single-nucleón 
transfer reactions between heavy ions. 

15.2. Nucleón transfer reactions 

The various theories of nucleón transfer reactions between heavy 
ions have been reviewed by Gre ider [159] . Here I shall confine myself 
to the "adiabatic" approach indicated just now and apply it to single-
nucleon transfer above the Coulomb ba r r i e r [160] . We neglect the 
dif ference between the incoming and outgoing wave numbers inEq . (10. 15), 
ka « kb = k, and assume that the radial integrals (10. 16) can be 
approximated by 

R « ' ~ " \ E t ¥ ~ > 1 = + £ I ) < 1 5 - D 

where rjj are the S -matr ix elements for elastic scattering. The local iza-
tion of the radial integrals described by (15. 1) can be understood 
qualitatively as fol lows. Part ia l waves with la rge £-values wil l undergo 
pure Coulomb scattering, while low-2 partial waves wil l be absorbed 
owing to compound nucleus formation or direct processes other than 
transfer . Thus the only contributions to the radial integrals for transfer 
come f rom a narrow range of £-values in the neighbourhood of the cutoff 
angular momentum £Q. If we confine ourselves to spinless particles 
and use Eq. (15. 1), the transfer amplitude (10. 15) becomes formal ly 
identical with the Aus te rn -B l a i r amplitude (14. 2) f o r inelastic scattering 
via single excitation. Fo r heavy ions the SAM conditions are well 
satisfied and the closed form (14. 15) of this amplitude wil l be a good 
approximation. 

If we use the simplified form (6. 15) for the differential c ros s -
section for transfer with multipolarity L becomes 

/da\ , 12 • А в 
Kdñ) - k l ( 2 L + 1 ) ш ш§ 

7 L 

L 

• { ( Н ? + н2+> I К м <9> + O ® " [ J | M | ( A 0 ) + J | M | - i ( A 0 > ] 

M = - L 

L 

+ 2 H H + ^ [ < 4 ( e > - | 3 L 2 M ( e ) ] [J,2M|(Ae> - J ^ u v e ) ] } ( i s . 2 ) 

M = -L 
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where 

H ± = [l+/u1(0c ± 0 ) ]F [A(6 c ± 0 ) ] (15.3) 

To simplify this expression we consider the asymptotic region 
0 » I M I /Л . Using 

^ м | ( Л 0 > - J N - i ( A e ) S { - ) Ы Ш s i n ( 2 A f l ) 

Eq. (15 . 2) reduces to 

(15.4) 

L 

• { ( н Ч н 2 ) ^ K 2 M ( 0 ) + i3L2M(0)] 

M = -L 

+ 2 H + H . s i n ( 2 A 0 ) £ ( - ) M ^ l 2 m ( 0 ) - 0 ш ( в > ] } (15. 5) 

M = - L 

With а ш , 0 in the fo rm (14.18), and using the orthogonality relation 

M = -L 

and the symmetry relation (14. 19), we have 

ь 

M = -L 

L 
(15.7) 

M = - L 

Equation (15. 5) s impli f ies to 

K l 2 ( 2 L + 1 ) 8 ; r 4 n e [H2.+ H f + ( - ) L 2 H . H + s i n ( 2 ^ ) ] (15.8) 
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The angular distribution described by this expression is oscil latory 
and exhibits the B la i r phase factor ( - ) L associated with the multipolarity 
L . However, reactions between heavy ions are often dominated by 
strong Coulomb interaction. In these cases H+ « H_, and in the limit 
of complete Coulomb damping we obtain 

( S Q s N 2 < 2 L + 1 > 8 r a r ë ( H - > 2 ( 1 5 - 9 ) 

In collisions of heavy particles it is convenient to extract the l/s in0 
dependence which ar ises f rom the restriction of the reaction products 
to the scattering plane in the c lassical limit of scattering. We there-
fore define 

j f ) = 22rsinS 
L L 

: J 2 ( 2 L + 1 ) A . { [ 1 - M j ( e - e c ) ] F [ A ( 0 - 0 c ) ] } 2 (15.10) 

With the fo rm factor 

this descr ibes a smooth angular distribution which is peaked at 6Q 0C 

-(3jUj/тгД). Equation (15. 8) with ц 1 = 0 and L = 0 has been used [160] to 
analyse various single-nucleón transfer cross -sect ions and the agree -
ment was found to be quite satisfactory. 

A closely related treatment of t ransfer reactions has been presented 
by Dar [161] , who uses a configuration-space diffraction model and the 
W K B approximation to evaluate the radial integrals. Fo r energies 
above the Coulomb ba r r i e r , D a r ' s result has the same form as (15. 8) 
fo r Mj = 0 and L = 0, but he finds a different form factor 

(F. )2 = jcosh 2 [тгД(0 - 0C )] - cos2 (тг A^J -
-1 

(15.12) 

where Д1 = krQ and r Q is the range of the bound-state wave function of the 
captured nucleón. The detailed structure of the form factors c lear ly 
depends on assumptions about the reaction mechanism and on how the 
radial integrals are evaluated. Relevant are the general properties of 
the form factors which are determined by the localization in &- space of 
the radial integrals, of which they are essentially the Four ier 
t rans forms. 

Da r ' s treatment applies also to energies below the Coulomb ba r r i e r 
where his results are in agreement with the tunneling model of Breit . 
An extension of Da r ' s theory to non-zero angular momentum transfer 
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has been given by Dar and Kozlowsky [162] . Again their expressions 
are of the same form as (15. 2) or (15. 8), except for different form 
factors . 

In some cases where f rom Eq. (15. 8) one would expect to see 
diffraction oscillations in the transfer cross -sect ions , smooth angular 
distributions are observed [163] . The unexpected absence of an os -
cil latory structure has been attributed to recoil and finite range effects 
[164] . However, as Dar and Kozlowsky have pointed out, a more 
likely explanation is an approximate cancellation of the oscil latory 
terms in (15. 8) f rom odd and even L - va lues if transfer occurs with 
different multipolarities. 

We have mentioned ear l ie r the investigation of Dar [70] which shows 
that even the simple Fraunhofer limit of Eq. (15. 2) gives good fits to 
the angular distributions of a wide variety of direct reactions. This, too, 
supports the conclusion that Eq. (15. 2) with suitable form factors is 
an adequate description of l ow -Q surface interactions in general (see 
also Ref. [157] ). It is significant that the fo rm of this expression is 
"model-independent" and that its general structure depends only upon 
the asymptotic wave functions. 

15.3. Concluding remarks 

The final step towards a model-independent description of nuclear 
processes would be a formulation which is based entirely upon the 
properties of the scattering matrix. Such methods have been developed 
in high-energy physics and are known as dispersion theories. Only 
recently attempts have been made to apply these methods to nuclear 
reactions at lower energies. These are reviewed by Shapiro [165] and 
Schnitzer [166] . The simplest applications so f a r have been made 
to exchange processes in which the reaction A ( a , b ) B can be described 
by a diagram of the form shown in Fig . 3 where x denotes the exchanged 

а ь 

FIG.3. Reaction A (a, b) В 

А в 

particle. Most direct reactions are basical ly of this type. P rocesses 
which we have called " su r f ace reactions" at medium energies are known 
as peripheral reactions in high-energy physics. There is a close relation 
between the descriptions of direct reactions at medium and at high 
energies, as Henley has emphasized [158] , and the phenomenological 
methods which we have discussed in this Course can be applied in both 
energy regions. It is with such a unifying description in mind that we 
have given special attention to those phenomenological methods which aim 
at avoiding the potential concept and are formulated directly in terms 
of scattering matrix elements. Fo r direct nuclear interactions, perhaps 
the most significant step in the direction of a potential-free formulation 
is the theory of Austern and B la i r and it is appropriate to repeat here 
the question which concludes their paper [133] : " i s it likely that these 
relations and generalizations thereof do not presuppose the validity 
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of the optical model but rather that the optical model has been a 'crutch1 

used in their derivation, much as potential models are employed to 
suggest the dispersion relations of high energy physics?" It is not 
unlikely that the phenomenological S -matr ix methods will eventually 
find their foundation in dispersion theory. A promising start in this 
direction was recently made by several authors [167, 168] . However, 
nuclei (and their constituents) are complex things, and it is possible 
that their interactions are not completely determined by asymptotic 
states. Who knows? 
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C H A P T E R 2 

PHENOMENOLOGICAL COLLECTIVE MODELS 

D.J . ROWE 

I. Independent particles and collective motion. 1. Introduction.. 2. Nuclear systematics — 
coupling schemes. 2.1. Field producing forces, (aligned coupling). 2.2. Short-range forces (pair 
coupling). 2.3. Schematic forces. 2.4. Competition between the aligned and pair-coupling schemes. 
2.5. Quasi-particles. II. Spherical nuclei. 3. The collective vibrational model. 3.1. Shape oscillations. 
3.2. Electromagnetic transitions. 3.3. The hydrodynamic collective parameters. 3.4. Comparison 
with experiment. 3.5. Sum rules. 4. The unified model. 4.1. Even-even nuclei. 4.2. Odd nuclei. 
5. The adiabatic model. 5.1. The restoring force parameter. 5.2. The mass parameter. 5,3. The 
vibrational spectrum and transition probabilities. 5.4. Effect of short-range pairing forces. 5.5. Compa-
rison with experiment. 5.6. The possibility of going to higher order. 6. The vibrating potential model. 
6.1. A dispersion equation for the frequency. 6.2. The vibrational parameters. 6.3. Inclusion of 
short-range forces. 6.4. Comparison with experiment. 6.5. Discussion. 7. Anharmonic vibrations. 
8. The El photoresonance. 8.1. The collective model. 8.2. The shell model. 8.3. Equivalence 
of the two approaches. Ill, Deformed nuclei. 9. The collective rotational model. 9.1. The existence 
of rotations. 9.2. The rotational Hamiltonian. 9.3. Symmetry properties. 9.4. К = 0 bands. 
9.5. bands. 9.6. Electromagnetic moments and transitions. 9.7. Band mixing. 10. The unified 

model for rotations. 10.1. The Nilsson model. 10.2. Intrinsic structure. 11. The moment of inertia. 
11.1. The rigid-body estimate. 11.2. The irrotational flow model. 11.3. The cranking model. 
11.4. The pushing model. Appendix A: The rotation matrix. A . l . Definition. A.2. Properties of the 
rotation matrix. A .3 . Rotating co-ordinates. 

I. I N D E P E N D E N T P A R T I C L E S AND C O L L E C T I V E MOTION 

1. INTRODUCTION 

The nucleus is a system with many aspects and we tend to view it 
differently according to which of its properties for the moment concerns 
us. In this way several models of the nucleus have developed, each of 
which one hopes will one day appear as a special case of some much 
more general and complex treatment. 

It is interesting that the two major models of nuclear structure, in. 
current use, already existed in crude form as long ago as the thirties, 
although no one then had much faith in either. One was the independent 
particle model ( IPM) , which found its fulfilment in the shell model. The 
other was the liquid drop model, the forerunner of the collective model. 
Both models were eventually forced into respectability by their ove r -
whelming successes. Instead of discrediting them one was therefore 
obliged to try and understand them. 

The author, previously at the Atomic Energy Research Establishment, UKAEA, Harwell, Berks, 
United Kingdom, is now in the Department of Physics and Astronomy, The University of Rochester, Rochester, 
N. Y . , United States of America. 
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300 

FIG. 1. The reduced transition probability B(E2) for the excitation of the first 2 + state in even-even nuclei 
versus masses in units of the single-proton estimate B(E2; 0 -» 2) = О.ЗА^з e2 fm4 (Taken from Ref. [ 4 ] , 
courtesy of North-Holland Publishing Co.) 

The problem of the I PM was that the nucleon-nucleon interaction, 
although predominately attractive, has a repulsive hard core. All 
attempts to calculate the effects of such a hard core led to the conclusion 
that the I PM itself must be destroyed. It was not until the advent of 
Brueckner 's theory [1] in 1953 that one began to appreciate the healing 
powers of the Pauli principle and its ability to restrain the nuclear part -
icles f rom scattering far and wide out of their shell-model orbitals. 

Suspicion of the liquid drop model was founded largely on the unliquid-
like nature of nuclear matter. Molecules in liquids1 have long-range 
interactions and are essentially localized, whereas nuclei have short -
range interactions and are not in the least localized. Since it is just 
these properties which characterize a liquid one was naturally not too 
happy about the analogy. The model was nevertheless very successful 
in a few important respects, in particular in determining the stability 
of nuclei against /З-decay and fission. It was not very successful though 
in predicting vibrational states which come out much too high in energy. 

Nevertheless we nowadays believe that such liquid drop like collective 
motion plays a very important part in nuclear spectroscopy. Its existence 

1 Molecules in liquids have kinetic energ ies ~ 0 . 1 eV corresponding to a de Brog l i e wave -
length Я ~ 5X10"9 cm which is v e r y much l ess than the intermolecular spacing. Nucléons in 
the nucleus have kinetic energ ies ~ 1 0 MeV corresponding to X ~ 1 0 ' 1 3 cm which is comparable 
with inter-nucleon distances (see Blatt and Weisskopf [2] ). 
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is demonstrated most forcefully by the systematic appearance, throughout 
the periodic table, of low-lying 2* excited states of even-even nuclei. 
These states have ground-state transition strengths of very many s ingle -
particle magnitudes, as shown in F i g . l . Such large strengths can only 
be envisaged as the co-operative effect of many particles, i . e . collective 
motion. For the r a re - ea r th and actinide nuclei, these strengths are 
especially large . The excited states also have large quadrupole moments. 
The interpretation is that these nuclei have highly deformed equilibrium 
shapes and should consequently exhibit rotational spectra. Indeed numerous 
examples of spectra in which the energies are accurately proportional to 
the rotational 1(1 + 1) law are observed throughout the deformed regions. 
Other nuclei have little or no static quadrupole moment. The transition 
strength then comes f rom a collective vibration of the nucleus about its 
spherical equilibrium shape. 

In spite of the problems of the liquid drop model, it was later revived 
in the now classic papers of Bohr and Mottelson [3] and unified with the 
shell model in order to explain simultaneously collective and part ic le -
like phenomena. The obstacles of the liquid drop model were side-stepped 
by treating the collective parameters empirically. 

A microscopic understanding of why the collective model works as 
well as it does is even nowadays far f rom complete, although a lot of 
progress has been made in this direction. To a large extent the m ic ro -
scopic collective theories, in terms of the extended shell models, have 
progressed independently of the phenomenological models so that it is 
possible to make some sort of division between the two. In this chapter 
I plan to review some of the phenomenological models. Some models are 
of course partly phenomenological and partly microscopic and these will 
also be included. In Chapter 10 I will talk about the microscopic theories 
and also say something about the relationship between the two. 

2. N U C L E A R SYSTEMATICS - COUPL ING SCHEMES 

Why is it that some nuclei are spherical and vibrate while others 
are deformed and rotate? Some light is thrown on this question by con-
sidering the possible ways in which the particles can couple and the resu l t -
ing equilibrium shapes that are favoured by the different coupling schemes. 

2.1. Field producing forces (aligned coupling) 

The shel l -model concept, of particles moving independently in the 
self-consistent field that they generate, has proved itself a good basis 
for a study of nuclear spectroscopy. It is worth while therefore to con-
sider the coupling scheme for particles which interact via their f ields. 

F i rs t of all, for a closed shell there is no ambiguity in coupling and 
the density distribution is completely spherical. 

Now add one particle, e. g. " O . In zero order 1 70 is a 1 6О core 
plus a d5/2 neutron. The 'closed shell plus one' nucleus is now no longer 
spherical, as illustrated classical ly in Fig. 2. 1 70 should therefore have 
a finite mass quadrupole moment but, since the odd particle is a neutron, 
it has a zero charge quadrupole moment. Experimentally, however, it is 
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observed to have a charge quadrupole moment 

< Q > = 2. 6X 10"26 cm2 (2 .1 .1 ) 

which is almost as l a rge as would be expected for an odd proton (i. e. 
-3.0X10-2<5 cm2). 

This problem is usually patched up in the shell model by using 
effective charges e^ j (n) « ep and et2) (p) и 2ep . But what is the physics 
behind this result? It must be that the odd particle is polarizing the core. 
In other words, the core particles are attempting to align their orbits 
with the deformed field of the odd neutron. Given the potential well, one 
can calculate the amount of polarization expected, for example one finds 
e ^ = e + (Z/A)e p for a harmonic oscillator potential, and 
e 2̂'f = e + ( 3 - 5 ) (Z/A )e p for a square well potential. 
The factor (3 - 5 ) for the square well depends on the particular orbit of the 
odd particle. 

Now consider a closed shell plus two particles. The second particle 
is going to align itself with the deformed field of the first, making the 
overall shape even more deformed (F ig .3 ) . Thus the two-particle wave 
function would be 

iP= J * > j ( l ) <p{.(2) (2 .1.2 ) 

where л/ is an antisymmetrization operator. 
Further extra -core particles will also want to align their orbits as 

near to the equatorial plane as the Pauli principle will allow, i. e. 

ф = ^<pj ( l )<pÍ j (2 )<pj . 1 (3 )<pÍ j + 1 (4) . . . (2 .1 .3 ) 

For large j, a large oblate deformation can be built up in this way. 
This is not the only possibility, however. It may actually be more 

favourable for the particles to concentrate their densities along the polar 
axis, i. e. 

ф - ^ ^ ( 1 ) ^ ( 2 ) ^ ( 3 ) ^ ( 4 ) . . . (2 .1 .4 ) 

producing a prolate shape. Which is the more favourable shape we can 
only tell by calculation. But qualitatively we can say that, for f ie ld -

FIG.3. The classical orbits for two Particles about a spherical core 
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cCl 
A T 

FIG.4. Trajectories of two particles when a strong short-range interaction occurs 

producing forces, it is energetically favourable for the particles to align 
one way or another and that this alignment will tend to produce non-
spherical nuclear shapes. It turns out that towards the beginning of a 
j -shell the nucleus is prolate and towards the end it becomes oblate. 

Of course once the field is deformed the single-particle wave functions 
themselves are modified, ceasing to have good j. Provided the de forma-
tion is axially symmetric, however, they retain good m and the above 
coupling scheme persists. One consequence is that, as the deformed field 
is turned on, different unperturbed j -shel ls tend to intermingle, allowing 
for even better alignment. This happens for example in the rare-earth" 
region where very large deformations are stabilized. 

Again it should be pointed out that the energetically most favourable 
shape need not necessari ly be axially symmetric. Neither need it be 
ref lection-symmetric. It might for example be pear-shaped. There is 
some evidence for the existence of these more exotic shapes, but it ap -
pears that the bulk of the experimental data can be understood in terms 
of prolate or oblate spheroids and so we shall consider principally these. 

2.2. Short-range forces (pair coupling) 

If we believed that the aligned coupling scheme was the whole story, 
we would have to accept that all nuclei other than those with doubly closed 
shells should be deformed. But we know that in fact the spherical shape 
is very much more stable. A simple explanation for this can be given in 
terms of the short-range interactions. Consider the situation classical ly. 
If two particles are moving in t ime-reversed orbits they come close to 
each other twice in every orbit. If there is a strong short-range inter -
action between them, they frequently scatter into new but still t ime-
reversed orbits (see Fig. 4). In this way they rapidly spread over all 
angular space, making for a spherical density distribution. 

We can express this phenomenon more precisely in quantal language 
by looking at the spectrum of energy levels for two particles in a j2 con-

25/256 14 

9/64 4 

1/4 2 

FIG. 5. Spectrum for two particles in a j2 = (15/2)2 configuration with a 6-interaction. (After Mottelson [5 ] ) 
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figuration, with a 5-interaction. The appropriate matrix element is 

< j 2 j|6 (? i - ? 2 ) | J 2 j > = ^ ( j + i ) ( J j O ! | j è ) 2 (2.2.1) 

where R is the radial integral 

R = / [ R n { ( r ) ] 4 r 2 d r (2.2.2) 

The result is shown in Fig. 5. We find that the J = 0 state is much more 
strongly bound than the others. This is because in a J = 0 state the particles 
come most closely together. 

This pairwise coupling of particles to stable J = 0 configurations has 
been recognized for a long time, and has been expressed in terms of 
Racah's seniority coupling scheme. The seniority v = 0 (no unpaired 
particles) ground state for a j n configuration of an even number n of 
particles is 

ф0 = 1 2) <p
0
 ( 3 4) ... (2.2.3) 

A seniority v = 2 (2 unpaired particles) excited state might be 

Ф 2J = 2) <f>o(3 4) . . . (2.2.4) 

The importance of the short-range pairing forces in nuclear spectro-
scopy was recognized for the following reasons: 

(a) Even-even nuclei invariably have spin J = 0 ground states. 
(b) The low-lying spectrum for even-even nuclei is particularly simple. 

There is an energy gap, corresponding to the energy required to 
break a J = 0 pair, below which only collective states appear. Figure 6 
contrasts the energy spectra for neighbouring even-even, even-odd, 
and odd-odd nuclei. 

(c) The last nucleón is less strongly bound in an odd nucleus than in 
the neighbouring even-even nucleus, where it can form a pair. 

The short-range interaction, which has a strength defined by 

i i 2 2 
< ( jm) ( jm)|v| ( jm ' ) ( jm ' )> = G j r » — MeV (2.2.5) 

generally overlaps different j-subshells. Fortunately for the shell model 
it does not usually overlap major shells ( ~ 10 MeV). We must therefore 
go beyond the seniority coupling scheme and express the paired wave 
function 

<p0(l 2) = Y c j <P¡fí d 2) (2.2.6) 

j 

The angular momentum is still J = 0 however, and the density distribution 
spherical. 

7' 
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FIG. 6. Energy spectra for neighbouring even-even, even-odd and odd-odd nuclei 

2.3. Schematic forces 

To what part of the two-body interaction do the field forces correspond? 
Neglecting exchange, the field is 

u(?) = / dr1 V ( r - r ' ) p ( r ' ) 

If we now make a.multipole expansion of the interaction 

(2 .3 .1 ) 

Xji 

we obtain for the field 

u(r ) 47Г 
( в ) l l d ? ' f x ( r , r ' ) Y * ( в ' ) р ( г ' ) 

X(i X|i 

(2 .3 .3 ) 

The different multipoles in the field thus arise f rom the corresponding 
multipoles in the two-body interaction. Thus 

X = 0 contributes to the spherical field, 
X = 1 corresponds to a centre of mass displacement (or,if т-dependent, 

to a dipole displacement of protons against neutrons), 
X = 2 corresponds to a quadrupole deformation, 
X = 3 corresponds to an octupole deformation, etc. 
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The field-producing forces, expressible in terms of a deformed field, are 
therefore the low multipoles of the interaction. 

What about the short-range forces? A 6- force can similar ly be 
expanded 

6(?ц) = X 6 ( r ' " r i ) (cos ©ij ) (2 .3 .4 ) 

Thus a 6 - force involves all the multipole components, with emphasis 
on the high multipoles. 

We ought of course to work with the proper two-body interaction 
(assuming that we know it), but it is reasonable to suppose that a schematic 
force, composed of an appropriate low multipole plus a 6 - f o rce , would be 
a good caricature. If there is to be any point in using a schematic force 
it must of course be simple. For this reason we usually suppose f x ( r b r j ) 
to be separable, and approximate 

v x = - * x X v ^ W V ^ ' ( 2 - 3 - 5 ) 

x 

and the field 

= - X x ^ r ^ e K r X Y * , > (2 .3 .6 ) 

M 

This particular radial dependence has very little justification. It just 
happens to be mathematically convenient, particularly in relating matrix 
elements of the field to those of the M(EX) operators. We believe that, 
for most purposes, the results are not very sensitive to the particular 
radial dependence. 

It is also customary to replace the б - force by a computationally 
simpler schematic force, namely the 'pairing force ' . We have seen that 

< ( j ) 2 J = 0 I ô(r) I ( j1 )2 J = 0 > » < ( j )2 J ^ 0 I 5(?) I ( j 1 ) 2 J/ 0 > (2 .3 .7 ) 

The pairing force 6 is defined by 

< ( j ) 2 j | 0 | ( j ' ) 2 j ' > = <5( J = J' = 0)Gf2 ( 2 . 3 . 8 ) 

This force leads to a two-particle spectrum in a ( j ) 2 configuration (Fig . 7). 
The schematic force therefore becomes a sum of a pairing force plus 

the appropriate multipole force. For example, if we are interested in 
quadrupole deformations or vibrations, we use the 'pa i r ing+ P 2 ' force 

A 

V2 r ? r j Y * n 0 ' ) Y V e j > ( 2 - 3 - 9 ) 

i j P 
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FIG.7. Spectrum for two particles in a j ! configuration interacting with a pairing force 

2.4. Competition between the aligned and pair-coupling schemes 

The equilibrium shape of the nucleus depends on which of these 
principle ingredients wins out. The field forces tend to align the particle 
orbits and create a deformed nucleus, while the short-range pairing 
forces scatter the particles isotropically and tend to stabilize the spherical 
shape. 

Consider N particles in 2Q more or less degenerate magnetic substates. 

Energy for pair coupling ~ NGŒ/2 ( G и 2 0 0 k e V ) 

Energy for aligned coupling ~ N ( N - l ) F / 2 

Since shell structure exists, which it would not do if G were of the order 
of the shell spacing, one finds that 

G < F. 

It follows therefore that the pair coupling will win out near the beginning 
of the shell when N « Œ , but that when N ~ GÍ2/F the aligned scheme will 
dominate and the nucleus become deformed. According to our simple 
arguments this should happen before the middle of the shell when N = Í2. 
The situation in the second half of the shell is rather similar except that 

NEUTRON NUMBER 

FIG. 8. Regions of the periodic table where nuclei are expected and observed to have stable equilibrium 
deformations. (Taken from Re f . [6 ] , courtesy of American Institute of Physics) 
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FIG. 9. Influence of the pairing force on Fermi surface 

we talk of holes rather than particles. Near the middle of the shell there 
is a sudden flip over f rom the prolate to the oblate shape ( i . e . the holes 
align theij orbits along the polar axis), which diminishes until, near the 
end of the shell, the pairing of holes restores again the spherical shape. 

In terms of the above arguments we can make a good guess as to where 
nuclei of large deformation should be found in the periodic table. The 
regions are shown in Fig. 8 and correspond well to observation. 

2.5. Quasi -particles 

We have found that the inclusion of the pairing force is essential for 
determining equilibrium shapes. It also profoundly affects the rigidity 
parameter for vibrations, the rotational moment of inertia, transition 
strengths and other observable quantities. 

Unfortunately it destroys the independent particle structure which 
is a feature of field forces, and causes a diffuseness of the Fermi surface, 
as illustrated in Fig. 9. The difficulty is overcome by introducing ' inde-
pendent quasi -particles ' , which are partly particles (with amplitude Vv ) 
and partly holes (with amplitude U u ) . This is a mathematical device 
which I shall reserve for Chapter 10. Fortunately it alters none of our 
development or any of the physical ideas of collective motion. I shall 
therefore leave out pairing in the following and just show how it modifies 
the results. Essentially it means going back and replacing the words 
'particle ' and 'hole' by 'quasi -particle ' , and inserting a factor V„ or U„ 
with every single-particle wave function as it appears in the role of a 
particle or a hole state, respectively. 
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II. SPHERICAL N U C L E I 

3. THE C O L L E C T I V E V IBRATIONAL M O D E L 

Before embarking on a discussion of collective vibrational models, 
it is worthwhile to pause and ask the question: "Do we know that nuclear 
vibrations actually exist?" Well , what is a vibration but a periodic 
time-dependent oscillation of the density? 

Consider the time-dependent wave function 

for infinitesimal e, where ф$ is the ground state and an excited state 
eigenfunction of the nucleus. The density for this time-dependent wave 
function, unlike that for a stationary state, oscillates about the ground-
state density distribution: 

Such a density oscillation can meaningfully be described as a normal mode, 
since it cannot lose its energy to any other mode ( i . e . фЩ is a good t ime-
dependent wave function for the Hamiltonian). What we have described 
is actually the small amplitude limit of the classical correspondence for 
harmonic vibrations, which we shall consider in more detail in Chapter 10. 

Thus density oscillations most certainly do exist inasmuch as excited 
states exist. Furthermore, since the particles are indistinguishable, 
any mode corresponds to the summed effect of all the particles and could 
meaningfully be described as 'collective' . The term 'collective' is usually 
reserved, however, to describe a mode in which many particles contribute 
coherently to give a large amplitude oscillation of, for example, an e lectro-
magnetic multipole moment. The mere existence of B(E2) values of many 
times single-particle strength signifies unambiguously that such coherent 
collective motion does occur, but it need not be 100% coherent. 

The question we should ask therefore is not whether collective v i b r a -
tions exist, but: "What are the normal modes of oscillation of the nucleus?" 
This question is not so easy to answer and so we must make a guess and 
see how well it works. 

3.1. Shape oscillations 

By analogy with a liquid we suppose that the nucleus can support 
shape oscillations. The shape of a liquid drop, being of constant density 
throughout, can be defined by specifying its radius Rg at all angles в. 
By expanding R e in multipoles 

0(t) = e"^»1 ф0 + ее'Щвф1 , (ft = 1) -iE„t 

(3 .1 .1 ) 

we can specify the shape at any instant by the set of parameters a\¡¡ . 
Now nuclear density is not constant throughout (see Fig. 10). However, 

if we suppose that nuclear density oscillations are volume-conserving, 
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the above expression for R s can be applied to each equidensity surface. 
Otherwise we must parameterize in another manner. 

For small amplitude oscillations we postulate a surface Hamiltonian2 

H s 4 l B > J * J 2 I2 (3 .1 .2 ) 

(This is the only possible quadratic which is a scalar and invariant under 
time reversa l . ) This harmonic oscillator has the well -known classical 
solutions: 

I W , Qx„ = ex„cos wt, e ^ Y 1 - 2 " 2 
U x = \ J b ¿ ' ^ = e ^ c o s u t ' E = L 1 e ^ w x B x 

Xli 

To quantize the motion, introduce the momentum co-ordinates 

= ^ = B x e i ( 1 (3.1..3) 

and the commutators 

[o-Xp. = ifi (3 .1 .4 ) 

with solution 

^ = ( o r ( З Л - 5 ) 

2 The o-^ a re complex, l ike the Y ^ , but if the nuclear radius is to be rea l they « 
not independent and 

°x-P = 

If we wish to consider independent osc i l lators , we must make the transformation 

= <CV - < > xx-, = ^ < yxm - YxV. 

. xo - \0 

whence R e is given by 

M > 0 

И = 0 

RÛ - R „ c 

X(1 
I 1 + Y, амхХ(1(в)} 

and the su r f ace Hamiltonian 

Hs = £ + 2 
Xfj 

The tfxp a r e a i l r e a l independent. 
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Following the usual method for harmonic oscil lators, we make a t rans -
formation to boson creation and destruction operators, 

(3 .1 .6 ) 
^ [¡Зв Л , i Л • . íhuB ,. ../J^t „ , 

V 1 ^B ^ ^ J T 1 1 ' 1 1 ° Х - р - ° Х м ) 

which obey the commutation relations 

[ 0 X ) J , 0 ^ ] = 1 (3 .1 .7 ) 

In terms of these boson operators, the Hamiltonian becomes 

H s = £ f i u x f O ^ O ^ + * ) (3 .1 .8 ) 
Xp 

The ground-state wave function is defined by 

°\„<PoM = 0 all Xyu (3 .1 .9 ) 

and we obtain a harmonic spectrum of energy levels (Fig. 11) fo r each 
multipole mode X, f rom the equation of motion 

[H ,o I M ] = all Х/л (3 .1.10) 

(See Ref. [7] for a discussion of the possible spins obtainable by coupling 
of phonons.) 

3.2. Electromagnetic transitions 

Associated with these density oscillations are strong electric 
multipole moments. If 

charge density ~ mass density 

as for a uniformly charged oscillating nucleus, electric multipole moments 
are given by3 

EX, A,) f r ^ Y ^ ( 0 ) f i a ( ? ) d ? 

X "Ь 3 = ^ Z e < r X > 0 O ^ + O ^ 2 ) (3 .2 .1 ) 
3 In this equation P a ( r ) corresponds to a wave function with a definite deformation, i . e . 

an eigenstate of cnXii and not of the Hamiltonian which has a distribution in a x . 
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where is evaluated at zero deformation. Thus we obtain the matrix 
elements 

ftn 
2 u x B x m-n"1 

To leading order in a, we find the selection rule 

An = ± 1 

so that c ross -over transitions are forbidden. A particular transition of 
interest is the decay of the one-phonon state, for which4 

B(EX; Xj-» 0) » Ze < r * > 0 ) ' ^ (3 .2 .3 ) 

A consequence of the vibrational model is that all B(EX) 's within a 
band should be simple multipoles of B(EX; Xx ->0) e. g. 

B(E2; 0 2 , 22 , 4j -+2!) = 2B(E2; 2 г - » 0 ) (3 .2 .4 ) 

For comparison, transition strengths can be expressed in terms of the 
single-particle estimate 

B s p ( E 2 ; 2 1 - 0 ) = g < r 2 > 0 

(3 .2 .5 ) 
OK 

B ( E 2 ; 2 l - 0 ) = ¿ Z 2 ^ ^ B ^ E ^ - O ) 

The collective enhancement factor, as shown in Fig. 1, can be anything 
f rom 10 to 50. 

All other electric multipole transitions involve higher powers of a 
and are expected to be an order of magnitude smal ler . The deformation of 
a uniformly charged fluid induces no magnetic moment and so the model 
predicts zero magnetic transitions. In fact, M l transitions are inhibited 
by factors ~100 . 

3.3. The hydrodynamico l lect ive parameters 

Assuming constant nuclear density and irrotational flow, Bohr [3] 
has derived the mass parameter 

AMRo (3 .3 .1 ) 

4 An estimate Of < ( r X ) > 0 is obtained by approximating the nucleus to be of constant 
density and radius R 0 , whence < r x > 0 = 3Rq/(X + 3) and B(EX; Xj-» 0) = <(3/47r)ZeR£)2 п/2и хВ х 
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FIG.12. Harmonic vibrational spectrum of 106Pd (Taken from Ref. [ 4 ] , courtesy of North-Holland 
Publishing Co. ) 

In the hydrodynamic model, the restoring force is due to surface tension 
opposed by the electrostatic repulsion. The restoring force parameter is: 

The surface tension S is obtainable f rom the Weizsâcker mass formula. 

3.4. Comparison with experiment 

Good examples of harmonic vibrational spectra are not very numerous. 
One of the best examples, 106 Pd, is shown in Fig. 12. There are few cases 
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FIG. 13. Comparison of Вг and with their hydrodynamic estimates (Taken from Ref. [ 8 ] , courtesy of 

North-Holland Publishing Co . ) 

where all three members of the quadrupole triplet are observable, although 
there are several with two. The two-phonon states are just about in the 
region of the non-collective particle excitations and it would be surprising 
if some dilution did not take place. Even so the absence of even one state 
does mean a break-down, already at the two-phonon level, of at least the 
harmonic vibrational model. 

The strongest support for the collective model is the very large 
strength of the systematic quadrupole and octupole states. At the same 
time, selection rules are frequently obeyed rather well. For instance 
the c ross -over 22 ->0 transitions are typically a factor 1/100 down on the 
allowed transitions. 

The ratios of transitions are just about what they should be, e. g. 

B(E2; 22 -» 2i ) 
B(E2; 21 - 0) 

0.7 - 1.6 
В(E2; 4i - 2i ) 
B(E2; 2i - 0) (3 .4 .1 ) 

Data for octupole spectra are rather more scarce. Generally only 
the f irst excited states are observed. This is not surprising since the 
two phonon states generally lie well up among a large number of non-
collective states. 

A comparison of B 2 and C 2 , with their hydrodynamic estimates, is 
shown in Fig. 13. The nucleus appears to be much more 'heavy' than the 
hydrodynamic model would predict. Its rigidity fluctuates wildly as com-
pared to the smoothly varying liquid drop value. This is attributable to 
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the local shell structure, which, as we have already shown in section 2, 
has a large influence on the stability of the spherical shape. 

The fai lure of the liquid drop model to give the vibrational parameters 
fortunately does not destroy the collective model. It does mean, however, 
that the nuclear vibrations are almost certainly not irrotational flow osc i l -
lations. This interpretation is revealed clearly by a study of sum rules 
which we now discuss. We must therefore look for better ways of detei— 
mining the vibrational parameters in terms of the particle structure. 

3.5. Sum rules 

Sum rules provide useful yardsticks for measuring quantitatively 
the degree of collectiveness of a given excited state. There are two 
sum rules in use, the non-energy-weighted SNEW and the energy-weighted 
Sew • Snew i s defined by 

The magnitude of this sum can be estimated f rom the shell model. Taking 
antisymmetry of the wave function into account via a correction factor z, 
we deduce 

where z is expected to lie between j and 1. 
This sum rule includes both Д T = 0 and ДТ = 1 excitations. If isobaric 

spin is good, it splits between the two in the ratio Z/A : n/A respectively. 
A typical ДТ = 0 'collective' state exhausts something like 50% of the 

sum, while in a few cases it more than exhausts it. The fact that this can 
happen ref lects the model-dependence of the non-energy-weighted sum rule. 

For this reason the energy-weighted sum rule is usually pre fer red . 
It is almost model-independent and therefore more rel iable. It is defined by 

(3 .5 .1 ) 

M 

(3. 5.2) 

f 

2 

= 4 У < 0 | [ [ ^ ( Е А ; /л), H ] , ^ * ( E A ; ц)] |o> 

С 

(3 .5 .3 ) 
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If the two-body interaction term in the Hamiltonian H is local, it commutes 
with Then, neglecting velocity-dependent and exchange forces, 

the only contribution comes f rom the momentum term - ( ñ 2 / 2 M ) ) V?. 
We find i 

S E X • Y < 0 I V ( r (6)) • (в)) 10 > EW 2M 

= Z e^h l М 2 Х + 1 / 
2M 4tt Ч Г ' (З.Ъ.4) 

Experimentally about 10% of the ДТ = 0 part of this sum is exhausted by 
a single low-lying collective state. 

Now let us see what fraction of the energy-weighted sum rule is attri -
buted to the vibrational state in the hydrodynamic model. For a constant 
density nucleus of radius R, the sum rule bcomes 

+ (3 .5 .5 ) 

For the hydrodynamic collective state 

ftu B(EX; 0 - X ) = ( ¿ ) Z 2 e 2 R 2 X щ ( 2 Х + 1 ) 

which just exhausts the sum rule. Thus, for irrotational flow, the whole 
multipole strength is vested in a single normal mode, which, as exper i -
ment shows, is not the case for nuclei. 

4. THE UNIF IED M O D E L 

Throughout the periodic table we observe many phenomena, such as 
ground-state spins, magnetic moments, excited states, magic numbers, 
etc., all of which are characteristic of independent particles and have a 
natural explanation in terms of the shell model. At the same time we find, 
among the particle- l ike spectra, states of undeniable collective character. 
These have a natural explanation in terms of the collective model. 

The many-body Hamiltonian, of course, is potentially capable of de -
scribing all states but since we cannot solve it we must be content with 
making more and more sophisticated models to incorporate as many aspects 
of nuclear structure as possible. The unified model is such an attempt 
to bring together the shell model and the collective model into a single 
unified description. 

The unified model was conceived in the early fifties [3] and its essential 
content still stands today. Furthermore, it laid the foundation for all the 
important advances in phenomenological vibration theory. However, 
present-day understanding requires us to regard it in a somewhat different 
light to that in which it was originally formulated. 
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We f irst of all describe its application to nuclei with zero intrinsic 
spin, namely the even-even nuclei, and then show how particles with spin 
can be coupled to a vibrational core. 

4.1. Even-even nuclei 

The shell -model concept is of independent particle motion in a static 
f ield. This field has a shape closely related to the nuclear density shape, 
so it is natural to expect it to reflect the same shape fluctuations. 

Consider the shell-model Hamiltonian H(a), for a fixed field of de -
formation a. For a volume-conserving vibration of the nucleus, a is an 
oscillating function of time <*(t). Now from the time-dependent wave functions 
<p(t) of Hto^t)), which obey the self-consistency requirement that their 
density deformations oscillate in phase with the field, we obtain the energy 
expectation 

E(a, à) = E 0 + | B ¿ 2 + | C a 2 + (4 .1 .1 ) 

Thus it is apparent that the equation for free small-amplitude oscillation is 

a = e cos Ut, where и = n/C/B (4 .1 .2 ) 

What we are real ly interested in of course is not so much the classical 
equation of motion as the low-energy eigenstates. Somehow then we have 
to quantize the motion. This is done in the Unified Model, exactly as in 
the collective model; that is by taking a and v = В à * as dynamic variables 
and by postulating the commutator 

[а, 7Г] = iñ (4.1. 3) 

with solution 

ж = - i ñ (4 .1 .4 ) 

E(a, à) is then interpreted as a surface Hamiltonian and, f rom there on, 
all the results of the collective model follow. 

While this quantization procedure was alright in the collective model, 
it is strictly incorrect in the present case. This is because a and à are 
now real ly nothing more than parameters and c-numbers , detailing the 
shape and motion of the shel l -model field. As such they are not subject 
to the uncertainty principle, and 

[a, »r] = 0 f iñ (4.1.5) 

However, the approximation must clearly lead to the correct results in the 
classical limit when, effectively, fi -> 0. The unified model assumption is 
that the results remain valid generally. This is known as a semi -c lass ica l 
approximation. It turns out, as we shall show in Chapter 10, that, as far 
as the results are concerned, this approximation is justified by the classical 
correspondence principle. 

What other approximations are implied in the model? It was originally 
assumed that one essential ingredient is the adiabatic approximation. It 
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nt=1 ^ ñ i J, = (X»j), (X-¡) 

nk=0 J0=¡ 

FIG. 14. Spectrum for a coupled, but non-interacting, particle and vibrational core 

was thought that the shape oscillation, to be a good approximation to a 
normal mode, must be slow enough to allow the particles time to adjust 
their orbits to the motion of the field without being excited. This picture 
is not correct and actually misses the secret of the model 's success. Its 
success is due to the fact that it does not guess the normal mode of the 
nucleus but only the corresponding mode of the field, which is a much less 
stringent assumption. Thus coupling of the pure shape oscillation to the 
other intrinsic modes is permitted and for this very reason the unified 
model is superior to the irrotational flow model. The recognition of this 
point enables us to relax the adiabatic restriction. In fact another approxi-
mation of the unified model, namely that the oscillating nucleus has at each 
instant an independent particle wave function, actually breaks down in the 
adiabatic limit. 

So far we have discussed a basis for extracting the collective pa r a -
meters f rom the shell model, but we have not discussed the ultimate 
marr iage of the collective and shell models in terms of a unified wave 
function. This we shall not do since the old unified model wave function 
is basically incorrect, for the following reasons: 
(a) It employs the adiabatic approximation, which does not do justice 

to the more general applicability of the model; 
(b) It makes a distinction between the collective and the particle degrees 

of freedom by employing redundant collective co-ordinates, which is 
unnecessary; 

(c) The extra collective co-ordinate is a classical variable and its use 
in the unified model wave function is not justified by the correspon-
dence principle. 
Fortunately, since the unified model provides us directly with energy 

levels and transition probabilities, the derivation of the wave function is 
something of a luxury that we can manage without. As we shall see in 
Chapter 10, the wave function does not readily emerge even in a m ic ro -
scopic treatment. 

4.2. Odd nuclei 

If the nucleus has non-zero intrinsic spin, as in odd or odd-odd nuclei 
(or even excited states of even-even), then we have to couple this intrinsic 
spin j to the vibrational angular momentum X to give total spin J. 

J = X + J (4 .2 .1 ) 

In the absence of interactions we get the vibrational spectrum of Fig. 14. 
The only effect on transition strengths is through geometric factors. Thus 
for transitions involving a change in the vibrational phonon number An\ = l , 

B(EX; Ji -> Jo) = B(EX; X i ~> 0 0) 
(4 .2 .2 ) 

B ( E X ; J ° " = ( 2 j i 2 + J l » 2 X + H B ( E X ; 0 0 
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FIG. 15. Weak coupling of a d^j proton to a 78Pt core. All electromagnetic data are fitted well with 
wave functions which are > 96°i> particle x core (Taken from Ref. [ 9 ] , courtesy of North-Holland 
Publishing Co. ) , 

Note that transitions involving a change in the vibrational part of the wave 
function Дп = 1 simultaneously with a change in the intrinsic spin j j ' , 
are forbidden. 

Generally there will be interactions which split the degeneracies. 
Let us consider for example an odd particle coupled to a vibrational core 
(Fig . 15). The particle-vibration coupling ar ises f rom the vibrational 
shape fluctuations of the potential well in which the odd particle is moving. 

For small deformations, equipotential surfaces of the potential uC((r) 
are given by 

(4 .2 .3 ) 

for constant r . In other words 

u a ( r e> 0 ) = u o ( r ) (see Fig . 16) (4. 2.4) 

FIG.16. Equipotential surfaces for u0 (r) and u a ( r , в) 

a 
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Conversely 

u„(r , e ) = u 0 ( ^ \ (4 .2 .5 ) 

*X|i YX(i 1 1 + 

Xii 

Expanding 

u e ( r . e ) = u 0 ( r ) - r ^ ^ Y + 0 ( a 2 ) (4 .2 .6 ) 

Thus the particle-vibration interaction H¡nt is 

H,„t = - к ( г ) ^ в ^ У Х | 1 ( в ) (4 .2 .7 ) 

where 

k ( r ) = r ^ (4 .2 .8 ) 
dr 

Consider f i rst the weak coupling limit, when we can use perturbation 
theory. The unperturbed ground-state wave function is 

|(nx = 0, j ) j m > = Ф0 (пх = О)<р,т (4 .2 .9 ) 

In f irst order, this couples to configurations 

|(nx = l , j ' ) i m > = Y и'Хт'/и|зт)*х,Дпх=1)<РГт. (4 .2 .10) 

m'(ii) 

The matrix element for H i n t between these states, /3(nx = l , j1), is given by 

/3 (nx= lJ ' ) = < ( n x = l , j ' ) j m | H i n t | ( n x = 0, j ) j m > 

= (4-2.11) 

Using f i r s t -o rder perturbation theory, the perturbed wave function 
becomes 

|jm> = |(nx = 0 , j ) j m > - ^ J j ^ f ' j ' J I(nx = l , j ' ) j m > (4.2.12) 

where is the unperturbed single-particle energy. 
As an example of the effect this mixing has on the properties of the 

single-particle spectrum, let us consider the ground state quadrupole 
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moment 

Q = \j5 < j j l ^ ( E 2 , 0 ) | j j > (4 .2.13) 

The quadrupole operator ^ f ( E 2 , 0 ) can be expressed (see section 3.2) 

^ ( E 2 , 0 ) = ¿ Z e < r 2 > 0 a 2 0 + e p r 2 Y 2 o ( 0 ) (4 .2 .14) 

and has a contribution f rom the core and f rom the odd particle. 
Taking them separately, the particle contribution is 

Q P = eP x P ! ^ U 2 j O | i i ) < i l k 2 Y 2 | | j > An = 0 (4.2.15) 

and the core contribution 

Q core = e z < r 2 > 0 ^ ( j 2 j 0 | j j ) < j | | k ( r ) Y 2 | | j > An = 1 

(4. 2. 16) 

If the An = 1 contribution of the core is incorporated into the quadrupole 
moment of the odd particle by the use of an effective change, as is common 
in shell -model calculations, then the unified model prediction for this 
effective charge is 

e 
eff - e P + e 47Г о C 2 ( j | | r 2 Y ? 

^ (4 .2.17) 
j) 

The contribution of the core to the static quadrupole moment implies 
that it is polarized by the odd particle. If this polarization becomes large 
the above weak coupling perturbation treatment is no longer valid. This 
will depend essentially on the magnitude of the parameter 

k = J ï ï b = t ! Û ( 4 - 2 Л 8 > 

where к is an average value of k(r) over the nuclear volume. Physically 
one can see what happens as this parameter increases. It becomes large 
because the vibrational state, in the neighbouring even-even nucleus, 
is falling and because the rigidity of the nucleus against deformation is 
decreasing. It is apparent that this situation occurs in the transition 
region when the nucleus is about to acquire a large permanent deformation. 

In the strong coupling limit, when the nucleus acquires a large p e r -
manent deformation, the problem again simplif ies. One can then consider 
f i rst the relatively fast motion of the odd nucleón in a deformed field and 
subsequently the s lower vibrations and rotations of the entire system. 
We shall discuss this limit in connection with rotations. 

In the intermediate region one has either to diagonalize the part ic le -
vibration interaction in the product configuration space of unperturbed 
particle and core wave functions, or give up the collective model de -
scription, which is probably more realistic. 
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5. THE ADIABATIC M O D E L 

This is not real ly a new model in its own right but merely an approxi -
mate execution of the unified model prescription for determining the co l -
lective vibrational parameters . The method is to determine the energy 
increments, associated with small shape deformation and slow oscillation 
of the nucleus, in adiabatic perturbation theory. 

5.1. The restoring force parameter 

According to the Unified Model, we must seek the self-consistent 
solutions for the nuclear wave function in a deformed shell -model field. 
For a general small deformation, the deformed shell -model Hamiltonian 
is, to leading order, 

H(ar) = H 0 - k ( r ) (5 .1 .1 ) 

Let us restrict consideration to a single independent mode of deformation 
so that (see section 3.1) 

H ( « ) =H„ - ttX^tt*" Mr ) ( 1 Л > 0 ) ( 5 Л < 2 ) 

The deformation field has therefore a form proportional to Q(r ) where 

<3(r) ос к ( г ) ( У Х / и ( 0 ) +У * р ( е ) ) (5 .1 .3 ) 

and a magnitude proportional to 

(«М1 + Я & ) Œ < MQ> I WQ) > = Q (5 .1 .4 ) 

where ф(Q) is a self-consistent solution of H(ce). The Hamiltonian H(ce) 
can therefore be written in the form 

H(Q) = H o ~ x Q § ( ? ) (5 .1 .5 ) 

which more readily expresses its self-consistent nature, x is a coupling 
constant depending on the relative normalization of Q( r ) and k(r ) . Given 
this it is readily calculable5 . 

The self-consistent solution ф(Q) of H(Q), for a specified value of 
the field deformation, is that solution for which the density deformation 

ñ This expression for H(Q) also follows directly from considering the single-particle 
field associated with the schematic residual two-body interaction. 

v
res
 = - j x Y > > 

ü 

(cf. section 2. 3), and neglecting exchange terms. But then the coupling constant x does not 
appear naturally with any particular value. 
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is also Q. It is thus subject to the constraint 

Q = < M Q ) | 3 k ( Q ) > (5 .1 .6 ) 

and is consequently an eigenstate of H' (Q), where 

H' (Q) = H(Q) - /J§(r) = H0 - (M + x Q ) 0 ( r ) (5 .1 .7 ) 

and ц is a Lagrangian multiplier. Physically, the extra term is the force 
that must be applied to maintain the nuclear deformation. 

For small deformations we can write 

l ^ c J O Ф(Q) = |> + / C; |i> (5 .1 .8 ) 

where | ^ is the ground state and |i,> excited eigenstates of H0. Using 
f i r s t -o rder perturbation theory, 

< i | Q l > 

C i = (M + x Q ) ^ - o (5 .1 .9 ) 

The self-consistency equation for /u is now 

< W Q ) | Q | Ш)> = 2(M + X Q ) ^ E , _ E o = Q (5.1.10) 

To determine the restoring force parameter C, we evaluate the 
energy increment 

E(Q) = < H 0 > - i x Q 2 (5 .1.11) 

(the factor | is to avoid counting two-body interactions twice), and equate 

E ( Q ) = E 0 + ¿ C Q 2 (5 .1.12) 

We get 

E(Q) = E 0 + ^ | c J 2 ( E i - E 0 ) - i x Q 2 

i 

1 Г V l < i | § l > | 2 r 1 2 i 2 
0 + 4 { ¿ E i - E 0 } Q i xQ (5.1.13) 

l < i | a i > | 2 M 

and hence 

•HI E ¡ - E 0 
- X (5 .1.14) 
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The first term is the unperturbed shel l -model contribution and the second 
is the reduction due to the residual field interactions. 

5.2. The mass parameter 

To determine the mass parameter, we must consider the time-dependent 
wave function for the Hamiltonian 

H(Q(t)) = H „ - M t ) + X Q ( t ) ) Q ( ? ) (5 .2 .1 ) 

For small Q(t) and Q(t) we can write 

MQ(t)) = e " i M / ñ >+£c,(t)|i > } (5 .2 .2 ) 

where the C¡ (t) are given by f i r s t -o rder time-dependent perturbation theory: 

C,(t) = g - ( M t ) + x Q ( t ) ) < i | ^ r > (5 .2 .3 ) 

E i ~ E o - i b at 

In the adiabatic limit 

<11^1 > , . < J | > 
c¡ (t ) = (M(t)+xQ(t) ) ' +ift(A(t) + xQ(t)) _ ' ,2 (5 .2 .4 ) 

E ¡ - E 0 (E¡ Eq) 

The self -consistency equation for /u(t) is 

Q(t ) = < ^ ( Q ( t ) ) | Q k ( Q ( t ) ) > 
l< i|Q|>| 2 l < i |^ l >| 2 А 

(5 .2 .5 ) 

V < í Q > • V О 
(ju(t) + xQ(t)) ¿ E ¡ _ E o + i fi (A(t) + xQ(t)) ^ 

For real density oscillations (Q is already real ) , the last term is purely 
imaginary and hence vanishes, so that as before 

v 101^1 >l2 
2(ju(t)+xQ(t) ) ' ' - Q(t) (5 .2 .6 ) 

L^ E¡ E 0 

Consider the expectation of the energy at /u(t) = Q(t) = 0 

E(Q) = E0 + Y l ° i | 2 ( E i - E 0 ) 

. 2V K M Q D I 2 
= Eo+ f i (M(t)+xQ(t) ) ( E l - E 0 ) 3 ( 5 - 2 - 7 ) 
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E(Q) = E 0 + | B Q 2 (5 .2 .8 ) 

а ' Г У K i l Q l > l 2 r 2 y | < i [ ^ | > P 
2 \ L E ¡ - E 0 } X ( E ; - E 0 ) 3 B=T"1 ; V ï I T^T^-TT (5-2.9) 

5.3. The vibrational spectrum and transition probabilities 

The vibrational spectrum is obtained by treating Q and Q as vibrational 
co-ordinates in a collective Hamiltonian 

H v i b = |BQ 2 + |CQ 2 (5 .3 .1 ) 

according to the Unified Model. This gives a harmonic spectrum of 
energy levels of spacing fiio, where 

и =ч/С7в (5. 3. 2) 

Transition probabilities are deduced by relating the EX-multipole 
operator to Q, as we did in section 3. 2 for the deformation parameters 

This method is equivalent to the Inglis cranking model and the results are identical. 
The cranking model expression is 

B = 2ftZ J<i|a/BQ|>| 

where 

Consider 

Therefore 

and 

E¡ -E 0 

± i \ = M J 9 ) 
3Q 1 ' - 3Q IQ = о 

<ii|f'i> = < i iéH ' i>-< i iH '4|> 

/ \ 0 I ч f if Л <i|§l> 

i 

which is identical to our expression. 
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a ^ , and using the formula 

where is the vibrational ground state and 11 )> the one phonon state. 
To do this we need to know the radial dependence of Q ( r ) . Now it is usually 
considered that the radial form of Q(r ) is not very important, provided 
it has no nodes and gives most weight to the surface region. For con-
venience in calculating transition probabilities one therefore frequently 
puts it equal to r \ i. e. 

ft _ rX.Y^(e)+Yx,(6) 
n/2 (5 .3 .4 ) 

in which case 

B(EA; Х ! - 0 0 ) = ~ e¡{{ (5 .3 .5 ) 

This approximation is equivalent to using a schematic P\ two-body inter -
action (see section 2.3) . 

eeff is the average effective charge of the contributing particles. 
In practice this effective charge will differ f rom the real charge for the 
following reason. To make a calculation feasible it is customary to treat 
the closed shell core as inert and consider only a limited number of un-
perturbed configurations | 0 for the extra -core particles. The effect 
of core polarization and of neglected configurations on the transitions are 
then taken into account by the use of an effective charge, as discussed in 
section 4. 2 for a single odd particle. 

Similarly we can expect more realistic results by using an effective 
two-body interaction. For this reason the coupling constant x is often 
treated as a fitting parameter rather than given its theoretical value. 

5.4. Effect of short-range pairing forces 

In the above treatment we have suggested that Ho should be the un-
perturbed shell -model Hamiltonian. This means a ground-state wave 
function with a sharp Fermi surface, corresponding to single-particle 
states being either fully occupied or completely empty. An excited state 
I О is correspondingly a pure 'particle-hole ' state, of the form 

| i>= > 
or as shown diagrammatically in Fig . 17. 
The matrix elements that occur have the simple expression 

< i | 3 | > = < v p | ^ k > (5 -4 .1 ) 

If the short-range residual interactions are taken into account, the 
Fermi surface becomes smeared out (cf. section 2.5) and a given single-
particle state v becomes occupied with probability amplitude v„ and un-
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в " ' 

FERMI SURFACE 

HOLE STATE 

FIG. 17. A particle-hole state shown diagrammatically 

occupied with amplitude u„. It is natural to suppose therefore that, in 
generalizing matrix elements to include short-range interactions, one 
should associate with every single-particle state v the factor Uy ОГ Vy 
as it appears in the role of a particle or a hole state, respectively. Thus 

< i | 3 | > - v O | $ k > u„v l/. + <?'|5|J7>u1(.v1/ 

= <v|^|i/ I>(u„v„.±u„.v I / ) (5 .4 .2 ) 

with the ± sign depending on whether is +ve or - v e under time reversa l , 
respectively. In the present case, for real density oscillations, we always 
define Q to be +ve under time reversa l . 

Similarly it is natural to make the generalization 

E j - E q — e v - e v • (unperturbed shell model) 

- ¿ E y + E y . (shell model + residual interactions) (5 .4 .3 ) 

where the Е„ are particle-binding energies measured with respect to the 
chemical potential. 

Thus we obtain the formulae 

_ i f y |<v 1 |2(u„v„- +u^.vy )2 

C ~ 2 L Z . E „ + E „ ' 
vv' 

(5 .4 .4 ) 

fi* Г у | < y l g | v ' > l 2 ( u B v y - + u y - v , ) 2 ] ' a - Г K y l Q l v O l V ^ + u y - v , ) 2 

2 E„ + E„' J L (E„+E„. ) 3 
W 

The above results are in fact just what one derives f rom BCS theory, 
when the states v are described as quasi-particle states due to their dual 
role of being partly particle and partly hole states. 

5.5. Comparison with experiment 

A number of calculations based on the above adiabatic model have 
been carr ied out; notably by Kisslinger and S^rensen [10] for spherical 
nuclei, and by Bès [11] and Bès and Szymanski [12] for deformed nuclei. 
By way of illustration a small sample of some of Kisslinger and S^rensen's 
results are shown in Fig . 18, namely their fits to the quadrupole v i b r a -
tional 2* states of the Sn and Pb isotopes. Their fits to the B(E2) values 
for excitation of the same states are given in Table I. 
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> 10 
M 

о 

FIG. 18. A sample of Kisslinger and S^rensen's results (Takenfrom Ref. [10] . courtesy of Matematisk-
fisiske Meddelelser) 

T A B L E I. F I T S TO T H E B (E2 ) V A L U E S F O R T H E 
E X C I T A T I O N O F 2 + S T A T E S 

Isotope 
B(E 2 ) theor. 

e2 X10""8 c m 4 

B(E2 ) e x p . 

e2 x l0~ 4 8 cm4 

B ( E 2 ) e xp . 

B(E2)s.p. 

112 
Sn 0.25 0.18 11 

1,4Sn 0.20 0.20 11 

U6Sn 0.26 0.21 12 

n8Sn 0.29 0.23 13 

1!0Sn 0.28 0.22 13 

122Sn 0.25 0.25 14 

124 Sn 0.20 0.21 12 

200 p b 0.33 - -

202 p b 0.29 - -

204 p b 0.22 0.17 5 

206 p b 0.13 0.13 4 

5.6. The possibility of going to higher order 

The possibility of going beyond f i r s t -order perturbation theory, to 
derive higher -order anharmonic correction terms to the vibrational 
Hamiltonian, is an attractive one. But it is not without danger. 

The principle of the model (and of the Unified Model on which it is 
based) is to feel out the shape of the energy surface as a function of a 

2* EXCITED STATES 

• EXPERIMENT 
— THEORY 

• • 
# 

Sn ISOTOPES Pb ISOTOPES 

112 114 116 118 120 122 124 200 202 204 206 
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and à (or Q and <5 or whatever parameters one chooses to define the 
nuclear shape). Ideally one would like to probe the energy surface out 
to regions of a and à comparable with their zero point amplitudes in the 
vibrational ground state7. Now to probe out the energy surface one really 
needs a б-function in both a and in its conjugate co-ordinate v = à/B or at 
least something with a spread in a and тг which is small, compared with 
the zero point amplitude of these co-ordinates, in the vibrational ground 
state. The zero point amplitudes are in fact given by 

<0| a 2 |0> = ¿ g , < 0 | . 2 | 0 > ~ (5.6.1) 

The best probe that quantum mechanics allows us is therefore the state 
for which 

, it
2

 .4 / 1 2 С si
 B 

is a minimum. This is clearly the vibrational ground state itself, which 
does not fulfil the requirement of being a sharp probe. 

What then do we actually measure when we use a blunt probe with 
a probability distribution p[a)7 Consider just the potential energy surface 
(¿ = 0). We want to find the various derivatives of H(e) at the origin 

, 2Э2Н 
« = о + г а to* 

+ ... (5.6.3) 
or 0 

What we measure when we take an energy expectation of the nucleus, 
displaced a distance x in a, is 

/ p(ff-x)II(o')do' = fp(a)II(a + x)da 

= fp(a)H(a)da +x da + §x2 f d a + . . . 
J J da J d «2 

The coefficients of the different powers of x that we determine are thus 
not the derivatives at the origin but their mean values taken over p{a). 
If these derivatives are constant over the range, as for example if the 
potential energy surface is purely harmonic, we get the correct answer. 
If we are looking for anharmonic terms, however, we will not get quite 
what we expect. 

It might nevertheless be possible to make the necessary corrections, 
provided the energy surface is reasonably smooth. We could determine 

<Н(
в +
 х)> = Н(х)

 +
 ^ - <

в
>

+
| < a

2

>
+
. . . (5.6.5) 

and hence its derivatives 

7 For such large amplitudes, perturbation theory diverges but one could use other 
methods. 
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Then, if we know p(a) and can calculate (a )>, (а^У etc., it is possible 
that the above equations could be inverted to give H(x) and its derivatives. 

6. THE V IBRATING P O T E N T I A L M O D E L 

Besides trying to extend the treatment beyond f i rst -order perturbation 
theory, we might try to remove the adiabatic approximation. In the 
adiabatic model terms of order hu/(E¡ - E 0 ) are neglected, which may 
well be as large as 0.5 or even l a rge r . In the V P M no such terms are 
neglected. 

6.1. A dispersion equation for the frequency 

We now look for f ree oscillations of the nucleus as opposed to forced 
adiabatic oscillations. Consequently we can dispense with the Lagrangian 
multipliers. The self -consistency condition, that the field and the density 
should oscillate in phase, determines the natural frequencies of the motion. 

The oscillating shell -model Hamiltonian is 

H(t) = H 0 - x Q ( t ) § (6 .1 .1 ) 

Again we write 

№ ) = e- i E ° ( { | > + £ q ( t ) | i > } 

Expanding 

(6.1.2) 

Q ( t ) = 6 c o s tot = | ( e " i w t + e i w t ) ( 6 . 1 . 3 ) 

and using f i r s t -o rder time-dependent perturbation theory, but without 
the adiabatic approximation, we get 

r "iüJt itiJt 
C l ( t ) = è x e < i | Q | > i * . + * \ E ¡ - E 0 - f i u E¡ - E 0 + f t u J 

/ . i a i ч (Ei - E n ) cos ut - ifiu sinut 
* е < 1 \ < * \ > ( Е ; - Е 0 ) 2 - ( п и ) 2 (6 .1 .4 ) 

The self -consistency condition 

< $ > = Q(t) (6 .1 .5 ) 

gives the eigenfrequency equation 

V l < i | § l > | 2 ( E i - E 0 ) c o s u t 
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1 / 2 X 

L.H.S. 

0 

E.-E
0
 E

2
- E „ 

FIG. 19. Graphical solution of the VPM dispersion equation 

or 

Y l < i i e i > l 2 ( E i - E o ) . _ J. 
/ I T P . - TP .\2 _ 2 O v L (E¡ - EQ)

2

 - (fiu)
2

 " 2x 
(6 .1 .7 ) 

The solutions of this dispersion equation for u are the possible frequencies 
at which the nucleus can oscillate self-consistently. 

This equation is readily solved graphically, as illustrated in Fig . 19. 
For zero coupling, x = 0, we get the unperturbed shell -model excitations 
as we ought to. As the coupling is turned on one state drops a long way 
below the rest and may be identified with the so-cal led vibrational state. 
It is this solution which is given less accurately in the adiabatic model. 

6.2. The vibrational parameters 

The mass parameter and restoring force parameter, associated with 
a shape oscillation, are again derived by considering the expectation of 
the energy. 

= E 0 + x2 e2 ^ 
Г l < i | Q | > | 2 { ( E i - E 0 ) 2 c o s 2 m t(ftto)2sin2u)t}(E¡-E0) 
L [ (Ej - E q ) 2 - (ñu)2]2 

- i x Q 2 ( t ) 

(6.2.1) 

Thus equating 

< H > = E0 + i e 2 w2B(u) (6.2.2) 
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FIG.20. Results of some VPM calculations by Marshalek and Rasmussen (Taken from Ref . [13] , courtesy of 
North-Holland Publishing Co . ) 

we obtain 

B(u) = 2R2X2 У |<í|31>|2(EÍ-EQ) 
[ ( E i - E o ) 2 - (ftu)2 ]2 (6.2.3) 

and 

C(u) = u2B(u) (6.2.4) 

These expressions reduce to those of the adiabatic model if we 
neglect terms of order fiu/(Ei-E0). 

Transition probabilities are given in terms of и and B(w) exactly 
as before. 

6.3. Inclusion of short-range forces 

The generalization of the above formulae to include the effects of 
short-range forces can be made just as in the adiabatic model. The dis-
persion equation becomes 

I |<v|q| v< >| (uuvy. + u „ . v „ ) ( E „ + E H 
= 2x + E„. )2 - ( f iu)2 

(6.3.1) 
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and the mass parameter 

B ( U > = 2 f i 2 * 2 ¿ [ ( E „ + E , ) * - ( W ( 6 - 3 - 2 ) 
w 

6.4. Comparison with experiment 

In Fig . 20 the results of some V P M calculations of Marshalek and 
Rasmussen [13] are shown. They are actually for the v-vibrations of 
the deformed ra re -ear th nuclei, but the formal ism is exactly the same. 
For comparison with experiment, allowance has been made for the r o -
tational motion which introduces some uncertainties and agreement cannot 
be expected to be so good as it might have been for spherical nuclei. For 
instance, no account is taken of the possible coupling of the vibrational to 
the rotational motion. For comparison, excitation energies in the adia -
batic approximation are also shown. In every case the V P M is better. 

Agreement with experiment for the B(E2) values is not very good 
but this is almost certainly due to computational uncertainties rather than 
the inadequacy of the model. 

It is to be noted that the Marshalek and Rasmussen calculation con-
tains no adjustable parameter, since the coupling constant x is given its 
theoretical value and is not treated as a fitting parameter . 

6.5. Discussion 

By removing the adiabatic approximation we obtain not just one but 
a complete set of solutions. For zero coupling to the deformation field 
these are just the unperturbed shell -model states. As the coupling is 
turned on, one state falls a long way below the rest and acquires collective 
properties, a low excitation energy and large transition strength. The 
other states are modified only a little and retain the appearance of particle 
excitations. It is a very attractive feature of the model that the collective 
and particle excitations should appear on an equal footing and that there 
should be just the correct number of states and no spurious state, due to 
the introduction of redundant collective variables. It can also be shown 
that the V P M excitations form a complete orthogonal set. 

The consequences of removing the adiabatic approximation are thus 
seen to be much more widespread than merely going to a higher order of 
approximation. The adiabatic model gives a single solution, which ap -
proximates to the lowest frequency V P M solution, and provides a reasonable 
description of the so-cal led 'collective state'. To obtain the other states 
one is obliged to return to the IPM, consequently ending up with an ove r -
complete set. The VPM, rather than the adiabatic model, appears there -
fore as the real fulfilment of the unified model, providing a common 
description of both the collective and the particle- l ike excitations. In 
fact, in the V P M there no longer remains any distinction between the 
different modes. One mere ly observes that the lowest frequency solution 
is more collective than the rest, and this is how it ought to be. 

There are, however, several things which need explaining. For 
instance: 
(a) Why, when we have apparently introduced extra degrees of freedom 
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into the already complete IP Hamiltonian, do we not get spurious 
states? 

(b) The same semi-c lass ica l co-ordinates Q and Q serve as normal co -
ordinates for all the modes, including collective-like and part ic le -
like, which if they have any significance must be orthogonal. 

(c) We get a different mass parameter B(u) for each solution, which i m -
plies that there is not a single energy surface for shape deformation 
but many, depending on the frequency. 
A proper understanding of what is going on and the true nature of the 

approximations involved will be obtained when we derived the model m i c r o -
scopically. Brief ly , the essential point is that neither Q (nor a) is actually 
a collective co-ordinate at all. They are merely parameters and c-numbers, 
denoting the instantaneous shape of the nuclear field, associated with an 
oscillation in one of its various normal modes. All of the true normal 
modes exhibit to some extent motion of the nuclear shape. The shape 
oscillation is not itself a normal mode. It is for this reason that the 
hydrodynamic model, which puts all the collective strength into a single 
excited state, fai ls . The present approximation is good because only the 
overall shape of the field is real ly important and not the details associated 
with the other shorter -range components of the density oscillations. 

7. A N I I A R M O M C VIBRATIONS 

The only experimental data available of vibrational states, above the 
one-phonon states, are for the quadrupole vibrations. For these we ex -
pect a degenerate two-phonon triplet, of spin 0, 2, 4 + , at twice the energy 
of the f irst 2+ state. Sometimes all members of the triplet are observed, 

E IN RELATIVE UNITS 

ÍEXPT) (KERMAN 
AND SHAKIN) 

- (2* 3») 2.46 2.48 2\ N = 3 

2.336 4* 1.99 1.92 
2.302 2* 1.96 1.90 

2.048 0* 1.75 1.73 

1.172 2* 1.00 1.00 

j» N = 2 

N = 0 

FIG. 21. Energy spectrum of 62Ni. Results of Kerman and Shakin (Taken from Re f . [ 7 ] , courtesy of 

North-Holland Publishing Co . ) 
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FIG.22. Comparison of the 114Cd spectrum with the harmonic and the anharmonic model (Taken from 
Ref. [16] , courtesy of North-Holland Publishing Co. ) 

sometimes one is conspicuously absent. Invariably their degeneracy 
is substantially split. 

In terms of the vibrational model, such effects reflect the anharmonic 
nature of the collective Hamiltonian. A general collective Hamiltonian 
has the form 

H = W 2 1 { O t O } 0 + W 3 0 { O t O t O t } 0 + W 3 1 { O t O + O}0 + h . c . 

+ higher order terms 

where the phonon operators are coupled within the brackets to fo rm 
sca lars . 

To see if such a Hamiltonian can explain the two-phonon splitting, 
Kerman and Shakin [14] attempted to fit the 62 Ni spectrum with just cubic 
anharmonic terms, using second-order perturbation theory. Their results 
are shown in Fig . 21, and are reasonably successful. For other nuclei, 
however, they were not so successful and this they attribute to the necess i -
ty of including quartic te rms 8 . The data is insufficient, however, to permit 
the introduction of any more adjustable parameters . A meaningful test 
of the anharmonic model therefore requires the determination of the extra 
parameters theoretically f rom the energy surface or f rom a microscopic 
theory. 

Just recently, nuclear orientation experiments have brought to light 
some very serious departures f rom harmonicity, and that in nuclei which 

8 Quartic t e rms contribute to the energy in f i rst o rde r whereas cubic te rms contribute 
f i r s t in second o rde r . Thus to be consistent both should be introduced on an equal footing, 
even though the quartic t e rms may be of an o rder of magnitude s m a l l e r . 
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were hitherto considered amongst the best examples for harmonic v i b r a -
tions. 114Cd for example, has a spectrum which is very close to harmonic 
(see Fig . 22). Its transition strengths are about right and it nicely de -
monstrates the selection rule inhibiting the 2г - » 0 1 c ross -over transition. 
Then de Boer et al. [15] do an experiment and find a static quadrupole 
moment for the f i rst 2+ state of about five single-particle magnitudes. 
This result is completely at variance with the purely harmonic vibrations 
of a spherical nucleus, which are all centred about zero deformation. 
Maybe then 114Cd is not spherical but has a deformed equilibrium shape. 
This hypothesis has some support f rom the fact that the experimentally 
observed ratio of quadrupole matrix elements 

< 2 ! ||^Г(Е2)||21> 
- П Л Г = - 1. 30 ± 0 . 39 
<0 a ||«4Г(Е2)|)21> 

is consistent with the value - 1. 20, for the pure rotational motion of a 
stable deformed nucleus. The remaining data is, however, more con-
sistent with the vibrational picture, but a strongly interacting vibrational-
rotational motion is not out of the question. 

The possibility of fitting the data with an anharmonic vibrational 
model has been investigated by S^rensen [16], again using only cubic terms. 
The anharmonic components needed were far too large for perturbation 
theory and he diagonalizes in the subspace of up to seven-phonon v i b r a -
tional configurations. His results are shown in Fig. 22. He too concludes 
that a completely satisfactory fit is not possible without quartic terms. 

8. THE E l PHOTORESONANCE 

Measurements of 7 -absorption cross-sections reveal a giant dipole 
resonance centred at about 80 A'1^3 MeV for heavy nuclei, which settles 
down to about 20 MeV for nuclei A ~ 40. Its width varies around 5 MeV. 

Ear ly attempts to understand the phenomenon followed either the 
collective or the independent particle approach and there was considerable 
debate as to which, if either, was correct. We now know that the two 
approaches are not orthogonal but different ways of looking at the same 
thing. Since the equivalence of these viewpoints underlies our present 
understanding of collective vibrations, we shall brief ly review the two 
methods and their eventual reconciliation. 

8.1. The collective model 

The collective model interpretation was proposed by Goldhaber and 
Tel ler [17]. They regarded the dipole resonance as a quantized oscillation 
of proton and neutron densities in antiphase, the centre of mass remaining 
fixed. 

Two major possibilities were envisaged: (a) The proton and neutron 
densities oscillate through each other as hard spheres, (b) The densities 
oscillate such that the sum density, at any point, remains constant. The 
second possibility appears to give better agreement with experiment, a l -
though the f i rst is more readily understood in terms of the shell model. 

Consider the second (sometimes described as second sound). The 
energy increment, associated with a local density fluctuation 6pN = - ó p p , 
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can be deduced from the symmetry energy in the Weizsacker mass formula 

, ( N - Z ) 2 
2 esym A (Ь. l . l ) 

where eSym 81 25 MeV . Knowing the density and the energy increment for 
a density fluctuation, the velocity of sound in the medium can be calculated. 
The dipole oscillation frequency is then determined by the boundary con-
ditions for a standing wave in the nucleus. This problem was essentially 
solved by Lord Rayleigh [18]. The result is 

ftudip = 78 A" 1 / 3MeV (8 .1 .2 ) 

which is a great success for the model. 
This treatment gives a single state of zero width, rather than the 

5 MeV or so observed. However, a width is easily fed into the model 
by supposing that the collective oscillation is damped. In view of the 
large number of background states at this energy, it would be very s u r -
prising if it were not damped by a small coupling to some of them. 

The cross - sect ionfor excitingthe dipole state can be deduced from 
the energy-weighted sum rule, since the collective model puts all the 
strength into a single mode. The dipole sum is 

CR 4 F I 2 P 2 N 7 
S e I ( T = 1) - ^ = И ш В ( Е 1 ; 0 - М ) (8 .1 .3 ) 

Experimentally, the integrated strength in the resonance region just about 
equals this sum, again a success for the model.9 

8.2. The shell model 

The protagonists of the shel l -model approach (Wilkinson [20], Rand 
and others) took the attitude that the dipole resonance is not a single broad 
collective state, but an aggregate of s ingle-particle shell-model excitations. 

For a harmonic oscillator potential, all such excited states would be 
degenerate at an energy ñu, where to is the oscillator frequency. When 
the spin-orbit interaction is included and a more realistic potential well 
taken, the degeneracy is split. Nevertheless excited states still tend to 
cluster within a comparatively narrow energy region (see, for example, 
Figure 23, where the sort of configurations excitable by a dipole operator 
are illustrated for a hypothetical nucleus with a partially filled If 5/2 
subshell). 

If an imaginary component is included in the potential well, as in the 
optical model, these unperturbed configurations acquire a width and may 
overlap. The photoresonance is then the envelope of all such states. 

Again all the dipole strength must lie within the resonance region, 
but not now in a single broad collective state. 

The major problem with the independent-particle shell model is that 
the energy comes out about half the experimental value. It can be increased 

s Bethe and Lev inger ¡19] point out that the neglected exchange terms can add something 
like 40% to the sum ru le . The extra strength probab ly l ies at high energies and is associated 
with the high momentum two-part ic le corre lat ions for which the shor t - r ange repuls ive core 
i s respons ib le . 
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by taking into account pairing, but to get it up to value needs an effective 
mass m* ю m/2, which is unreasonably small . It also tends to ove r -
estimate the width of the photopeak. 

8.3. Equivalence of the two approaches 

At f i rst sight the two descriptions are diametrically opposed and it 
is not surprising that there was controversy. The energy of the resonance 
is given more accurately in the collective model, while the shell model 
explains more readily its willingness to decay by particle emission. The 
shell model tends to overestimate the width, but at the same time allows 
for the possibility of structure, whereas the collective model predicts 
a completely smooth cross-section. Later of course, with better r e s o -
lution, structure was observed, although it proved to have a different com-
plexity to that envisaged by the shell model (see, for example, the photo-
nuclear cross-section for 28Si in Fig. 24, measured for different reactions 
with different resolutions). 

The compatibility of the two approaches was first elucidated by 
Brink [22]. Consider the dipole operator. Allowing for centre-of-mass 
recoil , it is 

Z 

^ ( E l ) =e У (r ¡ - R ) (8 .3 .1 ) 

where R is the centre -o f -mass co-ordinate 

i j 

(8. 3. 2) 
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FIG.24. Photonuclear cross-sections for 28Si (Taken from Réf. [21] , courtesy of Annual Reviews Inc.) 

Substituting, we obtain 

z N 

^ ( E 1 ) = e f ^ - e f X ^ 
i j 

N Z N Z -* 
= e — ( R z - R n ) = e ^ r (8 .3 .3 ) 

where r is the relative co-ordinate of the proton and neutron centre of 
masses . 

Thus the dipole operator, acting on the ground state, creates a state 
of relative neutron-proton motion. At the same time, being a s ingle -
particle operator, it can only change the state of, at most, one particle 
in a single operation. The dipole state can therefore be simultaneously 
a collective and a superposition of single-particle excitations. 

If this is not convincing, recal l the question that was asked in the 
early days of quantum mechanics. Can electrons, passing singly through 
a diffraction grating, produce an interference pattern? The anwer is that 
they can, because one does not know through which slit a given electron 
passes . The slits in the grating correspond to single-particle excitations; 
the grating is a superposition of them. The electron corresponds to the 
photon absorption process . It can only excite a single configuration at 
a time, but if, as in the collective state, the amplitudes for each possibility 
add coherently, the total excitation probability will be very large . 

The two models are therefore not opposed but, at the same time, they 
are not equivalent. In the collective model, the 'collective dipole state' 
appears as a damped eigenstate, whereas in the shell model it is split 
among many damped single-particle excitations. In fact both are inadequate. 

The collective model fai ls because the broadening is treated too c l a s s i -
cally. If the coupling to other excited states of the nucleus were treated 
explicitly, it must necessari ly produce a splitting of the collective state 
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into a large number of discrete energy states, each of which is then 
broadened by its particle emission width. The collective model can 
therefore only be expected to give the average properties of the resonance 
and not the details, which must reflect the local shell structure of the 
particular nucleus. 

The independent particle shell model fai ls because it neglects residual 
interactions. The calculations of Elliott and F lowers [23] showed that 
residual interactions effect a concentration of the collective strength into 
just a few excited states, which results in a considerable reduction of the 
overall width. These states are also pushed up in energy, eliminating 
the necessity for an unrealistic effective mass . 

Let us look again at the experimental results for 28Si. With good 
resolution, all sorts of fine structure appear, although not for all nuclei. 
In terms of the shell model, this fine structure may be attributed to the 
coupling of the one particle-hole (1 ph) configurations to the 2ph, the 
3 ph, etc. Whether fine structure exists, in a particular nucleus, depends 
on the relative widths and spacing of the component states. 

Pictorial ly, the energy of the dipole oscillation can be given up in 
one of two competing processes . It can decay directly by particle emission, 
or, if this takes too long because of the height of the Coulomb and angular 
momentum bar r i e r s , it can f irst thermalize its energy among the more 
complicated degrees of freedom of the nucleus and eventually emit low 
angular momentum evaporation neutrons. In light nuclei the direct 
process tends to dominate, although not always. In heavy nuclei therma-
lization more frequently occurs and fine structure is observable. 

9. THE C O L L E C T I V E R O T A T I O N A L MODEL 

9.1.. The existence of rotations 

In section 3 we were able to give a precise quantal meaning to the 
classical concept of a vibrating nucleus, and to show in what sense ' co l -
lective vibrations' can meaningfully be said to exist. Can we now do the 
same for rotations? 

Consider f irst just two interacting nucléons, with a Hamiltonian 

This Hamiltonian can be separated into relative and centre -o f -mass parts: 

III. D E F O R M E D N U C L E I 

2M (9 .1 .1 ) 

h2 2 - — Vr 4M R (9 .1 .2 ) 

(relative) (centre-of-mass) 

The Schrôdinger equation for the relative motion is 

V V [E - V ( r ) ] ф = 0 (9 .1 .3 ) 
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FIG.25. Rotational bands for a two-particle nucleus (identical particles can only exist in relative odd parity 
states) 

which, written in spherical co-ordinates, becomes 

1 Э Л „ 9ф\ , 1 Э2 

г2 Эг V 3r J r2 
a ÇÉ-Л I 1 &Ф 

s ine эе V 3 в ) sir?в l u ? 

~Лф 

м -

+ ¿ 5 - [ E - V ( r ) ] ^ =0 

(9 .1 .4 ) 
It is clear that ф is separable into radial and angular parts 

ф = Щт)Ует(в) (9 .1 .5 ) 

where Y { m (0) is a spherical harmonic and a solution of the well-known 
equation 

AY £ m + i ( i + l ) Y { m =0 (9 .1 .6 ) 

and R ( r ) is a solution of the equation 

{ ? £ H ) - ^ S « - v ( r . l } R ( D - . c . 1 . 4 

For the two-particle system, R ( r ) can also be regarded as the intrinsic 
wave function and Ygm(0) a rotational wave function. Consider the energy 
spectrum for a harmonic interaction 

V ( r ) = kr2 (9 .1 .3 ) 

The energy levels can be arranged in bands, each band characterized by 
an intrinsic or radial quantum number (Fig. 25). 

Thus rotational motion undeniably exists for the two-particle system, 
although the spectrum does not follow the 1(1 + 1) energy rule expected for 
a rotor. This is for the obvious reason that the rotational energy 
f i 2 i ( i + l ) /Mr 2 is of the same order of magnitude as the intrinsic excita-
tion energies, and the two are strongly coupled. In other words, the 
centrifugal force distorts the intrinsic structure. 

For many particles, an orientation angle can be defined in terms 
of the inertia tensor, and a change of co-ordinates, in principle, made. 
The intrinsic system can now have many degrees of freedom, including 
angular motions, provided that such motions do not involve the orientation 
of the principal axes of the inertia tensor. Extra coupling terms are there -
by possible, in particular the Coriolis coupling. 

Now'if the mean moment of inertia is very large, the rotational 
angular velocity for a given angular momentum is small, compared with 
characteristic intrinsic frequencies. In this adiabatic limit the coupling 
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should be small and a pure rotational spectrum observable. Thus we de-
fine a pure rotation as one which leaves the intrinsic structure unaltered. 
To the question "do pure rotations exist?", the answer is almost certainly 
"no". (It is my guess that if they did we would get the rigid body moment 
of inertia, although I do not think that this has been demonstrated. ) How-
ever, it is reasonable to suppose that we get near enough to the limit, 
that a pure adiabatic rotational model makes a good first approximation. 
Coupling of rotational and intrinsic motion can then be treated as a per -
turbation and perhaps by a renormalization of the effective moment of 
inertia. 

9.2. The rotational Hamiltonian 

Assuming that an appropriate transformation to rotational and intrinsic 
co-ordinates has been made, the Hamiltonian has the form 

H = H r o t +H i n t r (9.2.1) 

where 

Y" K2 2 

Hrot — (Ik - J k ) 2 (9.2.2) 

к 

with к labelling the principal axes of the inertia tensor. The total angular 

momentum I is given by 
t = R + J (9.2.3) 

where J is the intrinsic angular momentum and R is the angular momentum 
associated with the rotating intrinsic co-ordinate axes. H¡ntr is left un-
defined in this purely phenomenological model. 

From the theory of the rotating top, we know that I and M =IZ are 
constants of the motion, but that I3, the projection of the angular mo-
mentum along the intrinsic z-axis, is not, unless the body happens to be 
symmetric about this axis. Since it appears to be possible to explain 
nuclear data in terms of axial symmetry (together with vibrations about 
axial symmetry) we shall make this assumption and benefit from the con-
siderable simplification that results. Thus we put 

2 = J2" (9.2.4) 

Hrot can now be expanded 

fi2 - " 9 9 0 fi2 2 "ft2 Ц 2 ->-„ 
Hr0t = ^ ( I 2 - I 2 - J l ) + ^ ( I 3 - J 3 ) + I - J + ) + ^ J 2 (9-2.5) 

R P C intrinsic 

The last term operates only on the intrinsic variables and is naturally 
incorporated into Hintr . The term labelled RPC (rotation-particle coupling) 
is the Coriolis interaction, coupling the intrinsic motion to the rotation, 
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FIG.26. Quantum numbers characterizing the rotational eigenstates 

and is neglected in the adiabatic approximation. The moment of inertia ^ , 
although written as a constant, is real ly a function of the intrinsic var iab les . 
Again, in the adiabatic approximation, it is taken to be a constant, and in 
this way the centrifugal interaction is neglected. 

With neglect of these interaction terms, one is left with four good 
quantum numbers to characterize the rotational eigenstates, namely I, 
M = I Z , K = I3 and Г2 = J3 (see Fig . 26). An eigenstate of these quantum 
numbers is the wave function (see Appendix) 

Ф1 = (в)<Р {в) (9 .2 .6 ) 
"KM \¡ 8я-2 МК 42 ' 

For a given intrinsic wave function <pa, we therefore expect the rotational 
energy spectrum 

,2 2 
Erot = ^ . [1 (1 + 1 ) - К 2 - Г 2 2 ] + — ( К - П ) 2 (9 .2 .7 ) 

9.3. Symmetry properties 

For an axially symmetric nucleus, the choice of intrinsic axes is not 
unique. Consequently there follow certain restraints on the symmetry of 
the wave function. In particular, the wave function must be invariant 
under the following two transformations: 

(a) Rotating the intrinsic co-ordinate axes through an angle à about the 
symmetry axis, but leaving the nuclear wave function fixed in space, should 
alter nothing, not even a phase factor. Rotating the function of angle 

1 w e g e t 

к № У ) -* S ) l ^ a P y - à ) = e~iKÔ<Z>lMK(<*lЗт) (9 .3 .1 ) 

Rotating the axes of the function <p^ we get 

< " » е Ш ' = e , 0 V ® > (9 .3 .2 ) 

Thus, in order that the product function should be invariant under this 
transformation, we must require that 

К = П (9 .3 .3 ) 

(b) Rotating the intrinsic axes an angle тг about the 2-axis , but again 
leaving the wave function fixed in space, should change nothing. We 
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obtain 

M к мк 

and 

= (-1)1 7) (9 .3 .4 ) 

(9) itrj2 (6) _ (6) 
<рк' e = (9 .3 .5 ) 

where tp̂  is defined by this equation.10 Thus the symmetrized wave 
function becomes 

(9 .3 .6 ) 

for К ^ 0; K = 0 is an exception since is not distinct f rom <p0. 
The energy spectrum is now given by 

Erot = f ^ [ I ( I + l ) - 2 K 2 ] (9 .3 .7 ) 

for К ф i ; К = \ is an exception because, after symmetrization, the R P C 
gives diagonal contributions to the energy and cannot reasonably be neglected. 
In the following discussion the K 2 term in the energy will be dropped and 
assumed to be incorporated into the intrinsic energy. 

9.4. К = 0 bands 

For K = 0 the intrinsic wave function <p-§ is not distinct f rom <p0 but 
neither is it necessari ly identical. In fact 

П = i - 1 ) 1 <Po = r <Po (9 .4 .1 ) 

so that r = ± 1 . J is an integer for all components <p\ of ip 0. Thus the 
symmetrized wave function vanishes unless 

I = 0, 2, 4 for r = +1 

= 1, 3, 5 for r = - 1 

For even-even nuclei, particles are coupled pairwise in time reversal 
conjugates and consequently r = +1. Thus K = 0 bands contain only even 

10 If <pK is expanded in eigenstates of J 

= X c J < 

then 

X < - i r v . K = < - i > , + v K 
i 

With a suitable choice of phases for combining space and spin wave functions, ¡p-̂  is just 
the time r e v e r s e of <рк-
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FIG.27. (a) Some typical examples of rotational bands in even-even nuclei, (b) the low-energy level 
structure of 166Ho (Taken from Ref.[24], courtesy of Annual Reviews Inc.) 

spins (Fig . 27a). For odd-odd nuclei, however, r = - 1 is also a possibility 
(Fig. 27b). 

Note that r has nothing to do with parity. If the nucleus is ref lection-
symmetric, <pK has good parity, which is also the parity of each member 
of the band. If the nucleus is not ref lection-symmetric, e .g . pear-shaped, 
it may not have good parity, but it must always be possible to take linear 
combinations which do have good parity 

= J Ï { 1 ± 7 ! ^ k (9 .4 .2 ) 

9.5. К = 1 bands 

К = i bands are also special, because for these 

*í2 
J- + I -J+ ) (9 .5 .1 ) 
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FIG.28. Spectrum for 239Pu. Energy levels are given in keV. Theoretical values are enclosed in brackets. 

has a diagonal component which cannot reasonably be neglected. Its d ia -
gonal contribution to the energy spectrum is readily calculated in terms 
of the decoupling parameter a, defined by 

a = - i<p { |J+|<P|> (9 .5 .2 ) 

The rotational part of the matrix element is 

= (9 .5 .3 ) 

Hence we obtain the energy spectrum 

E r o t = |^ r [ I ( I + l ) + 6 K i a ( - l ) ' 4 ( I + i ) ] (9 .5 .4 ) 

The decoupling parameter is so called because it implies a break -
down of the strong coupling of the particle to the deformed nuclear shape. 
The pure adiabatic model is sometimes called the strong coupling model 
for the reason that, in this limit, the particles are strongly coupled to a 
deformed shape which is not significantly perturbed by the rotation. 

Figure 28 shows the spectrum for 239pu fitted with the above rotational 
formula. Included is а К = | band strongly modified by decoupling. In 
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some cases, particularly in light nuclei, e . g . В " , C" , the decoupling 
parameter can be so large as to bring about a re -order ing of K = i levels . 

9.6. Electromagnetic moments and transitions 

(a) The general structure of matrix elements 

Since members of a band differ only by their rotational wave function, 
which has well-known properties, many matrix elements are simply r e -
lated by geometric factors. 

Matrix elements are best evaluated by transforming the operator into 
the intrinsic f rame. The electromagnetic multipole operator transforms 

¿ f № ) = ^ « ¿ , ( 6 ) (Xv) (9 .6 .1 ) 
v 

For K i , Kf f= 0, therefore, 

< i f M f K f | ^ ( X p ) | i i M i K i > = £ ^ i ^ i f + i ) 

V 

X { / K ^ K ^ i K i < K f l ^ ( X V ) | K i > 

+ ( - l ) h + K i f K r K ¡ < K f U ( X , ) | K i > } 
(9 .6 .2 ) 

Note that -^ (X/ J ) , being independent of 0, is invariant under the t rans - . 
formation which rotates the intrinsic axes through it, and hence the two 
halves of the matrix element are identical. Evaluating the integrals, 
according to the formulae in Appendix A. 2, we deduce the reduced matrix 
element 

< i f K f |L/(X) i| ij k: í > = s j ( 2 i i + i ) { ( i i X K i , K f - K i | i f K f ) < K f | ^ ' ( x , K f - K i ) | K i > 

+ ( - l ) I i + K ¡ ( I i X - K i , K f + K i | l f K f ) < K f | ^ ' ( X , K f + K i ) | K i > } 

(9 .6 .3 ) 

for Ki , Kf ф 0 

For K i = 0 

<I fK f|| ||liK1 = 0 > = s/(2I¡ + l ) ( I i X 0 K f | l f K f ) < K f | ^ r ( X , K f I K; = 0 > 

•J~2 if K f f = 0 

1 if Kf = 0 (9 .6 .4 ) 
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The reduced transition probability, defined by 

K l f l l u f U ) ||li>|2 

B(X; Ij - » I f ) = 
21,- + 1 (9 .6 .5 ) 

follows f rom the above. For K¡ , K f ф 0 

B(A; 1 ; К ^ 1 Г К Г ) = |(I¡XK¡, K f - K i | l f K f ) < K f | u r ( X , К Г ~ К ^ ) | К ; > 

+ ( - l ) I i + Ki d i X - K i , Kf + K¡ I IfKf) <^Kf |^(X, K f + K O l K i ) ! 2 

(9 .6 .6 ) 

For K¡ = 0 ' 

BtXjIiKi = 0 ->I fK f ) = ( I iX0K f | l f K f ) 2 |<K f |^r (X , K f ) | K ¡ = 0 > |2 

2 if K { f 0 

1 if K f = 0 
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Thus it is clear that the rotational model predicts a K-selection rule, 
forbidding transitions for which the vector coupling coefficients vanish. 
In particular the transition is forbidden if 

X < K , - К (9 .6 .8 ) 

Some examples of K-forbidden transitions, which are otherwise allowed, 
are given in Fig. 29. 

(b) Electric quadrupole moments 

The electric quadrupole moment Q, of a nucleus in the state | l K M X 
is defined as 

Q = ¡ Ц 1 < I K M = l | ^ T ( E 2 , 0 ) | l K M = I > 
V о 

(9 .6.9 ) 
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If the intrinsic quadrupole moment Q q is defined as 

к ГГбF 
Qo = . / ^ <К| 0) I K > (9.6.10) 10 ' \l 5 

then 

Q = ( I 2 I 0 | l I ) ( I 2 K 0 | l K ) Q g (9 .6.11) 

For К = i , 1 there are also c ross - te rms , but these are associated 
with fluctuations of the deformation and are much smal ler and of s ingle -
particle magnitude. In contrast the direct terms, because of the collective 
deformation of the nucleus, are strongly enhanced. 

Expanding the coupling coefficients we get 

о - { 3 r 2 - 1 (1+ '1 ) } {ЗК 2 - 1 (1 + 1)} K 
4 (21-1)1(1+ l ) (2I + 3) 

3 K 2 - I ( I + 1) к 
(I + 1)(2I + 3) Qo (9 .6.12) 

which enables one to measure experimentally the intrinsic quadrupole 
moment. 

Similarly E2 transitions within a band are collectively enhanced, 
since the intrinsic matrix element is diagonal and large. Thus 

B ( E 2 ; I ; K ^ I
F
K ) = J | ^ ( I i 2 K 0 | l

F
K ) 2 ( Q ^ ) 2 (9 .6 .13 ) 

again neglecting the cross-term as being of an order of magnitude smal ler . 
Immediately one observes that all the E2 transitions within a band are 
given by the single parameter Q Q , proving a good means of testing the 
model. Some comparisons with experiment are given in Table II (after 
Mottelson [5 ] ) and are generally pretty convincing. 

Interband E2 transitions are of an order of magnitude smaller since 
they involve an excitation of the intrinsic state. Generally such t rans i -
tions are of single-particle magnitude and may be neglected since they 
are invariably swamped by the diagonal transitions permitted by the small 
amount of band mixing that inevitably occur?. 

(c) Magnetic dipole moments 

The magnetic dipole operator is 

A 

(9.6.14) 
k 

where g£ = 0, gs = - 3.83 for neutrons 

and g. =1 , gs = 5.59 for protons. 
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T A B L E II. S O M E C O M P A R I S O N S W I T H E X P E R I M E N T 

Nucleus 1„ = K 
E(K + 2) B(E2; К -» К + 2) B(E2; K + 2->K + l ) 
E(K + 1) B(E2; K - > K + 1) B(E2; K + 2 - > K ) 

153 Eu 5/2 2.33 (2.29) 0.31 (0.35) 2.6 (3 .0) 

155 Gd 3/2 2.42 (2.40) 0.52 (0.56) 2.5 (1 .5 ) 

157Gd 3/2 ' 2 . 43 ( 2 . 40 ) 0. 55 (0. 56) 1.6 (1 .5) 

159Tb 3/2 2.37 (2.40) 0.51 (0.56) 1.6 (1.5) 

161 Dy 5/2 2 .33 (2 .29 ) 0.27 (0.35) -

I63Dy 5/2 2.32 (2.29) 0.27 (0.35) 3.0 (3 .0) 

165Ho 7/2 2.21 (2.22) . 0.26 (0.26) 4.9 (4 .7) 

167Er 7/2 2 .25 (2 .22 ) 0.23 (0.26) 3.8 (4 .7) 

n l Y b 1/2 1.14 - 1.5 (1 .5 ) -

I73 y b 5/2 2 .23 (2 .29 ) 0.31 (0.35) 2.6 (3.0) 

175LU 7/2 2 .21 (2 .22 ) 0.24 (0.26) 5.0 (4 .7) 

177Hf 7/2 2.22 (2.22) 0.31 (0.26) 5.5 (4 .7 ) 

179Hf 9/2 - 0.25 (0.20) 5.0 (6 .5) 

181Ta 7/2 2 .21 (2 .22 ) 0.29 (0.26) 6.0 (4 .7) 

It is more convenient to separate off the part concerned with rotational 
motion and so we write 

A 

ц = g R R + (9.6.15) 

к 

where £ and s now re fer only to the intrinsic angular momentum. We get 

^ = g R* + X { g « " g R ) ^ k + l ( g sk " S r ) } 

к 

E g R î + ? (9.6.16) 

The first term is most readily evaluated in the laboratory frame, the 
second in the .intrinsic f rame. Thus 

¡л= < l K M = l|ju0|lKM = l > 

= g R I + ( I l I 0 | l I ) | ( I lKO| lK ) <K| ju ' 0 |k> 

+ б К , ( - 1 ) 1 + * ( 1 1 - - н | 1 - | ) ^ а к l í > } (9.6. i7 ) 
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This expression is simplified by introducing the gyromagnetic ratio gK, 
defined by 

<к|ль |к> = < к | ¿ {(gH - g R ) i k 0 + ( g j - g R ) s k 0 } I K > = ( g r - g B ) K 
k 

and the matrix element b0 , defined by 

< ! k J F > = < ¿ | ^ { ( g £ - g R ) V + ( g ^ g R ) s k + } | í > E 

К ь R 
(9.6.18) 

(9 .6.19) 

whence 

Ц = gRI + ( g K - g R ) ^ { l + 5 K i ( - l ) I + i ( 2 I + l ) b 0 } (9 .6.20) 

The M l multipole operator is 

-"wJNm;i» (9 .6. 21) 

but gRI does not contribute to transitions, since I is diagonal. We obtain 

, - У V2Mc J 

2 

B(M1; I i K - I f K ) (щ^) ( I i | K 0 | l f K ) < K | ^ | K > 

L I 
/2 + 5к| ( " l ) 1 * 4 ( I j l - l l l l f l ) Ц 1 < ? | f j * > 

= J . ( ^ Л 
47Г 

( J U ( 1 , | к о | 1 , К ) » К » ( в к - в 1 1 И 1 + в х 4 ( - 1 Г + 4 Ь в } » 

(9. 6.22) 

where use is made of the identity 

(Ii 1 - H I f i ) 
di 1 1 0 If i ) 

fOr If =1; ± 1 (9.6. 23) 

9.7. Band mixing 

Although the adiabatic model is very successful, it is not perfect. 
K-forbidden transitions do occur and departures f rom the 1(1 + 1) law are 
frequently observed. A break-down of the adiabatic approximation will 
manifest itself in terms of band mixing. 

(a) A K = ± 1 mixing 

The most obvious source of band mixing is the Coriolis interaction 

V = - 2 ^ ( I + J . + I . J + ) (9 .7 .1 ) 

which can mix bands for which AK = ±1 . 

10 
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Let ua consider the effect of coupling two bands К and K + l . The 
perturbed energy levels are given (exactly) by the leading term in the 
Br i l louin-Wigner expansion 

E = E 0 + V 0 0 + J | ^ (9 .7 .2 ) 
-1 n 

where 

«2 

V n 0 = - — < I K + 1M| I . J + | IKM> (9 .7 .3 ) 

If we define the intrinsic matrix element 

A K = | ^ < K + I|J + |K > (9 .7 .4 ) 

we get 
Vn0 = -AkN/ (I - K)(I + К +1) = - A K N f { I ( I + l ) - K ( K + l ) } (9 .7 .5 ) 

and 

fi2 I + 1 

E(I) = 2^ [ I ( I + l ) + e K i ( -1 ) 2 (I + i ) a ] 

¡1 
E ( I ) - E K + 1 ( I ) + ,T. [1(1 + 1) ~K (K + 1)] (9 .7 .6 ) 

where E K + j ( I ) is the unperturbed energy of level I in the K + l band. In 
f i rst order the denominator is replaced by EK ( I ) - EK + j(I) which, provided 
the moments of inertia are the same for both bands, is independent of I. 
Thus the f i r s t -order effect of the band mixing on the energy spectrum is 
merely a renormalization of the effective moment of inertia. The lower 
band gets compressed (ñ2/2,yeff decreased) while the upper band gets ex -
panded ( b / 2 ^ e f { increased). 

Thus we conclude that this sort of band mixing has to be quite strong 
before it produces an observable effect on the energy spectrum. For 
example, consider the results for 183W calculated with and without taking 
band mixing into account explicitly (Fig. 30). Without band mixing the 
fit is already pretty good and, of course, with one less f ree parameter. 
But note the change in ñ 2 /2 j? (Table III), when mixing is explicitly included. 

The mixing will, however, produce a large f i r s t -order effect on 
transitions, especially those which are otherwise inhibited by a K-selection 
rule. The perturbed wave function is given by 

Ю' 
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EXPT. THEORY 
( а ) ( Ь ) 

412.08 .. 407.77 412.05 
EXPT. THEORY "2 H 

(a) (b) 

m 308 9 4 озог.ю 308.86 2 9 U l _ r 291.71 291.86 5/2 ~————— F 

7/2 2 0 7 0 0 „ 207.52 207.14 3/2 208 81 E 208 81 208 6 8 

K= 3/2" 

5/2 99.07 c 99.07 99.35 

3/2 46.48 D 46.48 46.30 

1/2 • - A O 0 
K= 1/2" 

"W SPECTRUM 

FIG.30. Comparison of the rotational model.with experiment (a) without band mixing (the parameters are 
fitted to the lowest levels of each band), (b) with band mixing [25] (least square fit) 

T A B L E I I I . C H A N G E I N fi2/2J? 

Band Band 
Without band mixing With band mixing 

. 1 
K = 2 

13.006 keV 15.852 keV 

3 
K = 2 

16.580 keV 14. 055 keV 

where the proportionality constant is determined by the normalization. 
Now E2 transitions are collectively enhanced for ДК = 0, but remain 

an order of magnitude smal ler for ДК = 1. Thus interband E2 transitions 
should be very much increased by the mixing. As an example, look at the 
B(E2) values for exciting states, calculated f irst in the adiabatic model 
and then for the mixing determined by fitting the energy spectrum ( Table IV) . 

B(E2, A -> B) is fitted in both cases, otherwise there is no adjustable 
parameter . Impressive agreement is also obtp.ined for the branching 
ratios for M l and E2 decay of all the members of these bands. 

(b) Higher order couplings 

Higher order coupling terms are introduced when we admit that the 
moment of inertia is not real ly a constant but a function of the intrinsic 
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T A B L E I V . B ( E 2 ) V A L U E S F O R E X C I T I N G S T A T E S I N T H E 

A D I A B A T I C M O D E L A N D F O R M I X I N G 

Expt. Without band mixing With band mixing 

B(E2, A - » B ) 1.52 i 0.07 1.52 1.52 

B(E2, A - *C ) . 2. 04 ± 0. 08 2.28 2.14 

B(E2, A - » E ) 0.08 ± 0.02 ~ 0 0.09 

B(E2, A ->F ) 0.30 i 0.05 ~ 0 .0.28 

variables . To show what the interactions are would require a model 
for the intrinsic structure, but we can say a few things on general grounds. 

If £ is made a function of intrinsic co-ordinates, the term й2Т2/2^' 
can couple bands for which ДК = 0. Such a coupling introduces terms 
proportional to I2 ( I + 1 ) 2 into the energy spectrum, in leading order. The 
rotational form of the wave function is maintained except that the intrinsic 
wave function becomes a function of the total angular momentum, i.e. ipK vK ( I ) 
(cf. two-particle rotations). 

Another coupling ar ises f rom the neglected term 

( j r " J - j t â + I ? + J ! + J ? - 2 I + J + -21. J. ) (9 .7 .9 ) 

Although (1/^ ! - 1/^2) h a s mean value zero for an axially symmetric 
nu^eus, there may be fluctuations about this mean, which leads to a 
coup.'ing of bands for which ДК = ± 2 . For example the schematic 
interaction 

V = h + 2 I?+h. 2 I 2 (9 .7.10) 

contributes a term in the energy spectrum proportional to 

|<IK + 2,M|h + 2 I?|lKM>| 2 = |hk|
2

[I(I + 1 ) - K ( K + 1)] [ I ( I + l ) - ( K + l ) (K+2) ] 

| h 0 |
2

[ I
2

( I + 1 ) 2 - 2 1 ( 1 + 1 ) ] i f К = 0 ( 9 . 7 . 1 1 ) 

where Нк is an intrinsic matrix element. 
Nielsen [26] and collaborators have measured the K = 0 and K = 2 band 

mixing from observation of the E2 transitions between these bands, for 
a number of even nuclei. Their results generally agree quite well with 
the mixing expected if the K = 2 intrinsic state is a 7-vibration. They also 
observe, however, that this ДК=2 mixing accounts for only about 10% 
of the I2 ( I + 1)2 terms in the energy spectrum. There must therefore be 
other perturbing terms in the 'true' Hamiltonian. 
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10. THE UNIF IED M O D E L FOR ROTATIONS 

As we saw in section 2 the field forces, acting between particles in 
shell -model orbitals, cause them to line up to produce a total wave function 
of spheroidal density distribution. This aligned wave function does not 
have good angular momentum and consequently cannot describe the total state 
of the system. The idea of the Unified Model is to interpret it as the 
intrinsic wave function of the rotational model. One can then go on to ca l -

FIG.31. Single-particle energy levels in a Nilsson potential as a function of the deformation parameter 

2Йш (o) 
T) = - o — ^ — (Taken from Ref. [27] , courtesty of Matematisk-fisiske Meddelelser) 

What approximation does such a model imply? The essential ap -
proximation is one of redundant co-ordinates. The 'intrinsic' wave function 
cp^ (r ) already contains a complete set of co-ordinates without the extra 
orientation var iab les . It would be a true intrinsic function if the index 0 
provided a constraint on the particle co-ordinates r, i. e. if, for a speci -
fied 0, ( p ^ (r ) were only a function of N -3 independent variables. In fact 
в is only a constraint on the mean orientation of the nucleus. The ap -
proximation should nevertheless be good provided the rotational wave 
function & м к ( в ) var ies little over the range of orientation fluctuations of 
the intrinsic wave function about its mean. To be more specific, let us 
consider the fluctuations in angle about the z -axis , of a system specified 
by a wave function i//jm . A rotation of ip¡m through any angle can always 
be expressed in terms of the 2j +1 magnetic projections of this wave 
function. Thus фjm can be said to span, on average, a solid angle 
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z 1.0-

z 0.5 • 

FIG.32. Spectrum of !38U (Taken from Ref. [24] , courtesy of Annual Reviews Inc.) 

~4?r/(2j + l ) . The use of redundant rotational co-ordinates should there-
fore be a good approximation, provided the intrinsic wave function is 
composed of high angular momentum components as compared with I. 
This criterion is best satisfied in the limit of large deformations. 

We consider then the single-particle orbitals in a deformed shel l -
model potential. Extensive calculations of this sort were carried out by 
Nilsson [27] . They are brief ly described below. 

10.1. The Nilsson model 

The single-particle potential is taken as 

II = H0 - |бМи 2 r 2 P ^ (cos 0) + CÍ- s+DÍ2 

where Ho is, for simplicity, a harmonic oscillator Hamiltonian of frequency 
u, and D i 2 a correction term, which simulates the squarer shape of a 
more realistic potential well. С and D are adjusted to reproduce the she l l -
model level sequence at zero deformation. 

T(he Hamiltonian can be solved for small 6 using perturbation theory 
on the ordinary shell -model solutions. For large deformation the i • s 
and I 2 terms become relatively unimportant and one has independent osc i l -
lator equations for each of the three Cartesian axes. Thus we get the 
asymptotic wave function |NnzAf2)>, where N is the total number of 
oscillator quanta, n z the number along the z -ax is and A = N - n z , N - n z - 2 , . . ., 
0 or 1. 

In the intermediate region, Ni lsson diagonalizes among the basis 
configurations where L is the z-projection of the intrinsic spin. 
We must of course have 

Л + £= П (10.1.1) 

His results for the region 0 < A < 40 are shown in Fig. 31. 

10.2. Intrinsic structure 

The problem is very similar to that for spherical nuclei if we replace 
shell -model orbitals by Ni lsson orbitals. There are two major differences: 
(i) The deformation lifts the degeneracy associated with the j subshells 
of the spherical shell model. The orbitals become just pairwise degenerate. 
Due to the splitting, the single-particle level density becomes almost 
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uniform for large deformation, so that the shell structure is large ly 
lost and large deformations can become energetically favourable, (ii) The 
coupling scheme becomes trivial since we do not have to worry about good 
total angular momentum. We simply construct an antisymmetrized product 
of Ni lsson orbitals up to the Fermi surface (i. e. aligned coupling scheme). 
In principle we should check for self -consistency between the deformation 
of the particle density and the potential well used to calculate it. In practice 
we usually deduce the deformation f rom the measured quadrupole moment. 

(a) Even-even nuclei 

Intrinsic excited particle-hole states may be expected just as in 
spherical nuclei. Because of pairing, which is also of some importance 
for deformed nuclei, these generally lie quite high in energy (a few MeV ) . 
But, among these particle-hole states, intrinsic vibrational states exist 
and fall low in energy. Of particular interest are the quadrupole vibrations 
since they are frequently observed. Not surprisingly, they differ f rom 
the quadrupole vibrations of spherical nuclei in that the deformation has 
split their degeneracy. Thus we distinguish ^-vibrations which conserve 
axial symmetry, and y-vibrations which are vibrations of the nuclear 
shape about axial symmetry. For the former К = 0, and the latter 
К = ± 2 . It can be shown that the K = ± l modes correspond to vibrations 
in the nuclear orientation angle for which there is no restoring force, 
in other words to rotations. The spectrum of 2 3 8U, shown in Fig. 32, is 
a good example of low-lying vibrational bands. 

The parameters for the intrinsic vibrations, i . e . mass and restoring 
force parameters , can be calculated by any of the methods used for 
spherical nuclei. 

(b) Odd nuclei 

The f irst approximation is to couple a Nilsson single-particle wave 
function onto an even-even deformed core. With this wave function we 
can calculate intrinsic matrix elements, gyromagnetic ratios, etc. For 
example, the decoupling parameter 'a1, for a K = i band, is easily found: 
Expand 

(10. 2 . 1 ) 

then 

a 9>i I J+ I <PÏ> 

(10.2.2 ) 

This result is in good agreement with experiment. 
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Peculiar to deformed nuclei is the appearance of an asymptotic 
selection rule in ДЛ. For example, the /З-decay operator is т+ for Fermi 
transitions and стг+ for Gamow-Te l le r , so that all /З-decay is forbidden 
unless Д Л = 0. Even for finite deformation when Л is not a good quantum 
number there still remains a large hindrance factor. 

In common with spherical nuclei electromagnetic multipole matrix 
elements, calculated with the above wave function, will be inaccurate for 
the following two major reasons. 

The f irst effect is due to pairing. We should have 

<<Pi-2 |f|</4 > = uK2 u "i <>2|F|VI > - v ^ v ^ <Ï/1|F|Î72 > 

= ~ T v v 2 v v l ) < v z \ F \ v l > (10.2.3) 

where т = ± 1 according as F is ± v e under time reversa l . Now electric 
operators are +ve and magnetic are - v e , so that the former are hindered 
by pairing while the latter are not significantly affected. 

Secondly, the odd particle can polarize the core or, in other words, 
couple to core vibrations. One can calculate this effect explicitly or 
take it into account implicitly by the use of an effective charge. 

11. THE M O M E N T OF INERTIA 

11.1. The rigid-body estimate 

The simplest estimate of the nuclear moment of inertia is obtained 
by treating it as a rigid body: 

A 

J?ríg = M Y <Ук + z k > " f AMR20(1 +0. 33 /3) (11.1. 1) 

к 

where, for an axially symmetric nucleus, 

/3 = a20 (see below), 

and measures the deformation in the intrinsic co-ordinate f rame. 
A comparison with experiment, Fig. 33 shows that is something 

like a factor 2 too large. 

11.2. The irrotational flow model 

The fact that ^rig is too large comes as no great surprise. The 
nucléons are not frozen inside the nucleus and we might expect the nucleus 
to behave more like a liquid drop. 

If the kinetic energy term Í B ^ |á2)J |2 of the liquid drop Hamiltonian 

is transformed into intrinsic and rotational co-ordinates 

i . e . a2¡1 = Y &> l v ( e ) a 2 v (11.2.1) 
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200 1 1 1 1 1 1 1 1 1 1 1 г 

100 

— EXPERIMENTAL 
— CRANKINO MODEL IWITH PAIRINSI 
— RIGID 
•••• IRROTATIONAL 

152 156 Î6Ô 164 Si ¡72 176 Ï5Ô 

FIG.33. Comparison of estimated i - with its experimental value 

184 188 A 

such that 

a 2 0 = P c o s T, a 2 2 = a2 .2 = - д j3 s in7 

a2i = a2-i = 0 

then it splits up into a vibrational and a rotational part 

(11.2.2) 

3 

I в J l à j 2 = 1 В ( / з 2 + / з Ч 2 ) + £ fi2 Rk 

k = 1 8Bj3 sin I7 - к — 

Thus we have the moment of inertia 

j r . = 4B/3 2sin2 ( 7 - к 
2ît\ 

к = 1, 2, 3 

(11.2. 3) 

(11.2.4) 

so that, for an axially symmetric nucleus ( 7=0) , we have 

= 0 J^ = j?2 = 3B/32 

Taking the irrotational flow value for В 

3 2 
В = — AMRо 

07Г 

= ^ 2 = ^ A M R ^ 2 « 0 . 9 j 3 2 - A M R 2 

(11.2. 5) 

(11. 2.6) 

(11.2. 7) 
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A comparison with experiment shows that £ i n is generally about a factor 
of 5 too small . 

This is s imilar to the result found for В itself for vibrations. It 
appears that if we use the measured rather than the hydrodynamic estimate 
for B, in the expression for the moment of inertia, we get something 
approaching the correct answer. 

11.3. The cranking model 

Using the Nilsson model for the intrinsic structure, we can hope to 
derive the moment of inertia on a more microscopic basis. 

The idea of the cranking model is to look for an intrinsic wave function 
which is stationary in a rotating co-ordinate f rame. Let this f rame be 
rotating about the x -ax is with angular velocity u. Let the rotating and 
space-f ixed axes coincide at time t. Then the rotating wave function 
q>(r, t) is a solution of 

, H<p(?,t) = (11.3.1) 

expressed in the co-ordinates of the space-f ixed f rame. Related to this 
wave function we can define ф(т, t) 

. -» iwtjv 

<p(r, t) = e x <p(r,t) (11.3.2) 

which is stationary in the stationary f rame. The wave equation for @ is 

Hí>(?,t) = iñ t) + wJx ф(г, t) (11.3.3) 

Since we now require ф to be stationary in the stationary f rame it must 
obey the eigenfunction equation 

( H - u J x )$ (u ) = Е(со)^(ш) (11.3.4) 

where 

<p{r,t) = £(u)e fi (11.3.5) 

If we find Щы) we can determine the moment of inertia from 

<<p(r , t )| j x|<p(?,t )> = <£ (u ) | J x | 0 ( u ) > H (11.3.6) 

or f rom 

where 

К t) I H I <p(v, t) У = < $ ( c j ) | h | £ ( u ) > 

E < О I H I 0 > + ' (11.3.7) 

|0> = £(0) (11. 3.8) 
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To determine for small и, we use perturbation theory for the 
extra term u j x in the Hamiltonian. Thus 

, . V < Ф х 1 ° > l \ 
у ( м ) = | 0 > + ц ^ E . - E (11.3.9) 

4 0 
it о 

and 

/ л, . i T i A \ , Г К Ф > > | 2 
< <P(") I Jx I <P(u) > = 2w ^ — E • - E 

i t0 

Hence we get the moment of inertia 

1 < Ф х | 0 > Г 
E. - En 

To check that the energy comes out correctly, evaluate 

<$(ы)\я\$(и)> = E0+ Y К|2(Е;-Е0) 

i t О 

I 2 

" ' I 
i¿0 

2 

К Ф х I 0 > I 
E i - E 0 

(11.3. 10) 

^ = 2 X " E i - E 0 ' ( П - З Л 1 ) 

it о 

= E 0 + ¿ ^ x u > f E(u) =E0-iyxu 

To evaluate we must feed in the wave functions | i У f rom our 
model for the intrinsic structure. For independent particles in a deformed 
potential ( e . g . Ni lsson model), the ground state |o^> for an even-even 
nucleus has K = 0 and | 0 is a particle-hole state | vp (i/^) "1 У so that 

< i | Jx |0> = < v p | j x | v ' h > (11.3.12) 

Inserting in the expression for we get 

^ x = 2 ) — ^ (11.3.13) 
^ E„ + E 

P 

This expression can be evaluated analytically in the special case of 
the pure deformed harmonic oscillator potential, without a spin orbit 
force or residual interactions. It leads to some interesting results. For 
spherical nuclei it vanishes identically, regardless of model, as is obvious 
if J x | 0 > = 0. For deformed nuclei, the core contributes an amount equal 
to the irrotational flow value, while the extra core particles bring the 
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moment of inertia up to the rigid body value. (For a discussion of this 
phenomenon see Inglis [28] and Vi l lars [29] . ) 

This model for the intrinsic structure is of course unrealistic. 
To obtain results in agreement with experiment, it is necessary to put in 
the spin-orbit force and short-range interactions. The extension of the 
above formula to include 'pairing' is straightforward 

< i ] J x | o > - < i/|j x|v '>u„v„. + < ï ï ' | j j r > v I , u I / . 

= < v\ Jx I v" > (uvv„. - V„u„. > (11. 3. 14) 

. and we get 

X K H j x k ) I 2 <ut/ v i/ ' _ vvu » ' )2 

(11. 3. 15) 

A comparison of this result with experiment (Fig. 33) is seen to be 
very 'good. There is, however, one disturbing feature of the cranking 
model expression. It was derived in its general form, e . g . section 11.1, 
without reference to any model of the nuclear structure. One might 
suppose therefore that it should be exact if one knew the eigenfunctions 
of the exact Hamiltonian. But the true Hamiltonian is invariant under 
rotations. Its eigenstates are therefore also eigenstates of angular 
momentum, and vanishes identically. The cranking model 's success 
therefore appears to depend on the approximate nature of the deformed 
shell -model Hamiltonian, and in particular on the fact that it is not 
rotationally invariant. At f i rst sight this casts some doubt on the model 's 
general validity. To see what is happening, let us look at the 'pushing 
model' for translational motion, where we already know the answer. 

11.4. The pushing model 

The pushing model can be derived in a completely analogous manner. 
For the nuclear mass we find 

v K i j p j o ) ! 2 

^ = 2 L E¡ - E0 - ( 1 1 " 4 Л ) 

i i о 

Again we see that if the states |Q> and | i )> are eigenstates óf the exact 
Hamiltonian, they are also eigenstates of the momentum and vanishes. 

What happens if we use eigenstates of the approximate shell -model 
Hamiltonian, H S M ? Since the kinetic energy term of the shell model is 
still exact, we have 

if, 
[ I I S M , X] = - — P x (Galilean invariance) (11.4.2) 

and so 

< i |P x I 0 > = ^ AM < i | [ H S M , XI |0> 

^ A M ( E i - E 0 ) < i | x |0> (11.4.3) 
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Inserting this expression into the pushing model formula, we get 

= jr A M Y { < 0 I P x j i > < i IX I 0 > - < 0 | x | i > < i | p , x |0>} 

i¿0 

= ^ A M < o | [ P x , X ] I 0 > 

= A M (11.4.4) 

Thus the shell -model Hamiltonian gives the exact mass, whereas the 
exact Hamiltonian does not. At f i rst sight it might appear that the der iva -
tion ^ = AM for the shell model also applies in the exact case. In fact 
it breaks down if the wave functions | О У and |i)> are unbounded, as are 
plane waves. This is because X | 0 )> is not expandable in terms of a 
complete set of plane waves, being divergent at infinity. 

The derivation of the pushing model formula oddly enough breaks down 
if the Hamiltonian is translationally invariant, i. e. if 

[ H , P ] = 0 (11.4.5) 

because the perturbed state, i . e . the ground state in the moving frame, 
is actually orthogonal to the unperturbed state. In other words, momentum 
is an adiabatic invariant. A perturbation method is therefore inappropriate 
and not surprisingly gives the wrong answer. 

Similarly the cranking model will give a vanishing moment of inertia 
if used in conjunction with eigenstates of a rotational invariant Hamiltonian. 
This result must therefore be regarded as spurious. In practice this 
is no restriction since one would never apply the rotational model to a 
spherical nucleus. 
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A. 1. DEFINITION 

The rotation matrix enables us to express a function in terms of 
another reference frame, at an angle to the original f rame. 

FIG. 34. Euler angles for the change of reference from frame S to S1 

Suppose the Euler angles (a^y) take the reference f rame S into S1 

(F ig . 34) and that we have a function <p(r') in the S' fr'ame, which we wish to 
express in terms of the S co-ordinates, <p(e> ( r ) . Let the S and S' f rames 
be initially coincident in the S1 position, so that the function is initially 
<p(r). We then rotate the axes f rom the initial S' to the final S orientation. 
This rotation can be performed by the operator Що/Зу) defined by 

A P P E N D I X A. THE ROTATION MATRIX 

s 

<p(0> ( r ) = R (aPy)<p{r) = e 
-iajz -iBJy "iyJz -» 

e e <p( r ) ( A . 1 . 1 ) 

The rotation matrix is now defined by 

m' 
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If ср. (г) transforms like a spherical harmonic Y i m ( 0 ) jm Jm 

S) *J Зт) = < j m ' | e l<Xlz e 10Iy e 1Г'2 |jm> rn ш 

= e ' i m ' a d* i . №elmy (A. 1.3) mm v 

A. 2. P R O P E R T I E S OF THE ROTATION MATRIX 

(a) Symmetry 

(b) Closure: 

) &>*i (в) (в) = óu = ) (в) &>\ (в) (A . 2.2) 
¿— fjm "m f" ¿_, шц mv 
m m 

follows f rom the inverse rotation 

* V = I = I ^ m ^ e ^ j S (A. 2.3) 
m 

(c) Combination: 

'"j, (0) = , ( -6) (A . 2.1) mm* mm ' 1 7 

follows f rom rotating the coupled function 

m,(m2) 

(d) Orthogonality: 

м3т3 

J £>1т(в)0в = 8ir?6(jO) 6(/J0)6(m0) 

[в) S>U (6)de = 0.87r2, 6. 6 6 ( A .2 .5 ) 
J йгтг 1 2 j j + l J iJ г V z mi m2 

^ ¿ m , « ^ i W 0 ^ = ^ I h h W l h W k h V h . ™ * ^ 
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A. 3. ROTATING CO-ORDINATES 

Suppose S is the laboratory-fixed co-ordinate frame and S' can rotate 
with respect to S. Thus в becomes a dynamic variable, and can have 
associated with it an angular momentum R. The total angular momentum 
of the system I is then 

ï = R + J (A. 3. Í) 

where J acts on r and leaves в alone, while R acts on в and leaves r alone. 

f<p(6) = (R + J) <p(6) = 0 (A. 3.2) 

and 

Л т ( ? ) = I < C (A. 3.3) 

so that 

- ) С (A-3-4) 

Thus we obtain the important relations 

= KI + l) &1Лв) MK ' MK 

I z á » 4 e ) = M f { l l K ( 9 ) (A. 3.5) 

l ± a > l ¿ e ) = J ( I T M ) ( I ± M + 1) i,K(6) 

where 

I± = I x ± i l y (A .3 .6 ) 

We also have the identity 

0 = R <Pjm (r) 

I - (A .3 .7 ) 

11 This is because J rotates the system, R rotates the axes it is measured with respect 
to, so that there is no observable effect. Mathematically: 

e " ' " ' <p№> (?) = R (0 )R (a ) <p(r) = R(0) <p<a> (r ) = <*p<e + t " M 

- iaR (6) ( e - a ) , ~ \ e i/ (r) = <pK ' (r ) 
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whence 

Г Я) мК(б) = ^ ( I ± K ) ( I = F K + 1) ^ к т 1 (в ) 

( A . 3 .8 ) 

where 

= I j ± i I 2 (A. 3.9) 

and 1 ,2 ,3 are the xyz axes of the S' f rame. 



11* 



CHAPTER 3 

ISOSPIN AND ITS CONSEQUENCES 
IN NUCLEAR PHYSICS 

G . M . TEMMER 

1. Introduction and definition of isospin. Its formalism. 1.1. Historical development. 
1.2. Equality of nuclear faces. 1.3. Net nuclear binding energy. 1.4. Definition of isospin. 
1.5. Connection between charge exchange operator and isospin operator. 1.6. The concept of 
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2.2. Beta decay. 2.3. Radiative selection rules, (a) El transitions, (b) Ml transitions, (c) Appli-
cations to photonuclear reactions. 2.4. Selection rules for particle reactions, (a) Direct reaction 
mechanism, (b) Resonance reactions. 3. Special consequences of isospin conservation in nuclear 
reactions. 3.1. An intensity prediction, (a) Compound nucleus formation, (b) Direct reaction picture. 
3.2. Compound resonance isospin inferred. 4. Isospin forbidden reactions. 4.1. Example. 

4.2. Overriding angular momentum and parity selection rules which simulate isospin conservation. 
4.3. Isospin-forbidden compound nucleus reactions. 5. A symmetry theorem based on isospin. 
5.1. Theorem and example. 5.2. More examples. 5.3. Special symmetry selection rules. 5.4. An 
addendum to the Barshay-Temmer theorem. 6. Charge exchange reactions. 6.1. Experiments. 
6.2. Shell-model view of analogue states. 6.3. Theoretical description of charge-exchange reactions. 
6.4. Quasi-inelastic scattering. 6.5. Anderson's experiments. 7. T-splitting. 7.1. General. 
7.2. Expansions of states in terms of states with good T . 7.3. Isospin doublet splitting in |®Zr49. 
7 .4. Effective nucleón-nucleón interaction. 8. A look at dy¿ hole states in the f y j shell. 8.1. Low-
lying hole states in the iy z region. 8.2. Nucleón holes. 8.3. Other hole states. 9. Isospin in pick-
up and stripping reactions. 9.1. General remarks. 9.2. Example: 60Ni(p, d) 59Ni. 9.3. General 
remarks concerning direct (p, d) (d. p) reactions. 9.4. Centre of gravity displacement between T < and 
T> states. 9.5. Determination of . 9.6. Nucleón transfers. 9.7 . Coulomb energy difference for 
(p, d) reactions. 9.8 . Second Coulomb energy difference. 10. Isobaric analogue resonance. 
10.1. Introduction. 10.2. Energetics of analogue resonance reactions. 10.3. Elastic analogue 1 

resonances and isospin impurities. 10.4. Resonances in the medium to heavy region. 10.5. The 
reaction 89Y + p. 10.6. Comparison of stripping and elastic scattering reduced widths. 10.7 . Fine 
structure in isobaric analogue states. 10.8. Spreading width. 10.9. Comparison of reduced widths 
for proton and neutron addition (or removal) . 10.10. Analogue resonance in inelastic proton 
scattering. 10.11. The window effect in inelastic scattering. 10.12. Remark. 10.13. Summary. 
10.14. Polarization measurements on analogue resonances. 11. Other ways of forming analogue 
states. 11.1, Yavin method. 11.2. Photoprotons from T > states. 11.3. Coupling of the analogue 
channels in (d,p) and (d,n) reactions. 12. How good is isospin in heavy nucrei? 13. Coulomb 
displacement energies and isotope shifts. 

1. INTRODUCTION AND DEFINITION OF ISOSPIN. 
ITS FORMALISM 

1.1. Historical development 

We shall start with a short historical development of the concept 
of isospin from its initial formulation in 1932 until the present (1966). 
Heisenberg's first paper 1 introducing the idea of an analogy between 

The author is in the Department of Physics, Rutgers, The State University, New Brunswick, NJ, 
United States of America. 

1 W. Heisenberg, Z. Phys. 77 (1932) 1-11. 
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T A B L E I. A C O M P A R I S O N O F T H E T O T A L B I N D I N G E N E R G I E S 
F O R ISOBARS O F MASS 200 

Isobars 200 Au 
79 

20„
H
 200 

80 ° 81 
200

pb 

82 
20°Bi 200Po 
IS 84 

Total 
binding 
energy 
(MeV) 

1579. 7 1581.4 1578.8 1576.9 1533.5 1566.2 

T A B L E I I . T A B L E F O R M I R R O R N U C L E I ( I S O - D O U B L E T S , T = £) 

A Nucleus 
Total binding 

energy 
(MeV) 

Coulomb energy 

(MeV) 

Net nuclear 
binding energy 

(MeV ) 

3 
3 H - 8.486 0 - 8.486 

3 He - 7.723 + 0.829 - 8.552 

13 

13 С 

13 N 

- 97.10 

- 94.10 

+ 7.631 

+10.683 

-104.734 

-104.770 

23 

23 », Na 

23 Ne 

-186.54 

-181.67 

+23.13 

+27. 75 

-209.67 

-209.42 

41 

41 Ca -350.53 +65. 91 -416.44 
41 

41 Se -343.79 +72. 84 -416.63 

T A B L E III. T A B L E F O R I S O B A R I C T R I P L E T S (T = D 

A Nucleus 
Total binding 

energy 
(MeV ) 

Coulomb energy 
(MeV) 

Net nuclear 
binding energy 

(MeV) 

10Be - 64.97 + 3.33 - 68.30 

10 l 0B*(1.74) - 63.01 + 5.52 - 68.52 

10
C - 60.04 + 8.33 - 68.37 

14C -105.27 + 7.44 -112.71 

14 14N*(2.31) -102.73 +10.42 -112.76 

14o - 98.73 +13.90 -112.63 
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the spin up-spin down duality for 1/2 particles ( fermions) , and the 
two states of a nucleón, proton and neutron, was truly a masterpiece 
of intuition. Information on n -p and p -p forces did not become 
available f o r several more years . Yet, only three months after the 
publication of Chadwick's paper on the discovery of the neutron, 
Heisenberg concluded that the neutron and proton could be treated . 
as two states of the same particle — the nucléon. (Note ; However, 
Heisenberg made a wrong guess concerning the actual relative 
strengths of p -p and n -p forces ; in fact, he assumed that only the 
Coulomb force was acting between two protons. ) 

As an example of the type of evidence pointing to charge inde-
pendence, let us compare the total binding energies for isobars of 
mass 200 (see Table I). These numbers indicate, at least to f i rst 
order , that neutrons and protons must play rather s imi lar roles in 
the nucleus. 

1.2. Equality of nuclear forces 

Experimental evidence began to accumulate around 1935 indicating 
that the nuclear n-n, p-p, and n-p forces were all equal. It came f rom 
various sources: 

(a) Semi-empir ica l mass formulas did not distinguish much between 
neutrons and protons, but depended mainly on A. (Volume increases 
as A1/3 and surface energy goes as A2//3 . ) 
(b) Nucleón-nucleón scattering: n -p and p -p scattering, when properly 
compared in the states allowed by the Pauli principle, seemed to be 
equal. Neutron-neutron scattering has never been directly studied, 
because of the difficulties in preparing a neutron target, and conclusions 
have been inferred only indirectly from such reactions as n" + d ->n+n+Y 
etc. 

(c) Equivalence of the spectra of m i r ro r nuclei: By equivalence of 
states we mean in all nuclear properties — energy, spin, parity, 
reduced widths, etc. This result assumed only charge symmetry 
( n - n = p -p ) and not charge independence (n-n = p -p = n -p ) , since for 
m i r r o r nuclei the number of n -p bonds are the same (see Tables II 
and III). 
(d) Second order m i r r o r s have equivalent states. (Example: 1 0Be, 1 0C; 
2 protons changed into 2 neutrons. ) The fact that these levels correspond 
to some of the levels of the middle member, e . g . 1 0B, implies charge 
independence. We should real ize, however, that even a rather large 
difference between the n -p force and the (n-n, p -p ) forces would not 
substantially change the level structure since the n -p forces enter 
quite weakly here, producing only a small effect, so that this is not 
real ly a strong argument for charge independence. 

There are obvious differences between neutrons and protons and 
their reactions: (a) Neutron-proton mass difference. ( Ь ) П + - П ° mass 
difference, these mesons being presumably the "mediators" of the 
nuclear forces , (c) Different magnetic moments for the proton and 
neutron. 
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1.3. Net nuclear binding energies 

The net nuclear binding energies of equivalent levels should be equal. 
To illustrate this point we subtract the Coulomb energy f rom the measured 
binding energies for several nuclei to compare the net nuclear binding 
energies. 

The total Coulomb energy for discrete point protons uniformly 
distributed in a nucleus is conveniently expressed as: 

E c = 0.6 Z ( Z 1 " / 3 ) MeV (1.3. 1) 

using r 0 = 1. 41X 10"13 cm. 

1.4. Definition of isospin 

(a) The third component of the isospin vector ? has a precise definition: 

tz = + i for the neutron (1.4. 1) 

tz = - 2 for the proton (1 .4 .2 ) 

and is a good quantum number as long as charge is conserved. 
Fo r a system of nucléons 

A 

(1 .4 .3 ) 

i = l 

T (1 .4 .4 ) max 2 

(b) T itself can be regarded as a bookkeeping parameter which shows 
how many neutrons may be changed into protons (and vice versa ) with 
impunity, consistent with the Pauli exclusion principle. 

д 
Poss ib le T values are: 0 - — (Even nuclei) 

j -> y (Odd nuclei) 

( 2 T + 1 ) isobars belong to a family. 

F igure 1 shows the example of four nucléons distributed among two 
energy levels (assumed to be both s -states ) consistent with the Pauli 
principle. A l l possible configurations of two kinds of particles (white 
and black) with spin up or spin down, distributed among two states, 
are shown and classif ied into spin I and isospin T. One sees that the 
most symmetric configuration involves equal numbers of black and 
white particles with their spins paired off to zero, all lying in the 
lowest state (T = 0) . This is presumably the alpha particle. Similar 
diagrams can be constructed for any given nuclear configuration. 
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in 3n * p 

ha 

'V* 

2n » 2 p 

té? 
Ц-9 i i ç tr6? 

W 

а 

V 9 

n • 3p 

¿-Ó9 ^-¿9 

Щ 

р^г^фф 

- 2 

FIG. 1. An example of four nucléons distributed among two (£ = 0) energy levels (consistent with the 
Pauli principle) 

(c) The formal i sm developed for spin car r ies over intact to isospin 

* V i 0J> У V i oj' z vo - 1 / 

These isospin operators are equivalent, mathematically, to the ordinary 
Pauli spin operators, ст. 
(d) Experimentally, it is found that nuclei have T = T z in their ground 
states. There are exceptions such as i7Cl 1 7 (T z = 0 , T = 1 for the ground 
state; the f i rst T = 0 levei occurs at 143 keV excitation) and also f^Sc 
seems to have T = 1 ground state (1 = 0 + , of course) . 
(e) Di f ferences between isospin and spin. 

(1) The isospin vector does not point in rea l space. 
(2) A l l particles are automatically polarized in isospin space. 
(3) There is no isospin analogue to orbital angular momentum. 

(f) We define t¡ = | t ¡ as in the case of s = j a 

i ( T
x
± i T

y
) (1 .4 .6 ) 

where т+ is called the raising operator and 
T is called the lowering operator. 

0 1 ) (1 .4 .7 ) 
0 0/ 
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transforms a proton state into a neutron state, and annihilates'a neutron 
state. 

'0 0 
r - [ X Q (1 -4 .8 ) 

t ransforms a neutron state into a proton state, and annihilates a proton 
state. 

A neutron state is represented by 

/0 
and a proton state by 

(g) We define q* 

Vo о 

q+ annihilates protons and maintains neutrons 

q + = i ( l + r ) = ( n n ) (1 -4 .9 ) 

q = * < i - t z ) = ( ™ ) (1 .4.10) 

q" annihilates neutrons and maintains protons 

' • - ( ; ; ) © - a 
(1.4. 11) 

etc. 

1.5. Connection between charge exchange operator and isospin 
operator 

(a) The charge exchange operator P[k changes neutrons into protons 
and vice versa . 

P T = T « " T ( k ) + + TW+ T (k)- + q ( i ) - q ( k ) - + q ( i )+q (k)-ik 

T1'' -T 1 + 7 ( i ) . - ( k ) (1 .5 .1 ) 

as can be easily seen f rom the above definitions, 
(b) In a nucleus A 

T = ^ T t ( l ) (1 .5 .2 ) 

i = l 

where the eigenvalue of t2 = t ( t+ 1) in analogy to s2 = s ( s + 1). 
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since 

i — 1 

A 

The eigenvalues of T 2 are T ( T + 1) f rom У tW = T: 

A A 

k = l 

i = l i < к 

i ) 
i<k 

Í<1) I2 = 3 

i<k 

Consequently 

- 2 _ 3 A ( A - l ) V t 
4 " 4 + L ü 

i <k 

= A 
A2 V 

P T 
ik 

i<k 
(1 .5 .3 ) 

Consider two limiting cases: 

lT\ 
(1) If isospin part is fully symmetric, then P i k always gives + 1. 

(1 .5 .4 ) 
= T ( T + 1) 

where T"= A/2, the maximum possible value of T for A nucléons of 
one kind. 

(2) Fo r two particles 

T 2 = 1+ P12 (1 .5 .5 ) 
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Symmetric case: P12 = + 1 therefore T 2 = 2 as given also by T ( T + 1) f o r T = 1 
Anti -symmetric case: P12 = - 1 therefore T2 = 0 as given also by 
T ( T + 1) for T = 0. 

Summary: 

I -spin formal i sm is a way of properly keeping track of neutrons and 
protons as nucléons. It never leads to new results not also obtainable in 
the n -p scheme, but is a convenient f ramework for maintaining appro-
priate symmetries and classifying states according to their n -p exchange 
properties. 

Consider a nucleus in a state |T,TZ)>, not considering any other quantum 
numbers. 

T ± | T , T Z > = \l (TT Tz ) ( T ± T z + 1) |T ,T Z ± 1> (1 .5 .6 ) 

Î î Î 
initial final 

operator . , . , 
state state 

where T ' is a raising (+) or lowering ( - ) operator of the T z component 
only (cf. orbital angular momentum operators L* ). 

e . g . if T z = T then 

T + | Т , Т > = 0 (1,5. 7) 

since Tz Cannot be greater than T 

T"|T ,T>=v/2T | T , T - 1 > (1 .5 .8 ) 

1.6. The concept of charge parity (Ref. Krol l and_Foldy) 

Charge parity is another quantum number. Most of the tests on 
isospin purity, until recently, were done on self conjugate nuclei 
(N = Z = А/ 2), usually light nuclei. In order to explain the results one only 
required the conservation of charge parity and not of isospin. 

(a) Consider the reaction 

30(d, a ) N 
0 0 0 0 - ground state ( 1 . 6 . 1 ) 

1 - first excited state (2. 31 MeV ) 

Charge parity says that one has either charge even or charge odd states. 
Once the charge state is even (or odd) it must remain so forever , In 
the case of l e O(d ,a ) 1 4 N the initial state of l e O + d is charge (T) even and 
therefore the reaction in which is left in the f i rst excited charge-odd 
state is forbidden. However, charge parity conservation does not forbid 
T = 2 (charge even) in the final state. Therefore it is weaker than isospin 
conservation. 



ISOSPIN 171 

¿ Г ' 
x '-Z 

FIG.2. Charge parity operation in isospin space 

If one does not see T= 2 states being formed (and they are being 
identified at a rapid rate these days in T z = 0 nuclei) then one can no 
longer use charge parity selection rules, but rather must invoke isospin 
conservation. 

(b) Fo r self -conjugate nuclei, the Hamiltonian is invariant under inter-
change of neutrons and protons, i . e . invariant under rotation of the isospin 
vector by 180° around the x -ax is (Fig. 2) 

P T = charge parity operator = exp — T x 

(1.6.2) 

(1 .6 .3 ) 

H is invariant under this operation if [ P T , H ] - 0. One has the same 
eigenfunctions for P r and H but it can be shown that [ P r , T z ] = 2 P T T Z 

which is f= 0 unless T7 = 0. 
Therefore the eigenfunctions of T z are not eigenfunctions of P r 

except when Tz = 0; then P T is a good quantum number. This is the case 
for self -conjugate nuclei, where one only needs to invoke charge sym-
metry (n- n = p - p) and not charge independence ( n - n = p - p - n - p ) of 
nuclear forces . 

(c) As a charge parity consequence consider the following: 

1 60 (d ,p ) 1 7 0 

P T (charge parity conservation) tells us that one must get the same 
amount of l e O(d , n ) 1 7F. Since l s O + d - » I8jr* (compound resonance) must 
be charge even, then only certain 1 7 0 + p states are allowed. 

1. 7. Sources of possible isospin impurities 

(a) F i r s t , let us consider the effect of the neutron-proton mass difference 
alone (6 = 782 keV) . The rest energy and kinetic energy parts of the 

A 

e x p i ^ > I g 

A 

4 1 
1-1 

Therefore 

i = l 
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Hamiltonian are written as 

A 

H •I m n c 2 ( 1 + 7 ? ) + m с' 
P 

2 ( 1 - т « )"! 

i = l 

А 

-I ( l + T ^ ) , h! ( 1 - T < P ) 

i — 1 

® 

2mn 2 

© . 

2m P 
® 

A i 

© 

(1 .7 .1 ) 

'—. n P — 
1 = 1 ¡ = 1 (1 .7 .2 ) 

where 

2 m m m = 0—E_ 
(m + m ) 
v n p' 

The f irst , second and third terms do not mix isospin; the second, how-
ever, produces an energy shift proportional to Tz ; the fourth appears 
to violate isospin, i . e . mixes states with different Tz . It is probably 
small and usually neglected. However, in the case of the triton, since 
there is no Coulomb term, the presence of this fourth term might be 
felt in the Hamiltonian. 

(b) Introducing the Coulomb energy term 

A 

I 
i < к 

,2 (1-т1 '> ) (1-т1к ) ) 
4 r,, 

(1 .7 .3 ) 

W e can write this as 

( T ( i ) + T ( k ) ) + ( T ( i ) T ( k ) . ¿ f ( i ) • ? № ) } ( 1 . 7 . 4 ) 
z z z z 

Vector Tensor 

(1) The scalar terms can be lumped with the nuclear interaction. They 
introduce no T violation and no energy shifts between members of an 
isospin multiplet, just a general decrease of the effective nucleon-
nucleon force. 
(2) The vector term tilts the multiplet, i . e . it causes energy shifts 
proportional to T z (due to charge effect). In f i rst approximation the 
vector term produces a relative energy shift in second approximation 
it can produce admixtures of T" = T + 1. 
(3) The tensor term introduces quadratic energy shifts. It introduces a 

A 

У - g - { ( i + K « • ? < « ) . 
¿ - J ik 
1 < k Scalar 

ДЕ ос Т 2 - I T ( T + 1) (1 .7 .5 ) 
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in second approximation it can produce isospin impurities T1 = T + 2 
(as well as T ' = T ± 1). 
(4) Consider the isobaric multiplet mass formula M = a + bTz + c T f , 
where a, b, and с are functions of A and T, but not of T2 . One needs 
at least four members or more in the multiplet to make meaningful 
predictions since three terms are needed to determine, a, b, and c. 
Hence, T = 3/2 is the minimum value for useful comparisons. 

(c) Scalar, vector, and tensor Coulomb energy terms 
(Réf. : J. Jahnecke, Nuclear Physics 1966) 
We obtain f rom f irst order perturbation theory the following ex-

pression for the energy of each member of an isobaric multiplet: 

E c ( A , T , T z ) = E ( c ° ' ( A , T ) - T E ™ (A, T ) + [ (3T2 - T ( T + 1))] E ( c 2 ) (A ,T ) (1. 7.6) 

where the scalar , vector and tensor Coulomb energies 
are coefficients independent of Tz . Inverting the above equation yields 
the following results for the coefficients 

+T 

E c ) ( A ' T ) = 2ГТТ I E c ( A . T , T z ) (1 .7 .7 ) 
Tz = -T 

+T 

E ( c ) ( A ' T ) = T ( T + i ? ( 2 T + l ) I ( - T 2 ) E c ( A , T , T z ) (1 .7 .8 ) 
T = - T z 

+T 

E ^ ( A , T ) . T ( T + 1 ) ( 2 T , 1 5 ) ( 2 T + 1 ) ( 2 T + 3 ) £ (ЗТ2 - T (TH) )E C (A ,T ,T Z ) 

V " T (1 .7 .9 ) 

These equations are overdetermined for T > 1. Any combination of 
three members of an isobaric multiplet can be used to extract E^0 ', 

and predict the energies of the other members of the multiplet. 
Fo r T = i we have 

E(c0) (A, 1/2) = | ( E C ( A , 1/2,-1/2) + E c ( A , 1/2, +1/2) ) (1 .7.10) 

E ( c a ) (A, 1/2) = E c ( A , 1/2, -1/2) - E c ( A , 1/2, +1/2) (1 .7.11) 

and for T = 1 

(1. 7. 12) 

(1. 7. 13) 

(1. 7. 14) 

E ' (A, 1) = I ( E c ( A , 1 , -1 ) + E c ( A , 1,0) + E c ( A , 1, + 1)) 

E ^ ' f A , 1) = I ( E c ( A , 1 , -1 ) - Ec (A, 1, +1 ) ) 

E(C2) (A, 1) = j ( E c (A, 1, - 1 ) - 2E C (A , 1,0) + E C ( A , 1, + 1)) 
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The Coulomb energy difference between neighbouring members of a 
multiplet is given by 

A E C ( A , T , T Z |TZ + 1) = E c ( A , T , T z ) - E c ( A , T , T z + 1) (1. 7. 15) 

in terms of which the above equations become 

Е ( С Ч (А , 1/2) = Д Е c ( A , 1/2 - 1/2 I + 1/2) (1. 7. 16) 

Е ( С Ц (А ,1 ) = | ( A E c ( A , Í , - l | 0 ) + ДЕ с (А ,1 ,0 .| + 1) (1.7.17) 

E ( c2 ) (A, 1) = f (ДЕ с (А , l , - l | 0 ) - Д Е с ( А , 1 ,0|+ 1) (1 .7.18) 

The masses of the merrlbers of an isobaric multiplet are given by 
M (A , T, T z ) = M 0 ( A , T ) + E c (A, T , T z ) + T z6 where 6 = 0. 782 MeV is the 
n-hydrogen mass difference. 

The isobaric mass formula 

M (A , T , T z ) = a (A, T ) + (3(A,T)T z + y ( A , T ) T 2 (1 .7 .19) 

is obtained f rom the above expression for the masses of isobaric multiplet 
members by substituting for E C ( A , T , T z ) . 

The relation between coefficients is then given by 

a(A, T ) = M0 (A, T ) + E<?>(A,T) - T ( T + 1) E ^ ( A , T ) (1. 7. 20) 

j3(A, T ) = ДМ - E ( 1 ) ( A , T ) (1 .7.21) 

y ( A , T ) = 3E ( 2 ) (A, T ) . (1 .7 .22) 

and 

Let us consider f i rst a uniformly charged sphere as a nuclear model 
a radius R = rn A1/3. 
We then obtain 

, e2 7 2 
= (1. 7. 23) 

о 

= (1 .7 .24) 

then 

and 

E ( U = i £ Í A 2 / 3 (1.7.25) 
с s Г о 

О 
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There fore 

e(?> J _ (1 .7.27) 
ЕГО" " ЗА 

so that 
e<2) 

Х А з i/з (1. 7. 28) 

and this is approximately found empirically. 

1.8. The generalized Pauli principle (cf. MacDonald, 1960) 

Consider a system of two nucléons. The wave functions can be 
factored into a product of space, spin and isospin parts. The eigenfunc-
tions of (T, T ) are given by 

T = 1 

T z = 1 X ( l , 1) = X + ( l ) X + ( 2 ) 

T = 0 X ( l , 0) (X (1)X (2) + X (2)X (1)) z 42 + (1 .8 .1 ) 

LT„ •1 X ( l , - 1) = X _(1 )X_(2) 

T = 0 T z = 0 X(0, 0) = — ( X + ( 1 ) X ( 2 ) - X + ( 2 ) X (1)) (1 .8 .2 ) 
/2 

These isospin functions are either symmetric or antisymmetric. 
The total wave function must also possess certain symmetry properties. 
The isospin functions X ( l , 1), X ( l , - 1 ) represent states of two neutrons 
and two protons, respectively. If фа (aJ) denotes the space and spin 
state of two neutrons or two protons with angular momentum J and other 
quantum numbers a , then фа (aJ) must be anti-symmetric under the 
interchange of two nucléons because of the ordinary Pauli principle. 
The total wave function for these states can then be written as 

ф (a, J , T , T 3 ) = ¿ a (<*J)X(T,T3 ) (T, T3 ) = (1,1); ( 1 , -1 ) (1 .8 .3 ) 

F o r the neutron-proton system the spin and space wave function can be 
a l inear combination of an anti-symmetric 0 a ( a , J) and a symmetric <j>s (a, J). 
Since both symmetric and anti-symmetric isospin functions are available, 
X ( l , 0) and X(0, 0), a totally anti-symmetric ф can be constructed with 
either ф% or ф 

ф (aJOO) = <i>s (aJ) X(0, 0) (1 .8 .4 ) 

Ф (aJlO) = ф (aJ) X ( l , 0) (1 .8 .5 ) 
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It follows that any state of nucléons compatible with the Pauli prin-
ciple can be described by l inear combinations of wave functions which are 
anti -symmetric under the interchange of the space, spin and isospin co-
ordinates of the nucléons. It turns out that the additional restrictions 
imposed by this condition are just offset by the additional freedom in 
forming symmetrized wave functions for mixed neutron-proton systems. 
The reason for using totally anti-symmetric wave functions rather 
than a set of independent unsymmetrized states is that the operation of 
symmetric nucleón operators, e . g . T * , on totally anti-symmetric states 
will never yield wave functions which violate the Pauli principle. 

F o r the two particle system the requirement of having an overal l 
anti-symmetric wave function can be represented by 

(~1)L x ( - l ) ( s + 1) x ( - l ) T + 1 = - l (1 .8 .6 ) 

( - 1 ) S ( - 1 ) T ( - 1 ) L = - 1 (1 .8 .7 ) 

(_1)S + T + L = - i (1.8. 8) 

General proofs have been given for many nucleón systems which 
show that it is sufficient (not necessary) to consider only those wave 
functions which are anti-symmetric under the exchange of co-ordinates 
of any two nucléons. This result is called the generalized Pauli 
principle. 

1.9. Role of charge independence 

The assumption of the charge independence of two-body nuclear 
forces ( [ H , T 2 ] =0) and charge conservation imply a nuclear interaction 
with the following most general isospin dependence: 

V ( r . . ) = V° ( r . r.CT.cr. ) + V a ( r . r . a. a . ) ( t • ?.) (1 .9 .1 ) 1 ij ' v i j i j ' i j i j i j 

This interaction is explicitly charge independent (invariant under rotation 
in isospace) . The experimental evidence available f rom a variety of two-
nucleon scattering experiments supports charge independence, it does 
not however presently rule out a charge-dependent interaction amounting 
to a fpw per cent of the charge-independent interaction. 

1. 10. Isospin impurities (Refs. M. MacDonald, 1960, and Wilkinson, 1957) 

Since isospin is approximately conserved, we shall use a set of 
basis states фц of good T, and calculate admixtures of other T ' by 
perturbation theory. The Coulomb interaction wil l mix into a state of 
isospin T varying amplitudes of states with the same spin and parity but 
different (T1 ф T ) . In general, we can also have mixing of states of 
the same spin, parity, and T into a given state ф0 (T) . The resultant 
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wave function for a state is then 

Ф0 = (T) + У ( T ) + ^ a ^ T - ^ T ' ) (1. 10. 1) 

ц t 0 уТ/Т' 

We will ignore the second term and consider only mixing with T1 f T 
states. The amplitude 

T Op (T ' ) |V |0„(T)> 
" V - F W (1 .10.2) 

where V c is the Coulomb interaction. 
We shall define the impurity with T ' in state T as 

I (T1 ) |2 (1 .10.3) 

In light nuclei the impurity in the ground state is 

10"3> У I a^ (T ' ) 10-5 (1.10.4) 

Sliv (Leningrad) has calculated the amount of T impurity in the ground 
states of nuclei. This starts at low values for light nuclei, peaks at 

40 
С a ( ~ 7% ), and falls to about 2% at Pb ! 

20 20 

There are a number of methods for determining these impurities 
f rom experiment: 

(a) F r o m E l selection rule violations (cf. next section). 
(b) F r o m particle T-se lect ion rule violations (see below). 

Both of these yield the intensity of the impurity, namely 

|ffT(T)|2 

(c) F r o m neutron-proton branching ratio in the emission reduced 
widths to members of an isospin multiplet. The predicted ratio is given 
by the vector coupling coefficients, and departures therefrom reflect 
isospin impurities, but as amplitudes a T ( T ' ) if both the T and T1 compo-
nents can emit neutrons and protons and hence can interfere. An 
example is shown in Fig . 3 which may arise f rom (y, p) and (y,n) 

12 
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T0 = l (T<;= 0) т,.о 

T= 1 / 2 

FIG. 3. Emission scheme for (y , p) and (y , n) reactions through the giant resonance (T = 1) 

reactions through the giant resonance (T = 1). 

т»= i т: = о 

R _ 7p _ [ ( Н 1 - ? | ю ) + < * ' ( о ) (Н1 -1|оо ) ] 2 

' У2п Kï - i H I lo ) - « « ( o ) ( i - i H I oo)] 

1 1 1 
2 2 2 loo) ]2 / 1 + а ' ( 0 ) \ 

г I 00)]2 ~ \1 - a'(0)J 

2 

This radio is, in principle, very sensitive to impurities; e . g . an a 2 of 
0. 04 (a = 0. 2) produces R = 2. 25. There are however difficulties in 
evaluating the reduced widths and correcting properly for penetration 
effects. 

2. ISOSPIN S E L E C T I O N RULES 

2.1. General 

Consider the matrix element 

where only the isospin quantum numbers are shown explicitly. Fo r a 
transition to occur between initial state |T 'T ' ^ and final state | TT z )> 
we must have M f 0. This imposes different conditions on the isospin 
quantum numbers involved, depending on the form of the operator F . 

We consider several cases: 

(a) F is invariant under rotation in isospace 

м = <TT Z |F|T'TZ '> (2 . 1 . 

M = б fi ¿ n n n l v i f Т = T 1 T = T ' . 

(b) F = P (transforms like the third component of a vector) 

M f 0 only if T - T1 = ± 1, 
Tz = T> 

or T = T ' 
as long as T = T1 f 0. 

(c) F = P + (transforms like Tv + iT ) x y 

M f О 

(d) F = Р " (transforms like Tx - iTy ) 
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2.2. Beta decay. (Réf. .S. D. Bloom; 1964) 

The matrix element for ¡3-decay can be written 

H = < * f |H®№i> ; H ® = £ t J > O k ' (2 .2 .1 ) 

where y extends over all nucléons, and Ok is an operator depending on 

к 
spin and space only. This implies that for allowed /3-decay 

ДТ = 0, ± 1 A T Z = ± 1 (2 .2 .2 ) 

(a) Fo r Fe rm i decay (0+ -» 0+), there is no nuclear structural change 
and Ok does not change with k; 

H® = 0 ^ t « = 0 T ' (2 .2 .3 ) 

к 

and we obtain ДТ = 0, ДТ2 = + 1 since T 1 conserves T and raises or 
lowers T z . 
(b) Fo r Gamow-Te l l e r decay, we have 

(2 .2 .4 ) 

Fo r a A T = 0 transition with Д1 = 0 (I f 0) both Fe rmi and G - T matrix 
elements contribute; however, only Fe rm i is allowed for 0+ -* 0+ (ДТ = 0) 
transitions. 

(c) Example: (Ref. : A l ford and French) (see Fig . 4) 

ft =7.6 x10 

т = з л = з 

FIG.4. „ G d — ™Zn Fermi transition 

Here we have ДТ = 1, 0+->0+ which violates Fe rm i selection rule. 
This transition would go very fast (superallowed) if it were ДТ = 0; 
here it decays only via the T ' = 3 impurity in the T = 2 ground state 
of ®®Ga (T ' = 2 impurity in T = 3 ground state of 6 6Zn is impossible 
because T <f: T 2 ) . Hence we can deduce the impurity as fol lows: Fo r 
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a superallowed 0 + ̂ 0+, ДТ = 0 Fe rm i transition (T, Tz ) - (T, Tz + 1) 

|MF|2 = (T - T z ) (T + T z + 1) = 6 for 66Ga /3+ (2 .2 .5 ) 

Using the latest value for superallowed transitions 

I i2 _ 6 0 9 0 

SA " " ^ s l 

we get for 66Ga, 

. . О I IVI ' ̂  
impurity \a 2 = |MFl¿a = ( ft )S A 

M F [2SA ( f t ) - X 6 

6090 
1.3 X 10"5 

(2. 2. 7) 

7.6 X 1 0
7

 X 6 

If the transition were superallowed, its hal f - l i fe would be ~ 1 s instead 
of the observed 9.4 h. 

2.3. Radiative transitions 

The Hamiltonian for a system of nucléons interacting with an 
electromagentic field is given by 

A Г - ! « 
Z t A , ^ 1 - T z 

i — 1 

1 + T « , 1 - T < 
9. ;2-

Orbital current contribution Intrinsic nucleón moment contribution 

ff'VXAf (2 .3 .1 ) 

This can be separated by 

A 

H1 = H1 + H1 = H1 + \ i¡él) ( 2 .3 .1 * ) 
0 1 0 1 z 

1 = 1 

The f irst term is an isoscalar term and the second transforms 
as the third component of a vector in isospace. 

The scalar term will allow transitions between states such that 
ДТ = 0, Д Т 2 = 0. 

The vector term wil l allow transition for which 

ДТ =0, ± 1 , with ДТ = 0 forbidden for T z = 0 nuclei, 

(a) E l transitions 

For the special (but important) case of E l transitions, there is no 
contribution from the scalar term for Tz = 0, since this term is 
( e / 2 M c ) p - A , i . e . the current produced by a system of equal charges, 
each having the value e/2. 
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1 О* 

t 4 

дт=о дт= -

8.06 MeV 

2.31 

O.S. 

ДТ = 0 

6.04 MeV 

G. S. 
N (Tz = 0) C(TZ=1) 

FIG. 5. Isospin-allowed and forbidden El transitions in U N(T Z = 0) and 1 4C(TZ = 1) 

The selection rule on the vector part is 

ДТ = 0, ± 1 Tz f 0 

ДТ = + 1 Т = 0 
(2.3. 2) 

Hence ДТ must algebraical ly change by one unit for T z = 0 nuclei. 
Therefore E l transitions can proceed in Tz = 0 nuclei between T = Tf 

states only via (1) isospin impurities in initial and final states; (2) retar -
dation terms of order (kR)2 in the E l matrix element; (3) the (n-p) mass 
difference which displaces center of mass f rom the center of charge; 
(4) recoil effects caused by emission or absorption of virtual mesons. 

Fo r example, consider the two E l transitions in 14N (Tz = 0) shown 
in Fig . 5. The 1" -> 1+ transition is found to have normal strength 
(ДТ = 1) while the 1" to 0+ transition has only 2% of normal strength 
(ДТ = 0). 

But, for Tz f 0, as in 14С (Tz =1) , the analogue ДТ = 0 transition is 
found to have normal strength. 

Fo r a thorough experimental investigation of the effect of the E l 
selection rule, see the ser ies of references by Wilkinson et al. (1953-1957). 

(b) M l Transitions (Ref. Morpurgo, 1958) 

In the special case of ДТ = 0 transitions, the matrix element for 
M l transitions is, in general: 

M ( M l ) 

protons 

P 

protons 

= < f 

A 

I 40 + jU p O" I i 

i = l 

( i / 1 + rW 
(2 .3 .3 ) 

Fo r s elf-conjugate nuclei (T z = 0), the terms in т ^ cannot contribute 
for ДТ = 0 transitions (see above); we are left with 

A A T = 0 

M ( M l ) 
T = о •K'll 

i - 1 

( 2 .3 .4 ) 
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3.95 

2.31 

G.S. 

1.64 95 V. 5'/. 
1* т=о 

Г ьо 

FIG. 6. Normal (Д T = 1) and inhibited (ДТ = 0) Ml transitions in 14 N ( T z = 0) 

Adding and subtracting j<j( l ) , we have 

J (i 

i = i T 

The term < f j j | i > = 0 since |i> and <(f| are orthogonal and J is a 
constant of the motion. 

There remains only 

(2.3.5) 

l(A<p + Mn - I ) ( f 

A \ / A 
У i\ = 0. 19 ( f 
i'̂ 1 / \ L i 

i = l 
(2.3. 6) 

This is a small quantity, equivalent to all nucléons having no orbital 
contributions and intrinsic moments of ~ 0. 19 nuclear magnetons. 

For 'normal' Ml transitions, the dominant term multiplying T ^ is 

/ A 

N i = l 

r ( i ) [ C ( 1 ) + (Mp "Mn )a (1); (2.3. 7) 

There the coefficient of? '1 ' is (Mp- йп)/2 = 2.35. Hence the relative 
inhibition of the ЛТ = 0, Tz = 0 Ml matrix element is (0.19/2. 35)2 

~ 6. 5 X 10-3 ; in other words, a smaller Weisskopf unit is appropriate 
for these transitions. 

Example : (Fig. 6) 

The observed branching ratio from the 3. 95 MeV-state favours the 
ДТ 7 1 branch by 20 to 1, whereas the ground-state transition should 
a priori be 14 times stronger; hence the AT = 0 branch is suppressed 
by a factor of 280. There is, in addition, a statistical favouring of the 
ground state in view of its spin of 1 compared to 1=0. 

(c) Applications to Photonuclear Reactions 

Examples: (Y,p), (y,n), (7, d), {y,a). 

These reactions combine radiative selection rules in the incoming 
channel and particle selection rules in the outgoing channel. 
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FIG.7. Comparison of l sN(y ,n)uN with l s N(y ,t ) l zC, between states of various isospins 

(1) 4n target nuclei (n= integer): A giant dipole resonance will not be 
observed in a photonucleár reaction on a T z = 0 target until we have 
enough energy in the incident gamma ray to excite the f i rst T = 1 state 
in the target having spin 1". (Remember, for E l transitions to occur 
in T z = 0 nuclei, ДТ = ± 1). Once formed, the excited nucleus must decay 
subject to the condition that the vector sum of the isospins of the final 
particles T j , T2 be 1, i . e . 

|Ta - T2| < |< T j + T 2 (2 .3 .8 ) 

Thus for outgoing alpha particles in (7, a) reactions, since T = 0 for 
alphas, one can only populate T = 1 states in the residual nucleus 
whereas an outgoing proton or neutron in ( 7 , p ) or (7 ,n ) reactions 
can populate either T = | or T = | states in the residual nucleus. This 
selection rule accounts for the observed displacement of the (7 ,a ) yield 
peak toward higher energies compared to the (y ,p ) and (7 ,n ) peak. 

(2) 4n + 3 target nuclei: We can derive a selection rule for comparing 
(7 ,n ) with (y,t ) reactions on the same nucleus. The selection rule on 
gamma absorption (Tz = j f 0) shows that both T = \ and | states can be 
reached in the target nucleus. The T = j states can decay by neutron 
or triton emission to T = 0 states. 

The T = I states can decay only to T = 1 states. The final nucleus 
is A = 4n + 2 for the (7 ,n ) reaction, and A = 4n for the (7 , t ) reaction. 
The T = 1 states in A = 4n+ 2 nuclei begin at low energies, e. g. 6Li (3 . 56), 
1 0B(1.74) , 1 4N(2. 31), while in A = 4n light nuclei these states f i rst occur 
at high excitation energies, e . g . 8Be(16.62) , 12C(15. 11), 1 60(12. 79). 
Consequently, the (7 , t ) reactions through T = | states have a higher 
threshold, and the lowest such states can be observed in the (7 ,n ) c ross -
section but not in the (y,t ) cross-section. As an example, compare 
1 5N(7, n)14N with 15N(7, t)12C (Fig. 7). 

(3) Special case 

6 Li ( 7 , i ï )d can never go through a giant resonance ( E l ) since the 
T о о 0 

T = 1 compound states would be forced to decay through a T = 0 channel. 
The reaction will go by E2, M l , or by T impurity, but should be weak. 
At Ey = 17 MeV , the cross -sect ion is 5 ¡л barn's. By comparison, 
7 Li ( 7 , t ) 4He has a c ross - section of 120 /л barns. 
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(4) Giant dipole splitting (Fig. 8) 

The relative probability of gamma exciting a T + 1 state relative to 
a T state (aside f rom all other possible factors not involving T ) is shown 
in Fig. 8. The dipole photon can be described by (т, 0) with т = 1 

( E l ) a с2 - (TT TO|TT )2 = (TT|O|TT)2 = _ T ( 2 . 3 . 9 ) z I z I I 1 + 1 

( E l ) ' a c ' 2 = (TTT0 [T + 1 ,T ) 2 = ^ 1 (2 .3 .10) 

(E l ) 1 _ 1_ 
( E l ) " T 

1 T.1, T2 

1 > T, т2 

E 1 > >( E 1 )' 

s S T, т2 

FIG . 8. El-excitation to states of T = Tz and T ' = T z + 1 

2.4. Selection rules for particle reactions 

(a) Direct reaction mechanism 

(1) Coulomb excitation: As we have seen, we may violate isospin 
between initial and final states through the Coulomb field. (Most transi-
tions are E2.) 

A T = 0, ± 1 (as for general radiative transition) 

Multiple Coulomb excitation: ДТ = n, n-1, . . . , -n , where n = order 
of multiple excitation. 

(2) Direct, nuclear inelastic excitation (t = isospin projecti le) 

ДТ = 2t, 2t- 1 - 2t (provided T ^ T z ) . 

(i) Direct collisions (see Fig. 9): 

Here with no charge exchange ДТ = 0; with charge exchange 
ДТ = 0, ± 1. 

(ii) Exchange collisions (see Fig . 10): 

Here with no charge exchange ДТ = 0, ± 1; with charge exchange 
ДТ = 0. (Through an interaction 2Ï ( l ) - between incident nucleón (i) 
and target nucleón (j). ) 
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t • T 

FIG. 9. Direct collision (N stands for nucléon) 

FIG. 10. Exchange collision (N stands for nucléon) 

(3) Direct transfer reactions 

Apply vector inequality for isospin 

|Tr - Tt I = (t + t ' ) , . . . , - (t + f ) (2.3. 11) 

Residual Target Projectile Detected 

nucleus particle 

F o r example, through the 26Mg (p, t )2 4Mg reaction we can excite T = 2 
T l i i 

states in 2 4Mg. If only neutrons are transferred, no Coulomb forces 
are directly involved; the same is true for neutron-induced reactions. 

(b) Resonance reactions 

The vector inequality still applies along with the additional condition 
that we must include the isospin of the compound nucleus. 

A + a - C * - B + b 

T + T = T = T + T А а С В b 

(2.3. 12) 

(2.3. 13) 

Isospin conservation for resonance reactions: 

(1) Isolated resonances, see relation (2. 3. 13). 
(2) Overlapping resonances. 

I. If they have the same T , the isospin selection rule (2.3. 13) holds for 
each resonance separately. 

II. If we have different T ' s and 

(i) different J " , (2.3.13) still holds for each resonance separately 
(ii) the same J", mixing occurs because of the Coulomb force. 

(c) At very high excitation energies, with many broad overlapping 
resonances, T becomes good again . We must take the mixing time, 
Tmixing = h/H c c , , into account. H c c , , the Coulomb matrix element, 
typically runs between 0. 05 to 0. 5 MeV. If Td = h/П « Tm i x i , then 
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the system has no time to introduce isospin impurities and isospin is 
conserved. (Wilkinson, 1957). This happens for Г » H ,. 

3. SPEC IAL CONSEQUENCES OF ISOSPIN CONSERVATION IN 
N U C L E A R REACTIONS 

3.1. An intensity prediction 

Let us consider the following example of the analogue reactions 
9Be(d, p ) i °Be and 9Be(d, n ) i ° B * (1.72 MeV, 0+) and calculate the 
branching ratio (d,p)/(d, n) f rom isospin considerations alone. Further-
more, let us consider two extreme mechanisms. 

(a) Compound nucleus formation 

p + 10 Be 
9 Be + d -»11 В * (3 .1.1 ) 

- n + 1 0 B e * (T = 1, 0+) 

Using the notation Ф(Т, T z ) , the isospin triplet 10Be, 10 в * and 
1 0С wave functions can be written as Ф(1, 1), Ф(1, 0), a n d ф ( l , - l ) . Writing 
the г1В wave function as ф (1/2, 1/ 2) and the neutron and proton wave 
functions as ф (1/2, tz), we can expand ф(1/ 2, 1/2) into the following 
product sum: 

(Ml/2, 1/2) = ^ С Ф(1,Т2 ) q>(l/2tz) (3 .1 .2 ) 

V z 

where С = (1 ,T Z , 1/2, t z | 1/2, 1/2) are the Clebsch-Gordan coefficients, 
connecting (T , t ) to (1/2, 1/2). Expanding the summation, the following 
terms survive : 

ф( 1/2, 1/2)= (1,1, 1/2,- 1/ 2 I 1/2, 1/2) Ф(1, 1)9(1/2,-1/2) 

+ (1, 0,1/2, 1/2 I 1/2, 1'/2)Ф(1, 0)ф(1/2, 1/2) 

= JT/ l Ф(1, 1)ф(1/2,-1, 2) - - Я / З Ф (1,0)ф(1/2, 1/2) (3 .1 .3 ) 

or 

" В =J273 (10Ве + р)-ч/Т73"(ЮВ + п) (3 .1 .4 ) 

There fore the intensity ratio is 

- - 2 (3. 1 . 4 * ) 
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i . e . f rom isospin considerations the proton decay intensity should be 
twice that of the neutron decay channel. 

(b) Direct reaction picture 

U B * does not enter here. One builds 10Be f rom ?Be + n: 
Ф(1, 1) = ф{1/2, 1/2)ф(1/2, 1/2) while 1 0 B * is constructed f rom 

Ф(1,0) = (1/2, 1/2, 1/2,-1/2 I 1,0)^(1/2, 1/2)ф(1/"2, -1/2) 

+ (1/2,-1/2, 1/2, l/2|l,0)^/(1/2,-1/2)Ф(1/2, 1/2) 

J2 

(3. 1.5) 

Ф(1,0) = щф( 1 / 2 ; 1 / 2 ) Ф ( 1 / 2 , - 1 / 2 ) + - ^ Ф (1/2,-1/2)Ф(1/2, 1/2) (3 .1 .6 ) 

10В * = ( 9 В е + р) + А ; (9В + п). 
ч/2 ч/2 

There fore the intensity ratio 

9 Be + n 
9 Be + p 1 / ч / 2 

= 2 

as before . 

This ratio therefore seems to cover all eventualities. 

3.2. Compound resonance isospin inferred (see Fig . 11) 

Example: 9 B e + p - » 1 0 B* - 6 L i * + » 

Alpha particles are observed only to the 0 + , T = 1 state in 6 L i 
when forming the proton resonance at 8. 89 MeV in i°B * ; we infer that 
the 8. 89 MeV state in 10B has T = 1. Note that the incoming proton 
channel can form either T = 0 or T = 1. 

8.89 MeV 

FIG. 11. Be(p,a) Li through resonance In 10B 

4. ISOSPIN FORBIDDEN REACTIONS 

4.1 . General 

Intrinsic ДТ = 0 reactions cannot connect states that di f fer in T . 
Using ДТ = 0 reactions such as (d, a) , (a, d), (d, d1) etc. , One can study 
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isospin impurities by bombarding T = T0 nuclei and looking for excitation 
of T = T0 + 1 states. 

T impurities may arise f rom 3 sources: (1) projectiles car ry 
isospin impurities; (2) targets have isospin impurities; (3) inter-
mediate stages bring in impurities, either during compound nucleus 
formation, or through dynamic distortions. 

Example : 

Let us consider the isospin-forbidden reaction l sO(d, a ) 1 4 N* (T = 1) 
which is found to excite T = 1 levels in 14N weakly. The question here is : 
'Where does the isospin impurity come f r o m ? ' One possibility is 
the intermediate state in 1 8F. To determine compound nucleus effects, 
one can examine other reactions such as 14N(a, a ' ) l 4 N 1 ' , l 4N(d, d ' ) l 4 N * 
and try to locate the sources of impurities. 

4.2. Overriding angular momentum and parity selection rules which 
simulate isospin conservation 

(a) Compound nucleus. Let us look at the foregoing reaction more 
closely. Since the deuteron has unnatural parity ( l + ) , angular momentum 
and parity conservation alone will restrict the L values of the reaction 
shown in Fig . 12. 

Since the compound state can be formed with J = Í , St ±1 and parity 
( - 1 ) { is conserved, we can only reach states with J = SL i . e . only natural 
parity states, because otherwise alpha particles .could not be emitted to 
the 0+ state in 14N. Thus angular momentum and parity restricts us to 
only one out of three J values in the compound nucleus, compared to 14N 
states having I f 0+ (such as the ground state). Moreover , there is a 
statistical factor of 3 against the 0+ state. 

( b ) ' Direct reaction process . If the (d ,a ) reaction occurs by direct 
deuteron pick-up, then the 0+ 0+ transition is completely forbidden, 
because of the unnatural parity of the deuteron. (The same would apply 
for 6Li , 10B and l 4N-induced reactions. ) 
(c) Example of an apparently isospin-forbidden compound resonance (Fig.13): 
consider a + d - 6 L i * ( T = l ) . 

This is another example where spin and parity restrict reaction. 
One cannot excite the 0 + , T = 1 level i n 6 L i because one cannot couple 
1+ (deuteron) and 0+ (alpha) to form a 0+ state and conserve parity. 
This is a bad case in which to look for isospin impurities, since the 
T = 1 state is 0 + . Hence a reduced reaction yield to an isospin forbidden 
state must be careful ly examined before drawing conclusions as to 
isospin impurities. 

The examination of {a, a ' ) or (d ,d ' ) reactions for target nuclei with 
T f 0 wil l usually not suffer f rom the above difficulties and should 
reveal T impurities rather directly in nuclei with neutron excess. 
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3.56 0* T=1 

2.18 3* T=0 J 

T = 0 } 1.47 МгУ 

NO EFFECT 

FÎG. 13. a + d Li compound resonances 

4.3. Isospin-forbidden compound nucleus reactions 

The isospin selection rule for a compound nucleus reaction 
A + a ^ C * ^ B + b was given in section 2 as T A + Ta = T c = TB + T b . In the 
light nuclei most targets have T = 0, 1/2 or 1 in their ground state, 
while projecti les have t= 0, 1/2. This would seem to limit us to 
studies of T < 3/2 compound states. Consider the example 160 + p->17F * ; 
here we would only expect to be able to excite T = 1/2 states in 17F, 
while we would rea l ly like to look for the ( T , T Z ) = (3/2, -1/2) member 
of the T = 3/2 quartet 17N, 1 70, 1 7F, and 1 7Ne. Using a reaction such 
as 1 5N + p -> 1 6 0 * we can excite T = 0, 1 .states and not the T = 2 states, 
which are of much current interest. 

To excite compound states of T = 3/2, such as in 17F, with the 
reaction 1 6 0 + p , we have to 'violate' isospin by one unit. Furthermore, 
if only the elastic and low- lying inelastic, as wel l as reaction channels 
are considered, we have to violate isospin twice, since the exit channel 
has the same T as the incoming channel. If excited T = T0 + 1 levels 
in the target nucleus were energetically accessible, inelastic scattering 
to these states would only violate isospin once. Such might be the case 
when examining the 2nd T = 3/2 state i n 1 3 N via the 12C + p channel. Since 
the 15.11 eV (T = 1) state in 12C is available, inelastic protons to this 
level would lead to isospin violation in the incoming channel only. 

Since the Coulomb field can mix T0 and T0 + 1 states, 1 = 3/2 
states might be excited in 1 7F via T = 1 admixtures in the 1 60 ground 
state, or T = 1/2 admixture in the T = 3/2 state in 1 7F. By excitation 
of states such as these, several important facts can be learned: An 
estimate of T = T0 + 1 impurities in the target nucleus ground state and 
T = T'0 impurities in the compound state, the excitation energy of the 
compound states and their width. Since impurities ar ise f rom the 
T = T0 + 1 part of the ground state wave function, the coefficient A v in 

the sum ) Av ipv (T - Tq + 1 ) can be estimated, which in turn allows 

estimates of the Coulomb matrix elements which mix these states. 
Thus, in the reaction 1 60 + p ^ 1 7 F * (T = 3/2) - » l e O + p, the T = 1 

part of the 1 60 wave function and the T = 1/2 part of the l ' F * wave 
function are not zero if the T = 3/2 states are seen as resonances. In 
experiments such as these, done at Rutgers (Bredin et al., 1966), 
T = 3/2 states have been observed in the compound nucleus 17F. The 
lowest T = 3/2 state in 13N was seen as a compound nucleus resonance 
in elastic scattering of protons on 12 С, at an excitation energy of 
15. 068 ± 0. 008 MeV, having a width of Г ~ 1.9 keV. We must emphasize 
that these resonances are very sharp, having proton widths 1 keV, 
due to the slight violation of the isospin selection rule. Since the 
interest has been generated in T = T0 + 1 states in 13N, 13C, 2 9 P , etc. , 
they also have been studied by reactions such as (р,т) , (a, n) and (a ,y ) . 
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Note that such reactions with gamma- rays in the outgoing channel are 
only "once" forbidden, since electromagnetic transitions can connect 
states whose' T dif fer by unity. 

5. A S Y M M E T R Y T H E O R E M BASED ON ISOSPIN 
(Ref. Barshay and Temmer , 1964) 

5.1. Theorem and example 

Consider the reaction 

where С and C1 are members of an isospin multiplet, i . e . С and C1 are 
related by a rotation in isospin space; they have the same t, the same 
spin and parity, but different values for t z . The theorem states that if 
either A or В has T = 0, isospin considerations show that the differential 
cross -sect ion must be symmetric about 90° ( c .m. ) 

Since either A or В has T = 0, the left-hand side of the reaction 
couples to only one T value. If isospin is conserved, one must also 
have the same value of T on the right-hand side. Therefore let us 
couple the wave functions of С and С1, in the above reaction, to the 
isospin value T. 

Example : 

Consider the formation of the fermion doublets, 3He-t, 1 3 C- 13N, 
etc. with t = 1/2. The generalized Pauli principle states that i//totaj 
must be anti -symmetric. Let us examine the reaction 

Since the T of both 1 6 0 and 10B is zero, T must equal zero for the final 
state. (The spin of 13С and 13N is 1/2"). 
Therefore 

A + В ±» С + C1 (5 .1 .1 ) 

[ с + С •] т=>[ф (t, t ^ ф (t, t¿)] (5 .1 .2 ) 

16 О + 1 0 В -> 13С + 1 3 N (5 .1 .3 ) 

ФшЛ = - C 7 m ' X * s р а с е XX (5. 1.4) 

o r sym. x sym. 
anti-sym. Xanti-sym. 

The most general total wave function for a T = 0 state is 

(5. 1.6) 

i . e . they are orthogonal. 
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Hence there will only remain even powers of cosO, and we wil l 
always have symmetry of da/di2(0) about 90°. Another way of seeing 
this is to real ize that the forcing of the reaction into a unique T channel 
essentially treats the m i r r o r nuclei as truly identical particles in space 
and spin, hence fore -and-a f t symmetry. 

One must ensure that there are no other overriding reasons for this 
symmetry, such as 

(a) identical particles on one side of the reaction 
e. p. . 

W N + 14 N _ 14C + 14q 

T O O i l 

T„ +1 -1 

(b) only one I value participates, such as 
(1) S wave only, 
(2) L (characteristic Я value, especially for heavy-ion surface 

interaction, where L corresponds to kR); 

(c) A definite spin and parity in an isolated intermediate-state 
resonance; 

(d) Many overlapping resonances in the compound system (statistical, 
or Hauser -Feshbach régime) . 

5.2. More examples 

(a) Consider the isospin triplet of mass 14. It can be formed, two 
members at a time, by various incident channels: 

24Mg + a 14C + mo 

T o o i i 
Tz + 1 - 1 (5 .2 .1 ) 

1бО + 12С - 14C + 3 4 o 

(These are the extreme members of the multiplet. ) 

2 6 Mg + d - > 1 4 C + 1 4 N * (2.31 MeV ) 

T 1 0 1 1 
T2 1 о 

22 Ne + 6 L i - 14C + 1 4 N* " (5 .2 .2 ) 

1 8О + 10B 14C + 1 4 N * " 

1 4C + 14 N-* 14C + 1 4 N* " 

(Middle member and one side member of triplet. ) 
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On the other hand, for example, 

2 6 M g + d - 1 4 C + 1 4N (in the ground state) I I can also T = 1 T = Q 

go to L can also have different spins f rom 14C. 

Here one cannot make any definite statement about the symmetry 
of dtr/df2(0) about 90°, unless the compound nucleus, 28A1, is in a 
definite spin and parity state. Since 2 6 Mg+ d can fo rm both the 14N(T = 0) 
and 1 4N* (T = 1) states, one should search for an angular distribution 
as anisotropic as possible in the 1 4N(T = 0) channel, and then look for 
the 14n* (T = 1) symmetry effect. The degree of symmetry will be a 
measure of the goodness of isospin when compared to the anisotropy 
in the f o rmer channel. Note that departures f rom symmetry are sensi-
tive to the T- impur i t ies in the amplitude. 

(b) In the isospin formal ism, 14C + 14N* coupled to T = 1, Tz = 1 yields 

l 
T =1 V"1 ml m2 

Ï T Z - 1 = ) ( l m 1 l m 2 | l l ) X 1 ( l ) X x (2) 

m1(m2=-l ^ C ^C* 

= (1110 j l l ) X j ( l ) X j (2 ) + (10111 11) X° (1)X*(2) (5 .2 .3 ) 

У т = 1 = ^ [ * Î ( 1 > * ? ( 2 > - X Ï ( 1 ) * Î ( 2 ) ] (5 .2 .4 ) 

where (1110 
(1011 

И ) = 1/-/2 
11) = - 1Д/2 

Y j is c lear ly anti -symmetric. 

The ground state of 14C and hence the 1 4 N* (2.31 MeV ) state have 
spin 0+ (they are analogues). Therefore , since S = 0 is symmetric, 

'/'total = = 1 [anti -sym.] Y™X° = 0 [ sym. ] and Y™, 

depending on the relative £ value between these two nuclei, must be odd, 
for we are dealing with two bosons and ^ to tai must be symmetric. This 
means that the compound system 28A1* must have odd spin and parity 
for this reaction. 

Fo r a multiplet such as 1 2B, 1 2 C * , 12N(1+ multiplet), however, 
the spin wave function would be anti-symmetric and hence compound 
resonances having only even spin and parity can contribute. 
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(с) Consider 14C + 140: 

( lm 1 lm 2 |00)X^ ( l )X i 2 (2 ) 

m 1 ,m 2=- l 

= (111-1 I 00)Xj (1) Xj1(2) + (1 -111 I 00) X]"1(1)XJ(2) 

+ (1010 j 00) (1) X°(2) (5.2.5) 

Y°
 = 0
 = - j = [xJ(l)X"11(2) + Х"1(1)Х^(2)] (1)Xj(2) (5.2.6) 

1 4 C 1 4 0 

, 0 

where ^x = o is symmetric upon interchange of (1) and (2). We see that 
1 4 q + и q n o j . f o r m a p U r e T s t a t e , i . e . 

2 

XJ(1)X^(2) = У (111 - 1 I 

T = 0 

= (111 -1 j 00) ф°о + (111-11 1 0 ) ^ + (111-1 I 20)^2 (5.2.7) 

1 / 0 ^ 1
 +

 1 

In words: the formation of a T = 0 state implies the appearance of 
1 4 N* + 1 4 N * to a prescribed extent, or conversely, 140 + 14C involves 
states with isospin 0, 1, and 2 (and T z = 0, of course). 

(d) The reaction 4He + d г 3He + t: This is probably the most interesting 
reaction to which the Barshay-Temmer theorem applies, because it 
bears on the three-nucleón system and its isospin purity. Experiments 
at both low (1-2 MeV) and high energies (23 MeV) (for the inverse 
3He + t -» d+ 4He reaction) show striking symmetry about 90°. 

5.3. Special symmetry selection rules 

We can easily see that there exist special symmetry selection rules 
in nuclear reactions involving isospin multiplets, in addition to the 
usual angular momentum and parity selection rules. 

Example." 

Consider the reaction 

2 4 M g + d s = 1+-"13C+ 13N [fermion doublet, mirror nuclei] . 
т = о 

12 
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T A B L E IV . C O M P O U N D S T A T E S W H I C H A R E E L I G I B L E T O 
C O N T R I B U T E T O 2 4 Mg + d - 13C + 13N 

Compound 

state Í final s final ^allowed Reaction 

( Г 1 1 0(anti-sym. ) Symmetry forbidden 

0 + 0 0 0 Parity forbidden (see note below) 

1+ 0,2 1 0 O. K. 

1" 1 0 .1 0 O .K . for Sfinaj = 0 

2 + 2 0 .1 0 O .K . fox S f i n a l = 1 

2" 1.3 1 0 Symmetry forbidden 

3 + 2.4 1 0 O .K . 

3" 3 0 .1 0 O . K . f o r S f i n a l = 0 

4+ 4 0.1 0 О. K. for S f i n a l = 1 

4 " 3.5 1 0 Symmetry forbidden 

Note: 24 Mg + d ̂  0 + state in entrance channel since S¡n ¡ t¿ a ¡ = 1 + . To get 0 spin, ®incident 

must be 1, therefore the initial parity would be ( - 1 ) ' = -1 , q. e. d. 

13C-and 13N of course have the same spin (1/2). The compound nucleus 
is 26A1 and we wish to discover which compound resonances are eligible 
to contribute to the above reaction. Since 13C and 13N are fermions, 
^total must be anti -symmetric. 

5.4. An addendum to the Ba r shay -Temmer theorem 

The reaction 

p + p TT+ + d (5 .4 .1 ) 

TZ 4 -i - I О 

t i i i о 

has been widely studied (f irst to determine the spin of the pion from 
detailed balancing arguments) and may be compared with 

n + p - 7T° + d (5 .4 .2 ) 

T z 1 О 0 

T i i 1 о 

It was long ago real ized2 that charge independence has as a consequence 
that 

a (2 )(0) = l / 2 a ( 1 ) ( 0 ) (5 .4 .3 ) 

2 C.N. Yang, 1952 (unpublished). 



ISOSPIN 195 

О» 90° 180° 

FIG. 14. Angular distributions for p + p 7r+ + d and n + p -*7т° + d 

The experimental results are that 

atotal (2) = 1.5 ±0 .3 (Mb) (5 .4 .4 ) 

fftotild) = 3.10±0.24 (Mb) (5 .4 .5 ) 

and the angular distributions are of course symmetric around 90° (Fig. 14). 
The best fit to the тг° angular distribution is obtained by assuming a 
functional dependence of the fo rm 

f(0) = 0. 22 + cos 2 0 (5.4. 6) 

The symmetry around 90° for the reaction (5.4. 2) can be considered 
a special case of the Ba r shay -Temmer theorem; it follows also f rom 
its relation to reaction (5.4. 1) where symmetry about 90° is trivial. 
Conversely, the following types of pairs of reactions can also be 
examined f rom the point of view of relation (5 .4 .3 ) . 

7Li + 7 L i -» 10Be + a (5 .4 .7 ) 

7 L i + ' B e - 1 0 B e * ( T = l ) + cr (5 .4 .8 ) 

7 L i + 1 L i - 12B + d 

' L i + Be -*12C""(T = 1) + d 

(5.4. 9) 

(5.4. 10) 

In exact analogy to the meson reactions discussed above, the ratio of 
the cross-sect ions ет(5. 4. 7)/o(5. 4. 8) and ст(5. 4. 9)/a(5. 4. 10) should 
be 2 and the angular distributions should, of course, be symmetric 
about 90°. Other test reactions are 

3 He + 3 He - a + 2p (di-proton) (5 .4.11) 

3He + T - a + d (singlet state) (5.4. 12) 

T + Т-» <* + 2n (di-neutron) (5 .4.13) 

with cross -sect ion magnitudes in the ratio 2 to 1 to 2, and identical 
shapes. To sum up, in these special reactions, not only is symmetry 
around 90° required by the Ba r shay -Temmer theorem but the precise 
shape of the differential cross -sect ion can be predicted by measuring 
it in the identical-particle case and dividing by 2. This has not been 
tested so fa r . 
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6. CHARGE-EXCHANGE REACTIONS (Ref. Bloom et al. , March 1961) 

6.1. Experimental 

Anderson, Wong, and McClure (1961) performed A ( p , n ) B experi -
ments using a cyclotron and neutron t ime-of - f l ight techniques; they 
f irst studied reactions involving mi r ro r nuclei such as 1 3C(p,n) 1 3N and 
7 L i ( p , n ) 7 Be where strong transitions take place to the ground (analogue) 
states; and then moving up to nuclei having l a rge r neutron excesses. 

We shall concern ourselves with the specific example 

90 90 
4 0 Z r 5 0 ( p , n ) 4 1 N b ; g (6.1. 

The neutron spectrum for this reaction is shown schematically in Fig . 15 
The higher energy neutron groups correspond to leaving 90 Nb in its 
ground and f i rst few excited states. The prominent low-energy neutron 
group corresponds to leaving 90Nb in its f i rst T = 5 state. Here Tz = 4, 
of course. This sort of group was found in every case investigated. 

The energy level diagram for this reaction is shown in Fig . 16 
where 

Д М 0 = mass difference between ground states of 9 0Zr and 90Nb 

Д М * = mass difference between the ground state of 9 0Zr and 
its analogue in 90 Nb 

|Qpn I is the Q value for the (p, n) reaction leading to the ground 
state of 90Nb 

|Qpn I is the Q value for the (p,n) reaction connecting the ground 
state of 9 0 Zr and its analogue in 90 Nb 

б = neutron-neutral hydrogen mass difference 

Clear ly Д М * = |Qpn| - 6, but the analogue relationship between the 
two states means that Д М * = E - 6; that is, Д M * equals the Coulomb 
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1/ 3 
FIG. 17. A plot of I OpnI versus A (Anderson & Wong) 

energy of the additional proton corrected by the neutron-hydrogen mass 
difference. Hence |Qpn | =E C and a determination of the |Qpn | f rom 
experiment provides a direct measurement of E c . 

Indeed, a plot of |Qpn| vs. A1/3 for various (p,n) reactions general ly 
bears out the l inear relationship expected for E c vs. A1^3 on the basis 
of a uniform charge distribution in the nucleus (see Fig . 17). 

6.2. Shell model view of analogue states 

It is possible via (p, n) reactions to have Л Т = ± 1 , 0 ; that is to say, 
to form isospin states in the residual nucleus having the same isospin as 
the target or differing by one unit. ДТ = 0 reactions proceeding via an 
isosca lar term of an isospin-dependent interaction, thus form T = 5 states 
in 9 0Nb (in this example); ДТ = 1 reactions can go via an isovector 
T-dependent interaction allowing one to reach T = 6 states in 9 0Nb(T z =4) 
as well as the low-lying T = 4 states. It should be noted that the ( 3 He, t ) 

2d5 •50 

2p, 

Uy ^2") 
О CI ' 

-40 

- 3 8 • 
T=6 

V S 
°Zr (0 )T= 5 
0 50 l u ' . 

T,= 5 
(2

+

) 

FIG. 18. Shell-model descriptions of the ground states of three neighbouring nuclei with A = 90 

t-
о > 
о о 
о о 
о о 
о о 

о о 

> e V * > t . w V * 
Т =4 Т =5 т = 6 

(GROUND STATE I 

FIG.19. Lowest-lying T = 4, T = S and T = 6 states of 9 °Nb (T z = 4) 

reaction also can be used for studying the charge-exchange process 
(Bla ir and Armstrong, 1965). The cross-sect ion is found to be much 
weaker than for the (p, n) reaction, but there is the experimental advantage 
of outgoing charged particles. 
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т=6 

^ ^ *Ь6 

0*— 

2" ^ 
T=5 

» T=6 2* 
39V51 V6 90ы 1=4 

90Zr T-5 
40 50 V5 

~ N b « y * 

FIG,20. Level scheme for the T-multiplets 

Consider the following three members of the A = 90 isobar and a 
shel l -model description of their ground states (Fig. 18). Since we are 
showing the ground states of these nuclei, T = Tz . Now consider the 
description (Fig. 19) of the lowest lying T = 5, and T = 6 states of 
9 0 Nb(T z = 4). C lear ly the T = 5 state can easily be obtained f rom the 
ground state configuration of 9 0 Z r by a (p,n) reaction which charge ex-
changes a 1 g9/2 proton for a neutron. The T = 6 state can also be 
reached, in an isospin sense, but requires not only the charge exchange 
of a lg9/2 neutron, but also exciting a 2pa/2 proton to a 2 d5/,2 level. This 
is obviously more complicated, and costly in energy, but has been observed 
with 50-MeV protons (Stafford et a l . , 1966). These may be termed 
•double-analogue' states since they are obtained by the operation (T - )2 

on the parent 9 0 Y. The level scheme for the associated T-bands is 
shown in F ig . 20. 

6.3. Theoretical description of charge-exchange reactions 

These reactions have been described by Lane and Soper (1962) by 
assuming that the optical potential has an isospin-dependent part. That 
is, the optical potential may be written as U = U0 + и г (t • T ) , (Î• T ) 
transforming as a sca lar in isospin space. 

Following Robson's treatment (1965) the (p,n) reaction can be written 
as 

p + C - n + A + Q p n (6 .3 .1 ) 

where M A - M c = |Qpn | -6, С stands for the target state and A for its 
analogue. Now we write the proton-target isospin wave function as 
|pC)> and the neutron-analogue wave function as |nA^> . 

The general relationship for the T - lower ing operator 

| T , T 3 - 1 > = | т > т з > ( 6 . 3 . 2 ) 
n/(T + T J (T - T ,+ 1) 

yields for T = T2 

T" 
| T , T - 1> = — | T , T > 

n/2T 
(6 .3 .3 ) 
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t 
T / A 

FIG.21. Vector model description of the T coupling 

W e may write the operator (t • "?) as 

( t - T ) = | ( t + T~ + t "T + ) + t z T z (6 .3 .4 ) 

and with our usual convention the following relationships follow: 

t + (p ) = n t+ (n) = 0 T + ( A ) = j 2 T C 

t"(n) = p t" (p) = 0 T ' ( C ) = n Í 2 T A 

t z (n ) = | n t z (p ) = - i P T Z ( A ) = ( T - 1 ) A 

Tz (C) = TC (6 .3 .5 ) 

A s a brief aside: consider the vector model description (Fig. 21) of the 
T coupling 

T 2 = T 2 + t 2 + 2(?- f ) (6 .3 .6 ) 

then 

(t • T ) = i (T2 - T 2 - t2) (6 .3 .7 ) 

2 2 2 
where, the eigenvalues of T R , T , t may be substituted for the operators, 
yielding 

( Г -Т ) = i { T R (TR + 1) - T (T + 1) - t (t+ 1)} (6 .3 .8 ) 

(Landé formula ) 
Since TR = T ± i we have for TR = T + i 

(?• T ) = T/2 (6 .3 .9 ) 

-» -» ( T + 1 ) 
( t - T ) = - ' g (6 .3.10) 

and the energy splitting between these(E ^ - E | ) is oc i ( 2 T + 1). As a 
working rule of thumb, this yields a splitting of ~ 1 MeV/excess neutron. 

In preparation for writing down the Schrodinger equation for the 
|pC> channels, we evaluate 

( Î - T ) | P C > = i | ( t + p ) ( T ' C ) > - | | p C > (6.3.11) 

(t- T ) | n A > = J " j | p C > + ^ | n A > (6.3.12) 

using the identity (6 .3 .4 ) above. 
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The net result is that the t • Í operator is a coupling operator in 
the sense that operating?- T on |pC)> or |nA)> introduces components 
of the other channel. 

With V = U0 + t • T U] being used for the potential energy term, the 
Schrôdinger equation for the |pC)> channel becomes 

( - • £ V 2 + UO - J U I + VC - E ) | P C > = - J j U j n A > (6.3.13) 

H c l p C ^ - J J u J n A ) (6.3.14) 

where Vc is the Coulomb potential for the proton in the field of C; and 
for the I nA )> channel: 

( " Й г у 2 + u 0 + - E + l Q p 4 l ) l n A > = x f ? u i | p ° > ( б - 3 - ^ ) 

н А 1 п А > = - < J j u I | p ° > (6.3. 16) 

where the eigenvalue is E - |Qpn| because of the Coulomb energy shift, 
and Vc = 0. 

Re-writ ing the wave functions as 11 or | J, corresponding to good 
isospin wave functions with T + l / 2 or T - 1/2, we have: 

|f> = a |pC> + b|nA> (6.3. 17) 

Ц > = c | p C > + d|nA> (6.3. 18) 
where 

a = (TT ? - ? IT + i T - h = (6.3.19) 
si 2T + 1 

b = ( T T - 1 H | T + i t - I ) = 1 - ^ — (6.3.20) 
2T+ 1 

с = ( T T i - i | T - i т - i ) ^ ¿ T I (6.3.21) 

d = ( T T - 1 1 ¿ I t - j T - j ) = - — à = = (6.3.22) 
1 -J 2T + 1 

therefore: 

l t > = , 1 | p c > -
1 ' У S/2T+T 1 ' 

2T 
2T+ 1 

(6. 3. 23) 

il> 
2T 

2T + 
T | p C > - — à = | n A > 
1 si 2 T + 1 

(6. 3. 24) 
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Upon inverting these relations 

| p C > = — L = ( | T > + Л Т | | » (6 .3.25) 
N/2T+ 1 

lnA> = 7 = = ( ^ T l î > - U » (6-3-26) 
v ¿ i + 1 

Using the I - sp in scheme, we can write 

H t l T > S ( - ^ V 2 - E + U 0 + | Q p J + | u 1 ) | t > = - ^ = ( | Q p n | - V c ) | P C > 

Н Ш > = V 2 - E + u0 + Vc - ( 1 1 1 ) ) 11> = ( I Qpn I - V e , I nA > 

(6.3. 27) 

(6.3. 28) 

where 

H j = H A + | U a and H | = H c - i U j (6 .3 .29) 

One notes that if | Q p n | were equal to V c then these equations would no 
longer be coupled. 

Robson's approach consists in choosing a radius R such that the 
effective cancellation of | Q p t l | and Vc is optimized inside the radius R 
(see Fig. 22). In this way the internal equations are uncoupled, and 

FIG.22. Minimization of |Qpn| - Vc in the "inside" region (r < R) 

if it is assumed that T is a good quantum number inside, there will be 
no internal T mixing. 

Outside IQ pn| cannot equal V c . It would appear at f i rst sight that 
these equations are coupled in the external region. However, U, the 
nuclear interaction potential, is zero outside, i. e. 

U0 = 0, 
U = U0 + U ! t - T = O f r > R (6.3.30) 

U j = 0J 

There fore the equations are uncoupled outside, as wel l . 
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I GROUND STATE 

FIG.23. Neutron spectrum resulting from (p,n) quasi-elastic and (p.nj ) quasi-inelastic 
scattering reaction 
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FIG. 24. T-preserving rearrangements in a fictitious nucleus 

6.4. Quasi-inelastic scattering 

—> —»• 

Using the potential ( U 0 + U a t • T ) , one can describe ordinary in-
elastic scattering by deforming the nuclear potential, U0 ; that is, by 
taking the nuclear radius as R = R0 (1+ E /3 p Y™). One then gets 
coupled equations for the ground and f irst excited states linking elastic 
(P.Pq) and (p.p1 ) scattering. 

Similarly, the U j (t • T ) term in the optical potential introduces quasi-
elastic or (p,n0 ) reactions; if we deform the f o rm factor U j , we 
analogously obtain coupling to (p ,n ' ) quasi- inelastic scattering to excited 
analogue states, normally analogues of states seen in (p, p ' ) inelastic 
scattering. (Satchler, Drisko and Basse l , 1964). To fit the data, however, 
the deformations needed for U j are 3-5 times l a rge r than those required 
for (p ,p ' ) experiments (see Fig . 23). 

6.5. Anderson's experiments 

Anderson's report at the Tal lahassee Conference (1966) states that 
one seems to observe a (t ( l ) • t* ( j )) (т ( 1 ) - T ( j ) ) interaction, in addition 
to the (? ( 1 ) - f ( j ) ) (Heisenberg) interaction. 

(a) He uses the test reaction 

2 6 M g ( p , n ) , 2 6 M g ( 0 + ) (6 .5 .1 ) 

25 Mg (p,n), 2 5Mg (5/2+) (6 .5 .2 ) 

and explains the significant difference between the cross-sect ions and 
angular distributions of these two reactions by using the term above, 
with about equal strength as the t^1' • t ^ term. 
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(b) When (? (1) • t (J)) (T ( i ) • f ( j ) ) is used, the (T")2 isospin flip operator 
can also be carr ied by a (p, n) reaction, i. e. previously one only used 
{ t W • ДТ = 0 in (p, n) reactions, but now one can have ДТ = 1, i. e. 
isospin flip (see above). One should also excite spin flip (magnetic dipole) 
transitions in the analogue nucleus via this term. Little is known 
about this fo rm of quasi-elastic spin flip scattering. 

7. T - S P L I T T I N G (Réf. J .B . French, P roc . of Argonne Conf. on 
Direct Reactions (1964)) 

7.1. General 

T-splitting can occur only when the nucleus has a neutron excess; 
all excess neutrons are 'polarized1 in I - space . Adding a hucleon or 
nucleón hole to the nucleus, there will be an interaction energy whose 
sign will depend on the alignment of the t = i addition with the original 
T , being positive for the paral le l and negative for the anti -paral lel 
case. This gives r ise to isobaric spin splitting for single nucleón and 
single-hole states. (French and MacFar lane , 1960, 1961.) 

Consider T -preserv ing manipulations among protons and neutrons, 
or T -p rese rv ing excitations. 

Consider a fictitious nucleus (Fig. 24) where 

A s boundary above which no proton states are fil led, and 
В = boundary above which there are no fil led neutron shells. 

Moving protons up to В f rom any lower levels leaves the nucleus in the 
same T state. Moving neutrons up f rom anywhere above A (a r rows ) 
preserves T as wel l . This is because one cannot exchange a proton 
with a neutron below A, since the protons have no place to go. (Pauli 
principle). Any other excitations wil l not produce states of good isospin. 

7.2. Expansion of states in terms of states with good T 

Shell model states which do not have good isospin may be expanded 
in terms of states with good T . This expansion can be written in two 
different fo rma l i sms . 

Fo r example, consider the addition of a 2p3/2 proton to a 48 Ca core 
to fo rm a 3/2" state in 49 Sc. 

(a) n -p formal ism, taking into account the Pauli principle and charge 
independence (see Fig . 25). 

The second term in each bracket corresponds to a 2p3/2 neutron 
^revolving' around a 2 j S c core. 

(b) T formal i sm 

T=9/2 T = 7/2 
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FIG. 25. Pictorial representation of 49Sc(p3^) in terms of states of good T 

This is the notation in the isospin scheme which often has advantages, 
fo r instance, when we are trying to see the connection with the isobaric 
analogue state in foCa . The numbers which appear in these expressions 
are the appropriate isospin Clebsch-Gordan coefficients, 

(44 1/2 - 1/2 j 9/2 7/2) and (44 1/2 - 1 /2 | 7/2 7/2) (7 .2 .2 ) 

The n-p hole-particle pair in the f7/2 - shell needed in the above example 
must be coupled to the ' core ' angular momentum J0 = 0 to allow f ree 
exchange without angular momentum change, and must have TQ = 4 ( from 
group theory). 

T A B L E V . T 0 = 3 S T A T E S R E S U L T I N G F R O M C O U P L I N G A 
J0 = 1 -7 C O R E T O A p3/2 P R O T O N 

2 1/2 1/2 

D [ 3/2 3/2 
1 

3/2 , 

4 5/2 5/2 5/2 5/2 

4 7/2 7/2 7/2 7/2 

4 9/2 9/2 9/2 9/2 

4 11/2 11/2 11/2 11/2 

3 • 13/2 13/2 13/2 

2 15/2 15/2 

1 17/2 

There is however, another set of states in which the hole-particle 
pair is coupled to J0 f 0 (and hence T0 = 3, f rom group theory). Table V 
shows those T0 = 3 states resulting f rom coupling a J0 = 1-7 core to 
a p3y2 proton. 

Three of these states, with J0 = 1,2, 3, have J = 3/2" , T = 7/2. 
If the 3/2" states are being formed by the process 48Ca + proton, these 
•core-polarization1 states car ry none of the strength, since 4 8Ca in its 
ground state looks mainly as shown in Fig . 26. 
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WITH T„=4 FIG. 26. Са ground state 

do-
dn 

T = 9/2 
J*=3/2~ 

J L 

T = 7/2 
J*=3/2" 

A 

FIG. 27. (p,d) spectrum expected without core polarization splitting 

do-
dA 

T=9/2 T=7/2 

/WVy 

FIG. 28. (p,d) spectrum with core polarization splitting 
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FIG. 29. "Core polarization" states and their effect on 49 Sc 

"CORE POLARIZATION' 
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i il 
STATES 
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T=7/2 Л З / 2 " 

T=7/2 ^ З Д " 

T-1П J'=3/2" 

99/2_ 
P l / Г 

4 (a) 

SV50 j 1/2" 

« Z r ' 9 <80 Mev> _ i / T S e / L _ 
/ 11 P1/2 > • 

T„ =11/2 ,Tz = 9 /2 , J % 1 / 2 " 

• 
H t 

• о • • 

FIG. 30. (a) 89Y ground state configuration = 11/2) 
(b) 85 Z r * analogue state configuration (T> = 9/2) 

(0.588 MeV) - ( / „ 

T < = 9 / 2 . T z = 9 / 2 , J w = l / 2 " 

FIG. 31. 8 9 Zr* analogue state configuration ( ^ - = 9/2) 
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FIG. 32. MZr ground state configuration T =5, Tz =5, J"=0" 

У 
'Zr (TARGET) 0* 

To =5 

9/2*, T=9/2 

FIG.33. Energetics for T< and T> states in " r and 85Zr 

These states may, however, admix with the T = 7/2 single-nucleón 
state, thereby fragmenting the (T0 - 1/2) strength and producing a fine 
structure in this T- member of the doublet. This is mere ly an example 
of the Lane -Thomas -Wigner giant-resonance phenomenon3 , as illustrated 

(1) Without coupling two bumps (Fig. 27) in the 48Ca + 'p ' reaction are 
observed (say via ( 3He, d ) or (d, n)): 

(2) With coupling, the T = 7/2 'state' is observed (Fig. 28) to consist 
of 4 members . 

The core states involved in this splitting are shown in Fig . 29. Hence 
there is a competition as to the sharing of the T< strength, which depends 
sensitively on the relative strengths of the isoscalar (depressing) and 
the isovector (splitting) contributions. 

89 7.3. Isospin doublet splitting in 4 Q Zr 4 g 

The T, = 11/2 state in 8 9Zr is located at 8. 0 MeV and is simply the 
analogue of the ground state of 3gY50, which is shown in Fig . 30. 

The T< = 9/2 state in 8 9 Z r is located at 0. 588 MeV and is simply 
a 2pj/2 hole weakly coupled to a 4QZr5() ground-state core (T0 = 5) (see 
F ig . 31). 

The isospin doublet splitting is therefore about 7.4 MeV. The T> 
state is populated by a (p,n) reaction on 89Y; the T< state is favored in 
a (p, d) reaction by a factor of 10 on 9 0 Z r , but the T., can also be formed, 
as can be seen by considering the snatching of a neutron from 9 °Z r 5 Q 

(see F igs . 32 and 33). 

7.4. Effective nucleón-nucleón interaction 

We shall try to calculate the magnitude of the isospin doublet 
splitting and thereby obtain information about the effective nucleon-

3 A.M. Lane, R.G. Thomas, E.P. Wigner, Phys. Rev. 98 (1955) 693. 

below: 
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E, T=1 

E r T=0 

E«'(T=I) 

\ 
N 

ûf«> 
E
( 2 ) 

__:: / 
ËW(T=0) 

FIG. 34. T = 1 and T = 0 centres of gravity for a two-nucleon system, their weighted centre of 
gravity and isospin splitting 

nucleón interaction in nuclei. Consider the energies for two particles 
in different orbits, j j and j2 . Let E ( 2 ' be the center of gravity of the 
states (which a (2J+ 1) ( 2T+ 1) weighting), and ДЁ (2> the difference 
between the separate T = 1 and T = 0 centers of gravity for the two-
nucleon system (Fig. 34). If we now consider only the monopole parts 
of the interaction of a j2 particle with a ( j " ) J 0 T 0 group in a complex 
nucleus, then for the interaction energy we have for the 

Hamiltonian 

^Monopo le ) s n g ( 2 ) + д Е ( 2 ) ( ^ r t ) ( 7 - 4 - 1 } 

int. и v ' 

whose eigenvalue is 

—(2) 
E ( n + 1) = n f ( 2 ) [ T ( T + 1) - T 0 (T 0 + 1 ) - | ] (7 .4 .2 ) 

It follows that 

F o r T = T0 + j 

F o r T = T0 - j 

Consequently 

Ë ( n + 1) = nÉ ( 2 ) (7 .4 .3 ) 

E ( n + l ) = n - ( 2 ) + To Д Ё ( 2 ) ( 7 4 4 ) 

¿ > ¿ 

E(n + 1) = n g ( 2 ) _ (T + 1) Д Ё ( 2 , ( 7 _ 4 > 5 ) 

< 

Е Г ^ - Е ^ ^ ^ ^ Д Ё ® (7 .4 .6 ) 
> ¿ 

If we think of the (n+ l ) s t particle scattering f rom the nucleus con-
taining n particles, the optical model potential will , of course, contain 
the same Lane term Д Е ( 2 ) (T0 -t ) . Fo r hole states one must replace 

by -E ( 2 ) . F rom available data for isospin-doublet splittings in 
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complex nuclei, we deduce the two-nucléon effective parameters 
ДЕ'2>а 1. 5-3. 0 MeV # <-_0. 25 MeV. F rom the binding energy of 
the deuteron we see that ДЕ^2) for free nucléons ~ 2. 28 MeV. 

8. A LOOK AT d 3 / 2HOLE STATES IN THE f?/2 SHELL 
(Réf. : В ans al and French, 1965) 

8.1. Low- ly ing hole states in the f7/0 regions 

Consider the low-lying hole states in the f7/2 region. As we saw 
ear l ier , talking about a hole, we must set Et2' = - E ( 2 ) . Specifically, 
let us consider those hole states found via (p, d) and (d, 3 He) reactions 
on the Ti isotopes. We consider the Ti isotopes to be built on a 4 0Ca 
core. These hole states then re fe r to the coupling of a d3/2 or 
hole to the ground states of the various T i isotopes. The low-lying 
states found via (d, 3He) in the Sc isotopes are those with T = T> = T0 + \ 
and those found via (p, d) have T = T < = TQ - The energy of a d 3/2 

hole state can be calculated, in a semi -empir ica l way, in terms of 
known binding energies and the two monopole parameters ËC2) and 
ДЕ^2> of the d3/2 - f7/2 interaction. The excitation energy E"' of a hole 
state in the nucleus (f7/2) N (£) 40Ca is given by 

E * = E { J - 1 ® (f7N/2+1 Х 4 0 с а ) х л т 0 } ] т - E { f 7 N / 2 ( g ) 4 0 Ca} g _ s _ (8 .1 .1 ) 

where Xq r e fe r s to all other quantum numbers; we rewrite this as 

С D В 

E * = E { j " 1 (g)40Ca} - E { 4 0 Ca } - E { f " ® 4 0Ca} 

A 

. + E { f ^ ® 4 O C a } + E i n t i r 1 ( g ) 0 X o J o T o } ] T + e c ( f % 2 ) ( 8 . 1 . 2 ) 

where E { 4 0 C a } corresponds to a 'vacuum' renormalization term. 
ec 400 keV for the specific Coulomb interaction of each f7^2 proton 
with the proton hole. The hole states are defined by the quantum 
numbers (X0 J0T0) of the core, the I and j of the hole orbit, and the 
resultant values J , T . 

As an example we calculate the energy of the d3/2 hole state 
produced by the (d, 3He) reaction on 46Ti. 

We have 

E * - E ( 4 6 Ta ) - E ( « S C 2 4 ) + E ( - K 2 q - E ( « C a ^ ) +E ¡ n t_ + 2cc (8 .1 .3 ) 

where the letters above the equation identify the terms they are related 
to in the previous equation. 

Now 

2ec + E i n t = - 6Ê ( 2 ) + i ДЁ ( 2 ) - Z X (0 .4 )MeV (8 .1 .4 ) 
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FIG. 35. Calculated and observed d3/2 hole states in the Sc isotopes 

where we have TQ = 1 and the hole interacts with two protons in 46 Ti. 
F r om the mass values, terms (А), (В), (C) and (D) yield - 2 . 0 MeV, 
so that finally: 

= - 6Ê?2' + j AE ( 2 ) - 2. 8 MeV (8 .1 .5 ) 

There fore , if we see two or more hole states experimentally we can 
again determine the two-nucleón parameters E ® and Л Е Й . 

5.2. Nucleón holes 

It should be remembered that when Tz = TQ = 1/2, the hole is not 
a pure neutron hole, but rather partially a neutron and partially a proton 
hole; one should only talk about a nucleón hole. The calculated and 
observed d3/2 hole states in the Sc isotopes are shown in Fig . 35 
(French, Proceedings of the Argonne Conference on Direct Interactions, 
1964). The fit is calculated by using Ё (2) = -0 . 25 MeV and ДЁ(2) = 2.9 MeV. 
Fo r the even scandium isotopes, the core is odd and is easily excited. 
The strength can then be distributed, since the core can be coupled to 
various angular momenta. The two T values shown for 41Sc and 42 Sc 
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FIG. 36. Calculated and observed d3/2 hole states in the Ti isotopes 
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FIG. 37. Experimental results for K F e ( p , d ) and Fe(d,p) Fe 

ar ise because proton-removal reactions here allow us to form both T, 
states as well as T < states, since they are p ro ton -excess nuclei. 

Similar results ar ise for neutron pick-up and are shown in Fig . 36. By 
applying a Coulomb correction to the Sc results we can locate the T> 
states and show explicitly how the isobaric spin splitting increases with 
increasing neutron excess (increasing T ) (see Fig . 36). The large 
even-odd alternations in the excitation energy of the T< states is due 
to the (f7/2 ) N identical-particle pairing effect. An extra particle outside 
an odd core is attracted, whereas an extra particle outside an even core 
is repelled, or only weakly attracted by an even N group. 

8.3. Other hole states 

F o r example the 2sj^ hole state in A = 40 occurs at an excitation 
of 2.6 MeV above the d3/2 hole state. The separation in other f7/2 

nuclei is about the same except for the difference between the (d3/2 1 ) 
-_f7/2 and (Sjy2"^) -iq/2 interaction. These states have been fitted using 
E(2) - 0 and Д Е В = 2.5 MeV. 

9. ISOSPIN IN P I C K - U P AND STRIPPING REACTIONS 

9. 1. General remarks 

Note that one essentially studies different states using reactions such 
as 5 4Fe(d, p ) 5 5Fe and 5 6Fe(p, d ) 5 5Fe. Also, the (p, d) reaction can excite 
both T0 +1/2 states, while (d, p) or (p, p) reactions excite only one of 
these, so that is a more powerful tool fo r studying the shell model and 
analogue states. 

Let us recal l that, in addition to using a shel l -model potential well , 
one takes account of the nucleón-nucleón interaction by using an 
• effective residual interaction having matrix elements of the form 
(,4>Hjm I H I n t У where the i//{jm.s are pure shel l -model basis wave 
functions. Using this description one finds for instance that (d, p) reactions 
on the isotope 48Ca can lead to (weak) f?/,2 neutron states even though 
the f7/2 shell is supposedly fil led. In other words, the (d, p) reactions 
measure neutron vacancies, while the (p,d) reaction locates (partially) 
occupied neutron states. 

54Fe(d, p): adds neutrons to 2p3/2, 2p1/2, l f 5 / 2 , lg9/2, 2d 5/2' 
higher 

14-
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FIG.38. Level schemes for s 5 Fe (T z = 7/2), S 8 Co(T z = 5/2) and 5 9 Ni (T z = 3/2) 

while 

5 6Fe(p , d): removes neutron f rom 2p, lf7/2 , lc^s/2' and deeper. 

Experimental results4 fo r 5 6 Fe (p ,d ) , 0 = 35°, E p = 28 MeV are 
shown in Fig . 37. 

26Fe3() has T = 2; removing a neutron can lead to T = 5/2, 3/2; 
Tz = 3/2. The state is the isobaric analogue of ||Mn30, which is the 
parent nucleus, having T = T z = 5/2. Note that the T., state cannot 
be excited using 5 4Fe(d, p) 55Fe since we can couple at most to T = 3/2 
by neutron addition to 54Fe (T = 1). 

9.2. Example: 60Ni(p, d)5 9Ni 

Fo r 60Ni, To = 2 and the (p, d) reaction can lead to T> and T,. states; 
in this case T> = 5/2, T < = 3/2; T z = 3/2. The T = 7/2 levels cannot 
be reached (Fig. 38). The T = 5/2 state indicated in 5 9Ni is the isobaric 
analogue of the ground state of 59Co. We can describe the ground states 
as shown in Fig . 39. We can reach the 59Ni ground state by a p 3/,2 

neutron pick-up f rom 6 0Ni, but to reach the isobaric analogue state in 
59Ni we must remove an f n e u t r o n . 

The second term here would be weakly excited in a (p, d) reaction 
since we not only have to pick up a p3/^ neutron, but a proton would have 
to be promoted f rom lf7/2 to 2p3/2- A pick-up of an f7/2 neutron also 
leads to the T< state ( 'ortho-analogue' ) in fact with four times the 
intrinsic probability: 

4 (0 

5 \8 5 V 7T8 
(9.2. 2) 

Tj =7/2" 

which is orthogonal to the isobaric analogue state T . 

4 R. Sherr, Summer Inst. Theoretical Physics, Colorado, 1965. 
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FIG.39. Ground states of « °Ni 0 + ( T = 2), 5 9Ni ( 3 / 2 )- ( T = 3/2) and я С о ( Щ - ( T = 5 / 2 ) 

FIG.40. (a) Angular distribution for different £, (b) o ( 6 ) for Í = 3 states 

9.3. General remarks concerning direct (p, d), (d, p) reactions 

The differential cross-sect ion 0(6) = Scr£.(e) where S s spectroscopic 
factor; it contains the nuclear information. O f ^d ) gives the shape of the 
angular distribution, usually calculated by distorted wave methods; 

o-IL (0) = f(k ,k .,£ , V, , . , W , ,s) (9 .3 .1 ) DW v ' p d' n ' (p, d ) (p,d) 

A particle spectrum at a specific angle is indicative but not conclusive 
about the value of S, since this angle may be where the Besse l functions 
are small for some states, large for others. Fo r example; 60Ni(p, d)5 9Ni. 
The 7/2" states of 5 9Ni need £n = 3; therefore, since the Besse l function 
has a maximum at 30° for i =3, this is the angle at which one gets a fa ir 
picture of the 7/2" states. In other words, at {£ = 3)30°, the spectrum 
looks more like S (see Fig. 40). 

(a) Spectroscopic factor 

S = S {ф} 

^—* nuclear wave functions 

S always r e f e r s to a reaction connecting 2 states. 

(b) Fractional parentage expansion gives 

= 0 I target „ ^ O 

¥ (6 2 °8Ni3 2 )T o = 2 j = Х С з , т J,T(59Ni)q>''^ (neutron)]1" (9.3. 2 ) 

j' T 1 (T = 3/2 or 5/2) 

fractional parentage coefficients 
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< = i 
3 / 2 (GROUND STATE I 

3 /2 

FIG. 41. Stylized spectrum for a N i ( p , d)5 'Ni 

(c) By definition, 

S(J0 = 0, T0 = 2 - j , T ) . = Nj [C^ T J 2 (9 .3 .3 ) 

where Nj is the number of neutrons present in the jth shell, or the 
number of neutrons in the jth shell which can participate, indistinguishably, 
in the pick-up reaction. 

m 
The 60Ni(p, d )S 9Ni reaction: 

(1) Consider S ( 0 + - 3/2", T = 3/2) = 4 (£ = 1 neutrons)X [C j T ] 2 since 
Cj T = 1 here, S(0+-> 3/2", 3/2) = 4. 

(2) Consider S (0 + ^7/2~, T = 5/2) = 8/5 = 1.6; for the isobaric analogue 
state of 59Co in 59Ni. (E = .7.28 MeV for Т> c a se . ) 

The wave function of 5 9Ni I. A. S. 

1 
\Лг 

I 

_4 £ 1_ 
7 + V 5 7 

(9 .3 .4 ) 

This term contributes to the " 
reaction 60Ni(p,d)59Ni. 

is a second order process 

. С 
J . T 

(3) Fo r wave function, 

5 9 № = î l i I I 111 
\l 5 8|7 \l 5 7|8 

(9.3. 5) 

'j.T< v 5 
(9.3. 6) 

S(0+ - 7/2", ^ = 3/2) -= 8(4/5) = 6.4 (9.3. 7) 

In view of the above results, one would expect the spectrum for this 
reaction to be similar to that in Fig . 41. Experimentally, however, one 
finds the ratio to be 8/1 instead of 6.4/1.6 = 4/1. This implies that 
either the DWBA calculation is still not in good shape, or that the 
nuclear state wave functions are not as simple as we wrote them down. 
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т, (Т=5/2) 

ISOBARIC 
ANALOGUE 
STATES OF 

• • • • 

'////,. 3/2 
T = 5/2 

7.30 ( 7 / D M e V 
8.10 (3/2*) MeV 
<n=2, йзп 
869 (1/2*1 MeV 
<n=0, S1/2 

ARE HOLE STATES 
OF 47Sc, NOT ITS 
GROUND STATE ANALOGUE 

( T = 3/21 

0.16 MeV 17/2" 
2.8 MeV 

FIG. 42. Parent states of Se in shell-model description 

(d) Consider 2gNi3 0 (p,d)5 7Ni: 

a 
О 

7 \) 3 7 

N j =2; 2 neutrons in the p3/2 shell of 5 8Ni. 

S(0+ ->3/2 ) = 2 since C j T = 1, = 2. 

S (O* - 7/2" T = 3/2) = (8) ( ï ^ ) = 2 ' 6 6 W e а Г е n O W i n t h e Í 7 / 2 s h e 1 1 

S < (0 + - .7/2" , T = 1/2) = ( 8 ) ( J | ) = 4.33 

3, 

,2 

3, 

One does not as yet know how to calculate exactly how the strength 
is shared among the T < states, or how S < is fragmented. 

9.4. Centre of gravity displacement between T< and T. states 

T> T < 

5 7Ni ( 5 7Co) 5. 22 MeV 2. 59, 3.23, 4. 20 MeV 

5 9Ni ( 5 9Co) 7. 28 MeV 2.63, 3. 04, 4. 17 MeV 

6 1Ni ( 6 1Co) 9. 55 MeV 1. 46, 2. 90, 3. 28 MeV 

We see that the centre of gravity of the T< states does not change much 
with A; therefore, the splitting between the T< and T., states does 
increase with neutron excess, i . e . with T = Tz . (3He,d) and (d,n) can 
reveal both X, and states, but (p, p) resonances cannot. 

e . g . 48 T i in lf„/9 shell 
• 2 2 2 6 1 / 2 

48Ti(p, d )4 7Ti. (One finds 3 peaks in the analogue region; i . e . several 
isobaric analogues! (Fig. 42)). 
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9.5. Determination of U j 

F rom (p, d) (3He,d) , ( 3He,a ) , etc. reactions one can determine the 
centre of gravity of the T> and T < states 

and 

V^ S..E. 
E I = ) 1 for T + I 

1 I S t i 

E | = J - ^ ^ f o r T - è 

We now might compare the T splitting, E j - E J,, to the Lane term in 
the optical model potential. 

E | - E j = ^ (2Tt + 1 ) where U = U0 +U i ( ? -T ) 

There fore , f rom the above equation we can determine U j ; 

Ux ~ 90-130 MeV 

Other sources of Ua are: 

(1) Semi-empir ica l mass formula - symmetry term. 
(2) Elastic scattering - optical model fit of V, W; then look at the 
variation of these parameters for various isotopes of the same element 
(increasing T ) . 

9.6. Nucleón transfers 

Two or more nucleón transfers to locate higher analogue states: 

(Experiments f i rst 
carr ied out by 
Garvey et al., 1964. ) 

T = 1 ДТ = 0, 1 T = 0, 1 , 2 . 
0+ ground Tz = 0 - are self -conjugate nuclei 

state 0+ ground state 

С, 180, 22 Ne 

26, 
(P.t) 

Mg, 46 Ti , 5 4Fe 
residual nucleus 

The transfer of two neutrons coupled to spin 0, is L = 0. (p, 3 He) reactions 
form odd-odd neighbours where Tz = 1 consequently T = 1,2. The addition 
of two protons (3He, n) also can lead to T = Tz + 2 states. 
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More than 2 nucleón pick-up: 

( 3He, 6 He) 

ДТ = 3/2, 1/2 

(4He, 8He) 

ДТ = 2 

The exotic reaction ( . B e 3 , t) can give T = 2 states in odd-odd 

ДТ = 1 

. Tz = - 1/2 

nuclei, e . g . , f irst T = 2 state in 14N. 

9.7. Coulomb energy differences for (p, d) reactions (Fig. 43) 

PARENT 

t Â Гр iz-i N*1 
дм 

T " 
ДМ» 

ш 
' P ДМ 

IAS. 

TARGET 

ZAN*n 

ДМ*=ДЕС-Ь=ЕХ-ДМ 
ДМ =M (Z_,AN.,) • M(H) -M (ZA|4)-M(n)= ДМ- à 
AM=Sp-S„ 
ДЕС = ЕХ-ДМ. ¿=ЕХ-ДМ 

•S.=PROTON 
* BINDING 

FIG.43. Energetics for (p,d) reactions 

ZEFIO ORDER 

FIG. 44. Reduced Coulomb energy differences versus Z 

EVEN 

kbDD 
FIG. 45. Odd-even staggering of Coulomb energy differences 

We wil l speak of the reduced Coulomb energy difference, i. e. 
have removed the A1/3 dependence by calculating 

ДЕ red ДЕ 
2Z/ 

1/3 

(9.7. 1) 

It is normalized to the isotope which lies on the 45° line (Fig. 44), i. e. 
AE r e d should be the same for all isotopes of an element if the proton 

0 • - - л 1/3 distribution were uniform, and R ос A F i r s t order effects: 



ISOSPIN 217 

(Z = 4-30)-the interval where the odd-even effect is pronounced (Fig. 45). 
Two protons coupled to S = 0 (anti-symmetric) must have symmetric 
space wave function. They can then get c loser together and thereby 
feel a greater Coulomb effect and so are repelled more. Car lson and 
Talmi also state that this effect washes out as we add more and more 
neutrons. The analogue states look less and less like proton states; 
at higher neutron numbers, an even proton nucleus behaves more and 
more like an odd proton nucleus, e . g . ( 5 7Ni , 5 7Co) . The extra low 
points on the graph are F ( Z = 9) and Sc(Z = 21); they reflect the fact 
that a single proton outside a closed shell is weakly bound, hence its 
Coulomb energy is less . 

9.8. Second Coulomb energy difference 

Let us investigate the difference of the Coulomb energy displace-
ment between successive elements (same A, different Z ) . Define 

A 2 ( Z ) = A E f (Z ) - AE^ed (Z - 1) 

(a) Consider 2 protons: 

If = 0 let the extra Coulomb energy be e s . If the proton is unpaired, 
ë = 3/4 ea + 1/4 e s , where ea re fe rs to j"f coupling of the two protons 

(S =1 ) (S = 0) 

(considering its bonds statistically with the rest of the nucleus). 
Fo r an odd-Z nucleus (one unpaired proton): 

A E c ( Z ) = E C ( Z ) - E c ( Z - l ) = ( Z - l ) ë (9.8. 1) 

^ bonds 

Fo r an even Z nucleus: 

(9. 8. 2) 

(9. 8.3) 

(9 .8 .4 ) 

es ~ 0. 44 MeV, A2(even) = 0.44 MeV 

ë ~ 0.30 MeV, A2(odd) = 0. 16 MeV 

As an example, let us calculate the Coulomb energy differences for 
states in 57Ni and 57 Co which are analogues of each other. The wave 

Therefore 

A E c ( Z ) = ( Z - 2 ) e + es 

i I 
with with other 

'core* proton 

Д (Z even) = (Z - 2)ë +e - ( (Z - 2) ë) = e<. 
^ S й 

A z ( Z odd) = (Z - l ) ë - [ ( Z - 3 ) ë + e s ] = 2 ë - e s 

From experiment, we find that 
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function for 28Ni*9 looks like 

Рз/2 
7 fl/2. 

(9 .8 .5 ) 

The f i rst term has even Z while the second term has odd Z , so that the 
Coulomb energy for 5 7Ni will look more like that for an odd Z nucleus. 
Taking this into account, we find the Coulomb energy difference between 
2587№ and ®77Co to be 

Д Е С = I [ ( Z - 2)i + < y + | [ ( Z - 1)ё] 

Odd Z (9 .8 .6 ) 

Z - f ) ë + I e s 

Fo r states in 59 Ni which are analogues of states in 0aCo 59r 

ДЕС = | [ ( Z - 2 ) ê + e s ] + | [ ( Z - 1)¿] 

Even Z Odd Z 
(9 .8 .7 ) 

This nucleus looks even more 'odd1. 
We see that the odd-even effect decreases with increasing neutron 

number. 
We should real ly take account of the difference in e for a2p3/2 proton 

interacting with a lf7/2 proton and two interacting protons. 
Presumably 

~h0 / -if < é l f _ l f (9 .8 .8 ) ¿P 2/3 11 ,/2 К ,/2 It 7/2 

In general the observed odd-even effect is l a rge r than the odd-even 
effect predicted by Car lson and Ta lmi (Phys. Rev. 96 (1964) 436). 

10. ISOBARIC A N A L O G U E RESONANCES 

10.1. Introduction 

Isobaric analogue states may also be observed as resonances in 
the compound nucleus system. The f irst analogue resonances were 
accidentally observed by Fox et al. at F lor ida State University in late 
1962 when doing a (p,n) reaction on 3 9 Y 5 0 . They observed two strong 
peaks in the excitation curve at a proton energy of about 5 MeV (see 
Fig . 46). 

At f i rst these two bumps presented a real puzzle, since they 
occurred at an excitation energy in the compound nucleus, I g Z r ^ , 



ISOSPIN 219 

FIG.46. Excitation curve for (p,n) reaction on 89Y, in region of 2", 3" resonances of 90Zr 

0.202 MeV 3* 

0 -jñ 2~ FIG.47. 2" , 3" parent states of ™Y51 

39 Y SI bTz=6 

(about 10 M e V ) at which the level density is known to be very high and 
no single state would be expected to produce an isolated resonance. 
The suggestion was then advanced by Robson that these states in 9 0 Z r 
are analogues of low-lying (simple) states in 9gY 5 1 . Analysis of standard 
elastic proton scattering experiments then revealed the spins and 
parities of these two states to be 2" and 3", in agreement with the spins 
and parities of the ground state and f irst-excited state of 9 0Y (Fig. 47). 
Their energy separation was almost identical. The surprising fact is 
that the reaction which discovered analogue resonances was forbidden 
by isospin selection rules. 

3 9 Y 5 0 + P - l 0 Z r 5 0 - 840Zr4 9+ П (10.1.1 ) 

11 ! 6 Ï 1 
2 2 2 2 _ > _m> —> 

11/2 + 1/2 may couple to 6, but 9/2 + 1/2 can, at most, couple to 5. 
The reaction occurs, however, because of T = 5 impurities in the 9 0 Z r * 
wave function and/or a T = 11/2 impurity in 8 9 Zr (G. S. ), introduced by 
Coulomb mixing. 

10.2. Energetics of analogue resonance reactions 

We may relate the Coulomb energies of 9 0Y (G.S. ) and its analogue 
in 9 0 Z r by considering a (p, n) reaction on 90 Y leaving 90 Z r in the 
analogue state (denoted by a * in Fig. 48). 

Qpn = ^target + p - M residual nucleus " n 

(10.2.1) 

= 90Y + p - 90 Z r * - n 

But, f rom the diagram 

There fore 

9 0 Z r * = 89Y + p + E pm (10.2.2) 

Q = 9 0 Y + p - 8 9 Y - p - E " n - n 
(10.2.3 ) 

_ 90y _ 89y . n _ g cm 
P 
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- » * ~ 5 2 MeV 

£ CM p 

. ГЛо-Р 
(Tt, Tt) (1/2-1/2) 

(T,.V2, T(-1/2) 
(Т,.1/2, T,-1/2Ï 

1 . 

• 5.0 MeV 

FOR & = n-'H, 
s9Y(p,n)89Zr MY.n 

0.20 MeV 
0 

- * * 3" 
- * 2" 

90 7, (0 " 50 

(Trl/2, Tt -1/2î 

FIG. 48. Energetics for analogue resonances in ^Z r 

But the separation energy for a neutron f rom 9 0Y is given by 

S n = 89Y + n - 9 0Y (10.2.4) 

Thus 

Q p n = - S n - E ^ m (10.2.5) 

Now, analogue states, by definition, have the same nuclear inter-
action energy, and dif fer only by their Coulomb energies and the 
difference in mass between a neutron and a hydrogen atom, i. e. 

9 ° Z r * - 90 у = Д Е . - n + H (10. 2 . 6 ) 

therefore 

ДЕ, 90 r Z r * + n - 9 0 Y - H = - Q pn (10. 2 . 7 ) 

Substituting our previous equation for Qpn, we find the difference 
in Coulomb energies for the two analogue states to be simply 

Д Е с = S n + E - (10.2. 8) 
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A 
FIG. 49. • Variation of Sn (neutron binding energy) as a function of A 

In the Anderson-Wong (p, n) experiments Qpn is measured directly 
from the neutron spectrum and no further calculation is necessary to 
obtain AE C . Another form for the equation for ДЕс in terms of the 
excitation energy E * and the proton separation energy Sp is immediately 
available from the diagram 

E * = E ™ + Sp (10. 2. 9) 
therefore 

Л Е С = - Qpn= E * + (S„- Sp) ( 1 0 . 2 . 1 0 ) 

which is the same expression as that of Fig. 43. 
We may invert the above equations, solving for E^"1, to see in 

which regions of the periodic table analogue resonance experiments 
are possible. 

Ecpm = ДЕС - Sn (10. 2. 11) 

Now 
ДЕС = constant X Z/A 1/3 (10.2.12) 

Sn varies over the periodic table, but the general trend is to de-
crease with increasing A (see Fig. 49). 

The requirement for a possible experiment is that E p™ be positive. 
For light elements, the Coulomb barrier is low and AEC < Sn, so that 
we cannot excite analogues of low-lying states via resonance reactions. 
Beginning around 40Ca, ДЕС > Sn and resonance experiments become 
energetically possible. Since AEC increases with Z and Sn decreases 
slowly with increasing A, the required proton bombarding energy in-
creases more rapidly than Z, and in fact we land higher and higher 
on the Coulomb barrier for increasing atomic number. Hence pene-
tration effects become more important for the heavy elements. 

10.3. Elastic analogue resonances and isospin impurities 

Historically the first analogue resonance experiment was performed 
and analysed at Chalk River5 , although it was not labelled as such. The 
reaction involved was 

1 4C(p,n ) 1 4Ni (10.3.1) 

t = l { Í о 

5 G . A . Bartholomew, A.E. Litherland, E. B. Paul, H. E. Gove, Can. J. Phys. 34 (1956) 147; 

J.B. French, E. Vogt, S. Iwao, Phys. Rev. 122 (1961) 1248. 
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7™1 
(1/2,1/2) 

FIG. 50. Level scheme for T = 3/2 resonance in " c + p -> 1 5 N * 

Two closely spaced resonances, both with J" = were observed 
in the excitation curve; the lower at 11.43 MeV decayed strongly to the 
ground state of 1 4N, while the upper at 11.61 decayed weakly. This, 
along with other evidence, led to the conclusion that the upper state 
had an isospin one unit l a rger (=3/2) than the lower state (T = 1/2) 
and the upper neutron decay was isospin forbidden. By assuming that 
the two states mixed their isospins and represented impurities in each 
other's wave functions, they were able to arr ive at a value for the mixing 
parameter a 

„ T 2 ( H . 61) 
и # ( Т Г 4 3 ) ~ 4 % ( 1 0 - 3 - 2 ) 

The energetics for the reaction are shown in Fig . 50. 
What these workers failed to advertise is that the T = 3/2 state in 

15 N at 11.61 MeV is the analogue of the ground state of " C g (T = Tz =3/2; 
J* = l/2 + ). The T = 1/2 state at 11.43 MeV in 1 5N is not the main com-
panion T < state, however, since its proton decay to the 14C ground state 
is weak. 

The following points are worth noting when looking for analogue 
resonances : 
(1) We cannot easily discover analogue resonances much above the 
(p,n) threshold, since the widths become too large and the strength is 
spread over too large an energy region. 
(2) Weak transitions in (d,p) reactions on a given target will not show 
up as analogue resonances in the analogue, since they do not have large 
single-particle widths, and moreover will land on the large elastic 
scattering yield where a small , incremental yield wil l be much more 
difficult to detect. 

Many analogue states have been observed as elastic scattering 
anomalies by now. However, not all the states which one might a.priori 
expect to excite are observable. Specifically, no one has yet observed 
elastic analogue resonances of collective states or of states which have 
a complex mixture of configurations. Those states which are strongly 
excited via (p, p) reactions can be described as being good single-particle 
states, almost by definition. 

The relationship between (d, p) and (p, p) studies on the same target 
is very essential and deserves further clarification. The (d, p) reaction 
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can be used to form the parent states of an isobaric analogue pair. 
These reactions add neutrons into bound, low-lying states. The only 
way to do this is via either (d, p) or (t, d) reactions. The (n,y) reaction, 
on the other hand, puts neutrons into unbound states. The (p,p) reaction 
is a proton deposition reaction which puts protons into unbound, compound-
resonant states and, like (n,7) reactions, can only excite higher states 
in the daughter nucleus. These states can have T = Ttarget ± 1 / 2 . 

Denoting the target (core) nucleus by C, let us consider 

С + p ^ (C + p ) * - » С + P (10.3.3) 

T z T z - 1/2 T z - 1/2 

T T z 1/2 T 2 + 1/2 

where the analogue state (* ) is a state in the compound system. 
As a specific example consider the case of 

39Y50 + P - (40Zr 5 0 ) * (J = 2") (10.3.4) 

T z 11/2 -1/2 T z = 5 

T 11/2 1/2 T = 6 

(The T = 6, Tz = 5 state is an analogue of the ground state of |^Y51 (T = Tz =6). 
The agreement between the two level schemes, that is to say 

between the known states of 90Y and those excited in 90 Z r * as compound-
nucleus resonances is probably the most spectacular seen to date. 
(These results are reported in the Heidelberg Conference, 1966, by 
J .D . Fox . ) The level schemes are shown in Fig . 51. The analysis of 
these reactions is more or less straight- forward and allows one to 
extract the pertinent resonance parameters. 

3 - 3.10 3 - 3.164 

4 " 2.97 4 " 3.002 

Г 2.60 
2 - 2.41 

1.1 

1~ 2.627 
2" 2.504 

1.33 1 1.374 

0 " 1.214 

2 * 0.777 NOT r 
OBSERVED i- 7* 0-683 

3" 

2" 

0.20 

0.00 

0.202 

0 

9 0 , I E ™ - 4 . 7 7 MeV) 
l O SD p 

FIG. 51. Leve l schemes for JJZr50 (analogues) and ' °У 5 1 (parent states) 
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10.4. Resonances in the medium-to-heavy region 

The analysis of the resonances occurring in the medium-to-heavy 
region has been carried out usually assuming only a contribution from 
Coulomb scattering, and a single isolated resonance. Three terms 
then contribute to the elastic scattering: a Coulomb term, a resonance 
term and an interference term. 

doA /сЬЛ Л к Л 
4diV + \d£V + \dnj 

Elastic Coulomb Resonance Interference 

(10.4. 1) 

where 

Coulomb 

7Г i 12 
¿ | С ( в ) | (10.4. 2a) 

and 

C(0) =-j=rT7 ( § J exp - 2inln ( sin (10.4. 2b) 

where 

hv„ , .. 
distance of closest approach (10.4.3) 

or numerically 

M 0. 15748 Z l Z 2 M E 

where E is measured in MeV and M is the reduced mass in atomic 
mass units. The resonant term is given by 

dcA 
d qJ 

Resonance 
(2i+ 1)(2I+1) X k2 

B L ( s , s ' )P L (cos0) (10.4.4) 

ss'L 

where 

B l ( S , S " ) = | £ ( - I ) - ' X Z ( V k / N J N I s L ) X Z ^ ^ ^ J N I s L ) 

•ím'N 

Нл1 N X T L M , , x T J N * , , 
S Í M S , < ! M s £ N s ' c Ñ 

(10.4. 5) 
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and 

} 2 íw„ í(w£- OjjJ 0j) 
T s í s T = e 6 H ' 6 S S - - e e 

( E r E ) + Î Ç j 

(10.4. 6) 

í_ 
l r¡ ue = ) tau ¿ (10.4.7) 

m = 1 

= 0 is the Coulomb phase shift and i and I re fe r to the spin of the 
projectile and target, respectively. The purely resonant term is usually 
small , the observed elastic scattering anomaly being caused principally 
by the interference term 

Й ) (2i+ 1M2I + 1) W ^ ^ ^ ^ П е Ц Т ^ ^ Р ^ в ) 
Interference S L J ( 1 0 . 4 . 8 ) 

where P L = the nuclear phase shift for the JC 'th partial wave. 
Summations are subject to the following restrictions: 

| i - l | * s s 1+i ; | j - s | s i s j + s 

I V ' m I * L S i N + i M ( 1 0 - 4 " 9 ) 

L s 2J> ; 21!, or 23 whichever is smallest. 
Max Max 

It should be noted that the analyses of analogue states in the heavy 
nuclei A ~200 have included the effects of nuclear potential scattering 
by assuming that the underlying background, in addition to Coulomb 
scattering, can be described by an optical model, and then superimposing 
a resonance term on this background and extracting the important 
resonance parameters. Clear ly this method breaks down when the 
resonance under study exhausts a large portion of the single-particle 
limit, since the optical model generates such a single-particle resonance 
by itself, and we would have a redundancy. 

This expression is somewhat simplified for spin 1/2 on spin 0 
(Coulomb amplitude plus one partial wave). 

da I ,.,„,|2 
df2 r , = l f (0 )|2 (10.4.10) Coulomb 1 

da I V , Z í i j i j s D Z ^ j í j s ' D r A r f » . P (cos0) 
' = 2_. ( - 1 ) ^ ; S] ' V (10.4.11) df2 Resonance 8 k 2 { ( E J - E ) 2 + 1 / 4 Г 1 } 

ss'L 

-21 WO 
da I 1 p f(8)¿ P i (cos0 ) , 
d ñ " , f = ^ ( М + 1 1 Г « Н е 7 (10.4.12) 

Interference 

where LM a x= 2 i , 2 J , whichever is smal ler . 
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In general a measure of the size of the resonant 'effect ' is given by 

(2 J + 1) 
(21+ 1) (2i +1 ) Г Т т а 1 

P . ( C O S 0 ) (10.4. 13) 

so that spin 0 (even-even) targets will naturally show l a rge r effects. 
Also, to locate resonances.the la rger the в the better. Some standard 
's ignatures ' for different ü-values can be seen, for example, in 
Vourvopoulos et al.(1966). 

T=6, Tf s 
NEUTRON DECAY IS DUE TO 

T=U/2 MIXING INTO 
, 9 Z r , OR T=5 MIXING 

INTO T=6 ANALOGUE STATE, 

AS DISCUSSED PREVIOUSLY 

Т ф 5 
ув/2 

FIG. 52. Neutron and proton channels for the reaction Y(p,n) Zr 

10.5. The reaction 89Y + p 

Let us look at the reaction 8 9Y + p and examine the neutron and 
proton channels (Fig. 52). 

In 8 9Zr , T = 11/2 states (of same spin and parity) mix with the ground 
state, owing to the Coulomb field; thus we can couple T in an allowed 
way in the exit channel. What one observes is a proton width comparable 
to the neutron width; this may be understood when we consider the 
strength of these two channels in terms of the square of the Clebsch-
Gordan coefficients coupling the neutron and proton channels: 

(1) for the proton channel: 

( T t T t i + l T t - | ) 2 = ^ ^ 

(2) (a) for the neutron channel (the T = 5 impurity in the T = 6 state) 

(Tt - iT t - 1 H | T t - I T - 1 ) 2 = I 

in other words, the proton is handicapped by a (2T t+ 1) factor 
due to geometry alone. 

(b) for the neutron channel impurity due to T = 11/2 in 8 9 Zr 

(T tT t 
\2 _ 2Tt 

2Tt + 1 
1 I ¿ I t + i T - I ) 2 = 7 ^ 7 - 7 = 1 also. 

15' 
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When the reduced widths for neutron decay and proton decay are 
compared one must put them on an equal footing. The quantities to be 
compared are (2Tt + 1)02 and 02, and not 02 and 02. with the R-matrix 
approach and a square-well potential model, the reduced widths are 
derived from the experimentally observed width 

r o b s = 2 2 

i j s 1 ' « s 

where P^ is the penetration factor for H - wave protons. Using the 
Wigner limit y2w = 3/2 Ь2/ца2 we define 02 = y\jy2u • 

Boosting the proton width by the (2Tt + 1) factor and including 
barrier penetration, we find (2T+ 1)02 /02 ~ 102 - 103 for the special 
case of 9 0 Zr * where Гр Гп = 5 keV. In other words, the intrinsic 
probability for neutron emission is highly suppressed. 

10.6. Comparison of stripping and elastic scattering reduced widths 

One can also obtain reduced widths from (d, p) experiments: 
Compound nucleus resonance: C + p - " A ->• С + p leads to y2, the reduced 
width for proton capture into analogue states. 
Stripping: C + d ->C + n + p leads to y\, the reduced width for neutron 
capture into a bound parent state. 

By expressing the |Т, T - 1 )> wave function with fractional parentage 
coefficients 

« Т.Т-Г I a «TfX (T Mf * m I T T - 1 м/P V2 m ( 10 • 6 • 1 > 
otTf m 

the reduced width is expressed as 

7aT fM fm= [ % T f ( T f M f l m | T T - l ) ] 2 (10.6.2) 

The reduced width expresses the prpbability that¥T T_1 can be written 
as ^aTfMf multiplied by а nucleón where aa T is thé fractional 
parentage coefficient. f 

Also note that 

4 _ ( T t T t M | T t + i т ; - ! ) 2 , 1 „ 0 6 3) 
y\ ( T t T t i i | T Î + i Tt + A)2 2Tt + l ( 1 0 - 6 - 3 ) 

10.7. Fine structure in isobaric analogue states 

Not so long ago several reactions were studied in which it was 
expected that the total width Г of a compound nucleus resonance should 
be equal to Гр , the partial proton width. Such cases would exist if none, 
or few channels were open, other than the incident (elastic) channel. 
An example is 92Mo(p, p)92Mo, where an isobaric analogue resonance 
exists such that |Qpn|>. E=m; i .e . the (p,n) channel is closed; with poor 
resolution, we see sometliing like Fig. 53(a). 
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FIG. 53. (a) Elastic scattering (poor resolution) 
(b) Elastic scattering (high resolution) 

1.871 
1.636 
1.354 
1.035 

0.517 

0.171 

1/2* ~ 2.45 MeV 6 t h EXCITED ANALOGUE 

3/2" ~1.88 MeV 4лЕХС1ТЕО ANALOGUE 

ECpM-0.497 

FIG. 54. Isobaric analogues in the Duke experiment 

Sc LEVELS 

FIG. 55. Fine structure of 49Ca ground-state analogue in Se (Ricci et al.) 

However, the best fit to the experimental cross -sect ion yields 
Гр ~ 1/3 Г, (the resonance was 30 keV wide) i. е. Г р could account for 
only 10 keV. Thus we are not dealing with a simple resonance, but 
with many closely-spaced resonances of the same spin and parity, and 
lower T, which are seen when the experiment is redone with higher 
resolution (Fig. 53(b)). 

In the 4 0 A r + p 'Duke experiment' (Keyworth et al. , 1966), a rather 
light analogue experiment, the level density of T< states is low enough 
so that the best resolution experiments could just resolve them and 
analyse them individually over the entire 'analogue state' region. 

At 1. 88 MeV levels, the excitation function was found with an energy 
resolution of the order of 250 volts (and sophisticated equipment). What 
was seen was not one 3/2 " resonance (see Fig. 54) but 17 of them, all 
3/2" having total widths varying from 70 volts to 800 volts. Every one 
of these resonances had the signature of 3/2" . When looked at with 
poor energy resolution (5 keV), the signature was also 3/2", but just 
one resonance was seen. Al l 17 levels add coherently to give an overall 
3/2" shape when the beam energy spread becomes large enough. 

With the 48Ca(p, ny)4 8Sc reaction, what was observed was the yield 
of 0. 37 MeV gamma radiation, which reflects more or less the total 
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neutron yield to several low-lying states of 48Sc. Seven components 
were resolved whose widths varied between 1.2 and 3.4 keV,6 presumably 
corresponding to the ground state of 4 9 Ca (see Fig . 55). 

10.8. Spreading width 

As we have seen, when many levels participate in a resonance, the 
partial proton width may be less than the total width, even when we know 
that no other channels having appreciable width are open; i . e . 

rTotal * i Гс 
C* 

Thus we define a 'spreading width* as the remaining width 

• i -
W = r T o t a l - > (10.8.1) 

A better definition extends the sum o v e r channels which 
c* 

enjoy T -a l lowed decay, before the mixing with T< is turned on. 
The theory dealing with the fine structure near analogue resonances 

is due to Robson (1965), and will not be discussed here. The origin 
of the spreading width is presumably the Coulomb field but details are 
not fully understood at present, both theory and experiment are 
actively being pursued at this time. 

The Duke data (Kayworth et al. , 1966) for elastic proton scattering 
f rom 40A, with extremely high energy resolution being used, found all 
of the individual members of two Lane -Wigner -Thomas giant resonances 
in 41K. Standard elastic scattering analysis showed that each individual 
resonance had J" = 3/2" (or l /2 + ) and Г /Г = 1. Thus a simple 3/2" 
(1/2 + ) shel l -model configuration for the 1.88 MeV (2.43 MeV ) state in 41K had 
been fragmented through the residual interactions into many components. 
Ea r l i e r data taken at Iowa with cruder resolution showed only a single 3/2" 
(l/2 + ) resonance (see F igs . 56 and 57). Upon analysis, the experimenters 
found Гр/Г < 1 . The question here is what happened to the missing 
width, l. e. why isn't Гр = Г ? The answer is that robse rved was l a rger 
than EE, , , since the tails of individual resonances added Duke resonances 
coherently to produce one large resonance, with much non-resonant 
range in between. The surplus width is known as the spreading width 

W = r " J [ r c (10.8.2 ) 

с 

10. 9. Comparison of reduced widths for proton and neutron addition 
(or removal ) 

.yObs. = у + у mixing ( 1 0 . 9 . 1 ) 

6 Chilosi, Ricci and Vingiani,Heidelberg Conference, 1966, and private communication. 
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da 
dn 

FIG. 56. Fragmentation of a simple 3/2" ( l / 2 + ) shell-model configuration state into many components 
through the residual interaction (stylized ) 

The true proton reduced width amplitude ур depends on the as-
sumption of a sharp nuclear radius R, i . e . the possibility of factoring 
the penetrability. 

L imit Tp = 0 (10.9.2) 

R - » » 

since the analogue state is a 'bound' state and hence vanishes exponentially 
at infinity. According to Robson, = 0 in the interior region, since, 
as we saw ear l ier , the Schrodinger equation becomes uncoupled in the 
interior region because, on the average, we have a cancellation between 
|Qpnl a n d v c • 

A more recent approach to the mixing problem has been carr ied 
out by Schiffer (1966) and Bondorf (1966). By means of a computer 
calculation, they consider protons scattering f rom an optical model 
potential, (having no imaginary part which would correspond to the 
absorption of particles - or a reaction) where the well depth is adjusted 
so that the neutron binding energy, Sn , agrees with experiment. Then, 
adding a uniform s ingle-particle Coulomb potential for proton scattering, 
the calculation should yield a resonance in the cross-sect ion whose width Г 
is the maximum single-particle width for protons scattering f rom 
a given target nucleus. This Г serves as a 'Wigner limit1 for the problem. 
The ratio of the observed width Tobs to Г is defined as the spectroscopic 
factor 

SP,P (10.9.3 ) 

To provide a fa i r comparison with neutron reduced widths our should 
be multiplied by 2T+ 1 (since we cannot see all of the single-particle 
state in scattering). 

obs. 
( 2Т+1 )Г р Ы 

S = — (10.9.4) 
P - P Single Particle 

г р у 

The neutron spectroscopic factor, usually obtained from (d, p) reactions 
via DWBA analysis, is definéd by 

S d p = — (10.9.5) 
U , P 2 Single Particle 

" V 
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FIG. 57. Same as Fig. 56, with low resolution 

T A B L E V I . A C O M P A R I S O N O F N E U T R O N A N D P R O T O N 
S P E C T R O S C O P I C F A C T O R S F O R 4 9 C a - 4 9 S c 

J r t 

( k e V ) 
Г Р 

( k e V ) S P . P Ч Р 

3/2" 8 .2 2 0 .64 ± 0,07 1.03 

l/2~ 200 136 1 .24 i 0 .27 1.33 

5/2" 40 24 0 .91 è 0 .2 0 .72 

9/2 + 25 . 2 . 7 0 . 3 1 ± 0 . 1 0 .31 

FIG. 58. Relation of the compound nucleus (C + p) and corresponding parent states in the nucleus 
(C + n), to the target nucleus С 

A comparison of proton and neutron spectroscopic factors for 49Ca-49Sc 
is in Table VI, based on data from Schiffer et al. (1966) at Argonne 
National Laboratory. 

10. 10. Analogue resonances in inelastic proton scattering 

Analogue states in the compound nucleus (C + p) may decay to the 
ground state or the low-lying excited states of the target nucleus C; 
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3/2- Y IELD 
(1.50 MeV 
STATE IN 

89Y) 

'd5/2. Pi/21 

17 2~ Г,4" Г,2" 
<d3/2. PiJjl 

l d 5 / 2 - Эз/21 l s № 9 9 / 2 > ( d 3 / 2 , g 9 / 2 ) 
9/2* YIELD 2*,3*,44,5*,6*,7* W 5* 3* 4* 5*, 6* 
(0.91 MeV) 

1/2" Y I E L D 
(G.S. ) 

(d5/2. Pl/21 
2"3" 

(Si/2, Pl/21 
0" Г w 3/2.Pl/21 

2 " Г 

6.0 E„ (MeV) 10.0 

FIG. 59. Proton energies at which resonances should be observed in 8 9Y + p, elastic and inelastic 
scattering and probable particle-hole configurations for coupling the target nucleus 89Y weakly to a 
proton 

therefore, resonances are expected in both elastic and inelastic 
scattering at the appropriate incident proton energies. Possib le decays 
of the compound nucleus are illustrated in Fig. 58, as well as the 
corresponding parent states in the nucleus (C + n). 

The question of how a compound-nuclear analogue state distributes 
its strength among the target levels in inelastic scattering depends upon 
how well the target and compound levels can be described by various 
configurations. 
Example: This point is wel l illustrated in data on proton scattering f rom 
doubly-magic ^ P b j ^ (Moore et a l . , Phys. Lett. 22 (1966) 616) .2 0 8Pb 
has three low-lying levels at energies of 2.61 MeV , 3.19 MeV, and 
3.48 MeV with J" = 3", 5", and 4", respectivély. The 5" and 4" states 
can be described simply as the coupling of a gg/^ particle to a p.^2 hole, 
i . e . (gg/2, Pi/2"1)4",5"' while the 3"state consists of mixing about 30 s ing le -
particle configurations. Thus when we excite the 9/2+ analogue state in 
209Bi of the ground state of 2 0 9 р ь , we observe a strong yield only on 
resonance to the 5" and 4" states in 208Pb, with yield to the 3" state 
coming f rom a wide region of excitation in 209Bi. Furthermore, we find 
that the angular distribution of inelastic ally- scattered protons to the 
5" and 4" states is isotropic. The explanation for this fact is that in 
order to create а рх/2 hole to form a (g9/2, PI/2_1)5",4" configuration we 
must emit a p1/i2 proton and, since one of the restrictions on the complexity 
of a resonant angular distribution is that L ? 2j = 2§ = 1 and L must be 
even, the only Legendre polynomial contributing to the cross-section is 
P Q ( c o s 0 ) = 1. Similarly, we can form analogues of 208Pb in 208Bi via 
the reaction 

207 Pb (p 1 / 2 - l ) + p -> 2 0 8 B i * ~ 2 0 8 P b (10.10.1) 
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and now observe elastic scattering through the 5 and 4" states as 
compound resonances formed by a gg^2 proton coupling to the hole 
of 207Pb, while seeing no anomaly at the location corresponding to the 
3" state (Bredin et al. , 1966). 

10. 11. The window effect in inelastic scattering (Réf. D . L . Allan, 1965) 

The diagrams in Fig . 59 indicate the proton energies at which 
resonances are observed in the cross-sect ion for scattering to the 
ground state (1/2"), the 0. 91 MeV f irst -excited state (9/2+), and 
1.50 MeV second-excited state (3/2") of 89Y. Also shown are probable 
single-particle configurations for coupling the residual nucleus, thought 
of as a 2pj/2 particle (G. S. ), lgg/2 particle (0. 91 MeV state) and 2p3/2 

hole (1. 50 MeV state), respectively, with a proton f irst in the 2d5/,2 shell, 
next in the 3S-J/2 shell, and finally in the 2d3^2 shell as we increase the 
incident proton energy. 

Fo r the excited-state yields we are using the extreme weak coupling 
model so that all possible couplings are degenerate in energy, e . g . 
2+, 3+, 4+, 5+, 6+, 7+ in the case of (d5/2, gg/2 ). What Allan noted f rom 
such experiments (actually in Sn isotopes) is that resonances occur in 
the inelastic yields to states in the target in an energy band ДЕ 
approximately ДЕ above the ground state analogue resonant energy; 
in our example this would be the energy of a d5/2, s or d3/,2 proton 
plus the excitation energy in 89Y for the residual excited state. This 
effect has also been observed in many other nuclei. 

10.12. Remark 

An interesting effect should exist in (p, n) analogue resonance 
reactions, where the isospin-forbidden neutron groups to the various 
states of the residual nucleus can be resolved: one should observe 
the same branching ratios and other characteristic properties for 
the different neutron groups on and off resonance. The reason is 
that the only neutron decay strength of these resonances is introduced 
through isospin mixing with T < states, an overlapping sea of which 
(with slowly varying decay propert ies ) surrounds our particular T> 

T A B L E VII . C O M P E T I N G P R O C E S S E S IN I SOBARIC A N A L O G U E 
R E S O N A N C E E X P E R I M E N T S 

Scattering Resonant 

Elastic I Compound Nucleus : 

analogue states 

Inelastic I and T < states 

•Channel coupling (Robson) 

Non-resonant 

Coulomb Nuclear 

Rutherford 

Coulomb 

Opt ica l Mode l 

Direct 

Background on which the 

analogue resonance sits. 

Channel 

coupling 

(Satchler, 

Tamura, 

e t c . ) 
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FIG. 60. Inelastic resonant excitation curves: 
(a ) for small direct excitation 
(b) for large Coulomb (or other direct) excitation 

10.07 10.15 10.23 10.31 
E(MtV) 

FIG. 61. Proton polarization determines J for analogue state of " 5 S m 

state; hence the neutron decay of TV should reflect only the T< 
properties. 

In a s imi lar manner, for the isospin-forbidden resonance reactions 
discussed ear l ier , where the proton decay is isospin forbidden, all 
proton decay properties should reflect those of the ( few?) T<. states 
(having same spin and parity) which admix into the state in question. 
W e thus have a powerful 'tracer1 technique for locating the specific 
sources of isospin impurity. 

10.13. Summary (see Table VII) 

Interference can occur between any of the columns of Table VII. 
If the B (E2 ) to excited target states is small, then not only is the Coulomb 
excitation contribution weak, but the direct excitation is likely to bë 
small as wel l . Fo r the 2+ f i rst excited states of even-even nuclei 
which have large B (E2 ) values, there is a good overlap between ground 
state and 2+ states. Since the 2+ state is mostly a collective state, 
single particle processes (such as ours) proceed weakly, i . e . not 
only is there a large non-resonant background (Fig. 60) but there is not 
much resonant contribution, so that these states show little effect 
at resonance. The same is true for the'3" collective states. 

10. 14. Polarization measurements on analogue resonances 
Refs . Moore and Ter re l l , F iarman et al. , 1966) 

These authors determine the J value unequivocally after the SL value 
is known; it requires only a semi-theoretical treatment. Elastic 
scattering experiments determine the SL value, and from this one 
predicts (theoretically) the polarization curves for SL + 1/2. One then 
per forms the polarization experiment (second scattering f rom a known 



ISOSPIN 235 

polar izer , e . g . carbon) to see which of the vastly different curves is 
applicable (Fig. 61). 

There fore 

d o \ 
díí J 

= A - A + В v В 
elastic 

P = polarization = A"~ В + В * A 

A"5 A + B * B 

du 
diî P = A * B + В * A = 2Re ( A * B ) 

where 

a n d 

« П о 0 i î ) incosec 2 e/2 i C 1 

A = - — cosec2 - e + — ^ (J + |) TL_, P£ (cosS) 

L.J 

B = ¿ l ( - 1 ) L + J + 1 / 2 TL.JPî(C0Se) 
L.J 

T L , J = e 2 l L l - U L . J ' WL = Coulomb p h a s e (10.14. 1) 

U L.J 
2i|L 2i <pL 

e + e iT 

(E, -
(10.14. 2) 

where ÇL = optical model phase (complex) 
9 l = background resonant phase (real ) 

and when Imf L = 0 then f L = фь . 
At resonance one sees a large polarization effect, whereas the 

effect in the elastic cross -sect ion might be small ; da/dQ is proportional 
to |A| 2 + IВ12 and |A|> |B|, therefore | A | 2 » | B | 2 (the f i rst term 
in A is large and non-resonant). However, P is l inear in A*B and 
the resonant term modifies the non-resonant term in f i rst order . 

11. OTHER WAYS OF FORMING A N A L O G U E STATES 

11.1. Yavin method (Figs . 62 and 63) 

The Yavin method also makes use of the (p, n) reaction, but instead 
of looking at the outgoing neutrons (Anderson, Wong — time-of-flight 
measurements) , one is interested in the subsequent outgoing protons, 
specifically, the 'delayed1 protons emitted after the (p, n) reaction. 
(Yavin et a l . , Phys. Rev. Lett. 16 (1966) 1049). 

Z A + p ( Z + 1 ) A *+ n 

' ZA"1 (ground state) + p 

(11.1.1) 
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FIG.62. Energetics for (p, np) (Yavin et a l . ) and (d,np) (Moore et a l . ) experiments 

The reaction they investigated was 9 1 Z r ( p , n p f " Z r ; a l N b i is proton 
unstable but neutron stable. This experiment can be done with 
poor beam resolution. In fact, for the analogue state to be distinct 
in the proton spectrum, poor beam resolution is preferable . Ve ry 
good resolution would show the fine structure associated with the T < 

states surrounding the analogue state thereby masking the analogue peak. 
The detector resolution, however, should be as good as the width of the 
analogue state. Note that 

GD. ST. 

PROTONS FROM 
T, STATES 

Г = 30 keV FROM 
FOX et. al. 
RESONANCE 
EXPERIMENTS ON 
90Zr (p,p)90Zr 

FIG. 63. Proton spectrum for 91 Zr + p experiment of Yavin 

1. (p,n) reaction picks out T, states because it is mainly an isoscalar 
reaction (ДТ = 0). 
2. Since 9 1 Nb* (9.48 MeV ) is an analogue state, it has a simple 
configuration and therefore a large reduced width for proton emission 
(analogue states are mostly single particle states. ). 

The proton spectrum (Fig. 63) shows that, álthough one has poor beam 
resolution, the 'delayed' proton-peak widths wil l be sharp as long as 
they are not hampered by poor detector resolution. If the incident 
proton energy is changed, the analogue peaks will not shift (to f i rst o r d e r * ) 
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although the proton elastic and inelastic scattering spectrum will shift. 
Fo r proton energies far above threshold, however, in the (p, np) reaction 
on 9 1Zr , the analogue levels are broadened due to the large momentum 
given 91Nb"' which then emits a proton; this is a Doppler broadening 
of the level. Therefore the best results are obtained when E i n c is near 
the (p,np) threshold. 

11.2. Photoprotons f rom T> states (Ref. Temmer , unpublished) 

As was mentioned ear l ier , one can excite T = Tz as well as 
T = Tz + 1 states by electric-dipole photons on neutron-excess nuclei. 
(Fal l ieros et al. , 1966). Once again, in the spirit of Yavin, one can 
use a poor resolution photon beam (that is the way they are, usually! ) 
and good resolution proton detector to find the protons from the (Y,p) 
reaction through the analogue state. Again, the simplicity of the T > 

analogue configuration compared to the T,, configurations around it will 
favour proton emission; moreover , the above-threshold broadening 
effect mentioned in connection with the (p, np) reaction does not occur 
because of the small momentum of the photon. There is a geometric 
factor (cf. section 2.3(c ) ) as well as a structure factor against the 
T> state, and it remains to be seen experimentally if the proton 
groups stand out sufficiently over the background to be identified. If 
so, this gives a useful handle on the determination of the radiative 
widths of analogue states. 

11.3. Coupling of the analogous channels in (d, p) and (d, p) reactions 
(Ref. Moore et a l . , Phys. Rev. Lett. Г7 (1966) 926) 

The reactions considered were 

In these reactions one also sees peaks in the proton spectrum 
which do not move as the bombarding energy is increased, i . e . 'delayed' 
protons. Moore et al. observed the ground state (5/2 + ) and f irst 

90 Z r (d , p ) 9 1 Zr 91 (11.3. 1) 

9 0 Z r ( d , n ) 9 1 N b * ( p ) 9 0 Z r (11.3.2) 

• 5fi* IN Nb 

5/2* IN 91 Zr 

91 

6 7 8 
E„(MeV) 

FIG. 64. Analogue channel coupling for 90Zr(d, p) 91Zr and 9 0Zr(d,n)9 1Nb experiments by Moore et al. 
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excited state (l/2+) analogues of 91Zr, in 91Nb, at the same time as 
observing the parent states in 9 1Zr resulting from the (d,p) reaction. 

They also obtained an excitation function, with good beam resolution, 
to investigate proton thresholds for the reaction 90Zr(d, np)90Zr from 
the 9.48 and 10.69 MeV levels of 91Nb. For the 9.48 MeV level (5/2+) 
the proton threshold occurs at a deuteron energy of ~ 7 MeV. If we 
increase the energy by 100 keV the cross-section increases very 
rapidly, and then begins to level off. The protons emitted from this 
highly excited state do not have the usual difficulties of Coulomb barrier 
penetration, hence the rapid onset of yield beyond threshold. They 
also recorded the protons from (d,p) to the ground state of Z r (Fig. 64). 
This reaction seems to take notice of the onset of the (d, np) reaction. 
This is due to the isospin coupling between the ( 9 1 Zr+p ) and (9 1Nb* + n) 
channels, related to each other by the coupling operator T t+. The 
anomaly in the (d, p) excitation curve also appears in the Sjy2 level, 
the first excited state of 91 Z r , at an energy corresponding to the proton 
threshold energy for this state. Detailed understanding of this coupling 
is not yet available. 

12. HOW GOOD IS ISOSPIN IN HEAVY NUCLEI ? 

After all the use we have made of the isospin quantum number it 
is not inappropriate to ask whether it is a good quantum number. At 
first sight it seems that it must be good in order to lead to the many 
striking consequences we have discussed in these lectures. However, 
it turns out that most of these consequences would not have been greatly 
altered even if considerable isospin impurities existed. Experiments 
such as beta decay in heavy nuclei between 0+ states (cf. section 2) where 
ДТ f 0 seem to yield tiny amounts of admixtures of ДТ = 0 component, 
it is true. On the other hand, this represents only one type among 
many possible impurities; moreover it deals only with low-lying 
nuclear states. Similar situations exist in almost every other so-called 
test for isospin impurity. When the Coulomb interaction is treated 
as a perturbation, one also usually obtains small admixtures. This 
body of circumstantial evidence seems very compelling in favour of good 
isospin, but one should not let down one's guards against possible sur-
prises in this area. A more clear-cut type of impurity test such as 

T A B L E V I I I . V A L U E S F O R T H E y C O E F F I C I E N T S 

Nucleus % of ( T + 1) into T ground state ( y 2 ) 

16 О 0.15 

40 Ca 2.19 

90 Zr 2.20 

208 Pb 2.69 
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(a, a ' ) or (d ,a ) reactions on heavy nuclei to T = T z + 1 states in T = T z 

nuclei was discussed ear l ier . 
A simple picture for the mechanism introducing isospin impurity 

was given by Soper (unpublished?) and used to obtain numerical 
estimates for the admixtures in a ser ies of nuclei, shown in Table VIII. 
The proton single-particle wave functions are allowed to expand owing 
to the Coulomb repulsion. This necessari ly introduces T- impurity 
since it is a neutron-proton distinguishing deformation of the wave 
functions. In a simple osci l lator -wel l picture, using the neutron wave 
functions as basis states, we expand the proton wave functions in this 
orthonormal set. What this involves is the excitation of protons f rom 
below the F e r m i level to unfilled states above. As we know, such 
transitions are only T-mixing if the unfilled states lie above the neutron 
F e r m i level . Moreover , it turns out that only certain protons can 
contribute to such transitions, namely those going from orbits (n, £) 
to (n+ l , i ) . Writing the wave function as ф - Фт +УФт+1, Soper finds 
the values for the coefficients given in Table VIII. We see that there 
is no significant increase between Ca and Pb. This is due to the 
opposing effects of the increasing charge on the one hand, and the in-
creasing neutron excess on the other, the latter making it energetically 
more difficult to excite protons above the neutron Fe rmi level for 
l a rge T z . 

We see that, paradoxically, the very Coulomb field which is 
presumably the sole culprit introducing T- impurit ies , is also the 
cause for the neutron excess in heavy nuclei, which in turn seems to 
contribute to maintaining isospin purity. Another way of stating this 
is to say that the neutron excess component by itself has of course 
pure isospin (the basic isospin T = T z , in fact). The impurity ar ises 
f rom the 2Z remaining nucléons filling equivalent (or rather not so 
equivalent!) orbits. These two tendencies result in an overall more -
o r - l e s s constant impurity predicted for heavy elements. 

One final, more formal way of looking at the problem examines the 
sca lar , vector and tensor portions of the Coulomb interaction. The S 
part does not contribute to mixing; the T part is presumably very small , 
and the vector part is the most important. To a good approximation, 
it is proportional to T z which produces an energy shift but no mixing. 
When there is Coulomb mixing, specifically in the region of highly 
excited states where isobaric analogue resonances occur, we are saved 
in another way. Namely, the T< configurations which admix with the 
simple T> analogue configuration must also be simple, for large over -
lap; however, the simple T < configurations occur at much lower excita-
tion energies, and hence the energy denominator will tend to suppress 
the mixing markedly. 

In summing up we can say that there is either a very clever cons-
piracy to make us believe that isospin is good in heavy nuclei in all 
possible situations, or it is, in fact, a good quantum number. The 
latter hypothesis is operationally much simpler and useful until shown 
to be inadequate. 

13. C O U L O M B D I S P L A C E M E N T ENERGIES AND ISOTOPE SHIFTS 

With the availability of the location of many isobaric analogue 
states it has become of interest to study some of the systematics of 



240 T.EMMER 

the Coulomb displacement energies AE C between neighbouring isobars . 
In an overal l way it is known that ДЕС var ies as Z/A1/3 over the entire 
nuclear domain. However, looking at several isotopes of the same 
element, much more complicated and non-systematic behaviour can be 
discerned. It should be remembered that when we compare, say, the 
pairs 2 0 5Pb- 205Bi, 201 Pb - 207Bi, 2 0 9Pb- 209Bi (isotope shift), we are 
actually comparing the behaviour of one additional proton in lieu of a 
neutron, in a highly-excited (but simple) state, as we add pairs of 
neutrons to the core. A microscopic calculation of such effects must 
take into account the different fractions of time the proton spends in 
the various orbits involved in the description of the isobaric analogue 
state. Such calculations are being made by Schiffer (1966) and others, 
and seem to be able to account for the facts. 

One final word is in order to relate such isotope shift measurements 
to the more conventional sources of this information, namely the 
hyperfine structure observed in optical spectra and mu-mesic X - r a y 
spectra. In this case the nuclei are immersed statically in an electro-
magnetic cloud, and the nuclear size and its low moments are explored 
by this weak interaction by way of the deviations of the Coulomb field 
f rom that of a point nucleus. It is c lear that there is no a pr ior i 
reason to expect identical results f rom the two approaches to the problem, 
since nuclear forces are indirectly involved in the proton motion of 
the isobaric analogue states. 

Fo r instance, there is a well-known odd-even isotope staggering 
effect in the HFS measurements, whereas no such effect exists for the 
heaviest nuclei (although it is present in lighter nuclei). This is 
believed to be due to the dilution of the pairing effect by the changing 
role of the extra proton, as we have already alluded to ear l ier in 
connection with pick-up reactions in the Ca region. 

Much interesting information will be forthcoming in trying to relate 
these measurements theoretically. 
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CHAPTER 4 

Selected topics in 
phenomenological nuclear physics 

CALCULATIONS OF NEUTRON-CAPTURE 
CROSS-SECTIONS WITH THE 
STATISTICAL MODEL 

V. BENZI 

1. Introduction. 2. The models. 3. The level-density formula. 4. Systematics. 4.1. The 
penetrabilities T { (E) . 4 .2. Nuclear leve l densities and spacings. 4.3. The average radiation widths. 
4.4. A-dependence of (i and v. ,4' 5- K-value. 5. Some examples. 

1. INTRODUCTION 

It is generally accepted that for not-too-light nuclei the optical model 
allows an estimate of total and shape elastic neutron cross-sections to 
be made with an accuracy better than 20% [1]. 

The meaning of this statement, which should be accepted with some 
caution, is that, for the most common optical potential adopted, there 
are systematic procedures to estimate the parameters required for the 
evaluation of total and shape elastic cross-sections, when no experimental 
data are available. 

Similar methods for estimating radiative capture cross-sections 
have not been evolved, and no extensive analyses have been carried out 
to test whether some systematic method can be established to determine 
values not yet measured in this field. 

It would seem of value to analyse a large amount of experimental data 
in terms of a given model to see whether any useful features can be 
distinguished. 

In this regard, some aspects of numerical evaluation of radiative 
capture cross-sections using statistical models are treated here. 

2. THE MODELS 

The first detailed formula for the evaluation of the average radiative 
capture cross-section was developed by Margolis [2], on the basis of the 
statistical Hauser-Feshbach theory. The formula is 

i'.E' 
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In Eq. (1), 2тгХ is the neutron wavelength of the incident neutron, 
E is the incident neutron energy and E1 the energy of the scattered neutron. 
I is the spin of the target nucleus, i and V are the orbital angular momenta 
of the incident and scattered neutrons, and j is the channel spin, equal to 
I ± \ except when I = 0 in which case j = \. J is the spin of the compound 
nucleus which can have any value obtained by combining j and i . 

= 2, 1, or 0 according to whether ¡ J - Í | s j s | J + Í j is satisfied for 
both channel spins j, one channel spin, or none. Tn represents the neutron 
wave-mechanical penetrability of the nuclear surface and is taken to be 
independent of J and j. Ту represents the total probability of decay of 
the compound nucleus by у emission, and must be carefully distinguished 
from Tc, which gives the neutron radiative capture probability. The 
function S(E) takes into account the fact that formula (1) is written as 
function of the average widths rather than as the average of the functions. 
The following relations hold 

T i f о < r n ( J ; l ; E ) > • 
T

n
( i , E ) - 2тг

 < D ( J ; E ) >
 (2) 

T I T ^ о < r n ( J ; E ) > Tr (J, E) - 2тг < d ( j . e ) > (3) 

where Tn(J ; i ; E) is the width of a level of spin J for the emission of 
ü-wave neutrons of energy E, and Tr(J ; E) is the partial width of a level 
of spin J formed by the addition of a neutron of energy E, for decay through 
the channel r. D(J ; E) is the spacing of levels of spin J and one parity 
formed by neutrons of energy E. 

Following Margolis [2] and Lane and Lynn [3], for dipole y-ray 
emissions, one has 

Bn + E 

r 

rv(J ; B„ + E) Гу (J ; Bn) D(J; В п + E) о 
D(J; B n ) 

J D(0 ; Bn + E - e ) 
(4) 

e01 de 
D(0; B n - e ) 

B n + E 

r c ( J ; B n + E ) = S ^ L | j ¿ . D ( J ; B n + E ) 

de 
D(0 ; Bn + E - e) 

Bn (5) 

e3 de 
D(0; B n - e ) 

with neutron binding energy Bn and (D(0 ; U) = (2J + 1) D (J ; U). The 
expression for Гс differs from the expression for Гу by the limits of the 
integral which appear in the denominator. These limits are changed to 
omit the cases where the initial y-ray has an energy less than the incident 
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neutron energy, because in these cases the initial т - ray will be almost 
always followed by neutron emission rather than capture. Putting 

T n ( i ; E ) = T ( ( E ) (6) 

D (J ; B n ) = DJ (Bn ) (7) 

r y ( J ; B n ) = Г { ( В П ) (8) 

€j = D J ( B n ) / [ 2 W r r J ( B n ) ] (9) 

[ D ( 0 ; U ) ] 1 e Poc(U) (10) 

у V е 

f ( E ; u ) = j e 3 p 0 c ( B n + u - e ) d e / J e3p0c (Bn + E - e)de (11) 
id 0 

and assuming S = 1, Eq. (1) reduces to 

jt X2 V V e j j (2J+ 1) f (E ; E) 
a nr№) = 2(21+ 1) ¿ T < ( E ) ¿ 1 + f j f (E ; 0) E £ ^ . T , . (E - Ek ) ( 1 & ) 

С = 0 J = 0 

where E k is the energy of the k-th excited level. 
The inelastic scattering by target nucleus levels with unknown 

characteristics can be approximately taken into account putting 

E 

J T ^ y . T {. ( Е - Е П ) * У £ e¡n£. T | I ( E - E n ) + ^ ( 2 J + l ) p 0 t ( E - e ) ^ T i . ( e ) d e 

í' n {• n^p Ep t ( l b ) 

where E p is the energy of the highest known level and p0t (U) is the density 
of states of the target nucleus at excitation energy U. Under the hypothesis 
of high level density and assuming an equal distribution of levels between 
the two parities, Eq. ( l a ) reduces to [4] 

ffny (E) - ^ (m + | ) Гу(Вп)Рос (Bn ) - ^ (12) 

f (Ate + y)p0t ( U - e ) d e 
0 

with m being the neutron mass, Гу(Вп) the average radiation width at 
neutron binding excitation energy (assumed to be parity and J-independent) 
and 

E + Bn 

g ( E ) = J e ^ + 1 p 0 c ( U ' - e ) d e / J e¿0 + 1 p 0 c ( U " - e ) d e (13) 
E 0 
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The quantities /л and v are empirical A-dependent parameters defined 
by 

where ст (E) and Og are the compound and geometrical cross-sections 
respectively of a nucleus of mass number A. 

The above equations provide a method for estimating neutron radiative 
capture cross-sections which represent an average over resonances in 
the low energy region, and which approximate the actual cross-sections 
in the smoothly varying region if only neutron and 7 - r ay emission are 
allowed. It must be noted that in Eq. ( l a ) the fluctuations of the neutron 
widths around the average value are neglected. In addition, direct and 
cascade capture are not taken into account, two processes which can play 
an important role at energies of several M e V [5, 6]. The direct capture 
cross-sect ion can be estimated very roughly by means of the following 
formula [5] 

with E in MeV, К = constant and Z atomic number. 

3. THE L E V E L - D E N S I T Y F O R M U L A 

To compute crn), (E) by means of the above equations, it is necessary 
to specify the dependence of the level density p (U) on the excitation energy 
U. It is well known that the number of levels as a function of the exci -
tation energy for neighbouring nuclei depends mainly on the odd-even 
character of the nucleus considered. If one plots the total number of 
states N (U ) up to an excitation energy U as a function of U for odd, odd 
mass and even nuclei with about the same mass number A, the odd-even 
effect manifests itself as a shift on the excitation energy U. The magni-
tude of this shift is of the same order as the pairing energy of the nuclei 
considered. 

This means that the level density P of a nucleus is independent of the 
odd-even character of the nucleus itself, if an effective excitation energy 
U is defined in a suitable manner. 

About the definition of this effective energy, one can consider two 
possibilities. First , one can assume that this energy has to be evaluated 
f rom a reference level which is the fundamental state of odd-odd nuclei [7]. 
In this case, the effective excitation energy U is given by 

(14) 

<xny(E) d ~ K — 
Z? j~(E + 4) 
A i E* 

3 

(15) 

U = U + Д (16) 

with 

0 for odd-odd nuclei 
Д = " ó for odd-A nuclei 

.26 for even-even nuclei 
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and where U is the excitation energy evaluated f rom the ground state and 
26 is a negative quantity of the order of the pairing energy for even-even 
nuclei. 

This assumption is based upon the fact that an amount of energy equal 
to the pairing energy is required to break the binding of the coupled 
nucléons in the nucleus, so that such an energy must be added to the 
excitation energy in order that all the nuclei behave in the same way 
( i . e . as uncorrelated gas). 

On the other hand, one can assume that the effective excitation energy 
has to be evaluated f rom the ground state of even-even nuclei, so that the 
level density of odd-odd or odd-A nuclei starts at a higher value than that 
of even-even nuclei [8]. In this case, one has 

Podd-A(Û) = Peven-even(U + 6) ( П а ) 

Podd-odd(U)= Peven-even(U+26) (17b) 

where U and 26 are defined as before, but 26 is assumed to be a positive 
quantity. With this assumption, one has 

!J = U + A (16a) 

with 

i 0 for even-even nuclei 
Д = л 6 for odd-A nuclei 

L26 for odd-odd nuclei 

This second definition of TT has the advantage that there are no gaps 
in the level density of an even-even nucleus for energies above the ground 
state smal ler than the pairing energy. 

Fo r numerical evaluations, this fact simplifies the computations of 
the integrals over the level density of the residual (target) nucleus. 

Fo r the dependence of p0 on U, there are several formulae available. 
A very simple one, based on the gas- l ike model [9], is 

Po (U) = C A(U+t)j exp j ^ 2 ( b U)_i (18) 

where С is a constant for all nuclei, A the mass number of the nucleus 
considered, b is a parameter and t is defined by 

U = b t 2 + t (19) 

4. SYSTEM A TICS 

If we want to use formulae (1), (12), (15), (18) for the evaluation of the 
radiative capture cross-section of a given nucleus, we need to know, in 
addition to the spin and parity of the excited levels, the following 
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quantities: 

T j ( E ) - Eq. ( la) ; r y J - Eq. ( la) ; Гу - Eq. (12); DJ - Eq. ( la) ; En - Eq. ( la) ; 

С - Eq. (18); 6¡ or Ai - Eqs. ( la ) , (12), (18); 6f or A f - Eqs. (12), (18); 

bj and bf - Eqs. ( la ) , (12), (18); ц and v - Eq. (12); and 

Bn - Eqs. ( la ) , (12), (18). 

Now, our problem in its very general formulation is: "Given the mass 
and the atomic number of a nucleus, how do we proceed to find the para-
meters required for a reasonable estimate or fit by means of the 
statistical model of the capture cross-section of that nucleus in the energy 
range above the resolved resonances up to several MeV?" 

In principle, it is not impossible to try to answer this question starting 
from a purely theoretical basis. However we will assume that something 
is known experimentally about the levels scheme, and we will follow an 
empirical approach for the estimate of the level density parameters and 
radiation widths. 

Now, let us consider in detail all the quantities involved in formulae 
(1), (12), (15), (18). 

4.1. The penetrabilities TC (E) 

These quantities can be evaluated using the optical model, so that 
the systematics developed for optical model calculations can be used. 
However, it must be noted that formula ( la ) is not as sensitive to the 
variation in the values of Т { (Е ) . It has been shown [10] that if one increases 
or decreases all the Te by a factor of ~ 10, the cross-section does not 
vary more than by a factor of ~ 2, except at very low energies where 
стпу depends on To only. 

This is due to the fact that the contribution of the jf-th partial cross-
section to the total cross-section is proportional to the following quantity 
(assuming no inelastic scattering) 

(20) 
r n i Гу 

(rJní+ r r V 
Now 

(21) 

so that at low energies, where Г ^ << Гу, the i - th contribution strongly 
depends on T { , whereas at high energies Г у < < and the i - th contri-
bution depends only on Yy /T>\ 

On these bases and in order to considerably reduce the computer 
time required for the calculations, it can be assumed as a first approxi-
mation that the T { can be computed in the framework of the "strong 



NEUTRON-CAPTURE CROSS-SECTIONS 249 

FIG. 1. Values of b from the analysis of D0|,s as a function of neutron number N 

interaction" model which gives 

m _ 4xXv { (22) 
г 

X2 + (2xX + x2Vj )vj 

where x = R/Я. 0 , X2 = + x2, X0= 1013 and R = nuclear radius (cm). The v, 
and v¡ are functions defined in terms of spherical Bessel1 s and Neumann' s 
functions. Fo r the nuclear radius R one can assume, as usual, 

й = г 0 А { с т (23) 

with r0 = const. 1.25 X 10"13 cm. 

4.2. Nuclear level densities and spacings 

Formula (18) contains three parameters, namely C, b and Д (or 6). 
This last quantity can be estimated as a function of A by means of an 
empirical relationship given by Newton [11] 

26 « 0. 82 (4 -A/100)МеV; A > 40 (24) 

As f a r as the parameters b are concerned, they can be obtained f rom the 
analysis of the observed low energy resonance spacings. If Dobs is the 
observed mean spacing for Ü = 0 neutron resonances for a target nucleus 
of spin I, one has 

Po(B„)> (21+ l )D o b s 
n - 1 

(21+ 1 ) ( E H - E L ) (25) 

where n is the total number of .observed resonances, and E H and E L are 
the energies of the observed higher and lower resonances, respectively. 
F rom the values of Po (Bn ) obtained in this way the b-values can be 
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N 
FIG. 2. Values of average radiation widths as a function of the neutron number in the compound nucleus 

estimated by means of formula (18) and assuming [4] 

С = 1 MeV 

when U and t are expressed in MeV and p0 in (MeV)"1. In Fig. 1 the 
dependence of b on the neutron number 40 « N s 100 of the nucleus is 
shown. There is a resonably good behaviour of b as a function of N, and 
it seems that the full line drawn through the points can be used with some 
confidence for an estimate of b when experimental values of Dobs are 
lacking. It has to be noted that a variation of 10% of b corresponds to a 
variation of ~ 30 to 50% of Dobs-

4. 3. The average radiation widths 

In the nuclei far from magic numbers, radiative- capture proceeds 
with the neutrons making transitions into a large number of different 
states, making the number of reaction channels large in this case. 

Therefore, the radiation width is the sum of a large number of widths, 
one for each channel, and thus it does not change much from one level 
to the next. 

The dependence of the radiation width on J can be estimated by using 
a formula given by Blatt and Weisskopf [12]. 

t-fv-flPft* <»•> 
о Г 

assuming dipole y-rays only. If one assumes the validity of the formula 

= = p]x (27) 2 J + 1 2J + 1 v ' 

it may be seen that the final states combine to give a total statistical 
weight proportional to (2J+ 1) which cancels the (2J + 1) factor in the level 
spacing for the initial state. The radiation width is therefore expected 
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to be independent of J. However a more complicated J-dependence of pj 
can be assumed, as for example 

Pj = ( 2J+ 1) exp { - c j (J+ 1/2)2} p0 (28) 

and in this case Гу is expected to be independent of J only if the exponential 
factor can be neglected, i. e. for small J. In those cases where radiation 
widths in a nucleus have been measured for levels with varying J, they 
have been found, with few exceptions, unchanged within the experimental 
accuracies. So, it seems that one can assume 

Г г У г у (29) 

independent of J. _ 
Equation (26) gives a tool for a theoretical estimate of Гу. However, 

it seems much better to use experimental values of Гу whenever available. 
Some of these values are plotted as a function of N in Fig. 2. 

As one can see the N-dependence of Г^ is rather smooth, so that it 
seems that a î^, - value can be estimated reasonably well f rom 
neighbouring nuclei when no experimental data are available. However, 
it is important to notice that Гу is expected to be higher for odd-A isotopes 
than for even-even isotopes, due to the Г dependence on binding energy 
[cf. Eq. (26) ]. 

4.4. A-dependence of /л and v 

Fo r ц and v parameters, the following A-dependence can be adopted 

H = 0. 76 + 2. 2 A~* 

v = 2. 12 A 5 - 0. 05 

Such a dependence was obtained by fitting a large number of ac c ros s -
sections calculated by means of the optical model [13]. 

4.5. K-value 

The value of the constant К appearing in Eq. (15) can be estimated 
assuming that at ~ 14 M e V the radiative capture process is practically 
due to the direct mechanism only. An analysis based on experimental 
values of ст„у for various nuclei at ~ 14 M e V neutron energy [14] gives 
for К the following average value 

К = 10"3 

if in formula (15) crnj, is given in mb and E in MeV. Table I gives the 
method of estimate suggested for the various quantities required in 
formulae (1), (12), (15), (18). 
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T A B L E I . _ S U G G E S T E D M E T H O D S F O R E S T I M A T I N G T { (E) , 
Д. C, b , Ty, n,v, К 

Quantity Method o f est imate 

T f ( E ) b lack nucleus 

Д from mass di f ferences 

C , b- f rom D 0 b s 

Г 7 
from exper iments or by interpolation 

(J. v f rom f i t o f opt i ca l m o d e l o c 

К from o n y at ~ 14 M e V 

(mb) 

1 0 -

10 

lj0" г 3 < 1 10 10* 10 10 
E„ M 

FIG.3. Results of neutron capture cross-section calculations for 8 9 Y , made using Eqs. ( la ) , (12), (15) and(18) 

5. SOME EXAMPLES 

Figures 3, 4 and 5 show the results of some calculations performed 
using formulae ( la) , (12), (15), (18) with black nucleus penetrabilities. 

The procedure adopted for these calculations was as follows. First, 
the experimental data on <x were renormalized, whenever possible, to 
the same standard values. In fact, most of the measurements were not 
absolute ones, so that it was necessary to renormalize all the cross-
sections to the same standard values. 

, Then computations were performed starting, whenever possible, 
from the average experimental values of ü0bs and F^ obtained from the 
analysis of low energy resonances. 

For the bj-values, formula (12), the values were taken from the 
continuous curve given in Fig. 1. 

The maximum i -value considered was j?=4; and the number of 
inelastically excited levels allowed could reach 10. Equation (12) was 

Y 3 9 3 9 
« B o - S S 
íl M a - 63 
il D i - 60 

• " c i - 66 

4 
к 

A 

1 i 

Í Г ч * * Г + 
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* » Mo-100 * Ka - 6 
+ W»-
Ф Ко -

3 Mo-100 * Ka - 6 
+ W»-
Ф Ко -

0 
* Ka - 6 
+ W»-
Ф Ко - 9 

* * 
Ф Vi - 69 

* 
• Ja-
• Ly -
• L. -
Ф Pa - < 

9 
9 

• Ja-
• Ly -
• L. -
Ф Pa - < Я 

* i • Л 
1 I 

Y ' \ \ 1 

\ , \1 
( 

E n M 

FIG.4. Results of neutron-capture cross-section calculations for 100Mo 

assumed valid above 2 MeV, whenever a detailed level scheme was not 
available up to or above this energy. 

In some cases, and for some energies the intermediate formula ( l b ) 
was adopted. 

The validity of formula (15) was assumed for E a 4 MeV. 
The results of the computations were_then compared with the exper i -

mental values and, if necessary, Гу and D0bs were adjusted until a 
reasonably good fit was reached. As one can see, the shape of the theo-
retical capture cross-sect ion agrees reasonably well with the experimental 
one. In general, in this kind of analyses, the strongest discrepancies 
occur in the regions of a few keV or a few MeV, where the chosen model 
is rather inadequate. The situation can be improved at the lower end of 

- - -
Rh- + Po - 62 

+ Bi - 10 
+ W>- 60 
b Ma- 62 

- - -

r Rh- + Po - 62 
+ Bi - 10 
+ W>- 60 
b Ma- 62 

+ Po - 62 
+ Bi - 10 
+ W>- 60 
b Ma- 62 И 

4 
• 

+ Po - 62 
+ Bi - 10 
+ W>- 60 
b Ma- 62 • >4 + 

+ 

v Co- 63 
4 oi- to 
é Pa- 69 

V " 
4 \ 

s L 
En M 

FIG. 5. Results of neutron-capture cross-section calculations for 103Rh 
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птЬУ I i i i mill I I 
001 OI 1 10 100 

•s <b> 

FIG. 6. Values of S y (a ) = Iy/D0bs obtained from fits of o n y versus Sy (b ) obtained from the full line curves 
of Figs 1 and 2 

the energy range using optical model T { and taking into account the 
fluctuations in the neutron width. Also in the high energy region, more 
sophisticated models should be used; however in this region the experi-
mental data are very scarce, and it is difficult to draw any convincing 
conclusions. 

As far as the absolute values of any are concerned, it is difficult to 
give a meaningful "goodness of fit" parameter. 

It can be noted that for not too low energies one has, very roughly, 

where Зу = Гу/ОоЬз. In Fig. 6 are plotted values of 5y obtained from the 
fit of experimental measurements of any in the neutron number region 
40 g N S 100 versus Sy-values obtained using the full line curves of 
Figs. 1 and 2 (quoted as Sy (a) and Sy (b), respectively). 

Points falling in the region bounded by the two broken lines show a 
difference between corresponding values of less than 30%. As one can 
see, the agreement is in general rather good, and this seems to confirm 
that the statistical model is a powerful tool for predicting with reasonable 
accuracy cross-sections for those nuclei for which no experimental 
measurements exist. 
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ISOBARIC ANALOGUE RESONANCES IN THE 
f7/2 REGION BY (p, n7) REACTIONS 

R. A . RICCI 

1. Introduction. 2. The **Ca (p, ny) 48Sc reaction . 3. Fine structure of the isobaric analogue 
resonance. 4. Comparison with proton scattering data and stripping spectroscopic factor. 

1. I N T R O D U C T I O N 

It is now well established that isobaric analogue states may be 
observed as compound nucleus resonances [1, 2]. Since the pioneer 
work of the Florida State group [3], who found strong anomalous 
resonances in the excitation curve of the 89Y(p, n ) 8 9 Z r reaction, many 
other experiments have shown that such anomalies occur in the reaction 
cross-section and in the elastic scattering of protons at excitation 
energies for which no isolated resonances are expected, owing to the high 
level density of the compound nucleus. 

Since the energy difference between these unexpected resonances in 
the zAn compound system and the ground state and/or low-lying levels of 
the z_;|An+1 parent nucleus fit quite well the Coulomb shift expected by 
replacing a neutron and a proton in the latter, such resonances are 
interpreted as the isobaric analogues (T = (N - Z ) /2 + 1 , Tz = (N - Z)/2 ) 
of the normal levels of the parent system (T = Tz = [ (N + 1) - (Z - l) ]/2 = 
(N - Z)/2 + 1). It is clear that resonance experiments leading to such 
analogue states are energetically possible if the Coulomb displacement 
energy ДЕ С is greater than the neutron separation energy Sn in the parent 
nucleus. 

Owing to the decreasing trend of Sn with A and the increasing Coulomb 
barr ier , heavy nuclei are more reliable for such experiments, though 
higher and higher bombarding energies are required [2] (tandem energies). 

So far the experimental investigations have been confined to nuclei 
heavier than Zn and to elastic proton resonances [1], and many peculiar 
features of the isobaric analogue resonances have been found; of special 
interest is the "fine structure" revealed by the resonances found in the 
92Mo(p, p) experiment performed by the Florida State group [4]. Since 
we are dealing, in this case, with a typical heavy compound nucleus (93Tc) 
with high normal level density in the analogue state region, this fine 
structure is interpreted as being due to the fluctuations of many over -
lapping levels with the same spin and parity as the analogue one (T>) but 
with lower isospin (T,.). 

Resonance experiments on lighter nuclei such as the 40A(p, p) 
scattering performed at Duke University [5] and a few (p, p), (p, n) and 
(p, T) reactions performed in the region of f7/^ nuclei [6, 7] have shown 

The author is at the Istituto di Fisica dell'Università, Firenze, and the Istituto Nazionale di Fisica 
Nucleare, Sottosezione di Firenze, Italy. 

257 
17 



258 RICCI 

the possibüity of investigating analogue resonances at sub-tandem 
bombarding energies; here the neutron separation energy may be lowered 
owing to the vicinity of closed shells and the density of normal states in 
the compound nucleus may not be very high; so the mixing with analogue 
states could be of a different nature f rom that found in heavier nuclei. 
In fact the ' f ine structure' observed in the high resolution experiment at 
Duke University [5] is related to individual overlapping resonances which 
add coherently, rather than to statistical fluctuations [2]. 

We will concern ourselves here with the characterization of isobaric 
analogue resonances in the f7/ç region by means of the spectroscopy of 
the gamma rays in the residual nucleus associated with the neutron 
emission, i . e . , by (p, n?) reactions. 

2. THE 48Ca (p, пт) 48Sc REACTION 

It is generally assumed that for heavy nuclei, if the analogue 
resonances have good isobaric spin, the neutron decay is forbidden; its 
occurrence is taken as an indication of the strong mixing of the analogue 
state (T>) with the surrounding T< states [8]. (It is assumed here that 
the low-lying levels of the residual nucleus, at which neutron emission 
occurs, are normal T = T z states, with reasonably pure isobaric spin. ) 

COMPOUND 
NUCLEUS 

F I G . l . Schematic representation of a (p ,ny ) reaction leading to isobaiic analogue resonances. The'isospin 

forbidden neutron decay of the analogue states ( T = (N -Z )/2 + 1. T z = (N -Z )/2 ) to the normal states of the 

residual nucleus ( T = T z = ( N - Z ) / 2 - 1 ) can be favoured by special properties of some final levels. The 

resonant character of the y-decay of the latter wil l then be enhanced 

Ï7* 
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E „ , = 11.565 

Ecp*= 1.940 /Р 

48 Ca 20 4 

T z = « 

I - I 
Q ( p , f f ) = 9.625 , 

! I 

T z=3 

(ENLARGED SCALE) 

1 = 3/2" 

Ca 

Tz =9/2 

ЛВ = 4.478 I 
( Q - ( m n - m p ) = - ( S n - S p ) 

> L. 1=7/2" 

49 c 
21 -

T2 = 7/2 

FIG.2. Schematic diagram of the 48Ca(p, ny) reaction leading to the isobaric analogue of the4sCa ground 
state, in the 4sSc compound nucleus. The Coulomb energy shift ДЕС has been computed by the relation: 
Eexc + (Sn - Sp) (see Ref. [ 2 ] ) , where E e x c = 

Q (P. 7) + E p M • a detailed illustration of the « S e level 
scheme and the neutron decay of the 49Sc resonances, see Fig. 5 

Fig. 1 shows a schematic representation of a (p, ny) reaction leading 
to isobaric analogue resonances in the Z A N (T z = (N - Z)/2) nucleus. 

The y - rays associated with the neutron decay to the normal levels of 
the residual nucleus will follow the resonant character of the (p, n) reaction 
cross-sect ion in correspondence with the analogue state of the compound 
nucleus. 

However, there may be special states of the residual nucleus which 
particularly favour the neutron emission of the analogue resonance, owing 
to a particular configuration or isospin mixing. The yield of the y - rays 
which arise f rom such states is then a good measure of the properties of 
the analogue resonance. 
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FIG.3. Y ie ld of the typical ^Sc y-rays in a thick target (poor resolution) experiment. The resonance 
behaviour of such y-rays follows well the neutron decay of the analogue and normal states of 49Sc 

A typical example is given by the 48Ca(p, П7)48 Sc reaction investigated 
by the present author and colleagues at the 5.5 M e V Van de Graaff 
Laboratory of the University of Padua [9]. The schematic diagram of the 
reaction is shown in Fig. 2. 

The decay modes of the analogue resonance found at E P C M = 1940 keV 
are covered by elastic and inelastic protons, neutron emission and 
capture 7 - rays . 

The elastic proton scattering experiment has been performed by 
Jones et al. [7], who found resonances in the excitation curve at 
EpCM = 1945 and 1935 keV, corresponding to the isobaric analogue 
(T = 9/2, T z = 7/2) of the 49Ca ground-state (T = T z = 9/2). 

In our case we were concerned with the neutron decay to levels in 
the 48Sc residual nucleus. The interesting part of the level scheme of 
the latter [10] is also shown in Fig. 2 and Fig. 5 and is in substantial 
agreement with that proposed by Chasman et al. [11]. (We found, in 
addition, evidence for a 260 keV gamma ray f rom the 1403 keV level [10]. ) 
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FIG.4. Yields of the 780 keV y-ray, in the region of the analogue resonance, in a thin target (high reso-
lution) experiment. The ' f ine structure1 is analysed in, at least, seven components. The proton energy is 
given in the laboratory system 

The experiment was performed with CaC0 3 targets enriched to 90% in 
mass 48 on carbon or tantalum backings, and with Na l (T l ) and 
Ge (L i -dr i f ted ) Y - ray detectors connected with Laben multi-channel 
analysers. 

The Y-ray spectroscopy concerning the decay of the low-lying levels 
of 48Sc enabled us to establish that at E p = 1980 keV (i. e. E p =1940 keV) 
there is in most cases one neutron channel open leading to the 1403 keV 
state (n5). 

In a poor resolution experiment this corresponds to a resonant 
structure of the 780 keV Y - ray yield peaked at this proton energy, as 
shown in Fig.3. 

This should be compared with the yield of the 370 keV Y - ray, which 
ar ises f rom the 623 keV level in 48Sc; a resonance at the same proton 
energy is also present in this case together with many other resonances 
corresponding to neutron emission f rom single normal states of the 
compound 49Sc nucleus. This result was already found by El Nadi 
et al. [12]. 

It is clear that the yield of the 780 keV Y - r ay which is the prominent 
transition arising f rom the 1403 keV level in 48Sc, is an excellent measure 
of the features of the T = 9/2 isobaric analogue resonance in 49Sc. 

• 3. F INE STRUCTURE OF THE ISOBARIC A N A L O G U E RESONANCE 

A high resolution experiment performed with a target thickness of 
about 1.2 keV at 1 M e V proton energy enabled us to resolve this resonance 
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Tz=3 

FIG. 5. Detailed illustration of the neutron decay of the 4®Sc compound nucleus resonances to the levels 
of the « S e residual nucleus. The and n2 branching are available only to the 45Sc normal states 
( T = T z = 7/2) with I f ¿ 3/2" , ( Í = 3 protons and I = 1 neutrons, or vice versa, and/or I = 2 protons and 
1 = 2 neutrons). To the 3/2" ( T = 7/2 mostly) states the n3 , n4 and r^ branching are available, whilst only 
the n5 branching corresponds to the neutron decay of the T = 9/2 (I77 = 3/2") analogue state 

in at least seven components. A detailed portion of the 780 keV 7 - r a y 
yield over the region of the analogue state production is reported in 
Fig . 4. 

The major resonance found in the proton scattering experiment [7] 
at E p C M = 1945 ± 3 keV fits well with the strong peak found in our exper i -
ment at E p = 1980 keV (i. e. EP C M = 1940 ± 3 keV), while the second one 
reported at EjP"1 = 1935 ±3 keV appears to be a doublet in our work, 
i . e . the two peaks at Ep = 1969 and 1964 keV ( E ^ M = 1930 ± 3 and 
1924 ± 3 keV, respectively). One important result of this high resolution 
experiment is that for the major resonance at 1980 keV we found the 7 - r ay 
spectroscopy to be such that the only neutron channel open is the one (n5 ) 
leading to the 1403 keV level in 48Sc. Fo r the other components, other 
neutron channels become available (mostly n3 ) ; so the neutron branching 
to excited states, other than the 1403 keV level, is quite important. This 
could be explained assuming that the 1403 keV level is a state of a 
particular nature, i. e. with a configuration strongly similar to that of 
the T = 9/2 analogue resonance or with important T = 4 mixing. On the 
other hand a large coherent effect due to an £n = 1 giant resonance be -
haviour like that found in heavier nuclei [15] could also be considered; 
however, it would remain to be explained why the neutron decay on and 
off resonance is not the same [12]. The neutron decay f rom the 49Sc 
resonances is illustrated in Fig. 5, where the spin assignment to the levels 
of 48Sc is based on the 7 - r a y spectroscopy [10]. 
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The 49Sc resonances in the region of the analogue states have 
"signature" 3/2" as the 49Ca ground state. Assuming pure configurations 
and charge independence of nuclear forces, the (T = 9/2, T z = 7/2) analogue 
resonance cannot decay to the (T = T z = 3) normal states of 48Sc. If such 
decay is due to the Coulomb mixing with the T = 7/2 states of 49Sc, it 
should have the same neutron branching as the latter. 

Among the levels of 48Sc, at least the 623 keV (3 + ) and the 1143 keV 
( 1 + ) ones are also available for the neutron decay f rom the 3/2" 49Sc 
resonances. Experimentally, the neutron decay of the major T = 9/2 
resonance at E ™ = 1940 keV occurs only to the 1403 keV level of 48Sc, 
whereas the surrounding resonances have important branching to other 
levels . Since the corresponding neutron energy is of the order of 10 keV 
(i. e . , in= 0 or 1) the signature of the 1403 keV level is 1* or 2*, taking 
into account also the corresponding Y -decay. 

The assignment 2+ is what is expected f rom shell model 
considerations [12]. 

4. COMPARISON WITH P R O T O N SCATTERING D A T A AND STRIPPING 
SPECTROSCOPIC F A C T O R 

The main features of the 49Sc resonances in the region of the analogue 
state have been analysed by measuring the corresponding strengths Uy 
and widths Г . The results found for the most prominent peaks of the 
observed fine structure are reported in Table I, where a comparison is 
made with the proton scattering data [7]. Here ыу = и ГрГп /Г; Г is the 
total width, Гр and Гп the corresponding widths for proton scattering and 
neutron emission (Ip + Гп = T i n our case1 ) and u = (2 I+ l ) / ( 2 s + 1)(2I0+ 1) = 2 
is a statistical factor. 

The Uy values derived in our experiment f rom the comparison between 
the Ny/Np ratios found for thick and thin targets, with the assumption that 
Ny is a good measure of the neutron number Nn , do not agree with the 
corresponding quantities inferred by proton scattering [7] by a 'puzzling' 
factor 10. 

The Гр and Гп, which can be derived f rom our data, have to be chosen 
between two possible sets of values given by the relations: IJFn = j T - U y 
and Гр + Гп = Г. 

Since Г > > ГрГп/rfor each resonance reported in Table I, one obtains: 
Гп а ГрГп /Г and Гр а Г, or vice versa . 

F rom our data we get Гр = 3. 32 ± 0.56 and Гп= 0. 08 ± 0.06 or vice versa 
for the major resonance at E ^ = 1940 keV. We evaluate then the spectro-
scopic factor for proton scattering, i. e. Spp = ( 2 T + 1) Гр/Г8р (where Г5р 

is the single proton width estimated f rom optical model calculations 
adjusted for 2рзд proton resonances [13], and T = 4 is the isobaric spin of 
the target nucleus). If we take Гр = 3.32 keV we get Spp = 1.06 ± 0.15 in 
excellent agreement with the spectroscopic factor Sdp =1.03 inferred f rom 
stripping experiments leading to the 49Ca ground state [14]. 

The above arguments seem then to fo rm a self-consistent way which 
supports the conclusion that the major resonance found at E ^ = 
1940± 3 keV (i. e. at an excitation energy of 11.565 M e V in 49Sc) is 

1 A capture y-ray experiment performed in connection with the (p, ny) reaction showed that 
< 10"2 Гп. 



T A B L E I. S U M M A R Y OF T H E R E S U L T S 
Resonance strengths and widths Г found in the present work a r e compared with the ones der ived f r o m 
Ref . [7 J, as d iscussed in the text. The spectroscopic factor Spp f o r proton scattering, has been derived, in 
our case, only fo r the m a j o r resonance at E ^ = 1940 KeV, f r o m the relation Spp = ( 2 T + 1) (Г р /Г 5 р ) , 
where T = 4, Гр = 3.32 keV (see the text) and r s p is the s ing le -par t ic le proton width calculated in Ref . [7]. 
The Sjpp value is compared with the Sdp spectroscopic factor in f e r red f r o m stripping data (Ref. [14]) . 
E p , Шу = и Г рГ п/Г, and Г а г е given in keV. 
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4. 6 ± 0.5 
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essentially the ' t rue ' isobaric analogue of the 4 9Ca ground state, c o r r e s -
ponding to a 7.087 ± 0.005 M e V Coulomb energy shift. 

The surrounding resonances may be interpreted as normal (T = 7/2, 
T z = 7/2) states with some mixing due to the presence of the (T = 9/2, 
T z = 7/2, I* = 3/2") analogue statë'. 

These states could be complicated shell model states so that the 
isobaric analogue resonance would be coupled to the outgoing neutron 
channel only via that configuration which selects the decay to the 1403 keV 
level of 48Sc. 
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CHAPTER 5 

COLLISION THEORY 

F. VILLARS 

Introductory Remarks. 1. Review of basic concepts. l . A . Scattering states, scattering amplitude, 
T-matr ix . l . B . Some properties of scattering states. l . C . The S-matrix and the unitarity condition. 
l . D . Transition rates from time-dependent wave packets. I .E . Diagonalization of S-matrix; phase 
shifts. l . F . Scattering by the sum of two potentials. 2. Collisions of particle with a composite 
system. 2. A . Elastic and inelastic scattering; resonances and Breit-Wigner formula. 2.B. Rearrangement 
collisions; pick-up and stripping. 2 .C . Scattering with particle exchange: identical particles. 3. Identical 
particles. 3 . A . The method of 'second quantization'. 3.B. Hamiltonian of identical particle system; 
Hartree-Fock basis. 3 .C . A simple example: nucleón scattering. 3 . D . Amplitudes for elastic and in-
elastic nucleón scattering, deuteron stripping and pick-up, etc. 3.E. T-matrix and Green's-functions. 
3 .F . Green's-functions and the generalized optical potential. 

INTRODUCTORY REMARKS 

The purpose of this Chapter is didactical. It is assumed that the 
reader is familiar with elementary scattering theory: phase-shifts, 
Born-approximations, for the scattering of a particle by a potential. 
But the nuclear physicist faces now the problem of describing much more 
complex collision processes, involving composite target structures 
(nuclei) as well as possible composite projectiles (deuterons, a-particles). 
There are exchange effects to be considered, due to the identity of particles 
in projectile and target, and rearrangement collisions (reactions) to be 
analysed. It is hoped that this Chapter will provide a basis for the under-
standing and proper description of these processes. 

Section 1 deals with collision of an elementary non-relativistic 
particle with a fixed potential V. This process is used to develop, in 
a simple and familiar context, the notions of in- and out-going scattering 
states, the T-matrix, the S-matrix, the unitarity condition. An attempt 
is made also to clarify the relation between the time-independent de-
scription in terms of wave packets. 

The arsenal of tools mobilized may appear excessive, but the aim of 
this part is not application but to lay a basis from which to generalize. 
Indeed, it will be seen in section 2 that the generalization to more complex 
situations is quite straightforward. 

In section 2 composite targets are introduced, with a case of minimum 
complexity as an example. After reading this section, more general cases 
should offer no difficulty. The very important problem of presenting 
suitable approximation techniques is not touched upon at all in the section. 
This is much too vast a field to be included here, and the reader must be 
content with finding the exact expressions for reaction amplitudes, and 

* The author is at the Laboratory for Nuclear Science and Physics Department, Massachusetts Institute 
of Technology, Cambridge, Massachusetts, United States of America. 
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possibly equations satisfied by them. Not the least part of the problem 
is in fact to know what quantity to find an approximation to. 

In section 3 the case of identical particles is considered in more 
detail. The method of second quantization is introduced and it is shown 
how to formulate a collision problem for identical particles in this 
language. This opens the way for discussion of nuclear reactions 
in the framework of Hartree-Fock theory, which is so important for uni-
fying nuclear reaction theory with nuclear spectroscopy. 

1. REVIEW OF BASIC CONCEPTS 

l . A . Scattering states, scattering amplitude, T-matrix 

We discuss here the example of the scattering of a spinless elemen-
tary particle by a potential V, in the non-relativistic limit. 

The Hamiltonian is thus 

H = ¿ + V (1.1) 

Before developing the subject, a word about notation must be said. 
The Dirac notation (with a few occasional modifications) appears to be 
the most generally useful way of writing probability amplitudes. In the 
discussion of scattering problems, the co-ordinate and momentum re -
presentations play a distinguished role. 

Initially both these representations will be used, for the sake of 
clarity; eventually we shall go over to a representation-independent 
notation in terms of state vectors. 

An unspecified quantum state of the particle will be described by the 
co-ordinate space amplitude < ( r | ^ or by the momentum space amplitude 

<( к' I фУ . (If their time dependence is to be emphasized, we write<^r| ф{1) 
and <E|0(t)>.) 

The co-ordinate and momentum representations are connected through 
the transformation 

<r|lc> = e i7- r/(27r) ! : 

< r| *> = J d 3 k < r|E> = J ^ e l i r - r < S k > 

The inverse relation involves <(Й| r^> = < ( ? Ю * -
The Hamiltonian ( i . i ) may be written more explicitly, in the r - and 

k-representation, as the matrix 

<г '|н|г > = ^ • V 2 6 ( r ' - r ) + < r ' | V|r > 

and (1.3a) 

<к'|н|к > = J'd3r / d 3 r ' . < k ' | r ' > < r ' | H | r > < r | k > 

2m к26 (Й'-k) +<k'| v|k> (1.3b) 
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If V is a local potential, then 

< r ' | v | r > = V ( r ) 6 ( r ' - r ) (1.4a) 

and in this case 

<k'|v|k> = fd3r <k1?> V ( ? ) < ? | k > = f ^ 3 е - ' ( ? - ^ - Г У Й = V(k'-k) 

(1.4b) 

The time-independent Schrôdinger equation for states of energy E may 
then be written (we consider a local potential) as: 

V 2 - e ) < ? | 0 > + V ( r ) <?|^> = 0 (1.5a) 

or equivalently 

(E k . - E ) <k '\ф> + Jd3k" V (k ' -k " )<k"| (//> = 0 (1.5b) 

B 2 k 2 
Here Ek . = ^ ^ , the kinetic energy for a particle of momentum fi k. 

The solution of Eqs (1. 5) fa l l into the two groups: 
a) Bound states (E < 0); fo r these we introduce the amplitude <(r|n>, 

n being a discrete set of quantum number labelling the state. 
b) Continuum states. These may be viewed as the limiting case of a 

wave packet, and must be characterized by a boundary condition. 
This boundary condition may be incorporated into the SchrOdinger 

equation by writing it as an integral equation: 

<?|*> =<?l ф> + fdV'<?| — L — |?"> V ( ? " ) <? " I ФУ (1. 
J XT' -L _ Г-7 2 

6 a) 
E + —— V ' 2m 

or 

< k ' | ^ > = < £ ' ! * > + ^ — J d 3 k " V ( k ' - k " ) < k " | ^ > (1.6b) 

<(г|ф)> and <(k' are solutions of the equation 

( á r v 2 " e ) < ? U > = 0 and (E k . - E ) < k ' U > = 0 (1.7) 

The Green 's function <?| E + (K2/2m ) ^ i s d e f i n e d Ь У 

< ? | — T j î - I ? ) = f d V ^ l k ' > — V < k ' | ? ' > 
E + ^ - k 2 J E - ~ — k ' 2 

2m 2m 

S 
d 3 k . e i k ' . ( . - f ) 

(2^P E - Ek. 
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Define a momentum к > 0 by E = R2k2/2m; then at к' = ± k, the inte-
grand is singular, and the integral must be defined either as the Cauchy 
principal value, or by a limiting process, replacing f i rst E by E + in (rç^O), 
and then taking r\ -* 0 in the end. Consider this latter alternative; one has 
then: 

Г d3k' e i 7 ' - < r - ? ) 1 / 2 m \ f \ e i k ' < Г - ? ) Х 

J (2 ж)3 E -E k . ± i r , " (2тг)2 \П2 J J J k2 - k'2 ± i£ 

T \ / 1 \ 2 1 л I k" I r"- ? I -ik1 |Г-?| 2m\ / 1 у 1 / „ . . , e 1 1 - e 1 

W J \2ж) i | ? - ? ' | J d k ' k ' k2 - k ' 2 + i e 
0 

¥) (i 2 ж J i l ? - r ' I J к2 - k '2 + i e i i -«. 

The k ' - integral may now be handled by contour integration, and gives: 
-1Ж exp ± ik f r - r ' I ; so the full answer is 

k 2m — l r ' 7 1 1 

Notice that the difference between the two solutions (1.8) is proportional 
to 

sin к I r - ?' |/|r - r ' I 

which, as a function of r is a solution of the homogeneous equation (1.7) . 
We therefore get a complete set of solutions to (1.6) by choosing 

either the in - or out-going wave Green 's function (1. 8), and using a 
complete set of solutions ф to the homogeneous equation (1 .7 ) . 

A complete set of ф'в is obtained by choosing them to be plane waves: 

< ? U > - < ? | E > = e i i r T /(2ТГ)1 

so that 

<k ' I ф > - » < £ ' |k> = Jd3r <k' | r> < r |k> = б (k ' -k ) 

The associated solutions < r | фУ and<k'|^)> of (1.6) we shall call 

< r | k ( ± > > resp. < £ ' | k ( 1 ) > . 

depending on the choice of out- or in-going wave boundary conditions. 
So we have 

<? lk (± )> - J i ï i - W / d V Ï T F F f v<? , ) <? ' lk(+ )> (1-9a) 
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a n d 

< k ' | k ( + ) > = 6 ( к ' - к ) + E k i r i f d \ " V ( k ' - k " ) < k " | k ^ > (1.9b) 

In section l . C we shall use these amplitudes to construct wave packets and 
discuss their evolution, but before that, we shall develop the subject 
somewhat further. 

In the limit | r ' | -» oo, and for a short range potentia^one may use the 
asymtotic fo rm 

e i k | ? - r | ^ = ^ 

i С . t " I? ' -? " 

where 

r ' i - i k1 5 k - (so that к1 = k). 
R I I I 

Hence 

i k - r ' ikr ' 

< ? ' | k l + ) > I ТГ JTT^-i-1-, / d V ' е " 1 * ^ V ( r " ) < r " | k ( + ) > 1 | r ' I->oo (2ж)г 4ТГГ ' J r H » ' N I ' 

( 1 . 1 0 ) 

This defines a scattering amplitude f (0) [ cos в = ît-îc'/k2] by means of 

< ? ' | k ( + ) > - c o n s t ( e i k " ' + f (0) (1.11) 

Comparing with (1. 10), it fol lows that 

f ( 0 ) = f (К-;Й) = 2 * 2 ( - ^ f d 3 r " < k ' \ r " > V [ r " ) < ? " | k ( + ) > (1.12) 

A well known argument about the flux associated with exp i k - t and (expikr )/r 
then leads to the interpretation of 

|f(0) I2 = a (0) (1.13) 

as the differential cross -sect ion - that is, cross-sect ion per unit solid 
angle - for scattering by the potential V. 

It is customary to define a matrix T by means of (1. 12)2 : 

< к' I T j k > = / d V |k '| r ' > V ( r ' ) < r ' |k ( + >> 

= /d 3 r ' / d 3 k " < k ' | r ' > V ( r ' ) < r ' | k " > < k " | k ( + ) > 

= /d3k" <k '| v | k " > <k"|k<+>> (1.14) 

1 This excludes the Coulomb potential. 
2 The arrows on vectors will often be omitted when no confusion is caused thereby. 
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T is defined by all values of ic' and íc by this equation, not only for | к' | = | k|, 
as (1.12) might suggest. The scattering amplitude is then 

£ ( * Д ) = - 4 - ^ < * | Т | к > | г - (1.15) 

We see also that the momentum space amplitude <(k' |k<+) )> can be simply 
expressed through T; by (1.9b) and (1.14), one has 

< k - | k H > = 6 ( k . - k ) + { 1 Л 6 ) 

Multiplying this equation into V, and using (1.14) again, gives the Lippman" 
Schwinger integral equation for T : 

< к ' | т | к > = < k ' | v | k > + y , d V 4 k « | v | k " > ^ M ^ j (1.17) 

A solution by iteration of this equation generates the Born-perturbation 
ser ies : 

<k"|T|k> = < k ' | v | k > + /d 3 k " < k ' | v | k " > < k " | V|k>/E k - E k . + irj + . . . 

Fo r the convergence of this ser ies , see general bibliography. 

l . B . Some properties of scattering states 

We shall f r om here on use the short-hand notation of state vectors 
\фУ, abstracted f rom the amplitudes or as well as the 
adjoint vector abstracted f rom the complex conjugate amplitudes 

< > | ? > and<^|k>. 
Calling H 0 the kinetic energy operator p2/2m, we write ( for 1. 5a, b): 

( H 0 - E ) | * > + V | * > = 0 

and for the two equations (1.9a, b): 

k ( + ) > ^ > + ^ - ^ v | k < + > > (1.18) 

There is a corresponding adjoint relation, abstracted f rom the complex 
conjugate of (1 .9) : 

<k<+>! = <k| 4 < k ( + ) | V E k . ¿ o . i r ) (1.18a) 

Normalizations and orthogonality of states are expressed through the 
scalar product 

<ф'\ф> =J d3r | r> < r | * > = J d3k < 0 « | k > < k | * > 
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in particular 

<ф\ф> = / d * r < * | r > < r | 0 = / d 3 r |<r|^>|2 

The plane wave states fo rm an ortho-normal set: 

< * | Ê > =fd°r < * | ? > < ? | k > = / ( | - 3 e i < W ' - ' =6 (к- - k ) 

We now prove that the same relation also holds f o r the scattering states 
|k<+>>: 

< k ' ( + ) | k ( + ) > = <k ' |k> = Ô (к1 - k) (1.19) 

First , we find an alternative expression for Writing H = H0 + V 
there is a formal identity 

1 - 1 V V : 1 
E - H o + i r ) E - H + irj V E - H0+ir? 

Introducing this into (1.18), one has 

|k<+>> = |k> + — i — v { |k<+> > - V|k<+' > 
1 ' ' E k - H + iri ' E k - H 0 + irj 1 _ 

= ' k > + E k - ¿ + i 4 V ' k > Í 1 - 2 0 ) 

Of course, there is then also the adjoint relation 

<k<+>[ = < k | + < k | v E k (1.20a) 

With the help of (1. 20a), the scalar product <k , ( + ) |k(+) > may now be 
written as 

<k'<+>|k<+>> = <k-|k<+>> + < k ' | v F 1 |k<+>> 

•Ь k1 - H - 1Г] 

• • <k 'lk> + <k,l v|k<+)> + < k ' | v l*(+)> 

Use is now made of the general relation 
F (H 0 ) |k> = F (E k ) |k> ; F(H)|k<+>> = F (E k ) |k< +>> 

With this, the scalar product can be written as 
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The scattering states do not form a complete set if V admits bound states. 
In this case, the completeness relation is 

Jd 3 k <r|k<+>> <k<+> |r '> + Y <?|n><n|r'> = 6 ( r - ?') (1.21) 
n 

a relation which we abstract into 

У > к |k ( + ) ><k ( + ) | + Y ln><nl = 1 ( l -21a) 
n 

the " i " standing for the unit matrix in whatever representation we choose 
to have in mind. 

l . C . The S-matrix and the unitarity condition 

We now introduce also the ingoing wave states |k' _ ) У, for which we 
have the equations - in analogy to (1.18) and (1. 20): 

| ^ > 4 k > + _ ¿ _ v | k (-»> (1>22) 

= l k > + E k - ¿ - i „ V l k > I1'22* 

As will be shown later, wave packets formed by superpositions of such 
states reduce to free wave packets (without scattered wave) as t -» + oo, 
in contrast to packets of |k(+))> states, which reduce to free wave packets 
as t -* - oo. 

The |k(">> states are also an ortho-normal set, and satisfy ortho-
gonality completeness relations analogous to (1. 19) and (1.21). They may 
therefore be expanded in terms of the states |k' У : 

|k<">> = /d3k'|k'(+>><k '|s|k> (1.23) 

The expansion coefficient <(k'|s|k^> is the transformation matrix from 
one ortho-normal set to another, spanning the same space; it is there-
fore unitary. We call it the S-matrix; an alternative definition to (1.23) 
is obviously 

<k'|s|k> = <k'(-> |k(+)> (1.23a) 

The inverse transformation to (1.23) defines the adjoint (k1 |s + |k), and 

<k'|s + |k> = <k'(+>|k<->> = <k|s|k'>* (1.24) 

The unitarity property is then expressed by 

/ d 3 k"<k ' | s|k"><k " | s t |k ' > = /d3k" <(k' | S f| k " > <k" | s|k' )> =6 (k'-k) 

(1.25) 
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These relations are seen to follow immediately f rom (1.21): 

/ d V < k ' | s | k " > < k " | s | k > = J d 3 k " < k ' ( " ) | k " ( + ) > < k " ( + ) | k ( " ) > 

= < k ' ( " ) | k ( " ) > <k ' ( " ) |n><n|k < " ) > = <k ' ( - ) |k ( " ) > = б (k ' -k) 
n 

Using the equations (1.18, 20 and 1. 22), we can give a more explicit ex-
pression for S: 

<k -| S |k> =<k ' ( - ' |k ( + ) > = <k ' |k i + ) > + <k '|Y Е к , . н + 1 п 1 к ' - > > 

= < k , i k > + <k,i щ^к^v|k(+)> + <kl1 ik(+)> 

= <k-|k> + < k ' | v | k ( + ) > 

= <k '|k> + < k - | v | k ( + ) > ( E k , E ^ + r ? 2 

Now,3 

U m n + -2T-! i = * « (Ч) í 1 - 2 6 ) r¡-> 0 q2 + r¡2 

So we have, using (1. 14) and (1.26): 

<k'|s|k> = <k'|k> -2TTi6(Ek.-Ek) <k '|T|k> (1.27) 

We could have used as a f irst step in this derivation the step: 

<k'|s|k> =<k' ( ->|k> + <k' (- ) lEk.H+ in V lk> 

and would have found 

<k ' |S|k> = <k '|k> -'2TTÍ6 (Ek . - E k ) ' < k - ( - > |v|k> 

which shows that on the energy shell (E k. =E k ) the two matrices 

<k'| v|k(+>> and <k'<->|v|k> 

are equal and define the scattering amplitude. They are clearly unequal 
off the energy shell. 

3 ; U " f - ^ T I , - ^ ) = P ( l / q ) T t a 6 ( q ) . where P(1/q) is 
i ) - 0 + ± itj у ч \ q z + n2 q2 + ч 2 / 

the Cauchy principal value. 
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The connection between S and T (1.27), and the unitarity property 
(1.25) of S lead to the unitarity relation for T: 

<k'|k> = / d 3 k " < k ' | s t | k " > < k " | s | k > 

= / d3k" {<k '|k"> + 2TTÍ 6 ( E ' - E " ) < k ' | T t | k " > } 

{ <k "|k> - 27r ió (E" -E )<k"|T|k> } 

= <k '|k> - 2тг i б (Е ' -Е ) « к ' | т | к > - <к '|т + |к> ) 

+ 4тг20(Е'-Е) fd3k" <k '|Tt|k"> б (Е " -Е ) <к"|т|к> 

This gives the relation, valid for Ek- = E^: 

i « к ' | т | к > - <k' |T+|k>) = 2тг/d3k"<k'|Tt |k">6 (E" -E )<k"|T|k> 
(1.28) 

(Notice that on the r .h. s. one may interchange the role of T and T f : ) It is 
conventional to write: 

oO 
/d3k" 6 (Ek..-E) = J k"2 dk" Jdi2" 6 (Ek..-E) 

о 

= J d E " 6 (E " -E ) JdU" = JdCl" E p (E) J d f i " 

(df2" 5 element of solid angle) 

p (E) is the "density of states" per unit energy and solid angle. 
Applied to (1.28) for the case ïc'=k, one has 

J d n " |<k"|T|k>|2 = - J L L - i m « S | T | k > ) (1.29) 

and using (1.12, 14): 

V = / d n - |f(k".k)|2 = - ( i ^ p ) ^ I m « k | T | k > ) 

or 

atot = ^ I m ( f ( k , k ) ) (1.30) 

This is the Bohr-Peierls-Placzeck theorem or optical theorem, relating 
the total cross-section (which in the present case is purely elastic) to the 
imaginary part of the forward scattering amplitude. 

Of course it is not necessary to go through the S-matrix formalism 
to derive this result. A more direct way is to start with Eq. (1.20), and 
to construct T according to (1.14). This gives the "Low-equations": 

<k'|v|k<+>> = <к-|т|к> = <k '|v|k> + < f c ' | v E k _ H + l r t v | k ) 
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By means of the completeness relation (1.21) one may now write: 

Ё ^ Г -ft*" ̂  > Ë P Ï Ы <k" (+ ) 1 + 1 |n>ET^-n<r| 

n 
and get: 

<k '|T|k> = <k '|v|k> + ^ < k ' | v | n > g - ^ - < n | v | k > 

+ J d 3 k " <k ' | T |k "> E k _E + l n <к "|т*|к> (1.31) 

Notice that this is a non-linear equation for T, of a structure familiar 
mostly in a different context, scattering of г-mesons from static nucléons. 

In (1.31) the two first terms on the r. h. s. are hermitian, and ex-
traction of the anti-hermitian part of (1.31) immediately gives the desired 
unitarity relation. 

l . D . Transition rates from time-dependent wave-packets 

Scattering is a time-dependent process, and its proper description 
is done in terms of wave packets, which in the limit t -» -oo (the "remote 
past") do not overlap with the scatterer (that is, are outside the range 
of the potential V), but more towards it. We choose t « 0 as the time of 
maximum overlap. We shall show that scattering begins as the packet 
starts to overlap the scatter; only then does an outgoing scattered wave 
begin to form. 

The previous construction of eigenstates |k'+')> of H is most useful 
for the purpose of this demonstration: we now construct time-dependent 
states |^(t))> by simple superposition; we shall then be able to recognize 
that almost all information of interest is contained already in the structure 
of the time-independent eigenstates |k(+)>. 

We construct - in the momentum representation - the wave packet 

<k '|^ + ) ( t ) > = <k '|k ( + ) > e К Ek 1 С (к, k0 ) (1.32) 

which of course satisfies the time-dependent SchrQdinger equation 

i ^ < k ' | ^ ( t ) > = ^ d 3 k " < k ' | H | k " > < k " | ^ ) ( t ) > . 

In (1.32), C(k, k0 ) is an amplitude distribution of momenta, centred about 
a value Й 0 , for example 

С (k,k0 ) = б (kx ) (k || _lfJi +y2 (1.33) 

—. > 

k„ and kj. are the components of к parallel and perpendicular to ко, r e -
spectively. С (к, k0) therefore produces a one-dimensional packet, with 
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a finite width in the " forward" -direct ion, paral lel to k0 , only (see Fig . 1). 
It is assumed that y > 0, and 7 « k 0 . 

The interpretation of | <k' | ^ (+ ,(1:)> |2d3k' is that of the probability for 
finding the particle within the region d3k' in momentum space. Hence 

^ K k - I ^ t ) ) ! 2 = A P ( k ' , k0 ) (1.34) 

is the rate of increase of that differential probability, and defines the 
transition rate of the packet into the momentum state |k' )>. 

Let us calculate this rate. Let us call 

У + ) ( к ' , k0 ;t ) í e ^ k ' 1 < k ' | ^ + ) ( t ) > (1.35) 
ko 

Using Eq. (1. 16) fo r <k '|k ( + )>, one has then 

^ ( + ) ( k - , k o ; t ) = C ( k 4 k 0 ) + ^ d 3 k " < E k ^ l k " > C ( k ' ; k 0 ) e " " Ek')t 

The assumption is now made that the range of values k" defined by C(k", k 0 ) 
is narrow enough so that one may replace (к '|т|к" ) by (к1 |т|к0 ) ; this r e -
quires the width у of the distribution C(k", k 0 ) to be sufficiently narrow, 
that is, narrow compared with the width of any resonance in the behaviour 
of T . (Such resonances wil l be discussed in the next section. ) 

We now use k„ - k 0 = к , and expand: 

Ek = E k + R к v0 vQ = R k 0/m 
0 

and also write 

o i 

— — — = тп- / ds e 
E k „ -E k . + i r j 1R J 

+(0 
ih = J _ Fdr,„^r--r\T-\ 

( k „ - k 0 ) 2 + T2 27Г J V - 00 
+00 

= ^ f dr e i K V - 7 v o l T l 
2rJ 
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With these preliminaries, one may write 
+00 

k', k0;t) = C ( k ' , k
0
) + <k '|T|k 0> 2 7 ^ / d r e"

7

"»
1 

- 00 

0 +°o 
X i d s e + -R se"ï

( E

K . -Ek , ) s fd K e"iv»K(s + 1 " T) 

The last factor is (2w/v0) 6 (s + t - т); so, writing cr for s+t : 

1 1 . p i ' f ~y vol01 -¿(Ej-Ek. + in)o 
j * ( + ) (k ' ,k o ; t ) = C (k ' ,k 0 ) +<к'|т|к0> - J d a e e R 

- 0 0 

For t ^ 0, integration gives: 

^<+>fk' к • t) - С (к' к ) + <k'lTlkQ> e+yv»1 " i ' V ^ 1 m 36) 

(rj may be neglected compared to fiy v0 , which is finite) and hence 

(k\ kg; t) — > С (к1, k0) (1. 36a) 

In the remote past, (-t) » l/yv0, the wave packet <k' | 0(+> (t) > reduces to 

the free particle wave packet: C(k', kg)e R Ek' 1 = <(k'|</>k (t) )>. 
For t > 0, one has ' 

r , -1<Ео-ЕкО£ -rv0t 
(k-, к o i t) - С (k-, k0) + <к ' |т| k0> { E k , Е к . + Ш т У о - - Е к , - Ш Т у ; 

С (к., к0) +<к.|т|к0> <Г + е rv, t e H ( E ° " E k 0 t 

(Ек0 -Е к-)2 + (К 7 v0)2 Е0 -Ек. - i R у V0 . 

( 1 . 3 7 ) 

So as t + 00, the result is 

( k - ko it) ^ с (k-, k0 ) - ( E o < k ' 1 T 1 k o > 

which, using again the explicit form for C(k', k0), may be written as 

a <k.J ô ^ T T , - |T|k
0
>

 (
|

k l |
^ ,

 + 7
, (1.37a) 

Notice that the distribution of forward components of momenta in the in-
cident wave packet reappears as a distribution of magnitudes of momenta 
in the scattered wave packet. 
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The time of maximum overlap, and hence of maximum rate of change 
of the wave packet is t » 0; from (1. 36) one has, for every ïc not parallel 
to k0 : 

P (k-, V t ) 3 k < + ) ( k ' , k o ; t ) r = ( E o , E : , 2 ; ; r ( R 7 V o ) 2 1 1т|к0> i2 

and therefore 

— P i k ' k - t ) l = — I ^ к ' Ы к ^l2 

- Ц- |<к-|т|к0>|2бу (Ek -Ek . ) (1.38) 

The factor on the r .h. s. is in fact a delta function in energy, but of finite, 
but small, energy width ДЕ = RTV0 , reflecting'the uncertainty in energy of 
the incident wave packet. 

One may again define the differential transition rate w by 

J j r j t f k ' P (k>, k o ; t ) = ± Jd n w J d E k . p (E k . ) P (k ' , k o ; t ) 5 Jdnk.w(k', k0) 

w(k', k0 ) is then the transition rate per unit' solid angle, and is given by 

w(k' , = y |<к ' |т|к0> I2 p (E0 ) (1.39) 

From the expression for the differential transition rate, one passes 
to that of the differential cross-section by dividing through the flux density 
of the incident wave packet 

< r | * ( t ) > = J d 3 k ' < r |k - > e " l E k , t c (k ' ,k 0 ) 

This flux is 

j/? t ) = ^ ^ , • s = ^ 
J ( r ' t } - m (2жГ ' k0 Г 

and so the incident flux is J = v0 /{2тг}3 at t » 0. This gives, with 
p(E 0 ) = mko/K2: 

a (k ' ,k 0 ) = j w ( k ' , k o ) = ( ^ ) 2 | < k - | T | k 0 > | 2 (1.40) 

which agrees with (1. 13), (1. 15). 
We terminate this section by a comment on the S-matrix and on the 

physical meaning of the unitarity condition (1. 25). 
In ( 1 .-32) we had constructed the wave packet <(k' (t))> by means 

of states <[k' |к<+) У, and seen that for t -oo, it goes over into a free 
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particle wave packet 

<k' I </,<+) (t) > — > <k> I Фк (t) > = e ' ï Ek , t С (к'. k0) 
K0 t-* -00 О 

which simply represents the incident particle. 
If, in (1.32), we replace <k' | k ( + ) > by <k' |k("> >, we obtain a packet 

• ^ k ' l ^ ) ( t ) X whose behaviour in the two limits t -* ± oo is just the reverse . 
This is because we now have to use 

о 
in place of о 

(E k . - E , + in)"1 = ¿ J* ds e 
- oo 

and this leads to 

^ ( k - , k ; t ) = C ( k ' , k 0 ) + < k J T ^ > e уЧ°1 e " l ( E ° E k , ) t for t> 0 
0 E 0 -E k . - iKyvo 

Hence 

< k ' K " ) ( t > > т т ^ Т e i E k " C (k ' ,k 0 ) = < k ' U k (t) > K0 0 

a f ree particle wave packet running away f rom the scattering centre. 
Let us now look at the S-matrix. First, consider the scalar product 

of the two time-dependent wave packets 

s„ = << ; ) ( t ) k k ( . + ) ( t ) > 

It is easi ly seen that this scalar product is exactly time-independent 
(since both ^'+ )and ф ^ satisfy the same time-dependent Schrôdinger 
equation). To interpret Sf¡ physically, we may use the limit t-» +oo, in 
which case it becomes 

sfi = <4kf («) 14¡V)> 

One sees that Sf¡ essentially samples, by means of the momentum "probe" 
<£kf, the momentum distribution of the packet (oo). The unitarity con-
dition (1.25) then is just a conservation equation, expressing the fact that 
the sum of probabilities of finding a momentum kf in (oo) must add up 
to 1 (or to whatever (£<(+) is normalized to). 

But the time-independence of Sf¡ is crucial in the following way. We 
may evaluate Sft also at t =• 0, which is the time of maximum overlap of 
the two packets, and what determines the value of Sf¡ is the way the packets 
are affected by the potential V (see Eqs. (1. 14) and (1. 27)). It can then not 
matter very much just how fa r the packets spread in space, and we may 
replace them by their limiting case of infinite spread, namely the state 
amplitudes <?|k/ + > > and<k[" ' |?>, in which case S f i - < k f | s | k i > . 
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Notice that this second part of the argument could not be made, had 
we used the apparently natural definition 

s f t W = <*kf 

Indeed S'fj M = Sf¡ ( » ) but S'fi is not time-independent, and (0) | > 
•does not give the scattering amplitude. 

I . E . Diagonalization of S-matrix; Phase shifts 

In this section, the spherical harmonics Y i m are used extensively. 
We use the standard Condon-Shortley phase convention. The Y i m are 
functions of a point on the unit sphere, which may be fixed by either the 
two polar angles 0, <p, or by the associated unit vector. Wherever a 
direction is fixed by some vector, say r or K, we shall write 

On the energy shell, Т { depends on one variable only: 

Using the expression (1. 27) for S, together with (1.43) and (1.45) one has 

<k -| S |k> = 6 ( E k , - E k ) £ Y i m (£•) ( l - ^ T | ( k ) ) Y ¡ m (k) 

Í m 

This must be of the f o rm (1,44); hence 

e2 i6< = 1 - T { (k) 
or 

Щ р T, (k) = - ei6< sin 6, (1.-46) 

—* 

Compare this with the expression (1.15) fo r the scattering amplitude f (kjk): 

f ( k ' , k ) = - ^ < k - | T | k > 

(1.47) 

(1.48) 

i 

So (1.46) gives 

f ( k ' , k ) = i ^ ( 2 ¿ + l ) eÓ £ s i n P £ ( k ' - k ) 

4 

So if partial wave scattering amplitudes f £ (k) are defined by 

f (k-.k) y { m (k ' ) f { (Ю y ^ (k) 
I 
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they have the f o rm 

f{ (k) = ^ e i 6 i sin 6, (1.49) 

F rom (1.48) it is seen that they satisfy separately the partial wave 
"optical theorem": 

| ^ | ( к ) | 2 = ^ 1 т ( ^ ( к ) ) (1.50) 

Combining (1.49) with (1.48), the relation (1.30) is recovered: 

fo r the corresponding unit vector, and also use the notation 

Y t m (?) ¿r Y { m (k) 

Direction ic and magnitude к specify the vector k. The simplest unitary 
matrix is the unit matrix: 

< k ' 11 |k> = <k' |k> = б (к1 - к ) (1.41) 

The completeness of the spherical harmonics makes it possible to write 
this matrix in polar co-ordinates, that is, in terms of the magnitudes k, 
k1 and the direction ft, ic1: 

^ < * ) Y ; m ( 0 i ^ J E ) ( 1 . 42 ) 

im 

The argument of the delta function can be scaled according to 6(x) = f ' (x)6(f (x) ) ; 
by means of this we replace к by Ek =Й2к2/2m: 

= S k I Yin, Y it , M E k . - E k ) (1.43) 
im 

The unitarity of the r .h . s. of (1.43) is assured by the ortho-normality 
properties of the Y£m : 

J d Q k Y£ m (k) Y { .m . (k ) = 6 { i . 6 m m . 

It is therefore easily seen that the unitarity of this expression is unaffected 
by the insertion of phase factors exp 2 iô £ m ; that is : 

< 2 ' | u | k > 5 ( E k . - E k ) £ Y í m ( k - ) e 2 i 6 í Y*m (к) (1.44) 

Cm 
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is still a unitary mattix. If we require U to be a scalar function of к and 
k' and diagonal in energy, then (1.44) is in fact the most general unitary 
matrix. 

In the case of scattering of a spinless particle by a central (that is; 
scalar ) potential, the S-matr ix is a scalar, unitary matrix and is necessar i -
ly of the f o rm (1.44). The T -mat r i x too is a scalar , and we expand it as 
follows : 

< Й - | т | к > = ^ T { (к-; к) Рг ( k - .k ) 

£ 

= Y Y i m ( k ' ) T { ( k ' ; k ) Y * m (k) (1.45) 
£m 

<8'S ' | f|sS> = - ^ ^ < S ' k ' | T | s k > 

- Ф Е Ч г Е ъ ( k K s ' i p j s ) ^ ¿ - к ) 1 ' 

= i X { ( £ + i ) e ' v s i n 6 í + + i e i V s i n 6 í - } í ' , > p « ' k ) 

i 

+ £ X { ® 6 < ! + S i n & í * ~ e ' 6 i s i n v } ( s ' l ^ U ) • L P j ( £ ' • £ ) . (1.54) 
£ 

These steps are given here in some detail as they are representative of 
further generalizations, like iso-spin dependence of the interaction, etc. 

We terminate this section by looking at the radial wave functions, fo r 
the spinless case. 

There is a well known decomposition of the plane wave —. —> 

<^к> = f ë r = (¿)F I { 2 i +V il ii <kr) p< (k • 
i 

--(£¡r I i l (kr) I (k) (1'55) 
I 41 

(j,¡ (kr) being the spherical Besse l functions) 
By analogy to this, we write: 

<?lk(+)> -<0$ I ^ ( r ) I (? ) (fi) 
£ m 

Using the definition (1.14) of < к ' | т ] к > and (1.45) of T { (k), one has at 
once 

во 
Тг (к) = I J r2dr it (кг) V ( r ) u i k ( r ) (1. 56) 

о 
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u í k ( г ) s a t i s f i e d t h e r a d i a l S c h r O d i n g e r e q u a t i o n 

Î Ê ( r SF* r * + v W - Е Л к ( r ) 

a n d i s s u b j e c t t o t h e b o u n d a r y c o n d i t i o n s 

r u i k ( r ) 0 

U s i n g t h e r e l a t i o n ( 1 . 4 6 ) b e t w e e n T { a n d t h e p h a s e - s h i f t s , a n d d e f i n i n g 

a r e a l r a d i a l f u n c t i o n u ( r ) b y 

CTtot - - ¡ м \ п * Л ) \ 2 

1 

= y I Т Г I m ( k ) ( f ] 

W e m a y a t t h i s p o i n t b r i e f l y i n d i c a t e h o w t h i s g e n e r a l i z e s t o t h e c a s e o f a 

p a r t i c l e w i t h s p i n , i n c i d e n t o n a s c a l a r , b u t p o s s i b l y s p i n - d e p e n d e n t p o t e n -

t i a l . L e t s = ± j l a b e l t h e s p i n - v a r i a b l e . T h e u n i t m a t r i x i s t h e n 

< k ' s ' 1 1 1 k s > = 6 ( к 1 - k ) 6 
s's 

= 5 ( E k - " E k > « Л X y L ( k ) ( 1 . 5 1 ) 

îm 

6 S . S m a y n o w b e w r i t t e n , f o r e a c h v a l u e o f £ , a s t h e s u m o f t h e t w o p r o -

j e c t i o n o p e r a t o r s o n t h e v a l u e s j = S. ± \ o f t h e t o t a l a n g u l a r m o m e n t u m : 

ê s - s = l < в ' | Р ц | в > 
i=e±i 

l + l + g - L I - a - L 

i . i + i " 21 + 1 ' í . í - i - 2 Í + 1 

w h e r e 

L = 7 ( k ' X V ) 1 к 

A s c a l a r u n i t a r y m a t r i x , g e n e r a l i z i n g ( 1 . 4 4 ) , i s t h e n 

< k - s - | u | k s > 6 ( E k . - E k ) £ ^ < s - | P £ j | s > Y { m ( k - ) e 2 i ^ Y * m ( k ) 

í m i ( 1 . 5 2 ) 
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The S-matrix, for â  scalar, spin-dependent potential, is a scalar, that is, 
commutes with J = L + S, and is of the form (1. 52). The T -matr ix is a 
scalar, and may be written as 

< S ' s ' | T | k s > = | S > Y í m ( k ' ) T { j (k ' ;k ) Y*m (k) (1.53) 

im j 

This gives at once, in analogy to (1.46): 

m7rk , . _ i6.: . 
- " p " T í j M = e ' S l n 6ij 

The scattering amplitude is 

e i ó í _ 
u í k ( r ) s i n ( k r _ Í 7 r/ 2 + 6 . ) 

u i k ( r ) = Т Г u i k ( r ) kr 

one has 

sin ó{ (к) = Jrdr jf (kr) V ( r ) ) u | k ( r ) (1. 57) 

0 

1. F . Scattering by the sum of two potentials 

It is a common situation to have two potentials acting simultaneously 
on one particle. Thus, in proton-proton scattering, the Coulomb is super-
posed to the nuclear interaction. Often one of the interactions may be 
treated as a perturbation; it is of interest however, to have exact ex -
pressions for the transition amplitude f irst . 

The total potential energy is V = V^ + V2 . 
In many situations, as in nucleón nuclear scattering, we may be 

interested in the scattering amplitude due to say Vj alone; we may also 
want to see what scattering is produced by V2 in the presence of V! . Fo r 
instance, we may want to separate the effects of nuclear and Coulomb forces 
in nucleón scattering. 

To this effect we introduce, in addition to H0 = p2/2m and 
H = Ho + ( V j + V2 ), the intermediate Hamiltonian Hj = H0 + Vi . 

Let |k(+)^> stand for the outgoing wave scattering states of H j , and 
write |k(+)^> for the o .w . scattering states of H. 

In analogy with ( 1.18) and (1. 20), we have: 

|k<+>> = |k> + — V a | k < + > > (1.58a) 

and 

= V l | k > (1.58b) 

l k ( + ) > ' = | k > + E k - H 0 + i n ( V l + V 2 ) l k ( + > > ( 1 - 5 9 a ) 
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(1. 59) may be rewritten - using (1. 58b) - as 

and by using the identity 

1 1 1 V E - H 0 + ir? E - K ^ + i r ç E - H j + i r j 1 E - HQ + ir) 

which - by using (1.59) again - reduces to 

l k ( - ) » = | ^ > + E k . ^ i + i n V,|k<+>> (1.59b) 

Yet another version of this is obtained by applying to (1. 59b) the identity 

L = i I v i . 
E - H j + ir) E - H + ir) E - H + irç 2 E - H 1 + i r j ' 

lk ( + ) » = lk ( + )>+EvkTÏÏ V 2 { | k ( + ) > > - E - ^ V 2 I ^ » } 

or (using 1.59b again): 

1 ^ ' » = |k ( + ) > + Ё П Ь — V 2 | k H > (1.59c) 

We are now in a position to write the T -matr ix , according to (1.14), this 
is 

< к ' | т | к > = <k ' | (V j + V2)|k<+> > 

Using (1. 59b), one has 

<к -|т|к> = < k ' | v 1 l k ^ > + ( < k ' | v a E ¿ i + ir> + < k ' | ) v 2 |k< + ) > 

On the energy shell - Ek,= E k - the vector in brackets is 

< k ' | V l Ek .-H1 + i77 + < k ' l - ^ l 

according to (1. 58b). So one has 

< к ' | т | к > | = <k '|V l|k< +>> + <k'<-> |v„|k<+>> (1.60) 
E k ' -Ek 
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The f irst term in this expression is just ^ k ' ] ^ |k)>, the T -matr ix due 
to Vj acting alone. The contribution of V2 to T is then expressed by means 
of states "distorted by the presence of V j " . 

2. COLLISIONS OF A P A R T I C L E WITH A COMPOSITE SYSTEM 

In this section we shall discuss, again by using the simplest possible 
model, the case of collisions of a particle with a composite system, that 
is, with a target endowed with internal degrees of f reedom. As a result 
of collision, the target can be lifted into excited discrete quantum states, 
or " ionized". The simplest non-trivial system having these features is 
as fol lows. 

Consider a particle " a " , of mass m a , subject to a potential U a ( r a ) . 
We assume that U a may bind the particle a into several bound states |n )>. 
We call this bound system the system A. Of course there will also be 
continuum states | k(+> ) i n U a , as investigated in section 1. 

In addition the model has a particle "b " , of mass m b , being f ree ex -
cept for an interaction Vab -rj, ) with particle a. This interaction is 
capable of producing just one bound state of the two particles, the system 
(ab) (a "deuteron") . 

This model describes the following processes : 

(1) b + A b1 + A1 : Elastic and inelastic scattering of b by the 

system A 

(2) b + A -» b ' + a ' : Ionization of the target system 

(3) b + A - * ( a b ) : P ick-up reaction, forming a "deuteron" 

(4) (ab) -» (ab)1: Scattering of a "deuteron" 

(5) (ab - A1 + b ' : Stripping reaction 

(6) (ab) a' + b ' : Break-up reaction 

The Hamiltonian of the system is 

H = 2 - S : + U a ( r a > + 2 - ^ + V a b ( r a - r b ) (2.1) 

It is useful to consider the following Hamiltonians of subsystems: 

PÍ , 
H a = with eigenfunctions <(r |k > (2.2) 

¿ m a 

H = + U a (ra ) with eigenfunctions ' n > : b o u n d (2. 3) 
A 2 Ш а k r |kH>:contin. 4 a1 a ' 

Pb I 

H b = eigenfunctions |kfe > 
2 2 

„ _ Pa . Pb , „ , . 
H ( a b ) " 2 ^ + 2 Í T b + Vab ( r a " r b ) 

(2.4) 
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where 

p = Pa + Pb' P = ( m b ñ - ш а p b ) / ( m a + m b ) 

R = (m a r a + ггц, rb )/(ma + m b ) , r = ra - r b 

M = m a + m b , m = m a n j b / ( m a + M b ) 

H(ab) has eigenfunctions (ra rb |в K > = < r | B > < R . | K > , th ; bound 
"deuteron" being represented Ьу (г|В)> , 

and 

<k|K> = (27г)~ 2 e i K - R (2.4a) 

It has also continuum states <r a if, | К > = < r| к ( + ) > < Й | к > , where 
<?|7с(+)> is an outgoing wave solution for the Hamiltonian 

p2/2m + V a b ( r ) (2.5) 

We shall now consider one by one some of the possible processes (1) -
(6) and investigate their salient features. 

2. A . Elastic and inelastic scattering; resonances and Bre i t -Wigner 
formula 

Here we consider the process b + A b' + A ' ; accordingly, we write 

H = H + H + V . (2.6) 
A b ab 

Choose a representation in which H A and H b are diagonal: 

H j n > = E j n > 

H b | k > = e j k > 

<n 'k ' |H|nk> = ( E n + e k )6n .n б (k ' -k ) + < n ' k ' | V b |nk > (2.7) 

where 

<n ' k ' |V a b |nk> = Jd3ra / d 3 r b < n ' k ' | r a r b > V a b ( r a - r b ) < r n r b ) n k > 

Eq . (2. 7) is actually a submatrix only of the Hamiltonian, since HA has also 
continuum states |ka(+' X and there are non-vanishing matrix elements 

<(k'H j vab |nkb )>. We shall not include these explicitly, but in what 

fol lows, every X/ should be supplemented by an Jd3k a . 
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In this nk representation, a scattering state |nk<+) has an amplitude 
<[n'k' satisfying the equation: 

<n 'k ' |nk ( + ) > = ôn ,nô (к1 - к) 

+ р p 1 +1-„ f d 3 k " Y < n ' k ' | V a b | n " k " > < n " k " | n k ( + ) » (2.8) 
n 

(Enk = E n + e k ) . In abstract vector notation, this is again 

lnk<+>> 4 n k ) + E ¿ ) + i r l V j n ^ J (2.8a) 
nk x a b ' ' 

It is transparent that all the previous results about S- and T -mat r i ces 
apply directly. The T -matr ix is 

< n ' k ' | т | п к > = <n 'k '|v a b |nk ( + ) > (2.9) 

and satisfies the equation 

<n ' k ' |T|nk> = <n 'k -|V a b |nk> + / > к " У < п ' к ' 1 У а Ь 1 п " к " > < П " к ' ' 1 Т 1 П к > 

„ nk n"k" ^ n 
(2.10) 

Inelastic collision may take place wherever e^ + (E n + (E„') > 0. They 
enter into the unitarity relation for T, generalized f rom (1. 28, 29). The 
scattering amplitude f is again given by 

<n-k' |f|nk> = - < п ' к ' | т | п к > 

and (1.30) is generalized to 

I / d n k » ( f ) l < n " k " | f | n k > | 2 | 
En" k" - Enk 

lm«nk| f| -nk> ) (2.11) 

Notice that the factor (k"/k) in (2.11) ar ises f rom a consideration of 
the fluxes associated with incoming and scattered particles, respectively. 
In a derivation based on a generalized equation (1.28), k" ar ises f r om the 
"density of states" factor p (E) = m bk"/f i 2 , and l/k f rom the current 
density Kk/(27r)3mb. 

We consider now in more detail collision below the inelastic threshold, 
assuming system A to be in its ground state, n = 0. So we have E k < ( E 1 - E 0 ) . 
It is useful to decompose the matrix <(n •к' |н|пк> as follows 

ÇOk1 |н|0к> <0k ' |v a b |nk> 
<n 'k '|V a b|0k} <n ' k ' |H nk > 

or, in short 
'Hp V P Q 

V Q p HO 
(2.12) 

where n, n1 > 0 is understood. 
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Hp is the matrix: 

< 0 к ' | н | 0 к > = ( E 0 + e k ) ô ( k ' - k ) + < 0 k ' | v a b | 0 k > 

that is 

HP = H P 0 + V P (2.13a) 

Similarly, H ° is the matrix 

<n -k '|H|nk>| n , n>Q= ( E n + ek. ) 6n.n6 (k ' -k ) + <n 'k '| V a b |nk> 

that is 

H Q = H Q + V Q (2.13b) 

Let us look at the energy spectra of these various Hamiltonians (Fig . 2). 

FIG. 2. Energy spectra of some Hamiltonians 

The spectra of H p and HQ differ f rom those of HP and HQ by the possible 
addition of a.bound state, in which particle b is bound to the target. 
Notice that E c is a discrete state of HQ, embedded in the continuum of 
states of H. As we shall see, it is the existence of such levels that gives 
r ise to scattering resonances. 

We now establish the following notation: 
I nk У are eigenstates of HQ (~HA + H 0 ) 

The eigenstates of Hp will be written as | в > and | 0, k<+> > г |k<+> > 
those of HQ as I с and |n, k( + ))>, 
those of H as |n, k'+'5>. Actually we are only interested in 
|0,k( +>> == |k<+> >. 

We now write the Schrfidinger equation; 

H|k< + ) > = E k | k ( + ) > 

in a representation, in which H p and H ° are diagonal. This gives coupled 
equations for the amplitudes < в | к ( + > > , <k'(+> | kW > <c | k(+) > and 

<n'k' (+) |k(+) > . 
As we want to study the effect of the level E c in a case when Ek is 

near Ec - E 0 , we omit the components <в|к<+ )^> and <n'k'(+> |k ( + ) ^ (n '> 0) 
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from the equation; their effect will be small provided the energy difference 
(E0 + Ek) - EB and Ei - (Eo + ) are sufficiently large (we must there-
fore not be near inelastic threshold). 

This truncated SchrOdinger equation now reads (we have chosen E0 = 0 
as the zero of energy): 

(ek. - e k ) <k'<+>|k<+>> + <k-<+>|v ro|c><c|k<+>> =0 (2.14a) 

(Ec - e k ) < c | k ( + ) > + Jd3k" < c| v Q P | k " ( + ) > < k " ( + ) | k < + ' > = 0 

(2.14b) 

The boundary condition on is incorporated by writing (2.14a) as 

<k'<+>|k<+>> = ¿(k'-k) + 1 <k ' ( + ) |v p Q|c><c|k ( t ) > (2.15) 

Inserting this into (2.14b), one has: 

( E c - e k + E k ) < c|k ( + ) > + < c | v Q P | k ( + ) > =0 (2.16) 

whe re 

F = Td3k" J < o | v ^ l ^ ; > > r 2 . v L r > (2.17) 
к J ek - ek. +ir) к 2 k 

Akand Гк are real, and Гк is positive 

Г к= 2^/d3k" 6(ek -ek„)|<c|vQp|k"(+»>|2 (2-18) 

Equation (16) gives 

e

k
 E

c ~ * k 

We have now all the pieces to write the expression for the T-matrix 
(for elastic scattering, remember): 

< к ' | т | к > = < 0 k ' | v a b |k ( + ) > = < 0 k ' | v p + V P 0|k ( + >> 

= /d3k" <0k>|vP|k"<+>><k"<+>|k ( + )> + <0k ' | v P Q |c><c|k ( + ) > 

Using (15) and (19), this gives: 

< к ' |т|к> = <ok -|v p |k ( + ) > 

" f d V <0 k' I VP 1 k"-<+> > 1 ^ J c <0 k' I VPQ I с ) } < c | k « > 
J E k ~ b k " + i r > J 

(2. 20) 



COLLISION THEORY 295 

We now specify T to be on the energy shell, E k . = E k ; in addition we use 
the fact that 

J d 3 k " F (ek..)|k"<+>><k"<+>| =Jd 3 k" F (e^.) | k"<-> > < k"<"> | 

to write the bracket in (20) as 

. rd3kM J < 0 k ' | V | k " ( - > ) , < 0 k , | k „ ( - ) ) l < k " ( - ) |v « »|c> 

J I. € k n - e k , - 117 J 

= j f d V б (к' - к") <к"(->| VQ|c> = <k'(-)|vpc?|c> 

Tiiis gives the final f o rm for T : 

<к'|т|к> = <ok ' | v p |kW> + < H - ) l v ^ l c > < c | v o p | k ^ > ( 2 2 1 ) 

<<( к11 V p I k( + ) ^ is the transition amplitude due to V p alone; it represents 
the approximation where the target is " f rozen" in the quantum state n = 0. 
The second term represents the effect of the coupling of the continum state 
|k(+))> to the state | с of the compound system. 

Expression (21) satisfies the unitarity condition, since all the approxi-
mations made left us still with a hermitian sub-Hamiltonian. 

It is useful to apply an angular momentum consideration to (2. 21). If 
we assume that both U a ( r a ) and Уаь (ra -гь ) are central potentials, angular 
momentum is conserved. Assume, for definiteness, that the state n = 0 
of H A has zero angular momentum, and that the compound state | с has 
angular momentum L . 

<0k'| V p | 0k'+ ) )> is then the T -matr ix in the central 
potential <̂ 0 к' | V p | 0 к X and gives r ise to a partial wave scattering 
amplitude 

с /I > _ 47Г i 6, 

fL (к) - "J" e L sin 6L 

In the second term of (2.21), the matrix-element 

< c | v Q P | k ( ± ) > 

has the f o rm 

<c L M | V S p |k<*>> = Y ^ ( Ê ) e + i6L T k L (2.22) 

ykL being real . It follows that Гк (2.18) has the value 

4 = 2 n P(ek)?kL P = " f r . 
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and that 

X <k ' < - ' | v^|c L M ><c L M |v^|kH> YLM (k.)e2 l5b ( £ ) 

M M 

Using the relation (1.45 - 1.48) between fL and <к'|т|к>, it is seen that 
the resonant term in (2. 21) contributes to fL as 

_ 4TT
2

m T
k L ¿

 _ 4т
 g
2i6

L
 j Г

к 

Й2 V E c - V ^ k k ^ - E c - A k + | r k 

Hence, if the resonance occurs in the L-th partial wave, the partial wave 
amplitude is given by 

f (k) = % |e ióL sin6L - e2i6L 1 Г к . } (2.23) 
1 e k - E c - A k + - i TkJ 

This is the well-known Breit-Wigner formula for a single, isolated reso-
nance. It is easy to verify that this expression satisfies the partial wave 
unitarity relation (1. 50); indeed, fL can be written in the form: 

. . . . 4 л 1 Г 2 ió e k ' Ё с ' A k ~ 2 Г к Д 
f L < k ) = T 2 r i e ï 4 

1 e k - E c - V j r . < J 

. = 11 e4*+9) s i n ( 6 + <p) ( 2 > 2 4 ) 

with 
e 2 i , _ gk - Ee - A k - \ rk 

e k * E c * Д к + I Г к 

As ek sweeps over the region of resonance - of width Г -, ip goes rapidly 
through 90°, and produces a maximum in fL of width Г in energy. 

With (2. 24), the validity of (1. 50) is obvious. 

2.B. Rearrangement collisions; pick-up and stripping 

We now consider states, where the two particles a and b form a bound 
system, the 'deuteron'. In this case, we will write H (2.1) in the form 

H = H a b + U a ( r a > < 2 - 2 5 > 

with Hab given by (2. 4). 
We are now interested in a situation when a 'deuteron' of momentum К 

is incident on the potential Ua , and is either scattered (reaction (4)), or 
stripped (reaction (5)). Or conversely, we want to consider the case of 
particle b incident on system A, and picking up particle a to form a 
'deuteron1 (reaction (3)). For all these, we need the scattering states 
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I В, K ^ defined by the equation 

|в,К<*>> = | в , К > + 1 и , 1 в , К < * > > (2.26) + Ь к - H a b + ir¡ 

Notice that the "plane wave parts" in (2.26) and (2.8a) are not orthogonal, 
being eigenvectors of different Hamiltonians: 

< B , K | n k b > f 0 

On the other hand, the associated scattering states are orthogonal: 

< B , K ( + ) | n k ( + ) > = 0 (2.27) ь 

This fact can be understood as fol lows. Both states in question are 
eigenstates of H, and must more precisely be viewed as the limiting cases 
of wave packets, with a narrow spread in Й and respectively. It is now 
easily seen that these wave packets are orthogonal at t ->• -oo, since in this 
limit, particle a is bound in Ua ( r a ) in |nk¡,í+) and localized an infinite 
distance awav f rom Ua ( r a ) in |в But both packets, call them 
I фв (t) )> and I фп (t) X satisfy the same time-dependent SchrOdinger 
equations: 

i _ K ( t a 

It then follows that 

Ш J - | ^ ( t ) > = H | ^ ( t ) , i f i ^ - | ^ ( t ) > = H | * n ( t ) > 

¿ < Ф В ( t ) k n ( t ) > = 0 

They are therefore orthogonal at all times. The avoidance of the explicit 
use of wave packets is just a convenience, and (2.27) must be interpreted 

Îroperly as holding for every normalized wave packet constructed f rom 
В К } and |nkb( + )^>. It is therefore a ' formal ' statement, of the same 

nature as the statement of orthogonality of two plane waves 'Crlk' and 
< r | k " > . 

We shall now 'prove' (2.27) by using Eqs (2.8a) and (2.26) in their 
equivalent fo rms 

l B K < + ) > = l B K > + E B + E K 1 - H + ir) U > K > 

|nk< + ) > = Ink. > + — — r r — - V . Ink. > b b E n + ek - H + 117 ab1 b ' 
Then 

« B K < + > | n k < + > » = < B K | n k < + > » + < B K | ü a E + E { H _ l n |nk< + ) > 
В К 

= <BK|nkK> + <вк| V |nku> + <BKlUa lnl 

(2.28) 
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Use the identity, based on H = Hab + Ua 

- = i + I и 1 

E - H + in E - H a b + ir) E "Hab+in a E-H+ir) 

to express the middle term on the r. h. s. of (2. 28) as 

<ВК| — * УаЬ|пЦ,> + <ВК| — — - и а { | п к < + ) > - Ink » 
_ < B K | ( V a b - U a ) l n k b > + <ВК|ц. |nk£+)> 

E n + e k ' ( E B + EK )+ir , E n + e k - ( E B + EK)+ir, 

Now Vab -U a = H a b - (H a+H b ) , and so 

< B K i ( V a b - U a ) | n k b > . . / R K l k ч 
( E ^ - ^ + E ^ + i r , - < B K l n k b > 

Putting this into (2. 28), all terms are seen to cancel. 
Replacing ^ BK<+>| by<CBK(">|, we get the S-matrix-element 

<BK| s|nk b > = <BK ( " >|nk< + ) > 

This differs from (2. 27) by the change of sign of irj in the third term on 
the r. h. s. of (2. 28). Hence 

<BK | s |nk b > = - 2 Trió (EB + E K - E n - e k ) <BK|U a |nk<+ )> 

The T-matrix for the pickup reaction A + b -* (ab) is therefore given by 

<BK|T|nk b > = <BK|U a |nk<+ )> (2.29) 

An alternative expression for T is found by starting differently: 

< B K " | n k H > = «BK< - ) |nk b > + f ^ ' ^ i r t x 1 b ' ^ l b ' En + ek - ( E B + EK )+in 

and developing this in a similar manner: 

< В к | т | п к ь > = <BK<-> I Vab |nk b> (2.30) 

Notice that (2. 29) and (2. 30) are equal only on the energy shell. By using 
the equations for the scattering states again, an integral equation for T 
can be found. In this equation, the known term is the Born approximation 
term. Depending on the use of (29) or (30), this Born term is either 

< B K | U a | n k b > or < B K | v J n k b > (2.31) 
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Ua is the residual interaction for the Hamiltonian Ha b with eigenstates 
|ВК> ; Vab is the residual interaction for the Hamiltonian ( H A + H b ) with 
eigenstates |nkb)>. Eqs . (2 .29 ) and (2.30) express the well-known ambiguity 
in the definition of the residual interaction in rearrangement collisions. 
The T -mat r i x on the energy shell is, however, unambiguous even in the 
Born-approximation. Indeed, the two expressions (2.31) are identical, 
since 

Ua * Vab = ( H A + H b ) - H a b 

so that 

< B K l U a - V a b l n k b > = < E n + e k - ( V E K > > < B K | n k f a > = 0 

on the energy shell. 
Finally we observe that the T -matr i ces for the inverse reaction 

(ab)-> A + b, that is, for stripping, are given by the negative complex 
conjugates of (2.29) and (2.30). 

To get the reaction cross-section, one may use Eq. (1.40). This 
gives : 

(1) Fo r Stripping 

*пкь-вк= ( j p ) ¿ | <BK|T|nk b >| 2 (2.32a) 

(2) Fo r Pickup: 

ствк~пкь=(^)2тьм(^) |<BK|T|nk b >| 2 (2.32b) 

2. С. Scattering with particle exchange; identical particles 

The model defined by the Hamiltonian (2.1) may be made more 
symmetric by adding a potential Ub(rb ) , centred about the same origin 
( r = 0), and acting on particle b. If it is strong enough to bind particle b 
into a bound system B, a new type of reacting in addition to (1) - (6) can 
occur: (7): b + A-> a ' + B ' : the ' particle exchange' reaction (plus the 
s imi lar processes : a + В a' + В1, a + В b1 + A ' ) . 

A special case of this occurs if particles a and b are in fact identical 
(that is, m a = т ь , Ua = Ub ) . In this case (7) is nothing but a contribution 
to (1), and represents the exchange contribution to elastic or inelastic 
scattering. But 'direct ' and 'exchange' contribution to the scattering 
amplitude are only formal , not operational concepts. The exclusive use 
of symmetrized (or anti-symmetrized) wave function in the case of identical 
particles in fact guarantees that reactions (1) and (7) are fused into one 
single process . 

Writing 
H = H. + H n + V . А В ab 

2 2 

HA = A + U a HB = ¿Th+ Ub <2-33> 
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(H) and introducing the eigenstates |nakb > and |nbk^+)> of HA + HB, we can 
construct the two scattering states: 

|n ak ( b + )» - |nak<+)> + Е п > + е к ь - ( н А + н в Н п V a b l n a ^ < + ) » (2.34a) 

I n b k ^ » - |nbk<;>> + + - (Нд+Н )+ir) Vab К » (2.34b) 
"b ка А в 

For distinguishable particles, they describe distinct processes, and are 
used to define the S-matrix elements for processes (1) and (7): 

<n ' a k'b_) |nak ( b+ )> describes (1): A + b - A ' + b' 

<n ' b k'a ' |nak(b+) > describes (7): A + b - B' + a' 

If the two particles are identical, then the operator 

I у 
E - ( H A + H B ) + i n ab 

is symmetric in the variables of the two particles, and (2. 34a, b) may be 
combined into the symmetrized or anti-symmetrized equation 

I n k H » = | n k O > ^ + e k . ( ¿ A + H B ) + í ? í V 3 b |nk<+>» (2.35) 

where | n )> is a vector with the amplitude 

< r a r b |nk ( + )> (Cr a|n><r b|k< + )> i < r a | k ( + ) > < r b | n > ) (2.36) 

With (2. 35), we now find the single S-matrix element describing processes 
(1) and (7): 

<n'k '|s|nk> = C n ' k ' ^ l n k ^ ^ 

which along now familiar lines can be written as 

< n ' k ' ( _ ) | n k ( + ) > = <n'k , ( _ ) |nk ( + )> - 2TTÍ6 (E n+ ek - E n - ek.) <n 'k , ( " ) | Vab | n 

Using (2. 36), the first term of this is 

<n'k< - )|nk ( +>> = <n ' |n><k l ( " ) |k ( + ) > 

= 6n.n{6 (k'-k) - 2TTÍÓ (ek. - ek ) <k '|u|k ( + )>} 
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so that 

<n ' k ' | s|nk> = 6n,n 6 (к' - k ) 

-2тг1б(Еп + e k - E n . - e k . ) {бп.п<к-1 u j k ( + ) > + <n'k'<-> | Vab |nk<+>; (2. 37) 

which also gives the T -matr ix for the process . 
This T -mat r i x gives directly the transition amplitude for the following 

process . An incident particle of a certain kind, and momentum k, hits a 
target and a particle of the same kind appears with momentum k1. The 
cross -sect ion is therefore given again by the analog of (2.11) 

dcr 
df2, W (n'k' - nk) 

4 А Л 2 

fiz J 
CTn,n <k ' I U I k<+> > + <n 'k ' (") |Vab I nk<+> > 

(2. 38) 

I D E N T I C A L P A R T I C L E S 

Atomic nuclei are - to an excellent approximation - systems of identi-
cal particles, endowed with two internal degrees of freedom, spin and 
isospin. The wave function for any system of nucléons is an anti-symmetric 
function of all its var iables . In this section we develop and illustrate the 
application of the technique of 'second quantization' fo r dealing with anti-
symmetric states. 

3. A . The method of 'second quantization' 

The set of all anti -symmetrized N particle wave function spans a 
subspace of the space of all N particle wave functions. We f irst construct 
a complete basis in this subspace. To this end, we define f i rst a complete 
set of orthogonal and normalized one-particle wave functions <pa (x,, s), 
s standing for spin and isospin var iables : 

Jdr q>l (3, s) <pB (3, s) = SaB 

Ф (x, s) CP* (x ' , s ' ) 6 ( x - x ' 
I 
cc 

In Eq. (3.1a) far stands for J d3x ^T 

(3.1a) 

(3.1b) 

We now assume that the set of all quantum numbers a , labelling the 
single particle states, be ordered in a l inear sequence in some manner. 
Let {a } be an ordered subset a1 < a 2 . . . < aA of A quantum numbers a , 
and f o rm the wave function: 

¿ • ' ( À j ' V (A ) . 

% ( 2 ) 

V (A) 
a A 

det I <р^ (j ) I = ¿ 7 £ ^ ( P l ) ^ (p2 
J. 
•ÍM ) . . . V a i ( P A ) (3.2) 
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where p^ p2 • . . pA is a permutation of 12 . . . A, and ep the sign of the 
permutation. 

The set of all possible provides then a complete, ortho-normal 
basis for anti-symmetric A-part ic le states. (Clearly, any Ф defined in 
terms of an unordered set {ац{3 . . . Ç} : $ { u n orde red } i s J u s t { ~ 1 ) e P ^ { o rdered } , 

€ p being the sign of the permutation needed to order the set. ) 
In any system of identical particles, all operators are symmetric 

functions of the particle variables . It is useful to classi fy operators in 
the following manner: 

A 

(a) One-particle operators F1 (1, 2, . . . A) = ^ f (i) (3. 3a) 

i=l 

A 

(b) Two-particle operators F2 (1, 2, . . . A ) = ^ f (i, j) (3. 3b) 

i<j 

(c) 3 - and many-particle operators, by an obvious generalization. 

The problem at hand is now to construct matrix elements of symmetric 
operators F with respect to the anti-symmetric basis states Ф { а } : 
J d r , . . . d r A ( $ { 6 } F Í W ) д 

One-particle operators: F̂^ = ^T f (i) 

Let us define 

(J3|f|a) = J'dT (V*t <pa) 
f = £ f <<*> (3.4) 

One has then 

F, 

p 

A 

m I e p I • • • ( f % ( p i , ) - " ч ( р А ) / А 
P i=i 

= I I { ¿ u I ep ^ ( P i ) — ^ . J P i ^ K i P i ) — ^ A (pA)} o | f 
в i P 

^ runs over all one-particle indices. One has 3 cases: 
a 

(1) ¡3 = at: gives a diagonal element. 
(2) ¡3 f OÍJ, but ¡3 e {<*} . In this case two identical labels occur, and we 

get zero. 
(3) ¡3 i { < * } : In this case we get a non-zero off -diagonal element. 
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So we have 

i 
A 

+ l I < 0 | f k ) ® { v . . e i _ l B a 1 + 1 . . . « A } ( 3 - ! 

В ¿{a} i=l 

Notice that the last Ф has generally an unordered label, and that ordering 
introduces a factor ( - l ) e P . F rom (3.5) , and the orthogonality relations 
of the Ф{а } one has the matrix-elements of F. 

We now consider an abstract vector space, constructed as fol lows. 
To each one-particle state a , we associate a pair of operators a a and a j 
(its hermitian adjoint) with the properties: 

a + a t = _ „ t a t 
а 8 6 а 

a « a 6 = б ав" а 1 а а 

(3. 6a) 

(3. 6b) 

(3.6c) 

It follows that the operator N a = a¿ a a satisfies the relation N a (1 - N a ) = 0, 
and has therefore eigenvalues 0 and 1. These eigenvalues represent the 
number of particles in state a . 

Notice that (3. 6a, b) imply that (a„)2 = (a£)2 = 0 (3. 6d). 
We now define a basis vector | 0 У (the vacuum state) and its adjoint 

by the properties 

a a | o > = 0 (аП a) (3.7a) 

<0|.aî = 0 ( a l i a ) (3.7b) 

This vacuum state is normalized to one 

<0|0> = 1 (3.8) 

Eq . (6) now enables us to construct an ortho-normal system of vectors as 
fol lows: 

(1) One-particle state vectors = a £ | o X <(о>| = ^o|a a 

These have the properties (by 3.6, 3.7 and 3.8) : 

<Э|а> = <0ja
8
a

<
î|0> 

= < 0 k s - a t a s | 0 > = б а В <0|0> = 5 а в 
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(2) Two-part ic le -state vectors: 

|a0> = a + a £ | 0 > 

<a/3| = < o | a ¿ a a (notice order : <e/3| = - </3a|) 

< Г б | в Э > = < 0 | a 6 a y a l a + | 0 > = 6 a y ô 6 6 - 6 a & ô 6 y 

A U two-particle states are orthogonal to one-particle states and 
the vacuum. 
A l l one-particle states are orthogonal to the vacuum. 

(3) A -part ic le states: We again invoke the ordered subset { o } and 
may construct a normalized state vector 

U « > > = < a * , . . a ¿ J o > 

and its adjoint 

< t « } | = < 0 | а а А а а д 1 . . a ^ 

It is now obvious that these vector are in a one-to-one c o r r e s -
pondence with the anti-symmetric particle wave functions Ф{<*}. Consider 
now the vector 

\ { a } > = | e i e 2 . . . e A > = a ^ a ^ . . a j j 0 > (3.9) 

Operate on it with a j a ^ : |{<*} X 
There are four possible results: 

(1) /3 = y e { a } , say y = ; then (3.6) gives aaJaa. | {<*} > = | { » } > 

(2) У = а-;, p f y, but /3 £:{<*} ; then we get zero since the operator 
would occur twice. 

(3) y = o-j, but P 4 { a } ; this gives the state 

a * . . a í a t . . a+ 0 У = ce. . . a. , a . . ,а.У 
i i - i ° A 1 1 l - l 8 A ' 

(4) у 4 { a } , then we get zero. 

Cases 1, 2, 3 and their results are the exact analogs of cases 1-3 preceding 
18 ay Eq. (3 .5) . It fol lows that if instead of aî av we consider the linear com-

bination 

IF; = У (0|f|y) 4 & y < 3 - 1 0 ) 

By 
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we find the properties: 

A 

i=l 

+ ^T ^ OlfloiJle^.ej.jjS.. e
A
> (3.11) 

S i {ot} i 

which is the exact analog of (3. 5). 
We conclude from this that the operator IF (3.10), defined in the abstract 

vector space of states | {a } У , has the same matrix elements as the operator 
F = £f (i), defined in the space of anti-symmetric wave function Ф{а} (1. . . A). 

'Second quantization' consists of using the abstract space of states 
I { а } У, defined by (3. 9); to each operator F in configuration space corres-
ponds an operator IF in the abstract space. This correspondence was 
established for one-particle operators F (Eq. 3.3a) and IF! (Eq. 3. 10). 

The correspondence for two-particle operators F2 and IF2 c a n be 
established by using the special two-particle operator 

X f (i) f (j) 
i<i 

IF2 = i ( X (/3|f|a)a^a a )2 -| У (/3|f2|tf) a B a a 

a 6 aB 

= I I I ( , 3 l f l a ) ( 6 И г ) ав aa aS - (|3|f|6)(6|f|or)a¡aa 
« 8 у 6 а б б 

= i У №|f|e) (6 I f (-у) а | ^ а у а в byEq. (3 .6 ) . 
ав у& 

From this we easily get the general case, where 
A 

F2 = У f (i, j) 
i< j 

Define 

(/3 ô| f I ay) = f f d T l dr2 <p* (1) ?*{2) f (1,2) <pa (1) <py (2) (3.12) 

and have 

IF2 = i У Oel f lory ja + a jay a„ (3.13) 
а в у б 

Notice that the characteristic of a true two-particle operator is the 
appearance of two a's to the right of the two a+ ' s . The effect of IF2 is 
therefore to remove two particles from states a and y and replace them 

One has 

21 
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b y p u t t i n g t w o p a r t i c l e s i n t o s t a t e s )3 a n d 5 . F 2 o p e r a t i n g o n a n y s t a t e 

w i t h l e s s t h a n t w o p a r t i c l e s g i v e s i d e n t i c a l l y z e r o . 

T h e f i e l d o p e r a t o r s 0 ( x , s ) a n d ^ t ( x , s ) . 

T h e c h o i c e o f t h e b a s i s <pa ( E q . 3 . 1 ) w a s a r b i t r a r y , a n d y e t t h e e x -

p r e s s i o n f o r o p e r a t o r s I F m a k e e x p l i c i t r e f e r e n c e t o i t . I n f a c t , t h e s e 

o p e r a t o r s a r e i n d e p e n d e n t o f t h e c h o i c e o f t h a t b a s i s . T h i s i s s e e n a s 

f o l l o w s , f o r I F j 

ŒJ a ¿ ( 0 | f | a ) a a 

a 6 

= fàr ÇY ав 4 & s)) f ÇY f* s) a « ) 
6 a 

=Jdr s ) f <t ( x , s ) ( 3 . 1 4 ) 

S o I F j m a y b e e x p r e s s e d i n t e r m s o f t h e f i e l d o p e r a t o r s ^ * a n d ф , w h e r e 

# ( x , s ) = £ aa<pj%s) ( 3 . 1 5 ) 

a 

T h e p r o p e r t i e s o f Ф a n d a r e e m b o d i e d i n t h e r e l a t i o n s d e r i v e d f r o m 

( 3 . 6 ) a n d ( 3 . 1 ) : 

it ( x , s ) 0 ( x j S 1 ) = - It ( x 1 , s ' ) It ( x , s ) ( 3 . 1 6 a ) 

( a n d t h e c o r r e s p o n d i n g a d j o i n t r e l a t i o n ) 

a n d 

0 ( x , s ) s ' ) = 6 ( x - x ' ) 6 s s . - ^ ( x ' . s 1 ) s ) ( 3 . 1 6 b ) 

T h e e x p a n s i o n o f Ф ( x , s ) i n a c o m p l e t e o r t h o g o n a l s y s t e m \ \ ( * » s ) o f o n e -

p a r t i c l e w a v e f u n c t i o n s d e f i n e s a n a l t e r n a t i v e s e t o f c r e a t i o n a n d a n n i -

h i l a t i o n o p e r a t o r s b j a n d b ^ : 

it (x, s ) = £ b x x x ( x , s ) 

T h e b x , b j a l s o s a t i s f y E q s ( 3 . a - d ) ; i n f a c t t h e y a r e r e l a t e d t o t h e a a 

b y a u n i t a r y t r a n s f o r m a t i o n : 

Xx. <Pa 

<Pa Xx 

a 
w h e r e 

20* 
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3 .B . Hamiltonian of identical particle system; Hart ree -Fock basis 

We assume now a system of nucléons subject to two-body interactions 
only. Their Hamiltonian is 

A 2 A 

H = I I < з л 7 > 
i=l i<j 

It is now trivial to write the corresponding operator H , using (3.10, 13): 

M a « ( Q l + l Z а ^ а в + ( а Э | у | у б ) а 6 а у (3.17a) 
a 6 aèyi 

Notice that, in contrast to H, the operator И does not tell us that we deal 
with A-part ic les ; it is the same operator no matter what the number of 
particles; that number enters only through the nature of the state on which 
И acts, and may be ascertained by means of the number operator: 

I
 a

«
a

«
 = ( З Л 8 ) 

a a 

whose eigenvalues are A, the number of particles. (Notice that IN2 = ]Na, 
so its eigenvalues are 0 or 1). 

The most relevant feature of И , however, is that it is no longer ex-
pressed in terms of identifiable particles, but only in terms of particle 
states. It is not possible, to separate f rom И a term representing the 
interaction between a target nucleus and a projectile, sinc.e the projectile 
is not a particular particle distinct f rom the rest. The proper language to 
use now is to say that in a scattering state, one particle occupies a con-
tinuum state, whereas the others are bound together; the particle in the 
continuum is not identified, however. One sees that in using this formation, 
it. is just not possible to express a situation in which things are not p ro -
perly anti-symmetrized. This is the great merit of the method - quite 
apart f rom technical advantages. 

In formulating scattering processes, this feature produces certain 
novel problems. One would like to construct states (wave packets), which 
for instance represent an eigenstate of the target plus a f ree particle. 
Such states can be constructed, but it turns out that they are not orthogonal. 
Orthogonal states can only be obtained if at least part of the interaction 
between the target particles themselves is also "switched o f f " . These 
features wil l be illustrated as we go along. 

An important aspect of nuclear reaction studies is to connect its f o rmu -
lation with the independent particle picture of nuclei, so successful in 
spectroscopy. In this picture, the nuclear ground state is approximately 
described by |{a} X with the provision that the basis cpa be properly 
chosen. The best independent particle basis - in a sense to be defined -
is the Har t ree -Fock basis, which we find as fol lows. 

Let the set (pa (x, s) be the set of eigenfunctions of the one-particle 
equation 

(£+u<r>) = (3.19) 
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where the potential U is yet unspecified. Choose the A states of lowest 
energy e a to f o rm the vector 

\&> = | Ы 0 > = a + a + . . . a ] J o > (3.20) 

In the future, we use the indices X, ц, v to indicate all states ae { a } 0 , that 
is, occurring in |gp>. Fo r all other states, we use the symbols а, т, 
We continue to use a/3-yô . . . if no distinction is intended. Notice that due 
to (6b), has the property that 

a o | ® > = 0 

but a¿|SP> = 0 a j s ? > f 0 

aii f 0 because aM can 'create ' a 'hole' in by removing a particle: 
it is a hole creation operator. 

Also, since a j = 0, a j operating on gives that is, 
a j removes the hole created by ац : it is a hole annihilation operator. 

In (3.18) И has all its operators a+ to the left of all a ' s . This 
ensures that <(0 | И | 0 > is zero by virtue of a a| 0 > = <(0 | a j = 0. 

We now want to consider ¡S?)> rather than | 0 )> as a new ' re ference ' 
state, a j and aM are then 'creation' operators, and a0 , a j 'annihilation' 
operators. With respect to this interpretation, the operators as they 
stand in И are not ordered. We now proceed to order them. 

Fo r this we need a rule of procedure, Wick's theorem. Let 
A ! A 2 . . . . An be a product of a and at (nor ordered) . Let APi A^ . . . AP n 

be a permutation of the factors of the product which orders the factors 
(all a j , a¡¡ to the left of all aQ, a+). Then we define the ordered product: 
A i A 2 . . A n : by 

: A i A 2 - - - A a = = eP A P l A P 2 - - - A P „ ( 3 ' 2 1 ) 

€p being the sign of the permutation of factors. The ordered product 
di f fers f rom the original product of operators by certain terms (due to 
6aS in Eq. 3.6c); these terms are obtained by 'contractions'. The rule 
(Wick 's theorem) is best stated by the two simplest examples: 

A B = : A B : + <g?| Ab|s?> (3.22a) 

A B C D = : A B C D : + : A B : < C D > - : AC : < B D > 

+ : AD : < B C > - : BD : < A C > 

+ < A B > < C D > - < A C > < B D > (3.22b) 

The only non-vanishing contractions in our case are 
A 

< » | a ¡ a j 9 F > = £ ôa(j 6 вм 
(i=i 
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With this, IF can be written as: 
A A 

+ I ' { " I 
i l 
2m 0) + (ад I У|/Зл) - /3) • 4 aa 

at H=1 

i JT (вЭ|у| 7б) : a¿a¿a6 ay : (3. 23) 

И is the sum of 3 terms; the first, a number, is just <(9? |tti | Si )> = E<g the 
second is a one-particle operator, and the third a two-body term. 

The best representation of one-particle states is then that which will 
make the one-body operator in (23) diagonal: 

(e|h|/3) = + (e|u|0) = e a 6 a B 

where 

(* U 0) = 

(3. 24) 

(3. 25) 

d=i 

(о-1 UI Д) is the Hartree-Fock potential - which from its defining equation 
must be constructed by a self-consistency condition. 

For more details of this, see General Bibliography. With 3.24, H 
takes its final form 

И = Eçg. + Y еа : aa aa : £ (ar/S| v|-yó) : a t a g a¿ a^ : 

= Ей + И . + V (3.26) 

A few remarks are in order: 

(1) : a ¡ a a : is the operator for the number of particles, or minus 
the number of holes. Indeed, for a = a > A: 
: a£ a„ : = a„ = N a , = N a , so its eigenvalues are 0 or 1. 
But for ju < A, : aJ aM : = -ам a J = - NM 

So the one-particle term inlH is of the form 

H„ I * I ]N (3.27) 

M —A 

(2) The Hartree-Fock potential (а|и|/3) may be transformed into co-
ordinate space: 

( xs |u|x'x') = Y <pa (x, s) (a|u|j3) cp* (x\ s1) 
ae 
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and represents there a non-local potential which goes to zero as 
|jî| and I x" I ->oo. It accomodates a finite number of bound states; 
not all of them are occupied by the states ц, in general, so that 
there exist bound excited states of H 0 . 
It also has continuum states, which represent waves scattered 
by the potential U. 
We shall later use a to label unoccupied bound states, and use the 
label kW to indicate continuum states. 

(3) Despite its attractive f o r m H , (3.26) has the problem that it 
makes it almost impossible to observe the momentum balance. 
The total momentum operator is 

tt>=£ (a|p|0) а+а е (a|p|p) : at aB-., (3.28) 
ав 

provided (&\ ] P ¡& ) > = 0, which we assume. But \&У is not an 
eigenstate of IP, and H 0 does not commute with IP. A l l approxi-
mation schemes based on the use of H 0 deal therefore with states 
of indefinite momentum. (A similar situation may prevail with 
respect to angular momentum. ) 

3 .C . A simple example: nucleón scattering 

This example is intended to illustrate the formulation of a scattering 
problem based on the Hamiltonian (3.26). We shall, in the next section, 
develop exact expressions for the scattering amplitude. But f irst, it will 
be useful to see a simple application; the simplification is obtained by a 
drastic reduction of basis vectors used in representing a scattering state; 
the example will also serve to illustrate the problems which arise if such 
simplifying assumptions are not made. 

As mentioned before, the particle states и $re of two kinds: 
(a) Unoccupied bound states in the H. F. potential U. We shall now 

call those ст. 
(b) Continuum states. They have wave functions cpk+'(x, s) or <p¿ ' (% s), 

and describe scattering in a potential U. Then wave functions 
define a one-nucleon S-matrix : 

< k ' | s | k > ' f d r v ^ (3.29) 

We shall normalize these wave functions as in section 1, and correspon-
dingly define creation and annihilation operators 

a f ( k ( + ) ) or a + (k'" ' ) and a ( k ( + ) ) or a(k (~>). 

These satisfy 

a + ( k ( ± ) ) a (k , ( ± > ) = ô (k ' -k ) - a ( k ' ( ± ) ) a + f k ^ ) (3. 30) 
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The states <j, ц, or а, ц form a complete one-particle basis. 
Eq. (3. 29) in conjunction with (3. 15) gives the relation 

a(k (">) = J d 3 k ' (к I s I k') a(k' (+ ) ) (3.31) 

We now construct a scattering state, as a superposition of eigenstates of 
H 0 ; we shall however construct only an approximate eigenstate of И here, 
by restricting the number and type of components: 

|kt+) > A (k ' ) a+(k'(+,)|<3?> + Y в (с TM ) afo а + [ G > (3.32) 
oTfl 

|k<+) У = at (k (+))|â?> represents a particle scattered by a target, approxi-
mated by the ground state of H 0 , ]n]> = aJa*aM|s?)> a component, where 
the previously free particle is captured into a bound state a (or т), and 
has excited a particle-hole pair (т,д) or (ст, ц) in addition. These states 
|k(+)>and |n> satisfy H 0 |k ( + ) > = ek|k(+) >, IH0 | n > = en | n > . (We drop 
Eg, as an irrelevant constant. ) 

The non-vanishing matrix-elements of V are: 

<k'(+)|v|n> =• <n| v|k ' ( + ) > * = (к ' (%|у|стт) 

and <n' |v|n>. Notice that <k'<+) |v|k ( + )> = 0. 

The approximate Schrfidinger equation is then 

<k(+) | и - e | > =0, < п | и - e | > = 0 

which gives 

(ek - E) A (k) + Y <k<+) |v|n> В (n) = 0 (3. 33a) 
n 

(en - E ) В(n) <n '|v|n> B(n') + J d V <n|v|k' ( + ) >A(k ' ) = 0 

(3.33b) 

Introduce the normalized eigenvector <(n|c)> of 

(en - E c ) <n|c> + ^ < n | v | n ' > < n ' | c > = .0 
n' 

and the notation 

|c> = £ |n><n|c>, ¡n> = Y |c><c|n> 
1 с 

B (c ) <c|n> B(n), B(n) <n|c> B(c) etc. 
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and get: 

(ek -E ) A (k) + ^ <k<+) | v | с > B(c) = 0 (3. 34a) 
С 

(ec - E ) В (с) + J d3k' <c | v| k , ( + ) > А (к') = 0 (3. 34b) 

We see now that this is exactly the system of equations discussed pre-
viously, Eqs (2.14a, b), based on a quite different model. This system is 
then handled in exactly the same manner; the T-matrix is the samé as 
(2.21): 

<„№> . <„№> • (3.35, ek Л к + 2 l k 

where the matrix <k|t|k> is due to the Hartree-Fock potential U, and 
derived from (3. 29): 

<k'|t|k> = < k ' | u | k ^ > = Jdr d T ' ^ i ^ (x-s '|u (xs ) (x, s) 

It will be useful at this point to indicate the complications that arise if 
the simple structure (3.32) of the approximate scattering state 
is abandoned: 

First: The target should be an eigenstate of И, not of H 0 as in our 
approximation. If, therefore, one constructs a more general 
expansion of in eigenstates of Ho one will inextricably 
mix the eigenvalue problem for the target (Ы = Е 0 \ & У ) 
with the scattering problem. 

Second: One may try to avoid this first problem by making an ex-
pansion like (3.32), but using |SP> instead of |s?S. This 
has the disadvantage that now the states a+ (k<+) ) 
a j a* a¿ | & У do not form an orthogonal basis. For instance 
(using 3. 30): 

< » | a ( k ' ) a+ (k)|a?> = < о ф ( к ' - к ) - a*(k) a (k> )|»> 

= 6 (k'-k) - < ^ | a f ( k ) a (k ' )|a?> 

Now a(kt+))|â?> is zero, but a(k ( + , )|a?> is not, since 
will contain many continuum components. 

3.D. Amplitudes for elastic and inelastic nucleón scattering, 
deuteron stripping and pickup, etc. 

In this section we shall derive expressions for scattering states 
describing a variety of collision processes, and - by means of the 
S-matrix - give expression for the corresponding transition amplitudes. 
First nucleón scattering will be described and discussed, and then deuteron 
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scattering and stripping, the latter as an example of a rearrangement 
collision. It wil l be easily seen that the method generalizes to any kind 
of two-body collision. For the purpose of deriving general formulae, it 
will be useful to choose freely any representation of single particle states 
we want. Plane wave states are particularly convenient; they correspond 
to the decomposition 

» (2, s) = J d 3 k <x|k> a (k, s) < x|k> = 

which gives the operator a(k, s), a+ (k, s) the property 

{a(k, s), a*(k ' , s ' ) } = 6 (к - k') 6SS. 

Of course the Hart ree -Fock representation will be used too; in this case 
the single-particle continuum states are not momentum eigenstates but 
scattering states themselves, and the T -matr ices f o r elastic scattering 
will have an extra term. 

The Hamiltonian wil l be written as 

I I = H0 + V 

with I l u either the kinetic energy or, as in (3.26), the Hart ree -Fock one-
particle energy. We shall f i rst assume that Hlv is just the kinetic energy: 

H 0 = J drk ek a+ (к) a (k), ek = fiV/2m 

Bound states of H composed of A nucléons, will be called | n A X and have 
energy EnA : и | п д = ЕПд |nA У . n A i s a set of suitable quantum 
numbers. We assume them orthogonal according to <C n' |n^> = 6 n-n. 
These states represent targets in collision processes . 

The state a+(k¡)|nA - more precisely: the wave packet 

&t (i> e ) n A > = J d r k f. (k) e i £kt а * ( к ) | п А » 

represents a f ree nucleón of (mean) momentum k¡ incident on a target. 
It is good to notice that these states are neither stationary nor orthogonal; 
in fact, by (3.6) 

< n ' A | a ( k ' ) a + ( k ) | n A > = < n'A | б ( к ' - к ) - а + ( к ) a ( k ' ) | n A > 

= S (k ' -k )6 n ; n - <n> A |a t ( k ) a ( k ' ) | n A > 

= 5 (k ' -k ) 6n.n - < n ' k ' | K | n k > (3.36) 

К is non-zero; f o r n1 = n it is just the density matrix of the state 
and 

/ dTk <nk IКI nk > = A 
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Nucleón scattering states will be written as |nA, they contain, in 
addition to the term at (k) | nд У, an outgoing wave of scattering and reaction 
products. They are eigenstates of И 

( И - (ЕП д + ек ) )|пА. к ( + ) > = 0 (3.37) 

Our aim is to express these states in terms of the target state; to this 
end, define operators J (k) and J+ (k) by 

[H, a+ (k) ] = + ek а+(к) + J+ (k) (3.38a) 

[H, a (k)] = - ek a (k ) - J (k) (3.38b) 

where 

J+ (k) = [V , a + ( k ) ] = £ a¡ (к/3 |у|тб)а6ау (3.39) 
By& 

(Notice that the representation /З76 need not be specified.) F rom (3.38) we 
have 

[ И , atk)l |n A > 
( И - Е П д ) а + (к)|пА ; 

ek a + ( k ) |n A > + 1 + (к ) |п А > 

and hence 

( И - (Е П д + e k ) ) a + ( k ) |n A > = J + ( k ) |n A > (3.40a) 

Similarly, we find 

( И - (ЕПд - e k ) ) a ( k ) |n A > = - J ( k ) | n A > (3.40b) 

We now invert Eq. (3.40a) by means of the Green's-function ( E - H ) " 1 , 
adding a solution of the homogeneous equation (3. 37): 

a t ( k ) |n A > = x | n A , k ( ± > » - E _ H + i q j t ( k ) l " A > 

This equation gives |nAk^^> in terms of |nA^>; it turns out, as we shall 
see, that X = 1 is the proper normalization: 

So finally: 

|nA, k ( ± ) > = a + ( k ) n A > + E _ H + i r ? J f ( k ) | n A > (3.41) 

With this, we can check the orthogonality, and also find an expression for 
the S-matrix elements (n'k' |s|nk). To this end, we need a formal relation 
obtainable from the commutation rules (3.38): 

(ÍH + ek, - E ) a (k ' ) = a (k ' ) ( H - E) - J (k ' ) 
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giving 

a ( k ) E - B i i n = E - e ^ - H i i r j a ( k , ) + E - 6 k . - H ± i n J ( k , ) E - E Ü t ) 

(3.42) 

Then, writing simple E and E ' fo r the energies of initial and final states: 

< n'k , ( ± > |nk(±) > = ( < n ' l j ( k ' ) E , . H 1 T i n + < n ' l a ( k ' ) ) |nk<+>> 

= < | J M ^ > + < n , | a ( k I ) a t ( k ) | n > + < < n , | a ( k t ) j t ( k ) | n > 

The last term, using (3.42) can be written as 

< n . | ( a ( k . ) + J ( k . ) ^ 7 ¿ T i í ) j t ( k ) | n > 

< n > | a ( k ' ) J t { k ) | n > + < n ' | j ( k - ) ( | n k ^ > - a + ( k ) | n > ) } x - W + i r , 

Hence 

[ п ' к ' ^ п к ^ Э = < n ' | j ( k ' ) | n 
1 1 

+ 
E ' - E Tir) E - E ' +ir) 

+ < n . |a(k) a t ( k . ) | n > + « U a t I " » 

The second line of this expression just gives 

6 ( k ' - k ) 6n.„ : 

Using Eqs . (3.38) fo r J and Jt, and the equality { a (k'), J+(k)} = { J(k'), a+(k)}, 
one obtains 

« n-1 a (k-) a t(k, + a t ( k ) ( № n E e k . E H ) i - ( E n . - e k - H ) ) a ( k . ) , n > 

which, at once reduces to 

< n ' | a ( k ' ) a f ( k ) + a + (k ) a ( k ' ) j n > = ó (k ' -k ) 6n.n 

This gives, at once 

< n ' k ' ( + ) |nk<+>> = 6 (k ' -k ) 6n.n (3.43) 
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and 

<n'k'(-> |nk<+ )> = ó(k ' -k) 6n.n-2Tri6(E' -E ) < n ' | J(k')|nk(+> > (3.44) 

So the T-matr ix for nucleón scattering is 

<n'k|T|nk> = < n ' | j ( k ' ) | n k ( + ) > (3.45a) 

We might have proceeded slightly differently, using the expression (3.41) 
for |nk(+) У rather than for <C n'k'(+) |. In this case, we would have ended 
up with 

< п ' к ' | т | п к > = <Cn'k'<-> I J + (k) |n> (3.45b) 

The two expressions are in fact identical, but only on the energy shell. 
There is a slight modification of this result, if the Hartree-Fock re -

presentation (3. 26) for И is used. It is then natural to use the creation -
and annihilation - operators for H. F. single particle states, in particular, 
the operators a(k'+>) and a+(k(+>) for the continuum. 

By completely analogous procedure, we now have 

|пк<*>» = at(k(*>)|n> + E . H 1 ± i T 7 J + ( k ( i ) ) | n > (3.46) 

This does not affect the orthogonality relations. But in the expression 
for the S-matrix We now deal with two different representations. Instead 
of (3.49) we get 

< n ' k l ( " ) | n k ( + » > = O ' l a f k ' ^ ) а + (к ( + ) ) + а*(к ( + ) ) a ( k l ( " ) ) |n> 

- 2TTÍÓ ( E ' - E ) < n ' | J(k'(->)|nk(+> > (3.47) 

The top line can be reduced by the relation 

a (k , ( " ' ) = /d 3k" (k'|s|k") a(k"<+>) (3.48) 

with which this line may be written as 

/d 3k" (k'|s|k") < n ' | a ( k " ( + ) ) at(k<+)) + a+(kt+)) a (k"< + ) )|n> 

= / d3k" (к' I s I к") < n ' | 6 ( k " - k ) | n > = (k'|s|k) 6n.n 

Now (k ' ]s|k) is the one-particle S-matrix for scattering of a nucleón in 
the Hartree-Fock potential, and has the form 

(k'|s|k) = б (k'-k) - 2тг1б ( e k . - e k ) (k'|t|k) (3.49) 

Inserting this into (3.47), we finally have 

<n 'k ' |T|nk> = 6n.n (k1 |t|k) + < n ' I J(k'<->)|nk(+> > (3.50) 
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This is again the fami l iar expression for the scattering f rom the sum of 
two potentials. 

These considerations and results can be generalized to cases involving 
a composite projectile, say a deuteron. A deuteron of centre -o f -mass 
momentum К and in spin state S has the wave function 

< U ? ! " V S 1 S 2 > < 7L + ? 2 | 2 | K > • ( 3 . 5 1 ) 

(that is, a product of an intrinsic wave function and a momentum wave 
function (exp [ i К • (?]: + R2 ) / 2 ] )/{2w)i . We shall abreviate it as < 1 2 | D K > . 
By means of this wave function one constructs the deuteron creation 
operator 

A f D ( k ) = J - Jdт^т2<12|вК>0 + (1) / ( 2 ) (3.52) 

This operator is normalized such that 

<0|A d (K 'S ' ) A+d (K, S ) | 0 > = 6 (K ' -K ) 6S.S (3. 53) 

The state A p ( K ) |O ^ is the free deuteron, and is an eigenstate of И . 

И A D f (K )|0> = E d k A ¿ ( K ) | 0 > (3.54) 

t 2 2 1 t i with EDK= К К |4m - | e D j , eD being the deuteron binding energy. This 
property is also expressed in the more general commutation relation 

[ H , А р (K ) ] = E D K A¿(K ) + J ¿ ( K ) (3.55) 

which is the analog of Eq. (3. 38) for nucléons. The operator jj, gives 
zero on the vacuum: J¿ 10 )> = 0. 

The construction of scattering states, proof of their orthogonality, 
and the construction of the S-matr ix follows exactly the pattern for the 
case of nucleón scattering. In general, we can state: let A^(k) be the 
creation operator for any projectile of kind a (elementary or composite). 
It wil l -satisfy a relation 

[H , A ¡ ( K ) ] = E a ( k ) A ¡ ( k ) + j J ( k ) (3.56) 

Such a particle, interacting with a nucleus (target) in state |n^> is de-
scribed by a scattering state 

|пд. k' + ) > = А / ( к ) [ п д > + E . l M + i r l j ! (к) I nA > (3.57) 

and the T -mat r i x for the process ( [ n ] = target in state n) 

[ n A ] + a - [ n'A. J + b 
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is given by 

< n'A. k'b IT I nAka > = < n'A. I Jb (k'b) I nAk(a+) > (3. 58a) 

= О Ч ^ " ' I J + ( k 4 ) | n A > (3.58b) 

Again, expressions (3. 58a, 58b) are equal on the energy shell only. The 
equivalence of these two expressions can be made explicit by developing it 
a bit further. 

Inserting the expressions (3. 57) f o r the scattering states into (3. 58a), 
one has 

« " V l Jb ( 4 ) I nAk(a+> » = « nA" I Jb (k'b ) К (ka > K » 

Now 
Jb (k ' )A^(k) = [ J b ( k ' ) , A ^ k ) ] . ± A ¡ (k ) J b (k ' ) 

where we use the anti-commutator if a, b are both fermions, and the 
commutator in all other cases. 
Then with 

С n ' I A a (к) (E^. - E k a - И ) = < n' I J¡ (к) 

< n ; - k ' b l T l n A k a > = «n;.l [Jb(k'b К™* 1 П А » 

+ « n , A- l J b ( k , ) ^Tn J a t ( k ) l n A» 

T < П A-1 J1 <k> E, - E , + H Jb <k'> I ПА » О . -59) 
a n A1 

Using (3. 58b) would have given < nA. | [А,,(к'), ^ ( к ) ] ± |n A > as the "Bo rn " 
term in the above equation. These two expressions are easily seen to be 
identical on the energy shell; also in the last term Ek , - E n would have 
appeared, which is equal to Eka - E '^ , . A 

3.E . T -ma t r i x and Green's-functions 

The fo rm (3. 59) has the structure of the " low-eqùation", and in fact is 
nothing but the time-independent version of the well known expression for 
the T -mat r i x based on the Lehmann-Zimmermann-Symanzik formal i sm of 
collision. In this formal ism one shows that 

- 2л-iô (E1 - E ) <n^,k'b | т|п д к а > 

' I M í d v e " I l v ' "S k l ' ( ' ê ' E>v) ( ' â * E 0 

X < п'д,IT ( A b ( k ' , f ) , A a ( k , t ) | n A > (3.60) 
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At (к, t) A (к1, t1) being the Heisenberg operators (exp [ ilHt]) A+ (k) (exp [ilHt]) 
etc. and T(x(t ' ) , y(t)) being the time ordered product 

X(t ' ) Y (t) for t' > t 
T (X(t ' ) , Y (t) ) = 

+ Y(t ) X (t ' ) for t > t' 

(the - sign valid for two fermion operators, the + sign otherwise). 
Carrying out the t and t' integrations in (3.60) leads at once back to 

the Eq. (3. 59). 
Let us look at this expression in somewhat more detail, for the case 

of elastic scattering of nucléons from the target ground state |o^>. Then, 
in the LSZ formula for T appears the one-particle Green's-function. 

Й? (к', k; t ' - t ) = i < 0 | T ( a ( k ' , t ' ) , а + ( к , 1 ) | о > (3.61) 

Now as the LSZ formula shows, there is a simple relation between the 
T-matrix for elastic scattering and the corresponding one-particle Green's-
function. We shall formulate this relation in the time-independent language 
and first illustrate it for the case of a particle scattered by a potential V(r), 
as described in section 1. We define (using one particle plane wave states 
I к » 

g (к', к; u) = <к'| ц . ц ^ |к) (3.62) 

(Notice that и is an independent parameter, not equated with either 
Ek or Ek . . ) 

Since 

<к '|н|к> = ekô(k'-k) + <k'| v|k> 

one has clearly 

(u-ek,)S?(k', k;u) = 6 (к' - k) - /d3k" <k' | v| к") <& (к", к; ш) (3.63) 

In shorthand, we can write this (and the "adjoint" equation) as 

( u - ek.) <& (к1, к; u) = б (к' - к) + <k' [ V ц _ |k> 

(u - e ) 9 (k ' .k ; u )= б(к' - k ) + <k'| v | k > 
K 1 u - H + i?) 1 ' 

and 

( u - e k ) (u -e k . ) g?(k ' ,k ;u ) = (и - е к ) б ( к ' - к ) + <k' | V ц _ ( ц - Н +V )|k> 

= (w -e. ) 6 (k'-k) + <k'|v|k> + <k'|v v|k> 
K • i l ' N 1 и - H +1П 
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Cíe arly then, by using Eq. (1. 31), we get the desired result: 

l im ( u - e ) (to - e ' ) <& (k',k;io) = <k ' | v|k> + <k' I V ¿-r- v | k > 
ш-£k-*0 С-Н+1Г7 

= < к ' | т | к > (3.64) 

A l l these simple relations remain valid in the case of scattering of a 
nucleón by a nuclear target (assumed in the ground state). We f irst define 
a &(k\ к; u) as the Four ier transform of (3.60) ( for nucléons): 

+00 

&(к',к;ы) = Г dT.e""|T| еШТ а?(к',к;т) 

Fo r simplicity, choose the zero point energy of H such that H|0^> = 0; 
then 

0 ( k ' , k ; u) = < 0 I a(k' ) 1 a + ( k ) | 0 > 
U) ~ JRL "Г 177 

+ < 0 | a f ( k ) u + ¿ . i r ? a ( k ' ) [ 0 > (3.65) 

By means of Eq. (3. 38) it is then straightforward to see that we have 

lim (u - e ) ( u - e ' ) 0 ( k ' , k;w) = < o | [J (k ' ) , a + ( k ) ] J o > 

ш-£ -»0 
ш- e'-> 0 

+ < o | j ( k ' ) e + i r i J f (k) |o > + < 0 I J+(k) J ( k ' ) | o > 

= < к11 T I к > (3.66) 

In the next section, we shall study the structure of 9?, and derive pertur-
bation expansion of Si and therefore of T . 

We terminate this section by defining the concept of the 'generalized' 
optical potential. This concept originates as follows. One may ask 
whether the one-particle Green's-function (3.65) satisfies an equation 
similar to Eq. (3.63) for the simple potential scattering case. 

Now it is easy to see that the definition of S?(3.65) gives a result 

(u - ek.) <g (k\ k;u) = б (k ' -k ) + R (k ' , k; u) 

We shall see that the ' residue' R has the structure / dk" <k ' |<У(и) | k")SP(k", k; 
this defines the generalized optical potential (к1 |'У(ы) | k). Thus satisfies 
the equation 

(u -ek.) k;u) = 6 (к' - k) - / d 3 k " <k'\<T(w) | k") <& (k",k; to) (3.67) 

or equivalently 

(u - e ) - <к'|<У(ш)|к> = <k'|â?"1 (u)|k> 
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The 1. h. s. is the 'inverse' Green's function. [Infinite system, 
is generally written as £(w) and called the mass- or self-energy operator. ] 
The potential ^f (u) reduces elastic nucleón scattering from a composite 
target to a one-particle problem. Indeed, the one-particle T-matrix, cal-
culated on the basis of the Lippman Schwinger equations (see Eqs ( l . 16, 17)): 

<k ' |k ( + ) > = 6 (k'-k) + < к ' 1 т 1 к > (3.68) 

where 

< к ' | т | к > = < к ' | г ы | к ( + ) > = J d3k" <к ' | г ( ш ) |к " > < к " | к ( + ) > | ш = £ к 

is in fact identical with the T-matrix < к ' | т | к > of Eq. (3. 45). It is there-
fore of great interest and importance to get hold o fy ( io ) . This matter is 
taken up in the next section. 

3.F. Green1 s-functions and the generalized optical potential 

In this section, we derive an expression for the generalized optical 
potential <k' |<X"(u) |k>. 

The aim is to express 0^(u) as a matrix-element 
with respect to the Hartree-Fock ground state of the system; this will be 
achieved by expressing the Green's function by means of a linked diagram 
perturbation series, and extracting <У*(и) from this series. 

We recall some premises and notations. We adjust a constant energy 
term in ft such as to have н|0^> = 0; in that case, the Hartree-Fock re -
presentation of HI is 

И = И0 + V + ДЕ (3.69) 

ДЕ being the difference E ° - E 0 between the H . F . approximate and free 
ground state energy: 

д E = < о | н | о > - < O | h | O > 

The H .F . ground state 10 )> satisfies: 

H 0 | o > = 0 and <0 | v |0>=0 

The Green's function (or one-particle propagator) is defined by means of 
the equation 

( k ' | s F ( t ) | k ) = y < 0 | Т (a (k', t j +1), a t j ) ) 10 > (3.70) 

In this expression, a+ (k) and a(k) are the usual plane wave state creation 
and annihilation operators, and a+(k, t), a (k, t) the associated Heisenberg 
operators 

- H t - 1 и t 
a (к, t) = eR a (k ) e И (3.71) 

21 
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Finally 

r A ( t ¡ ) В (tj), t 2 > t j 
T (А2(%), B ( t j ) ) i (3.72) 

1 -В (%) A (ta), tj > t2 

is the time ordered product. (The - sign for tj > t2 holds if both A and В 
are fermions; in all other cases the + sign applies.) 

The Four ier transform of & is then 
+00 

I I Г - ! d t - l l | t | I I 
(k' |s?(u) |k) = / dt e 1 ' (к'| S?(t) | k) 

-oo 

+ « ° l a ( k , ) ^ W T i ï а + ( к ) | 0 » + « 0 | a t ( k ) a ( k . , | o > (3.73) 

vVe shall f i rst work with â?(t); develop an expression which establishes 
the integral equation 

+QO 

» ( t ) = » „ ( t ) + JdV J d t " a r 0 ( t - t ' ) Y ^ ' - t " ) 9 i4") (3.74a) 

- 0 0 -OO 

and hence a Four ier transform 

9 (u) = fiF0 (w).+ ( u ) ^ ( u ) » ( u ) (3.74b) 

<(k' I (u) I к У is the zero order (in one case, Hartree -Fock) approximation 
to 

(k ' |G 0 (t)|k) = y <0|Т (a(k',t + tl), af ( k , t 1 ) | o > -

where 

a (k , t ) = e i H » t a(k) e" iH|)t 

Its Four ie r transform is 

(k>|8F(u)|k) = < 0 | а ( к ' ) ц + aMk) ]0 > 

+ < 0 | a t ( k ) ¡ r T i i ; T T r j a ( k . ) | 0 > 

This may be reduced further by writing a(k') and a + (k ) as a superposition 
of Har t ree -Fock operators, by means of the Hart ree -Fock wave function4 

4 These are the Fourier-transform of the previously introduced ¡pa (x ) . 

21' 
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^k|a)> (or more specifically, the wave functions 

«(k'lju^ for hole states 1 S y < A 

<(k' |a)> for bound particle states 

<(k' |k'+' У for continuum states). 

a (k1) = Y < k ' И ац + X < k ' l a > aa + / d ® k <k' I k ( + ) > a (k (+ ) ) (3.75) 

M 

This gives us an expression for Й^0(ш): 

( k " l * o ( u , | k . , = ) + r d 
1 0 L Ш - e o +1Г] J w - ek + ir¡ 

a 

У < j E ^ X 4 k l > 
и и - e - in 
м 

Notice that this is just the form of 9 (со) we had found for the case of the 
scattering of a particle by a given potential well; except for the position 
of the hole-state poles in our case, this well is the H. F . potential well: 

(k"|uH F |k') = Y (k"n|v|k'/j) - (k"ju|v|juk') 

(J sA 

We may also remark that one could of course define g in terms of Hart ree -
Fock operators a a , a£ instead of using plane wave operators. In this case 
9?o (w) is diagonal, and takes the simpler form 

I I ^aS 
(a|S?0 (u)|/3) = — for particle states 

CL) Ç T in . 
a (including continuum states) 

б . < 3 ' 7 7 ) 

(a\&a (to) j/3) = for hole states 
0 1 u - e - in 

If we choose the plane wave representation (3. 76), then the optical potential 
wil l appear as the sum of two terms. <&0 itself will satisfy the equation: 

(u - e k „ ) (k"|s?0 (u) |k>) 

= J(k")UHF|k'") d3km (k'"|s?0 (w)|k') + 6 ( k " - k ' ) (3.78) 

Using this equation and the integral equation (3. 74) for g in terms of & 
is seen to satisfy the equation 

(u - ek„) (k"|«3? (u) Ik') =6 (k " -k ' ) 

+ / d3k'" { (k"|UH F |k"') + (k"| E (u ) |k ' » ) l (k'» |g?(u)|k') (3.79) 
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which shows that the generalized optical potential У (и) is defined by 

Г ( и ) = U H F + Z (u) (3.80) 

Now that we know what to look for, let us proceed to the determination of E. 
The perturbation series for 9 and E is obtained by using the ^inter-

action' representation for operators, in which their time dependence is 
given by 

Q(t) = е ' н » г П(0) e" i ! tV (3.81) 

for any operator Г2 . The relation of this to the previously introduced 
Heisenberg representation is expressed by means of the operators 
(exp [ + i H 0 t ] ) (exp [ - i Ht] ) and (exp [ i H t ] ) (exp [ - i H 0 t ] ) . More precisely, 
we define 

U (t1 #t2 ) = e 0 1 e 1 2 e 0 2 

= U (t j .O) Ü(0, t2) (3.82) 

( ДЕ is thrown in because И = Ы0 + V + ДЕ). This definition is assumed 
to hold for real or complex values of ti and t2 . U satisfied: 
U ( t b t2) + U (ti, ti )U (t¡ , t2 ) (any t¡) and U (tj., t x) = 1. In addition, the 
differential equation 

d U d t ; t 2 ) " i V t t ^ U ^ . t , ) (3.83) 

which has the formal solution 

tj U l Un.j 

= 1 ( - i )nJ duj J du 2...J d u n V ( U l ) V ( u 2 ) . . . V ( u n ) (3.84) 
n=i t2 t , t, 

We can now write the Heisenberg operators Í2(t) as 

n ( t ) = e ' H t f2e _ H t = U(0, t )n(t ) U (t, 0) (3.85) 

The same operator U may also be used to express the true ground state 
I 0 У in terms of the H. F. ground state | 0 У : 

| 0 > = l i m U(0, i/3) J 0 >/ < 0 | 0 > е В Л Е (3.86) 
6-> « 

Indeed, 

U (0, i/3) |0 > = е " е И | о > е 0 Л Е = £ | n » е " е Е Ч n| 0 >e 0ЛЕ 

n 

Assuming E„ > 0 for all n > 0 (notice Е0 = 0), Eq. (3. 86) follows. 
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In this way, we may write 

е - 2 В Л Е ( -<0 |u ( - i/3,t2 )a (t 2 )U (t2 ,t1 )a t (t 1 )U (t1 , i|3 ) |0> ; t2 > tx 

^(t2, t :) = lim i „ |n \ |2 l 
L < o | u ( - i i 8 . t 1 ) a t ( t 1 ) U { t 1 , t 2 ) a ( g U ( t 2 f i j 3 ) | o > ; tj > % 

Because of time displacement in variance of this expression, we may put 
tj = 0 and t2 = t. 

Notice that we assumed o|o^> = 1, that is, we have: 

- 2 В Д Е 

Hm |^0|0 )|2 <0|U( - Í ft i/3) 10 > = 1 (3.87) 

Upon inserting the expansion (3. 84) for и(1^, tx) into these expressions, a 
trivial identity may be made use of, the simplest example of which is 

b x b b b b 

I =J dx J dy f (x ) f (y) = JdyJ dx f (x) f (y) '-JdxJ dy f (y) f (x ) 
a a a y a x 

ь b f (x) f (y) (if X > y) 

I dx I dy -j 
f Ы f (x) (if у > x) 

dx dy T (f (x), f (y ) 

where T(f(x), f(y) ) stands for the ordered (according to the value of the 
argument) product of f(x) and f(y). The f 's for different values of the 
argument need not commute, and in the application made here, f - V, 
V(tj) and V(tг) in fact do not commute for % f t2. If the end points a, b are 
complex, then ordering is understood in terms of the relative position of 
x, у along the integration path from a to b. In a generalization of this to 
n-fold integrals, we have 

=o -is 
< o | u ( - i/3, i/3) |o > ^¿f f dUj. . . du n < o |T (V ( U l ) , V(u2), . . . V ( u n ) ) | o > 

n=0 Ш 

the ordering being defined in terms of the relative position of the variables 
u¡, u2 , . . un on a path leading from i/3 to -i¡3. 

Another slight generalization of the argument makes it also applicable 
to the expression for <&•. 

- 2 В Д Е 
S?(t) = lim 

0 — [с о I о >|2 

-ie 
X ^ (-i)n/n! J dUj. . dun<(0 I T (V (г^), V(u2 ) , . . V ( u j , a (t), a f (0) ) |o> 

n=0 iB ' , 
(3.88) 
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о 'О 

-ф 
FIG.3. Illustration path to illustrate ordering for t> 0 and t < 0. At a later stage it will be realized that 
the integration path may be changed so as to ran from - " > j ± i e t o + « > - i e 

The integration path runs here f rom i/3 to 0, then to t, then f rom t to ri|3 (Fig.3). 
a (t) and at(0) are included in the ordering; also the extra - sign occurring 
when t < 0 and hence a + comes after a, is implied in the definition of T( ). 
(See Eq. 3. 72. ) 

At this point, we invoke a result of Wick 's theorem, stating that the 
vacuum expectation value of an ordered product is the sum of all possible 
total contraction. 

Total contraction is a pairing off of all creation operators at(u¿ ) with 
an annihilation operator a(Uj ) , and replacing this pair by 

Fo r a given order n in the expression (3.88) forâ?, there are a large 
number of possible patterns of contractions, graphically represented by 
diagrams. The elements of this description are 

± < 0 | T ( a ( U j ) , а * ( и ; ) | о > = ± i ^ 0 ( U j -Uj ) 

^ particle creation operator particle annihilation operator 

annihilation operator 

The operator V ( t ) describes the processes: 

particle scattering hole scattering particle hole scattering 

creation of particle hole pair annihilation of particle hole pair 

Contraction: 9?0(t2-tj) Contraction (t1 -t2 ) 
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Order V 

Order V 

О 

( L b Е Э 

a 
FIG.4. Some diagrams in <0 | U(=i, fi)|0> 

\ 
Й 
\ 

о 

W * (b) 

FIG. 5. Examples of diagrams in h (of order V2 ): (a) linked diagram, (b) diagram with unlinked part 

(a) " (b) 

FIG.6. (a) Example of a complex linked diagram; (b) its structure 

As examples, we give in Fig . 4 some diagrams in | U(= i, fi) | 0 )>. 
Examples of diagrams in S? (of order V 2 ) are shown in Figs 5a and b. 
An example of a complex linked diagram and its structure is shown 

in Figs 6a and 6h. 
The main points are now: 
Call G(n)the contribution to Si (discarding the factor exp 

f rom all linked diagram of order n. The contribution of a diagram of 
n"2 

order n with unlinked parts is then Yj ^'^S '11" that is, each unlinked 
i=o 

part provides just a weight factor. Then 

= lim £=0 

-¿DAt г—i / t—i \ 

l im 
-26ДЕ 

< o | o > f 
1 + Y s<n)) Y 9 W 

t 
(3. 89) 

n=2 
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It is easi ly seen that (1 + £ is just <0 | U(-ij3, ij31 0 >, and by Eq . (3 .87 ) 
the refo re 

CO CO ^ - i g 

9 = Y Y ^ ï f " / d u r " d u { < o | T ( V ( V ( U l ) , V(u2 ). . . 

1=0 • í=0 + i e 

. . . V ( U 4 ) . a (t), a+ (0)|0> l i nked (3.90) 

The general linked diagram has the structure indicated in Fig . 4a, and its 
contribution to g is therefore a sequence of convolutions of factor (u, u') 
with 'boxes' K(s) (u, u' ) (as in Fig . 4b). 

Abbreviating convolution by a dot, that is, writing 

С = A • В for С (t2, t¡) = fdt' A t ' ) В (t', tx), etc. 

one has 

se=a?0 + a v ( Б к 1 0 ) ' + 

or 

9 = a?0 + a?0 • ( £K< s ) ) • 9 

Hence the self energy term is given by the sum of all distinct 
'boxes ' . 

A 'box' is characterized as a connected diagram, that is, it cannot 
be separated into two parts by cutting a single solid line; in other words, 
there is no decomposition К = K' • SP0 • K " . 

the sum of all K( s 'of a given order n, is then contained in the 

term 

a v 

" ^ 7 d U l - " d U n < 0 | T ( V ( U 1 ) ' V ( U * > V ( U n ) ' a ( t ) ' ^ I " linked and 
connected 

To extract £ / t n ) f r o m this, observe that at(0) may contract with any 
a(u¡ ) .in V (U j ). That contraction is 

< 0 | T ( a ( u . ) , a+ (0 ) ) |0> = i (u l t 0) 

a(t) may contract with any at (uj ) in V (u j ) , and this gives a factor 

<0|T ( a ( t ) , at {Uj ) ) |0> = i ^ 0 ( t , U j ) 

since u¡, uj are different, but otherwise f rom any one of the n variables 
u¡, we get a factor n (n - l ) . 
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с. 

The removing of an a(u¡) f rom V(u¡) leaves the operator J^U ; ) defined 
previously, and removal of an a+(uj ) f rom V ( u ¡ ) leaves a J ( u j ) (see Eqs 
(3.38, 3. 39). Therefore 

% • £ ( n > • ^o 

+0O +00 +00 

= / d t ' / d t " ^ ( t , t ' ) J 1 d u 1 . . . d u n . 2 < o | T ( V ( u 1 ) , V ( u 2 ) . . . 
-00 -OO 

. . . V(un_2 ) , J ( t ' ) , Jt (t" ) ) | 0 > L C ^ J f ' . O ) 

and Yj itself is thus given by 

n+l 
( k ' | D ( n + 2 b \ t " ) | k ) = J Tdt 1 . . d t n <o|T (V ( t 1 ) , . . V ( t n ) , J(k',t>). J1(k,t"))|o^ 

- go 

We may now Four ie r - t rans fo rm this expression and get (we exploit here 
the time-translation invariance of 

+00 

£ ( n + 2 ) M = f d t e i W t " n | t i E < n + 2 ) ( t , 0 ) 

(n+2) , ..n+l ÍT 
S (w) = J dte"-"" J d t 1 . . d t n <0|T (V ( t 1 ) , . . . V ( t n ) , J(t), Jt(0 ) )|0>L C_ 

-oo -so 

At this point, a previously used algebraic identity is used in reverse, 
giving 

E ( n + 2 ) M -

00 „ U j U p . j t w r. ! 0 Vj vq- l 

У ( - i )n + 1 j J^dt е1(Ш+ " " 1 f^lfdu2. . .JdupJdWj. . j rdw t J d ^ Jdv2 . . . J dvq 

p+q+v=u 0 t t t O 0 -=o 

X <0 I VfUj) V(u2 ). . . V ( u p ) J (t) V Ц ) . . . V (u r ) J f (0) V ( V l ) . . . V (v q ) I 0 > u c 

- j dt 1 J ( j U l J d u 2 . . -fàupjdwj.. .JdWr^dyJdva . . .fdvq 
-oo 0 0 0 -1 -1 -oo -oo -oo 

<o|v|Ul)... V (u p ) J f (0) V (Wj ) . . . V ( w r ) J(t) V (Vj^).. . V (v^) j 0 )>L_C. 

(3.91) 
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The time limits involved in these two multiple integrals are graphically 
illustrated as fol lows: 

"j10 j Уд j j У2 i У1 j zr i |Zi.|Z0 j xp j i X! +00 

Vq V l V2 v l 0 WI W2 W1 1 • Up U2 U1 

t >0 

Ь й - — 1 У 2 | У 1 I 2 1 1 Г Г Р 1 — I t < o 
V1 Vq-1 v2 v l t Wr W1 0 Up U2 U1 

We now introduce, in place of the variables u, v, w, t, the n+1 positive 
intervals Xj . . . x p , zQ . . . z r , y. . . . yq , illustrated above. Notice that 

and 

t = ~{zq + Z j +... + z r ) for t < 0 

A l l these intervals have now integration limits 0 < . . . <a> . These inter-
vals are the only variables occurring in the two matrix-elements of 
Eq. (3. 91); indeed, we have: 

oo 

Z(n+2 V-1 1 Г Г i(w+ii))(z + z + ...+zr) 

( и ) = ^ ( " i )n + 1 j J d X l . . . dzr e l 1 p+q+r=n 0 

<0| Ve" iHoxi V . . . Ve _ iHoxp Je" i Ho Z r V . . . V e ' i H o z > j t e" ¡ ноУ. V... e"iH»y4v|o>L 

- / d X l . . . d z I e , < ' " - I , , ) ( z ' t z ' 
о 

< 0 | v e i H » x i V . . . V e i H o x P j V 1 " » 2 » V. . .Ve" i H « Z rJe i H » y ' V. . .е -1"»*" v j o ^ 

These integrations introduce the energy denominators, and give finally: 

\P 
И Л 1 » - l { < 0 | ( V . - 0 

p+q+r=n 

- <"l ( v i ^ - J ^ l fàvj l°>,c. 

the subscript С is a reminder that only those sequences of intermediate 
states which correspond to a connected diagram do contribute to Yj • 

The lowest order term n=0 gives: 

i f M K o | j ( k 4 — i ^ J t ( k ) | o > + < o | j t ( k , J T i ^ î r j j ( k - ) | o > (3.92) 
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FIG.7. Diagram of direct and exchange contributions of (a) first term, (b) second term of Eq. 3.92 

We recal l that the operators J(k') and J t (k ) are given by 

J (k') = i Y : aJ(k')3|vA |уб)£ V 
8y6 

j t ( k ) at a t 
a tí 

(a/3| vA I к 5)aó : (3. 93) 

a&6 

where we have introduced the anti-symmetrized matrix elements, 

(a/31 vA I 76) = (a/3) v| yó) - (a/3| v|óy) 

and therefore also a factor i in (3. 93). 
The evaluation of (3. 92) is now straightforward. To indicate the 

intermediate states involved in evaluating the two terms, we can draw the 
associated diagrams (see Fig . 7). 

Algebraical ly, one has 

( 4 К I ат)/ат | vA |кц) 
( k ' | D ( 2 ) M | k ) = 1 

" е а " e r + ir> 

1 V {Ц1 
2 L u 

(jUy|vA I кст) (к1 а I vA \цр) 
+ e - e -е., о p f 1 Г) 

(3. 94) 

If we apply this to scattering problems, we must choose и = ek ; in that case, 
the f i rst term in (3. 94) is complex, the second real, since €]< + ер - (e^ + eT ) 
may have a zero, but ek + еа - (ер + e^ ) is > 0. The imaginary part of 
is then 

Im С (и) ) = - I б (cj + - eo - eT ) (к1 ju I vA I ат) (ат | vA | k/j) 

OfJ T 
These formulae have been applied to the case of nuclear matter (in which 
case L has no space-dependence and is hence diagonal in к, k1); but no 
calculations of (к1 | E[k) using Hartree -Fock solutions for finite nuclei 
seem to exist yet. For a more detailed discussion of these matters, see 
Thouless [ 1 ] and Bell [ 2 ] . 

Another interesting question is the relation of the optical potential as 
defined here to the potential used to describe the energy averaged scattering 
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amplitudes. Fo r these matters, we re fer to the papers by Feshbach [3 ] 
and Brown [ 4 ] . 
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CHAPTER 6 

MULTICHANNEL SCATTERING FORMALISM 
AND THRESHOLD EFFECTS 

L . F O N D A 

Introduction. 1. General remarks. 2. Determination of the scattering amplitude. 3. Evaluation 
of cross-sections. 4. Unitarity of the S-matrix and optical theorem. 5. Low-energy behaviour of 
cross-sections. 6. Treshold effects. 1. Coulomb effects. 

INTRODUCTION 

The purpose of these notes is purely didactical. Most of the material 
covered here has been dealt with already in the literature. The reader is 
supposed to have good knowledge of quantum mechanics and some famil i -
arity with ordinary potential scattering (see, for example, Chapter 5). 

In sections 1-4 the general multichannel scattering formalism is con-
sidered in detail. Scattering systems are covered for which a Hamiltonian 
can be defined and can be split into two parts, one of which describes the 
free and internal motion of the fragments of a given configuration. The 
splitting of the Hamiltonian varies from one configuration to another. 
Accordingly, the formalism is general enough to cover any kind of nuclear 
reaction such as stripping, pick-up, rearrangement collisions and nucleón 
production. In section 4 a simple proof of the unitarity of the S-matrix is 
given. 

Sections 5-7 give a brief account of the anomalies which show up in the 
scattering and reaction cross-sections as functions of energy at the opening 
of a new inelastic process. These effects usually amount to a cusp 
( 'Wigner cusp') or to a rounded step, due to the sudden removal of flux 
from the incident beam at the onset of the new inelastic cross-section 
starting with infinite slope as a function of energy. No cusps or rounded 
steps appear, however, if Coulomb forces are present in the newly opened 
channel. In the case of Coulomb repulsion no anomaly is observed, while 
for Coulomb attraction a finite jump appears in the various old c ross -
sections due to the non-zero value of the new inelastic cross-section at 
its own threshold. The foregoing applies only when the new channel is a 
two-body channel. If, however, the new channel contains three or more 
particles no anomaly appears in the scattering and reaction cross-sections 
at its threshold energy. 

The observation of threshold effects, as will be discussed below, turns 
out to be useful for the experimental determination of: relative parities 
and spins of the reaction products, scattering phase shift at the threshold 
for the new channel and cross-sections for processes which are often not 
feasible experimentally. They can even be used in the search for new 
particles. 

The author is at the Istituto di Fisica Teórica dell ' Université, Trieste. 

333 



334 FONDA 

Threshold effects were f irst pointed out by Wigner [1]. Their physical 
implications have been investigated by various authors such as Breit, Baz, 
Newton, Fonda, Okun, Adair , Delves and others. A list can be found in 
the review article by Fonda [2] and in the recent book by Newton [3], where 
proper reference is made to the original contributions. 

1. G E N E R A L REMARKS 

When we have a beam of particles focused on a given target, exper i -
mentally part of the beam will be found unaltered on the other side of the 
target while the rest will be found deviated in all directions, having pos -
sibly changed its characteristics (such as spin, type and number of pa r -
ticles, etc. ). The knowledge of the intensity and characteristics of the1 

deviated part of the beam in the various directions furnishes one of the 
most powerful means of obtaining information on the nature of the inter-
particle interactions and on the structure of the impinging and scattered 
particles. We shall now try to describe this kind of experiment by means 
of quantum mechanics. 

We f irst point out that the experimenter must arrange the experimental 
apparatus in such a way that no interference occurs between different 
particles of the beam. We can therefore suppose that one particle at a 
time reaches the target. Besides, the experimental apparatus is set up 
in such a way that the particle takes an extremely long time to get on the 
target, i . e . in the region of interaction, so that by abstraction we can 
suppose that we had shot it in the remote past. If M 1̂) (t) is the state 
associated with the physical system at the instant t of time we can then 
write: 

Ф(1) (t) ~ <i>(i)(t) (1.1) 
t - CO 

ф ' 1 ^ ) and ф (1 )(t) are unit vectors in the Hilbert space. The index (i) means 
a particular initial configuration. Of course, the "extremely long time" 
mentioned above is measured on atomic or sub-atomic scale by taking as 
reference, for example, the time of transit of the considered particle 
through the region of interaction. We shall suppose that the 'wave 
packet' ф'1'^) and the target have been prepared by the experimenter in 
such a way that when ф^(t ) gets on the target it overlaps at most one of 
the particles there. The initial state is then a two-particle state and we 
can forget about the other particles of the target which do not take part 
in the scattering process . Of course, the target, f rom time to time, must 
be regenerated f rom the loss of its particles which recoil out as a result 
of the collision process . 

The evolution in time of ф'1'(t) will be different f rom the evolution of 
M/'*(t). I n fact the last state suffers f rom the presence of the mutual inter-
action between the incoming and the target particles. (t) being 
governed by the Hamiltonian H, ф ' 1^) will be governed by the Hamiltonian 
obtained f rom H , via suppression of the mutual interaction mentioned 
above. We imagine then that H can be split into two terms Ki and V¡ , 
such that if K¡ were the entire Hamiltonian the impinging and the target 
particles would have the same internal structure and suffer no scattering 
one f rom the other. V j is then the representative of the mutual inter-
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particle interactions, while K ¡ describes the free and the internal motion 
of the fragments in the configuration considered. In the SchrOdinger 
picture of motion, (t) and «^''(t) satisfy the following Schrôdinger 
equations: 

a ^ = H * ( I ) ( t ) (1.2) 

И ц ' ^ - К . Л ) (1.3) 

H and K; are self-adjoint operators. In the language common to physicists, 
their eigenstates therefore form complete systems of vectors in Ililbert 
space. 

A s time goes on, the particle crosses the interaction region and gives 
r ise to a reaction whose products are finally analysed by the experimenter 
very far away f rom the target. So, by abstraction again, we can say that 
experimental measurements are made on the state evolved from vfM(t) 
up to the distant future. Superposition principle tells us that the 
final state will be partly that evolved f rom the initial without having under-
gone scattering and partly a state which is the result of the interparticle 
interactions. We write: 

* ( i > ( t ) ~ фй)а) + x(i\t) (1.4) 
t-»+ «> 

x ( 1 )(t) will be a superposition of all possible scattered states and, in general, 
will not evolve with a given Hamiltonian as 0 (1 )(t) does. In fact, at t + oo, 
besides the configuration containing the same, possibly energetically excited 
fragments of the initial state, we can have configurations belonging to 
different splittings of the total Hamiltonian H. In these configurations the 
f ree motion of the fragments is governed by K f /= K¡ and the number of 
fragments can even be greater than two. 

There are many problems where the splitting of H is trivial, compli -
cated situations may, however, ar ise when the definition of a non-
interacting system cannot be given unambiguously. Quantum meson theory 
is an example: nucléons, even though far away f rom each other, interact 
indefinitely with their own meson field giving r ise to the so called se l f -
effects. In this kind of problem there are persistent effects in the inter-
action operators which do not vanish as the particles depart f rom one 
another. In what fol lows we shall not deal with systems of this kind and 
shall consequently impose due restrictions on the interaction operators 
to exclude the occurrence of persistent effects. A lso , not being concerned 
with relativistic covariance, we shall work throughout in the centre -o f -
mass reference system. In this way the formal ism is slightly simplified. 
The Schrôdinger picture of motion will be used. 

2. D E T E R M I N A T I O N OF THE SCATTERING A M P L I T U D E 

Suppose that various splittings of H are possible: 

H ^ K j + V j . 3=1,2 , . . . 
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Fo r each splitting there is a corresponding configuration in which Kj is the 
Hamiltonian for the fragments when they are separated and do not interact, 
while Vj describes their mutual interaction. We assume that Kj has only 
a continuous spectrum bounded f rom below. Let us consider the eigenvalue 
problem for K j 

Kj > j ( a ) = E a - " ^ ( a ) (2.1) 

Here a is a set of continuous and discrete quantum numbers, necessary 
to specify Ipj completely, a varies with j. Them ' s are normalized 
according to 

(lp. (a), ^ ( a ' ) ) = 6 ( a - a 1 ) (2.2) 

F rom the ij^'s we pick up the eigenstates <pj(a) of K j which are given by the 
product of the plane waves of the relative motion of the given fragments 
times the internal wave functions describing their bound states. These 
states <Pj(a) define a 'channel1 and will be re fe r red to as 'channel eigen-
gunctions1. Channels will differ either because, belonging to the same 
Kj , they describe different bound states of the fragments, or because 
they belong to different splittings of H. The K j ' s have continuous spectra 
which start at different energies Ë j . Due to the supposed absence of 
persistent effects, there is one K, call it K 1 ( whose continuous spectrum 
coincides_with the continuous spectrum of H. A l l the other K ' s have 
energies E j greater than E x . The Ej are threshold energies for channels. 
However, we have more thresholds if the fragments belonging to K_j_ admit 
stable excited states. It goes without saying that, while the set fç j j (a ) ) 
is complete, the set {cp¡ (a ) } is not 4 In what follows the sub-index j of 
the channel eigenfunctions will, for simplicity, label the channels (rather 
than only the possible splittings of H as done above). 

6 ( a - a ' ) is a product of б-functions and Kronecker 6's. The integral 
sign over a will be a symbol to represent the integrations over the con-
tinuous variables and the summations over the discrete ones. Sometimes 
we shall give separate consideration to the total energy variable contained 
in a, then we shall call a a the aggregate of commuting observables which 
commute with K j and together with it form a complete set. We shall write 

da = dE a da a , (2.3) 

ô ( a - a ' ) = 6 ( E a - E a . ) 6 ( « a - o a . ) 

1 To clarify these ideas, take the case of proton-deuteron scattering. We can define two splittings 
of the total Hamiltonian, H » К j + V1 and H = Kg +V2 . Kg is the kinetic energy of the three nucléons in 
the centre of mass system, KA is instead given by Kj = K2 + V where V is the proton-neutron potential. 
If the continuous spectrum of K¡ starts from zero, that of Kx will clearly start at -|в|, and will coincide 
with the spectrum of H. В is the binding energy of the deuteron. ^ ( a ) are the eigenstates of Kx which are 
the product of the deuteron bound state wave function times the plane waves of the proton-deuteron relative 
motion. The set { ^ ( a ) } contains the set {<^(a ) } and also eigenstates which describe the three nucléons 
completely unbound in the potential V. The set { ^ ( a ) } is clearly not complete. Instead, the set 
{ç3(a ) } = { ^ ( a ) } happens to be complete. We could have more than two channels if the deuteron had 
a stable excited state of energy В'r, in that case we can, in fact, define a set {<p'i(a)} of eigenstates of 
Kj to describe this situation. Of course, the set ( a ) } would be contained in { " ^ ( a ) } and would be 
orthogonal to the set { <^ (a ) } . Energetically we would then have three thresholds, precisely at -|в|, 
-|B I and zero. 
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Next we introduce the set { ^ ' * ' ( а ) } of eigenstates of H satisfying: 

0Î*>(a)= <p. (a) + (E g i i e - K . ) " 1 V j 0e.1 '(a) 

= ^ ( a J + ^ + i e - H ) " 1 V ^ j (a) (2.4) 

(the limit e -» 0+ is understood). 

A s can be easily shown, the s and have the same normalization 
of their corresponding <p's: 

(ф (*\a), ^ + ) ( a ' ) ) = ( ^ ( + ) ( a ) , <p.(a')) +W<<+) (a), (Eo, + i e - H ) " 1 V. <p. (a ' ) ) 

= ( л ( а ) , Р (а ' ) ) + р + i e - K ) - 1 V « w ( a ) , <рДа>)) 
J J » J J J J 

+ ( ^ + ) ( a ) , ( E ^ + i e - E J - 1 V. <p. (a ' ) ) 

= (<p.(a), <p.(a')) (2 .5 ) 

The same holds for the ' s . 
We now want to describe the following situation: the incoming and the 

final particles are fragments belonging to certain splittings of H. This 
defines a reaction f rom the initial channel i to a final channel f. The 
initial state will then be chosen as follows: 

<¿(i)(t)= / d a e - i E a t / t l ^ . (аНср^а) , ф(1>(0)) (2.6) 

Of course, the state ф^ (t) satisfies the time-dependent Schrbdinger 
equation with Hamiltonian K ¡ . x'1 '(t) is the unknown of our scattering 
problem. (t) is in fact perfectly known, it is the state prepared by 
the experimenter in the remote past. Equation (1.1) is therefore the 
boundary condition for the state vector (t) satisfying the f irst order 
differential Eq. (1. 2). 

To evaluate >fS)(t) we have to take the limit of ^ ( i ) ( t ) for t - » + «> . This 
procedure will make sense once we know ^ ' ' ( t ) for finite times. Therefore 
the f irst step to take is to see h o w ^ ' ^ t ) builds up from ф^Щ at finite times. 

By Eq. (1. 1) we mean that: 

l im ||* ( i ) ( t ) - * ( i ) ( t ) ||=0 
t-> - 00 

that is, strong convergence of S t ^ t ) to (t) is assumed.2 We have 

2 For t(i(t) to converge strongly to <«t), it must converge weakly to zero. This is just what the ex-
perimenter realizes in practice: lim i/i(t,r) = о for any fixed 7, relative distance vector of the final 

t - » i « , 

( t - > + « ) or initial (t -* - « . ) fragments. See also H. Ekstein, Phys. Rev. 101 (1956) 880. 

22 
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, - iHt/ti (i ) ( i ) ,, ( i ) iHt/ti (i ) . 
|e Ф (О ) - ф (t)||= ||Ф ( 0 ) - e ф (t)| 

Therefore Eq . ( l . 1) is equivalent to 

iHt/fi (i ) ( i ) 
lim e ф (t) = Ф (0) (2.7) 

t-» - «o 

Let us compute the left-hand side 

fflt/fi,(i) Г i (H - E )t/fi ( i ) 

lim e ф (t) = lim / da e a <p. (a){<p. (а), ф ' (0)) 
• - OO t - OO 

da l + ( E a + i e - H ) _ 1 ( H - E a ) <Pi (a ) ( í ) i (a ) ,A0 ) ) 

da ^ + ) (а ) (<р(а) , ф('\о)) (2.8) 

where we have used the relation (see Ekstein, footnote 2) 

lim elAt g = lim [1 - (A ± ie)"1 A] g (2.9) 
t ->±«> e ->0 + 

g being independent of time. 
From Eq. (2. 8) we get the state vector at the generic time t: 

( i ) Г -iEat/fi (+) ( i ) 
Ф ( t )=J dae ф, (a)(<p. (а), ф (0)) (2.10) 

Now that we have determined ^ ' ' ( t ) through (1. 1) we could take the 
limit t + ce on it to determine The direct knowledge of xf'\t) is, 
however, not necessary. In fact, as we shall see in the next section, what 
is needed to compute cross-sections is the limit for t ->• + oo of the 
amplitudes: 

A f i = lim (ф<°(t), x ( i )(t)) = lim (ф«\t), Ф ( ' ) (1)-ф { ' ) (1)) 
t-* + oo t + oo 

(2.11) 

Here is a 'trial' normalized state vector used by the experimenter 
to make observations on our scattering system. It evolves with the 
Hamiltonian K f and is defined by: 

tf(f\t)= f dbe"lEbt/fi<pf(b)(<pf (b), фа\0)) (2.12) 

ф(Г), by construction, has projections only on channel f. 

22* 
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To evaluate Eq . (2 . 11), it is convenient to introduce the normalized 
;or \E^f)(t), solution o: 

with boundary condition: 
vector \E^f)(t), solution of the time dependent Schrôdinger equation (1. 2) 

l im ||w(f)(t)-<í>(f>(t)||= 0 (2.13) 
t " *+ со 

Building at finite times from Eq . (2 .13 ) is a straight- forward 
process . We have only to follow the very same procedure employed for 
the derivation of Eq. (2. 10). We get: 

* < f ) ( t ) = Гdbe" ' E b t / 1 Í ^ ' ' ( b U ^ b ) , < A 0 ) ) (2.14) 

Application of the Schwartz inequality shows that: 

M f > ( t ) - V ) , * ( i ) ( t ) - Ф(1) (t)) к 11 *i f>(t) - <¿(f > (t) 11 11 * ( i\t) - é \ t ) 11 

so that, using Eq. (2. 13), we can write for the scattering amplitude: 

A f i = lim ( ^ f > ( t ) , * ( 1 ) ( t ) -<Ê ( l ) ( t ) ) (2.15) 
t-» + «о 

Substituting in Eq. (2. 15) the equations for ^ f ) ( t ) , ^ ( i ) ( t ) and tfi(f)(t) we obtain: 

- i ( E a -E b ) t / f i 

A f i = l im / dbda — =—j- (ф \0), <p (b)) 
11 t - + «, J E a - E b + i e f 

( - ) (i) 
X (ф{ (b), V. <pi (a))(<p. (а), ф (0)) 

By application of the well known formula: 

• N 
p - ixt 

l im / dx :— f(x) = -i ' x + i e 
€-0 + ' 

M 

0 , 

- 2i7rf (0), t-»+oo 
(2.16) 

we finally have for the scattering amplitude: 

A f . = — 2Í7r /db da6 (E a -E b ) ( t f , ( f ) (0 ) , <pf(b)) 

Х{ф[~\ Vt ^ (a)) (а), (0)) (2.17) 
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We define then as T -matr ix the quantity: 

Tfi lb, a) = (ф\'\Ъ), V. чР.(а)) 

On the energy shell it satisfies: 

Tfi (b, a) = l + ( E . - i e - H r v , <P¡ (b), V^ila)^ 

(2.18) 

<Pf(b), Vi + V f ( E a + i e -H )~ X <Pi(a) 

= ( 9>f(b), Vf 1 + (E + ie - H) V. <Pi (a) 

( v f ( b ) , V f ^ + ) ( a ) ) , E a = E b 

where use has been made of the fact that on the energy shell: 

(<pf(b), V i < P i ( a ) ) = (<Pf(b), V f<p.(a)) , Ea= Efa 

In fact if E a = Еь we have: 

(<pf(b), V l V l ( a ) ) = ( <^ (Ь ) , [Н -К . ] <р . ( а ) ) = (<pf(b), [ H - E a ] (a)) 

= ( [ H - E b ] < p f ( b ) , <pj(a))= ( [H -K f ] <p f ( b ) , <pj(a)) 

( 2 . 19 ) 

(2. 20) 

f rom which Eq. (2. 20) fol lows. 

3. E V A L U A T I O N OF CROSS-SECTIONS' 

The probability of finding the scattered system in the 'trial ' normalized 
state t) for t -*+oo is: 

lim I (<At), *(i\t)) I2 ( 3 . 1 ) 

{(/> (t)} is a set of normalized vectors used by the experimenter to make 
observations on our scattering system. In this set we shall also have the 
initial state ^ ' ' ' ( t ) . We assume that the experimenter is smart enough to 
build wave packets 4>'f)(t) for large times which, unless <i>'f'(t) = <^*'(t) 
( forward elastic scattering), do not overlap with ф('>(t). Note however that. 
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if channel f is different f rom channel i, then the ф'в are already asymp-
totically orthogonal. In fact, let us consider the scalar product: 

rfi m Г i (Hb - e_) t/fi 
( , T ( t ) , * < » ( t ) ) = / d b d a e (<Pf(b), <p¡ (a) ) 

X (</>(f>(0), <рг(ЬШ<^(а), ф ("(0)) 

If the splitting of the Hamiltonian is the same in channel i and in channel f, 
then f rom the hypothesis that the channels are different we have that the 
fragments in channel f have internal (bound) states orthogonal to those of 
channel i (the channels are said to be orthogonal in this case) so that 
(<pf(b), <pj(a)) = 0 and 

($ ( f\t), ф(1>(t)) = 0, orthogonal channels f and i. 

If the splitting of the Hamiltonian is not the same in the two channels 
considered, then (<pf(b), <p¡(a)) is in general different f rom zero. M o r e -
over, <p¡ and Çj being eigenvectors of different operators (Kf and K ¡ , 
respectively), no б-function on the energy will be produced by this scalar 
product so that 

($' f>(t), ф'''(t)) =/= 0, non-orthogonal channels f and i 

Application of the Riemann-Lebesgue lemma3 in the limits t -»+oo now 
gives the desired result 

l im (<¿(f>(t), ф(1) (t)) = 0, channel f =f= channel i ' (3.2) 
t-> ± °° 

F r o m the foregoing discussion it fol lows that in Eq. (3. 1) we can sub-
stitute ^ i } ( t ) - ф(1)(t) for \C(i)(t) for all ф(0 (t) =/= ф(1)(t): 

I I2 
p f i = l A f i l ( 3 . 3 ) 

Af¡ = lim ^ " ( t j - ^ ' ^ t ) ) 
t-» + . 

To obtain information about the forward elastic scattered part of the system, 
the experimenter will, however, not use Eq . (3 . 1), since this is tantamount 
to a measurement of the total flux there. This is clearly wrong, since the 
total flux in the forward direction contains contributions both f rom the in-
coming non-deviated beam and from its scattered part. Instead, the ex -
perimenter will define the limit of Eq. (3. 3) to the forward direction as the 
forward elastic-scattered part of the system. We see therefore, that, 
after the correct interpretation of forward elastic scattering, Pf¡ r e p r e -
sents, as defined by Eq. (3. 3), the correct scattering probability i r r e s -
pective of the chosen final state, i. e. also if </>(f)(t) = ф (1)(t). 

3 E.T. Whittaker and G .N . Watson, A Course of Modem Analysis, Cambridge Univ. Press, London 
and New York (1958) 172. In this book the interval of integration is assumed to be finite, but it is easy 
to see that the same result holds for an infinite interval, provided the integrand is a continuous function 
of limited total fluctuation. 
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We now construct 0 ( f ) (t ) as follows: 

ь+дь. 
(f) -iKft/fi 1 Г 

* (t)=® (Zb^72 J db' Cf(b') <pf (b1) 
b 

Е + ДЕ а̂  + Да^ 
-iKjt/tí x 

e 
( A E L f ) ^ f d E ' / do'1 cf (b')<pf(b') (3.4) 

"f 

cf(b')EE (<p f(b'), Ф ( !\0)) (ДЕЛ a f ) 1 / 2 satisfies to: 

(Ab f ) _ 1 J d V |c f(b')|2= 1 (3.5) 

and is supposed to be a continuous function of b ' . We say then that P f i is 
the probability of finding for t -* + OD the scattered system in channel f with 
quantum numbers between b and b + Abf. 

By definition P f. is given by: 

Pfi = vAaf. (3.6) 

Дай is the cross-section for the given reaction i-»f and i/dS the proba -
bility that the initial particle crosses (at the time t = 0) the surface dS 
perpendicular to the direction of its motion relative to the target particle. 
v will then be given in terms of the initial state 0). By making the 
experiment over and over, by continuously sending one wave packet after 
the other, by multiplying Eq . (3 . 6) times AN, the number of initial 
particles which hit the target during the interval of time At, and dividing 
by At, we get: 

Ai f = i 0Ao f i 

which is the usual formula for the cross-section. i0 is the initial flux, 
i . e . the number of particles which hit the target per unit time and unit 
area, and Ai f is the number of scattered particles which per unit time 
are detected in channel f with quantum numbers between b and b + Ab f . 

is the tensor product of three vectors, one ф1 describing the 
relative motion of the initial particles, one being the product of the bound 
state wave functions of the fragments in channel i, and one representing 
the intrinsic degrees of freedom such as spin and isotopic spin. Using 
^rei w e e a s i l y S e t f ° r v '• 

+ «о 
Г I (0 - ,2 

v= dz U r e l (r )| (3.7) 

where r = r (x, y, z) is the relative distance vector of the initial particles. 
The z -ax is has been chosen along the direction of the incident beam. 
v is a function of the point P ( x , y ) . We point out, however, that Eq . (3 . 6) 
makes sense only if v is, to a very good approximation, constant over 
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(i) 
the region of interaction. To real ize this condition, the initial state фгеi 
must be sufficiently sharp in momentum space. We write it as follows: 

(i) -• 

(ДЕ Да; )i/2 

Е + ДЕ оц+да 

/ dE' 
ik! T 

do-- c i (E' ,o - ' ) (3.8) 

where ki is the relative momentum of the two initial particles. We 
introduce Eq. (3. 8) intoEq. (3. 7) and integrate over z. С ; ( Е ' , а ' ) issuchthat 
for .our purposes k ' ^ 0 , k ' i y % 0 and k'i2 ^ k ' j . We get: 

Е+ДЕ Е + ДЕ tt.t Да. «¡+Да, 

ДЕ Да * ( 2 7 г ) 2 f d E " f d E ' f d a " f da' cf ( Е " , а " )С ; ( Е ' , а ' ) 6 ( к\ -к ' \ ) 

Application of the integral 'theorem of mean value gives: 

" c t № 1' a2i ) c i ( E i . Qii ) Щ (3.9) 

where by f ( E j , a2¡ , а и ) we mean the average value of f (E ' , a " , a ' ) over 
the region of integration. 

Let us now evaluate the left-hand side of Eq . ( 3 .6 ) . Using Eq. (2.17) 
and applying again the mean value theorem we get: 

Pf. = (2л-)2 Да4 Д о ( 

X c ^ t E j . a j f J c ^ . ^ f )cf ( E ^ a g J c ^ E j . a ^ i T f i ( E j a ^ E j a ^ )Tfi(E2a2f;E2a3 i ) 

(3.10) 

The ratio of Eq. (3. 10) to Eq. (3. 9) furnishes the differential cross-section. 
The expression that one obtains is just the quantity which the experimenter 
measures and which depends critically on the fo rms of the wave packets 
used and on the fineness of the experimental techniques. We can, however, 
obtain a result of universal value, that is, the result that an ideal exper i -
menter would get taking the limits ДЕ, Да^ , A a f O . Due to the supposed 
continuity of the c ' s and of the T -matr ix being in the limits: 
an = a2i = C3i = <*4i = ai • ali~ a2i =Щ . E i = E 2 = E and, due to (3.5), 
|c f 12 = 1, we finally get: 

dcrfi is the cross-section for the reaction channel i-» channel f, at the 
energy E, in which the final products obtain quantum numbers between 
Of and aj + d . 
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The computation of dE/dk¡ is very simple. In the centre-of-mass l o m p 

system |k¡ = I к,, = к„, I, so that: 

dE 
dkj = -h 

P¡ С p¡c 
(m2c4 + p2c2)1/2 (m2 c4~+p2c2 )V2 
л li 1 2i M ' J 

= Й I vli - v2i I = Rvi (3. 12) 

т и and m2i are the rest masses of the particles in channel i. Let us now 
consider the case of two final particles. Then, using Eq.(3. 12), we have: 

1 1 dE, 1 ft3 vf 1 

Eq. (3. 12) tells us that: 

Pf = « f v f (3.13) 

with Uj given by: 

,2 _l„2/„2>1/'2, 2 1/2 , Z , Z / Z. , ч , Z / Z. (m l f+p f/c ) (m^f +p f/c ) 

, 2 , 2 / 2.1/2 2 2, 2. 1/2 
(mif Pf/C ) ( m 2 f + Pf/C ' 

(3.14) 

We then get: 

uf v f 
do,f = ьз dnf 

For the differential cross-section in the centre-of-mass system we then 
have: 

(2) 4 
dan f2w \ 2 vj_ ! |2 

where the index (2) stands for two particle ->two particle reactions. Had 
we used non-relativistic kinematics we would have found the same formula 
(3. 15) with the reduced mass /jf substituted for w f . 

If the fina] state is an N-particle state, then: 

3 3 3 dEda f=d klf d k2 f. . . d kN_j f 

Note that the momentum kN of the N-th particle, in the considered centre-
of-mass system, is a function of the remaining momenta. So for daf 

we get: 

3 3 3 2 f dE dfff = d k l fd k2f . . . d k N . 2 i f dn N . l i f k N . l i f ( - j £ ) (3.16) 
N - 1, f 

where the der ative dE/dk^.^f is evaluated by keeping k5f , k2f , . . . kN„2if 
and the solid a gle ¡ fixed. 
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4. UN ITARITY OF THE S -MATRIX A N D O P T I C A L T H E O R E M 

The proof of the unitarity of the S-matr ix is trivial in the case in which 
the splitting of H is unique, as in potential scattering. In that case we 
define: 

« / " l b ) . ф (*\a) ) = ô (E b - E a ) S ( b , a ) (4.1) 

and using the completeness of the sets { i//+'(c)} + { Abound states ̂  a n d 

{(¿/("'(c)} + {ф 
bound states} i n *he scalar products (iM~'(b), ф(~Нa)) and 

a)) , respectively, we get the two unitarity equations: 

Jd<* cS(b , c)S*(a, c ) = J d a c S * ( c , b)S(c, a) = ó (a b - а л ) (4. 2) 

In Eq. (4. 2) all the S -matr ix elements are given on the 'energy shell' 
E b = E a = Ec . In this case it is also customary to define an S-operator by: 

(<p(b),S<p(a)) = (^ " ' (b ) , <//(+\a)) (4.3) 

F r o m Eq. (4. 2) and the completeness of the set {<p(c)} it fol lows that S 
is unitary: 

SS t =S 1 "S= l (4.4) 

In the case of rearrangement collisions the S -matr ix is defined by: 

(0f"'(b), ^ + \ a ) ) = 6 ( E b - E a ) S f i ( b , a ) (4.5) 

Let us now consider the scalar product of two wave packets built with 
eigenstates of H belonging to channel f and i, respectively: 

((¿/f)(0), ф(1\0))= ( [dbCf (Ъ)Ф((\Ъ), / d a c ^ a ^ a ) ) (4.6) 

The scalar product (4. 6) is independent of time: 

« Л 0 ) , / ' ( 0 ) ) = (<//(f)(t), ^ ( " ( t ) ) (4.7) 

so that we can evaluate it in the limit t - » - oo where we can substitute 
0(t ) with ф (t). Using Eq. (3. 2) we get: 

((//°(0), 0 (1>(О))= l im U ( f ) ( t ) , <í>(l)(t)) = 6fi X constant (4.8) 
t - oo 

Equation (4.8) tells us that, c f (b ) and c¡(a) being arbitrary, the 'channel' 
eigenvectors of H, belonging to different channels, are orthogonal: 

( ^ + ) ( Ь ) , ^ ( +\a) ) = 6fi б (b -a ) (4.9) 
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Using wave packets of the incoming wave solutions in (4. 6) we get 
analogously: 

(^ " ' ( b ) , ^."'(a)) = 6f. Ô (b -a ) (4.10) 

It is now easy to build two completeness relations in the sub-space 
of the eigenvectors of H belonging to a fixed energy E: 

l im 
де-»О I 

Е + ДЕ 

da. dE 
j 

(E- " i > = P E ( 4 . 1 1 ) 

Е-ДЕ 

l im 
ДЕ -*• 0 Ï J 

Е+ДЕ 

d». dE' ф1'\в\а ) >< ф1'\E'.a ) = P j j j E (4.12) 

E - Д Е 

РЕ gives Peç£/(E) = ф(Е), with ф(Е) generic eigenvector of H belonging 
to the eigenvalue E . That is, PE is the identity operator in that subspace. 
Of course, the sum over j in Eqs . (4.11) and (4. 12) runs over all channels 
which are open at the considered energy E . Equations (4. 11) and (4. 12), 
when used in the scalar products (^ _ ) (Ь ) , and (i//f+)(b), ^(+)(a)), 
respectively, give immediately the two unitarity equations (on the energy 
shell E a = E b = E J ) : 

У J d d f t c ^ S f ^ b . C j J S ^ ( а , с р = У J d a ( C j ) S * (c., b)S.. (c., a) = 6f. ¿ ( ^ - a j 

J j (4.13) 

It is not possible to define in general a unitary operator through an 
equation similar to Eq . (4 .3 ) , since the set {<pj (a) } is not linearly 
independent.4 We could write: 

( * Í V ) . * ( i , ( 0 ) ) = l im (e i H , / f i Л ) , e ^ V ^ t o ) ) 
t">+ со ' 

to-*- <» 

= (ф а\0), Sf ¡ ф^\о)) 

with 

iK ft/1l -iHt/11\ / iHt„/1¡ - iK¡t0/Ti\ 
s { l = [ l im e e ) ( l i m e e ) (4.14) 

• + oo " 

* See also H.Ekstein (p. 886 of Ref. given in footnote 2) and J.M.Jauch. Helv. Phys. Acta 31 
(1958) 661. 
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but S f i depends on the chosen final and initial channels. For potential 
scattering only, S { i = S is unitary on the whole Hilbert space. In the general 
case the definition of a unitary operator must be given using as represen-
tation basis the eigenvectors of H.5 

The S-matrix is simply related to the T-matrix: 

(ф(->{b), <//+)(a)) = ((¿/''(b), ^ -\a ) -27r iô (E - H J V ^ a ) ) I l I I 

= 6а6(Ъ-а)-27г16{Еь-Еа){ф\'\Ъ), V¡ ^ ( a ) ) (4.15) 

The S-matrix elements are connected to the experimentally measured 
cross-sections and the unitarity equations then give rise to relations 
between cross-sections. In particular, we get the optical theorem. 
Writing the second unitarity Eq. (4. 13) in terms of the T-matrix, on the 
energy shell E f = E¡ = E ¡ we get: 

i T f j t e p e j J - i T j f (a i,a¡) = 2wYjf dûjT*f (ttj . « fJTji (or j .oi ) 

Choosing i = f, ai=af and using Eq. (3. 11), we get the optical theorem: 

- I m T. iiiffi'ei>=tY, I da. dE hvj 
dk¡ (2тг)4 - 2(2тг)3 "t 

Ü V j tot a. (4. 16) 

T u ( a ¡ , oíj) is the elastic scattering element evaluated in the forward 
direction with beam in channel i. a'01 is the total cross-section arising 
from the initial wave in channel i. 

5. LOW-ENERGY BEHAVIOUR OF CROSS-SECTIONS 

We shall first consider the behaviour of the various elements of the 
transition amplitude for two-particle two-particle collisions, when either 
the final channel is considered at its own threshold energy Ef or the 
initial channel is considered at its threshold energy E¡ . We first take the 
endoergic case (Ef > E ¡ ) and the exoergic case (Ef < E¡ ) , after which the 
properties for the elastic scattering case (Ef = E ¡ ) will be deduced. The 
considerations which follow will hold provided the non-Coulomb inter-
action vanishes beyond a certain distance. In most cases of interest, 
however, this condition can be relaxed, for example when the interaction 
vanishes asymptotically like an exponential as a function of the distance 
of the fragments. At the end of this section consideration will be given to 
three-body final channels. 

The cross-sections, in the centre-of-mass co-ordinate system in the 
presence of Coulomb forces, are obtained as follows6 (for the derivation 

5 J. M. Jauch (see footnote 4) and J. M. Jauch and J. P. Marchand, Helv, Phys. Acta 39, 325 (1966). 

6 We assume for simplicity that the Coulomb interaction cannot give transitions between channels. 
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see Réf. [2]): 
da,. ( ? f , f . ) fl f i i -» 12 

df2 l®fi(5f. 5 ¡ ) l (5.1.) 

9 f i ( ? f » € . ) = 
2тг i/o 

( u f c j j k f / k j ) T f i ( f f , f j ) (5.2) 

T f i ^ f î i>= T c i ^ f < k i )6 f i6SfS i61/f l/ i+ (^; f>(? f )J nf. ,£>(?.)) (5.3) 

Tci describes the scattering in channel i in the presence of only 
Coulomb forces and is related, through Eq. (5. 2), to the Rutherford 
amplitude: 

2io0 

© c i ( k f , k ¡ ) : „ 2 . 2 8 2kj sin — 
exp . 2 0 

• irii log sin 2 (5.4) 

where 

c r^a rg T ( i + 1 + irii), i = k fki 

i ki 
ZiiZ2 i e2 

ÜVi 
(5.5) 

i j indicates the relative momentum of the fragments in channel j, their 
total spin and its z-component: 

M k i < Sj> vi 

2 
UjC is the relative reduced energy given by Eq.(3. 14). 

The operator n f i is given by: 

% = V f - V c f + l i m (V f - V c f ) ( E + i e - H ) " 1 (V ¡ - V c i ) (5. 6) 

where E is the total energy and Vj - VCj is the non-Coulomb part of the 
interaction (e.g. the nuclear interaction) between the fragments in channel j. 
(p^ and <p\.j are the j-th channel Coulomb eigenfunctions satisfying an 
outgoing and an incoming wave boundary condition, respectively. The 
representative of ¡ i n the relative co-ordinate representation is: 

<P(% ,?j)= (2тгf3/VBli Ф 
cj 1 J J 

3/2 , , "J 
B2j Xs 

tm( k j )YCm( r j ) e 

± i n J F ( k . r . ) * 10{ { \ j j ' 
(5.7) 

(m k i r i 
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where rs is the vector describing the relatiye distance of the fragments 
of channel j, and ipB1¡ and 0B2j are the eigenvectors describing their 
internal (bound) states. \¡ is the spin eigenfunction, and the Y { m ' s are 
the spherical harmonics in the notation of Blatt and Weisskopf [4]. F? (p ) 
is the real Coulomb wave function regular at the origin: 

with 

(2ip)8 + 1 _ 1 Г Й " Р + 2 ( Л + 1 ) (М + 3) P ( 5 " 9 ) 

F t ( p ) goes asymptotically as follows: 

F (P ) sin(p - n log 2p ~ + a f ) (5.10) E p-*> oo ¿ Í 

and in the absence of Coulomb forces it goes over to the Riccat i -Besse l 
function: 

F,(p) •VTTP/2 J e + i ( p ) = p j t ( p ) ( 5 . 1 1 ) 

Using Eqs . (5. 2), (5. 3) and (5. 7) we get 

-» - V1 V * —1t«f• M 
0 f i ^ f J = 1 L m ¡ в й (?f ) (5. 12) 

' í h m f m ¡ 

Let us choose the z -ax is along the direction of the incident beam thus ob-

Í2Hi+l V / 2 

taining Yj (k..) = ô A ^ — \ . Conservation of total angular momen-

tum then gives m f = vi - v¡ , so that Eq . (5 . 12) simplif ies as follows: 

e „ ( i ( . 5 , > I if 
• „ ( M i ) „ r I f ( k f ) 0 f ¡ ( Ç f . Ç l ) (5.13) 

s f4 
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Through 0 f [ f ' t l ) we define the partial cross -sect ion ст^' for the reaction 
i - » f leading to a wave of orbital angular momentum Jlfi 

(tf) V P - - * л 
Од J. d n , e a ( f f . f i ) Y 5 t m ( k f ) 

m 
KjiJ Z (Cf.y 

©fi ( 5 f . ? i ) (5.14) 

Equation (5. 14) makes sense when î ф i, and for elastic scattering in 
channels in which there are no Coulomb forces , since the integral over 
S7f diverges in that case. 
We have7 : 

P d a f . ( f f , f . ) v ( t f ) 

С, 

°fi s / d Q r 

crfi is infinite for f = i with Coulomb forces present in channel i. 
F r o m Eqs . (5. 2) and (5. 7) we see that: 

fi ' ^ i ' CI fi tj-íj SjSj Ujiij 

H ^ W JJ d r f d r i e F { f (k f r f ) e F j j k f r i j e f i ( r f , r ¡ ) (5.16) 

(Cf. C¡) 
where 0 f i , apart f rom uninteresting energy independent coefficients, 
is the matrix element of the operator ÍIf¡ in the relative co-ordinate 
representation. Under our hypothesis that the non-Coulomb interaction 
vanishes beyond a certain distance, the same then, also holds for this 
matrix element. It follows that, to understand the low-energy behaviour 
of Eq. (5. 16), we need to consider only the low-energy properties of the 
Coulomb wave functions F„ and F, . Since M , í n (2ikr)/(2ikr) l ! +1 Cf c¡ ir], c+1/2 ч v ' 

о ioc 
goes to const.+0(k¿ ) in the limit k->0, the behaviour of e F { (kr) at 

к = 0 is determined by the function: t+l -nir/2 к e + 1 + irj) 

k

4i)T
2 (5Л7) 

7 The total cross -sect ion f rom channel i_ is then given by: 

tot V 

f«f"f 
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The limit gives 

e+i 

e F (кг) < 
k-0 

£1 к 

. 1/2 r — 10o 
к si 2ж e e 

, a = 0 

•ïïa/k г + 1/2 t 
a i , a > О 

1/2 Г — i o . Г i l +1/2 С 

к s/ 2л- e I а I ( - i ) < О 

(5.18) 

J4 - «i) 
Let us then see how 0f¡ behaves in the various cases, 
(a) Endoergic case. Fo r an endoergic reaction channel i -* channel f 
(two-body, Ef > E ¡ ) , the initial channel momentum k¡ goes to a constant 
ф 0 for kf - 0 . We get 

( t f . t i ) 
0r 

tf + 1/2 

k f - 0 

, af = 0 

io0 -iraf/kf Cf+1/2 { 
e e 

I 4 . 
ы 2-ir e a 

i /í f ! , a f> 0 

С f +1/2 if 

I ( - i ) /£ { ! , a f < 0 

(5.19) 

(two-body endoergic reaction). 
We see that in the case of Coulomb repulsion in the final channel 

(tf.ti) 
f ( a f > 0), @fi starts f rom k f = 0 like the exponential exp [-7ra f/kf], 

while for Coulomb attraction (af < 0) 0 ( f j f , i l > is finite there. Consideration 
(tf.t) 

of the next term in the expansion of 0 1 for af < 0 shows that it is p ro -
portional to k2. The case of no Coulomb forces in channel f yields the 
well known energy dependence. 

In Fig . 1 the various cross-sect ions are plotted as functions of the 
initial channel momentum k 2 . In the case of no Coulomb forces in the 
final channel f, dk f/dki being equal to (ki/k f ) (u f /u¡) , we have: 

da ( ( f f ) 
fi 

dk¿ 

(a f = 0) 

kf-» С 

£ { = 0 

i f > 0 

(5. 20) 

so that we recognize that the = 0 part of crf¡ exhibits an infinite derivative 
with respect to k¡ , and, with respect to the total energy, at kf = 0. Note 
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Oti 

h Í=0 k(»0 
a. = o 

FIG.l . Cross-section behaviour in the endoergic case 

that the derivative with respect to kf is instead finite there. Fo r Coulomb 
attraction the slope of crf<ff ) is zero as a function of kf and finite as a 
function of kj . 

At the onset of the neutral channel f there is then a sudden flux r e -
moval f rom the incident beam. This, as we shall see, will give r ise to 
anomalies in the scattering and reaction cross-sect ions already present at 
that energy. 

(b) Exoergic case. F o r an exoergic reaction, channel i -«channel f, 
(two-body, Ef < E i ) the final channel momentum kf goes to a constant /=0 
for k¡ -» 0. We get: 

(«f.«i) 
0Г. 

í¡ -1/2 
k. 

- l 
kj n/27 e 

kj"1 -¡2тт e 
io„ 

-Tiaf/kj Cj +1/2 0• 
e a i i /Л , ! 

í ¡ + l / 2 Çj 

k l ( - i ) / V 

a¡ = 0 

a. > 0 

а, < 0 

(5.21) 

(two-body exoergic reaction). 
The characteristic exponential exp [—7г а4/к4 ] is still present for 

Coulomb repulsion (a¡ >0 ) . In the case of Coulomb attraction (a¿< 0), 
fCf.Cf) 

©f. goes to infinity in the limit k¡ -*0. The energy dependence for 

a¡= 0 is well known and yields the 1/v law for the absorption of slow 
neutrons by nuclei [1]. In F ig . 2 the various behaviours are shown. 

(tf ) 
Fo r the case a¡ = 0 if the £{ wave is coupled to the Í = 0 wave then a{. is 

infinite at k. = 0. If that is not the case, then a ( t f ' vanishes at к = 0 with 
1 fi 1 

finite slope if £. =1 and with zero slope if > 1 . 

(c) Elastic scattering. If Coulomb forces are not present, we obtain the 
well-known formula 

('i .'i) 
в.. к.1 к.1 (a4 = 0, two-body elastic scattering) (5. 22) 
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FIG.2. Cross-section behaviour in the exoergic case 

FIG.3. Cross-section behaviour in the elastic scattering case 

which shows that the scattering cross-sect ion is finite at zero energy when 
Coulomb forces are not present. If Coulomb forces are present, then 
consideration of the pure Coulomb scattering amplitude 0 c i ( k f , k j ) shows 
that at very low energy only pure Coulomb scattering survives, since 
0 c i ( k f , k ¡ ) <-—' k¡2 . The nuclear scattering amplitude has, of course, 

к , - о 

the behaviour in Eq. (5. 22). In Fig . 3 the elastic cross-sections are 
plotted for the various cases. Fo r a¡ = 0 the slope of <j.[4 ' is zero for 
all i ! at k. = 0.-i i 

(d) Three-body final channel. We shall consider here the low-energy 
properties of an endoergic reaction cross-sect ion leading to a final neutral 
three-body channel. Fo r the transition amplitude ©f. , we have 

0 A ' f23 ' > = - С ^ ) Ч Ш 2 3 к 2 3 / к / Ч ( I , ) l f2 3>. (5. 23) 

e f i , as given here, yields the cross-sect ion for the reaction leading to 
the three-body channel f, in which the first particle (n. 1) obtains a 
momentum between fikl and Rkj -bdTik!, and the particles 2 and 3 receive 
a relative momentum fik^ in the direction between f223 a n d ^23 + c ^ 2 3 : 

dar: , -, -, _ |2 

a f i = l 8 f i ( Ç i ( 5 - 2 4 > 
d k jd Í223 

23 
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where the <p0's are free waves times the bound-state wave functions. 
is the reduced energy in the incoming two-body channel i, u23 is the re-
duced energy of the system 2 + 3 in the final channel f. 

We assume, as before, that the interaction V vanishes beyond finite 
values of ri and r2 3 . r j is the distance separating particle 1 from the 
centre of mass of the system 2+3; ?23 is the relative distance between 
2 and 3. In the limit, as the total energy E approaches the threshold for 
the channel f from above, we have: 

«i {23+1/2 

V W ~ k l k 2 3 <5-2 5> 
E - E f 

where we have separated @f¡ into the contributions from the various values 
of i j and l23 • orbital angular momentum of particle 1, and of particle 2 
relative to 3, respectively. <jf¡ vanishes at the threshold energy Ef for 
channel f. Using the conservation energy at low energy: 

E = E f + ¿ i ¿ + a 
2ц j 2ц 23 

with /Uj = m 1 ( m 2 + m 3 ) / (m 1 + m2 + m3 ), ju23 = m 2m3 /(m2 + m 3 ), and the fact 

that: 

211 + 2 / h2k? V «23 + 1/2 «1 + «23 + 2 
( E - E f ) 

Г 2 f , + 2 , 2 I h kf v 23 
2цг ) 

0 E-»Ef 

we get for the integrated cross-section: 

, max ъ max 
kl *l 

lim / d3k1ñ f i=0, lim J d3kaCT f l=0, (5.26) 
E-»E f о E-»E f 1 о 

max 

2 

l i m d & I d V f i = f i n i t e 
E->Ef 1 о 

where the second derivative is different from zero only if the S-waves 
= 2̂3 = ® a P P e a r in the final channel. 

6. THRESHOLD EFFECTS 

We are now interested in the study of the energy behaviour of the 
various elements of the transition amplitude 6 around the threshold 
energy En for the two-body channel n. In this section we shall consider 
the case in which Coulomb forces are not present in channel n. Coulomb 
effects will be discussed in section 7. 

23* 
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In this case the threshold effects are most easily exploited by using 
the unitarity equations of the S-matr ix . ©fi ( f { , ) in terms of the S -
matrix reads as follows: 

* 
p • V-1 М-líf M-Wj 

e f i (? f> ?i> = e c I ( k f , k 1 ) 6 f i á S [ S ¡ 6 V [ V ¡ + - ^ ¿ Y4 (k f)Yc. (kt) 
JMCfdj 

Г 2i6lCi J 
X C , (J .M; M - ^ . ^ C , . ( J . M j M - r ç , ^ ) e 6fi б p б -S f i { s (E) 

lf f t i L f i f i f f i i . 

( 6 . 1 ) 

where the C ' s are the Clebsch-Gordan coefficients in the notation of Blatt 
and Weisskopf [4]. In Eq . (6 . 1) we have taken already into account 
rotational invariance. The unitarity of the S-matr ix is then expressed by 
the two equations (use Eq . (4.13) ) : 

i 
J. a 

I* 
S . , (E ) S1 (E) - б б 

J<*j. f « f V ' j a r i t t j fi с 
( 6 . 2 ) 

У s l j a . ( E > S i a . i a . ( E ) = б fl 6 (6.3) 
L—i * J i ) I 1 

i. « j 
where by aj we mean both indices i j and Sj . The sum over j runs over 
the channels which are open at the considered total energy E . The total 
angular momentum J is fixed, consequently the sum over a-j runs over the 
values of £¡ and Sj which can make up a total angular momentum J. Just 
moving across the threshold En of the channel n, the S-matr ix enriches 
itself of another row and column labelled by the index n. Therefore, above 
the threshold energy E n consideration must be given to . . F rom 
Eqs . ( 6. 1), (5. 19) and (5. 21) we see that at low к : S n'J j 

S1 ( E ) ~ k ? n + 1 / V 
notn. j0Cj к - 0 " n < V Í01; 

(6.4) 

J С +1/2 J 
S. (E) • к n Ji\ (6.5) 

where j O is constant in the limit k n -»0. In the same manner it can 
be seen f rom Eqs. (6. 1) and (5. 22) that the matrix element S' , n / \ / n0£ n a . 

8 Time reversal invariance implies that S ¡ a ¡ i ¡ a ^ = s ' ^ ¡ a . . However, we do not need this 

symmetry of the S-matrix in what follows. 
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goes like: 

S1 . (E ) ^ 
n 0 £ n < n a n Y " n - a ' n 

(6.6) 

with constant in the limit kn -»0. Fo r the remaining S-matr ix elements, 
we suppose that they can be expanded in a power ser ies of k n : 

S* (E) = si . (E ) + к A1, . +k2BJ , + . . . , E £ E (6.7) f o t j , l d j 1 ' fa j , îoCj n ' n f a j , i a j n f a j . i a j ^ n * ' 

(f. i ф n> 

We analytically continue the expansion (6. 7) below the threshold energy 
En . In doing this we still require conservation of energy in channel n: 

( 2 + * 2 k n V / a V 2 + * 2 k * 4 ' 2 E 

2 
F r o m Eq. (6. 8) we see that кд must become negative for energies less 
than En = (min + m2n )c2 . kn is then purely imaginary below threshold. 
F r o m the two possibilities we choose this continuation 

k n - i |kn I , E < En (6. 9) 

In fact, with the choice of the expression (6.9) the eigenfunction relative to 
channel n, which asymptotically reads: 

-* e 
ф (r ) — const. 

n '-» r 
rn -

becomes normalizable as it should. This means that even though beloW 
the threshold energy En the fragments of channel n cannot be found 
asymptotically, we can still find them in a localized region of space of 
dimensions AR ~fi/|kn|. We then obtain: 

S1. . (E ) = Sj . (E ) + i | к | A* . - I k j V , . + . . . , E < E 
f « f . i f«f. n 1 n 1 f«f. K*i 1 1 f«f. lai (6 10) 

( f , i ^ n ) 

The l inear term is, as we immediately see, responsible for the threshold 
anomaly. In fact: 

9 s L f , i « f ( E ) 
Зк ; • V f • ) faf.ioti 

kn=0 Ui k„ 
+ 2B 

Unki 
faj, la. 

k„=0 k„=0 
(6.11) 

(f, i f n) 
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The symbol ( ^ y m e a n s that a should be used above the threshold and b 

below. If а'д ф 0 the derivative of Sfi (f and i ф n) is infinite at kn = 0 
and not the same above and below. Accordingly, all cross-sect ions 
aft (f and i=/=n) therefore have (if Af¡ ф 0) infinite derivatives with 
respect to k¡ (or with respect to the total energy) at kn = 0. Notice that 
the derivatives of s' f i and a f i with respect to kn are finite at kn = 0 and 
different above f rom below. We have seen in section 1 that all this was 
also true for the cross -sect ions an<-¡ . Now we understand how it comes 
about that conservation of total flux (unitarity of S -matr ix also makes 
infinite the derivatives of the 'old1 cross -sect ions cr̂  (f and 1фп) at the 
opening up of the channel n. If A'f. =0, then the derivative of S¿ (f and i=^=n) 
is finite at kn = 0 and the same above and below. We do not have any 
threshold anomaly in this case. Let us then see the condition for which 
Aj. ф 0 and find its formal expression. 

When Eq. (6 .7 ) is used, the unitarity equation (6. 2) above the 
threshold energy E n for f ф п and i^=n becomes: 

V I * J 
) S. . ( E n ) S. . ( E n ) = ó S 
Lt jcij.fotf jctj ,104х f l "f01! 

(6.12) 

J.-j 

I 
j^n 

J* J J * J 
S . (En ) A . . + A . . S. . (En ) jotj,faf 4 n ' jaj, ia¡ J04, faf jaj, ia¡ * n ' 

J& J -6, 0 ̂  na fa Л na ia n 11 i n 1 
(6. 13) 

Equation (6. 12) expresses the unitarity of the S-matr ix at the threshold 
energy En . Equation (6. 13) comes f rom the identification of the f irst 
order terms in Eq . (6 . 2). The dots underneath it stand for all the other 
equations which come f rom higher order terms of Eq . (6 . 2). 

Below the threshold energy En in Eq. (6. 2) the sum over j runs, 
of course, only up to channel n-1. Using Eq. (6. 10) we again get Eq. (6. 12) 
and: 

I J* J J* J 
S jaj ,ia { ( E n) A j a j . ic4 - A jaj , faf S jaj. ia¡ ( E n ) = 0 (6.14) 

l.CCj 

Consider now the case in ф 0. Equations (6.13) and (6. 14) give 

I S1 ( EJA 1 =0, £ п ф 0 (6.15) 
J ocj , fa f n jaj , iaj n ' 

i, « j 
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Let us multiply Eq. (6. 15) by ^ha^ ) and sum the resulting expression 

over f and a { . Since S J (E n ) also satisfies the second unitarity Eq . (6 . 3), 
we get: 

AJf . =0, SL фО (6.16) foif, lOlj n ' v ' 

We have Ад equal to zero if the orbital angular momentum of channel n, 
which intervenes in the reaction process, is different f rom zero. The re -
fore, waves in the various channels j ( j =/=n) which are not coupled to the 
S-wave of channel n do not feel the opening up of that channel. This is 
again quite understandable on physical grounds, since the reaction c r o s s -

link 0) 
sections an <_ ¡ vanish smoothly at kn = 0 and there is, then, no violent 
variation of flux in the other channels. 

Let us now consider the case SLn = 0. In this- case Eqs . (6.13) and 
(6. 14) give instead: 

Y s J . (ЕЛА1 . . = l t , SLn =0 (6.17) /_, jotj , fotf n jotj,iai 2 nsn=J, fa f nsn = J, ia¡ n 

j.Ctj 

Multiplying Eq. (6. 17) by sj, f (E n ) , summing over f and a ¡ and using 

the unitarity of S1 (E n ) we get: 

A L f . i a i =4X ^ l a / E n ) ^ . , . ! ^ . , . ^ (6.18) 
ha, 

f not being equal to n, the unitarity Eq. (6. 3) also gives: 

I s ' . ( E j V . = 
fa,, ¡a . n na , ja. f j n j I StJ . ( E ) S r (E) fa,,na na ,na f n n n 

J 
}Фп 

к = 0 
fa, ,na f n 

(6.19) 

where we have also used (6. 6). We then get: 

A1 - 1 V •"faj, ia¡ 2 fotf .nsn=J nsn = i" ioti (6. 20) 

AJf¡ clearly a r i ses f rom the virtual transition of the incident wave to the 
S -wave of channel n followed by the transition f rom this wave to a wave 
in channel f. This explains the threshold effects f rom the dynamical point 
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of view. We now write again the S-matr ix elements embodying all the 
information we have gathered so far in only one formula: 

n.o 1 ( • ) к l ^ f s f . n o r < o , . i V i + • • • I6 - 21> + «J n -

Equation (6. 21) allows us to write explicitly the transition amplitude q - 2 3 
near threshold , neglecting terms in kn , kn , etc. , as follows: 

0 . ( €
f
, 5 . ) = ( ?

f
, I . ) n f i и f i к =o 

( \ ) I к I > 0, ( ? f , I ) 0 ( I , f . ) 6 
4 - 1 / n 1 L , fn ' ^n ' ni Vbn ' Ъ1 ' v n v i 

(6. 22) 

Only the S-wave of channel n contributes to (6. 22). 
F r o m Eq . (6 .22 ) one can easily obtain the differential cross-sect ions 

around kn = 0. 

d a f i ( ? f , Ç i ) d a f l ( S f , 5 l ) 

dtt , df2. 
к =0 

" 2 ( S ) i k n 'X ® f i ( ^ f ) 0 f n - f n ) 0 n i ^ п ' ^ ' ч » ! (6-23) 

and the total cross-section: 

tot tot -*• 
a ) = at ( Ç , ) 

f I k n l ( - R l m ) I 0 i n ( ? 1 - 5 n ) ® n i ( ? n . î i ) 4 v 
k„=0 

(6. 24) 

< « f - e i ) 
Equation (6.22) also holds true for ) 0 f ¡ (Çf , Ç ; ) with the substitution 

ci 

(tf.O) 

of 0 f n (| f , Çn ) with © f n ( f f , Çn ) on the right-hand side. The following 

equation for the -part ia l cross-sect ion integrated over angles is then 

The ávnv¡ comes from the fact that, n not being equal to i, near kn = 0 we can write 

(i
n
-0> 
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FIG.4. Various forms of cross-section behaviour at the threshold for channel n 

obtained: 

( i f ) ( i f ) 
fffi 

к =0 

(t f.t¡) ( i f .0) 

0 f i ( S f ' W n (5f 

(O.t ' i ) 

) 

(6. 25) 

In Eqs . (6. 23), (6. 24) and (6. 25) also, the derivative with respect to 
|kn| is finite, while the derivative with respect to any other channel 
momentum (for example k¡ or kf ) or with respect to the total energy is 
infinite both f rom above and from below the threshold. The measurement 
of the cross-sections (differential, integrated over angles, total), at the 
threshold of channel n, will exhibit a characteristic 'cusp' or 'rounded 
step1 as shown in Fig . 4. 

The downward cusp and the S-l ike step (3rd and 4th cases in Fig . 4) 
are not possible for the scattering cross-sect ion when only one channel 
(channel 1) is open below the threshold considered. Let us see 
this in detail. 

Let us consider for simplicity the case in which the threshold effect 
appears in the SL = 0 wave of channel 1 and let us forget about spins and 
Coulomb forces in this channel. Fo r the £ = 0 partial cross-section at 
threshold we have: 

(0) 

Э к , 

n 

K10 9 k„ 1 - S , 
(6. 26) 

where S n r e f e r s to J = 1 f = = 0 and k10 is kj evaluated at kn = 0. Below 
the threshold for channel n, Sn is unitary and can be expressed as 
exp [2 ió n ] with ó n real number. Above the threshold the scattering phase 
shift 6ц becomes complex, but since j Su |2 < 1 f rom unitarity, its 
imaginary part must be non-negative. Near the threshold we therefore 
have: 

(6.27) 

2 3 
where we have neglected terms in кn , kn , etc. \ ot ̂  0 3.nd 5 цо 
evaluated at kn = 0. By the use of Eq. (6. 27) we easily evaluate Eq. (6. 26) 
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above and below the threshold for channel n. In the limit as kn—>0, we 
obtain: 

3 
3k„ 

JO) Sir . 2 . a s m 5 

10 
110 (6. 28a) 

above 

3 (0) 

Э kJ 

8тг 
k2 

10 

a sin 61 1 0 c os 6110 (6. 28b) 
below 

Equation (6. 28a^ gives us the desired result that above the threshold the 
derivative of ctjj' is always negative. 

The ratio of (6. 28a) to (6. 28b) gives: 

3 m 
9k „ ° и n a 

Э k„ 

= tg 6 no (6. 29) 

Because of the fact that: 

¿ К 
d k j 

k i Un 

l,_ I 

if tg 6 no is positive then the threshold anomaly is a cusp ( ist case in Fig . 4), 
if tg 6цо is negative then the anomaly is a rounded step (2nd case in 
F ig .4 ) 1 0 

Equation (6. 28) enables us to obtain the scattering phase shift at the 
threshold for channel n by the measurement of the slope of CT'J' above 
and below the threshold in the experimental curve". 

Var ious other examples in which direct use of Eqs . (6. 23) and (6. 24) 
furnishes information about scattering phase shifts have been considered 
in detail by Newton [5], and Baz, Puzikov and Smorodinskii [6]. 

It is clear f rom our method that the reason why the energy derivative 
of cross-sect ions is also infinite below the threshold for channel n is a 
purely quantum mechanical one. No explanation on classical grounds can 
be found for it as for the same phenomenon f rom above, which can be 
interpreted on the basis of the conservation of total flux (see also 
Refs . [5] and [7]). 

It is clear how a phenomenon of this kind can give information about 
relative parities and spins. In fact, only the i n = 0 part of the wave in 
channel n contributes to Eqs. (6. 23), (6. 24) and (6. 25). Therefore , if it 
is possible to tell experimentally in which partial wave, in the initial or 

10 An equation similar to Eq.(6.29) holds true for any scattering cross-section, at the threshold of 
a generic channel n, in the perturbation approximation which assumes the off-diagonal potentials to be 
weak; see Eq.(5.9) of the first part of Ref. [ 5 ] . 
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in the final channel, the cusp (or step) appears, the parity or spin of 
that channel will result f rom conservation of total angular momentum and 
parity, if any. Fo r example: if one discovers that in the cross-sect ion 
од the cusp appears for £ ¡ = 0, then P n f = + 1, Pnf being the relative parity 
between channel n and channel f. If, instead, the cusp appears for i f = 1, 
then P n f = - 1. This kind of analysis can be profitably applied, for 
example, to strange particle processes . The example just given works 
beautifully for i = тг'р, f = ЛК, n= EK. The experimental determination 
of the final partial wave, in which the cusp appears for the reaction 
7г"р ЛК at the threshold for E production, can determine the Рде relative 
parity. And, for Рде = +1, only a spin 1/2 for E is compatible with a 
spin 1/2 of Л (spin of the K -meson taken = 0). 

Threshold effects can also be useful for the determination of the 
reaction cross-sect ion afn , which in many instances is out of reach of 
direct experimental measurement. Fo r the case in which one of the 
particles in channel n has spin zero so that sn is given, taking the 
square of Eq . (6 . 25) above and below we get at threshold: 

чЭкп 

( i f ) 

tffi 
Э <«f> i «&K « f A ti ofi(knCT {n ) 

( i f ) 

, 1 (tn=°) 
k„ ff™ (6. 30) 

where it is understood that v n = ¡4. Since Œfn goes to infinity linearly 
in the limit kn->0, a kn has been placed to counterbalance this effect. 

Analogously, стп 
<«n=°> 

goes to zero linearly and kn makes it non-zero in the 

limit. C lear ly only i f - w a v e s which are coupled to the - 0 wave satisfy 

Eq. (6. 30). F rom measurements of the slope of c^.'f' above and below the 
/ -1 (en =0)ч (if) 

threshold and of (kn ani ), one can determine the afn cross-sect ion 

at zero energy. If its right-hand side is known, Eq. (6. 30) can be used 
to predict the size of the cusp (or rounded step)11. 

Equation (6. 22) does not hold if the final channel is the new channel n. 
An equation analogous to Eq . (6 . 25) can, however, also be obtained 
for f = n: 

= ( к п о Г ) ^ 1 ^ " - ) ) (6.31) 

tot 
where i/n = Equation (6. 31) allows the determination of crri f rom the 

-1 (»n=0) 
slope and intercept of the curve (kn <jni ) near the threshold. 

Fo r the example considered above of production of strange particles 
in pion-nucleon collisions, by using Eq . (6 . 30) one can determine at zero ( tE= 0) 

energy the cross -sect ion ст£К д к for the process EK - ЛК, which is not 

feasible experimentally. Analogously, use of Eq . (6 .31 ) at the ЛК and EK 

11 The size of a cusp or rounded step can actually be conspicuous; see, for example, the anomalies 
obtained by Fonda, L. , and Newton, R. G., Nuovo Cimento 14 1027 (1959) and those obtained in 
Ref. [ 8]. 
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thresholds yields the non-directly-measurable cross-sections а д к and 

ff2K ' respectively. 
Threshold anomalies can also give information about the existence 

of new particles. A typical example is that given by di-neutron: the 
discovery of a rounded step in neutron-deuteron scattering below the 
threshold for break-up of the deuteron would give information about the 
existence of the di-neutron. A calculation shows that in this case the 
effect can be large [8]1 2 . 

The threshold anomalies considered in this section have been observed 
experimentally in the elastic scattering 3H (p, p) 3 H at the threshold for 
the reaction 3H (p, n) 3 He in the fo rm of a downward step [9], and in the 
scattering L i (p, p) L i at the threshold for L i (p, n) Be in the form of a 
cusp [ 10]. 

The method used in this section (unitarity and analyticity of the 
S -matr ix ) to obtain the threshold effects was f irst considered by Baz 
and Okun [11]. 

We end this section with a brief discussion of the case in which three 
particles are present ,in the new channel n ( for example, the production of 
an extra nucleón in nucleon-nucleus collisions). 

The quantity which exerts an influence on the scattering and reaction 
cross -sect ions <jf¡ via removal of flux is now the reaction cross-section 
CTni integrated over the energy range available to one of the particles in 

max 
kl 

channel n: } d 3k xa n i . The quantity (see Eq . (5 .26 ) ) and its f irst 
о 

derivative with respect to k¡ are zero at threshold, on the assumption 
that the interaction vanishes at large distances, so that no threshold 
effect of the cusp (or rounded step) type is expected in сгд . Since the 
second derivative is different f rom zero and finite, a discontinuity is 
instead expected in the second derivative of ад with respect to k¡ at 
threshold. Such expectations are confirmed by a quantitative analysis, 
on the same line as before, that we omit. Note that again only the waves 
in the initiâl and final channels, coupled to the S-waves St j = i23= 0 of the 
three-body channel, will exhibit the anomaly in the second derivative. 

7. C O U L O M B E F F E C T S 

F rom Fig. 1 we see that when a repulsive Coulomb force is present 
in channel n, then (Jni starts at the threshold like exp [— 7ran/kn] , while 
in the case of Coulomb attraction in n, crni starts with a finite value at 
the threshold and in general with non-zero and finite slope as a function 
of k ¡ . We expect, therefore, that in the case of Coulomb repulsion the 
new channel n makes itself felt in the other cross-sections very smoothly 
and no cusp (or rounded step) will consequently appear in them [12, 13]. 
A lso , in the case of Coulomb attraction no cusp is expected, but instead 

12 Incidentally, recent experimental work seems to exclude the occurrence of a large anomaly in 
the total cross-section (H.B. Willard, J. K. Bair and C.M. Jones, Phys. Lett. 9 (1964) 339. If the set of 
scattering lengths which favours the doublet scattering is chosen to be correct, this experiment excludes the 
existence of the di-neutron; on the other hand, if the other set of scattering lengths is chosen, nothing can 
be said about the existence of the di-neutron, since, in this case, the threshold effect would be very small. 
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another type of anomaly is to be observed. A s the energy of the incident 
particle approaches the threshold for channel n f rom below, we will ob-
serve in ад a ser ies of ever more rapid oscillations due to the physical 
possibilities of excitation of the infinitely many Coulomb bound states of 
channel n. The limit of afi below the threshold will not exist, since these 
Coulomb bound states, and therefore the corresponding resonances in оц , 
have the threshold energy as an accumulation point. What will be seen 
experimentally is the average of fff¡ below the threshold of channel n, and 
this quantity will eventually exhibit a step-like discontinuity at threshold, 
to counterbalance the sudden leakage of flux to the new channel n [13]. 

The Coulomb effects are therefore able, in both the repulsive and the 
attractive case, to wash out the cusp (or rounded step), as given in Fig . 4, 
in the old cross-sections at the threshold for the new channel n. In most 
cases of interest, however, such as in processes in which nuclear particles 
take place, the Coulomb effects described above cover an energetic 
region around the threshold of the order of 10"3 MeV, which is out of 
reach of the present techniques due to the poor energy resolution in the 
incoming beam. In these cases the overall energy behaviour of the various 
afi at the threshold for channel n will look like a cusp (or a rounded step), 
even though стд does not exhibit infinite derivatives at either side of the 
threshold in either case (repulsive or attractive). In these cases, there-
fore, arguments like the ones given before on the determination of parity, 
spins, etc. , will still be applicable. 

The above considerations cannot be put into a quantitative form by 
using the method of section 6. In fact that method is not applicable now, 
since the S-matr ix has an essential singularity at kn = 0. Use must instead 
be made of the properties of the complete resolvent (E + i e - H ) " 1 . The 
method sketched here follows Ref. [2]. We obtain, after few formal 
manipulations: 

- - /2тЛ 2 ! / V (-) 1 (+)\ 
AQfi d f . f i > = - ( i r ) (UiUfkf/ki ) ( <pcf ,n f n nn i < P c i ) , (7.1) 4 Ь У V

 [AG Г
1

 + П
 У 

1 cn ' nn 

where Gcn is the Coulomb Green 's function for channel n: 

^ г ч u, Г 25 r< /4 M ú b í + i /2 Í 2 i k r < ) 
= - P e ( c o s r r ' ) 

Г t 1 X ^ - i k ) r ( i + l + i r j )W. l l I i t + 1 / ! ! ( -2 ikr > ) (7.2) 

W is the i r regular confluent hypergeometric function in the notation of 
Whittaker and Watson [14]. By Af (k n ) we mean 

At ( k n ) = _ l i m f ( k n ) - f ( k n ) (7.3) 
k n - o+ 

with kn given below the threshold energy E n . 
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By using Eq . (7 . 2) we can evaluate explicitly the jump experienced by 
the Coulomb Green ' s function G c n . The quantity which is responsible for 
such a jump across the threshold is: 

( - ik n ) e Г ( Í + 1 + ir)n )W_i4 . l t i/a( -2iknr>) (7.4) 

while at the threshold M ^ {+i/2(2ip< )/(2ip< )e is a continuous function of 

the energy. The quantity (7.4) has been considered in great detail in 
Ref . [13]. Using Eq. (16) of that paper we get for the Coulomb Green ' s 
function: 

A<r| G c > 4 

iun I kn 

7ГЙ2 
1 - е 

-2iir| я I 

x

Z (2i + 1 )P (cos r r ' ) 
A М Ы Г < > V K k ) 

= 0, an > 0 

a„< 0 

(7-5) 

F o r attractive Coulomb forces ( a n <0 ) in channel n we then obtain a jump 
in G c n , and in © f i , when we go across the threshold, while the jump is 
zero for repulsive Coulomb forces (an > 0) so that no anomaly is observed, 
as expected, in this last case. 

Substitution of Eq. (7. 5) into Eq. (7. 1) yields a simple expression for 
. f i 

A0 f . s e . A@ f i exp 
uo only if we expand in spherical harmonics: 

Д 0 А (Çf. Cl ) : 
2 7TÍ 

r i 
JM{. s 

M- Vf M -1/; 

(k f )Y ç . ( k i K ^ . ^ J . M ; M - v f . V f ) 

-J / 1 _ \ - J 

• S ¿ - e x p [ i ^ - 2 | r , J ) ] ¿ , 
X C„ (J, M; М-1Л , v. )Sf „ — Sn„.,. „ . С-S ; 1 1 ' firSf,n{ S„\ —J r. I I / nSnSn' 'Mi i l T f n n\ o ' - exn ÍITT 10-0 L h И . . n n 1 1 

n n' n n 

a n < 0 (7.6) 

- J 
where S,, is the sub-matrix whose elements re fe r only to channel n; 
exp[i7ri] is a diagonal matrix in the i - representat ion for channel n. We 
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have renormalized the definition of the S-matr ix by 

. i . к 
- -'°o "lo0 
Sjk = e S jk e (7.7) 

which does not alter any of the observable quantities, and have taken into 
account the fact that 

lim exp [2 i (a n -ст0" )] = exp [Í7TÍ] 
kn -0 

F rom Eqs. (7. 6) and (6.1) we obtain the energy behaviour of the 
elements of the S-matr ix ( for i=^n, f ф n) at the threshold for channel n: 

A S f « f ' f . i « i ' i = X ?ln hi ) ^ O n - ^ i W n * ' n Sn -exp[ i j r ( í -21 r)n nensn.nt.s. 

a n <0 . (7.8) 

The oscillatory denominator in Eqs . (7. 6) and (7. 8) represents the 
resonances at each of the infinitely many Coulomb bound states of the channel 
n. These oscillations become infinitely fast near kn = 0" , point of accu-
mulation for the Coulomb bound states. Therefore only the average of 
the various observable quantities will be detected experimentally. The 
averaging procedures for the differential reaction cross-sections and for 
the total cross-sect ion have been given in Ref. [15]. The result is that, 
while the various averaged differential cross-sections exhibit a jump 
across the threshold for channel n, the averaged total cross-sect ion turns 
out to be continuous there. 

СГ-
PHOTOEFFECT 

iCX- X-RAY-
ELASTIC 

/ I P 

a t 0 t OR INDEX OF 
REFRACTION OR MASS 
ABSORPTION COEFFICIENT 

m -

FREQUENCY 
J 

FIG. 5. Photoeffect 

A phenomenon of this kind is, for example, expected to occur in the 
elastic scattering of X - r a y s by atoms at the threshold for the photoelectric 
effect [15]. F igure 5 shows the details of the phenomenon. An analogous 
effect will occur in nucleon-nucleus scattering of the threshold for 
7T~ production. 

In this report I have not discussed the case where, even 
though the two particles are not both charged in the considered channel, 
the Coulomb interaction manages to give a potential a/r 2 . This occurs, 
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for example, in the case of the scattering of an electron on hydrogen 
atom. The treatment of this case is a simple generalization of the non-
Coulomb case considered in this report. We have only to substitute in 
place of the orbital angular momentum quantum number SL the quantity 
X obtained f rom the equation 

Щ + l ) + a = A ( X + 1) 

F o r details see Ref. [16]. 
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S-MATRIX THEORY OF 
NUCLEAR RESONANCE REACTIONS 
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INTRODUCTION 

The theory of nuclear reactions has considerably expanded during the 
last few years. Its ultimate object is obviously the computation of 
cross-sections. This is basically a dynamical problem. For a given set 
of nucléons, one should be able to write down its Hamiltonian and to 
derive from it the bound states, the reaction channels, their thresholds 
and the elements of the collision matrix as a continuous function of the 
total energy of the system. If this could be achieved, the elements of the 
collision matrix would then give the cross-sections which are the quanti-
ties measured in the laboratory. In practice however, this approach to 
the theory of nuclear reactions is still far from realizable. 

Nevertheless, for more than thirty years, experimental data on 
nuclear reactions have been accumulated; in many cases they include the 
energy dependence of the integrated and differential cross-sections. 
Prominent features such as the resonances were discovered. Lacking a 
dynamical theory of resonance reactions, the theoretical analysis of an 
experimental cross-section consisted only in its parametrization, i .e . its 
description in terms of a small number of parameters. In particular, 
many resonances have been fitted to the well-known Breit-Wigner formula 
[1-3]. This led to a systematic determination of such parameters as the 
energy of a resonance, its total and partial widths. The original Breit -
Wigner formula being only a "one-level" approximation and its justification 
being partly phenomenological [4], it followed that the first theories of 
nuclear reactions were mainly concerned with the formal derivation of an 
exact dispersion formula for the collision matrix. We refer to the 
theories such as those of Bethe and Placzek [5, 6], Kapur and Peierls [7, 8], 
and the R-matrix theory of Wigner and collaborators [9, 10, 11]. In 
practice however, only the R-matrix theory, or rather the approximations 
derived from it [12], has been extensively used for parametrizing ex-
perimental data. 

The author is at the Institut de Mathématique (Physique Nucléaire Théorique), University of Liège, 
Belgium. 
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Unfortunately, the definition of the basic parameters introduced in 
the R-matr ix theory, namely the energy eigenvalues E^ and the reduced 
width amplitudes y\c , is largely arbitrary. They strongly depend on the 
( f ree) choice of boundary condition constants and also oil the exact value 
adopted for the channel radii, although the latter quantities cannot be 
sharply defined from a physical point of view. Moreover, the derivation 
of the collision matrix f rom the parametrized R-matr ix involves the in -
version of a matrix. It results in a very complicated dependence of the 
collision matrix elements on the energy and basic parameters (Ref. [12] , 
p. 294). Under such conditions, one is justified in questioning the validity 
of the assumptions and approximations which are usually made in deriving 
the approximate parametrized cross-sections which have been'used for 
fitting experimental data. A discussion of the validity of some of these 
approximations may be found in the original literature (see Refs [15, 16]). 

Here, we present an alternative way of parametrizing the collision 
matrix; it has been developed in a ser ies of recent papers [17-25] and is 
often re fe r red to as the S-matr ix theory of nuclear reactions. In contrast 
with the R-matr ix theory, it parametrizes directly the S-matr ix itself; 
it introduces a set of complex eigenvalues, the real and imaginary parts 
of which correspond to the position and total width of the resonances. 

Neither the R -matr ix nor the S-matr ix theories have been designed 
to be a dynamic theory. Nevertheless, the accumulation of data f rom 
parametrized cross-sections and shell model calculations have suggested 
approaching the dynamical aspect of the theory of nuclear reactions in a 
less ambitious but more realistic way than the above-mentioned one. Very 
schematically, most of the recent dynamical theories can be charac -
terized as fol lows: they assume as a starting point the knowledge of an 
approximate Hamiltonian and its complete set of eigenfunctions; some 
[26-28] aim at a direct computation of the cross-sections as a function of 
the energy, but most [29-36] are basically oriented towards the theoretical 
calculation of the main reaction parameters (energy, total and partial 
widths of resonances) . 

Under such conditions, the formal derivation of a parametrized co l -
lision matrix retains all its former importance. The question of deciding 
which parametrization is better adapted to dynamical computations is also 
of current interest [16, 34-36]. 

AUTHOR'S NOTE 

It is assumed that the reader is familiar with the phenomenological aspect of the theory of nuclear 
reactions [4] . For didactic reasons, however, a preliminary discussion on the one-channel case (elastic 
scattering by a central force) will introduce the subject. It will summarize the first twenty pages of Ref. [17] 
and will not be reproduced in this text. In the first sections of this chapter, we follow rather closely 
Sections 4 to 7 of Ref. [17] ; then we progressively introduce the improvements of the theory as given mainly 
in Refs. [20] and [22]. 

1. THE CONF IGURAT ION SPACE AND THE W A V E - F U N C T I O N 

1.1. Channels 

Our general assumptions will be the usual ones: conservation of 
probability, time reversabi l ity and causality in the framework of non-
relativistic mechanics. 

24' 
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As usual also, we call channel a situation in which the A nucléons we 
consider are separated into two fragments containing A i and A2 nucléons 
respectively, each of which is in a stationary state, while their state of 
relative motion is also specified. We confine the discussion to channels 
of this restricted type, i . e . we disregard the photons and possibility of a 
three-body break-up; photon channels have been introduced in the S-matrix 
theory of nuclear reactions by Mahaux (23], but the three-body break-up 
is obviously a much more difficult and unsolved problem. 

The state of a fragment Aj is characterized bv a total spin quantum 
number I j , its projection ij and a set of other quantum numbers specifying 
its energy, which we denote by Instead of i2 , we may also use the 
quantum numbers s, v specifying the channel spin 

S = I 1 + I 2 

I I I - I 2 l < s < I l + I 2 

and its projection v. We shall consider states of relative motion of orbital 
momentum with quantum numbers t, m. Because of the conservation of 
the total angular momentum J = i + s, of quantum numbers J, M, we may 
also replace the quantum numbers v, m by J, M in the definition of the 
channel. Accordingly, the channel symbol с will be used to represent any 
one of the sets of quantum numbers: 

{<*!<* 2» 4 4 ' Ч Ч ' 

{ ^ « 2 . I I 4 » S V , I M } ( 1 . 1 . 1 ) 

f а1а2 > i l l 2. S i , J M } 

For each mode of subdivision into two fragments Ax, A 2 , we use an 
appropriate set of co-ordinates to which we attach an index a chosen as 
the same letter a by which we denote the states of excitation a l t a 2 , of the 
fragments. Thus for the two fragments we shall take two sets of internal 
co-ordinates q a l , q a 2 (including the spin of the individual nucléons), while 
r a wil l be used to designate the relative position of their respective 
centre -o f -mass : 

(1.1.2) 

A s usual, we assume that the motion of the centre -o f -mass of the total 
system has been eliminated. 

Fo r each channel с we also assume the existence of a "channel 
rad ius" a a such that for r a > a„ only Coulomb forces act between the two 
fragments. This is not, of course, a very accurately defined quantity, but, 
as we shal l 'see later, this is precisely one of the main features of the 
S-matr ix theory to be independent of the exact values of the channel radii; 
they may be chosen much la rger than the range of the nuclear forces . 

Let us consider the configuration space of the A nucléons. The region 
of this space corresponding to the A nucléons being close together in 
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physical space is called the interior region, more precisely, it is defined 
by 

r < a for all a . (1.1.3) a a 

The boundary surface of this interior region is then composed of an 
assembly of parts of the surfaces r„ =a a . Any point which is not in the 
interior region or on its boundary is said to be in the exterior region. 

1.2. The wave-function in the exterior region 

Let Фс be the total wave-function in channel c. It contains a sum of 
products of internal wave-functions of the two fragments 

which may be grouped in a channel-spin wave-function 

Ф = У ( IJoi j io l S У)ф ф (1.2.2) asv 1 z 1 ¿ «íliii а2121г 

where a is written for си^а2, while the indices I - ^ are generally omitted. 
Representing the relative motion of the fragments by 

^ > в ) и с ( г в ) / г а (1.2.3) 

it is convenient to define a surface factor 

w - , = i'Y* ф- (1. 2.4) ' a s l r a i m r a s u * ' 

in the {5 s J? v m} representation, or 

<p- = ) ( s i m IJ M) <p- (1.2.5) 
a si ,J M Z_i « s l »m 

i n t h e { 5 s ^ J M } representation. 
For all channels corresponding to the mode of fragmentation a, the 

surface functions <pc may be chosen to form an orthonormal set, which may 
be assumed to be complete in the subspace of all co-ordinates except r a . 
In this subspace we write the orthonormality relation in the form 

f <P? <PC. dS« = «с (1.2.6) 

with 

dS a = d ^ a d q a i d q c ( 2 (1.2.7) 

The completeness of the set ipc allows us to express the exterior wave-
function Фехс, in its most general form, at any point of the exterior region 
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corresponding to the fragmentation o , a s a superposition of all the channel 
wave-functions Фс belonging to this mode of fragmentation a : 

ext (a 

c(a) c(a) 

where the symbol ^ indicates a summation over all channels for which 

c(ot) 
the mode of fragmentation of the compound system is a. Moreover, since 
the very existence of the channels implies that the overlapping of two 
functions ^ext(a) , ^ext(a') is completely negligible, the general form of 
the total wave-function Ф in the exterior region is 

•I * = ; * e x t ( c O (1 .2 .9 ) 

= X ^ r a ) / r a 
(1.2. 10) 

in E q . ( l . 2. 9), only one term can be different f rom zero at some specified 
point of the exterior region, while the sums in Eqs (1. 2.10) are extended 
to all possible channels, irrespective of the fragmentation. 

The total energy S of the compound system is expressed in a given 
channel с as a sum of the internal energy E 5 = Е И [ + E ^ of the fragments 
and the energy E c of their relative motion: 

«? = Е с + Е 5 (1 .2.11) 

If E c > 0, the channel с is said to be "open"; if E c < 0, it -is said to be 
"c losed" . The relative motion in an open channel is characterized by a 
real positive wave-number defined by 

- M 2 M a E c ) * 1 2 ) 
c n 

where М а = М а M a 2 / ( M a i + M a ¡ ) is the reduced mass of the fragments. 
The corresponáing relative velocity is 

v c = h k c / M a (1 .2.13) 

In a closed channel, the wave-number defined by Eq. (1. 2. 12) is imaginary; 
it will be taken with 

l m k c > 0 (1.2.14) 

Fo r a state of the system of given energy S , the various channel wave -
numbers are not independent, but are connected by the relations of the 



374 HUMBLET 

form (1. 2.11) expressing the conservation of energy in the processes 
concerned: 

c + E « = á b k c ' + E s ' ( 1 - 2 Л 5 ) 

The radial factor u c ( r „ ) of the channel wave-function Фс appearing in 
Eq. (1. 2. 10) may be written, as in the single-channel case, 

u c ( r „ ) = x c O { ( r a , k c ) + y c I f ( r a , k c ) (1.2.16) 

where the functions O c , correspond to outgoing and ingoing waves 
respectively. We define them in terms of the Coulomb wave-functions 
F j , Gf , as 

- io Í ia g 

O c = ( G j + i F c ) e , I { = ( G t " i F { ) e (1.2.17) 

and they satisfy the Wronskian relation 

W ( 0 { , I È ; r a ) = - 2 i k (1.2.18) 

1.3. The interior wave-function and the boundary conditions 

For the total wave-function in the interior region Ф ^ , no factorization 
of type (1. 2. 10) is possible because of the coupling of the channels. 
Nevertheless, considering the product r a Фй11 on the portion of Sf 
corresponding to r a = a a , we may write 

< r a * i „ t V Ф Ф П ' Г 
c(ci) 

where the expansion coefficient Фс is defined as 

(1.3. l a ) 

% = ф,пг) 
et jnt ' i ~ - a r 

dS (1.3. 2a) 

Similarly, for the radial derivative, we have 

(г Ф ) Эг a a ' 

with 

1 Ф1 <p с ̂ c 
s a c (a ) 

(1.3. l b ) 

ф! = Э 
3r„ 

Ф. ) 
: int ' dS (1 .3 .2b ) 

It is clear that Фс, Ф<! correspond to the radial factors u p (a ) , u j ( a ) of the 
one-channel case. It wil l be convenient to call Ф'с the "derivative" of Фс 

and speak of an expression like Фс OJ, ( a a ) - Ф£ Oc (a a ) as the "Wronskian" 
of Фс and O c at r a = a a , which we shall denote by W($ c , O c ; a a ) . 
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Because we neglect the overlapping of two functions <pc corresponding 
to different fragmentations, we may also give to the expansions (1 .3 .1 and 
1.3.2) the following form 

( г Ф 1 п Л = Ф w с r c (1.3. 3a) 

К (r*int Ф1 <P„ (1.3. 3b) 

where the left-hand side is taken at any point of while in the r ight-
hand side the summation is now extended to all channels independently of 
the fragmentation to which they belong. 

With the help of the representation (1 .3 .1 ) of the interior wave-function 
and its normal derivative on the partial boundary surface r a = a a , we i m -
mediately obtain, by comparison with the expansion (1. 2. 8) of the exterior 
wave-function, the continuity conditions on this surface. Because of the 
linear independence of the <pc, these conditions become, with the expression 
(1.2. 16) for u c , 

Ф с = х с О £ ( а „ , k c ) + y c I c ( a a , k c ) 

Ф' =x OI (а , к ) +y I'.(a , к ) с с £ v а ' с' J с f * a ' с 

(1. 3.4a) 

(1. 3.4b) 

for all channels с belonging to the mode of subdivision a. Repeating the 
argument for all the subdivisions, we thus ar r ive at a complete formulation 
of the boundary conditions for all channels, which has the advantage of 
yielding the amplitudes x c , yc in explicit form for each channel separately: 

x c = I { ; a a ) (1 .3 .5a ) 

yc = (1 .3.5b) 

It is through the factors Фс, Ф̂  that a coupling is implicitly established 
between the amplitudes in the various channels, inasmuch as specification 
of the incoming amplitudes fixes the interior wave-function and all the 
radial factors Фс, Ф". which then, by Eqs (1.3.5a) , determine the outgoing 
amplitudes for all channels. 

F rom now on, when no confusion is to be feared, we shall often find 
it convenient to use the channel index с instead of more specific indices 
such as £ or a for quantities like Оц, I j , a a . 

1.4. Collision matrix 

Let us consider now a wave-function Ф(с) with only one incoming 
channel с and let us add an upper index (c) to all the corresponding physi -
cal quantities. According to Eq. (1.3. 5b) we have 

y(";> = 0 for all c< f с (1.4. l a ) 
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or more explicitly 

W t ® ^ , Oc. ; ac . ) = 0 for all c1 f с. (1.4. lb ) 

Hence, in the exterior region we have 

* ( c ) ^ x(cc) Oc . ( r c „ кc . )9 »c-/r c . + y f l c ( r c , k c ) % / r c (1 .4 .2 ) 

We may consider the Eqs (1.4. 1) as a set of boundary conditions defining 
completely, except for a normalizing factor . Under such con-

ditions, it is convenient to rewrite (1.4. 2) in the form 

I (r , к ) <p /г - ) U , О , (r ,, к ,) ip . /г . 
c e c e ' с c e С С С ' YC ' с 

с" 

where Uc'c is defined by 

(1 .4 .3 ) 

xï? = -U c . c y ( c C ) (1 .4 .4 ) 

or, according to Eqs (1. 3. 5), 

(c) 
_ , 

W(3><cc>, O c ; a c ) /k c 

= W i i S L l c V L ^ i / k c : ( 1 4 5 . 
u r ' r I l i / A f c i ГЛ . „ \/l, U - t - Э ) 

These are the elements of a matrix U related to those of the collision 
matrix by the relation 

' J * ? Vc.c (1 .4 .6 ) 

where 

vc = hk c /M c (1 .4 .7 ) 

is the velocity in channel c. 
Although the unitarity and symmetry properties take a simpler form 

for W than for U, namely 

\ q¿ = б , ) v U * U = v б (1 .4 .8 ) 
eq ср pq с cq ср q qp 

с+ с+ 

4 ^ = 0 / v U = v U ( 1 4 . " pq qp » vp и pq v q u q p <ji 

we shall often find it more convenient to consider the matrix elements of 
U rather than those of ct/. In Eqs (1.4.8) , the sums extend over the open 
channels only. The matrix U will also be called "collision matrix", but 
no confusion can ar ise . 
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In the representation {a s SL, J M } , it is clear that, because of the con-
servation properties of J and M, we have 

= =0 when J, М / J', M ' . (1 .4.10) 

. ( â s a , JM) (SsS.JM)' 
Moreover, since $a'S4i ' ,jM а п " ф а s'C'.JM a r e scalar products, they are 

independent of M. In particular, if the notation - c is used to designate 
the channel ( 5 s SL, J - M } , we have 

Ф?' =Ф(--с? (1.4.11) 

The definition (1 .4 .5 ) of the matrix element Uc 'c shows that it is 
entirely determined by the consideration of the wave-function with the 
single entrance channel c. The most convenient channel designation 
scheme for representing the matrix U is obviously с = { 5 s i , J M }: in this 
scheme, according to Eqs (1.4. 10), the matrix is diagonal with respect 
to the angular momentum quantum numbers J, M. Moreover, its elements 
(like the radial factors Ф^' on which they depend) are independent of M and 
may therefore be written 

Uc'c = 6M'M 6J'J u 5 ' s T , 5 s I (1 .4.12) 

One easily passes f rom the representation { 5 s i J M } to the scheme 
f e s i i / m } , for instance, by relations of the form 

U = a's' £' v'm'; oslvm" ( s ' í ' y 'm 1 | J M ) U ¿ . s . r 5 s í ( s í v m | J M ) (1.4.13) 

JM 

2. THE RESONANCE STATES 

2.1. Definition 

Let us consider a wave-function with only one incoming channel 
It satisfies, on S t h e boundary conditions 

у1С> = W($<C ) , Oc, ; a c . ) = 0 for с' / с (2 .1 .1 ) 

while its asymptotic behaviour is given by 

*(C) =Ус) <Pclc К ' k c V r c + ^ x(cc? <pc. O c , ( r c . , kc. 1/rc, (2 .1 .2 ) 
c' 

If we add one more boundary condition for we .shall define a set of 
eigenvalues S o f the total energy S and of eigenfunctions = 
ф(с) (с)). 

Another wave-function í ( d ' w i th asymptotic behaviour 

=ydd ) * d I d ( r d . k d ) / r d °C' ( r c " k c ' / r c ' (2 .1 .3 ) 
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satisfying the boundary conditions 

y f = w { e ^ , 0 c . ; a c . ) = 0 for c' f d (2.1.4) 

will, when an extra boundary condition is added, lead to different sets of 
eigenvalues S(nd) and eigenfunctions = Ф № ( S (nd) )• 

If, however, on the basis of what is known for the resonance states in 
nuclei, we want the two sets , S ^ to be identical, we are not free to 
choose arbitrarily the extra boundary conditions. They must be y ^ =0 
for and y ( d ) =0 for Ф № . Taking Eqs (2.1.1) and (2.1.4) into account, 
these conditions imply that on the most general wave function Ф, we must 
impose the following set of boundary conditions 

yc = 0 for all с (2. 1. 5a) 

W ($ c , O c ; a c ) = 0 for all с (2.1.5b) 

corresponding formally to a situation without incoming wave in any of the 
channels. The corresponding states with eigenfunctions Фп and energy 
S n will be, by definition, the resonance states of our system. 

Let us decide that any quantity to be taken at the resonance, i. е. , for 
S = Sn , will simply be written with an extra index n. Under such con-
ditions the following quantities Ф ^ , Ф ^ , . . . , ФЙ' , . . . are 
independent of (с), (d), . . . , just as , . . . and we are justified in 
writing 

- фсп • • • = *cn (2.1.6a) 

Ф< с > ' = Ф М ' = . . = ф , 
СП СП • • • СП 1 . o b ) 

However, one should not overlook the fact that Фп should rather be 
written as 

*J .n ' *JM.n (2-1.7) 

the indices J, M being dropped when no confusion is possible. 
A resonance energy S n is in general complex, since, for any real 

energy, the flux is conserved, which is not possible when there is no 
incoming flux. The only exceptions correspond to the bound states which 
are obviously included in the above definition of the resonant states S n ; 
both the incoming and outgoing fluxes are then vanishing. 

In order to be in a position to discuss the possible locations in the 
complex k c -plane of the complex wave-number kcn, i . e . , kc for S =<%n, 
we shall now give some properties of the functions I j and Of defined by 
Eqs (1.2.17). Other properties of the same functions in the complex 
kc -plane, useful later in the derivation of the expansion of UC'C , will also 
be given in the next paragraph. 

2.2. Coulomb wave-functions 

In this paragraph, let us drop the index с when no confusion can 
arise; we follow closely Section 2 of Ref. [20], although here the Coulomb 
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parameter n will be given its most common definition, namely the energy 
dependent quantity 

n = Z 1 Z 2 e 2 M / ( h 2 k ) (2 .2 .1 ) 

while a will be the independent one 

Z 1 Z 2 e 2 M / h 2 (2 .2 .2 ) 

= nk (2 .2 .3 ) 

Moreover, as in [20], we adopt here the so-cal led "o ld" normalization 
(1. 2. 17) of I£ and Og; only later shall we drop the phase exp(± icr{), after 
the expansion of the collision matrix has been derived. 

Two solutions of the equation 

(2 .2 .4 ) 

satisfied by the radial factor of a Coulomb wave-function, are the well 
known regular function F j and i r regu lar function G { . F o r complex k, 
with 

-it < arg к < + ж (2 .2.5 ) 

their asymptotic behaviour for large kr is 

F j ~ sin (kr - n log (2kr) Л ж + оц ) (2. 2. 6a) 

Gí ~ cos (kr - nlog (2kr) - i i тт + a i ) (2. 2. 6b) 

where CTJ is defined by 

2ioi = r j i + l + M 
e Г ( i +1 - irj) 

For small kr, in terms of a well known notation [37] (or see Eqs (2. 2. 10) 
below), we have 

F { ~ ( k r ) C + 1 C c , G { - { 2 i + 1 ) C t (kr)"J (2. 2. 7') 

The quantities F { , G { , rj and cr£ a re rea l when к itself is real . 
The f irst solution F { is proportional to the regular Whittaker function 

(2ikr) , since 

F i = é e { i ! ( - i ) í + 1 u r i 4 i í + i ( 2 i k r ) (2 .2 .8 ) 

where 

1 -1ГЧ/2 , 
e c = — e [ r ( í + l + i n ) r ( i + 1 - i r ) ) ] 4 (2 .2 .9 ) 
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The function ^ is defined according to Buchholz [38], i . e . , 

M i t ) | + i ( 2 i k r ) / ( 2 i + l ) ! 

for fixed г, is an integral function of k2 . We also have 

e{ = (2Í. +1)! ! C¡{ = — (Sfi + г]2) ... (1 + rj2)- 2vr\ 
,2trii 

( i 2 + r ) 2 ) . . . ( 1 + П 2 ) 

(2. 2.10a) 

(2. 2.10b) 

the latter quantity has been normalized in order that = 1 for к = oo or 
for a neutron channel (a = 0). 

Two other solutions of Eq. (2. 2.4) are conveniently defined as 

where 

io« о il! 
I í ( r , k ) = ( G t - i F í ) e = i ëT W. 

in) 
0 { ( r , к) = ( G f + i F { ) e" l o c = ( - i ) c e 2 W + 

w - = w i „ , c + i ( e 2 2kr), W+ =W . i r i , 6 + i (e 2 2kr) 

(2. 2. l i a ) 

(2.2.11b) 

(2. 2.12) 

are i r regular Whittaker functions. Considered as functions of к, W+ and 
W. have к = 0 and к = oo as essential singularities, but they have no other 
singularity in the complex k-plane. They are multivalued, according to 
the relations [38] 

W. 
m/2 i2ir n iir/2 a — l + i (2ikr) 

il). i+ j ( e 2kre ) = w i I ) { + i ( e 2k r ) +2 i iHr - j i * f j t : 
(-je-iTj) 

(2. 2. 13a) 

-ÍT/2 9 1 , _ _i2ir n W - iT, , î + i ( e 2k r e ) = W„.„ 2кг)+2ттг ii). í + i 
Í7T /2 -in. n-{(2ikr) 

T(-i + in) 
(2. 2.13b) 

where n is an integer and ( -2 ikr ) = ( - 1 ) ' + 1 ^ ÍIJ, (2ikr). 
Together with the regular function Л , the functions W+ satisfy the 
relation [37, 38] 

,ir(U+i Í) 
W + r ( i +1 - irj) + r ( i + l + i r j ) 

and the Wronskian relations [38] 

— W. 

W ± ) = - 2ik 
i ir ( í± í )/2 

r(jf + l ± i n ) 

W(W + , W . ) = - 2ik e" 

(2.2. 14) 

(2. 2.15a) 

(2. 2. 15b) 
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According to Eqs (2. 2.11), the relations (2. 2. 14) and (2.2. 15) may be r e -
written as 

- 2 i F { =e" i 0 { I t - e ° l i O i (2 .2.16a) 

W t F j , O s ) = - k e " i o < , W ( O t , I £ ) = - 2 i k (2 .2.17) 

we also have 

2G t =e" ' ° c 1 { + е ш г O e (2.2.16b) 

Fo r large values of |kr|, the asymptotic behaviour of W ± is such that [38] 

I j ~ exp [ - i ( k r - n l o g ( 2 k r ) - Í 7 r i ) ] (~2тг< a r gk < + тг) (2 .2.18a) 

Оц ~ exp [ + i (кг - r) log (2 кг) - iírü)] (-тг < a r gk < 2тг) (2.2.18b) 

and accordingly they correspond to incoming and outgoing waves r e spec -
tively. Later, we shall also need the behaviour of and W+ for very 
small k. We have 

^ = 1 x l 2 c + 1 ( x ) [ l + 0 ( k 2 ) ] (any a rgk ) (2.2.19a) 

r ( i + : ±ir7)W± х К 2 Ы (x) [ 1 +0 (k 2)], I a r gk + 2 f U тг - 0 

V 7 (2.2.19b) 

where 

x = (8 rçkr)* = ( 8 a r ) i (2.2.20) 
and в are positive quantities, the'latter being an arbitrari ly smal l constant. 

Because of the definition (2.2.11) of I { and O e , we have 

I { ( r , ke"i,r ) = ( - l ) C O p (r, k) e'"" (2. 2. 21a) 

O t ( r , ke i7r) = ( - l ) e I c ( r , kie""" (2.2.21b) 

Further, if k* is properly defined as | k | exp(- i a rgk ) , we have 

О И г , к ) * = 1 < е * ™ / к * W l 4 / k * i í + 1 ( e 1 ^ 2k*r) 

= I t ( r , k* ) = ( - l ) 6 O s ( r , k ^ e ^ i e ' f i * , (2.2.22a) 

I j ( r , k)* = Oç, (r, k*) = ( -1 ) C I { (г , k V ^ e 1 " 1 * (2. 2. 22b) 

In an open channel, к is a rea l and positive quantity and we have in 
particular 

0 { (r, k)* = I i ( r , k), I { ( r , к)* =Oc (r, k) (open) (2 .2.23) 
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In a closed channel, a rgk = 2n and 

О f (r, k)* = ( -1 ) J O j (г, к) e"1711 (closed) (2.2.24a) 

I £ ( r , k)* = ( - l ) c I j ( r , ke~2i,r ie-f" (closed) (2.2.24b) 

the last relation, which corresponds to a change of Riemann sheet, is 
however, not needed for deriving the t ime- reversa l properties of 
and U. 

F rom now on, we shall make Ie and Of single-valued functions of к 
by introducing a cut in the complex k-plane along the negative imaginary 
axis. Then 

-J7T < a rgk < l ,т • (2. 2. 25a) 

and also 

- \ ~ < arg (k* eilT) < j- 7Г (2.2.25b) 

2.3. T ime - r eve r sa l properties 

Let us consider the wave-function Ф defined by the boundary conditions 

$ ^ - L d $ d =0 (all d / c) (2 .3 .1 ) 

where 

u n a d ' d ' 

Let us express the total energy S in terms of kc according to the first 
relation (1. 2. 15), but let us disregard temporarily the fact that the wave 
numbers kd of Eqs (2. 3. 1) and (2. 3. 2) are related to each other and to kc 

according to the relations (1 .2.15) . In other words, let us consider the 
kd as independent parameters . Under such conditions, ф(с), besides 
being a function of the space and spin co-ordinates, is also a function of 
all the wave numbers 

Ф(с> = Ф ( с ) (kc , k d , . . . ) (2. 3. 3) 

The f irst one comes in because of the SchrOdinger equation 

f i 2 

H í ( c ) = ( E ¿ c + — к2 )Ф ( с> (2 .3 .4 ) 

the others because of the boundary conditions (2. 3.1) . 
The relations (2. 2. 22) derived ear l ier must be considered as the 

t ime - reversa l property of the functions I { , 0 { valid for real and complex 
wave-numbers as well . 
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In the channel spin {o-s v } representation, the t ime - reversa l property 
of the product 0igsu reads [12] 

К ф- = ( - l ) s ~ " ф- (2. 3. 5) 

and hence, in the { 5 s Í JM } representation, the complete surface factor 
(1. 2. 5) satisfies the equation 

K<pc = ( " 1 ) J " M <P.C (2 .3 .6 ) 

while 

K [ i c O c ( r c , k c ) ] = ( - D ] " M ç c I c ( r c , к * ) (2 .3 .7a ) 

= ( - l ) J " M < P - c O c ( r C ) e ^ k ^ M - l ^ e 1 " 1 * (2 .3 .8a ) 

К [ ^ с 1 с ( г с , к с ) ] = ( - l ) J - M V - c O c ( r c , k * ) (2 .3 .7b ) 

= ( - l ) J " M <p-cIc(rc. e"i,rk!¿ ) • ( - l ) í e " r ' * (2 .3 .8b ) 

where as usual - c = { 5 s i J - M } ; in the I and О radial functions, indices 
с may of course be used instead of - c . 

In terms of these notations, the time reversa l property assumed for 
the wave-function 

Ф ( с ) , wh en the channel wave numbers are considered 
as complex and independent of each other, reads 

К ф ( С ) (kc . kd , . . . ) = ( - l ) J " M Ф ^ е ' " k * , eiîr k5|, . . . ) (2 .3 .9 ) 

It seems at f irst sight that Eq. (2. 3. 9) agrees only with the t ime- reversa l 
property (2.3. 8a) of <pcOc> but not with the corresponding one (2.3. 8b) of 
<pcIc . We shall now see that this is not the case by giving to Ф i n the 
channel region a form in which all the radial factors satisfy an equation of 
the type (2. 3. 8a). 

In the exterior region of the configuration space, we have f rom 
Eq. (2. 2. 16a) 

Ф ( с ) - <p ( x ( c > 0 + y ( c ) I )/r + \ <p , x ^ O ,/r , 
тс с с J с с ' с ^с с с ' с 

с7с 

= « Р с У ^ ^ с 6 2 ' 0 0 - 2 1 ^ 6 ' 0 ^ / ^ Vc.X ( cC?Oc. / г с , ( 2 . 3 . 1 0 ) 
с' 

In the latter expression of , we have eliminated Ic by introducing the 
radial wave-function 

i F c e i 0 c 4 ( - D V ' " " ' 2 Г ( i + 1 + i r i )^t j v e + i (2 ikr) (2. 3. 11) 

which obviously satisfies the equations 

( i F Ê e i o i ) * = ii' e~n4*/2 ГЦ+1 - i + i ( - 2 i k * r ) 

= e~ ' " ' * ( iF í e Í O Í )k-* e i i l rk* (2.3.12) 
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since Л / к C + 1 is an integral function of k2 . Choosing the + sign in 
Eq. (2. 3.12), we see that Eq. (2. 3. 9) agrees with Eqs (2. 2. 22a) and 
(2. 3.12). Moreover , though the relation (2. 2.16a) may also be used to 
write in terms of F¡e and If functions only, this is not a sufficient 
reason to justify the assumption that ф(с) satisfies a t ime - reversa l 
property with e"1,r rather than with е + ж к* for any b. Indeed, we must 
also require that for real total energies, the t ime - reversa l property 
should not be different f rom the usual one. We know f rom Eq. (2. 2. 24b) 
that this is not the case for Ij . 

F r o m Eq. (2. 3. 9), the t ime - reversa l property of the radial factors 
, are easily derived.. We have 

( K
C
, k d , . . . ) * = J (K?cO* (re КФ£? ) r<x= dS a 

or 

K C ) < k c kd- •••> ]* = ®c- ( e l T k ï . ^ d . . • • ) (2.3.13a) 

and s imi lar ly 

[Ф<?' (kc , k d , . . . ) ] * = (e i f fk* , е ' Ч * , . . . ) (2.3.13b) 

fe) fe)' 

These relations simply exhibit the fact that Фс ' and Ф;.. have been de -
fined as real functions of ikc , ikd, . . . . This is obviously related to the 
fact that we assumed the Hamiltonian H to be a real operator, while 
S = E a - h 2 ( i k c ) 2 / ( 2 M c ) and L d ( a d , k d ) are real functions of ikc and ikd 

respectively1 ; f rom Eqs (2. 3. 2) and (2. 2. 22a), we have indeed 

[ L d ( a d , k d ) ] * = L d ( a d , e i f f k^ ) . (2 .3.14) 

The relations (2. 3. 13) have two straightforward consequences. 
First ly we see that if k c n , k d n , . . . is a set of complex wave numbers 
satisfying the boundary conditions (2. 1. 5) which define a resonance state, 
the same boundary conditions will also be satisfied for k c =e l l rk*n , 
kd = e1,r k j n , . . . . This eigenstate will be designated by an index -n, i. e. 
for the wave numbers 

k b , - n = e i X n < a l l b > (2.3.15a) 

and for the wave-function 

* - „ = * ( k c , -n . kd.-n> . . . ) (2.3.15b) 

hence 

К ф Ш.п = ( - l ) J - M * j - M , - n (2.3.15c) 

the indices J, M being dropped only when no confusion is possible. 

1 By definition, the operator H is real if it commutes with the time reversal operator K, while the 
function f(z) is real if [ f(z)] *= f(z*). 
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Secondly, defining the elements of a T -matr ix by 

T . = 6 . e 2 i o ° - U . x с с uc с c с (2. 3. 16) 

= 2 
УУ(Ф£>, i Fe- e

Í O c

' ) / k c ' 

W(®Ç> , Oc)/kc 
(2. 3.17) 

we immediately get 

[ T c . c ( k c , k d , . . . ) ] * = ( - 1 ) Г + £ e ^ l - ^ * T c ' c (e i l rk* , e ' , . . . ) (2.3.18) 

when Eqs (2. 2. 22a), (2. 3.12) and (2. 3. 13) are taken into account. 
Formal papers on inelastic scattering, such as the one by Newton (39], 

have been concerned with analyzing more closely the structure of the 
T-matrix considered as a function of several independent complex 
variables k c , kd , . . . . Other authors, such as Pe ier l s [40], LeCouteur 
[41] and Weidenmüller [13]) take the relations (1.2.15) into account and 
study the structure of the T -matr ix on a complete Riemann surface when 
one channel wave number is chosen to be the only independent variable; 
then there are obviously branch-points at the thresholds. Here we want 
to deal with proper nuclear reactions and accordingly we have not only 
branch-points, but also logarithmic essential singularities introduced 
at the thresholds by the Coulomb interaction. Therefore, we shall 
restrict ourselves to the study and expansion of the collision matrix on 
one Riemann sheet only. 

2.4. The physical k-plane 

Let us now decide that an arbitrary channel wave number, say k b , 
is chosen as the independent var iable . The corresponding complex 
k b -p lane, with appropriate cuts, that is going to be defined now, will be 
called the physical kb -plane. 

F rom now on, we assume that the only singularities of the wave-
function Ф ( c ) are located at the thresholds k0 = 0, k a = 0, кь = 0, . . . . 

Under such conditions, by drawing in the complex кь-plane the set of 
cuts indicated in F ig . 1, the wave-function Ф(с) becomes holomorphic at 
any interior point of the k b -p lane, i. e. at any point lying neither on a cut 
nor between those cuts starting at kb = 0. The phase of any wave number 

is chosen in such a way that kd = ± |kd | for kd ± oo +0 i . In relation 
(2 .4.1 ) , we have, according to Eq. (1. 2.15), 

The quantity К db will be chosen positive real or positive imaginary. 
The cuts starting at -HKdb and -Kdb are not necessari ly straight lines, 

but they must be drawn in the lower half plane and symmetrical ly with 
regard to the imaginary axis; they join the cut starting at k b = 0 at an 
arbitrary distance f rom the rea l axis or at infinity. Under such conditions, 

k d = [ (k b - K d b ) M d /M b ] ^ (2 .4.1 ) 

h 2 K l b / ( 2 M b ) = E 5 d - E 5 b (2 .4 .2 ) 

25 
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the important relations (2. 2. 25) are satisfied for each channel wave number 
and, for any d, we have 

kd(e i , rk* ) = e iu [ k d ( k b ) ] * (2 .4 .3 ) 

where к* = | кь | exp ( - i a r gkb ) . Similarly, when the different regions of 
the kb -p lane defined by the cuts starting at кь = 0 and _±Kdb are numbered 
as indicated in Figs 2 and 3, the following relations are easily veri f ied: 

k d ( e i , r k b ) = - k d ( k b ) for k b in Hid (2 .4 .4a ) 

k d ( e " i , r k b ) = - k d ( k b ) for kb in I V d (2 .4 .4b ) 

k d ( e i , r k b ) = + k d ( k b ) for k b in V d (2 .4 .4c ) 

k d ( e " i l r k b ) = + k d ( k b ) for k b in V Id (2 .4 .4d ) 

This is easily seen f rom Figs 4 and 5, which have been adapted f rom 
Fig . 4.17 of Morse and Feshbach [42] ; here, u is interpreted as Rek d =Kd 

and v as Imkd = ~ 7 d . When the cut in Fig . 4 is deformed to become 
paral le l to the imaginary axis at finite distance, as in F ig . 2, the signs 
of Kj and 7d are changed in the regions Vd and VId ; there is a change of 
sign for Kd and y¿ along the lines Kd = const, and yd = const, when these 
lines cross the cuts. Similarly, the indications reported in F ig . 3 are 
easily related to those given in F ig . 5. 

Finally, in connection with Eq. (2.2.19b) , we must point out that by 
drawing the cuts in the lower k b -p lane, we have restricted the values of 
a r g k d to the appropriate range. More precisely, for any d, we have 

- è 7 T + 0 d b ^ a r g k d $ f -7T -e d b (2 .4 .5 ) 

where 0db is a non-vanishing positive constant. The condition (2 .4 .5 ) is 
obviously satisfied f o r 2 d =b, while near the other thresholds d f b , 
because of the phase chosen for k d , we have 

0 ¿ a r g k j ^ 7Г for kb near +K j b . (2.4. 6a) 

when K j b is lying on the imaginary axis and 

T \ v $ a r g k j $ ж + \ir for k b near + K j b (2 .4 .6b ) 

when Kj b is located on the rea l axis and the cuts are orthogonal to that 
axis near kj =0. Hence, we see that the condition (2 .4 .5 ) is satisfied near 
the thresholds; it is easily extended to the whole physical k b _ p lane by 
considering F igs 4 and 5 and their transformation into F igs 2 and 3, 
respectively. 

2 When b is a neutron channel, one is of course justified in taking a vanishing width for the cut starting 
at kb = 0, i . e . in taking simply the negative imaginary axis. 
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Up to now, the concept of open and closed channels has been used for 
real total energies only. We are now in a position to extend it to any point 
of the physical k b -p lane . The channel d will be called open if 

Imk d < 0 (open) (2 .4 .7 ) 

and closed if 

(closed). (2 .4 .8 ) 

FIG.4. Real and imaginary parts of f(k) = / ( k ! - 1) = u + iv in the physical k-plane 

In the fo rmer case, kb l ies in one of the regions I, II, "Vd, VId shown in 
Figs 2 and 3, while in the latter case, кь lies in regions Illd or IVd. Such 
a definition includes the usual one for real energies, since beyond K d b 

the positive real axis corresponds to an actual physical situation where d 
is open, while the positive imaginary axis and the segment КЬь ~K d b are 
associated with a closed channel. 

The above definition applies in particular to a resonance state. Then, 
since for r d > ad we have 

udn =u d ( r d , k d n ) oc e x p ( i k d n r d ) (2 .4 .9 ) 

we see that the wave-function Фп is exponentially decreasing in a closed 
channel and increasing in an open one, except however when Imk d =0. 
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In the physical k b -p lane the properties (2 .3 .9 ) of the wave-function 
and (2.3.13) of the radial factors may now be rewritten as 

K * ( c ) (kb ) = ( - l ) I _ M * ( " C ) ( e ' X ) (2.4.10) 

Ф ( с?(к. ) * =Ф ( с?(е1 , гк*). Ф(СС.Г ( к . ) * = Ф (сс?'(е™к*) (2.4.11) 

FIG. 5. Real and imaginary parts of f (k) = / (k 2 + 1) = u + iv in the physical k-plane 

while if kbn corresponds to a resonance state, the same may be said of its 
symmetrical e i , r k b n . Accordingly, if we write 

kbn = *bn - iYbn (2 .4.12a) 

we may always assume that Kbn^0, since then 

4 - n = e i ï k b n = - " b n - ^ b n - (2.4.12b) 
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After deriving Green 's theorem, we prove that in the upper half of 
the physical k b -p lane, there are no resonance states кьп located outside 
the imaginary axis, just like in the one-channel case. 

2.5. Green 's theorem 

Let us consider two solutions Ф1# Ф2 t h e wave equation НФ - é 4>, 
corresponding to two different real or complex energies S í t S<¿. Then 
we may write 

/ ф | ф ^ и = / [ {Нф 2 ) *ф 1 -ф| (нф 1 ) ] аш (2 .5 .1 ) 

where the integration in configuration space is extended to the interior 
region и bounded by the surface SP. If we assume the potential V to be 
self-adjoint, i . e . 

J [ ( У Ф 2 ) * Ф 2 - Ф| ( V i j ) ] du = 0 (2 .5 .2 ) 
ш 

only the terms of H corresponding to the kinetic energies contribute to 
the right-hand side of (2 .5.1 ) and these are transformed by Green 's 
theorem into an integral over the surface For the part of the surface SP 
corresponding to r a = a a , this integral 

2M 1Л 

h2 

- * 
ЗФ2 т т Ф ЭФ! а2 а 

:а~ а а 

Г Г Э(г аф| ) ? Э(ГаФ1 
2М а J L 9г а Г а * 2 Эга 

dS, 

or, on account of the expansions (1. 3. 1) and the orthonormality relations 
between the <pc, 

h 2 
4 - ф * ф1 ) h 2 V 

2М а L 2c ' 2М а 2c le 2c le 
c(oc) 

The integral over the whole surface S? is the sum of s imilar expressions 
for the different modes of fragmentation a, and Eq. (2. 5. 1) thus becomes 

/ ф ¿ г № ( ф 2 с ' 
и с 

where the summation now extends to all channels and where we have 
written M c instead of M a for the reduced mass in channel c. 

Let us now apply this relation (2. 5.3) to the case where Ф} and Ф2 

are the same eigenfunction Фп with resonance energy 

< í n = E n - } i r „ (2 .5 .4 ) 



S-MATRIX THEORY 391 

the real and imaginary parts of which are given by 

<"СП-?СП>+е5с ("dn - T 2 d n ) + E 5 d = . . . (2 .5 .5a ) 

2h2 2ñ2 
Г " = " M 7 K c n 7 c n = ~Md Kdn T d n (2 .5.5b) 

Let us also assume that the integration is not l imited to the interior region 
u of the configuration space, but that it rather extends to a region wn 

composed of u plus that part of the exter ior region corresponding to the 
channels which aré closed at the energy <£n. In the latter channels, 
according to Eqs (2. 4. 8) and (2. 4. 9), we have Im k c n = - 7Cn> 0 and 
u c n ( r c , k c n ) vanishes like e x p ( - | 7 c n |r c ) for r c -» oo . Accordingly, we are 
left with 

irn f I I2 d(J = X 2М7 " ( 2 - 5- 6 a ) 

% c+ 

h2 
2MC Ф с п ф с п ( Ь с п - Ч п ) (2.5.6b) 

c+ C 

where the integral is finite, while the sums in the right-hand sides extend 
over the open channels only. 

2.6. Bound states 

We shall now use the relation (2.5. 6b) just derived to prove that in the 
upper physical kb -plane there are no resonance states outside the 
imaginary axis. Assuming only that 7 b n < 0, we see from Figs 2 and 3 that 
in fact 

7dn < 0 for all d (2. 6. 1) 

i .e . that all the channels are closed. Under such conditions Eqs (2.5.6) 
become 

Гп / |фп I2 du =0 (2.6.2) 

or, the integral being finite, 

Гп =0 (2. 6. 3) 

From Eqs (2.5.5b) and (2.6.1), this is equivalent to 

Kdn = 0 for all d (2.6.4) 

and hence kbn is necessarily located in the upper half of the imaginary 
axis. The resonance state considered is in fact a bound state. 
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This result completes, for the upper half, the one derived at the end 
of sub-section 2.4 for the location of the resonance states in the lower half 
of the physical к b -p lane. 

2. 7. Channel radii and resonance states 

Before we close this section we still have to point out one important 
property of the resonance states when they are defined according to 
Eq. (2 .1 .5 ) . 

Let us f irst recal l the definition (1 .4 .4 ) of the collision matrix, 
namely 

U . = -x ( <? /у (C ) (2 .7 .1 ) с с с ' Jc x ' 

Being a ratio of two amplitudes, its value will not be changed if the 
channel radii taken are l a rger than a c , a c - , . . . in some or all channels, 
still assuming, however, that in the portion of the configuration space 
between the surfaces S? and S", the latter surface being defined by 

r d = a j (all d) (2 .7.2 ) 

only the Coulomb forces act between the fragments. Accordingly, the 
eigenvalues <#n are also independent of the fact that the boundary surface 
chosen is SP or 

Until now this argument has been rather formal, but nevertheless it 
has a practical importance when it is reformulated as fol lows: Let us 
assume that the nuclear interaction of two fragments is very small, but 
not zero, when their representative point in the configuration space lies 
between Sf and If this interaction is not neglected in the definition of 
the collision matrix, i . e . , if the boundary surface chosen is rather 
than^ , we have with obvious notations 

X(CC) ~ X W {<?), y <f (<?>. ) „ y f 
(2 .7 .3 ) 

U c . c [S") * U c . c ( S V 

Hence, for the corresponding eigenvalues, we also have 

- é ' J â " ) (2 .7 .4 ) 

even if a ' , aJ.. , . . . are chosen much larger than a c , a c . , . . . , 
respectively. They may even be taken much la rger than the range of the 
nuclear forces for open and closed channels as well; for the latter channels 
they may be taken as infinite. 

When later we want to re fe r to this property of the collision matrix 
and of the resonant states, we shall simply say that they are "independent 
of the channel rad i i " or "a-independent". 

3. EXPANS ION OF THE COLLIS ION MATRIX 

In this sectio i, we want to derive an expansion of the collision matrix 
which could fit t) P experimental data on resonance reactions at low ener -
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gies. Among the parameters introduced in such an expansion, the eigen-
values é"n = E n ~ i i r n should play a ma jor part, since we know that, just 
like the observed resonances, their positions En and total widths Гп are 
independent of what the incoming channel is; they characterize the c o m -
pound nucleus itself. Since in practice only o n e - or few- leve l approxi -
mations of the expansion of the collision matrix are used, one must also 
look for an expansion, the one - and few- leve l approximations of which have 
the same general property as the exact collision matrix: (i) symmetry, 
(ii) independence of the channel radii, (iii) threshold behaviours, (iv) t ime -
reversa l property, (v) unitarity. 

Since our definition of the resonance states satisfies requirement (ii), 
it is very likely that the most appropriate type of expansion should exhibit 
the fact that these resonance states have been defined as the poles of the 
collision matrix. Accordingly, it seems we have no choice but to expand 
the U -matr ix directly according to its poles, rather than expanding f irst 
an auxiliary matrix as in the R-matr ix theory. Under such conditions, 
one must however expect that the one - and few- leve l approximations wil l 
not r igorously satisfy the unitarity requirement (v), because U is not a 
rea l matrix. A l l the other requirements (i) to (iv) wil l be satisfied by 
the expansions we derive later, except when otherwise stated. 

After we have specified in the next paragraph the analyticity hypothesis 
assumed for the wave-function and the radial factors Ф^?, Ф^' , we derive 
the threshold factors of the collision matrix elements and an expansion 
theorem applicable in the physical kb -plane. In fact, however, we shall 
find it easier to write the expansion of the collision matrix elements first 
in a physical S -plane still to be defined and then in the physical k b - p lane . 

3.1. Analyticity of the wave-function, radial factor and collision matrix. 

In most of the formal theories of nuclear reactions, one assumes the 
existence in the interior region of an expansion of the wave-function in 
terms of a complete orthonormal set of eigenfunctions. Here, since the 

do not form an orthogonal set in the interior region и (nor in the 
region u n ) and since the resonance states have been defined as the poles 
of the collision matrix, we rather assume analyticity properties for the 
wave-function, namely: 
(1) on the boundary surface, the wave-function and its normal 

derivatives are holomorphic functions of the wave number kb at any 
interior point of the physical k b -p lane and on its boundary, except at 
the thresholds. 

(2) It is possible to normalize in such a way that the Фап do not vanish 
simultaneously for all d, and 

(3) that , (any d) are continuous at the thresholds i K ^ (any e), 
i . e . that 

l im 
Ф у (k b ) = Ф у ( ± K e b ) = finite constant (c) (c) (3 .1 .1 ) кь~*±КеЬ 

l i m Ф у ( k b ) = Ф у ( i K e b ) = finite constant (c)' (3 .1 .2 ) 

when k b is an interior point of the physical k b -p lane . 
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(4) A l l the roots of the equation 

\ ¥ ( Ф ( С С ) , 0 C ) = 0 ( 3 . 1 . 3 ) 

are simple and we disregard the case where a resonance lies at a 
threshold. 
Under such conditions, the only singularities of the collision matrix 

elements in the physical k b -p lane are: 
(i) the thresholds K e b on its boundary, 
(ii) the simple poles к bn a n d kb_n corresponding to the resonance states 

in its interior. 

3.2. The threshold factor 

As a consequence of the analytical properties of Ф 0̂' , Ф ^ , it seems 
at f irst sight that turning to the collision matrix element (1.4. 5), we have 
to deal with its poles and the threshold singularities of O t and I . In 
fact, however, since the quantity of physical interest is Tc.c rather than 
Uc-c , let us rather analyse the behaviour at the thresholds of the former 
matrix, as defined by Eq. (2. 3. 17). 

Fo r that purpose, let us rewrite Tc.c as 

T . = i e , e i ( ° c ' + 0 c ) k S :k { + 1M*,M-*t . (3 .2 .1 ) cc c c c c c c c c 4 ' 

where t c ' c is defined according to 

I (С) -1 - { ' - I 
t Mc ТУ(ФС- , Fc.ec.kr. ) 
V c ¿ M l . W ( í W , 0 f e ' t k 1 

с x с ' с с с 

In the latter matrix element, we have 

F c . e ; t k c . = ^ 4 ( i k c . r i ' " 1 ^ i v , r + i ( 2 i k c , r c . ) (3 .2 .3 ) 

O c e c e i 0 c k * = (£\)'1 ( - i k ' ) r ( i + l + i r j c ) W + (3 .2 .4 ) 

The f o rmer of these two quantities is an integral function of к2, with a 
finite asymptotic behaviour for smal l kC ' given according to Eq. (2. 2. 19a)by 

F e - e - í k ; ? ' " 1 » ¿ i " ! * ; ? ' " 1 x c . I 2 £ . + 1 ( x c . ) [ l + 0 ( k 2 . ) ] (3 .2 .5 ) 

The product (3. 2.4) has singularities corresponding to the poles of the 
Г function, namely 

kc = - i t t c / ( i +n) (n = l , 2, . . . ) (3 .2 .6 ) 

and at the essential singularity of Г and W + at kc =0. Nevertheless, 
according to Eq. (2. 2. 19b) for smal l kc and 

в й a r gk c < 5-7Г - 0 (3. 2. 7a) 
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where в is an arbitrar i ly smál l positive constant, we have the simple 
asymptotic behaviour 

O c e c e i 0 c k ' = ( i ! ) " 1 f f c x cK2i+ i ( x c ) [1 + 0(k2 ) ] . (3 .2 .7b ) 

The relations (3. 2. 7a) are satisfied in the physical k b -p lane and on its 
boundary, since they do not di f fer f rom the relations (2.4. 5). Accordingly, 
the matrix element tC'C is a continuous function of кь on the boundary of 
the physical кь-plane, including all the thresholds, while, in the interior 
of this boundary, it has simple poles at the resonances3 . 

F r o m Eqs (2. 3.13) and (3. 2 . 1 - 3 . 2. 3), it is easy to ver i fy that the 
time reversa l property satisfied by the matrix elements tc 'c reads 

tc.c (k b ) * = t c . c ( e i , r k£ ) (3 .2 .8 ) 

and is equivalent to the property (2 .3.18) of T c c . The derivation of the 
two other general properties of tc'c , namely the symmetry and unitarity 
properties in the physical кь -plane wil l not be given here; the reader 
should r e f e r to Ref. [22]. They read 

and 
(3. 2. 9) 

i V k 2 i d + 1 E V t +t - t * =o 1 ¿^ Kd еа гас гас , + тсс' V c u 

d+ 

k d í d + l e d t d c ( e " k t H d C ^ + t c c . ( k b ) - W e " k Í ) = 0 (3-2.10) 
d + 

3.3. The expansion theorem 

The well-known Mit tag -Le f f l e r expansion [43, 44] being concerned with 
single-valued functions of a complex variable, the expansion of tc-c (k b ) 
in terms of its poles kbn , kb_n is not a straightforward application of this 
theorem. Nevertheless, in the physical кь-plane, it is possible to justify 
the existence of an expansion s imilar to the Mittag -Le f f le r expansion and 
directly applicable to t c ' c . 

Let f(k) be a function defined in a complex k-plane in which a ser ies of 
cuts have been introduced to make it single-valued. Outside the cuts, let 
its only singularities be an infinite number of simple isolated poles 
k j , k 2 , . . . with residues p1( p2, . . . ; let us assume that 

0 < |kj I £ |k2 I £ . . . (3 .3 .1 ) 

and that the series 

OO 

i 
n=l 

P n / k n (3. 3. 2) 

3 This result does not imply that t c ' c is free from essential singularities at the thresholds; see Ref. [22]. 
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is convergent. Under such conditions, it is easy to veri fy that the ser ies 

OO 

£ p n / ( k - k n ) (3 .3 .3 ) 

n—1 

is also convergent for any finite value of к uniformly distant f rom the poles. 
Let now C m be a circle with indentations corresponding to the cuts 

and having the poles ki , . . . km , but no other, as interior points. Then 
according to the theorem of residues, 

J f ( k ' ) / ( k - k ' ) d k ' = _ f ( k ) + £ P n / ( k - k n ) (3 .3 .4 ) 

c m n = l 

Hence, if we let m go to infinity 

OO 

f ( k ) =Q (k ) + ^ p n / ( k - k n ) (3 .3 .5 ) 

n=l 
where 

Q(k) = lim f dk' (3 .3 .6 ) 

m 

is a continuous function of к in the k-plane and on its cuts. 
It is important to recal l that the fundamental Cauchy theorem and the 

theorem of residues used to derive Eq. (3. 3. 4) do not require that each 
point of the contour be a point of holomorphy of f (k). It is sufficient that 
f(k) be continuous on the contour C m ; then, for any point k1 on C m , we have 

[ f ( k ) - f ( k ' ) l =0 (3 .3.7 ) 

when к is an interior point tending to k' . Accordingly, the expansion 
(3. 3. 5) is applicable to tc 'c and not to T c ' c . Only for the fo rmer matrix 
elements is it possible to extend the cuts just to the thresholds, rather 
than turning round them at a non-vanishing distance. 

3.4. Expansion of the collision matrix in the physical # - p l a n e 

Let о be the channel with the smallest internal energy and let us 
take E^0 as the origin of the energy scale. Let us define a physical 
S -plane as the conformai mapping of the right-half of the physical k 0 -p lane 
and in accordance with the relation 

( 3 ' 4 Л ) 

If there are bound states on the positive imaginary axis k0 , they wil l be 
included in the kQ -plane and in the corresponding -plane as indicated in 
Fig . 6; it is known that the cut starting at k0 = 0 in the к 0-plane must have 
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a finite width when о is not a neutron channel (see Figs 2 and 3). An 
alternative way of drawing cuts is given in Fig . 7. 

Let us now compute the residue of t c ' c at a pole S n , namely, 

= MÍ 
rc'cn m!, 

2\¥(ФГ'П, F m ) 

с ' n с ' n СП cn 
^ (ф(с) о \ 

, « V» V , С I 

é=6„ 

(3 .4 .2 ) 

Imk0 

Kqq K0& R*ko Kob Ret 

FIG. 6. The right-half of a physical k0-plane and the corresponding S-plane. Straight-line cuts in the 
former correspond to parabolic ones in the latter 

7—Г-7Ы-Т-9-

Im£ 

Kob Re£ 

FIG.7. An alternative way of drawing cuts in the right-half of the physical k0-plane and in thel-plane: 
straight-line cuts in the latter correspond to hyperbolic ones in the former 

Taking account of Eq. (2. 2. 16a), the condition 

W ( $ , , О , ) = 0 for all с1 
v en' en 

and the Wronskian relation (2 .2.17) easily give 

2W(3>c.n , F r n ) = 2k¿e~i0c n Фс.„ /Ос.„ 

(3 .4 .3 ) 

(3 .4 .4 ) 
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In order to calculate (d/d# ) W (Ф<.с), O c ) we start f rom the Green theorem 
(2.5.6 ) , in which we take 

* i =* ( c ) (k 0 ) , *2 = * ( c ) ( e " k*on) = Ф.„ 

It reads then 

(3.4. 5) 

n - & ) jP®*®<c> (k 0 )du = ^ 2M" .W («*._„, Ф$> ( k 0 ) ) (3 .4 .6 ) 

By virtue of Eqs (2.4. 11), the Wronskian on the right-hand side is trans-
formed into 

W « ¡ V n , *cC) ( k o D ^ c ^ c ' (k0 ) 'c'n^c' lKol 

(c)' 

ф(с) - L . (3 .4 .7 ) 

when account is taken of Eqs (3 .4 .3 ) and the notation (2. 3. 2) is used. The 
last expression may be split further as fol lows: 

W(® c .n . «<9 ( k 0 ) ) = Фс. e Ç > ( k p ) [ L c . ( k c . ) - L c . n ] - - Ф " 
c ' n J O c . ( k c . ) 

О .). 

the last term vanishing, by virtue of the conditions (2 .1.1 ) , for al l 
channels except c. We therefore get 

Г ) Г * ? П Ф ( С ) ( k 0 ) d U = - ^ r ф 
2MC ОЛк с ) 

(3 .4 .8 ) 

We now take the derivative with respect to S and we then let ф(с) (k0 ) 
coincide with Фп; it is c lear, on account of the condition (3 .4 .3 ) and the 
special form of the various terms, that the result of this operation is 

' * * ф du ) = _ Ж. Фсп 
- п % а ш 2 M c O c n 

whence, 

with 

-1 

6=8, 

h2 J _ 
2MC Ocn vn 

(3.4. 10) 

Ф* Ф du + V — Ф2 
•» ° L 2MC <=" à é 

(3.4. l i a ) 
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= / *-*„ %
 du +

 X h2 2 dLcn , , . , 1 M 
2 M l * c n H 7 7 (3.4.11b) 

when the volume of integration is extended to infinity in the closed channels. 
Inserting the results (3 .4 .4 ) and (3.4. 10) into Eq. (3.4. 2), we obtain 

for the residue the symmetr ical expression 

r ft2 Фс'п/Ос'п w Фсп/Осп 
c'cn n/M .M i/ e , е1оСпк«: e ешспкс С С 11 СП С 11 СП СП 

where gc.n , g c n are complex quantities according to 

(3.4. 12) 

(3.4. 13) 

g = r J X -^f - X ê — Г Г (3.4.14a) cn Ocn ecn ешсп 

H\ Фс (3.4. 14b) 
( - i к с п ) 4 r ( i + l + i n c ) W + , c n 

We assume here that 

$cn/0, Фс.п f 0, (3.4.15) 

otherwise Sn would not be a pole of the matrix element tc'c . 
According to Eq. (3. 3. 5), the expansion of tc.c according to its poles 

reads 

У с = - i Q c - c ( * ) + ^ % n - s (3.4.16) 
n=l 

where - iQ c ' c ( # ) corresponds to the function Q(k) of the expansion theorem 
(3.3.5). 

The expansion of the transition matrix , defined according to 

¿rc.c = e2i0c V c - « ' c - c (3.4.17) 

is easily derived from equations (1.4.6), (2.3.17) and (3.2.1); it reads 

- ve ce 1 < e b , + , , e )k l c , . + * k 5 + * { Q c . c ( # ) + ^ (3.4.18) 
n=l 

The denominators of the resonance terms of this expansion may be given 
the familiar form 

£ - S„ - E " E i Г = E , - E_.n + i i Г (3.4.19a) n с en ^ п с cn ^ n \ « • / 



400 HUMBLET 

where 

Е

С = 2 М 7
К

' ' = E " " Е « с = Й 7
( К

С П - ^ С П ) ( 3 . 4 . 1 9 b ) 

2h2 2h2 
Гп = 1 ^ Т К с п Т с п = 1 ^ Kc'n Ус'п (3.4.19c) 

с с' 

the quantities and 7cn are easily expressed in terms of the resonance 
energy parameter E c n and the total width Гп as 

Kcn = h"1 (ЕСП W E l n + Гп2/4)^ (3.4.20a) 

Ton - i M l h 1 Г „ ( е с п W e 2 „ + r 2 / 4 ) - i (3.4.20b) 

In Eq. (3.3.18) , the elements of the matrix appear as a sum of 
resonance term plus a background term. Both have the same behaviour 
at the thresholds kc = 0, kc ' = 0 as itself. The function Q c ' c is ex -
pected to be slowly varying with the energy S , although it must account 
for "cusps" at the channel thresholds different f rom с and c', when such 
cusps are real ly observed in a cross-section. It is probably impossible 
to make any general statement about the relative contribution of Q c c to 

. However, in the applications made so far, such as in [25], it 
appeared that the background term could be completely neglected or 
approximated by a constant. 

The expansion (3.4.18) of satisfies the requirements (i) - (iii) 
introduced at the beginning of section 3. This is obvious, not only as far 
as symmetry and threshold behaviour at kc = 0 and kc ' = 0 are concerned, 
but for the a-independence as well. Indeed, the residue rc 'c n is 
a-independent because this is the limit of an a-independent quantity, name-
ly ( # - # n ) t c ' c ; its factors ФСп/Осп, фс'п/Ос'п a r e a-independent because 
they are amplitudes of purely outgoing waves; accordingly, the factor un 

is also a-independent. A direct proof of it has been given in Ref. [19]. 
The t ime - reversa l property (3. 2. 8) of tc 'c is not individually satisfied 

by each term of its expansion (3.4.16) . This was to be expected a priori, 
since the very consideration of the physical S -plane removes the contri-
butions of the poles k0_n =(expi7r)k^n f rom the "resonance part" of the 
expansion. To avoid this, one must obviously expand tc^c in a physical 
k-plane. 

3.5. Expansion of the collision matrix in the physical k e -p lane 

Let us derive the expansion of tc 'c in the physical k c -p lane . The 
residue of tc.c at k c . = k c . n is given by 

l i m [ (kc -k c n ) t c . c ] = [ < * - * „ H c - c l 

Mc _ Mc 
h 2 k _ Г с - с п h 2 k „ g c ' n g c 

(3. 5. la ) 
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The residue at kc_n 

M c _ _ _ (3 .5.1b) 
îi2k ëc'-n&c-n h 2 k* c'n s cn 11 лс-п 11 * cn 

since, according to the definitions (3.4.11) and (3.4.14), we have 

v.n=v* (3 .5 .2 ) 

a n d g =g* (3 .5 .3 ) 

Comparing Eqs (3. 5. 1) with Eq. (3.4. 13), we see that the expansion 
of tc.c may also be written as 

t " i Q 1 . +h-2 T i e g Mcikçn s;e ( 3 - 5 > 4 ) 
V c ^ C ' c ¿Agc'n c n k c - k c n 8c'ngcn kc + k^n J K ' 

n 

As expected, each resonance term is not symmetrical in с', c. To r e -
introduce such a symmetry, let us notice that if the sum over n in 
Eq . ( 3 . 5 . 4 ) is convergent, the following expansion 

Y Y gg , ng c n M c g*cn M r Л 
¿_j v к c ' n k c n k c - k c n к*, к* к +k * ) K ' — \ C 11 СП С СП с n СП с cn 
n 

is also convergent if one assumes that, as in the one-channel case, kcn is 
O(n) for large n. Under such conditions let us define Q 2 C by 

t = - í q 2 + , -2. \ ( Rc'n Sctl Mc g¿ngin M f i _ ) П n fi4 
cn c cn СП СП С CI 'Ife 

n and Q c c as 

Q°'C = 5 ( Q U + Q c ' O ) (3 .5 .7 ) t с с ^c с 

Hence, we have 

<r. - e , e e i ( 0 c ' + 0 
С С С С с с 

"(«"••̂ «•Ree ïsèO) 
n 

The symmetry holds now for each resonance term, sincè f rom 
Eqs (1.2.15) , we have 

m kc ' + kc 'n _ ту» kc +k c n kc ' -kC 'n _ , . к с ~kçn . Q. 
c k - к С к , - к , ' М с к + к* с ' к . + к * (3 .5 .9 ) ЛС ЛСП с СП с Ксп кс кс'п 

The expansion (3 .5 .8 ) introduces exactly the same parameters as the 
expansion in the S -plane (3.4.18) , namely the g c n and kc n , but the back -
ground terms Qc'c and Q c c are obviously different. Under such conditions, 
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when fitting experimental data, it is not exactly equivalent to neglect one 
background or the other and it might be useful to try both alternatives. 
One should also notice that the second term in the brackets of Eq. (3. 5. 8) is not 
"resonant" in the sense that the real part of its denominator kc +k*n does 
not vanish for kc = ксп. Morèover, for a bound state, this term should be 
dropped from the bracket, since in this case - k * =k . 

4. T O T A L , P A R T I A L AND REDUCED WIDTHS; P E N E T R A T I O N AND 
THRESHOLD E F F E C T S 

4.1. Part ia l and total widths 

The factor exp[ - i (a c 'n +ffCn)] in the product gc 'n gcn seems at f irst sight to 
introduce an unexpected complication in the practical computation of 
cross-sections, since crcn and a c n are not real quantities. However, the 
occurrence of these factors is only the result of the definition adopted for 
I { and 0 { for the purpose of analytical arguments, and we may now go over 
to a more practical notation. 

The definitions (2. 2. 11) were in fact chosen because they made I s and 
0 { f ree of poles and zeros independent of r . Under such conditions, the 
amplitudes Xc and yc were properly defined in the complex k c -p lane . Now 
that the expansions (3. 4. 18) and (3 .5 .8 ) have been established, we may 
define new ingoing and outgoing wave-functions by 

Tnew . _ -old -iOn , . , , . I£ -G,, - i F { = I £ e 8 (4. 1. l a ) 

0 £ e w = G£ + i F£ = 0^ld e+ iae (4 .1.1b) 

and for real energies, new amplitudes X c and Yc by 

u c ( r c , k c ) =X cO c n e w + Y c I£ e w (4 .1 .2 ) 

leading to a new collision matrix elements 

(c) 

u : e c w = - | f e = u c 0 i : e " , ( a c ' + ac ) (4 .1 .3 ) 

and hence 

^ n e w = ^ o l V i ( 0 c ' + ° c ) , 5 - n e w = , ^ ° V i ( 0 c ' + 0 c ) (4 .1 .4 ) 
c'c c'c C ' C C ' C 

This change in the notation does not modify either the definition of 
Фсп or the numerical value of gcn as given by Eq. (3.4. 14). For further 
reference, let us rewrite it in terms of O"®" and let us also write the 
expansions of corresponding to those of . Dropping f rom now 
on the indices "new" everywhere, they read 

с n cn cn cn 

25' 
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c' + \ e + i 
CC Ч ' Ч " С ' 1 ^c'c 

ffc'n ffcn (4 .1 .6 ) 

e' + i 1 J+i J глс'с T . = e ,e к k ' T 2 1 Q + CC c c c с 

+ i l F f 2 ) 
k*. K с n ffc'n ffcil Twr K c ' + 1 V n + gç 'n gr.n туг 

k„ .k„ n c к - к к* к* с к + к* С П СП С СП С П СП с СП -> 
(4 .1 .7 ) 

Similar expansions are usually written in terms of "partial widths' 
which we will now define. For that purpose, when Гп /0, let us con-
sider Eq. (2.5. 6b) derived from Green 's theorem, namely 

i r„ Ф„ Г du = ф с п ф с п ( Ь с п - Ь - ) 
2 M c n c n ^ c n en 

(4 .1 .8 ) 

Let us also define a real quantity N c n by 

1 
N„ 

27c 
1 + 7Г— (O* O' - 0 ' * 0 ) 2к „ en en en en ' 

(4 .1 .9 ) 

it satisfies the equation 

I О I2 (L - L * ) = 2ík - 2 i M h"2 Г N 1 СП 1 4 СП СП ' СП С П СП 

When the latter equation is introduced in Eq. (4.1.8) , one gets easily 

h2K 
- =—У n ^n L M r 

Фсп 
о г п 

(4 .1.10) 

provided /jn is defined as 

J I Фп I2 du + Y N„ 
o„ 

(4.1.11) 

This is a positive quantity because in Eq. (4. 1. 10) Г п and all the Kcn are 
themselves positive. Under such conditions, Eq. (4. 1. 10) suggests 
defining a partial width Гсп in order that 

c + 

i . e . , according to 

P _ J _ ft Km 

" n M c 

cn 
om 

(4 .1.12) 

(4 .1.13) 
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Before introducing such partial widths in the expansions of Vc> let 
us still define a real phase Çcn and a positive ratio qn according to 

and 

(4. 1.14) 

4n 
Jin 

In terms of the real quantities Г с п ¡ 
(4 .1 .7 ) read 

e c . e c k c r + i k C c + i Q c . c ( # ) 

+ i 4n 
k

c
' k

c 

\ Kc'nKC 

Г I 
k

c
' k c 

I K c'n K cn 

(4.1.15) 

•cn and qn , the expansions (4 .1 .6 ) and 

(4.1.16) 

2 2 
£c' € с iëc'n Гс'п Гсп ¡ícn 

, £' + i . í + | „с'с , 1 . , • - 2 kc'kc 
r 1 

k c ' kc £c' £c 
n\ К , к |k«: k l 

N с n cn 1 с n cr 

X м с г * . п г * п 
e i ( l c ' n + 6cn) kP- +kc 'n 

к . к л с n cn 

-Н?с'п+ «сп> , е кс 

к*, к* " с п СП к. +к* 
(4.1.17) 

Fo r simplicity, in the above expansions and in those we are going to 
write later, we have omitted the terms corresponding to the bound states 
(Гп = 0). They cannot of course be expressed in terms of partial widths and 
they always retain the form they have in Eqs (4. 1. 6) and (4. 1. 7). 

The definition of Гсп according to Eq. (4.1.13) and the simultaneous 
introduction of qn in the expansions (4.1.16) and (4.1. 17) implies a choice 
between two alternatives. Indeed, considering f irst the expansions (4 .1.6 ) 
and (4.1.7) , one should rather define an "observable" partial width Г£п as 

.0 ft2 К с 
M„ 

Фс 
О , 

q г ^ п СП 

л 0 1 01 
= Г , г 

СП сп 

and in order that 

q Г Г ' м п с п с 

the sum of the satisfies the following relation: 

1 Г = Г ° 

(4. 1. 18a) 

(4. 1.18b) 

(4 .1.19) 

(4. 1. 20) 

where qn is still defined according to Eq . (4 .1 .15 ) . 
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It is obvious that the fitting of experimental data will lead first to the 
determination of and the ; hence, the factor q n will be deduced f rom 
Eq . (4 . 1. 20) only if one has enough experimental data to determine all the 
observable partial widths Гс°п of the channels which are open at the energy 
<£ = S n . 

Under such conditions, a theoretical estimate of q n is very desirable, 
but in the present general f ramework the only theoretical result so far 
available re fe r s to a limiting case, namely (see [22]), 

qn - 1 for Г п - 0 (4.1.21) 

This is a generalization of a result f irst obtained by Weidenmtlller [14] in 
his model of many-channel scattering. 

In order to prove the property (4.1. 21), let us consider a resonance 
state for which k|,n = кьп ~ÍYbn is lying i n the lower half кь-plane, very 
close to the positive real axis, but not very close to a threshold. Then, 

r n = 2b 2<dn-y dn/M d^ 0 (4.1.22) 

with 

Tdn^ 0 ' K d n > > T d n > 0 ( d ope") (4.1.23a) 

dn 0, 7 d n » K d n > 0 (d closed). (4.1.23b) 

The quantity цп remains finite for Гп -» 0, because Nc+n is itself finite 
for 7c+n =0. Then, considering Eq. (4. 1. 10) where, according to 
Eq. (4.1. 23a), кс+п is positive, we see that if Гп « 0 , one must also have 

Фс+п =s 0 for all c + ; (4.1.24) 

consequently, 

du, дп |*n I2 du (4 .1.25) 
w w n 

In the limiting case Гп =0, i . e . when 

V n = Tc+n = 0 ( r n = ° ) (4 .1.26) 
we have 

е " к * . =+k - , e ^ k * . = - к + (4 .1.27) cn c n ' c+n c n \ • * • I 

But, the wave equation as wel l as the boundary conditions for open channels, 
namely, in the present case, 

Фс+П =0 or Ф^+п=0 (4.1.28) 

being even in kc+n , it is possible to normalize Фп in order that Фп = Ф.п. 
Moreover , since L c - n = 0¿ - n /O c - n is real when к c - n is imaginary, all the 
boundary conditions defining Фп in the present case are real and Ф* = Фп. 
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Hence, when the total width Гп is very small, we have 

(4. 1. 29) 

F rom Eqs (4. 1.15), (4. 1. 25) and (4. 1. 29) we may conclude that 

q =«1 when Г % 0. ^n n (4. 1.30) 

This is an important relation in view of practical applications (see sub -
section 4. 6 below). 

4.2. General remarks on the penetration of the Coulomb and centrifugal 
ba r r i e r s 

Before discussing the penetration and threshold effects in the f r a m e -
work of the S-matr ix theory, let us f irst br ief ly review the arguments 
justifying the introduction of a penetration factor in any theory of nuclear 
resonance reactions at low energy. We follow very closely a discussion 
given by Jeukenne in Ref. [21]. 

Many experimental data on isolated resonances at low energy have 
been fitted to a theoretical cross-section of the Bre i t -Wigner type. The 
exact energy dependence of such a cross-section depends on the pheno-
menological or formal theory adopted for its derivation. In any case, it 
appears, however, as a product of two factors. One is related to ext ra -
nuclear effects only, namely the penetration of the Coulomb and centri -
fugal ba r r i e r s ; near a threshold, it behaves according to the Gamow 
factor. The other factor contains all the nuclear effects; it has exactly 
or approximately the form of a Lorentz factor. 

F rom a qualitative point of view, this factorization is undoubtedly well 
supported by the experimental data. But, considered from the point of 
view of quantum mechanics, it is also obvious that an exact and complete 
separation of the penetration and nuclear effects is impossible: the 
penetrability of a particle through a ba r r i e r depends not only on the 
ba r r i e r itself, but also on the potential on the other side of the ba r r i e r . 
In the case of a nuclear reaction, the Coulomb and centrifugal potentials 
in a channel are separable f rom the total Hamiltonian in the exterior 
region of the configuration space associated with that channel, but not in 
the interior region of the configuration space. Accordingly, it is i m -
possible to define a priori a unique and exact form of the penetration 
factor. 

In particular, although there are good physical arguments in favour 
of defining a penetration factor according to 

they are nevertheless only qualitative and phenomenological. This being 
often overlooked, we shall now brief ly recal l these arguments. 

Let us consider the following approximate picture of the first stage of 
a nuclear reaction leading to the formation of the compound nucleus [4]. 
A beam of charged particles with the angular momentum SL comes from 
r = + oo, undergoes an electrostatic repulsion up to r = a and then "proceeds 

1 1 
(4 .2 .1 ) F2+G2 " 0,1 Jr í 
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to r = -oo" in a potential well of finite depth Uo and infinite width extending 
up to r = - oo as indicated on F ig . 8. 

Defining К and K 0 according to the equations 

К = (к2 + 2MU0 /ft2) i = (к2 +K§ )¿ 

the transmission factor for the electrostatic and centrifugal ba r r i e r s f rom 
r=+oo to r = a is easily seen to be 

T = 4 K k p i (4 2 2Ï 

where 

S, = P { ( F ,F ' t + G { G ' ) r = a 

When the energy of the incoming particles is sufficiently small, namely 
when k « K 0 , then К is much l a rger than kP { and S 8 . Hence, we have 

4k 
T ^ - P { (4 .2 .3 ) 

This is the relation which is usually considered as justifying the inter -
pretation of Pg as a penetration factor. 

Let us postpone until the next sub-section the discussion of the choice 
of the best penetration factor one can make in the f ramework of the 
S-matr ix theory. 

v ( г ) 

FIG. 8. Phenomenological potential extending from r = +«> to r = used in the interpretation of Pg as a 
penetration factor 
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4.3. Threshold and penetration effects in the S-matr ix theory 

Let us go back to the expansions (4.1.16) and (4.1.17) and define a. 
"threshold factor " in channel с as 4 

П = e k* . (4 .3 .1 ) с с с v 

This factor depends only on the Coulomb and centrifugal interactions in 
channel c; it is however a-independent. 

On the one hand, because of its very definition, Пс is obviously a 
good penetration factor for a resonance located near the threshold kc = 0; 

, in particular, according to Eqs (2.2.10), it contains the Gamow factor 

2тгпс / [ е х р ( 2 т п с ) - 1 ] (4 .3 .2 ) 

On the other hand, when a resonance is f a r above a threshold, there is no 
reason why the threshold factor Пс should still simultaneously be a good 
penetration factor. In this case, one expects the Coulomb and centrifugal 
b a r r i e r s to play a minor part in the cross-section and in the limiting case 
of kc->oo, one must be justified in ignoring them completely. In the product 
Пс, only ec tends toward unity for kc -*1 » . 

Under such conditions, one must expect that a broad5 resonance far 
above the thresholds k r = 0 and k c ' = 0 is better parametrized by 

than by 

const. , . q q \ e ^ _ (4 .3 .3a ) 

This brings up the following question: Is the expansion (4.1.16) the only 
one which corresponds to a pole expansion of in the physical S -plane 
(and correspondingly for the expansion (4.1. 17) in the physical k c -p lane)? 
The answer is no, since one is just as well justified in applying the e x -
pansion theorem to the second factor of 

provided î ( S ) has no pole in the complex S-p lane, is continuous on its 
boundary and that the residue of f ( ^ ) t c ' C , namely f ( # n ) r c ' cn . satisfies the 
convergence condition (3 .3 .2 ) . 

4 It is more convenient not to include in the definition of H c because, as it is defined, П с teduces 
to unity for an s-wave neutron channel. 

5 For a narrow resonance, the variation of k^.k^, over the width of the resonance might not be very 
significant. 
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These conditions are obviously satisfied when î(é") and one 
obtains immediately the corresponding expansions for they read 

T . = e ,e k* ,k*Q , cc с с с с с с 

Л ri 
+ i У q ^ P ^ I g ç , e c I e i i c ' " Г | " _ Г > e i I c " }- (4 .3 .4 ) 

en 

I kc ' k c gç' ec 

\l Kc'n> 

i (Ê c-n + lcn ) k c ' +kç'n X Г f Г 1 г M c en en [ kc 'n Kcn Kc Kcn 

+ 6 . » . . M ? c [ (4 .3.5 ) 
kc*nkïn c ke +kc*n J 

where 

= S ™ - a r g ( k ? n ) (4 .3 .6 ) 

.The background terms Qc 'c > Q c c are different in the expansions (4.1.16), 
(4.1.17) and (4 .3.4 ) , (4 .3 .5 ) . F rom a purely mathematical point of view, 
these four expansions are rigorously equivalent; this is no longer so if one 
turns to physical applications corresponding to one- or few- leve l 
approximations. It is a priori better justified to neglect the background 
term and the " faraway leve ls " in the expansion (4. 3.4), rather than in the 
expansion (4.1.16) , if one wants to fit one or a few resonances far above 
the thresholds k c = 0, k c ' =0. 

Obviously, if a resonance is far above the threshold of channel c, but 
close to the threshold of channel c1, f ( é ) will be chosen as f ( # ) =k®. The 
corresponding expansions of are easily written down. 

But there is still the case of a very broad resonance extending from 
close to a threshold to far above it! In this case the arguments just given 
suggest fitting the low-energy part of the resonance according to the 
expansion (4.1.16) or (4.1.17) and its high-energy part according to (4. 3. 4) 
or (4. 3. 5). Although each of these two analyses should in principle lead to 
the same values of E n , and qnrc2.nrc5n, this is obviously not a very 
satisfactory way of analyzing such a resonance. One must rather look 
for some way of introducing a smooth transition from eck£ for small k c 

to ec or 1 for large k c . 
This is precisely one property of the a-dependent quantity p | when Pj 

is defined according to Eq. (4. 2. 1). Indeed, f rom Eqs (2. 2. 9), (2.2.11) 
and (2. 2. 19b), we have 

P£ = e ^ W + W . (4 .3 .7 ) 

1 9 9 0 9 
e e k c [1 +0 (k 2 ) ] (4 .3 .8 ) 

[ i ! a x cK 2 { +1 (x c ) ] 2 
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for small к and a f 0, while for a = 0, the asymptotic properties of the 
spherical Hankel immediately give 

[1+0 (k2 a 2 ) ] 
£ ! 2 í 

Moreover, f rom Eqs (2.2.18) , for large energies, we have 

(4 .3 .9 ) 

(4. 3. 10) 

1 for ka -> да (4.3.11) 

Hence, P| indeed behaves like Пс near k c =0, while at large energies it 
has the other desired property of tending to unity. 

An expansion for &~c'c in which the resonance terms are proportional 
to P^ P^ is derived in the next paragraph. An extra factor k c a c is often 
included in the definition of P¿ ; here we have adopted for the penetration 
factor P { the definition (4. 2. 1) which reduces to unity in the absence of 
Coulomb and centrifugal ba r r i e r s (for an s -wave neutron: a c = 0, P 0 = 1) 
and tends towards unity at large energies (cf. (4. 3. 11)). 

4 .4. An alternative expansion of S~c'c ([20]) 

Let us f irst consider the matrix element 

k(c) k e M c \¥(Фс Ic 
c 'c \/ к ,M , W($ ( ° ) , О ) 

(4 .4 .1 ) 

and, use being made of the relations (2. 1.1) and (2. 2.17), let us rewrite 
its numerator as 

Ф ^ о ь - Ф(„С)'О„. +о „ .Ф< С ) o¿ 
CL 

k l 
o c . 

6 C . C W ( ® (C) О с ) " 2 1 к с Ф ? / 1 (4.4. 2) 

Hence, defining the phase factor f2c according to 

( I C / O C ) I = N C = E ^ C 

and noticing that one has 

О p ! n . 

(4 .4 .3 ) 

(4 .4 .4 ) 

<$/ , = U .Q 6 . - 2i с с с с с с 
мс 

С С С С 

(С ) 

- Ь с ф ( с ) (4 .4 .5 ) 
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According to our analyticity hypothesis, the poles of Ф ^ - L C Ф ^ ) 
are exactly the same as those® of ; moreover, according to 
Eq. (2. 2.19b), L c is continuous for kc -» 0, when k c remains an interior 
point of the physical plane considered. 

Taking Eq . (3.4.10) , into account, we easily get the following expansion: 

2 i 
% Ф 

(c) 

Mc. - Ь С Ф С 

г + ; ft2 V - i - Фс '"Фсп 

n 
(4.4. 6) 

and hence 

OS ,= S2 ,Í2' с с с с б , - к * . к М , , + i - ¡ = = = = сс с с с с V с с j M . M, L, vn 
(4 .4 .7 ) 

. = 2 i ô . F / O + iî к* ,к*Р*. P 4 
ce c c c ' c c c c c c с s . - с с 

+ i 
'M„ .M, 

(4 .4 .8 ) 

Defining a real phase Çcn according to 

ф = (4.4. 9) 

this expansion may be given the following form: 

= 21 «Ce ec/ос + p| p*(k*. k*ac.c 

k c " k c I n n j i^c'n" r c t n r j i с r_ 
U C ' N ^ СП I " JS> C 

v ^c'nKcn 
(4.4. 10) 

where the partial widths are defined according to Eq. (4.1.13) . 
It is of interest to point out that f rom a formal point of view, there is 

a relation between P i and e j k ' , according to which expansion (4. 1.16) 
is nothing else than the limit of expansion (4.4.10) for vanishing channel 
radii ac and ac ' . Considering the relations (2.2.71 ) and the factor 
I Ocn which appears in the expansion (4.4.10) , we have 

lim |Ocn| P c * ( a c , k c ) = lim Gn(a c , k c n ) 
G ( ( a c> k c ) • cnK-cn I 

(4.4. 11) 

Although this result suggests to consider irc = eckc as related to a 
penetration down to the "centre" of the target nuclei, such an interpretation 
should not be taken too l iterally. The result (4 .4.11) is simply related to 
the fact that the ac - and k c -dependence of P,j are separable when ac-> 0 or 
when k c -» 0. 

, old 
Eqs (4.4.1) to (4.4.5) hold for 1¿C.C and U c ' c as well, assuming that, according to the definition 

(4.4.3), we have fi"ew = fi°ld, е " ш г ; Eq.(4.4.8) holds for Г ™ * only. 
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4.5. Reduced widths 

When experimental data can be fitted to a one- or few- leve l 
approximation of the expansion (4.4. 10) just obtained, they lead to the 
determination of the products | Ocn |2 Гсп and hence, in principle, to the 
knowledge of the a-independent partial widths Г с п . In practice, however, 
it implies the difficult computation of the O c n , i . e . the computation of 
Whittaker functions W + for complex k c =k c n . 

This justifies the introduction of a real reduced width w§n defined 
according to 

if2 = 
fn 2 к, O r 

h 2 

"n 2 a c M c 

(4 .5 .1a ) 

(4 .5 .1b ) 

in-terms of which the expansion (4.4.10) reads 

, = 2 i б„. F /О + U .Ci Р^,Р^К/к .к ^ , С С C G C ' С c c c c \ C C cc 

+ 2 i i l 4n J kc'ac' 
¡t . Wc 'n Wcn 

k c a c e 1 ^ " , - e « (4 .5.2 ) 

where we chose wcn > 0. Obviously, one could just as well introduce 
observable reduced widths 

, „ o 2 - „ , „ 2 w„„ - q w, cn ^ n ( cn 

h2 

2 a r M . 

(4 .5 .3a ) 

(4.5. 3b) 

4 .6 . Sum rules and single-particle limit 

As we noticed in sub-section 4.1, the definition of the partial widths 
Г с п suggested by the expansion (4 .1 .6 ) is not unique. We chose to no r -
malize them in order to satisfy exactly the relation 

Г = \ Г (4 .6 .1 ) n L cn 

c+ 

although the quantities directly related to the experimental data are rather 
the observed partial widths Г£п satisfying the relation 

An exact theoretical determination of qn is at present impossible, 
because it implies the computation of in the interior region of the con-
figuration space. Nevertheless, we believe that the relation (4. 6. 2) 
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amounts to a good and useful sum rule in the fitting of experimental data. 
The very analytical definitions (3.4.11) and (4.1.11) of va and цп, not only 
allowed us to prove that qn 1 for Г п - 0, but make it also very likely 
that q n is of the order of unity not just for very narrow levels, but for 
"rather b road" levels as wel l . Up to now, however, this is supported only 
by the following results. 

On the one hand, in his model for many-channel scattering, 
Weidenmüller [14] has computed qn for one resonance state, using different 
values of the parameter coupling the two channels ne considers; when the 
total width var ies f rom Гп = 0 to 1.5 MeV, the corresponding values of q n 

range from qn = 1 to 0. 94. 
On the other hand [45-47] qn has been determined f rom experimental 

data for two levels of 7 Be. The available differential and integrated 
cross -sect ions for the three reactions 

6Li (p , p), 4He( 3He, 3He), 6Li (p , 4 He) (4 .6 .3 ) 

have been simultaneously fitted using a two-level approximation for the 
collision matrix elements. The investigated region of excitation energy 
of 7Be extends f rom 6.0 to 8.4 MeV; two 5/2" resonances are observed 
around 6.40 and 7.20 MeV. Let E n , E m , Гп , Г т be the positions and 
total widths of these resonances. The resonance terms of the collision 
matrix elements have numerators proportional to 

q. Г ., q . r . , q . r * Г * . (i = n, m) (4 .6 .4 ) 

for the three reactions (4 .6.3 ) , respectively. Least square adjustments 
have been performed taking into account the obvious relation existing 
between the products (4. 6.4). Good fits were achieved using the values 
given in the f irst four lines of Table I. The relations F j = Tpi + r a ¡ 
(i = n, m) together with the third and fourth lines of Table I, easily lead to 
the results given in the last three lines of Table I. Both qn and qm turn 
out to be close to unity, although the corresponding levels are not narrow. 

Let us now turn to the reduced widths and derive the so-cal led s ing le -
particle limit. Although derived under very crude assumptions, it has 
nevertheless proved very useful. Let us only consider the observable 

T A B L E I. ENERGY , T O T A L AND P A R T I A L WIDTHS IN MeV 
A N D q¡ FACTORS FOR T W O RESONANCES IN 7Be 

i = n i = m 

6.497 7.078 

r i 1.086 0.469 

4iTpi 0.0171 0.3895 

4 i r a i 1.056 0.0237 

Tpi 0.0}74 0.442 

r a i 1.069 0.027 

4i 0.988 0.881 
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reduced width w£n2, since it di f fers f rom the formal reduced width w2n 

only by a factor qn, the value of which has just been discussed. 
Let us assume that in the interior as well as in the exterior region of 

the configuration space, the wave-function at the resonance energy can be 
given the following form: 

Фп « (fichen ( r c , k c n ) / r c (4 .6 .5 ) 

where the single channel considered has one and A - l nucléons in the two 
fragments respectively. If, moreover, we assume that the probability 
density I Фп I2 at any point of the interior region is the same as on the 
boundary surface , we get 

f j [ ? с Ф с ( е ^ к * п ) / а с ] * [ % Ф с п / а с ] г 2 dr cdS c+ - Ü i - $2 ¿Le 
2Mr cn d S 

2 
Фгп 

The last term in the bracket is in general not easily evaluated; however, 
for an s -wave neutron channel it reduces to i/2kcn, while, according to 
Eq. (2. 2. 19b), for a proton channel, it can be neglected when |kcn|ac « 1. 
Hence, only considering the latter case, we easily obtain 

o2 3 h2 

W c n = 2 ^ T ( 4 - 6 - 7 ) 
с с 

In most cases, this result must only be considered as an approximate 
upper limit of w§2 for the following reasons. On the one hand, the con-
tribution of the closed channels to vn has been neglected; on the other hand, 
we have most probably largely underestimated | Фп|2 in the interior region, 
since, according to sub-section 4.1, Фсп ( i . e . ucn on can be very 
small for an open channel. 

4.7. Final remarks 

Although there are several ways of defining a set of eigenstates of a 
compound nucleus, the one we have adopted here is the only one which, 
when it is applied to a physical wave-function with only one entrance 
channel ф(с) , Ф ( а ) , . . . , leads directly to a set of constant eigenvalues <Sn 

independent of the entrance channel considered (c), (d), . . . . But, since 
the corresponding eigenfunctions Фп do not form an orthogonal set, we had 
to turn to the analytical properties of the wave-functions , Ф^' , . . . , 
for the derivation of an expansion of the collision matrix. The fact that 
the eigenvalues S n a re precisely the poles of the collision matrix sug -
gested not just one, but several, possible expansions of the collision, 
matrix according to its poles; all these expansions introduce different 
background terms . The physical reason for the existence of such back -
ground terms is clear: they must contain the non-resonant part of the 
collision matrix. But, still, from a purely physical point of view, it is 
also obvious that the separation of resonant and non-resonant effects 
cannot be a sharp one. This agrees with the fact that the various e x -
pansions of the collision matrix have different background terms. 
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In the same line of argument, we should also point out the fact that 
an expansion derived in a physical plane, i. e. on a single Riemann sheet 
with cuts, does not contain in the resonant part of the expansion all the 
poles defined by Eq. (2. 1. 5). Under- such conditions, it is important that 
the cuts should be drawn in such a way that all the physically important 
ones, i . e . the narrow ones, appear in the resonance part. Except for 
poles located very close to the thresholds, the two sets of cuts given in 
Figs (6) and (7) are adapted to that purpose. F rom that point of view they 
are in fact practically equivalent, since in both cases the immediate 
neighbourhood of the real positive k Q - and (#~axis is part of the physical 
plane considered, all the cuts being orthogonal to the real axis. 

Applied to the fitting of experimental data on low energy resonances, 
all these expansions should in principle give the same values for the 
parameters E n , Гсп , qn , . . . . In practice, smal l differences are ob -
served because the few- leve l approximations are obtained by neglecting 
(or approximating by a constant) different background terms. One can 
decide which are the "best" parameters only if several reactions leading 
to the formation of the same compound nucleus are analysed simultaneous-
ly; the position and total width of a resonance should be independent of the 
reaction used for their determination. 

We are now in a position to conclude our discussion on the best choice 
of the penetration factor; should it be simply the threshold factor e ckç 
or the conventional P { i? Besides those given above, the main argument 
often invoked in favour of the latter choice is that it gives a more physical 
character to the parametrization of the collision matrix, since the channel 
radii introduce the dimensions of the nuclei in that parametrizatioh. This 
might be true in some cases, but in many cases this is only i l lusory. 
Indeed, since many resonances can be fitted to the one-level approximation 
of the expansions (4.1.16) and (4.4.10) as well, it is clear that the size of 
the nuclei, i . e . the channel radii, is not given by such experimental data. 
In such cases, the determination of reduced widths f rom the expansion 
(4.4.10) amounts to defining them according to 

w 2 = Г l ° ç 0 ( a c ' k c n ) l 2 (4 .7 .1 ) 
cn cn 2 к с п а с \ • • i 

where ксп and Г с п are determined from the one-level approximation of the 
expansion (4.1.16) and the a pr ior i choice a c . 

This argument should be less valid when one deals with very large 
resonances, since the k c - and a c -dependences in 

f ( a c , k c ) , I E ^ J ^ l i (4 .7 .2 ) 
с с 

are not separable 7 . As explained in sub-section 4. 2, it is only for very 
broad resonances that the expansion (4.4.10) has an obvious advantage 
over the expansions (4. 1. 16). The fact that the best fit corresponds 
precisely to the "best" channel radii will however remain uncertain, since 
the a-dependence of P ctP^ must be contrasted to the a-independence of the 
exact collision matrix. 

7 This non-separability entails a dependence of Гп and En upon the channel radii when a resonance i 
analysed with the one-level approximation of the expansion (4.4.10); this dependence has been discussed 
and estimated by Jeükenne [21] for the reactions 3He(d, p) and sH(d, n). 
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Finally, let us also notice that most of the recent dynamical approaches 
to the theory of nuclear reactions [26-36] completely avoid the introduction 
of channel radii and the corresponding division of the configuration space 
into a clear-cut interior and exterior region. Mahaux [48] has shown that 
this is also possible in the present formal theory, at least as f a r as the 
derivation of an expansion of the form (4 .1 .6 ) is concerned. Only the 
Green 's theorem and the applications we made of it require the explicit 
reference to channel radii. 

5. D I F F E R E N T I A L CROSS-SECTION AND A P P L I C A T I O N S 

For easier reference, we give hereafter the differential c r o s s -
section for a reaction a i a^sv - a^a^ s 'y1 . With our usual notation 
5 = ccj, a2 and adopting the following definitions [12] 

С - ( б - ) = (4тг)4 n 5 c o s e c 2 ( l e - ) exp [ - 2irj¿Logein ( ! % ) ] (5.1) 

w<xí = aâi~°âo= oe~a0{îor r) =na) (5.2) 

the differential cross-sect ion d<r¿sl, , j . sV may be written as 

I 12 
âsv, â's' v' - I A ct'sV, âsv П d i î j (5.3) 

where 

A - - = Trik'l a's'u', asv a С a' ^â'^ô's'i/', âsv 

(5.4) 

í'm'í 

Either of the expansions derived ear l ier for may be introduced in 
the amplitude (5.4); for further details, see Ref. [12]. 

In this chapter no space can be given to reviewing some of the 
applications of the general theory which have been made recently. The 
reader should re fe r to the original papers: to Refs [49, 21, 25] for various 
applications of the one- and two- level approximations; to [45-47] for the 
analysis of an elastic scattering reaction and two experimental deter -
minations of qn ; to [50, 51] for the application of a perturbation formula 
for the resonance levels to the computation of the shift of the levels in 
m i r ro r nuclei; and to Refs [21, 45-47, 52] for applications of the ex -
pansion (4. 5. 2) using the P j as penetration factors. 

A C K N O W L E D G E M E N T S 

The author thanks P ro f e s so r Abdus Salam ànd the IAEA for the 
hospitality extended to him at the International Centre for Theoretical 
Physics, Tr ieste . He is also grateful to P ro f e s so r s A . de-Shalit and 
C. Vil l i for the opportunity offered to him to write up these lecture notes 
on the occasion of the International Course On Nuclear Physics held in 
Tr ieste in October -December 1966. The very effective collaboration of 
the editorial staff of the Centre has also been appreciated. 



S-MATRIX THEORY 417 

R E F E R E N C E S 

[1] WIGNER, E.P., Z. Physik83_ (1933) 253. 
[2] WIGNER, E.P., BREIT, G., Phys. Rev. 49 (1936) 519, 612. 
[3] BREIT, G., Handb. Physik 41/1 Springer-Verlag, Berlin (1959). 
[4] BLATT, J.M., WEISSKOPF, V.F. , Theoretical Nuclear Physics, Wiley (1952). 
[5] BETHE, H .A . . PLACZECK, G., Phys. Rev. 51 (1937) 450. 
[6] BETHE, H.A . , Rev. mod. Phys. 9 (1937) 69. 
[7] KAPUR, P.L., PEIERLS, R.E., Proc. Roy. Soc., Lond. A 166 (1937) 277. 
[8] PEIERLS, R.E., Proc. Cambridge phil. Soc. 44 (1947) 242. 
[9] WIGNER, E.P., Phys. Rev. 70 (1946) 15. 

[10] WIGNER, E.P., EISENBUD, L. . Phys. Rev. 72 (1947) 29. 
[11] TEICHMAN, T . , WIGNER, E.P.. Phys. Rev., 87 (1952) 123. 
[12] LANE, A .M . , THOMAS, R.G., Rev. mod. Phys. 30 (1958) 257. 
[13] WEIDENMÜLLER, H .A . , Ann. Phys. 28 (1964) 60. 
[14] WEIDENMÜLLER, H.A. , Ann. Phys. 29 (1964) 378. 
[15] MAHAUX, C., WEIDENMÜLLER, H.A . , Ann. Phys. 32 (1965) 259. 
[16] MAHAUX, C., WEIDENMÜLLER. H.A . , Comparison between R-matrix and shell-model approach to 

nuclear reactions, Nucl. Phys. (1967, in press). 
[17] HUMBLET. J., ROSENFELD, L., Nucl. Phys. 26 (1961) 529. 
[18] ROSENFELD. L.. Nucl. Phys. 26 (1961) 594. 
[19] HUMBLET. J., Nucl. Phys. 31 (1962) 544. 
[20] HUMBLET, J., Nucl. Phys. 50 (1964) 1. 
[21] JEUKENNE, I .P . , Nucl. Phys. 58 (1964) 1. 
[22] HUMBLET, J., Nucl. Phys. 57 (1964) 386. 
[23] MAHAUX, C., Nucl. Phys. 68 (1965) 481. 
[24] ROSENFELD, L., Nucl. Phys. 70 (1965) 1. 
[25] MAHAUX, C. , Nucl. Phys. 71 (1965) 241. 
[26] BLOCH, C. , GILLET, V . , Physics Lett. 16 (1965) 62. 
[27] GILLET, V . , BLOCH, C . , PhysicsLett. 18 (1965) 58. 
[28] DANOS, M. / GREINER, W., Phys. Rev. 146 (1966) 708. 
[29] FESHBACH, H., Ann. Phys. 5 (1958) 357; and 19 (1962) 287. 
[30] MacDONALD, W.M. , Nucl. Phys. 54 (1964) 393 ; 56 (1964) 636;and 56 (1964) 647. 
[31] HERZENBERG, A . , KWOK, K.L . , MANDL, F.. Proc. phys. Soc., Lond. 84 (1964) 477. 
[32] WEIDENMÜLLER, H.A . , Nucl. Phys. 75 (1965) 189. 
[33] WEIDENMÜLLER, H. A . , DIETRICH, K., Nucl. Phys. 83 (1966) 332. 
L34] HAGLUND, M.E., ROBSON, D., Phys. Lett. 14 (1965) 225. 
[35] LANE, A .M . , ROBSON, D., Phys. Rev. 151 (1966) 774. 
[36] MAHAUX, C. , WEIDENMÜLLER. H.A. , Nucl. Phys. A 91 (1967) 241. 
[37] HULL, M.H. , BREIT, G., Handb. Phys. 41/1 Springer-Verlag, Berlin (1959). 
[38] BÜCHHOLZ, H., Die Konfluente Hypergeometrische Funktion, Springer-Verlag, Berlin (1953). 

[39] NEWTON, R.G., J. Math. Phys. 2 (1961) 188. 
[40] PEIERLS, R.E., Proc. Roy. Soc., Lond. A.253 (1959) 16. 
[41] LeCOUTEUR, K.J., Proc. Roy. Soc.. Lond. A.256 (1960) 115. 
[42] MORSE, P.M. , FESHBACH, H., Methods of Theoretical Physics, McGraw-Hill, New York (1953). 
[43] HURWITZ, A . , COURANT, R., Funktionentheorie, Springer-Verlag, Berlin (1922). 
[44] TITCHMARSH, E.C., Theory of Functions, Oxford University Press (1939). 
[45] LEJEUNE, A . , Bull. Soc. roy. Sci. de Liège 35 (1966) 566. 
[46] HUMBLET, I . , LEJEUNE, A . , Phys. Lett. 23 (1966) 561. 
[47] LEJEUNE, A . , Ph.D. Thesis (to be published in 1967). 
[48] MAHAUX, C., Nucl. Phys. 79 (1966) 481. 
[49] MAHAUX, C . , ROBAYE, G., Nucl. Phys. 74 (1965) 161. 
[50] LEBON, G., Mém. Soc. roy. Sci. de Liège, Sfcme série, 13 4 (1966). 
[51] LEBON, G., HUMBLET, J., Nucl. Phys. A 96 (1967) 593. 
[52] HARRISON, W.D. , Ph.D. Thesis, California Institute of Technology (1966); Nucl. Phys. A 92 (1967) 

253,260. 

27 





CHAPTER 8 

NUCLEAR RESONANCE REACTIONS 
AND S-MATRIX ANALYT IC ITY 

K . W . M c V O Y 

1. Introduction. 2. Single channel potential scattering of spinless particles. 2 .1. Phase shifts foi 
simple representative potentials; high and low energy limits. 2 .2. Wigner and Levinson theorems. 2.3. Elastic 
resonances. Elementary properties and simple examples. 2.4. Resonances and bound states. 3. Analyticity 
properties of single channel potential scattering amplitudes. 3.1. Jost functions and isolated poles of S(k). 
3.2. Examples of pole distributions. 3.3. Pole collisions. 3.4. Two overlapping resonances; double poles. 
3.5. Threshold behaviour and energy-dependent widths; the e f fect ive range expansion. 3.6. Pole expansion 
of Sj3(k). 4. Many-channel resonances. 4.1. Introduction. 4.2. Analyticity and unitarity, 4.3. Resonance 
poles and resonance circles. 4.4. Unitary one-and two-pole approximations, (a) The generalized Breit-
Wigner approximation, (b) The two-level approximation. 5. Analyticity and nuclear reaction calculations. 
Appendix A : Wigner's R-matrix expansion as an extension of the ef fect ive range approximation. Appendix B: 
Eigenvalue expansions of the S-matrix. 

1. INTRODUCTION 

Although the complex poles and residues of the S-matrix provide a 
remarkably concise means of parametrizing scattering resonances, they 
are not a familiar ingredient of traditional nuclear reaction formalisms and 
have often been viewed as mathematical oddities, only tenuously connected 
with physical reality. The present review is an attempt to increase their 
familiarity by examining in non-mathematical terms their relations to a 
variety of physical scattering properties such as barr ier penetrability, 
branching ratios, resonance circles, Levinson's Theorem, and bound 
states. 

Elastic resonances are considered in sections 1 —3, which include a 
discussion of overlapping resonances and the difference between their 
R-matrix and S-matrix widths (section 3.4. ). Many-channel resonancès 
are discussed in section 4. In this case the one-pole approximation to S, 
when made unitary, is found to include the Breit -Wigner approximation and 
to provide its generalization to the case of a non-elastic background. It 
agrees exactly with the form of the general R-matrix result (R °L ° un-
restricted), but is parametrized in such a way as to be suitable for practi-
cal resonance curve fitting. The (unitary) two-pole expression for two 
overlapping resonances is given as well. 

Multi-channel resonances are discussed in terms of the eigenchannels 
of S in Appendix B. It is found that the eigenphase-repulsion phenomenon 
normally forces them to occur in several eigenchannels at once. 

Since the nucleón-nucleón force is short ranged, a fundamental 
characteristic of nuclear reactions is the fact that in the asymptotic wave 
zone, where the interaction between the scattered particlesi is very small. 

The author is in the Department of Physics, University of Wisconsin, Madison, Wis., United States 
of America. 

1 The discussion here is restricted, as usual, to two-body channels. 
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the wave function for their relative motion in the centre -o f -mass system is 
simply a superposition of incoming and outgoing f ree -part ic le (or Coulomb) 
waves . Since the incoming flux is determined by experimental conditions, 
the influence of the interactions on the wave function in the asymptotic 
region, where the measurements are made, appears only in the relative 
amplitudes of the outgoing waves in the various open channels. These 
amplitudes are the elements of the S-matr ix , and since the outgoing flux, 
and hence the cross -sect ions, are linear or quadratic functions of them, it 
is their energy dependence which directly determines the shapes of the 
scattering and reaction cross -sect ions as a function of energy. 

The S -matr ix elements, as complex-valued functions of the energy, 
are thus a natural meeting-ground for theory and experiment, and this 
review aims to provide a utilitarian compendium of their properties for the 
types of potentials employed in nuclear physics. An elegant mathematical 
treatment of the S -matr ix for potential scattering problems is available in 
the work of Newton [1] and of Humblet and Rosenfeld [2 ] , but a great deal 
more is known about the subject, of a practical, intuitive nature, and it is 
to this ' folklore1 that attention is directed here, particularly that aspect 
involving the analytic continuation of S(E) into the complex E -p l ane and the 
use of its complex poles and zeros for the parametrization of resonance 
amplitudes. 

W igner ' s R -mat r ix has long provided a useful model for the compu-
tation of S -matr ix elements for the case of a cutoff potential, whichcontains 
as f ree parameters the energies and reduced widths necessary to fit exper i -
mental resonance data. Unfortunately, in practical applications it has 
certain disadvantages, one being the occurrence of arbitrary and un-
physical 'fitting radii ' , and another being the fact that the energy and width 
parameters , which produce one resonance curve in isolation, produce a 
totally different one if the resonance in question is overlapped by another. 
F o r the purpose of extracting resonance data f rom cross -sect ions, how-
ever, it is possible to bypass R altogether and parametrize the energy 
dependence of S itself directly in terms of the desired resonance energies 
and widths. F o r a variety of reasons set forth below, we feel that in many 
cases this may provide a more direct and less ambiguous means of obtaining 
experimental resonance parameters . 

Several different resonance expansions of S are known, however, none 
without its disadvantages. It is an open question at the moment which of 
them wi l l prove the most useful experimentally, a question likely to be 
answered only after a good deal of practical tr ial and e r r o r . It is hoped 
that a review of this kind may stimulate this programme by collecting in 
one place many of the necessary bits of practical S -matr ix lore . 

As for units and other conventions, we employ 'natural ' units through-
out, in which -h = с = 1, so that, fo r example, a resonance of width Г has 
lifetime 1/ Г. W e shall deal, as usual, only with two-body channels and 
always work in the cent re -o f -mass system, so that m is the reduced mass 
of the two fragments in the channel at hand. Non-relativistic kinematics 
are presumed throughout, even when limits such as к -» ± « are considered. 
Since our pr imary concern is with the energy-dependence of S -matr ix 
elements, we do not deal with the complications due to spin; they mainly 
affect the relation between S and the cross -sect ions, a subject dealt with 
in detail by Newton [3] and by Goldberger and Watson [4] . Thus although 
only spinless particles are considered in detail here, the concepts and 
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phenomena involved are equally applicable to particles with spin, at the 
price of the usual angular momentum algebra. 

The lion's share of attention is devoted to the single-channel case; 
for a discussion of the general properties of S considered here it is quite 
general enough, the n-coupled channel situation being obtainable by a 
'rotation' f rom a set of n uncoupled eigenchannels. 

2. S I N G L E - C H A N N E L P O T E N T I A L SCATTERING OF SPINLESS 
P A R T I C L E S 

W e consider two point particles interacting via a central potential 
V ( r ) defined on the interval (0, °o), where r is their separation in the centre-
o f -mas s system. Since we have nuclear applications in mind, we assume 
V ( r ) to be ' reasonable ' in that context, i . e . short -ranged and non-singular. 
This wi l l often simply mean that its f irst two absolute moments exist, 

CO 0 0 

Jr IV ( r ) I dr < 00, Jr2| V ( r ) I dr < oo (2.1) 

but in many cases the simplest analyticity properties of its S -matr ix are 
obtainable only by accepting the additional restriction that V ( r ) vanish as 
r oo faster than any exponential; a cutoff potential, V ( r ) = 0, r > a , is 
one such example and a Gaussian potential is another. 

Whenever V ( r ) simply vanishes at oo faster than 1/г, the asymptotic 
form of the scattering wave function is, to within a normalization constant, 

ik 7 pikr 

« î ; k 0 , k ) . e ' ' Н ( к 0 , к ) у (2.2) 

where the only angular dependence of the scattering amplitude f(îc0, к) in 
the central force case is on k0 - k. Its part ia l -wave expansion, 

f (CQ ,S ) = £ ( 2 Л - 1 ) ( ^ ) р , ( к 0 - к ) (2.3) 
с 

defines the infinite set of constants (i. e . , functions of Í and E but not of 
г )Э { (Е ) , the 'S -matr ix elements' for the given potential, which in turn 
determine the scattering cross -sect ion by 

& " 1 ^ 0 - 5 ) Г (2.4) 

It is these partial wave S-matr ix elements SC (E) with which we shall be; 
concerned; if the potential is not central or if further degrees of freedom 
are involved, they are labelled not by i but by j and any further quantum 
numbers conserved by the interaction. 
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Alternatively, if ф itself is expanded in Legendre functions of the 
direction of r (which is that of Ic), 

'.ut(r, k) 
Ф(т,\Л) -- ) — P£ ( r • k0) (2.5) 

the S a appear in its asymptotic form as the fami l iar coefficients of the 
outgoing wave, 

u , ( r .k ) - A j l e " 1 1 " - ( - 1 ) ' ^ ( Е ) e i k r ) (2.6) 

In the limit of no potential at all S£ 1, for all t, and there is no scattering. 
If the potential is elastic, i . e . , neither absorbs nor emits flux, it is then 
c lear from Eq. (2¡6) that all S£ must be unitary, 

|Sj(E)| = 1 (2.7) 

so that the asymptotic wave function in each partial wave is described by 
a single real parameter, the phase shift 6 { (E ) , which is most conveniently 
taken as half the phase of S£, 

S£ (E) = e2l6i<E) (2.8) 

The asymptotic partial wave function then takes the simple and famil iar 
form 

i(6 -ir/5) 
u£ (r, k) -> -2 i A£ e 1 sin (kr Í7T/2 + ó£ ) (2.9) 

which is responsible for the name 'phase shift'; a positive phase shift 
corresponds to the wave being 'pulled in' toward the origin (relative to an 
unscattered wave), and a negative ó£ corresponds to the wave being 'pushed 
out'. 

2.1. Phase shifts for simple representative potentials; high- and low-
energy limits 

As a guide to what functions 6£(E) can be expected from a given poten-
tial, we recal l a few elementary examples. In the high-energy limit the 
phase is given directly in terms of the potential by the short wavelength 
limit of the Born approximation, 

со 

J* V ( r ) dr + П7Г (2.10) 
о 

( for all Í ). 6£ is c lear ly only defined by Eqs . (2.6) and (2.9) modulo ir, and 
because of Levinson's theorem, which we discuss below, it is traditional 
and convenient to choose n = 0 in Eq. (2.10) , so that 6£ (oo) = 0, and an attractive 
potential produces a positive phase shift and a repulsive one a negative 
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phase shift, at least at high energy. Of course the function 6(E) can change 
sign at one or more E -va lues (typically if V ( r ) changes sign), but if V ( r ) 
is predominantly attractive outside the centrifugal b a r r i e r 
where the f ree wave is oscillatory, it wi l l decrease the local wavelength and 
pull the wave in, giving a positive phase shift at that value of k; the sign 
of V ( r ) is less important inside the ba r r i e r , where the incident wave is 
smal l . 

As for the low-energy behaviour of 6 { (E ) , we recal l that the b a r r i e r 
radius or c lassical turning point ( for the non-interacting wave), r = ( i ( i+l ) )2/k, 
increases with increasing SL and decreasing к and we can expect б^Е ) to 
become smal l whenever SL becomes large enough or E becomes small enough 
so that this radius significantly exceeds the range of the potential - and thus 
prevents the incident wave from feeling it - provided, of course, that 
V ( r ) has a ' range ' . In particular, V ( r ) must certainly fal l off with in-
creasing r more rapidly than 1/r2 if the long-range behaviour (which is all 
that the incident wave is sensitive to in the long wavelength limit) is to be -
dominated by the centrifugal potential i{SL + 1 )/2mr2 . This centrifugal 
shielding is of course the origin of the fami l iar threshold behaviour, 

64(E) -» a1k2£+1 (modulo 7r) as к -> 0 (2.11) 

which fo r a sufficiently weak potential follows directly f rom the Born 
approximation 

oo 

6 { (E ) « -2mk J[jt(kr)]2 V ( r ) r 2 d r (2.12) 

о 

by using the low-energy form of j£ (kr), and is actually true in general; see, 
for example, Ref. [3] . 

Since [6 t(k) - б4(0)] vanishes at к = 0 like an odd power of k, it is neces-
sari ly an odd function of к near the origin and its analytic continuation to 
the negative k-axis is in fact odd for all k. Note also that since the angle-
integrated partial wave cross -sect ion is 

ст^Е) = 7rX2(2i + 1) 2[ 1 - Re(S f ) ] = 4irX2 (2S> + 1) sin2 6p (2.13) 

Eq. (2.11) implies that 

Of (E) ~ k4 f (2.14) 

at low energy, only the S-wave cross -sect ion remaining finite as к -> 0. 
A few examples may make these limits c learer . F irst we note f rom 

Eq. (2 .9 ) that, even in the absence of a scatterer, different partial waves 
have different asymptotic forms, due, of course, to the different centri-
fugal potentials they experience; from Eq. (2.9) it is c lear that the 'centri-
fugal phase shift' is simply -&w/2, so that a pure l / r 2 potential has an 
energy-independent phase shift. Of course, if it were A/r 2 only for r > R, 
and finite for r < R, it would have essentially the same effect on any wave 
with E « A/R2 , and the phase would vanish like l/k as к -» to, so the 
potential of F ig . 1(a) produces the phase shift of Fig . 1(b); the constant 
section of the phase shift has different values for different V s . 
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Conversely, a 1/г2 potential cutoff 'the other way' wil l show hard- " 
sphere behaviour at low energy, where it presents a thick ba r r i e r to the 
incident wave, which goes over into a constant phase shift at high energy, 
giving the correlation shown in Figs . 1(c) and 1(d), for I = 0. This 
phase does not vanish as E -> oo, and indeed Levinson's theorem is violated 
by a 1/r2 singularity. 

FIG. 1 ( a) Potential V = A/r2 for r > R FIG. 1(b) Phase shift 6(E) corresponding 
to A/r2 

FIG. 1(c) Potential A/r2 with a cut-off 

SJCk) 

FIG. 1(d) Phase shift corresponding to 
Fig. lc 

Finally we recal l the hard-sphere phase shifts themselves. If V ( r ) is 
+ oo for r < a and zero for r > a, the free particle radial wave function 

2j,f(kr) = h¡ (kr) + h } ( k r ) 

is readily seen to become 

h j (kr) + S {h+ (kr) 

in the presence of the hard core, for r > a, so from the condition that it 
vanish at r = a, the S-matr ix elements are 

h¡(ka) 
S f (k) = - - T — 

hj (ka ) 
( h a rdco re ) (2.15) 

hT(ka) ~~ 

[ Ь , ( ка )Г 
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In particular, 

S0(k) = e"2ika, 

and the phase shifts behave as indicated in F ig .2 . Clear ly the low-energy 
k2 t + 1 behaviour is again due to the core being shielded by the centrifugal 
potential; for ka » I , the shielding is ineffective and the high-energy phase 
shift settles down to the S-wave value (modulo тг) fo r all finite £. 

potential 

It is interesting to note that these S-matr ix elements, considered as 
analytic functions of the complex variable k, are in N(k)/D(k) form, with 
N = D v by unitarity and Dc (k) having I zeros (S£(k) having SL poles) in the 
lower half k-plane. They are clustered in the vicinity of the origin and 
have as their 'purpose' the generation of the polynomial which assures the 
k2i+1 behaviour of 6(k) near the origin, but which -> 1 as к moves out of the 
pole region. F o r | k a | » ¡L, S { (k) is dominated by its essential singularity 
at infinity, e"2 i k a (a feature possessed, incidentally, by all cutoff potentials), 
which is how the mathematics represents the domination of reflection from 
the core at high energy. The resulting cross-sect ion is oscillatory, 
СТ{(Е) ~ (sin2ka)/k2, with infinitely many (low) maxima caused by the phase 
shift passing downward through 7t/2. 

2.2. Wigner and Levinson theorems 

The Wigner and Levinson theorems are two very important theorems 
on general properties of the function 6 { (k) . The f irst [5] provides a physical 
interpretation of the f irst derivative of the function, d6/dk, and can be 
derived by a consideration of the incoming ' radial wave packet' which is the 
partial wave manifestation of a 'plane wave packet' passing by the point in 
question, 

cpf(r,t) - f P t ( k ) e - i ( k r + y(k)t> dk 
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If the momentum spectrum p { (k ) is sharply peaked (and the result is valid 
only for this nearly-monochromatic case), ф wil l have its maximum where 
the phase of the exponential is stationary, 

-¡f [ k r + Wk ) t ] = 0 

so the position of the centre of the packet is at 

r = " ТГ t max d k 

moving with group velocity -dt//dk. The corresponding scattered wave 
packet is 

p i [kr-yt + 26 (k)] 
^ ( r . t ) = / p,(k) e dk 

whose maximum is at 

r = ^ t - 2 ^ 
max dk dk 

i. e. displaced from the maximum of a corresponding unscattered packet 
by the amount 

Дг = -2 dó/dk (2.16) 

Equivalently, the scattered packet may be thought of as delayed in time by 
the amount 

Time delay = + 2 Ц (2. 17) 

Thus a phase shift which increases as a function of energy indicates a time 
delay of the scattered packet, usually due to trapping in a resonant state 
at that energy, while a falling phase indicates a time advance. This may be 
due, as in the hard core example, to reflection from the ' sur face ' of the 
potential (an unscattered incoming wave must proceed all the way in to the 
origin before it reverses direction and comes out again), o r it may simply 
be due to an attractive potential through which the wave proceeds at a 
higher velocity than in f ree space. If the potential is cut off at r = a, the 
maximum phase advance permitted by causality (the incoming wave cannot 
scatter before it reaches the potential) is 2a, f rom which Wigner ' s theorem 
follows, 

(2.18) 

A repulsive b a r r i e r wi l l normally force the phase downward as a function 
of energy, at energies below the top of the b a r r i e r ( e . g . F ig . 1(d)), with 
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steeper negative slope, the more the wave is excluded from the interior of 
the ba r r i e r , and in the limit of complete exclusion (hard core), the phase 
decreases like -ka. 

Actually, of course, the assumption of a sharply localized packet is 
only a short wavelength idealization, which is surely invalid if X ;> a; fo r 
the s -wave the more precise form of the limit is 

+ s i n l J J c a + i ) ( 2 Д 9 ) 

dK ¿¡ к 

which becomes Eq. (2.18) for ka » 1, but imposes no restriction for 
ka « 1, where dó0/dk is simply the negative of the scattering length. This 
can have an arbitrar i ly large negative value, but only if the potential has 
a bound state very near zero energy, in which case its ' radius ' , which is 
equal to the scattering length, plays the role of ' radius ' for the potential 
if it exceeds the true radius a. 

Levinson's theorem [G] might be thought of as the integral of Wigner ' s 
theorem, for it considers the total amount by which <5t decreases over the 
energy range from zero to infinity. Provided only that both the f i rst and 
second absolute moments of V ( r ) exist, it states that 

6(0) - ó (oo ) = птг (2.20) 

where n is the number of bound states that the potential has. 
A mathematical derivation is given below in terms of analytic pro -

perties of S(k), but we record here a heuristic argument due to C. J .Goebel . 
S(oo) = S(0) = 1 if the moments exist, and we wish to observe the changes 
undergone by the wave function as the energy is changed from oo to zero; 
to simplify the argument as much as possible, we assume V ( r ) vanishes for 
r > a. At E oo, X = 0, and the entire r - a x i s is packed tight with such 
waves. At this energy the potential has no effect whatever, and 6 = 0, so 
the nodes of the actual wave function coincide with those of a f ree -part ic le 
function. As E is lowered and waves move out to r ->• oo, the nodes for the 
two functions begin to separate by an amount A r , in particular in the 
asymptotic region, where the phase shift can be measured as 
6 = k Дг = 2w (Дг/Л). If, fo r instance, the potential is attractive, the inter-
acting wave wil l be pulled in relative to the free wave, and whenever (as 
E decreases ) a f ree node moves out past an interacting one, б has in-
creased by 7Г. Finally, at E = 0, all the f ree -wave nodes have moved out to 
oo, so 6(0) = П7Г, where n is the number of nodes in the interacting wave 
function which remain at finite r in the zero -energy limit. However, a 
simple examination of the zero -energy function in terms of the scattering 
length shows n also to be the number of bound states. 

W e note that the theorem is violated by the hard core potential and 
by any potential which behaves like l / r 2 as r 0 or r -» oo. 

2 .3 . Elastic resonances. Elementary properties and simple examples 

Because the SchrOdinger equation for single-channel scattering is a 
wave equation (with the potential, possibly momentum-dependent, playing 
the role of refractive index), the resonances ( ' s ingle -part ic le resonances ' ) 
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which occur in potential scattering problems are identical, both mathema-
tically and physically, with the standing-wave or cavity resonances familiar 
in wave guides, band-pass filters, Fabry-Perot interferometers and other 
examples of cavity resonators. That is, the essential mechanism is the 
establishment of a spatial cavity with a reflecting wall (typically a potential 
barrier) , within which incident waves can be temporarily trapped. If the 
walls could be made completely reflecting, the 'resonant states' would 
actually be bound, with infinite lifetimes and sharp energies, and would 
occur only at those discrete energies at which their wavelengths are tuned 
to the cavity in such a way as to put nodes of the wave function at the walls. 
If the walls are highly, but not completely, reflecting, the Q of the cavity 
will be high but not infinite. The interior of the cavity will communicate 
weakly with the exterior at all energies, but only at those energies deter-
mined by the same nodal tuning condition as above (integral number of 
internal half wavelengths in the cavity) will successive sections of the 
incoming wave interfere constructively inside, to give a steady-state 
solution with a much larger amplitude inside the cavity than outside. The 
resonance energies will thus be discrete but not sharp, because of the finite 
lifetimes of the states. 

In nuclear physics these single-particle resonances are customarily 
caused by a central potential, so they occur in one partial wave at a time 
(labelled by its quantum numbers), and are due to the internal reflection of 
the corresponding centrifugal or Coulomb barrier. This is shown in 
Fig. 3(a) which also indicates that the most striking feature of the resonance 
is the very large amplitude which the steady-state wave function develops 

central potential 

inside the barr ier at each resonance energy. In customary scattering 
experiments, however, both this internal region and the trapping-time of 
an incident pulse (Fig. 3b) are inaccessible to measurement, and the reso-
nance must be recognized from its effect on the energy dependence of the 
asymptotic wave function, i .e . on the phase shift. That it should cause a 
sharp rise in the phase shift as a function of energy follows in general from 
Wigner's interpretation of dô/dE, but it is also interesting to see how this 
phase rise (a 'pulling in' of the external wave function as the energy in-
creases over the resonance) is correlated with the large internal amplitude. 

FIG.3(a) Example of a resonance in a FIG.3(b) An idealization of Fig.3(a) 
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It is most clearly seen for the case of a thin spherical shell of attractive 
potential [V ( r ) = сб (г -а ) , с < 0] , for which the I = 0 phase shift vanishes 
(see Ref. [7] ) just below the resonance energy, due to the wave function 
having a node at r = a. The wáve functions just below, at and just above a 
resonance are shown in Fig . 4, in which the external node indicated by an 
ar row is seen to be pulled in by nearly half a wavelength as the energy 
increases over the resonance width. Since 6 = 0 just below resonance in 
this case, the phase shift is +90° at the centre of the resonance, which 
causes a sharp maximum in the energy dependence of sin2 6 and the partial 
wave cross -sect ion. In general, however, the background phase is not 
zero; 6 then increases through both тг/2 and v, and the resonance is typi-
cally characterized by a sharp maximum and a zero of сг{(Е) occurring 
near each other, of which only the maximum is generally visible experi -
mentally. In any case it is the sharp rise of 6(E), not the 90° value, which 
signals the presence of the resonance. 

u(r) 
E < E, 

r=a 
(a) ( b ) 

E > E, 

(c) 

FIG.4. An attractive potential V(r) = с 6 (r-a) with the corresponding wave functions for (a) E < E0 ; 
(b) E = Ê  ; (с ) E > E0 

It is the shape of this phase rise, especially in the case of inelastic 
and overlapping resonances, which we wish to relate to the analytic proper -
ties of the function 6(E) (or equivalently S(E)) in the complex E-p lane. By 
way of introduction we recal l , without proof at the moment, the long-
recognized fact that in the immediate vicinity of a resonance the energy 
dependence of S^E ) is very accurately reproduced by the simple rational 
function 

S
t
(E) = в

8

'" I 1 - i
 E

.
E o + i r / 2 

02i <P 

(2.21) 

E - E 0 - i r / 2 

E - EQ + ir/2 

the (manifestly unitary) B re i t -Wigner approximation. Ф(Е) is the constant 
or s lowly-varying background phase, and, in the simplest version of the 
approximation, E0 and Г are constants, the position and width of the reso -
nance. In the particular case ф= 0, Eq. (2.21) yields for the partial wave 
cross -sect ion in the vicinity of the resonance the fami l iar expression 

crf(E) = жГ(21 + 1) 
( Е - Е 0 Г + Г2/4 

(2.22) 
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which indeed peaks at E = EQ(neglecting the slow energy variation of X2). 
If Ф f 0, the algebra becomes more opaque and the cross -sect ion shape 
more involved, but it is readily followed geometrically by recognizing that, 
as the energy passes over the resonance and 6j increases by it, S f (E ) simply 
travels once counterclockwise around the unitary circle, starting and 
stopping at the background value, S¡¡ = e2l<". Then recalling that only the rea l 
part of S { counts, since by Eq. (2.13) 

ff/E) = TTX2(2Í + 1 )2 (1 - R e [ S t ( E ) ] ) (2.13) 

cross -sect ion curves such as those shown in F igs . 5 and 6 are direct con-
sequences of the corresponding S -d iagrams. In particular, а£ (Е) has a 
maximum where R e S i = -1 and a zero where Re = +1; the centre of the 
resonance occurs halfway around the circle, which is at the maximum only 
if Ф= 0. 

I m (S) 

/ 

If 

Í t 
^ / 

Re (S) 

( а ) 

FIG. 5. (a) Imaginary part of the S-matrix versus its real part for <p = 0. (b) Cross-section in the vicinity 
of a resonance 

( a ) 

Eo 
(b) 

FIG. 6. (a) Imaginary part of the S-matrix versus its real part for <p = 45°. (b) Corresponding cross-
section 

The resonant factor in the Bre i t -Wigner expression for S( (E), Eq. (2.21), 
is immediately continuable into the complex E-plane, where its 'structure' 
consists of a pole at ER = Eo - i Г/2 in the lower half plane and a zero at ER"~ 
in the upper half plane. The occurrence of poles and zeros in the complex 
frequency plane has long been famil iar in the study of circuit and cavity 
resonances, and as f a r as is known it is completely general: every elastic 
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resonance of any physical system is believed to be characterized by a pole 
and zero of the response function, in its complex energy or wave -number 
plane. Completely non-analytic response functions could, of course, be 
imagined, but the customary mathematics of physical resonators has not 
produced them, and an overwhelming number of fits to experimental data 
stands behind the B re i t -W igner assumption. 

Although we have introduced it in the context of time-independent solu-
tions of the Schrôdinger o r wave equation, a fami l iar consideration of the 
time dependence of the scattering of a wave packet at a resonance energy 
lends further support to the reasonableness of the complex pole assumption. 
If the incident wave packet (in a single partial wave) has the energy spectrum 
p (E) , its time dependence (at a fixed radial position) is 

Ф(t) = / p(E) e~iEt dE 

and the corresponding resonantly scattered packet is 

ф(t) = /p (E ) [S (E) -1 ] "iEt e dE 

:/ P(E) 
' 2Í<p E'ER , 
e ^ — 1 E-E, R 

e" i E tdE 

« C e 

doing the integral by contour integration in the lower half E -p lane and 
retaining only the term giving the long-time dependence, which comes f rom 
the pole nearest the rea l axis. (This assumes p (E) to be broader than the 
resonance width. ) Thus the long-time dependence of the scattered packet at 
fixed r is 

U ( t )| 2 = I С I2 e~ r t (2.23) 

indicating the direct relation between the Bre i t -Wigner resonance pole and 
the exponential decay of the resonant state, with 'lifetime1 т = 1/Г. 

Two elementary S-wave examples (Ref. [7] ) which illustrate both reso -
nances and the importance of the background on which they are super-
imposed are (1) the thin-walled spherical cavity like that of F i g . 4 (delta-
function potential ba r r i e r , V ( r ) = с ô ( r - a ) with с > 0) and (2) the attractive 
square wel l . 

The transmission coefficient of the delta function is energy-dependent 
and has the (monotonie increasing) form 

T (k ) = [ l + A / k V (2.24) 

with A = 400 for the case illustrated in Fig . 7. If the b a r r i e r were completely 
impenetrable, the cavity would posses bound states with momenta k„a = птт, 
so with nearly impenetrable wal ls it has resonances near these momenta, 
which cause the rapid increases in the phase shift indicated in F ig . 7(a); note 
that for this potential the phase shift vanishes identically at ka = птт, since 
the wave function has a node at the b a r r i e r in that case and so is not 
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scattered. F igure 7(b) shows how the ratio of internal to external wave 
amplitude increases sharply at these resonance energies, and Fig . 7(c) 
indicates the corresponding energy dependence of the S-wave cross -sect ion. 

ка/т 

ка /тг 

FIG. 7. Scattering characteristics of the ó-function potential V(r) = с 6(r-a). (a) Phase shift, 
(Ъ) square of internal wave amplitude and (c) cross-section, all as functions of the bombarding 
momentum 

At low energy, where the b a r r i e r is nearly impenetrable ( from outside 
as wel l as inside), the phase shift is nearly the hard core result, decreasing 
at the Wigner limit, but interrupted by abrupt r ises at the resonance energies 
Consequently the cross -sect ion displays both the broad, non-resonant hard 
core maxima due to the phase passing downward through -тг/2, as wel l as 
the sharp resonant maxima due to the abrupt phase r i ses . 

At higher energies the b a r r i e r becomes leaky and the resonances 
broaden, so that the hard core component of the phase decreases by a signi-
ficant amount across the resonance width. As a result, the net r ise in the 
total phase shift becomes less than 180°, and if the resonance becomes 
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sufficiently broad it wi l l even be less than 90°. The resonant and non-
resonant maxima in the cross -sect ion then merge into a single asymmetric 
bump, whose steep upper wing is the only remnant of the resonance. The 
resonances are still visible in the energy dependence of | A|2 (F ig . 7(b)), 
which is not confused by background phase effects, but even these maxima 
begin to overlap significantly as the energy increases still further. 

The lifetimes of the narrow resonances are readily found [7] to be 
given by 

1/Г = (2a/v0) T _ 1 (2.25) 

i . e . longer than the f ree -part ic le transit time across the sphere by the 
factor T"1 , indicating how the resonances become broader and merge into 
the background as the b a r r i e r transmission increases . The relative 
positions of the complex zeros of S(k) in the ka-plane are indicated in 
Fig . 7(b); both they and the poles (at the complex conjugate positions) 
move farther off the real axis for the higher energy (overlapping) reso -
nances until at very high energies, where the scattering vanishes, they are 
so f a r off into the k-plane that they produce no resonant effects at all on the 
real axis. 

• In the case of an attractive square well , the descending background 
phase (time advance) is due pr imar i ly to the higher group velocity of the 
wave packet inside the potential than outside. Because the potential has 
no surface b a r r i e r fo r I = 0, the resonances it superimposes on this back-
ground are very broad, as is implied by the fami l iar fact that the internal 
wave amplitude is less than or equal to the external amplitude at all energies. 
They are so broad, in fact, that the resonant state nearèst zero energy 
produces a phase r ise of only тг/2 at most, and all higher energy states 
produce almost no phase r ise at all1. Explicit details can be found in Ref. [7] 
but the essential point is that a step-down potential of this sort is asymmetric 
and ref lects more effectively on the outside than on the inside. If the wel l 
is deep enough to have severa l bound states, this produces a net downward 
trend of the phase shift as a function of energy (in agreement with Levinson's 
theorem), which is simply interrupted by smal l flat shoulders at the 
energies of the weak resonances. The relevant functions for a well with 
25 bound states are indicated in Fig . 8(a), which shows the background phase 
to be so dominant that all the maxima seen in sin26 and the cross -sect ion as 
a function of energy are due to the phase passing downward through ж/2, 
as in the hard core case. F ig . 8(b) describes the scattering by a repulsive 
square wel l . 

2.4. Resonances and bound states 

There is, of course, a very close connection between resonances 
and bound states, fo r a slight change in interaction can change one into the 
other. F o r instance, consider the case of the resonance shown in Fig . 3(a), 
whose energy is determined by the requirement that an integral number of 
internal half-wavelengths fits inside the wel l . If the wel l radius is in-
creased slightly, this wavelength must increase, thus decreasing the inter-
nal kinetic energy of the particle. The resonance drops to a lower total 
energy, where it sees a thicker centrifugal b a r r i e r which traps it for a 
longer time and so decreases its width. As E = 0 is approached, the b a r r i e r 
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becomes infinitely thick, the resonance width decreases to zero and the 
resonance becomes a bound state - whose energy, of course, continues to 
decrease if the wel l radius is increased still further. 

b Squore Ba r r i e r 

FIG.8. I A¡ , ô|ÏÏ , sin ó for (а) a square well potential, (b) a square barrier 

Stated in terms of the phase shift function ¿e (E), if the resonance is at 
an energy near the top of the ba r r i e r , it wi l l be very broad; the background 
phase wi l l decrease with energy nearly as fast as the resonant part of the 
phase increases , giving only a smal l net r ise in the observed phase shift. 
Increasing the wel l size to get a lower -energy, nar rower resonance pro -
duces a sharper, l a r ge r phase r ise, and when the resonance is very near 
E = 0 the phase r ises very rapidly with energy to nearly тт. Finally, when 
the state binds, the phase may be thought of as starting at тг and decreasing 
to zero at high energy in agreement with Levinson's theorem. This phase 
shift behaviour, as wel l as the resulting cross-sect ions, is shown in Fig . 9 
for the p -wave in a Woods-Saxon well of depth 50 MeV and radius R = 1.25 A5F. ; 
the curves are labelled by the corresponding A -va lues . Although this 
example is a s ingle-particle ' level1 , multi -particle or compound-nucleus 
levels respond in exactly the same way to a change in interaction strength. 

28" 
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On the other hand, a single-particle s -wave resonance for an uncharged 
particle in a Woods-Saxon type wel l has a very different behaviour for , as 
was noted ear l ier , in this case there is no surface b a r r i e r to provide 
efficient trapping of the internal wave. The resonances in such a wel l are 
not only very weak, they even, in effect, move to a negative energy (where 

FIG. 9. Phase-shift behaviour and resulting cross-sections in a Woods-Saxon well of depth 50 MeV and 
radius R = 1.25 A Í F 

they are called virtual states) with increasing interaction strength before 
becoming bound. F o r this reason only their 'tails ' are seen in the phase-
shift behaviour at positive energy, and in consequence <5o(E) never r i ses by 
more than тг/2 at any such resonance. The square wel l is an example of 
such a potential, whose phase-shift curves for a ser ies of increasing wel l 
depths are shown schematically in F ig . 10. The lowest one is fo r a we l l 
just too weak to bind the I s state, whose influence (as a virtual state) is 
seen in the sharp r ise in the phase shift by тг/2 at low energy ( large negative 
scattering length). The influence of the 2s state, which was shown in 
F ig . 8(a) as simply a flat shoulder on the descending phase, is here mag-
nified for clarity to indicate that it actually does produce a smal l but 
distinct maximum and minimum in 6(k)). 

In the next curve up, the I s state is just bound, and produces the 
sharp drop in 6(E) ( large positive scattering length) which was noted in 
connection with the low-energy form of Wigner ' s interpretation of d6/dk. 
The successive curves show how the scattering length ( i . e . -d6(0)/dk) 
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decreases to zero and becomes negative as the potential is deepened 
further, and also indicate how the size of the 2s 'bump1 in ó(E) progres-
sively increases until it also attains a height of тг/2 just before becoming 
bound. 

8 0 (k ) 

FIG.10. S-wave phase shift curves for a series of increasing well depths 

It is rather remarkable that this steep rise in phase never causes a 
peak in the cross-section a0(E). This is simply because at low energy the 
s-wave phase increases linearly in k, but sin б increases slightly less 
rapidly than 6, so that ст0 = 4^(sin26)/k2 in general decreases from its 
к = 0 value. This is seen more explicitly by including the k3 contribution 
through the effective range expansion 

к cot 5 = - 1 1 ,2 
a + 2 Г0к (2.26) 

which gives 

q,(E) 
4 ж a 

i W l - V ) +таЧ2к2 

(2.27) 

This is a decreasing function of E near E = 0 unless r0 > a > 0 or r0 < a< 0 
but this can only happen 'between' zero-energy bound states, whereas we 
are interested in the opposite case - a » | r 0 | ~ R , very near a zero-energy 
bound state, to get a sharply rising phase shift. Consequently, these single-
particle s-wave resonances are so weak that they never produce a maximum 
in cr0(E); any such maximum which occurs is of the hard-sphere type, 
caused by 6(E) decreasing through 7t/2. 

Incidentally, in this context it is worth recalling that for the square 
well the scattering length is given in terms of the well parameters by 

a = R F 0 t a n K o R 
(2.28) 
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2 
with K 0 = 2 mV0 . This is a monotonie-decreasing function of Vo with poles 
where K0R = (n + |)?r (the zero -energy bound-state conditions); for КцИ » 1 
it is 'usually' positive, corresponding to 6'(k) < 0 at k = 0. 

3. A N A L Y T I C I T Y P R O P E R T I E S OF S I N G L E - C H A N N E L P O T E N T I A L 
SCATTERING A M P L I T U D E S 

3.1. Jost functions and isolated poles of S(k) 

F rom a practical point of view, any potential of interest in nuclear 
physics wi l l provide phase shifts б£ (Е) sufficiently analytic in E so that 
their energy dependence in the neighbourhood of a resonance can be ade-
quately represented by a one-pole or B re i t -Wigner approximation. This 
is a ' local ' property of the function 6£ (E) in the complex E-plane, which is 
simple enough to require no further mathematical background. In addition, 
however, it is important to know something about the distribution of poles 
in the energy plane, particularly their symmetry about E = 0 (which is 
related to the threshold energy dependence of 6e) and their asymptotic 
distribution for I E I oo (which determines the high-energy behaviour of 
6 ( ) . These more detailed properties are thoroughly understood only for 
sufficiently wel l -behaved potentials, and are obtained most directly f rom 
the mathematical properties of the so-ca l led Jost functions, which we 
summarize br ief ly in this section. 

The radial SchrOdinger equation in the i - t h partial wave for a 
spherical ly -symmetric potential is 

- u " ( r ) + ^ + 2 m V ( r ) u(r ) = k 2 u( r ) (3.1) 

the physical scattering solution bf which vanishes like r i + 1 a t the origin; 
CO ^ 

if it is normalized so that / u""(k', r )u (k , r ) = 6(E - E ' ) , it has the asymptotic 
behaviour ° 

, , > 1 i ( i+l )u/2/ -ikr / 1 s i c , ,, > ikr Л in 0n u(k, r ) - - e (e - ( - l ) S f ( k ) e ) (3.2) 

Equation (3.1) and its solution u(k, r ) depend on the parameter k, and for 
some potentials V ( r ) may make sense for complex as wel l as real values of 
this parameter , thereby permitting us to continue analytically the solution 
u(k, r ) and hence its S -matr ix element S f (k) into the complex k-plane. ( F o r 
instance V ( r ) = 0 is such a case, fo r the solutions к%^(кг) exist and are 
analytic in к everywhere in the k-plane. ) The region of analyticity of SÊ(k) 
permitted by a given potential is obtained most readily by considering 
another solution cp(k, r ) of the differential equation, regular at the origin and 
therefore proportional to u(k, r ) , but normalized by the different condition 

lim г"Ь 1ф(к, r ) = 1 (3.3) 
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The importance of this type of normalization is that it is independent of k, 
for this permits us to use a celebrated theorem due to Poincaré (see 
Newton [1] ) which states that if the parameter к appears in the differential 
equation only as an entire function (such as k2), then any solution such 
as cp(k, r), which is specified by a k-independent boundary condition, will 
itself be an entire function of k, i. e. analytic in the entire k-plane. 

Secondly, because both the differential equation and the boundary condition 
are invariant under k-> -k(i.e. the energy is an even function of k), and <p is 
uniquely specified by them, cp must be even in k, 

<p(-k.r) = <p(k,r) (3.4) 

And finally, if the potential is real ( i .e. neither absorptive nor emissive in 
the optical model sense), then for real к the equation and the boundary 
condition are invariant under complex conjugation and so define a real 
solution, qf(k, r) = c p ( k , r) for к and r real. If cp has a region of analyticity 
along the real k-axis, the continuation of this condition is clearly 

cp* (k*. r) = cp(k, r) (3.5) 

Physically, this expresses the conservation of probability current and 
directly implies the unitarity of S{(k). 

cp(k, r ) is regular at r = 0 but, in general, has both incoming and out-
going waves in the asymptotic region. These irregular, running-wave 
solutions we define by the necessarily k-dependent boundary conditions 

lim eîikr f ±(k, r) = 1 (3.6) 
t —> oo 

Although they ate linearly independent, they are closely related, for they 
clearly satisfy 

* 

f (k ,r ) = f + ( -k , r) (3.7a) 

and (if V ( r ) is real) 

f* (k* r) = f+ (k, r) (3.7b) 

both equations holding in whatever corresponding analyticity domains the 
functions possess. Their singularities in the k-plane depend critically on 
the long-range behaviour of V (r ) ; Newton [1] finds explicitly that if 

00 
J r | v ( r ) | e

p r

d r < oo (3.8) 

о 

then f+ (k, r) has no singularities in the entire upper half of the k-plane 
specified by Im к > -p/2(and f. has none for Im к g p/2). That is, the more 
rapidly V ( r ) vanishes as r ^ » , the farther from the real k-axis are the 
singularities of f±(k, r) . For instance, two familiar examples are the 
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Yukawa potential V ( r ) = e~Mr/r which produces logarithmic branch points 
at к = +Í/LÍ/2, and any non-singular potential which vanishes beyond a 
fixed radius, whose f ± are entire functions of k. 

Since f ± (k , r ) are linearly independent, any other solution of the equation 
such as cp(k, r ) is a l inear combination of them, and we choose to define the 
expansion coefficients f f*(k) such that 

ф(к, r ) = ^ 7 l { e l l , r / , f ; ( k ) f . ( k , r ) - e " i < , r / , f " ( k ) f + ( k . r ) ] - (3.9) 

These expansion coefficients have the following simple and important 
properties: f rom Eqs. (3.5) and (3.7b), 

[ f+(k*) ]* = ff"(k) (unitarity) (3.10) 

if V ( r ) is real, and from Eqs. (3.4) and (3.7a), 

f { + ( -k ) = f ¡ (k ) (3.11) 

so within the analyticity domain where these relations hold, we are real ly 
dealing with only one function of the momentum, 

f£ (k) = f^(k) (3.12) 

which is known as the Jost function. 
Since cp(k, r ) is everywhere analytic in k, Eq. (3 .9 ) shows the domain of 

analyticity of f { (k ) to be exactly that of f+(k, r), at least the upper half of the 
k-plane fo r ' reasonable ' potentials, with a lower boundary determined 
by the tail of the potential. In particular, fo r a cutoff potential 
( V ( r ) = 0 for r > R), f ± ( k , r ) = h£ (k, r ) in this region, so f(k) is c learly an 
entire function of k. 

The significance of the Jost function in scattering theory is seen at 
once from the asymptotic form of Eq. (3 .9 ) , 

e i U+lWîf ( (k ) Г i f»"(k) "1 
Ф<к.г) = 2 k i + i ^ k ) { f . ( k . r ) - ( - D ^ f f + ( k ' r > } 

(3.13) 

e i< i+i> ./ . f ; ( k ) f - ¡kr f ¡ ( k ) i k r l 

. - 2 k * - Iе ; 

f rom which we have the relation of cp to the physical wave function, 

k i + l 
u(k, r ) = j-jT^y ф (k, r ) (3.14) 
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and the more important result that the S-matr ix element is given in terms 
of the Jost function by 

f;<k) y - k ) 
s<(k) = фю = f w ( З Л 5 ) 

valid throughout the appropriate analyticity domain of f£ (k) in the k-plane 
(which in particular certainly includes the real axis for any potential of 
interest in nuclear physics) . Within this domain, Eqs . ( 3 . Ï 0 ) and (3.11) 
guarantee the essential symmetry properties of S, 

S* (k" )S (k ) = 1 (continued unitarity) (3.16) 

and 

S ( -k )S (k ) = 1 (3.17) 

which, together, of course imply 

S*(-k*) = S'(k) (3.18) 

W e note that Eq. (3.16) is a ' local ' property, relating the values of S at two 
nearby points in the k-plane, if к is near the real axis, and Eq. (3.18) is 
local near the imaginary axis, but Eq. (3.17) is very non-local except near 
the single point k= 0. Finally, since unitarity Eq. (3.10) guarantees that 
f|(k) and fjj(k) have equal and opposite phases for real k, we see from 
Eq. (3.15) that, on the real к axis, the phase of f f ( -k ) is the scattering phase 
shift: 

f t ( - k ) = е16 (к )|^(к)| ( for real к) (3.19) 

The most interesting features of an analytic function are its singular 
points, and from Eq. (3.15) the singularities of S£(k) in the complex k-plane 
can be of two kinds: 

(1) Poles, branch points and essential singularities caused by these 
singularities in f ^ - k ) . 

(2) Poles caused by zeros of f£ (k). 
Branch points seem to be a general characteristic of ' real ist ic ' poten-

tials, such as the Yukawa potential mentioned above (which has, in fact, an 
infinite number of them, at ± inju/2). The shorter the range of the potentials, 
the farther they recede from the real k -ax is and, in the limit of a potential 
cut off completely beyond r = R,2 they are replaced by an essential singu-
larity o f thee" 2 i k R type which is caused physically by reflections f rom the 
non-analytic termination of the potential at r = R. Both these kinds of singu-
larities have as their 'purpose r the generation of the 'background' part of 
the phase shift ó f (k), which decreases as к proceeds along the real axis, 

2 Incidentally, this is a completely non-uniform limit, in the sense that a Yukawa potential, say, cut 
off at r = R, has an S-matrix element S { (k;R) which in the limit R-» «о is not that for a true Yukawa potential 
except within the 'stable zone' |lm k| < ¡i/2 along the real k-axis. 
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for all the poles of Sf(k) due to zeros of ff (k) (except the bound states) contri-
bute only a rising component to the phase shift. Taking the branch points 
seriously inevitably leads one into a consideration of integrals along the 
corresponding cuts, and thence into the elaborate mathematics of dispersion 
relations. In many contexts this indeed appears unavoidable because of the 
important dynamical role played by the cuts, but in the low-energy nuclear 
physics situation, where static potential interactions seem entirely adequate, 
the branch points are f a r f rom the real axis and so exert only a weak 
influence on the energy dependence of the phase shifts. Fo r the purpose of 
parametrizing the background part of the phase shift along the real k -axis , 
the 'hard-sphere1 factor e"2lkR seems by fa r the simplest to use, so for the 
most part we shall employ it and thus confine our dicussion to the case of 
cutoff potentials. In this case f f (k ) is an entire function, so Э {(к) is 
meromorphic. 

Although f { ( - k ) can have poles ( f a r f rom the real axis) for certain 
potentials ( e . g . the 'redundant poles ' of the exponential potential exp-jur, 
at the same positions on the imaginary axis as the Yukawa branch points), 
by f a r the most important singularities of S { (k) (and its only singularities 
in the case of a cutoff potential) are those caused by zeros of f f (k ) . These 
occur at discrete points, infinite in number for a cutoff potential, which in 
a sense form the most natural 'spectrum' of the Hamiltonian of the problem. 
This is because, according to the expansion (3.9), they are the points in the 
complex k-plane at which the solution ср (k, r ) , which is regular at the 
origin, contains no incoming wave component - i . e . they are the (discrete) 
eigenvalues kn determined by the two boundary conditions that the eigen-
function vanish at r = 0 and behave like e xp+ ik „ r as r-> oo. Because one 
boundary condition is complex, the operator is non-hermitian and the 
eigenvalues complex, and because the boundary condition depends on the 
eigenvalue, the corresponding 'pole-eigenfunctions' are in general not 
orthogonal; most of them, in fact, are not even normalizable in terms of 
the customary inner product. 

If kn is positive imaginary, kn = iX, then exp ik„r = exp-Xr and the 
eigenfunction is a bound state of the potential, with real energy E„ = - X2/2 m. 
Thus the bound states are included in the 'spectrum' of eigenvalues kro 

and they have the additional distinction of being its only points which occur 
in the upper half of the k-plane ( for a rea l potential). This is readily 
seen by forming the Wronskian of an eigenfunction un with its conjugate, 
which for a rea l potential is 

- - f " ( u * u' - u ' * u ) = (k2 - k 2 * ) lu I2 
dr n П n n ' v n n ' ' n1 

If Im kn > 0, the functions vanish at r-> oo as wel l as at r = 0, so 

[Im (k2)] " | u j 2 d r = 0, 
0 

2 
and Im (k n ) = 0. But by assumption kn is not pure real , hence in the upper 
half plane it is necessar i ly pure imaginary. In addition, no kn can occur 
on the rea l axis (except at к = 0), for it it did both f + and f and so cp, would 
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vanish there, contrary to Eq. (3.3) , hence the important result: poles of 
S can cross the real k -ax is only at к = 0, and as a pole crosses into the 
upper half plane, a zero crosses into the lower . 

In the lower half of the k-plane the poles of S { (k) are unrestricted, 
but the symmetry properties (3.16) - (3.18) ensure that poles and zeros 
of S occur in an interesting pattern, namely, a pole of S at kn is necessari ly 
accompanied by another at - k * , and by zeros in the upper half plane at 
the conjugates of these two points (F ig . 11) . A pole on the imaginary axis 
is accompanied only by the conjugate zero. It is the conjugate zero, 
equidistant f rom the rea l axis, which prevents S f rom violating the uni-
tarity condition |s|2 = 1 on the real axis when a pole occurs nearby ( e . g . 1 
and 2 of F ig . 11). 

Im(k) 

'Re(k) 

FIG.11. Poles of Si (k) in the k-plane 

The physical importance of these po le -zero pairs l ies, as was indi-
cated in section II, in their close relation to resonances, for if such a 
conjugate pair l ies 'c lose ' to the real axis, it necessari ly contributes a 
rapid ly - r is ing component to the phase shift ôÉ (E) along the region of the 
real axis which passes 'through' the pair . The relation of the pole to a 
physical resonance is also emphasized by the fact that kn is exactly the 
complex momentum a solution must have if it is to be both regular at r = 0 
and a pure 'decaying state', i . e . have only an outgoing wave component, 
exp + ikr, in the asymptotic region. Finally and more physically, from 
Eq. (3.14) and the normalization condition on u(k, r), the corresponding 
condition for cp(k, r ) is 

<*> i i2 -2CC+11 
/ cp(k', r ) cp(k, r) dr = I f j (к) I к ; 6 ( E - E ' ) (3.20) 
о 

which shows that the 'normalization constant' becomes very smal l at a 
rea l momentum к close to a zero of fc (k) [pole of Sji(k)] . However, the 
magnitude of the leading term in the sma l l - r expansion of cp is fixed by 
its energy-independent boundary condition (3.3), which in essence fixes the 
amplitude of cp inside the potential region at the same value for all energies. 
Consequently, the smal l normalization constant near a resonance must 
indicate a decreased amplitude of the wave function in the external region: 
although both u(k, r ) and cp(k, r ) are continuum functions which oscillate at 
large r, they do their best to look like bound-state wave functions near a 
resonance energy, by making their internal amplitudes much greater than 
the external ones if a zero of the Jost function is nearby. 
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Be fore considering the effects of these poles on the phase shift in more 
detail, it is wel l to recal l that because the asymptotic functions f± (k, r) 
depend in an essential way on к rather than on k2, we were led automatically 
to consider S£ as a function of к rather than of E. Of course, S f (k) = S£ [k(E) ] 
is a function of E if it is a function of k, but because к = (2 шЕ ) 5 has a 
square root branch point at E = 0 ( ' threshold' ) , S<i(E) does also. By S£ (E) 
and Sf(k) we shall mean two different functions distinguished by their 
arguments, which have equal values at corresponding values of their 
arguments. However, because E = k2/2m is the same for ± k, we must as 
usual introduce for S£ (E) a branch cut and two sheets of the Riemann 
energy-sur face to correspond to the single sheet of the k-plane. Trad i -
tionally, the cut (usually called the physical cut, to distinguish it from cuts 
associated with branch points on the imaginary k-axis of the type noted 
above for the Yükawa potential) is taken from E = 0 to E + oo along the 

positive real axis, so that the upper half of the k-plane is mapped onto the 
f irst E-sheet (called the 'physical sheet') and the lower half onto the 
second E-sheet . Thus a resonance po le -zero pair which straddles the 
positive real k -axis is also found at Ep and E z = Ep in E, but on opposite 
sides of the cut, with the zero on the physical sheet and the pole near to it 
on the second sheet, reached from the zero by passing directly through the 
cut (rather than by passing around the branch point). Since a pole at kp 
always implies a zero at -k p and hence at the same position in E, but on the 
other sheet, the E -p lane picture corresponding to the k-plane of F ig . 11 
is shown in F ig . 12, in which both the zeros just above the real k -axis are 
on the physical E -sheet (the one reached from the other by a path passing 
around the branch point) and their poles are at these same E-positions, but 
on the second sheet. The upper half of the imaginary k -ax is is the negative 
E - a x i s (bound states) of the physical E -sheet and the lower imaginary k -ax is 
is the negative E - ax i s on the second E-sheet ; consequently, the bound-
state pole and zero are also 'on top' of one another in E. The crucial 
point is that any point near the positive real k -axis (the physical scattering 
region) is also near the upper r im of the cut along the positive real energy 
axis, whichever E -sheet it is on; a po le -zero pair which causes a reso -
nance at positive rea l к also, of course, produces it at positive real E. 

FIG. 12. E-plane corresponding to the k-plane of Fig. 11 
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Incidentally, it is worth noting that the symmetry property (3.18), 
S^ f -k* ) = s(k), which relates the values of S at two points on the same 
E -sheet [same Im (k ) ] , in energy becomes 

S* (E* ) = S(E) (3.18a) 

i. e. S is a real analytic function of E. If Re (E) > 0, Eq. (3.18a) relates 
its values on the same sheet on opposite sides of the cut and, as E moves 
onto the cut, gives the discontinuity across the cut as 2 Im [S(E) ] . If E is 
real and negative, on the other hand ( i . e . below the threshold branch point), 
Eq. (3.18a) ensures that S(E) is real (and hence 6(E) is pure imaginary) on 
each E-sheet . Consequently, the residue of S(E) at any bound state pole 
must be real , and that of S(k) (which is on the imaginary k -ax is ) must be 
pure imaginary. 

To see explicitly how such pairs affect the phase shift, the simplest 
' local ' (and unitary) approximation to ЭЁ(к), valid near a pole at к = kn and 
its conjugate zero at k * , is S { (k) = S j (k ) (k), where S® is the slowly 
varying 'background' part of S, and 

fn ) к" - к 
s r ( k ) = ïï7Tir < 3 - 2 1 ' 

the 'B re i t -W igner ' o r one-pole approximation in the k-plane. Since the 
resonant part 6n of the scattering phase shift is half the phase of this 
complex function, it is given (within the narrow energy range 
I к - Re (kn) I < | Im (kn) | indicated by the dashed curve) by the simple 
geometrical construction of F ig . 13, which shows how 6n(k) increases 
rapidly by about i as к passes through the narrow 'gate' formed by the 
pole and zero of the resonance. 

i k < f T ) *Re(k) 
V ' * " / \ k„ 

\ 

FIG.13. Geometrical construction showing 6 n (k ) as a function of к 

It should be pointed out that, although all forms of the 1-pole approxi-
mation must, of course, have the same pole, there is no 'best' numerator 
function and different ones are employed for different purposes. Ours 
was chosen to satisfy unitarity (so the resonant phase shift 6n is real ) and 
to exhibit directly the role played in its energy dependence by both the pole 
and the zero. Its main defect is in its fai lure to satisfy the condition 
S ( n ) ( - к ) = 1 /S ( n ) (k ) , important near к = 0, which is reflected in the fact 
that ón( 0) is not zero. If the k - range covered by the resonance includes 
the origin, Im (kn) ~ Re (kn), this becomes a serious defect. We discuss 
below a variety of ways of rectifying it, the simplest of which is to include 
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the left-hand po le -zero pair of F ig . 11 as a second factor (note that this 
cannot be done in the E-p lane ) , to give 

,<n) _ _2i<6n + 6n> _ /к* - k V - k n - к 
ч Ф г л ^ ; (з-22) 

The second factor is seen f rom Fig . 14 to have a negative phase, which is 
the ( - k ) image of ó„(k), so that only its 'tail ' extends to positive energies, 
but with just a large enough amplitude to allow the two to cancel one 
another at к = 0. However, the resulting total phase shift is given in terms 
of the pole parameters by 

- 2 k l m ( k n ) 
U n = |k n| 2 -k 2 i 3 - 2 3 ) 

Im(k) 

( . / 

О 

(a) (b) 

FIG. 14. (a) Poles and zeros of Eq.(3.22). (b) The corresponding phases 6„ (k) and (k) 

which, although it does vanish at к = 0, does so linearly in k. Hence this 
2-pole approximation may suffice for s -waves , but is c learly not adequate 
for higher partial waves if it is to be believed near threshold. 

A po le -zero pair on the imaginary k-axis has a significantly different 
effect on the phase shift, fo r threshold then stands exactly in the middle of 
their 'gate1, the influence of which on 6 is in a sense reduced by half. In 
this case it is convenient to choose 6n = 0 at к = 0, in which case the 1-pole 
approximation to S (к), when the pole is on the lower imaginary axis at 
к = -i(3, becomes 

2i6n 1 + i tan 6n ifi„- к 
e = — г = ^ r n ; <3-24> l - i tan 6n ipn+ к 

o r 

tan 6n.= k/0n (3.25) 

Consequently, the contribution of a po le -zero pair of this type to б (к) is a 
phase - r i se of only тг/2, as indicated in Fig.15, half of whichis accomplished 
between к = 0 and к = |3 ; it is most appropriately thought of as the second 
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or upper half of a curve like ôf,(k) of F ig . 14 (b). Incidentally it is interesting 
to note f rom Eq. (2.26) that Eq. (3.25) is the scattering length or zero -
ef fective-range approximation, giving a 6n(k) which vanishes linearly in к 
at the origin. As an approximation to 6(k) itself, it can only be valid for 
s -waves , and then only at very low energy, but as a component of the net 
energy dependence of the phase shift, it does correctly (at any energy and 
for any A) describe the contribution of a pole on the negative imaginary 
axis. 

•• к 

i о 

Í2 

77" 

( a ) (b) 

FIG. 16. (a) Phase shift produced by two'virtual state'poles, (b) Phase shift produced by one virtual and 
one bound state pole 

Similarly, putting the pole at + i|3n we see that a bound state of the 
system contributes a net decrease of 7r/2 to the phase shift, half of it again 
occurring for 0 < к < j3n, which in terms of the binding energy В of the 
state is 0 < к < (2 m B ) i ; a very weakly bound ( s -wave ) state causes the 
phase to decrease rapidly by ж/2 very near threshold, whereas a deeply-
bound state (any SL ) spreads its ж/2 over a large energy range. Since bound 
states are the only upper-plane poles, they are the only ones which can make 
a negative contribution to the energy-derivative of the phase shift, dó/dE. 

Incidentally, the shift f rom a phase increase of ж/2 to a phase decrease 
of ж/2 as a pole moves f rom the lower half to the upper half of the imaginary 
k -ax is is an alternative statement of Levinson's theorem, for, as we found 
above, a resonance can become a bound state only by moving from the 
lower half plane through the origin and onto the upper imaginary axis, and 
it necessari ly contributes a net phase-decrease of ж by so doing. 

A s wi l l become c lear from examples given below, poles on the 
imaginary k -ax is almost always occur in pairs, either with both poles 
below the origin (this happens only for s -waves ) or one above and one below. 
Their phase shift contributions are additive and produce results of the 
kind indicated in F ig . 16 for <5(1>(k) + 6(2)(к), the rapid r ise or fal l at low 
к being due to the pole nearest the origin and the s lower r ise at higher 
energy coming from the further pole, which we have put in the lower half 
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plane, as is the case for i = 0. Fig.16 (a) would seem to predict that 
6(k) r i ses through ir ¡2 fo r a potential with an almost-bound s-state. As we 
saw in the discussion of F ig . 10, however, the phase actually turns over 
and decreases before reaching тг/2 for a square -we l l or Woods-Saxon 
type of potential. This is a useful warning that the nearest-pole approxi-
mation is not always adequate, especially near threshold, where the 'back-
ground phase' also has a k2£+1-dependence and in this case is exactly large 
enough (e. g. - kR if the potential is cut off at r = R) to prevent the phase 
shift curve of F ig . 16(a) f rom rising to n/2. 

Finally, before looking at examples, we consider how Levinson's 
theorem is related to the zeros of the Jost function. F rom 

~Vk> i i 

f { (k ) = e I ££(к) I (3.19) 

and the symmetry f j ( - k * ) = f £ ( k ) we obtain 
ô * ( - k * ) = -ô j fk ) (3.26) 

i . e . ôji(k) is odd for real k, as was noted ear l i e r f rom its threshold be -
haviour; in s imi lar fashion |fc| is even in k. Rouche's theorem states 
that 

f1 

r Â d k = n (3.27) 
t i 

where n is the number of zeros of f£ (k) enclosed by the contour. If we take 
the contour to be the rea l k -ax is plus a semicirc le in the upper half plane, 
then underthe conditions (2.1) Newton [1] shows that f f (k ) is given by the 
Born approximation, f c (k) -» 1 +c/k along the large semicircle, so that as 
its radius tends to infinity its contribution to Eq. (3.27) vanishes. Then, 
because of the above symmetries, the |f { | contributions cancel on the two 
halves of the real axis, and those from 6 { add, giving 

oo 

-Jó¡(k)dk = б { (0 ) - 64(oo) = mr (3.28) 

0 

but, as we have seen, n is just the number of zeros on the upper imaginary 
axis, i . e . the number of bound states. 

3.2. Examples of pole distributions 

F rom the preceding section we see that the translation of physics into 
complex-plane mathematics which emerges is that any potential V ( r ) 
determines a function S { (k) ( for each partial wave), which has a certain 
distribution of poles and zeros in the complex k-plane. If a po le -zero 
pair occurs close enough to the positive rea l axis, it wi l l 'cause ' a reso -
nant r ise in the phase shift ô£(k). Furthermore, if the potential is made 
a little more attractive, the resonance energy wi l l decrease, so Re(kn) 
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must decrease. Im (kn) wi l l also decrease, fo r the resonance necessari ly 
becomes nar rower as its energy decreases . In fact, if the pole is at 
kn = an - i/3n in the k-plane, it is at E 0 " iV/2 = k„/2m = (a2 - j32)/2m 
- i a n 0 n /m in the energy plane, and from the fami l iar fact that r ~ k g i + 1 

near threshold, where k2/2m = EQ, we conclude that the pole motion near 
the origin is determined by the centrifugal b a r r i e r to be 

0n ~ « n (3.29) 

Thus for Í > 0 the centrifugal b a r r i e r causes the pole to approach the 
origin tangent to the rea l axis. The resonance width decreases to zero 
just as the pole reaches the origin, where it then collides with its partner 
coming from the other side of the imaginary axis at -k'n , one 'scattering' 
down along the imaginary axis and one up it into the upper half plane where 
it is a bound state, as indicated in Fig . 17(a). (The zeros, meanwhile, are 
following complex conjugate trajectories. ) Although they of course lose 
their identity at the collision, if the potential is made slightly absorptive 
they 'miss ' , and one finds that it is the left-hand pole which becomes the 
bound state even though the right-hand one is the resonance. In the s -wave 
case, on the other hand, which has no centrifugal ba r r i e r , the poles meet 
(as the potential is strengthened) on the imaginary axis a finite distance 
below the origin (Fig . 17(b)), generally near the point - i/R, where R is 

( a ) ( b ) 

FIG.17. Pole motion caused by the centrifugal barrier (a) for £ > 0, (b) for 2 - 0 

the ' range ' of the potential, appropriately interpreted (e. g. R = ju"1 for a 
Yukawa potential), if the potential itself has no surface ba r r i e r . A f ter 
collision, the'left-hand' pole moves up the imaginary axis and becomes a 
bound state by passing through the origin alone, causing the low-energy 
phase shift behaviour shown in F igs . 16(a) and 16(b), while on the imaginary 
axis below the origin, it is known as a 'virtual state' (e.g.. the singlet 
state of the deuteron). It is a wel l -def ined pole, of course, but in the 
energy plane is at a negative energy on the second sheet, which is why it 
fai ls to produce the customary resonance effects, at a definite positive 
energy. The fact that the s -wave poles never approach the positive k-axis 
more closely than l/R also explains why the square -we l l resonances of 
F ig . 8(a) are so weak, for, f rom the 1-pole approximation (3.21), one 
finds that the maximum positive slope d6/dk contributed by the resonance 
in this case is dón/dk = R, which is exactly cancelled by the background-
phase contribution d(-kR)/dk = -R ; it is only when the pole begins climbing 
the imaginary axis that it gets close enough to the physical region to cause 
a significant phase r ise . 
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This behaviour is nicely illustrated by the work of F e r r e i r a and 
Teixe i ra [8 ] , who obtained numerically the pole pattern for an attractive 
1 /г potential cutoff at r = b, and studied its behaviour as a function of b, 
which in this case serves as both a strength and a range. Figure 18 shows 
their results for the s -wave . Since each pair of poles in the lower half 
plane wi l l eventually lead to a bound state if the potential strength is made 
great enough, they could be labelled by the radial quantum numbers of the 
bound states. F e r r e i r a and Teixeira have chosen the other alternative, of 
labelling them by the asymptotic positions they asume when the potential is 
turned off, b - »0 . Since there is rio scattering in this limit, the poles must 
be f a r f rom the physical region, and they are found to recede to the equally-
spaced points (±N7r/2 - ioo), with N even for even i andoddforodd. Anexactly 
s imi lar behaviour is found for the poles of the delta-function potential 

FIG. 18. Poles for the S-matrix for s-wave scattering by a screened attractive Coulomb potential of range b. 
The values of b are shown on the curves. The trajectory N = 0 is always on the imaginary axis. Each 
trajectory has a symmetric one for negative values of Re(kb). After two symmetric poles reach the imagi-
nary axis as b increases, one moves upwards and the other moves downwards along the imaginary axis. 
(Taken from J. math. Phys. ]_ (1966) 1207) 

whose zeros are shown in Fig . 7(b). As the 'coupling constant' vanishes, 
the poles and zeros move off to ±ioo, where they succeed in exactly cancel-
ling the essential singularity at infinity exp-2ikR. In the opposite extreme 
of infinite coupling constant, the b a r r i e r becomes completely reflecting; 
the resonances become infinitely narrow and the poles and zeros cancel 
one another in pairs on the rea l axis, leaving only the reflection factor 
S = exp-2ikR. 

F igure 19(a) shows the pole trajectories for the p-wave in the cutoff 
Coulomb wel l . Their behaviour near the origin ref lects thé existence of 
narrow resonances there, which may be thought of as 'material izing ' at 
an energy somewhere near the top of the centrifugal b a r r i e r (F ig . 3(a)) and 
then moving down in energy as the wel l is made more attractive. This is 
accomplished neatly in the complex plane by the pole always 'being there' , 
but remaining f a r off the rea l axis when the real part of its energy exceeds 
the top of the b a r r i e r . Following the trajectories of F ig . 19(a) 'backwards ' 

29 
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FIG. 19(a) Trajectories of the poles for p-wave scattering by attractive potentials. The values of the 
range b are indicated on the curves. All trajectories enter the imaginary axis at the origin, and then run 
upwards and downwards along the imaginary axis. (Taken from J. math. Phys. 7 (1966) 1207) 

FIG.19(b) d-wave poles for attractive potentials. As b increases the complex poles move towards the 
origin, and then follow the imaginary axis. Those which run along the negative imaginary axis pass again 
to the complex plane, describing "semicirles", and turning back to the imaginary axis. When 6 -+«> there 
will be poles on the imaginary axis and at the points т j /3 --f-i. (Taken from J. math. Phys. T_ (1966) 
1207) 

(decreasing b), we see that indeed at a momentum near the top of the 
b a r r i e r the poles move away from the rea l axis. Being above the ba r r i e r 
they are then s imi lar to s -wave poles, so as b is decreased further they 
follow closely along the s -wave trajectory at a distance ~ 3 / 2 b from the 
rea l axis and finally plunge decisively into the depths of the lower k-plane, 
losing their individual identity as they become a part of the 'background 
phase ' . 
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This is a typical example of a general result which seems to emerge : 
for a pole in the k-plane to have a strong individual effect on the phase shift 
6(k), it must lie c loser to the real axis than the reciprocal range of the 
force, fo r only in this way can it win out against the decreasing background 
phase 6 B — к R. Once a pole gets further than this off the real axis, it 
simply becomes a part of the background itself . It is just these f a r -o f f 
poles which normally prevent the phase shift f rom decreasing at the 
Wigner limit ( e . g . the low-energy poles in the hard-sphere case for 
i > 0), and it is not hard to see that a distribution of them f a r f rom the 
rea l axis, with equal spacing between their real parts as in F igs . 18 and 
19 for large N, is precisely what is needed to cancel out the exp-2ikR 
factor in S(k) and give a phase shift which tends to a constant as к oo. 

Indeed, for a general cutoff potential the asymptotic pole distribution for 
s -waves is found to be [1] 

Re (kn) ±n?r/R 

(3.30) 
Im (kn) const. X log(n) 

F i g . 19(b) shows the d -wave poles, which are 'tangent' to the real axis 
out to higher energy than the p -wave ones because of the higher centrifugal 
b a r r i e r . 

FIG.20. Purely imaginary poles for p-wave scattering by attractive potentials. The points А. В, С give 
the values of b for which the poles reach the origin and new bound sutes are formed. As b « the bound-
state poles tend to the values of Im (k) corresponding to the binding energies given by Rydberg formula. 
In the Coulomb limit there are symmetric poles in the negative imaginary axis. (Taken from J. math. 
Phys. 7 (1966) 1207) 

Finally, F ig . 20 shows in detail how the pairs of p -wave poles behave 
as a function of b after they have reached the imaginary axis. In the s -wave 
case the lower pole, which had a 'head start ' , remains further from the 
rea l axis than the upper pole for all values of b, so their joint contribution 
to the phase shift is of the form shown in F ig . 16(b). F igure 20, on the 
Other hand, indicates that the converse is true for the p -wave in this well, 
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i . e . immediately after the poles collide at к = 0, the one on the upper 
imaginary k -ax is moves away from the origin faster than the lower -ax i s 
pole, so in this case (and the same is true for the d -wave ) the bound-
state pole, together with its partner, produces a phase shift contribution 
which is the negative of that of F ig . 16(b), i. e. an increasing phase at low 
energy followed by a s lower decrease at higher energy. When the state 
becomes more strongly bound (approaching its value for a true Coulomb 
field as b -> oo), the lower pole catches up; they become equidistant f rom 
the origin, each being stifled by the other's zero ( i . e . residue ->0), so for 
this potential strongly-bound states contribute nothing to the energy 
dependence of the phase shift. At the moment it is not known whether this 
behaviour is to be expected in general, but it is clearly a point of consider-
able practical importance. 

3.3. Pole collisions 

The phase shift curve of F ig . 10 has the property that at a certain 
potential strength it is tangent to the line ô= ir, and for a l a rge r strength 
it intersects the line at two real momenta, which move apart as the strength 
is increased still further. In discussing the effective range expansion 
below, we shall be interested in these points as poles of cot <5(k), and 
from Fig . 10 it would appear that as a function of the potential depth these 
poles suddenly spring into existence on the real k -axis and then move 
apart along it. This is a very common occurrence in the motion of poles, 
and what really happens is covered by the following two theorems; since 
the poles of interest to us ar ise from zeros of a denominator, we consider 
the motion of zeros instead (see Fig. 21). 

Theorem I: If F(k, X) is analytic in both к and X and has zeros in the k-plane, 
kn(X), it is impossible for two zeros to 'vanish' by colliding with each 
other. 

Proof : (2ni j j C (3kF/F) dk = n(X) 

is the number of zeros inside the contour, and is clearly an analytic 
function of X provided no zero crosses the contour. But it is a constant 
function of X and so cannot change when two zeros collide within the 
contour. 

Theorem II: If F(k, X) is analytic in both к and X in the joint neighbourhood 
of к = 0 and X = 0, then if two of its zeros in the k-plane meet at к = 0 as X 
passes through zero along its real axis, the k - ze ros must approach and 
recede from one another along straight lines passing through the collision 
point, at equal ' speeds ' , and they wi l l 'scatter ' through right angles. 

Proof : The choice of к = 0 and X = 0 for the collision point is purely for 
convenience, and any others would clearly do as wel l . The double Tay lor ' s 
expansion about this point is 

F(k, X) = F(0, 0) + k F i + X F 2 + H k Z F n + X 2 F22 + 2XkF12] + • • • (3.31) 



NUCLEAR RESONANCE REACTIONS 453 

But F( 0, 0) = 0 and, since at к = X = 0 the zero is double in k, F^O, 0) = 0. 
Then in lowest order the zero positions in the k-plane are at 

k ( X ) = ± ( 2 F 2 / F u ) i X l (3.32) 

the other terms clearly giving h igher -order corrections in X¿. Hence the 
two k-values are on a line passing through к = 0, and acquire a factor of 
(i) when X passes f rom positive to negative values, so the line of recession 
is at right angles to the line of approach. More generally, a 3-body 
collision is given by 

kn(X) = c X è e W 3 , n = 1, 2, 3, (3.33) 

etc. f rom which the general situation is c lear : the 'particles ' always 
divide the plane symmetrical ly among themselves, and rotate the paths by 
half the angle separating them upon colliding. 

FIG.21. Two- and three-pole collisions 

Of course, it was crucial that X passed through the collision value 
along a straight line; e . g . thought of as a coupling constant, wel l depth, 
etc. , it wi l l normally be a real number. That F should depend on it ana-
lytically follows in most cases f rom the Poincaré theorem quoted in 
connection with Eq. (3. 3), for X wi l l generally occur as a parameter in the 
differential equation, but not in the boundary condition. 

Incidentally, Theorem II provides a very simple explanation of the 
repuls ion-of - leve ls phenomenon fami l iar fo r bound states. Two bound 
levels are prevented from crossing (as some interaction parameter is 
varied) by the fact that if their pçles did collide, they would have to scatter 
off the imaginary k -ax is , which we found above to be an impossibility in 
the upper k-plane. No such restriction impedes the collision of resonance 
poles. 

Returning to the poles of cot 6(k) in F ig . 10, it is c lear that they didn't 
simply appear on the rea l k -ax is at a certain potential strength; they were 
present even before the curve intersected the straight line, moving towards 
the rea l axis para l le l to the imaginary axis. 

3.4. Two overlapping resonances; double poles 

Although bound levels cannot cross , we have seen in many examples 
that poles in the lower half plane can and do collide if the potential is 
appropriately varied, producing, at the instant of collision, a double pole 
of S { (k ) . None of the collisions in those examples occurred near enough 
to the rea l axis for the poles concerned to correspond to a sharp resonance, 
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however, since the potentials used were not constructed for that purpose. 
A hint as to how a double resonance pole might be achieved can be obtained 
f rom recall ing that a one-dimensional attractive potential, symmetric about 
its midpoint ( e . g . a square wel l ) , has bound states which are successively 
(in energy) even and odd about this midpoint, and that if a repulsive b a r r i e r 
is ra ised up at this midpoint (as, for example, in the ' inversion oscillations' 
of the N H 3 molecule or deformed nuclei), the levels become degenerate in 
pairs - but only in the limit that this b a r r i e r is completely impenetrable. 
Be l l and Goebel [9] have recently generalized this idea to resonances 
rather than bound states by allowing one wal l of the potential wel l to leak; 
specifically, they replaced it by a delta-function ba r r i e r at r = 2R as in 
P ig . 3(b), whose resonance wave functions are successively approximately 
symmetric and anti-symmetric about r = R if the b a r r i e r is quite im-
penetrable. Then by raising a second such ba r r i e r , V ( r ) = c6(r - Rj ) with 
Rĵ  » R(two concentric spherical shells, in three dimensions), they found 
that the resonance poles could be driven together in pairs (one pair at a 
time) fo r finite values of c, producing double poles of S as they collided. 
Such a double pole near the real axis affects the phase shift very much in the way 
two nearby poles (overlapping resonances) would, merely producing a 
smooth and rapid r ise of 2ir rather than тг, but it radically alters the decay 
rate of the resonant state, which becomes (1 - a F t ) e " r t , where a depends 
explicitly on how the resonance was excited, i . e . on the shape of the 
incident wave packet; a-» j if the bandwidth of the packet is much la rger 
than Г , which is necessary if the decay curve is to be clearly observed. 

In a rather more formal context, Lynn [10] has noticed that S-matr ix 
poles can be made to collide by forcing two R-matr ix poles close together -
something which happens, for instance, in heavy nuclei, where the level 
density is high. Considering the 1-channel s -wave case for simplicity, 
the relation between R and S is 

S ( k ) = e - 2 i k a 1 + i k a R < E ) f 3 34) b o W e 1 - i kaR (E ) 

if the potential is cut off at r = a. R(E) is real for real E, so Eq. (3.34) is 
simply a transformation which maps the real axis of the complex plane 
(along which R moves as E is varied) onto the unit circle (along which S 
moves as E is varied) in such a way that one t raversa l of the entire real 
axis by R produces one complete circuit of the unit circle by S (i. e. phase 
r ise of тг). In algebraic terminology, since 

tan (6 +ka) = ka R(E) (3.35) 

where 6(k) is the phase shift, a rapid increase in R ( R ' ( E ) is positive 
everywhere on the real energy axis) causes a rapid increase in 6 and, 
in particular, an isolated pole of R(E) (they occur only on the real axis) 
causes a rapid rise of ж in (6 +ka) , i . e . a resonance, whose width is 
determined by the slope R ' ( E ) near the pole, that is to say by the residue 
of the pole. If two resonances overlap, however, the shape of R(E) between 
them may be so drastically altered that the one-to-one relation between 
poles of R (E ) and resonances breaks down completely, with the result that 
the widths of the observed resonances (there are still two of them) are no 
longer even approximately given by the residues of the R -po les . 
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That is, in the 2-pole approximation, 

кат? кат? Г,/2 Г/2 
+ - i J ^ + l T l (3.36) 

where, if we neglect the variation of к over the energy range covering the 
two resonances3 , T^ and Г2 are the widths which these two resonances 
(at E;L and E2 ) would have if they did not overlap. 

The poles of So(k) are then given by the zeros of the denominator of 
Eq. (3.34) 

, -, » ( E ! - E ) ( E 2 - E ) - j r ^ E g - E ) - h ( . E f E ) 
1 - lkaR = _ _ _ _ _ (3.37) 

The most interesting case, and also the one in which the a lgebra is most 
transparent, is that of equal residues for the R-poles , 1} = Г2, in which 
case the S-poles are at 

Ep = ¿ (E1 - | Г + Е 2 - | Г ) ± | ( ( Е г Е 2 ) 2 - Г 2 У (3.38) 

r 

If I E ! " E2 I » Г, the resonances are wel l separated and the S-poles (which 
both have width Г ) occur directly below the R-po les in the E-plane, giving 
the two separate phase - r i ses of т f o r the resonant part of the phase shift, 
as indicated schematically in F ig . 22(a). The R -matr ix and S-matrix widths 
are the same in this case. If the R-poles are moved c loser together (holding 
Г constant) until the resonances begin to overlap, the S-poles move along 
with them, paral le l to the rea l axis, but getting somewhat 'ahead1 of the 
R-poles , and at | E;L - 3S21 = Г the S-poles collide, giving the double-pole 
resonance shown in F ig . 22(b). A f ter collision the S-poles move vertically, 
maintaining exactly equal rea l parts (this would not quite hold true if we 
had retained the effect of threshold by allowing к to vary) and in the limit 
that the R-po les are moved very close together, | E x - E 2 | « Г, one S-pole 
approaches the rea l axis and the other recedes to a distance Г f rom the 
rea l axis. In this case we are clearly dealing with two resonances at 
exactly the same energy, one broad and one very narrow. The co r r e -
sponding phase shift, F ig . 22(c), shows a slow r ise of тг/2 due to the ' lower 
half ' of the broad resonance, on top of which the rapid r ise of тг f rom the 
narrow resonance is superimposed, followed by the second 7r/2 of the broad 
one. The curves of sin26r, i . e . k2<r^, are given in Fig . 23, ( for simplicity 
we assume ka « 1 and so neglect any background phase from the f irst 
factor of Eq. (3 .53) ) indicating that in case (c) the 90° 'background phase' 
provided by the broad resonance means that the effect of the narrow 
resonance' appears as a sharp dip in the cross-sect ion, instead of a sharp 
r ise . It is, of course, the same dip which appears between the two maxima 
in (a) and (b), but its wal ls are greatly steepened in (c) . To indicate how 

The present considerations are of greatest relevance to the narcow compound-nucleus type of 
resonance, for such resonances are much more likely to occur close together than the single-particle potential 
resonances discussed above. 
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confusing the analysis of experimental data can be in such a case, Fig.23(d) 
shows how the cross -sect ion for the same pair of poles as in (c) is changed 
by adding a constant background phase of about +45°. The total phase then 
reaches 90° below the energy of the narrow resonance, which consequently 
rides on the descending flank of the broad one. If one is guided by the two 
maxima in the cross-section, the two resonances appear to occur at different 
energies, but if proper ly analysed and the background phase extracted, 
they will , of course, be found at the same energy. 

(a) (b) ( c ) 

277" 

res it 

xlr/2 ° Ж — 

FIG.-22. Two resonances: phase shifts and corresponding S- and R-poles 

FIG. 23. Curves of sinzôn, i . e . , k !o2, corresponding to Fig.22 

Quite aside f rom such additional complexities as this, this example 
seems to us to provide a compelling argument for the use of S -matr ix 
rather than R -mat r ix parameters to describe overlapping resonances, for 
the influence of an S-pole on the phase shift is seen to be the same whether 
another pole is nearby or not (though the phase r ise of the broad resonance 
is, of course, 'split in two' in (c) by the intervention of the narrow reso -
nance). This is because, as we shall see f rom Eq. (3.58) below, the phase 
shifts associated with different S-poles are additive, whether they overlap 
or not. The effects of R-po les , on the other hand, distinctly interfere with 
each other when they overlap, so that although the width of an isolated 
resonance is given directly in terms of the residue of the corresponding 
R-pole, this is not necessar i ly true at all if the resonance is overlapped 
by another. 

Exactly how this ' interference' comes about is evident f rom Fig . 24. 
Recalling that as R (E ) increases rapidly by an infinite increment, the phase 
shift increases rapidly by 7r, F ig . 24(a) indicates a typical R -curve for two 
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isolated resonances, indicating that the shape of R (E ) 'near each pole is 
very little influenced by the other fa r -away pole, so that the shape of each 
resonant phase r ise is determined only by the residue at the corresponding 
R-po le . On the other hand, if the poles occur close enough together, as 
in (b), the curve between them is forced to r ise by an infinite amount over 
the energy-range (E2 - Ex). It is this increase in R (E ) which then co r re -
sponds to the nar rower of the two resonances, whose width, when | E2 - E-J 
is much smal le r than the residue at either pole, is c learly determined by 
I E2 - Ej I rather than by these residues4 . 

It thus becomes c lear that a one-to-one association of R -matr ix poles 
(or their corresponding states) with resonances is only possible for com-
pletely isolated resonances. When two R-po les overlap severely, they 
necessari ly produce one narrow and one broad resonance by pooling their 
resources . Their two 'central halves' combine to produce the narrow 
resonance, and the remaining outer tails are responsible for the broad 
one, which explains why the width of neither resonance is given by either 
of the pole residues. This is of course directly connected with the fact 
that the resonances in this case do not occur at the points where the phase 
of the second factor of Eq. (3.34) is 90°, i . e . at the poles of R(E) , where 
the curves of F ig . 23 have their maxima; it is the slope of 6(E) which 
marks the resonance, so that in F ig . 23(c) the broad resonance indeed 
occurs where the phase is 90°, but the centre of the narrow one occurs 
where it is 180°, i . e . at a zero of the cross-sect ion. 

If N rather than 2 R-po les (with roughly but not necessari ly exactly 
equal residues) are 'squeezed together', N - l of the resonances wi l l c learly 
become narrow, and only one S-pole (a composite of the outside tails of 
the two end R-po les ) wi l l drop away from the rea l axis to produce a single 
broad resonance. The mathematical reasoning is not unlike that of the 
Brown-Bo ls te r l i model of the giant dipole resonance, in which a pairing 
interaction separates one pole of a cluster widely (along the real axis in 
this case) f rom the rest. 

Finally, we note f rom F igs . 23(c) and (d) that two overlapping reso -
nances can produce readily-distinguishable effects on the energy-dependence 
of the cross-sect ion, provided that their widths are very different - i . e . 

R i i 

(a) (b) 
FIG. 24. Interference of levels in the R-function 

4 This will be true, of course, whether the residues of the two poles are equal or not. 
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that their S-poles are widely separated vertically. The only case in which 
two resonances are likely to be very difficult to distinguish is that of 
nearly-coincident S-poles, i . e . overlapping resonances of nearly equal 
widths (Fig . 23(b)). The exact positions of such poles wil l be difficult to 
ascertain from experimental data, and for this reason may, in fact, no 
longer provide the most useful parametrization for the shape of ст(Е). 

3.5. Threshold behaviour and energy-dependent widths; the effective 
range expansion 

There are two situations (apart f rom overlapping resonances) in which 
the 1-pole approximation in the unitary form (2.21) or (3.21) wi l l fail to 
account adequately for the shape of 6j(k) at nearby real energies. The 
f irst is simply the case in which the pole is too far off the real axis to 
dominate over the background; arguments presented above suggest that this 
wi l l occur whenever the inequality Im (kn) « l/R is violated, where R is 
in some sense the range of the force. 

The second case is that in which the resonance occurs at a low enough 
energy to 'overlap threshold1, i . e . if (Im kn) Re (kn). That is, the 1-pole 
approximations used above yield a 6n(k) which is completely symmetric 
about к = Re (kn), so that a fraction of its left-hand 'tail ' extends below к = 0. 
If Im (kn) « Re(kn ) ( i .e. phase of kn is much smal ler than 45°), this is not 
serious, but if a significant fraction of the tail is ' lost' in this way, the 
1-pole approximation wi l l certainly not be accurate over the full width of 
the resonance, as F ig . 25 makes clear, fo r it seriously violates the thres-

hold condition, 6jf(k) ~ k2 i + 1 near к = 0. This additional constraint not only 
forces the phase shift to zero at к = 0, but also ( for i > 0) holds it near 
zero out to a finite energy, thus steepening the resonant r ise when it 
finally does appear. Because this steepening effect occurs only on the 
low-energy side of the resonance, the cross -sect ion is distorted from the 
symmetric B re i t -Wigner shape (2.22) to one which is 'nar rower ' on the 
low-energy side than on the high-energy side. 

In other words, if we take the 'background phase1 to mean the difference 
between the two curves of F ig . 25, it wi l l vary over the resonance region 
even more rapidly than the resonant part of the phase shift and so must be 
handled with great care . In fact, in a case like that of F ig . 25, any useful 
approximation must be valid throughout a k-range including к = 0, so it 
may be most advantageous in this case not to separate Sf(k) explicitly into 
1-pole and background parts at all, but to lump them together and instead 

S 

1-pole 
approx. 

к 
FIG. 25. The effect of threshold on a phase shift 
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treat the total phase by an expansion in powers of k. Since it is very 
difficult to ensure the unitarity of such an expansion of S£(k) itself, a 
convenient alternative is to write S,¡(k) in the form D| (к)/0£ (к) ( for rea l k) 
and use a power ser ies expansion for Df(k). By writing S as 

cos + i sin 6. 
S f (k) = - (3.39) 

cos ó£ - i sin 6{ 

we see that not only should Re(D{ ) be even in к and Im (D^) odd, but to get 
threshold right we also need 

Im D„(k) 2i+l 

The simplest approximation satisfying these conditions, the one which 
contains the smallest number of parameters , i s ' 

R e D , = A + B k 2 

(3.41) 
T „ „, 2Í+1 Im D { = Ck 

which in terms of E may be written in the more suggestive form 5 

S f ( k ) » E - E ° - i r / 2 

E - E 0 + i r / 2 
(3.42) 

= E - E0 - i C£ k2e+1 

E - E0 + i C { k2c+1 

with two real free parameters , E 0 and C j . If Г(к0 ) « E 0 , it wil l describe 
a resonance near Eo, and is known as the 'energy-dependent width' approxi-
mation, for it indeed does make the resonance 'wider ' on the high-energy 
side. If thought of in terms of a single pseudo or effective pole, it de-
scr ibes a pole which moves vertically as a function of k, and from a 
diagram like Fig . 13 it is c lear why the approximation works, for as k->0+ , 
the pole and zero approach one another, 'closing the gate' behind it at 
just the rate necessary to give the correct threshold dependence for 6£(k). 

More explicitly, the S f (k) given by Eq. (3.42) actually has 2Í + 1 ' f ixed' 
poles (2 for & = 0), given by the roots of 

E - E0 + iC t k 2 f + 1 = 0 (3.43) 

( f rom the real axis they look like a single moving pole) which, like the set 
of Í poles we found ear l i e r for the hard sphere case, are positioned in the 

It may often be advantageous to factor off an additional 'background' piece of S£ (k) (e. g. a hard-
core factor), as was done in Eq. (3.21), in which case Eq. (3.42) is an expansion of only a part of S f (k ) . 
In this case the 'background' factor must also have the correct threshold behaviour. 
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k-plane in just such a way as to ensure the correct threshold behaviour for 
S£(k). (Because this approximation satisfies both the symmetries (3.16) 
and (3.17), its poles occur in the same type of pattern as those of the 
exact S. ) If threshold is to be attained by brute force of poles, in other 
words, (2Í + 1) is the smallest number which wil l do it. 

If a single narrow resonance occurs within the range of validity of the 
approximation, the inequality 

2Í+1 
C£k0 « E 0 (3.44) 

wi l l be satisfied, and its pole kn (together with a m i r r o r - image one at 
-k'n ) wil l occur among the roots of Eq. (3.43), in energy near E = Eo - i r (k0 )/2, 
and so most readily found by iterations based on (3.44).6 

The remaining (2 Í -1 ) poles wi l l lie much further f rom the rea l axis 
(otherwise 6 would r ise rapidly by more than IT), and in fact wi l l often lie 
outside the range of validity of the approximation (3.42) itself. In this case 
they are not true, individual poles of Sc(k), but mere ly a representation, 
valid near к = 0, of all the distant singularities of S. 

F o r the purpose of obtaining resonance parameters , the practical 
point of importance is that the positions of all these poles, including the 
' r ea l ' one, are determined by the two parameters E0 and Q , so once they 
are obtained from a fit to experimental data, the true pole parameters 
are readily obtained, if desired, f rom the iterative solution of Eq. (3.43) . 

A l l this is, of course, very fami l iar f rom R-matr ix theory for cutoff 
potentials, in which the s ing le -R-po le approximation gives for the S -matr ix 
element, 

S f (k) = E*2l í íS res (k) (3.45) 

where (k) is the hard-sphere phase (with correct threshold behaviour) 
and 

Е - Е 0 - 1 7 2 Р Л к г ) 
S (к) = г—5 (3.46) 

r e s E - E q + Í T 2 P £ ( K R ) _ 

Here y2 (the 'reduced width') and E 0 are constants and P{ (kR), the 'pene-
tration factor ' in the i - t h partial wave, is a known function with the 
correct threshold behaviour, P£ (x ) ~ x 2 e + 1 f o r x « SL. 

Generalizing slightly, a multi-pole approximation of the general form 

D E - E n - i 7 2 P „ ( k ) 

1 E - E 0 + i7 2 P £ (k ) 

seems an attractive one to use for fitting isolated low-energy resonances, 
for, subject only to the condition that P £ ( - k ) = -Р £ (к) and P£ (k) ~ k 2 i + 1 as 

G E. g. if in the p-wave case we write Eq. (3.43) as k2-k2 + ibk3 = 0 with bk0 « 1, the solution near 
kz = k2 -ibk03, through order (bk0)3, is к2 = k2 ( l - | b2k2) - ibk3. 
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к -> 0, its resonant factor possesses both the symmetry properties (3.16) and 
(3.17), has the correct threshold behaviour and contains the two parameters 
needed to fit an elastic resonance. P { (k) should be a function which accounts 
as wel l as possible for the reduction of the wave amplitude as it penetrates 
the centrifugal and/or Coulomb b a r r i e r as wel l as for reflections f rom the 
inside of the b a r r i e r which depend on the surface thickness of the potential 
wel l ( i . e . those s ingle-part ic le effects which also occur in the realistic 
nuclear problem and which it is desirable to separate as much as possible 
f rom the specif ical ly many-body effects associated with the nuclear 
interior ) . Although it must vanish like k2i+1 at low energies, it should 
approach unity as the energy is increased above the top of the ba r r i e r , 
thus permitting the use of Eq. (3.47) fo r higher energy resonances as well , 
if desiréd. In addition, the remaining effects of the b a r r i e r ought to be 
incorporated into the background factor; the experience accumulated over 
the years f rom fitting nuclear resonance data seems to suggest that the 
hard core factor of Eq. (3.45) provides a useful approximation over a 
limited energy range; one expects that the radius R which enters should 
be chosen somewhat smal le r than the nuclear radius, to allow for the fact 
that the reflection is not complete, so that the background phase does not 
descend at the Wigner limit. Of course, if more than one channel is open, 
there is no reason to expect SB to be elastic, but for smal l inelasticity 
the background phase of the diagonal S -matr ix element is probably well 
approximated in the same way. 

Exactly what choice of penetration function P { ( k ) is most appropriate, 
especially if the Yukawa tail of a realistic well is taken into consideration, 
is an open question at the moment; Humblet discusses severa l possibilities 
in chapter 7 of this volume. Clear ly the separation of resonance and 
threshold effects cannot be accomplished completely, nor can it be done 
uniquely, so the choice of function P { (k), and hence the value of the reduced 
widthy2, is to some extent a matter of convention. If a specific convention 
is adopted, however, the energy-dependent width approximation could be 
used for resonances occurring over a wide energy range, even above the 
b a r r i e r height. ( Isobaric analogue states, fo r example, often do this, but 
of course the single-particle potential resonances discussed above cannot. ) 
Near threshold where the energy dependence is severe, Eq. (3.43) would 
have to be solved to determine the actual pole position in terms of E0 and 
y2, but for many-particle resonances at energies high enough so that P j fk ) 
becomes nearly constant, the 'background poles' recede very fa r from 
к = 0, and E0 and y2 give the pole position directly. Of course, for nuclear 
structure purposes it is often the reduced width which is of more interest 
than the 'pole width' Im(k n ) ; in any case the two descriptions (E0, y 2 ) and 
[Re(kn ) ; Im (kn)] = (on , - J3n) are entirely equivalent (once P is chosen) and 
can be obtained from one another as desired. In fact, if the resonance is 
sufficiently narrow, /3n « an , 

2 

P|(e„) m 
(3.48) 

Finally we note br ie f ly that Eq. (3.42) and the effective range approxi-
mation are very closely related, as they must be since both are valid in the 
vicinity of к = 0. By writing 
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or conversely 

cot 6. + i 

cot 6 = 1 - | т у (3.50) 

we see that cot 6(k) is analytic in к throughout the domain of analyticity of 
S(k), even at its poles, except for the points where S = + 1 (б = тг), where 
cot б has poles. One such point is к = 0, where cot ójhas a pole of order 
2£ + 1, which we can remove by considering instead k 2 i + 1cot 6 f (k). Since 
this function is even in к it has a power ser ies expansion in Vfl, whose 
radius of convergence is equal to the distance from к = 0 to the nearest pole 
(assuming S(k) to have no branch points c loser ) . The f irst two terms of 
this expansion, 

, 2i+l . , ,, . 1 , 1 1-2Í ,2 r , . 
к cot 6 { (k) « - -^273 + g r0 к (3.51a) 

are known as the effective range expansion (with a and r0 rea l because of 
Eq. (3.26))which in turn can be used to approximate S,f(k) fo r к sufficiently 
near the origin, 

- - 2 Ï Ï Ï + | r j - 2 i k 2 + ik 2 f + 1 

S.(k)
 a 2 

f - _ J _ + I r l " 2 i k2 . i k2i+l 
2Í+1 2

 0 

(3.52) 

E - E0 + i C,jk2 í+1 

identically the energy-dependent width approximation. Although we 
introduced it as a resonance approximation, it is c learly valid in general, 
within the c irc le of convergence of the expansion (3.51). 

It is useful to reca l l that the radius of this c i rc le is determined by the 
pole of cot б (к) nearest the origin, which is a position in the k-plane at 
which 6 = 0 (mod тг). Such points can occur on the real axis7 and, as 
F ig . 10 indicates, if the potential strength is appropriately varied, may 
even move toward к = 0, forcing the radius of convergence of the effective 
range expansion to zero. Indeed, this happens for any potential at that 
value of the coupling constant which makes the scattering length vanish, 
i . e . when the normal (2Í +1 ) - order zero of б£(к) ~ k 2 { + 1 at к = 0 becomes 
a ( 2 Í + 3 ) - o rder zero. This is because 6(k) = -6 ( -k ) , so its zeros, if 

' Incidentally, this is a reminder that no finite approximation to + 1 cot 6 (k), such as (3.51), is 
adequate to describe two nearby resonances, since they would necessarily force the phase shift up through ir, 
at which energy the entire power series diverges. A discussion of how the approximation can be extended to 
handle two resonances near threshold is given in Appendix A. 
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they approach the origin at all, must do so in pairs , thus increasing the 
order of the ' f ixed' zero there by two when they collide. 

F o r most attractive potentials this seems to occur (as the potential 
strength is increased) in the manner indicated in Fig . 26(a), involving only 
two poles, which after collision mark the energy at which the phase shift 
decreases through я- as a function of energy, and so move further f rom the 
origin as the potential strength is increased. Fo r s -wave scattering by a 
square well , however, the peculiar 'bumps' shown in Fig . 10 cause two such 
pole collisions to occur, at finite k, as the bump becomes tangent to 5 = тг, 
after which two of the poles approach one another along the rea l axis and 
produce a third collision at the origin, when the scattering length vanishes. 
The net result in either case is to give a radius of convergence of the 
effective range expansion and hence of the low-energy form (3.42) of the 

Im(k) Im (k) 

Г 
Re (к) 

1 

J ui 
n 
1 

r 
1 

Re(k) 

( a ) (b) 

FIG.26. Collisions of poles of cot 6(E) 

energy-dependent-width approximation, which oscillates as a function of 
coupling strength (because of successive poles approaching the origin) and 
passes through zero whenever the scattering length vanishes. 

As for poles of S f (k) (points at which cot б = i), in the s -wave case the 
effective range expansion predicts them at 

As a 0 these solutions move f a r f rom the origin and so are surely outside 
the radius of convergence of the expansion, where they are physically 
meaningless. In the opposite extreme, |r0/a| <SC 1, which is near the 
potential strength necessary to give a zero -energy bound state, the solutions 
are pure imaginary, 

Presumably only the second, which is the c loser to the origin, lies within 
the circle of convergence, where it is either a virtual (a < 0) or bound 
(a > 0) state, the latter having a wave function whose asymptotic form is 
exp-r/a. The other pole is much further from the origin; if r0 > 0 it is 
apparently trying to represent branch points or essential singularities of 
S^k) in the upper half-plane, and if rQ < 0, distant poles in the lower 
half -plane. 
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In the p -wave case there are 3 poles, and one readily finds that the 
scattering length is given in terms of the two closest to the origin by 

3 k j + k2 
a = - i — 2 (3.55) 

In the case of a very weakly-bound state, with kj and k2 on the imaginary 
axis on opposite sides of the origin, the phase shift starts downward from 
its к = 0 value so that a > 0, meaning the upper or bound-state pole is 
slightly further f rom the origin than the lower one, in agreement with the 
result of F e r r e i r a and Teixeira (F ig . 20). They evidently nearly cancel 
one another's effects on the phase shift, however, for even though together 
they contribute a rising phase near к = 0, the total phase shift decreases 
with k. 

Finally, we reiterate that, although the effective range expansion is 
always valid near k = 0 (within the circle of convergence), it represents a 
low-energy resonance only if C t k o i + 1 « E0 , in which case the resonance 
parameters Ce and E 0 are simply the scattering length and effective range 
in disguise. 

3.6. Pole expansion of Sc(k) 

S f (k) for a cutoff potential is meromorphic in к and so is determined, 
to within an entire function, by its pole positions. Furthermore, because 
of the rate at which its poles recede from the origin with increasing n 
(Eq. (3.30) ) , Sjfk) possesses two simple expansions which exhibit this 
dependence on its poles explicitly. One is the Mi t tag -Le f f l e r sum over 
poles discussed by Humblet and Rosenfeld [2 ] , 

S/k) = 1 + Q/k ) + (3.56) 

n=l n 

the sum being over all poles in the k-plane; Qj (k) is the entire function 
which is not determined by the poles, whose slow energy dependence, 
together with the poles f a r f rom the real axis, describes the background 
part of the phase shift. Note that the zero positions do not appear explicitly 
in Eq. (3.56) but are, of course, determined by Qc(k) and the residues at 
the poles, Rn. The symmetries (3.16) and (3.17) impose very complicated 
conditions on Q{(k) and the residues. 

The other expansion [1] is the Ning Hu or product representation, 

n=l n 

where again the product is over all the pole positions of S f (k) . In this case 
the entire function exp-2ikR is given explicitly in terms of the cutoff 
radius R, the symmetries are automatically satisfied because of the pole-
zero pattern (F ig . 11) arid S is written as a product of factors, each one of 
which is individually unitary. A l l the few-pole expansions we used above, 
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in fact, we re simply truncations of this expression. It has the further 
attractive feature that by taking logarithms one automatically gets an 
expression fo r the phase shift as a sum over contributions f rom the indivi-
dual po le -zero pairs , 

a two-pole approximation to which was considered in Fig . 14. If a single 
pole occurs near the rea l axis, Eq. (3.58) gives an expression for the 
background phase if we remove this resonant contribution from the sum; 
since all the poles but the finite number of bound states contribute rising 
phases, this explains in pole terms why the background term generally 
decreases with momentum at a rate smal le r than the Wigner limit. 

In spite of these attractions, Eq. (3.57) has two serious practical dis-
advantages. One is that it has no known generalization to the N-channel 
case (with the exception of N = 2), and it does not exhibit threshold behaviou 
in any obvious way. In fact, if a smal l -k expansion is made, Eq. (3.57) 
appears to contain all powers of k, and the f irst 2i of them have vanishing 
coefficients only if the poles kn are distributed in a very special way; e. g. 
the coefficient of the l inear term is ( -2 ÍR + 2E k^1), and must vanish for 
any i > 0. Of course, these conditions can be satisfied even by a finite 
number of poles if the ones further f rom the origin are 'moved1 somewhat 
f rom their true positions; (2£ +2 ) seems to be the minimum number of 
poles needed, one more than the effective range expansion, which econo-
mizes by replacing a f a r - away pair symmetric about the imaginary axis by 
a single pole on the axis. 

Actually the existence of the complete expansions (3.56) and (3.57) is 
somewhat irrelevant for the purposes of fitting resonance data, since the 
infinitely many f a r - away poles serve only to determine the uninteresting 
background phase. The more relevant question is the usefulness of their 
few-pole truncations to approximate S f (k) locally in a region near the real-
axis, and in this regard it is interesting to note that the few-pole truncations 
of the two expansions are in a sense complementary. That is, the truncated 
product expansion is automatically unitary but certainly gives the residues 
of the poles (which are determined by the positions of all the other poles), 
as wel l as threshold behaviour, incorrectly, whereas the truncated sum 
expansion is unavoidably non-unitary, but has the correct residues for 
those poles it retains. The product expansion does have the advantage that 
if 'extra ' poles,beyond the resonance one, are kept and moved somewhat 
f rom their true positions, they can give an approximation to Sj(k) (the 
effective range expansion) which satisfies all the necessary symmetries 
and behaves properly at threshold; provided the resonance pole occurs well 
within the radius of convergence of the expansion, its residue wil l also 
be given accurately. 

4. M A N Y - C H A N N E L RESONANCES 

00 

(3.58) 
n=l 

In many respects a many-channel resonance is merely an extension of 
the one-channel case, more complicated but not basical ly different, which 
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is why we have devoted so much time to one-channel analyticity. There is, 
however, one entirely new element in the many-channel situation, which is 
a mechanism for resonances quite different f rom the t rapp ing -by -a -ba r r i e r 
which causes single-particle resonances. This is the so-cal led 'bound state 
in the continuum' or 'bound state in a closed channel' mechanism, in which 
the state which appears as a resonance in an open channel is ' rea l ly ' a 
bound state of a higher, closed channel. It is a mechanism which can only 
operate if there are two or more coupled channels, and in the limit of zero 
coupling produces a resonance of zero width. It thus provides a very 
natural explanation for narrow resonances and is presumably the mechanism 
behind all narrow, many-particle, compound nucleus resonances. 

4 .1 . Introduction 

The basic physical ingredient of the many-channel situation is the set 
of rea l energies 

S 1 < S 2 < $ 3 (4.1) 

at which the successive (2-body) channels open up, in terms of which the 
channel momenta are defined by 

k a ( E ) = s i 2m a ( E - ga ) (4.2) 

W e shall use this definition for all E, complex as well as real, with the 
phase fixed by insisting that for E on the physical region of the real axis, 
ka is positive real if E > (channel a open) and positive imaginary (exactly 
as in the 1-channel case) if E < $a (channel a closed). m a is the reduced 
mass of the two fragments which define channel a, and the zero of energy 
is often chosen at the lowest threshold i v 

With the definition (4.2) the meaning of incoming and outgoing waves Is 
unambiguous f o r any channel, open or closed, and, as Humblet has dis-
cussed in chapter 7, for example, the S -matr ix elements Sb a (with rows 
and columns labelled by the channels) can be defined in terms of the ratio 
of outgoing flux in channel b to that of the incoming flux in channel a, in 
complete analogy to the 1-channel case. Since the flux necessar i ly depends 
on the channel momenta themselves (rather than on their squares ) , the 
matrix elements Sb a (E) have square-root branch points at all thresholds $ i . 
It is customary to take their cuts along the real energy axis f rom $¡ to + л , 
so that, as in the 1-channel case, the two sheets of the energy Riemann 
surface associated with $a are distinguished by the sign of Im (ka ) . Each 
sheet of the full sur face is then labelled by the sequence of signs of Im k1# 

Im k2, etc. , e . g . , ( + + - + - . . . ) ; if there are M channels in all, there are 
M entries, with two choices for each, or 2M sheets altogether. 

Fortunately only a smal l fraction of them are normally of physical 
interest, the principal one being the 'physical sheet', labelled by ( + + + . . . +). 
If the cuts are positioned along the positive real axis as indicated in Fig.2 7, 
then crossing the rea l axis f rom P at an energy between and $ 2 c ro s se s 
only the $i-cut and so only changes the sign of Im k j , exactly as in the 
1-channel case . The sheet reached in this way is 'near ' the physical 
sheet P along the interval of the rea l axis between êi and it i s labelled 

30' 
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by ( - + + . . . +), o r more simply as E^. Similarly crossing the real axis 
between and $2 lead? across both the $1 and S 2 c u ts> to - + + . . . +), 
o r E2 , etc. The physical sheet P, together with the sheets E a reached 
from it by crossing the rea l axis between thresholds are the most important 
ones physically because they possess regions near to the 'physical region' 
where scattering experiments are done, the upper edge of the rea l axis, 
E + i e , as reached from P . 

W e are concerned, then, with the set of complex functions Sb a (E) and 
their analytic properties throughout the many-sheeted E - s u r f a c e . It should 
be emphasized that there is only one set of these functions, which has 
nothing to do with channels being open or closed, (the concept is not even 
defined off the real axis) and in fact are continuous functions of E along the 
rea l axis even at thresholds (where, however, their derivatives may be 
discontinuous). Of course exp ikar car r ies no flux if ka is pure imaginary 
( i . e . below threshold $a), so only the open channels contribute to the 
cross -sect ions , which are given, in terms of the open channel S -matr ix 
elements, by the fami l ia r formulae, 

°ba = + D K l " : - ^ a ( 2 i + D I 1 - S ^ J 2 (4.3) 

a being the entrance channel. The total reaction cross-sect ion, fo r in-
coming particles in channel a, is a* r = ^ crb a , which by the conservation 
of flux can be written in terms of thé particles which do not reappear in 
channel a; the resulting expressions for the reaction and toted cross -
sections in one partial wave are 

< Г = » * î ( 2 i + l ) (1 - |Saa|2); 

CTa£. = °aa + = +1 )2 (1 - ReS a a ) ( 4 . 4 ) 

From unitarity, |s a a |s l , so S a a (E) moves inside the unit c i rc le as the 
energy moves along the rea l axis; Eq. (4.4) shows exactly how the c ro s s -
sections a (E ) depend on its path. In particular, they all vanish if 
Saa = + 1, and aaa and crt reach their maximum possible values 4ttX2(2í+1) 
( 'unitarity limit") when Saa = -1 . 

4.2. Analyticity and unitarity 

The domain of analyticity of the functions Sb a (E) will , of course, depend 
on the type of interaction responsible for the scattering, and, in general, 
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about all that can be said is that, as in the 1-channel case, 'resonance 
poles ' of Sba cannot occur on the physical sheet, though of course bound-
state poles and branch points may. If all the interactions involved in the 
scattering, within a channel as wel l as between channels, are cutoff inter-
actions, then just as in the 1-channel case, the S b a (E ) wi l l have only 
' resonance-pole ' (and bound-state pole) singularities, the closest ones to 
the rea l axis occurring on the sheets E a described above. They are in any 
case likely to be the singularities nearest the real axis, and are the only 
ones (aside f rom the threshold branch points) which we shall take into 
consideration. 

Although the Sba (E) are all wel l -def ined everywhere along the real axis, 
it is only those with both b and a open that contribute to the outgoing flux. 
Thus in the energy range < E < I N + 1, there are N open channels whose 
N x N open-channel sub-matr ix conxains the elements of direct physical 
interest in this energy range. It is this sub-matrix SN which must satisfy 
the important unitarity or f lux-conservation condition, 

SN + (E ) S N (E ) = 1, £ n < e < £ n + 1 t 4 - 5 ' 

which is of central importance in describing resonances (whose poles are 
found on the sheets E a ) , for its analytic continuation off the rea l axis 
necessari ly connects values of SN on P and on Ejg, 

S N t ( E * ) S N (E ) = 1 (continued unitarity) (4.6) 

with E on the physical sheet .8 In fact this immediately gives S N ( E N ) in 
terms of the matrix elements of S on E, as 

S N ( E * ) = [ S N t ( E ) ] - 1 

(4.7) 
C N ( E ) 

" D N * ( E ) 

where D N ( E ) = det [SN (E ) ] and CN is the usual matrix of co- factors of S N + . 
F r om this we see that the single function (not matrix) D N ( E ) plays a 

central role in the description of resonances, for SN wi l l have a pole (this 
is what we mean by a 'resonance pole', though it wi l l signify a resonance 
only if sufficiently near the physical region) at E * on sheet E N whenever 
D N ( E ) has a zero at E on P - and furthermore such a zero Will 'cause' poles 
in all open-channel matrix elements Sba at once, unless by chance (or 
because of a selection rule) the corresponding C b a (E ) also vanish at the zero 
of D n . A many-channel resonance, in other words, is a property of a 
resonance 'state', which decays through all open channels unless it happens 
to be decoupled from one of them. In pole terms, although the pole occurs 
in all elements of Sba, they wi l l have different residues there, those co r re -

8 We shall consistently use EN to denote both an entire sheet of the Riemann surface and, when 
necessary, a particular point on this sheet. Thus E and E^ are at complex conjugate positions but on different 
sheets. 
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sponding to channels coupled most strongly to the resonance having the 
largest residues. 

The simplest generalization of the po le -zero relation which is re -
sponsible for unitarity in the 1-channel case is obtained by taking the 
determinant of Eq. (4 .6 ) to get 

D n * ( E * ) D n ( E ) = 1 (4.8) 

so that the poles and zeros of D N ( E ) occur in exactly the same pattern as 
those of the 1-channel S -matr ix element (which is its own determinant) 
(F ig . 12). There is no such relation between the poles and zeros of a single 
Sba. A pole of Sb a (E) on E N only implies a zero of D N ( E ) at the conjugate 
energy on P; in general, it is not unlikely for at least the diagonal elements 
Saa to have a zero somewhere in the same neighbourhood, and it wi l l 
certainly have one near the zero of D N if most of the partial width of the 
resonance is in channel a, as we shall see below. 

It is quite illuminating to consider the motion of these zeros as a 
function of the strength of the 'channel coupling'. We shall say that a 
channel a is decoupled from the rest of the S-matr ix if all the off-diagonal 
elements Sba coupled to a ( i . e . one row and one column of S, except for 
Saa) are zero, and if the remaining elements Sbc do not have a branch point 
at Sa', in this case channel a simply scatters elastically, entirely in-
dependently of the others. If we imagine, fo r instance, that all channels 
could be decoupled f rom one another, S would be diagonal and each Saa 

would have a po le -zero pattern like that of F ig . 12. The way this comes 
about is through the motion of the zeros, for if a resonance 'belongs' to 
channel a, the corresponding zero of Saa wi l l move to the position conjugate 
to the pole in the decoupled limit, whereas the residue of this pole wi l l 
vanish for all other S b b by their zeros moving directly onto the pole; 9 
F ig . 28 shows a few typical examples. In particular if SN+^N+I has a 

£ _ e 
N О „ N+l —x—i ^ — x ® 

FIG. 28. Poles and zeros of S^jn i n the limit that it is decoupled from other channels 

bound state pole in the decoupled limit, it wil l sit on the real axis in the 
physical region of channel N where it is called a 'bound state in the conti-
nuum' of this channel, and must certainly be cancelled by a zero (in SN N ) 
in order to prevent an infinite cross -sect ion there. Such bound states in 
closed channels are of extreme importance in nuclear physics, where 
(when the channel coupling or ' residual interaction' is turned back on) they 
are responsible for all 'compound nucleus' resonance levels; they play 
exactly the same role for the narrow resonances of atomic and of high-
energy physics. 

It is important to real ize that the continued unitarity relation (4.6) 
defines the analytic continuation of the open-channel S -matr ix elements 

9 Following this zero motion ' backwards', starting from the decoupled limit, provides a vivid 
indication that the principal difference between the 1-channel and many-channel cases derives from the 
greater freedom of motion enjoyed by the zeros of the S-matrix elements in the latter case. 
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onto sheet E N only. On the interval $ N + I < e < $ N + 2 » T H E next- largest sub-
matrix SN+1 satisfies a different condition ( i . e . Eq. (4.6) with N - N + l ) , 
which is the one that provides the continuation onto sheet EN+I , etc. 
Although the elements of the sub-matrix S N are thus given continuations 
onto both EN and E N + 1 , the continuations are accomplished via different 
equations and consequently are, in general, different on the two sneets. 

4 .3 . Resonance poles and resonance circ les 

F r o m the above discussion we may conclude that if S has a pole on 
E n near the real axis between $N and $N+I, it is generally reasonable to 
expect SNN (or any other diagonal element) to have a zero not f a r away, 
either on P or on EN. If this is the case, and if there are no other nearby 
singularities, we may expect that a. pea.sona.ble approximation to SJSJN 

( E ) , 

along the real axis near the pole, will be given by the generalized pole-
zero approximation of the 1-channel case, 

where SB is a constant or s lowly-varying 'background' factor; E z and E p 

must, of course, be so located that, together with |sB|, they insure that 
I SNN I s 1 over the energy range of the approximation. 

As was noted in connection with Eq. (4.4), the path followed by the 
complex number SNN inside the unit circle as E passes over the resonance 
determines the shapes of the cross-sections in this region, and a simple way 
of finding this path is to rewrite Eq. (4.9) in the form 

which clearly traces out a counter-clockwise circle as E passes along the 
real axis between E p and Ep . 

It is this ' rapid c i rc le ' which is the signature of a resonance, as can 
be seen most convincingly f rom the associated time-delay of the wave 
packet. If E z = Ep , the circle coincides with the unit circle and describes 
a r ise in the phase shift by тг, whose slope dó/dE gives the time-delay; the 
resonance in this case is elastic. If E z ф Ep the resonance is inelastic, 
i . e . is coupled to more than one channel; its c irc le in SNN is then smal ler , 
because part of its 'strength' is in other channels, and the time-delay in 
this case is determined not by d S ^ / d E alone, but by the derivatives of all 
open-channel elements connected to N. The details were worked out by 
Smith [11] , but the result is the same as in the 1-pole case: in terms of 
the pole position Ep = Eo - i r /2 , the lifetime of the resonant state is still 
1/Г, so a pole near the rea l axis corresponds to a narrow, long-l ived 
resonance and produces 'rapid c irc les ' in all S -matr ix elements. 

In the diagonal elements, the size and position of the circle are often 
given conveniently in terms of the nearby zero, as in Eq. (4.10) . Since its 
energy-dependent factor becomes unity above and below the resonance, 

(4.9) 

(4.10) 
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the circle "starts' and "stops' at SNN = SB and its radius is given in terms 
of the pole and zero positions by 

E z - E P 

E P " E P 

(4.11) 

In F ig . 29 we have defined the two distances 

i " Г " ее Ер - E z 

i " r N = E z - E p 

(4.12) 

\ r 
Г /OE* •V 
7Tn" 

• 

о 
Л 

г 

rN 

X 

I S B I < 1 

( a ) (b) 

FIG.29. Resonance circle in a diagonal S-matrix element, together with its pole and zero. 
(a) Non-elastic background (|Sg| < 1) and non-zero tip-angle a . (b) Elastic background ( | SB| =1 ) 
with untipped circle 

and given them these names, not because their magnitudes are the reaction 
and elastic widths seen f rom entrance channel N, but because if it should 
happen that the background matrix (SB)ba is diagonal, then (as we show 
below) Re (E z ) = Re (Ep ), as in F ig . 29 (b), and "I?" and " IN become exactly 
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these widths. Equation (4.11) then reduces to the fami l iar Bre i t -Wigner 
form for an inelastic resonance, 

= s, 

Г Г V E - ^ y j 

1 - i 
Ч, 

(4.13) 

E - E 0 + i r/2 _ 

In this case the radius of the resonance circle is given simply by 

- i s 
PN Г (4. 14) 

the branching ratio for decay of the resonance into channel N, which is also 
the amount by which the maximal excursion of the total cross -sect ion away 
f rom the background is reduced below that for an elastic resonance. We 
shall find below that this expression is valid independently of the orientation 
of the zero relative to the pole. 

In the B re i t -W igner case, Eq. (4.13), the centre of the circle is at 
S e f l i / r ) , and so l ies on the line through the origin and SB . (Furthermore, 
E z is in the upper half -plane ( i . e . on P ) i f IJj > Г/2, on the rea l axis if 
IN = Г/2, and on E N if IN < Г/2. ) In the more general case (4.10), 
the c irc le wi l l be "tipped1 f rom this orientation by the phase of 
( E z - Ep)/(Ep- Ep), which is the angle of tip, a, of the zero relative to the pole 
in F ig . 29(a). This makes the necessary relation between |sB|, E z and 
E p c lear : f o r a given degree of inelasticity of the background, |sp|, the 
pole and the zero must be so positioned that the entire resonance circle 
is inside the unit c i rc le . Thus the background in channel N distinctly 
limits the branching ratio of the resonance into this channel. 

rN 1 + s„ 
(4.15) 

and even this limit is permiss ib le only if the angle of tip is zero . 
Incidentally, Eq. (4 .10) is also often written as 

E - E z 

BVE-Ep = S„ 
E - E n z Р 
E - E n 

(4.16) 

1 - i e R 
E - E „ 

with R = |EZ" Ep|, so that the tip angle of the circle is also the "phase of 
the resonance relative to the background". Although it can in general be 
non-zero, in the special case that the background in channel N is elastic. 
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|SB| = 1, it is obvious geometrically that a must vanish to satisfy 
unitarity.10 

As typical examples of resonance circ les and the corresponding c ro s s -
sections (angle-integrated, in one partial wave). F ig . 30(a) shows a reso -
nance whose width is 3/4 in channel N, sitting on a background which is 
elastic, with a phase of -45° . Rather than actual cross -sect ions the curves 
are for I 1-Snn|2 (el. ), 1 -| Snn|2 ( r . ) and their sum, 2 [ l - R e ( S N N ) ] (tot), fo r 
which the unitarity limit is simply 4. F igure 30(b) shows a resonance 
with I n / F = 0-5 and SB = +1. The corresponding circle happens to be the 
curve along which ct^n = aN,г (inside the circle the reaction cross -sect ion 
is the l a rge r of the two and outside of it the elastic cross -sect ion is the 
larger ) , so the total cross -sect ion is just twice as large. 

Im SNN Im SNN 

FIG.30. Resonance circles in a diagonal S-matrix element and the corresponding cross-sections. The 
background is elastic in both cases 

The reason the resonance c irc les close completely in these examples 
is that SB is taken completely independent of energy. Of course, in any 
realistic situation, the background phase wi l l change somewhat over the 
width of the resonance; since it is normally a decreasing function of 
energy, S B (E ) wi l l move slightly clockwise and prevent the resonance 
circle f rom closing completely. The broader the resonance, the less the 
circle wi l l close, and the less of it wi l l be 'v is ible ' in the face of the back-
ground. Figure 31 shows a specific 2-channel example, (the details can be 
found in Ref. [7] ) indicating how S11(E) shows a r is ing-phase behaviour in 
the neighbourhood of the resonance, followed by a fal l ing-phase behaviour 
beyond the resonance. A s the decay width into channel 1 is decreased, 
(and the resonance simultaneously broadened) the background phase contri-
bution becomes more and more important, until when Г} <3C Г2 the resonance 
circle is invisibly smal l and produces no effect on the total cross-sect ion. 

10 Because isobaric analogue resonances often sit on a very inelastic background, a is generally non-
zero for them, and it is indeed found that their shapes can be fitted only by the general form of the one-pole 
approximation (4.16), rather than by the special Breit-Wigner form (4.13). 
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4.4 . Unitary one- and two-pole approximations 

The one-pole approximation most commonly used to fit data on isolated 
resonances is the Bre i t -Wigner expression, 

S b a (E ) = e 
i«oa + Vb ) v\/2

 r
l / 2 -

6ba " i E - E p 
(4.17) 

ЕШ1 

(a) Well: 

(1) Г,«П (2) Г.-Г, (3) r,'»r; 

Im(S„) 

(b ) s„ (k): Re(S„) 

!m(S„) 

(c) S„(k): 

(d) l l - S j ' 2 

(e) l-IS.,1'0 5 

Re(S„) 

0.5 
ka/TT 

ka/TT 

i I о!з i!o о 
ka/TT 

0.5 1.0 
ka/TT i(gr?) 

FIG.31. Resonance circles in a two-channel model, indicating how their radii depend on the branching 
ratios 

Provided that EI¿ = - 2 Im (Ep ) , this S -matr ix is unitary, as it should be, 
open 

but it is quite special in having a diagonal background part (hence zero 
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tip-angles) and so can only describe resonances which sit on an elastic 
background. Our purpose in this section is to indicate a natural general i -
zation to the case of non-diagonal background ( i . e . direct reactions as 
wel l as reactions which proceed through the resonance), as we l l as to the 
case of two or more overlapping resonances (of the same spin and parity). 
The derivation used here is an obvious extension of that given by Davies 
and Baranger [12] ; an alternative derivation in terms of eigenchannels 
is given in Appendix B . We consider N open channels and designate the 
corresponding NxN matrix simply S(E), with elements Sba(E). 

(a) The generalized Bre i t -Wigner approximation 

W e consider an isolated resonance fa r f rom threshold, by which we 
mean that S(E) has a pole near the rea l energy axis between and $N + 1 , 
which in the small energy region around it is the only singularity present, 
so that for E sufficiently near the pole it is reasonable to approximate S as 

both В and T must be symmetric in order to make S symmetric. T is the 
matrix of residues at the pole, which has the crucial property of being 
factorable channelwise, T = ttT, o r ТЬа = tbta, where t is a column vector. 
It is this factorizability of the residues which permits the definition of 
partial widths for decay of the resonance into the various channels, fo r 
the entry ta is, to within a phase factor, Г ^ 2 . The factorizability follows 
directly f rom the assumption that the pole occurs in only one eigenvalue of 
S(E) on a given sheet of the energy sur face. (This does not assume that the 
resonance occurs in only one eigenchannel; see Appendix В for a detailed 
discussion. ) The coincidence of poles in two different eigenchannels is not 
impossible, but is surely highly improbable. W e do not consider it further 
here, but return to it in connection with Eq. (4.39) below. The factorizability 
of the residues may also be arr ived at in quite different ways [2, 12, 13], 
which are, however, alternative statements of this same assumption. 

Equation (4.18) is identical in form to the one-pole approximation to 
the Humblet-Rosenfeld expansion [2], and our only reason for reconsidering 
it here is that the relations which are necessary between their background 
matrix Q and the various poles parameters in order to guarantee the 
unitarity of S, which in general are extremely complex, become very 
simple at energies near enough to a specific pole that the net background 
matrix there (Q plus the faraway poles) can be considered constant. 

That is, the exact S-matr ix is identically unitary in E, and if we 
define В (which wi l l in general depend slowly on the energy) so that 
Eq. (4.18) is the exact S, this requires that 

'P 
(4.18) 

j = I (4.19) 

(as wel l as the adjoint equation) be satisfied identically in E for real E . 
In particular, if В should happen to be exactly constant across the reso -
nance, Eq. (4.19) requires В itself to be unitary there, so that if В is 
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nearly constant across the resonance, it must be nearly unitary there. 
The simplest approximation is obtained by assuming В constant, but a 
slightly more flexible one is obtained by assuming that, whatever its energy 
dependence across the resonance, B (E ) is identically unitary there (as, 
for example, in the Bre i t -Wigner approximation with slowly-varying but 
real phases <pa). This is the crux of the present approximation, which 
greatly simplif ies the unitarity condition (4.19). 

To see how, we recal l that since В is both unitary and symmetric, its 
eigenvectors can be chosen real,1 1 so that В can be diagonalized by a real 
orthogonal matrix V (the matrix of eigenvectors): V T B V = exp2i/3, or 
(exp-i/3)VTB V (exp-i/3) = 1, where exp 2i/3 is the diagonal matrix of eigen-
values of B, (exp 2ij3)ba = ¿>ba exp 2i|3a. It is convenient to consider the 
transform of S(E) itself by the nearly-constant matrix exp-i|3VT. 

S (E ) = e"iB V T S ( E ) V e"iB 

(4.20) 

И • r T = 1 - 1 

-l/S -i0 T 
with u = Г (e V t) 

Although this transformation is not unitary, one readily ver i f ies that 
if S is unitary and symmetric, S is as well , so we require S (E ) to be unitary 
for E real . Since by inspection u is seen to be an eigenvector of S, it can 
be chosen real,12 

u* = u (4.21) 

and one then readily ver i f ies that the § ( E ) of Eq. (4.20) is indeed unitary, 
provided that in addition u has unit normalization, 

u T u = 1 
(4.22) 

or L u2 = 1 
b 

This is just the requirement that the sum of the partial widths equal the 
total width, for, transforming from S back to S, we can write S in terms 
of u, V and exp i /3 as 

S(E) = Y e V T - i ^ r — (Ve u) (Ve u)T 
E - E 

(4.23a) 

or S j E H B ^ - i E , b E o + a i r / 2 

11 If v is an eigenvector of B, Bv = \v, then B'* v"" = B"1 vv - = X"1 v* since BB* =1, so 
Bvfi = \v; hence (v+ v'l>), which is real, is also an eigenvector. 

12 That is, e *®V T t is real. This implies a specific relation between the phases of the residues of the 
Sba and the eigenphases of B; the Breit-Wigner approximation provides a particularly simple example. It is 
worth noting that the residue of S(E) at Ep is not - iTu u T , but the analytic continuation of this expression to 
the pole, where it is in general not pure imaginary. 
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w i t h B b a = E V b c e 2 i B c V a c (4.23b) 

i /2 = r i /2 ш 
a с 

,,T ¿iñ -ÍTT-XT „¡8 , and EI^ = F ( u e V V e u) = Г 

V is real and orthogonal, and the uc and |3C are real . 

This is the desired generalization13 of the B re i t -W igner expression. 
It agrees with the one-pole R -matr ix approximation [14], is unitary for 
all real E, and reduces to the Bre i t -Wigner expression if В is diagonal, 
i . e. if V = 1. Whereas with N open channels the Bre i t -Wigner approxi-
mation contains ( 2 N + 1 ) real parameters , Eq. (4.23a) contains in addition 
the N ( N - l ) / 2 parameters specifying V (which account for the off -diagonal 
elements of B) , making (N 2 /2+3 N/2+1 ) altogether, e . g . 6 parameters 
for N = 2 , 10 for N = 3 , 15 for N = 4. 

It is perhaps worthwhile writing out the N = 2 case explicitly. The 
rea l orthogonal V can be written in terms of a single parameter X, as 

V = 
/cos X - sin X 
\ sin X cos X. 

in terms of which 

В 

9 n cos X e + sin^X 
2iB, 

, 2iB, 2ifl, , 
cos X sin X (e 1 - e 2 ) 

216, 218,.-, 
cosX s inX(e 1 - e z) 

• 2ч 2i0i _i 2. 2ie, sin X e 1 + cos X e 2 

(4.24) 

and 

i<f. „1/2 J/2 , . i8, э 1 Г. = Г^ (cos X e 1 u sinX e 1 u ) 

\<ih 1/2 1/2 , 18 i8 
e Г2 = Г (sinX e 1 ^ + cos X e 2 u^) 

S(E) depends on the six real parameters u x , u 2 , E 0 , ¡3j, fi2, and X; 
more physically, they are equivalent to Г}, Г2 , E 0 and three parameters 
for the background B . 

The point of writing S(E) in the form (4.24) is that it is guaranteed 
unitary for any values of these real parameters which satisfy u2 +u| = 1. 
On the other hand, it is awkward that none of these parameters are 
quantities which are directly measured, and that values must be assumed 
for all of them, even to fit data which are available in only one channel. 

13 Since the residue of Sa a (E) at Ep is (exp 2i8a ) Г а , it would appear from Eq. (4.23d) that the sums 
of the absolute values of the residues of the diagonal elements of S must identically be Г. This is inexact 

to the extent that B, which we have assumed unitary at E = E , is not precisely unitary. 
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Consequently for the practical analysis of data it is perhaps preferab le 
to write Eq. (4.23) in the more conventional form 

ttT 
S(E) = B - i 

E " E P (4.25a) 
. V a 

S ba ( E ) = B b a - E . E 
P 

In this case no reference is made at all to the real parameters Vba> /За, and 
u a , which are replaced by the more physical complex parameters Bba and ta 

themselves; here t is the complex column vector with entries 

ta = e ^ r ; 1 7 2 (4.25b) 

The above expression for S is of course not unitary in general, but wi l l 
be so if В and t satisfy the additional constraints (equivalent to Eqs. (4.23b) 
and (4.23c); cf. Réf. [14]) 

BB1" = B + B = 1 (4.25с) 

ttt = Е Г = Г (4.25d) 
а а 

and BtV = t 

- е - £ B b c e ^ Г с 1 / 2 = е - Ч 1 / 2 (4.25e) 

As is to be expected, these unitarity conditions can be checked only if 
data are available in all open channels. 

The practical problem of fitting data with Eq. (4.25a) can be greatly 
facilitated by using the fact that the trajectory of each Sb a (E) as the energy 
passes over the resonance is simply a circle, fo r the parameters which 
determine the size and orientation of the circle are precisely the ones 
which occur in Eq. (4 .25) . This is best seen by rewriting Eq. (4.25a) in 
the form 

Sb a (E) = B b a 
tjA ÇE - Ep 

E - Ep 

which exhibits the resonance circle more explicitly. Its radius is given 
directly in terms of the branching ratios as 

I Va l 
1 /2 

Pba = ~ Г = ~ T ( 4 - 2 6 ) 

i . e. the absolute value of the residue divided by the total width (whether 
the background is elastic or not, in agreement with Eq. (4.14) . The centre 
of the circle is at ( B ^ - t b t a ) , so that its tip-angle (F ig . 29) is 

*ba = Фь + Фа * 2 Фьа ( 4 - 2 7 > 

where 2фЬа is the phase of B b a . 
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A typical resonance trajectory is shown in F ig . 32, indicating how the 
slow motion of the background term is interrupted by the rapid counter-
clockwise resonance circle, which would have started and stopped at the 
point Вьз if the background had been completely constant across the reso -
nance. Consequently, if the experimental Sb a (E) - trajectory is available 

FIG.32. Typical inelastic resonance circle ( " fast" ) superimposed on an inelastic background, with a 
positive tip-angle otba. The 'gap' in the circle measures the change in the background across the bandwidth 
of the resonance 

f rom a phase shift analysis, Bba, a b î and pba can be obtained from it 
geometrical ly,1 4 which is extremely convenient, for Eq. (4.25a) can be 
written directly in terms of them, as 

Sb a (E) = В 
i (<ph+ ч> ) ь 

pl/2 pl/2 

ba 

_ 2 i ¿ba 

E - E . 

| B I I ВЬа I l e E - E 

(4.28a) 

(4.28b) 

2i *ba 
lBbal " l e 

i « b a Pba r 

E - E _ 
(4.28c) 

These parameters being known, only E0 and Г remain to be found by 
fitting Eq. (4.28) to the data. 

Equation (4.28) is doubtless the most convenient form of the approxi-
mation fo r practical curve-f itting. It (especially Eq. (4.28b)) is very 
s imi lar in form to the B re i t -W igne r expression (4.17), but contains the 
two extra párameters |вЬа| and aba to allow the background to be inelastic 
and the residue to have a different phase f rom the background. Prec ise ly 
because of these parameters , however, it is slightly more 'dangerous' 
than the B re i t -W igne r approximation, in the following sense. Provided 
only that Га ^ Г for each channel, each Bre i t -Wigner S -matr ix element 
satisf ies |sba| ^ 1, i . e . has a trajectory which remains entirely within 

We emphasize that the sign of otba is significant, and, as defined in (4.27) is positive in Fig. 32. 
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the unit circle, in accord with the minimal requirement of unitarity. 
Once a non-zero tip angle ab a is allowed, however, it is very easy for 
the resonance circle to cross the unit circle if oba is chosen too large. Of 
course, this is guaranteed not to happen if all the unitarity conditions 
(4.25c through 4.25e) are satisfied, but these can only be imposed if data 
are available in all open channels. When working with only one or a few 
channels, any fit to Eq.(4.28) should at least be checked to see that 
I Sba|2 s 1 is satisfied along each trajectory. Incidentally, other obvious 
consistency checks on the geometrical parameters are 

( а аа - 2Фаа) + K b "
 2

Фьь) = 2(aba - 2ф
Ьа
) (4.29а) 

Рьь Раа = рЬа (4.29Ь) 

and 

L Раа = 1 (4.29с) 

the last being the geometrical condition that the set of all resonance circles 
for the diagonal matrix elements should fit exactly on a diameter of the 
unit circle (Fig. 33). 

FIG.33. Diagonal-element resonance circles 

Regarding further properties of Eq.(4.28) in the complex energy plane, 
the position of the zero of S^fE) is given by 

Ья - + i л 

so that Eq. (4.2 7) implies that Q-ba is also the tip-angle of the zero relative 
to the pole (Fig. 29), in agreement with what we found above for the diagonal 
elements. If В is made diagonal, the zeros of the off-diagonal elements 
move off to infinity. As for the diagonal-element zeros, Baa = £Va2 e2l6c, 
so that 

|Baa|sÇVa2c =1 (4.31) 

and consequently 

i aa i 
| E Z - E p | ^ r a (4.32) 

the equality holding only in the Breit-Wigner case, when Vac = 6ac and the 
zero is directly above the pole. 
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As for the effect of penetration factors, we note br ie f ly that at the 
N-th threshold we must have 

SN a = 0, a 4 N 

SnN = 1 

This can be achieved by requiring 

V Na 
= o. 

V N N = 1 

0N = 0 

u N = 0 

and 

F o r the rates at which these limits are approached, and a general discussion 
of threshold effects, see Davies and Baranger [12] . 

In summary, the requirement that a one-pole approximation to S have 
a unitary background term and itself be identically unitary in E leads 
directly to the general result (4.23), whose resonance c i rc les (extrapolated 
if necessary ) pass through the points B b a , have finite tip-angles, and are 
described by Eqs . (4.26), (4.27) and (4.28). In the special case that В is 
diagonal, the tip-angles become zero and Eq. (4.23) reduces to the Bre i t -
Wigner approximation. 

(b) The two- level approximation 

If two resonances of the same spin and parity overlap, but are f a r 
from other resonances and from thresholds, the energy-dependence of S 
wi l l be dominated by two poles rather than one. Putting them over a 
common denominator, its matrix elements can always be written, in this 
energy range, in the form 

Sb a (E) = S B ( ^ | ) ( | ^ ) (4.33) 

with poles at the complex energies Ei and E 2 and zeros (which depend on 
b and a) at Ei and Ê 2 . The resulting S-trajectory is more complicated 
than a single c irc le and may, under certain conditions described below, 
be composed of two circ les , one for each resonance. 

(b. 1) Poles in different eigenchannels of S(E): Such resonances can occur 
in two ways, depending on whether the two poles are in the same or in 
different eigenvalues of S(E) . The latter, which would a pr ior i appear 
more likely, corresponds to an S of the form 

S(E) = В - i 
Ti 

E - E - E 2 

t f i t f T T1T1 . 2 2 

(4.34) 

= В - i i 
E - E j E - E 2 

31 
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We again assume В unitary and consider the transformed matrix. 

S(E) = е"Ш V T S (E ) Ve i B 

r i 
UiUï 

4 
(4.35) 

E - E r 
U2U2T 

If иг and u2 are constant, it is readily veri f ied that this matrix can be 
identically unitary in E only if u 1 and u2 are real and satisfy15 

T 
U1 U2 

(4.36) 

in which case they are, of course, eigenvectors of S. (Furthermore, as 
in the one-pole case, § (E) is even unitary for energy-dependent u 's , 
provided they satisfy Eq. (4.36) at each real energy. ) Assuming this to be 
true, we can again transform back to S, obtaining 

S(E) = В - i v L 
E - E , 

T t t l2 2 
E - E „ (4.37a) 

which is unitary provided tj = V ( e x p i/3)Uj, i . e . 

B + B = B B t = 1 

Btl V B t 2 

(4.37b) 

(4.37c) 

and 

. t f t . = Г1 6.. 
i J ij 

(4.37d) 

The last is the rather remarkable statement that S can have the form 
(4.37a), with overlapping resonances and unitary background, only if the 
'partial width vectors ' tx and t2 of the two resonances are orthonormal. If 
the matrix В happens to be diagonal, V = 1 and Eq. (4.37a) reduces to the 
'double Bre i t -Wigner fo rm ' . 

Sb a (E) 
+ «к* 

ba E - E , 

(3^2)1/2-

E - E , 
(4.38a) 

with 

Ç d l ' r J ) 1 7 2 
« i j r J 

(4.38b) 

Since the same background matrix suffices for both resonances, this 
expression contains only ( N + l ) more real parameters than the 1-pole 
formula, making N2/2 +5 N/2 +2 in all. Even so, this number of para-

A more detailed discussion is given in Appendix B. 

31 
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meters is large enough (9, 14 and 20 for N = 2 , 3 and 4) to make their 
extraction from the experimental data seem quite difficult in general. 
Unfortunately, the shapes of the S (E ) - t ra jector ies may not be of great help 
in the two-pole case, fo r each pole corresponds to a circle, and two super-
imposed 'simultaneous' c i rc les can produce a wide variety of curves. 

(a) 

(b) 

(c) 

POSITIONS OF POLES 
AND ZEROS IN S -PLANE 

E-PLANE 

"CROSS SECTIONS" 
(as on fig. 30) 

FIG.34. Superimposed broad and narrow resonances of different inelasticities, showing pole-zero pairs 
and complex-plane trajectories of Sa a , together with corresponding cross-sections. See text for details 

There are, however, two extremes in which the shape of the trajectory 
given by Eq. (4.37a) is readily interpreted. The first is the case in which 
one of the overlapping resonances is much broader than the other, since 
then the broad one in effect acts as a background for the narrow one. This 
is i l lustrated by a few examples for a diagonal element Saa in F ig . 34, 
parametrized merely by the pole and zero positions, Eq. (4.33), with Sg = 1 
for simplicity. In F ig . 34(a) a very inelastic (relative to this channel) 
narrow resonance is superimposed on the centre of a more elastic broad 
one, both untipped, and in Fig . 34(b) a nearly elastic narrow resonance 
sits on the centre of a very inelastic broad one, again both untipped to give 
symmetry of the cross -sect ion about the central energy. Note that if the 
effective background, S'B « (E2 - Ê 1 ) / (E 2 - E x ) , provided by the broad 
resonance (1) fo r the narrow one (2) is inelastic, the radius of the narrow 
one's c i rc le is reduced below (Ê2 - Е2 )/Г2 by the factor |S'Bj, in agreement 
with Eqs . (4.26) and (4.29). In F ig . 34(c), a narrow, inelastic, tipped 
resonance is superimposed on the centre of a broad, fa ir ly elastic, un-
tipped one, producing cross -sect ions s imi lar to those of F ig . 34(a), but 
with symmetric wings and an asymmetric centre. 

The other simple extreme of Eq. (4.37a) is that in which the resonances 
in the two eigenchannels 'overlap completely', i . e . when their two poles 
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occur at exactly the same complex energy, so that the resonances not only 
have equal energies but also equal widths. In this remarkable (and unlikely) 
event, the pole does not become double. A single, simple pole remains 
in S, but with the unusual property that its residue does not factor channel-
wise, for S becomes 

tltl + t о t о 
S(E) = B - i E . E i (4.39) 

Thus each Sb a (E) fol lows a s ing le -c i rc le path, and the resonance di f fers 
f rom a normal single-pole resonance only in the unusual relations between 
the various Sb a (E) t ra jector ies . In particular, the relations (4.29) wi l l 
fail, for partial widths defined in the usual way simply do not exist. This 
extreme is not of great practical interest for its own sake, but it does 
imply the important result that as two poles in different eigenchannels of 
S are moved toward one another the resulting S (E ) - t ra jector ies tend toward 
a single circle (unless at the same time their residues tend to cancel, 

T T 
V l - - V 2 T ) . 

(b .2 ) Both poles in the same eigenchannel of S(E): The above single 
circle is to be contrasted with the trajectory produced by the other possi -
bility for the two-resonance case, that in which both poles occur in the 
same eigenvalue of § (E) . In this event S(E) has the form 

5 ' е ^ в - 1 А ( е ) ( Е - Е У ( Е - Е 2 ) ( 4 - 4 0 ) 

Although the residues now certainly factor at each pole, the numerator of 
the second term is necessari ly energy-dependent, fo r in this case 

^ ^ - М Е - е ^ Е ' - Е , ) ^ ' ( 4 - 4 1 ) 

and the condition that a matrix of the general form 

1 7 i F u u T 

(with F a number, not a matrix, and uT u = 1) be unitary is that u be real, 
and 

21m (F ) = - F i 2 

This requires A (E ) = Г а (Е - E02 ) + Г 2 ( Е - E01), if Ex = E01 - i Г*/2 and 
E2 = E02 - i Г2/2, so that 

s , ™ Г \ Е - Е 0 2 ) + Г 2 ( Е - Е 0 1 ) 
S ( E ) = 1 - 1 , ( E - E i ) ( E - E 2 ) u u ( 4 ' 4 2 ) 
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which is more neatly written as 

Transforming back to S, it is expressed in terms of expi/3, V, and u as 

« « - • { ( ^ ( H ^ H " 1 

with "f = Ve l B u, i. e. 

B + B = BB + = 1 

вТ* = T (4 '44b) 

and 

uT u = 7 + T = E I 7 a |2 = 1 (4.44c) 

The numbers |Ta |2 are to be regarded as dimensionless partial widths, 
and remarkably enough play the same role for both resonances. Although, 
of course, they may vary somewhat between the resonances, they wi l l 
normally be nearly the same at the two resonance energies Eoi and E 0 2 , 
meaning that in this case the distribution of partial widths over the channels 
is the same for both resonances. (The two total widths, on the other hand, 
are unrelated. ) This implies very distinctive S-tra jector ies , as is best 
seen by writing Eq. (4.44a) in terms of channel labels, 

Sb a (E) = B b a - Tb ta + ( f ^ X f ^ ) - V a (4-45 ) 

Since the last term has absolute magnitude | 7bta| for all real E, the 
trajectory followed by this matrix element as E passes over the two reso -
nances is made up of two c irc les of (nearly) the same radius, | t b t a | , and 
(nearly) the same centre, (B b a - TbÇ) - - a trajectory readily distinguished 
from those of Eq. (4.37) , whose poles are in different eigenchannels. Fo r 
instance, if the two poles were at the same place, E ! = E2, Eq. (4.45) would 
execute two successive, superimposed c irc les at uniform 'speed' , in 
contrast to the single c irc le of Eq. (4 .37) when Ex = E 2 . If the two reso -
nances in Eq. (4.45) have very different widths, on the other hand, the 
slow circ le of the broad one wi l l be interrupted by the fast circle of the 
narrow one (somewhat as in F ig . 34), but both wi l l run 'on the same track ' . 
The tip angle of the double circle is in any event given by Eq. (4.27) , where 
cp b and c p a are the phases of 7 b andTa . A lso, the number of f ree parameters 
in Eq. (4.41) is only N 2 / 2 + 3 N / 2 + 2 . 
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If the background matrix В is diagonal, Eq. (4.45) again reduces to 
a B re i t -W igner - l i ke form, 

i(M + tp ) 

S b a ( E > = e b 3 (4.46) 

E |t I2 = 1 1 a 1 

5. A N A L Y T I C I T Y A N D N U C L E A R R E A C T I O N C A L C U L A T I O N S 

Although it is too large and too active a subject to be discussed in 
detail here, a few brief remarks may be in order on shell model calcu-
lations in the continuum. In a customary shell model calculation for 
bound levels, the Hamiltonian is written as H = Ho+V , with H0 the single-
particle average Hamiltonian and V the sum of two-body residual inter-
actions. Ho describes the 'unperturbed' system, and the purpose of the 
calculation is to see how a set of its degenerate or nearly-degenerate 
bound-state poles is split and moved to 'perturbed' positions along the 
real energy axis as V is turned on. In the corresponding scattering 
problem, in which such a calculation is extended to energies above a 
particle emission threshold, the most obvious difference is that the poles 
are no longer confined to the real axis, but can wander in two dimensions, 
and the purpose of this calculation is to predict the positions in the complex 
plane to which they move as V is turned on16, i . e . the widths as wel l as 
the energies of the resonances. 

Perhaps a more fundamental distinction is that in the scattering 
problem V also has the effect of coupling channels which in the limit H = Hq 
are uncoupled. That is, Ho describes the scattering of a single particle by 
a static target, whose possible states of internal excitation (the various 
configurations of the nucléons of the target nucleus) specify the channels of 
this single-particle problem. H0 by definition cannot connect these channels, 
but turning on V, which allows the incident particle to interact individually 
with those of the target, does so, in this way enabling the projectile to 
excite states of the target (many-particle configurations), and so undergo 
inelastic as wel l as elastic scattering. 

An elementary example can perhaps make this clearest. Consider a 
system whose 'compound nucleus' or 'intermediate state' consists of two 
particles in a potential well, which for simplicity has only two levels . It 
is perhaps clearest to take the zero of energy at the bottom of the well 
(of depth V0 ), with the levels at energies Ex and E2 above it; it is important 
for our purpose to choose 

(5.1) 

If one of the particles is thought of as a projectile, we have a two-
channel scattering problem, with the channels specified, in the limit of 
vanishing interaction between the two particles, by the level in which the 
target particle is found. With our choice of zero the lower threshold 

16 In the scattering problem V continues to mean the sum of all two-body interactions, including the 
incident nucléon as well as those in the target. 
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Resonance 
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FIG.35. 2-particle, 1-hole (Auger) resonance and corresponding pole positions in the limit of no residual 
interaction 

corresponds to one particle (target) at energy E j and the other (projectile) 
at V0 , giving threshold energy $1 = E i + Vo ; s imilar ly the second threshold, 
corresponding to scattering on an excited target, is at $2 - E2 + Vo . With 
no ' residual interaction' between the particles, the problem has two true 
bound states, at 2Ej and + E2 , both in the lower channel ( i . e . with the 
target particle in E j ) , as wel l as a bound state in the upper channel, at 
2E2 , which because of Eq. (5.1) is above the lower threshold but below the 
upper one. 

This is an example of the 'bound state in the continuum' mentioned in 
section 4, fo r with no residual interaction ( i . e . no channel coupling), its 
energy 2E2 is real and directly in the lower channel continuum, so the 
residue of the corresponding pole must be zero for S u and S 2 1 (but, of 
course, not for S22). This merely means, physically, that the state with 
two particles in the upper level, though energetically capable of emitting 
one particle by allowing the other to drop into the lower level, is dynami-
cally incapable of doing so if there is no coupling between the particles. 
In atomic physics this is, of course, known as an Auger or auto-ionizing 
state, aiid in nuclear physics is called a 2-particle 1-hole state (the 'hole' 
of the target being in level E x ) . In the V = 0 limit it can be thought of as a 
resonance of zero width (technically, the channel 1 phase shift has a dis-
continuous, and thus unobservable, jump of тт at this energy), for if V is 
'turned on' slightly, the state can decay into channel 1 and the pole wi l l 
correspondingly move off the real axis (with width proportional to V 2 for 
smal l V ) . Looked at the other way, a projectile incident on the target in 
its ground state will , at bombarding energy 2E 2 - E j - V 0 , be able to excite 
the 2-part ic le 1-hole intermediate state and so wil l see a narrow resonance 
caused by this closed channel state (see Fig . 35). 

Of course, if the potential wel l has a b a r r i e r (centrifugal and/or 
Coulomb) at its edge, it can also have single-particle resonances (whose 
poles are off the real axis even when V = 0), and they together with the 
many-particle bound states in closed channels provide the only two known 
resonance mechanisms. Consequently a shell model calculation in the 
continuum may be characterized by a pole diagram which in the independent 
particle limit has a few poles off the real axis (s ingle-particle states, of 
low level density) and many on it (many-particle states, high level density). 
When the residual interaction V is turned on, the many-particle poles move 
down off the rea l axis as their configurations absorb some single-particle 
admixture f rom nearly single-particle poles, and the single-particle states 
move correspondingly toward the real axis as they become diluted with 
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m any-particle or closed-channel configurations. The principal fascination 
of the sport is in observing the interactions between the poles as they move, 
for the fami l iar second-order repulsion of poles along the real direction 
is readily seen to become an attraction along the imaginary direction, and 
the combination of the two leads to quite complicated pole tra jectories . 

I m ( E ) 

Re (E ) 

v - . 1 
J . -

t 
X 

FIG. 36. Lane-Thomas-Wigner giant resonance in the total widths of compound levels, witfi superimposed 
intermediate structure and doorway states (arrows) 

One interesting configuration which can result is a trough-shaped 
string of many-particle poles pulled down from the real axis by an isolated 
single-particle pole (F ig . 36), which is the complex-plane description of 
a Lane -Thomas -W igne r giant resonance. If in addition V couples some of 
the many-particle states ( 'doorway states') to the continuum more strongly 
than others, the corresponding poles wil l get ahead of their many-particle 
neighbours in the general downward motion, at least for smal l V, thus 
superimposing an 'intermediate structure' on the overal l giant resonance 
indicated schematically by the scallops in F ig . 36. The ramifications and 
subtleties which these and s imi lar phenomena can be expected to produce 
should make the next few years interesting ones indeed, as the calcu-
lational techniques for following such pole motions are developed. The 
subject is c lear ly too large and complex to be treated in detail here, but 
many of its facets are treated in the publications listed in Ref. [16] . 
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APPENDIX A 

WIGNER 'S R - M A T R I X EXPANS ION AS A N E X T E N S I O N 
OF THE E F F E C T I V E RANGE A P P R O X I M A T I O N 

Two useful ways of writing the single-channel S -matr ix element are 

cot 6» + i 1 + i tan ó» 
S» = — — г г = : г- г ( A l ) 

1 cot ô{ - i 1 - i tan ó£ K ' 

Since both k2«+1 cot ô£ and k"<2í + 1 ) tan 6£ are in general analytic near к = 0, 
either could be expanded in a power ser ies in к to obtain a low-energy 
approximation to S£(k). If the phase shift r ises or fal ls through тг/2 in this 
region, the f i rst ser ies is somewhat pre ferab le to the second because its 
circle of convergence extends out to the energy at which the phase passes 
through -л (pole of cot 6£ ) , whereas that of the second ser ies is determined 
by the smal le r energy at which 6£ passes through тг/2 (pole of tan 6 £ ) . 

The f irst two terms of the f irst ser ies give the effective range or 
energy-dependent width approximation to S£(k), Eq. (3.42) , containing two 
f ree parameters . On the other hand, if the potential is cut off at r = a, S£(k) 
is meromorphic in к so that k " ( 2 { + 1 ' tan 6£ is meromorphic in E, and it is 
readily seen that a one-pole approximation (actually two, at E„ and E„ ) 
to k~(2c + 1 ' tan 6£ also produces an approximation to S{ of exactly the 
ef fective-range form (3.42) at low energy. Although the same final result 
is obtained, this is an awkward route to it, fo r in general the poles and 
residues of tan 6£(k) are complex, and only certain two-parameter combi-
nations of the 4 real numbers inherent in a 1-pole approximation actually 
appear in Eq. (3.42). This is important because it appears that an extension 
of the ef fective-range approximation to a form capable of accommodating 
two or more resonances can be accomplished more systematically by 
extending the one-pole approximation to tan 6£ to two poles (allowing 6£ to 
pass through 7r/2 and Ътт/2) than by including a pole of cot 6£ (to allow 6£ to 
pass through it). 
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It was Wigner who recognized that this could be done most efficiently 
( for a potential cutoff at r = a) in still a third way, by using the important 
theorem that, even though the poles of cot 6(E) are in general complex, 
those of cot ( 6 -6 c ) occur only on the real energy axis, where 6C is the 
phase shift for scattering by a hard core of radius a. The proof of the 
theorem is immediate, for if б = ôc (mod тт), then since both potentials 
vanish for r > a, their wave functions are identical over this range. Hence 
the scattering wave function at this (discrete) energy is required to vanish 
at r = 0 and at r = a - a real boundary condition which determines a real 
spectrum. 

Similarly, fo r Í = 0 the energies at which 6 = óc ± it/2 (mod тт), at which 
the derivative of the wave function vanishes at r = a, are also real, so the 
poles of k"1 tan (6-6 c ) occur only on the rea l energy axis and hence 
have rea l residues. Since this function is also meromorphic in E, one 
can write, f o r example, 

S(E) 2I(6-6C) 1 + i k [k" 1 tan (ó - 6C)] 
S c< E ) 1 - i к [к" 1 tan (6 - ôc)] 

(A2) 

and use a truncation of the Mittag - Le f f l e r expansion for k"1 tan (6 - 6C) 
to obtain a local approximation to S t (E ) . In particular, if only low-energy 
poles are kept, it provides a low-energy expansion; the one-pole approxi-
mation is exactly the effective range approximation ( for 6 -6 c ) , which can 
describe a single resonance, and more resonances can be accommodated by 
including more poles. 

Of course this is exactly the R-matr ix expansion, since 

R(E) = (ka) 1tan (6 - 6C) for i = 0 (A3) 

F o r I > 0, however, some of the poles of tan ( б - óc ) may be complex, 
whereas all of those of R(E ) remain real. Consequently the two pole 
expansions are different, and that of R(E) is clearly preferable for the 
parametrization of resonances, since each of its poles adds just two real 
parameters (pole energy and residue, equivalent to resonance energy and 
width) to the energy-dependence of 6(E). Once the values of these R-po le 
parameters are determined, the corresponding pole positions of the 
S -matr ix can be obtained from the famil iar expression 

N 

i - ч ; 7i' 
1 - ' L * R ^ E . - E S(E) _ 

S c (E) 1 - LCR ~ ^ 
1 - L . 

(A4) 

I / E . - E 

by searching for the complex roots of 

N 2 

1 * Ч ( к а ) 1 Ё ^ = ° ( A5 ) 

which lie nearest the origin, as described in section 3.5. 
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Thus our conclusion is that, although the poles of S are related one-
to-one to the resonances much more directly than are the poles of R, the 
S-poles do not seem to occur simply in unitary low-energy approximations; 
fo r the case of severa l resonances near threshold, the R -mat r ix (or 
K -mat r ix ) expansion appears to provide as efficient a unitary approximation 
as any, although the extraction of S-poles and residues f rom it is not 
particularly convenient. 

APPENDIX В 

E I G E N V A L U E EXPANSIONS OF THE S - M A T R I X 

(a) The one-level case 

The open channel sub-matr ix S(E) is symmetric and unitary on the 
rea l energy axis and so can be expanded in terms of its eigenvectors Vp 
and eigenvalues o^ in the form 

S(E) a„ (E) v M ( E ) v ; ( E ) ( B l ) 

д = 1 

VJJ being a vector, 

( B 2 ) 

identified by the eigenchannel ц, whose elements are labelled by the 
physical channels a. On the real axis the v,, (E ) are real and satisfy the 
usual orthonormality and completeness relations, and the aM (E ) have unit 
absolute magnitude there (сгц = exp where is the real 'eigenphase' ) , 
so their analytic continuations satisfy 

EV ( 1 a (E ) v„a(E) = 

( B 3 ) 

E V ) J b ( E ) v ; ( E ) = 6ba 

and 

a* (E?, ) or (E ) = 1 
¡1 N ' jj K ' 

throughout their regions of analyticity, indicating that the eigenvectors 
can have no poles, and that the poles and zeros of the eigenvalues occur 
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in conjugate pairs on E N and P, like those of the determinant D N ( E ) (since 
of course the determinant is the product of the eigenvalues). 

In this context it is tempting to conjecture that an isolated resonance 
is due to an isolated pole in one of the eigenvalues ст^(Е), 

= <B4) 

where ap is the background eigenvalue. Assuming all eigenvectors and 
all other eigenvalues constant in this energy region, this would give 

V1 T VP VP 
S(E) = ) a v v T - iff Г (B5) 

' 4 Ji Ч P E -Ep 
С 

Although at f irst sight it appears eminently reasonable, this conjec-
ture is in general fa lse for a narrow resonance. The difficulty is that 
ffp(E), as well as at least one other eigenvalue ffT(E), wil l normally also 
have a branch point near the pole, and if crp has a pole on E N , crT wi l l also 
have one, at the ' same ' place but on the sheet reached from E N by passing 
through this branch cut. If one pole is near the real axis, the other is as 
well , so both eigenvalues (as wel l as their eigenvectors) are rapidly 
varying in this energy region, and the resonance in effect passes from one 
eigenvalue to the other as the energy is varied past the branch point. 

Another way of seeing that at least two eigenvalues must become 
involved in a narrow resonance is to note that if a single eigenphase 6p 

were to be responsible for the entire resonance, it would necessari ly r ise 
by about 7Г. This would normally force it to cross one of the other eigen-
phase s (which are only defined modulo тг), and thus violate the theorem 
that eigenphases (or eigenvalues) normally cannot cross as a function of 
the energy. 

Because of the central role played by this theorem, it is perhaps 
worth remarking that it can be proved by the same argument used above to 
demonstrate that bound-state poles cannot cross one another. That is, 
the eigenvalues are obtained as functions of the energy by solving a secular 
equation of the form 

I S(E) - a 1 I = F(ct, E ) = 0 

If the S b a (E ) are assumed analytic in the vicinity of E 0 , where the eigen-
value under consideration equals a0 , F wil l be analytic in both a and E 
there. Expanding it in powers of ДЕ = E - E 0 and A a = a - a 0 , 

F0 + (Aa )F x + (AE )F 2 + I [ ( A a ) 2 F n + 2 ( A C J ) ( A E ) F 1 2 + ( Д Е ) 2 F22 ] + . . . =0 (B6) 

F 0 ( E 0 ) = 0, and if two solutions a coincide at E 0 , F ^ E o ) = 0, so to lowest 
order in ДЕ, 

11/ 
Дсг(Е) = ) ( Д Е Г (В7) 
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Consequently the two CT'S have square root branch points at E = E 0 , and 
must scatter at right angles after colliding at ст0 - which they cannot do 
if E moves through E 0 along the real axis because both a ' s are constrained 
to the unit circ le for rea l E . The only exception is if F 2 ( E 0 ) = 0 also, 
in which case Дет ~ ДЕ; then neither eigenvalue has a branch point at Eo, 
and they are f ree to pass through one another without leaving the unit 
c i rc le . This, however, is the exception rather than the rule. 

Exactly like bound energy levels, eigenphases normally avoid crossing 
by repelling one another, as indicated by the solid curves in F ig . 37, the 
sharp bends in the curves being caused by the 'extra ' branch points 
mentioned. It may seem strange that the eigenvalues (and indeed eigen-
vectors) have branch points which do not occur in the physical S -matr ix 
elements themselves, but these are simply the N-th root branch points 
which come from solving the (algebraic) secular equation, il lustrated most 
simply in the two-channel case, where the eigenvalues are 

The branch points are the energies E c (generally complex) at which the 
discriminant vanishes, for if the Sba (E) are proportional to ( E - E c ) near 
E c , as they normally are, E c is a square root branch point of the eigen-
values; encircling E c once crosses the corresponding cut and simply 
interchanges the values of ст+(Е) and a_ (E) . 

The branch points Ec occur in pairs at complex conjugate energies, 
and in the unlikely event that the two members of a pair coincide on the 
real axis, a + and a_ are equal there without having a branch point. This 
is the case in which F2 of Eq . (B6 ) vanishes, allowing cr+(E) and ст_ (E) to 
cross rather than repel, as indicated by the dashed curves of F ig . 37. W e 
note f rom Eq . (B8 ) that this wi l l certainly happen if S 1 2 (E ) = 0 (making 
cr+ = S n and cr_ = S22), and this result is general, fo r the phases of decoupled 
scattering problems can cross with impunity. They wi l l almost surely do 
so whenever one exhibits a sharp resonance and r ises by nearly IT, but 
turning on a coupling between the channels wi l l move the crossing points 
off the real axis in conjugate pairs . Consequently, any eigenphase which 
has a resonance pole wi l l almost certainly have such a branch point nearby, 
coupling! it to the other eigenphase which it might have crossed and causing 
the two to repel one another. It is in this way that the two eigenphases 
become involved in the resonance. 

( B 8 ) 

FIG.37. Repulsion of eigenphases at a resonance 
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These 'cross ing point' singularities have recently been discussed in 
some mathematical detail by Goldberger and Jones [15] , but the rather 
remarkable energy-dependence caused by the repulsion can perhaps be 
understood most simply in terms of the geometry of F ig . 38. The eigen-
phases 6i (E ) and 6 2 (E ) are both active in the resonance region because 
each has a pole near the real axis, one on the 'normal ' sheet of the energy 
surface, and one at the same position, but on the sheet reached from the 
f irst pole by encircling the nearby branch point17. Consequently, fo r 
energies on the low-energy wing of the resonance, the pole in 6 2 (E ) is 
closest to the physical energy, causing 6 2 (E) to r ise rapidly while 6X (E) 
remains nearly constant. On the high-energy wing, however, the ôj -pole 
is c loser to the physical energy, so the activity is shifted into this eigen-
channel. Of course, if more phases are present, there can be several 
branch points and severa l eigenphase-repulsions, as the resonance 
activity is handed on from one eigenchannel to the next. 

x — Pole 

FIG. 38. Repulsion of eigenphases at a resonance, indicating relative pole and crossing-point positions in the 
complex energy plane 

Thus the non-crossing of eigenphases means that a sharp resonance 
is normally not found in a single eigenchannel of S any more than it is 
confined to a single physical channel. The exceptional case (aside f rom 
decoupled channels) in which the resonance could remain in one eigen-
channel is that in which all the eigenphases are equal (mod n) of f -resonance, 
so that the resonating phase can rise by ir without crossing another phase; 
this corresponds to the branch point being very distant from the pole, so 
that the phase-repulsion, if it occurs, happens wel l outside the resonance 
region. 

It is precisely this happy property which is possessed by the matrix 
S ( E ) which plays a central role in the arguments of section 4.4. If 

S ( E ) = В - i (B9) 

with t a constant column vector and В a constant, symmetric and unitary 
matrix, we can write В = V(exp 2i £S)VT in terms of its eigenvalues 

Of course, the physical Sba(E) only have a single pole on the normal sheet, and only one eigenvalue 
has its pole there, thus guaranteeing factorability of the residue of Sba at the pole. 



NUCLEAR RESONANCE REACTIONS 495 

exp 2ij3M and its matrix of real eigenvectors V . The corresponding inverse 
transform of S, 

• S(E) = e ' w V T S ( E ) Ve~ i s 

= 1 - u u T (BIO) 

with u = Г~1/2(е"ш V T t ) 

is itself symmetric and unitary. Hence u, which by inspection is one of 
its eigenvectors, must be real and normalized, 

( B l l ) 

Its corresponding eigenvalue is 

Г E -E d " 
- • - ' i ^ - ï ^ - ( B 1 2 > 

and the others are all identically unity across the resonance. Hence, even 
though the eigenvalues of S(E) in Eq . (B9 ) do repel one another, those of 
S ( E ) (obtained from the elements Sba by a simple l inear transformation) 
are all equal of f - resonance and so neither exhibit repulsion nor have branch 
points near the pole; the resonance 'stays' in a single eigenphase of 
§ (E)18 . 

The great difference between the eigenvalues of S and S is conveniently 
illustrated by the two-channel case, where the algebra is transparent. The 
eigenvalues of S(E), (B12),have no branch points near the pole by con-
struction, but those of S (E ) in Eq . (B9 ) do. They can be obtained from 
Eqs . ( B8 ) and (B9) and are located at the conjugate points 

E c = E 0 + ! ( u 2 -
2. i ( e 

2i8 , 216, 

^ \ Uo) 
+ e 

1(6,-1 

2iS1 2Ш, 2Г UjU 2 2iB, 
e 1 

2ifi, (B13) 

where E0 = R e ( E p ) . They coincide on the real axis if either % or u2 

vanishes (this puts the resonance completely in one eigenchannel of S), and 
recede infinitely f a r f rom the pole if fa -* Э2, since then S -» S. Incidentally, 
if the background phases ф : and ф2 of (4. 17) are identified with fa and |32, 
E q . ( B l 3 ) also gives the crossing points of the two-channel Bre i t -Wigner 
S-matr ix , showing that they also lie near the pole unless the cp¡ are equal; 
even a B re i t -W igne r resonance does not remain in a single eigenchannel 
of S, unless the background phases q>¡ are equal in all channels. 

In summary, an eigenvalue expansion of S(E) does not in general 
provide a useful parametrization of a resonance, but that of the closely-
related S ( E ) does - and is the one employed in section 4 .4 . 

18 In this sense it can be thought of as an 'elastic' resonance (B12), confined entirely to one eigen-
channel of S(E), whose width is, however, distributed over the various physical channels by the trans-
formation (BIO) which expresses S in terms of S. 
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(b) Two overlapping levels 

F o r simplicity we assume that S can be approximated, by 

S(E) = В + T (E ) (B14) 

with В constant. If T (E ) is rapidly-varying because of nearby poles, В 
must itself be unitary and symmetric.1 9 

As before , it is then simplest to consider the transformed matrix, 

S (E ) = е"Ш V T S ( E ) Ve"iS (B15) 

= 11+ W ( E ) 

defined by the condition that the B - t e r m is transformed into the unit matrix. 
Since S ( E ) is itself symmetric and unitary for real E, W is symmetric and 
must satisfy 

W + W * + W W * = 0 (B16) 

A single resonance, associated with a single phase - r i se of тг, implies 
only a single 'set ' of crossing points (where the rising eigenphase would 
cross the others if it could), which can be driven infinitely far away in 
S ( E ) by making all its background eigenphases equal. This can no longer 
be accomplished if two resonances overlap because the attendant phase-
r ise is 2ir, and making the background phases of S ( E ) equal just below 
the resonance region, say, only solves half the problem. W e investigate 
the consequences in this section, which is based only on the two assumptions 
that В is symmetric-unitary and constant, and that the residues of all 
S -matr ix elements factor at each pole. 

The simplest case is that in which both resonances occur in a single 
eigenphase of §, i. e. in which T is factorable, in the form T = f (E ) tt T ; 
f (E ) , which has two nearby poles, must be otherwise f ree of singularities 
and in particular contains no crossing-type branch points, fo r it occurs in 
S(E), not in its eigenvalues. Then 

§ ( E ) = 1 + f (E ) uuT (B17) 

of which u is c learly an eigenvector and so real . If we normalize it by 
u T u = 1, 1 + f ( E ) is the corresponding eigenvalue, which must satisfy 

|l + f(E)|2 = 1 (B18) 

in agreement with Eq . (B16 ) . If f has poles at E j and E 2 , it is determined 
uniquely by Eq . (B18 ) and the resulting S is 

S<E> = B + { ( S r ) ( i n j ) - i } t t T (B is : 

with t r t = 1 and Bt* = t, as in Eq. (4.25) . 

19 Everything which follows will also be true even if В varies slowly in the energy region concerned, 
provided it is unitary across the region. 
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Our assumption that T has the factorable form f (E ) ttT across the 
double resonance region has forced both resonances into the same eigen-
channel of S. Hence this §-eigenphase r ises by a total of 2n, so it must 
cross the other eigenphases, which are dormant at б = 0 (mod ir). The 
crossing thus occurs where 1 + f ( E ) = 1, i . e . f (E ) = 0, making § diagonal 
at this energy. This is the exceptional situation mentioned above, in 
which two branch points of S have coalesced on the real axis to permit 
the eigenphases to c ross . 

Because of the constraint that the residues must factor at both poles, 
the only other form of S which admits of two poles is 

S(E) = В + f ( E ) t t T + g ( E ) r r T (B20) 

which is of course just the form of two-pole approximation to the Humblet-
Rosenfeld ser ies [2] . Again assuming В constant and unitary over the 
region of the two resonances, 

S (E) = IL + f (E ) uuT + g (E ) vv T (B21) 

But a matrix of this special form, with u and v constant vectors and f (E ) 
and g (E ) different functions, can be identically unitary in E only if u and v 
are (orthogonal) eigenvectors of S. One way of seeing this is to write it 
as 1 + U + V , with U and V symmetric so that U f equals U"'~ making the 
unitarity condition (B16) 

U + U * + V + V * + UU* + V V * + UV * + V U * = 0 ( B2 2 ) 

Since the sum of the f irst four terms is real and symmetric, that of the 
second four must be real and symmetric as wel l . This means, for 
example, that 

Im [ I f I2 (и ги) uu + ] = Im (UU* ) = - Im (VV* + V U * + U V * ) , (B23) 

but since the two sides have entirely different energy dependences for 
arb itrary u and v, this can only be true if u and v are such that both sides 
are separately real, i . e . uut is real, o r u buf = u b ' u a , which can be true 
for all a and b only if u is a rea l vector (to within an overal l phase, which 
we absorb in F (E ) ) . Similarly v must be real , and if we normalize them 
according to 

u T u = v T v = 1 (B24) 

Eq. (B22) becomes 

(f + f * + |f|2)uuT + (g + g* + | g | 2 ) w T + ( u T v ) [ f g * u v T + f * g v u T ] = 0 ( B 2 5 ) 

Either u or v (which are directly related to the partial width vectors t and 
r of Eq. (B20))can be chosen arbitrar i ly (consistent with Eq. (B24)). In 
particular, i f u T = ( l , 0, 0, . . . 0), o r i f v T = ( l , 0, 0, . . . 0 ) , Eq . (B25 ) 
implies 

f + f * + |f|2 = 0 (B26) 

32 
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and g + g* + |g|2 = 0 

just as in the one-pole case. Consequently, either f"'g = 0, which is 
impossible, or 

u T v = 0 (B27) 

q. e. d. 
This means that u and v are necessari ly eigenvectors of S, with eigen-

values 1 + f ( E ) and 1 + g (E) ; the latter have no branch points by assumption 
and in general wi l l cross at a real energy Ec where again two branch points 
have been forced to coalesce. 

Although one or both of f (E ) and g (E) could have two poles, with one of 
the poles also occurring in the other function, this is unlikely, and the 
normal situation is one pole in each function. In this case Eq. (B26) 
determines the functions as in Eq. (B10, giving 

S № ) = B - i Ë ^ t t T - i ^ r r 

with t+t = r f r = 1, t + r = 0 
and Bt* = t, B r * = r 

Thus one of the consequences of writing S(E) in this form, with В constant, 
is that the 'partial width vectors ' t and r of the two resonances are neces-
sari ly orthogonal. 

32* 



CHAPTER 9 

APPLICATIONS OF RESONANCE SCATTERING 
THEORY IN NUCLEAR PHYSICS 

R.H. LEMMER 

1. Introduction. 2. Antisymmetrization. 3. Optical model. 4. Intermediate structure and doorway 
states. 5. Analog resonances. 6. Applications. 

1. INTRODUCTION 

In this chapter we shall be primarily interested in the possible 
applications of scattering theory to problems of nuclear structure. How-
ever, in order to give proper background to our discussion, it will be 
necessary to discuss the relevant scattering formalism in some detail. 
No exhaustive treatment of scattering theory is intended here since this 
has already been covered from various points of view in Chapters 5 and 7. 
Rather we wish to define the notation and concepts that will be used in 
the subsequent discussion. 

Let us outline a typical problem: A nucleón of energy E collides 
with a nucleus A containing A nucléons. If E is low enough we know 
from experiment that elastic scattering of the nucleón and its radiative 
capture via a (n, y) process are the most likely reaction processes. If 
we examine the total cross-section crT(E) as a function of E we observe 
a smooth dependence except in the vicinity of certain special energies Es, 
e. g. where стт fluctuates rapidly with E over an interval rs . This fluctua-
tion is called a resonance and, as we shall see shortly, can be associated 
with the formation of quasi-bpund states of the compound nucleus (A + 1) 
that forms during the collision. We shall refer to such states as compound 
states. These states are not stable, but possess a width Ts (or lifetime 
fi/rs ) for decay into whatever final channels are open to the compound 
state in question. 

At low energies the average width to spacing ratio Г/D is small and 
we observe isolated resonances. As the energy is increased, the number 
of possible open channels, increases with a corresponding increase in Г 
until the situation of strongly overlapping levels, Г/D » 1, develops. 
Our considerations will for the most part apply to the region of isolated 
resonances. Typically this will mean incident nucleón energies below 
3 MeV or so, always having in mind, however, that such features vary 
strongly from nucleus to nucleus. 

The author is at the Laboratory for Nuclear Science and Physics Dept., Massachusetts Institute of 
Technology, Cambridge, Massachusetts, United States of America. 

The text has been compiled by C. A. Engelbrecht, of the South African Atomic Energy Board, 
Pelindaba, South Africa, from notes taken at the author's lectures. 
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It has been known for a long time that the cross -sect ion in the vicinity 
of an isolated resonance is very accurately described by the Bre i t -Wigner [1] 
one- level formula. Fo r example, for an s -wave resonance this reads 

(1.1) 

where к = incident wave number 
ó = potential scattering phase shift 

r^11' = partial width for emitting a nucleón 
Г5 = total width . 

This formula provides us with a means to extract the parameters 
listed below it f r om experiment. But it tells us nothing about why r e -
sonances occur at particular energies and what determines their widths. 
Thus, in order to make contact between such measured quantities and 
the properties of the many-body system ( i .e . the .compound nucleus) that 
exhibits them, we must introduce a nuclear dynamics, i . e . the mutual 
interactions between nucléons and the equations of motion that govern 
nucleón motion under these interactions. This is of course an obvious 
statement, and how we implement it for the discussion of compound 
nucleus resonances leads directly into the various scattering formal i sms 
that have been developed during the past 20 years (starting perhaps 
with Wigner and Eisenbud [1] in 1947). Since the applications we wish 
to discuss have been based on the fo rma l i sm developed by Feshbach [2], 
we proceed to give a very brief outline of his approach. 

Fo rma l i sm. Our problem can be stated as fol lows. A nucléon a 
interacts with the target nucleus A via a mutual interaction V(a, A) . 
(As our notation suggests, the symbols a and A now stand for all the 
co-ordinates of the incident and target systems. ) The Hamiltonian of 
our system is thus 

H = H(A) + Ta + V(a, A) 

consisting of the target Hamiltonian H(A) , the kinetic energy Ta of a and 
their mutual interaction. We next expand the full wave function ¥ (a, A) 
in terms of a complete set of target states. Cal l these states фа(A). 
Then we write 

¥(a. A) u a ( a ) 0 a ( A ) (1.2) 
a 

Inserting this expansion into the wave equation (H - E)Y(a, A) = 0 we 
immediately obtain an infinite set of coupled equations for the u a ( a ) . 
However, if we are at energies for which elastic scattering is the only 
open channel, al l the scattering information is contained in the amplitude 
u 0 (a ) , since al l the remaining u j s wil l vanish as a -» oo. This observation 
suggests that it wi l l be convenient to isolate u0 f rom the other amplitudes 
and derive an equation for u 0 . This is Feshbach's procedure. He in-
troduces the projection operators P and Q = 1 - P such that 

PY = и 0 (а )ф 0 (А ) (1.3) 
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where ф0 (A) symbolizes the ground state of the target nucleus. Thus P 
projects onto open channels, Q onto closed channels. Then,writing the 
wave equation as (H - E ) ( P +Q)¥ = 0, it is a simple matter to derive an 
equation for PY: 

(E - H PP H PO E - H Qp 
^ n Q 0 

H 0 P ) P Y = 0 

HP P = P H P 

Hqq = QHQ 

HQ P = QHP = H 

(1.4) 

t 
PQ 

If, as here, we are looking at elastic scattering only (and ignoring anti-
symmetry), we can write for P, 

p= U o H * o l (1-5) 
in which case Eq. (1. 4) becomes, after operating with (ф0| f rom the left, 

1 
E - T - V -a a VQ E - H -QV 

00 
u0 = 0 (1.6) 

where V a = (0o|V(a, А)|ф0 ) , (ф0|Нрд= (ф0 | VQ. The round brackets 
imply integration over target co-ordinates only. We shall use sharp 
brackets ^ . . . I . . . у when an integration over all co-ordinates is intended. 

The structure of Eq. (1. 6) is significant in that it contains interaction 
terms that behave quite differently with energy. Va does not depend 
explicitly on E, while the last term var ies very rapidly with E if the 
spectrum of the system defined by the Hamiltonian H q q is dense. The 
significant quantities are the energies E s , where 

( Е 8 - н о д ) ф 8 
0 (1.7) 

which are poles in„the last term of Eq. (1. 6). Equation (1. 7) is an 
(A + l ) -par t ic le problem, and, as we shall show in a moment, provides 
a very convenient definition for the compound states of the (A + l ) nucleus. 
To see this, consider an isolated level, E s , of HQQ that l ies in the con-
tinuum of the incident nucleón (see Fig . 1). 

We display the operator (E - HQQ)"1 in terms of the (assumed) complete 
set of states Ф8, but keep only the term with a pole at E = E s explicitly 
and regard the rest as a modification of the potential Va 

V a . Then (1. 6) reads 
replacing it by 

(Е-та - v': W o l V Q k , ><Ф 5 1 Q V U Q U 0 > 
j ° " E - E s 

( 1 . 8 ) 

Knowing the scattering solutions of the left-hand side of this equation, 

(E - T a - Va ) ^ = 0 (1.9) 
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for both incoming and outgoing wave boundary conditions, we can solve 
for the transition amplitude. The result is easily found to be 

T = T0 + < 0 f 4 | V Q k > < ф 5 I Q V I M O > 
E - Es - A s + i r s /2 

where 

As = <í>s IQ v I ф о ) — ^ ( < M V Q I ¿ S > E - T a 

RS = 2ir <ф5 | Q V U 0 ) 6 ( E - Т А - VJ) (Ф0| VQ|®s > 

(1.10) 

(1.11) 

P means principal value, not projection, and T0 is the scattering amplitude 
for the problem defined by (1. 9), i. e. the scattering caused by V1 acting 
alone. We note that T (E ) in (1. 10) has a pole at the complex energy 

+ A S - 2 r s 

indicating a resonance at energy E s + Д8 with a width Ts. Thus if the shift 
Д5 is small, the resonances occur very close to the eigenvalues of the 
system with Hamiltonian Hqq , Since the coupling with the entrance channel 
has been reduced to zero in HQQ, we are in a sense dealing with an " internal" 
problem involving the interaction of A + 1 particles. Restoring the 
coupling HQP with the entrance channel then endows all states of HQQ with 
an energy shift A s , and those states above threshold with an escape width 
Г. in addition. * 

Sta tes of H 

Isolated level E . 

Thresho ld tor particle a 

Actual groundstate of A + 1 

FIG.l. An isolated level Es of HQQ, lying in the continuum of the incident nucleón 

By contrast, the f i rst term T0 in (1. 10) is expected to vary slowly 
with energy and is usually re fe r red to as the potential scattering. 

Equation (1, 10) almost has the f o rm of the one- level Bre i t -Wigner 
amplitude used in (1. 1), except that we have not broken T up into a 
partial wave expansion. However, it is instructive to do so in order 
to appreciate the point that a given resonance in T in (1.10) can only be 
excited by certain partial waves that are determined by angular momentum 
conservation. 
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Let us assume that Va is spherical ly symmetric and also ignore 
intrinsic spin of all particles. Then the scattering solutions ф ^ may be 
displayed in partial waves according to 

(1.12) 

Cm 

where к is the direction of the incident plane wave. The incoming wave 
solutions ф^ have a s imi lar display, with ф^ replaced by ф^ = e'2l&í ф^ 
where is the potential scattering phase shift for the i - t h partial wave. 
Since the compound states Ф5 ca r ry a good angular momentum (they are 
eigenstates of a rotationally invariant system), we see f rom the matrix 
elements, e . g . 

|qv|0Í+Uo> 
î î 

same total 
angular momentum 

that a resonance of angular momentum J is only excited by the i = J 

partial wave in the incident beam. Writing T(k ' , k) = ) Y Ê m (k ' ) T£ Y i m (k) 
Cm 

where k1 is the direction of the scattered particles and inserting the 
expansions tor ф ^ in (1. 10) we find that 

1 16, . - A 216. I<»SJ i Q V k c n U o ) ! 2 
— t c m A . 4- Сл ¡i -í—N • ^ 

fo r i = J. Fo r other values of I only the potential scattering te rm is 
present. We can also identify the width P s belonging to the state Ф*. 
F r o m (1. 11) this is just 

г Г = 2 H ^ | q v | O 0 > | 2 . ( i - 1 4 ) 

a result that is immediate upon expressing 6(E - T a - Va ) in terms.of the 
(energy-normalized) states Ф ^ . Note that the bound states of Ta + V a 

do not contribute because E always re fe rs to an energy above threshold 
for the particle a. Equation (1. 13) is precisely the one- level Bre i t -Wigner 
formula in its more usual form. The corresponding total cross -sect ion 
for elastic resonance scattering of the partial wave Í = J is 

47Г3 

Т Г W + D sin ôf + i e 2 i 6 « „ p TT £ 7Г E - E s - A s + ir s/2 

2 

(1. 15) 

if we make use of (1. 14) for the matrix element <( Ф5 | QV | ф ^ ф0 )>. 
Thus fa r we have pretended that a single, isolated level at Es is 

responsible for resonance scattering. However, we shall also be interested 
in the case that severa l levels E s have to be considered. The procedure 
for obtaining the transition amplitude in this case is still straightforward. 
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Fo r N levels E s the equation (1. 8) is replaced by 

(E - T a - V 

N 

"'"O = i 
(Ф0| V Q K ><Ф 5 I q v K u „ > 

E - E . (1.16) 

where, as before, V " indicates that the remaining non-resonant levels 
have been included in Va . Feshbach [2] has shown that in this case the 
transition amplitude is of the form 

T = T 0 + I A„ 
E - , (1.17) 

where the Su are the complex roots of 

I - E s ) 6SS, - Д ssr + ^ rss, x „ = о U, s' 

i . e . the energy shift and width factors in (1. 11) are replaced by matrices. 
However, if we neglect the coupling between compound states that a r i ses 
through their mutual interaction with the entrance channel by setting the 
of f -diagonal elements A s s , and r s s , to zero we regain a simple structure 
for T that wil l be adequate for our purposes: 

T » T0 + I <Ф(о\ o I v q K > < ф , | д у к £ Ч > 
Es - Ass + iFss /2 (1.18) 

Note in passing that, because of the approximation we have introduced, 
T in (1. 18) is not properly unitary, while T in (1. 17) is. 

2. A N T I S Y M M E T R I Z A T I O N 

So fa r we have disregarded the requirement of antisymmetry between 
the incident nucleón and the nucléons in the target. Fo r bound state 
problems this requirement can easi ly be satisfied but in scattering 
problems non-trivial changes are necessary. - This can be illustrated 
by considering a very simple model for the target nucleus. Let us 
assume that it consists of a completely fil led Fe rm i sea which is never 
excited, and an additional nucleón whose co-ordinates wil l be denoted 
by b. This nucleón can occupy bound levels ф0 or ^ or continuum 
levels (with energy e) of the Hamiltonian for the target nucleus. 
If we do not antisymmetrize, the wave function of the complete system 
(incident nucléon plus target) can be expanded according to 

со 

ï ( a . b) = u0(a )ф0 (b) + U l (а)ф1 (b) + Jde u£ (а)ф<+>(Ь) (2. 1) 
о 

If the target is initially in state ф0 (b) and the energy of the incident nucleón 
is less than the energy difference between states ф1 and ф0, the coefficients 
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u j i a ) and u e ( a ) will asymptotically tend to zero so that the scattering is 
completely determined by the overlap 

(ф0,Ю = u 0 (a ) (2.2) 

whose s -wave component, for example, asymptotically becomes pro -
portional to 

^ (e" ikr - Se i k r ) (2. 3) 

To obtain the value of the transition amplitude (S - 1), the Schrodinger 
equation for u 0 ( a ) must be solved everywhere. 

Let us now consider what happens when (2. 1) is antisymmetrized. 
The result is [л/ denotes antisymmetrization) 

= и0 (а)ф0 (Ь) - и0 (Ь)ф0 (а) + u ^ a ) ^ (b) - U l ( b ) « M a ) 

+ de ие(а)ф (£+)(Ь) - ue ( b ) ^ + , ( a ) (2.4) 

Because of the orthogonality of the target states, the overlap with the 
ground state of the target is given by 

(фo.Jtf'ï) = u0 (a ) - (u0, Фо)Фо(а) - (ui, 

de (u£, ф0)ф(£+) (a) (2.5) 

Since (2.4) is completely antisymmetric, it does not matter which particle 
we consider as the "detected" particle - one simply obtains the same 
expression but with opposite sign. We have here chosen a to be the 
"detected" particle. Letting its co-ordinates tend to infinity, we obtain 

U0,j**S) - u0 (a ) - J d e ( u e , Ф0)Ф(с+)( a) (2.6) 

Equation (2.6) indicates the complication, namely that u0 no longer 
contains all information about the scattering. The second term in (2. 6) 
also contributes to the outgoing wave part of u 0 . It is thus essential that 
in (2. 4) we expand in terms of a complete set of target states including 
the continuum. 

The complication ar i ses because - u0ф0) (see (2.4) ) is no longer 
orthogonal to ф0. We shall now outline a procedure which regains the 
simplicity of having al l scattering information contained in a single u 0 

(which wi l l of course be different f rom the one defined above) but at the 
price of introducing a more complicated projection operator P . Fo r 
this purpose we return to the general formulation where ф0(1. . . A) simply 
denotes the target ground state and does not re fe r to the simple model 
which we-have just discussed. 
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We now start with a wave function ¥ (a 1 2 . . . A) of the complete 
system which is already completely antisymmetric and demand that 

F? ( a 1 . . . А) = ^ [ и 0 ( а ) ф 0 ( 1 . . . A ) ] 

A 

= и0 (а)ф0 (1 . . . A) - £ u 0 ( i , * 0 ( l . . . i - 1, a, i + 1 . . . A) (2. 7) 
i = l 

whe re UQ is still undefined. If it is supposed to contain the complete 
scattering information, we must guarantee that (Í? - PY) does not contain 
the ground state and by this process complete the definition of P. Thus 
we demand 

toOJï-F?)=0 (2.8) 

F r o m (2.7) we thus obtain 

v ( a ) = (Фo, ¥ ) = (фo, FF) 

= u 0 ( a ) - AJd(l... А)ф*( 1 2 . . . А)ф0 (a 2 . . . A )u„ ( l ) (2. 9) 

where the complete antisymmetry enabled us to replace the summation 
sign by the number of equal terms A. Let us define 

K(a, 1) = aJ"d(2 . . . А)ф* (1 2 . . . А)ф0 (a 2 . . . A) (2.10) 

which is just the density matrix for the target nucleus in its ground state. 
Then (2. 9) reads 

v (a ) = u0 (a ) - J d ( l ) K ( a , l ) u 0 ( l ) (2. 11) 

which we wish to solve for uo in terms of v. The integral operator 
К is obviously hermitian (i. е. К* (a, 1) = K( l , a)); we can use its set 
of eigenfunctions и л defined by 

jTd ( l )K (a , l ) u x ( l ) = Xux (a) (2.12) 

to express 

K(a, 1) = ^ u x ( a ) X u t ( l ) (2.13) 
x 

Equation (2. 11) can be written symbolically as 

v = u - Ku (2. 14) 
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which can be solved formal ly by 

u = т - Ц т v + w (2. 15) 
1 - K. 

where w is a solution of the homogeneous equation (1 - K)w = 0. 
It is obvious that the discussion of the homogeneous solution w as 

wel l as the treatment of poles in the operator (1 - K)"1 requires an 
investigation of the possible eigenvalue Л-l = 1 in (2. 12). The definition 
(2. 10) implies that we can write, for any function uX j , that 

= % - K % < 2 - 1 6 > 

just as in (2, 9), If uxj is now an eigenfunction corresponding to Xj = 1, 
it fol lows f rom (2. 12) that the right-hand side of (2. 16) vanishes and 
hence also 

<jaruXi<i>o, ^ u x^o > 

which implies 

,VuXi4>0 = 0 (2.17) 

and hence also 

(uX l , v) = (лГиХ1ф„. ¥) = 0 (2.18) 

In the special case where ф0 is a single Slater determinant (Har t ree -Fock 
ground state), К is simply a sum over occupied single-particle states 

K(a, 1) = £q> a ( l ) q>* (a ) 

a(occ) 

Since u x , is a l inear combination of precise ly these states, the result 
(2. 17) then follows f rom the vanishing of a determinant with equal rows. 

Equation (2. 15) can now be expanded in terms of the set of eigen-
functions u x 

V a ) = E ^ ^ + I b X i u X i ( a ) (2.19) 

Xjil Xj 

where the terms X = 1 may be omitted f rom the f irst sum on account of 
(2. 18) and where the coefficients bX j are undetermined but unimportant 
since they drop out of the fo rma l i sm as we shall now see. F i rst rewrite 
(2. 19): 

u 0 (a ) = v(a) v) + ^b¿ 1u'X l (a ) (2.20) 

Xi 
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and now compute 

P Ï = ^ и 0 ( а ) ф 0 ( 1 . . . A) 

•л* 

ХФ1 

U ,Ф XV 0 (2.21) 

where we have made use of (2. 17). The f irst term on the right-hand side 
can be written as 

v 0 ( a ) * 0 ( l . . . A ) = Jd[V...A'W*(l\ . . А')Ф(а, 1'. . . А ' )Ф0 (1. • • A) 

= ( l . . . А|ф0)(ф0 > 

Similarly, 

и лФ0 (их , v) = < a 1. . . А|ихф0 > < u х ф 0 > 

so that the operator P can finally be expressed [2] as 

Sometimes the more symmetrical fo rm 

jâti i °n 0 L 1-х J лтт 

is used. 
It can be shown that, with this definition, P 2 = P so that this is 

indeed a projection operator. If the f o rm (2. 22) rather than (1. 5) is 
used, (1.4) still holds for РЧ? which still contains all the scattering 
information. Since P is differently defined, operators such as H p p , 
HPQ and HQQ may have different meanings, however. The second term 
in (2. 22) contributes only for X which di f fer f rom 0 and 1. If the ground 
state of the target nucleus can be represented as a single Slater determin-
ant of single nucleón wave functions, this term vanishes. Even for simple 
cases like closed shell plus one or plus two nucléons in the target, angular 
momentum coupling would, however, cause it to play a role. 

A s one might suspect, all of the preceding discussion can be carr ied 
out in a second quantized version [3]. Define anticommuting field ope r -
ators ф[Ц) and i ) which destroy and create a nucleón with co-ordinates 
(space, spin, and isospin) ? and consider the expression 

fdî ^ + ( ? ) | G > u 0 ( f ) 

where the amplitude u 0 (€ ) appeared in (2.7) while |G)>denotes the ground 
state of the target nucleus. The overlap with i//+(a) 11, . . . , A y , i. e. an 
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antisymmetrized state containing nucléons with co-ordinates (a, 1 , 2 , . . . , A), 
is given by 

J d ? < l . . . A | ^ ( a ) 0 + ( f ) | G > u o ( ? ) 

- u0 (a )^ 0 ( l . . . A) - J d f < l . . . A | ^ t ( W ( a ) | G > u 0 ( f ) (2.23) 

where we have set 

<1 . . . A | G > = 4>0 (1. . . A) (2.24) 

If we now express 

| l . . . A > = ( j y ) V ( l № + ( 2 ) . . . ^ ( A ) | 0 > 

and use the anticommutation properties of the ф*s, it is easy to show 
that the right-hand side of (2. 23) reduces to 

j * { u 0 ( a ) * 0 ( l . . . A ) } 

which is identical with (2.7). It follows that the density matrix (2. 10) is 
given by 

K(a, 1) = < G| 0+(l)ç^(a) I G > (2.25) 

while the projection operator P (2.22) may be written as 

P = Уd€0 + (€) |G>< G|0(€) 

+

 X / /
d

?
d r

' ^
+

( ? ) l
G

>
u

x ( Ç ) T T ^
u

t ( n ) < G k ( n ) (2.26) 

where the u x ( f ) are eigenfunctions of К as in (2. 12). 
As an example consider the scattering of a nucleón from a target 

nucleus described in the shell model by a single hole state 

|G>= ¡ w J O ) (2.27) 

where the nucleón destruction operator an j m creates a hole of angular 
momentum (j0, -m 0 ) in the Fermi sea |o]>. If Го a n d the partial wave J 
of the incident nucleón are coupled to a total angular momentum J, the 
density matrix becomes 

K(r, ?') = K j m ( r , r ' ) 

= <G|aJ m ( r ' ) a j m ( r ) |G> 

= ^ ( jm j Q - m0 IJM)2 KJjjo(r, r«) (2. 28) 

J, M 
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The matrix (r, r ' ) is 
JJo 

4 о ( г , г . ) = ^ R n j ( r ) R n . ( r . ) - (2j0 + l ) 6 J j 0 6 J , o R n o j o ( r ) R n o j o ( r . ) (2.29) 

n ( o c c ) 

where we have used the expansion 

a. ( r ) = ) R ( r ) a . (2.30) jmv ' nJ nJm 

n 

for a j m ( r ) in terms of a complete set of radial "orb i ta ls " R n j of angular 
momentum j . Note that the sum in (2. 29) is over occupied orbitals in 
the Fe rm i sea only. 

When J > 0, only the f irst term in (2. 29) contributes. The eigen-
functions and associated eigenvalues are easily seen to be 

u A ( r ) = Rnj (r), X = 1 if nj is occupied in | 0 )> 

X = 0 if nj is unoccupied in | 0 

If J = 0 (hence j = j0) we have, on the other hand, 

u x ( r ) = R n j ( r ) , X= -2j0 if n is the occupied state n0 

X = 1 if n is any other occupied state 

X = 0 if n is unoccupied in | 0 )> 

We notice that the eigenfunctions u x ( r ) f o rm a complete set in each case. 
These results show that in this example the last te rm in (2. 26) contributes 
only if J = 0 and n = n0 . 

3. O P T I C A L M O D E L 

It is a wel l -establ ished fact that the energy averages of total and 
scattering cross -sect ions are adequately described by the optical model. 
In this model one considers the scattering of the incident particle by a 
complex potential wel l 

[E - T a - (V - iW ) ] X(a) = 0 (3.1) 

which embodies in W all our ignorance concerning the nuclear many-body 
prob lem; We shall now investigate if anything can be learned about this 
complex potential by the application of our fo rma l i sm to the problem of 
average cross -sect ions . 

We have seen (Eq, (1. 16)) that the complete scattering properties 
are contained in a function u0 which satisfies the equation 

E - T a - V » I ( Ф 0 I v q K ><Ф5 I Q V U Q ) 
E - Es 

u0 (a ) = 0 (3.2) 
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Unlike X, which describes only the average properties of the reaction 
(solid line on Fig. 2), u0 contains the actual resonance properties (broken 
line). 

FIG. 2. Average properties of the reaction (solid line) and actual resonance properties (broken line) 

If we wish to derive an optical model from (3. 2), it is clear that we 
have to average over many resonances, and thus have to use an averaging 
interval of energy width Д which is large compared to the average spacing 
Ds between resonances. The transition matrix corresponding to (3. 2) 
was seen (Eq. (1. 18)) to be given 

T » T o + ><ф, I q v U O ^ ( 3 3 ) 

S E - ES - ASS + - RSS 

if the coupling between resonances (non-diagonal terms Ass, and Fss,) is 
neglected. 

The optical model potential is defined in such a way (see for example 
Ref. [2]) that its T-matr ix corresponds to the energy average of the 
actual T-matrix. We thus have to average (3. 3) by means of a normalized 
weight function p (E, E ' ) : 

<T> = /, p(E, E1) T (E1) dE1 (3.4) 

An example of a weight function would be the one used by Feshbach, 
Porter and Weisskopf [4] in their original paper on the optical model: 

p(E, E ') = 

^ if |E - E '| < Д/2 

, . ( 3 " 5 ) 
0 if IE - E '| > Д/2 

To avoid having to worry about end effects, it is simpler to use the 
Lorentzian form 

1/27Г 
P ( E - E ' > = (E - E ' )2 + (I/2)2 <3-6> 
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where I 2А/тг. Cauchy's theorem shows that this latter weight function 
has the property 

/ p(E, E ' j F Í E ' J d E ' = F (E f | l ) (3.7) 

for any function F which has no poles in the upper half plane and satisfies 
certain criteria of boundedness. 

When averaging (3. 3), we shall assume that all rapid fluctuations 
of T over the averaging interval I are contained in the sum term so that 
the energy dependence of T0 may be disregarded in the interval I and 
^ T 0 y set equal to T0 . In the sum term the also depend on E 
through the equation 

(E - T a - Van) фЫ = 0 

but this dependence wi l l be slow so that the average can be calculated 
approximately by the application of (3.7) . The result is 

< T > = T0 + y < ^ 4 ° | V Q i ^ > < ^ l Q V | ^ ) > (3.8) 
V E - Es - Ass + | r s s + | l 

The only difference between this expression and (3. 3) is that the E 
in the denominator of the sum is replaced by E + iI/2. Since the T -mat r i x 
of (3. 3) followed f rom the solution of (3. 2), we see that the average 

T ^ - m a t r i x wil l follow f r om the solution of the equation obtained by 
replacing E by E + il/2 in the denominator of the sum in (3.2) . The 
resulting equation is a one-particle equation whose solution leads to the 
average <( T у - m a t r i x and is thus by definition the optical model equation. 
This observation enables us to identify the optical model potential as 

v - i w - v : + y ( * ' | V Q k ' X * ' . l Q V | * b ) (3.9) 
, E - E , + | l 

We shall be especial ly interested in the imaginary part of the optical 
potential, which is 

W = 
2 у (< f t 0 IVQK ><Ф5 I Q V U Q ) 
I L 1 + 4(E - E s ) 2 /I 2 

The denominator has the effect of damping the contributions f rom levels 
with |E - ES I » 1/2. In fact most of the contribution to this sum comes 
f r o m levels within I, and we find 

N 

w и i ^ (^oIvqNS ><ф5 IQVUO) <3-10) 
s — 1 

where we d isregard end effects and simply sum over the N levels whose 
energies E s fa l l inside the interval Л ~ nl/2. 
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Two features of W emerge directly f rom this expression. In the 
f i rst place it contains an intrinsic energy-dependence on account of the 
fact that a different set of levels E s wil l be included in the sum at different 
energies E. Furthermore, the potential is non-local, as we can see by 
writing (3.10) in configuration space 

W(a , a ' ) = ^ ^ J d ( l . . . A ) d ( l ' . . . A ' M ^ 1 - . . A )V (a , 1. . . A)3>s(a, 1. . . A) 

ХФ*(а\ 1'. . . A>)V(a», 1". . . A ' ) ^ 1 ' - . . A ' ) (3. 11) 

This would introduce an additional energy-dependence if an equivalent 
local optical potential is used for W. 

To investigate the physical meaning of (3. 10), let us make some 
extreme assumptions. In particular, consider a closed shell plus one 
nucleus such as 170, 41Ca, 2 0 9Pb and suppose that their ground state ф0 

can be written as a single Slater determinant of shell model single-
particle wave functions. The operator QV which causes excitations can 
then be identified with the residual interaction VR of the nuclear shell model. 
If it is assumed to be pure two-body interaction, the only effect it has 
on ф0 is to excite the odd nucleón f rom its ground state level 0 to another 
level j3, or to excite a nucleón out of the completely fil led Fe rm i sea, 
while the incident nucleón drops into a single-particle a . This suggests 
that we expand Ф8 in terms of such simple excitations, фй say: 

• i 
Ф5 = ) as¿фй + other terms (3.12) 

where the "other t e rms " are not coupled to Ф0Ф0^ through VR , 
The expression for W then becomes: 

W » 
d s 

i Y, ^ о К к х ^ К к ) (3.13) 
d 

where ^ |asd| should approach unity if a sufficiently large set of "compound 
s 

states" Ф5 is included in Д. Although (3. 13) has the same fo rm as (3. 10), 
the simple excitations фй wi l l in general be expected to be much further 
apart in energy than the compound states Ф8 (i. e. D d » D s ) so that the 
sum includes fa r fewer terms. 

bet us return to the simple case we are discussing and simplify the 
model further by disregarding excitations of the Fe rm i sea. Thus the 
excitations 

Фй (a, b) = фа (а) фв (b) 

are simply two-particle states in the shel l -model potential. (We denote 

33 
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the co-ordinates of the incident and target nucléons by a and b, respectively, 
and neglect antisymmetry. ) If we define 

VO0 (a) Ü (ф0(Ь), V R ( a , b ) * B ( b ) ) 

it is easy to see that the imaginary part of the optical potential becomes 

W ( a , a ' ) = - I V0B ( a ) V M (a ' ) eo (а) Ф~'а (a ') (3. 14) 

where the separation into the product of two sums is a consequence of 
using a simple product wave function. 

This simple expression can serve as basis for a few remarks con-
cerning W(a, a ' ) . In the f irst place, we observe that the radial distribut-
ion of the imaginary potential is determined mainly by the single-particle 
wave functions. We also obtain an explicit representation of the non-
locality and notice that it is of a separable form, quite unlike the fo rms 
that are usually used for phenomenological studies. In our model the 
non-locality is determined by the density distribution of the "extra core " 
particles and could thus have a range of the same order as the dimensions 
of the nucleus. If the interval Д had contained a complete set of states, 
c losure would have reduced the second bracket to 6 (a - a1) and the 
potential would have become a local one. Of course, the model is a 
very simple one and even coupling to a definite angular momentum would 
destroy the single-product nature of our wave function. 

4. I N T E R M E D I A T E STRUCTURE AND D O O R W A Y STATES 

When the cross -sect ion for a nuclear reaction is measured with good 
energy resolution (1 keV, say, for light nuclei and better for heavy nuclei) 
at low excitation energies, one usually observes isolated resonances with 
widths Г5 and spacing D s . In the f irst section we saw how these resonances 
can be associated with compound nuclear levels or eigenstates of Hqq 
(see Eq. (1. 7)) in our fo rmal i sm. At higher energies these resonance 
peaks merge and are replaced by Er icson fluctuations. If, on the other 
hand, the energy resolution is poor (say 2 MeV) , one only observes the 
very broad peaks described by the optical model [4]. 

If an intermediate energy resolution (say 50 keV) is used, an inter-
mediate type of structure (widths r d , spacings D d ) is often seen. This 
is shown in Fig . 3 for the total cross -sect ion of 19F for neutrons. 

One could speculate that this intermediate structure is caused by 
random fluctuations but would then find it difficult to explain the large 
widths r d » r s . In many cases the correlated structure in different 
reaction channels makes this interpretation untenable. An alternative 
explanation that has been advanced since 1963 [5] is in terms of simple 
excitations of the compound system. 

A s an example we may consider the case of a nucleón incident on 
a c losed-she l l nucleus which is described by means of a completely filled 
Fe rm i sea with additional empty bound levels (Fig. 4). 

33' 
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If the residual interactions consist of pure two-body forces, the 
most complicated state they could produce when acting once only would 
consist of the incident nucleón dropping down into an empty bound level 
while another nucleón is lifted out of the sea to another empty level 
(these levels could in general also be in the continuum). If no further 
couplings to the Fe rm i sea are allowed, this two-particle - one-hole 
(2p - lh ) state (which we denote фА) is al l that can f o rm and according to 
(1. 14) we expect to see a resonance of width 

Г *= 2 И < ^ М ф 0 4 + ) >|2 (4.1) 

Actually, the state фй is not stationary and more complicated states 
Ф8 evolve. Since they contain Ф& only partly, the matrix elements that 
determine r s are much smal ler , so that Fs « Г*. The simple excitations 
Фй were called doorway states by Block and Feshbach [5], since they 
provide the entrance into the states Ф5 of the compound system. We shall 
later see under what circumstances the average cross -sect ions are 
dominated by their structure. 

FIG.3. Total cross-section of 19F for neutrons showing that if an intermediate energy resolution is used, 
an intermediate type of structure appears 

Фч (A+1) 

FIG. 4. i Case of a nucleón incident on a closed-shell nucleus described by means of. a completely filled 
Fermi sea with additional bound levels 

More generally, we can always decompose the eigenfunction Y of the 
complete Hamiltonian H into three parts 

Y = PY + d¥ + q¥ (4. 2) 

where the projection operator P is defined to project onto the part where 
the target is in its ground state, q projects onto the part which is ortho-
gonal to HY, and d = 1 - P - q. If only one doorway state фй is important, 
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it is proportional to d¥. The eigenstates of Hq q can then be decomposed 
according to 

ф5 = asd^d + Чф5 (4.3) 

and a typical matrix element becomes 

since d and q have been defined in such a way that Pф^ = 0 and VPq = 0. 
The spectra of the operators Hp p , Hdd and can be pictured as 

shown in Fig . 5. 

Ground state I 
of nucleus A r -
plus free nucleonj 

PP 

—1 • 1 solutions of 

J (e - H )Ф = О J к Я 9Ч / Т Я 

{Ground state 
of nucleus 

A+1 

. 5. Spectra of the operators Hpp Hdd H q q 

When the coupling term Vd q is included, the eigenstates Ф5 of Hqq-
a re linear combinations of the фл and the Фч. There may be smal l energy 
shifts but in general the spectrum of the E s wi l l be very s imilar to that of 
the E q . When VPd is also included, further shifts of the levels below 
threshold may occur while the discrete states above the lowest threshold 
become resonances. 

To investigate the coupling between H d d and H q q , let us consider 
the following schematic model: 

(1) Assume that we have a single doorway state фй against a back-
ground of equidistant (spacing D) levels Фч. 

(2) Assume that the matrix elements Фч [ V | i ^ a a r e independent 
of q (= V, say). 

To obtain the coefficients a s d , one could diagonalize HQQ in the basis 
{ф^, Ф^} . However, it is s impler to consider the Green 's function 

G(E) = < 0 d | d 1 d | ^ d ) (4.5) 
00 

s 

. V la5d I2 

• L E - E s 
s 

(4.6) 
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since its poles are the actual resonances while the residues are p re -
cisely I a sd 12 . Using the identity 

d F * d = d î - d (4.7) 

we obtain 

к - E < - E l f » ( f . ) } " ( 4 . 8 ) 

where we have made use of the assumptions of our model. The poles Es 

of G (E ) are thus given by the solutions of 

Es - Ed - ^ cot ( f * ) " ' 0 (4"9) 

while the residues are given by 

k d I2 = l im [ (E - E S ) G ( E ) ] 
s d ' E-*Eg 

1 J. т 2 I ЛГ |2 2 / ^ 1 + тг? V cosec D 2 I » I ш о с и ^ 

M ! 
(E, - E d ) 2 + (тг IV [2 /D)2 + V 2 

(4. 10) 

This is simply a Lorentzian f o rm as shown in Fig . 6. If | V| » D, we can 
write 

27Г I 12 Г^ 
D l & s d l = (Es - E d ) 2 + (Г</2) 2 ( 4 - П ) 

¡ 
1<ФЧ | v k d > | 2 (4.12) 

FIG. 6. The residues | asd| ! as a function of Es 

The "strength" of the doorway state is thus distributed among actual 
compound states Ф8 in an energy interval of order Г* around E d . The 
distribution of eigenvalues E s d i f fers very little f rom the distribution of 
Eq. Although these results were derived f r om a very simple model, they 



518 LEMMER 

remain qualitatively true for a more realistic model and wil l thus be 
repeatedly used in the further discussion. 

If we consider energy averages over an interval I » r s s , neglect the 
shifts A s s , and introduce expansion (4.3), the average T -mat r i x of Eq. (3. 8) 
becomes 

V" I I2 
< T > = T 0 + < Ф<0 > Ф0\ Vd \фй > < ФА 1 dV I Ф0 0 W > ^ E _ 1 , l / 2 (4.13) 

s 

F o r I » Ds » D, we could write 

V k d l 2 1 Г< I asd I2 > dEs 

L E - E s + il/2 ~ D J E - E s + iI/2 

Г , Е ГЧ2п 1 
J s (E s - E d ) 2 + ( r V 2 ) 2 ' E - E s + iI/2 

= (4. 14) 
E - E d + - ( Г * +1) 

where we have introduced the result (4.11) and made use of (3.7) . 
The width Г* of (4. 12) contains the coupling of the doorway state with 

the states i>q. The coupling with the entrance channel adds the width r f 

of (4. 1) so that the average T -mat r i x becomes 

< T > = T , * 0 | v d k X M ' d v K ^ > ( 4 1 5 ) 

E - E d + i (Г1 + I) 

It now becomes c lear that intermediate structure associated with a door-
way state wi l l become evident in an average cross-sect ion whenever an 
averaging interval I can be chosen which satisfies the criteria 

Dd > r d >1 » D S , Ts (4.16) 

where Га = Г 1 + Г1 is the total width. Equations (4. 1) and (4. 12) both have 
the f o rm of the "golden rule" with the density of states represented, r e -
spectively, by 1 (on account of the energy normalization of the conti-
nuum states ) and by D"1 . They represent the transition probability 
per unit time for the escape of the nucleón back into the entrance channel 
and for the decay of the doorway state into more complicated states. Fo r 
this reason Г т and Г* are called the escape width and the decay width 
of the doorway state, respectively. 

It is interesting to see what optical model potential would produce 
the average cross -sect ions which include intermediate structure. Let us 



RESONANCE SCATTERING THEORY 519 

f i rs t general ize the situation somewhat by allowing for contributions f rom 
more than one doorway state. 

= +qfl>s (4.17) 
d 

The last term in (4. 13) then becomes 

X I <^o (" ) ¿ o M ^ d ' X ^ d M 4>o > X E E ^ + i I / 2 ( 4 Л 8 ) 

d d' s 

If the cross terms in the sum over s are assumed to vanish or to cancel, we 
may again apply (4. 11) as before. ' By analogy with (3. 9), the correspond-
ing optical potential is then given by 

V Wo I v kd > < Фа I v I Фа ) V - iW = ) — d ; d — ^ ^ (4. 19) 
j. 

d ~ " a ' 2 E - E d + i (I + Г») 

If I » r j , we recover the ordinary optical potential of (3. 13) expressed 
as a sum over doorway states. When I < Г*, the potential is very different, 
however. Among other things, it is much more strongly energy-dependent. 

In this formulation in terms of doorway states, the complexity of the 
many-body problem is shifted to the coefficients asd and finally to the 
decay width Г*. To be able to see non-overlapping doorway states, Г* 
should not become too large. This restriction would for example be 
satisfied if the number of states 4>q which are connected to фй through 
the matrix elements which occur in (4. 12) is cut down due to some 
selection rule such as conservation of total angular momentum, parity 
or isospin. This is what happens in the case of analog states. It also 
leads us to expect doorway phenomena to stand out more c lear ly near 
closed shells where the states are simpler and the selection rules more 
effective. The decay width Г* would nevertheless be spread over several 
compound states s so that (4. 11) indicates that for al l states 

j lasd I2 « 1 (4.20) 

This also implies 

r s = l a s d l 2 r t « r t (4.21) 

The effects of the coupling between the î>q states and the doorway 
state can also be looked at f rom a time-dependent point of view. If we 
neglect coupling to the entrance channel, we may expand the total t ime -
dependent function Y(t) in terms of the complete set Ф5 : 

Y(t) = ^ A s O s e " i E s t 

s 

J 
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Let us assume ¥(0) = фй at t = 0 and consider the expansion 

Ф5 = a s d фл + terms which we disregard. 

Then it is easy to see that 

Y(t) = Y l asd!2 e" iEs t Фй 

s 

By inserting (4. 11) and changing the sum into an integral which can be 
done by completing the contour in the lower half of the E s -p lane, we find 

¥(t) = фйе'1Е*г e _ r i t / 2 (4.22) 

This shows once more that the doorway state is not stationary and that 
1 /Г* measures the lifetime with respect to decay into the compound 
states. 

5. A N A L O G RESONANCES 

Having investigated some of the conditions under which doorway 
states could produce intermediate structure in cross-sections, let us 
now discuss a specific type of doorway state which to date o f fers perhaps 
the clearest example of this phenomenon. 

As a specific example let us take the resonance structure which has 
been seen [6] in the scattering of 5-7 MeV protons f rom 88Sr (see Fig . 8). 
At 5. 06, 6. 06 and 7. 06 MeV one observes strong structure with widths 
16, 70 and 50 keV. Compound nuclear widths in this region should be 
only about 200 eV so that another explanation is required. 

shell 
model 
single 
particle 
levels 

low 
lying 
states 
of 
•1 

Sr A 
~11 MeV 

1 

Analog 
States 

5 MeV 

« S t ! 
t 

7 MeV 

ОЯу 
39 50 

FIG. 7. Comparison of resonance structure with the isobaric spin analogs of the 5/2+, l/2+ and 3/2+ 

ground and first two excited states of 89Sr 

The correct interpretation seems to be to identify these resonances 
with the isobaric spin analogs of the 5/2 + , l /2 + and 3/2+ ground and 
f i r s t two excited states of 89Sr. This is il lustrated in Fig . 7. 
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The excited states of 89Y with which the resonances are identified are 
obtained f rom the low-lying states of 89Sr by a charge exchange process . 
In the f igure Д means the energy difference 

Д = ДЕ c - (mn - m p ) (5. 1) 

where ДЕС is the Coulomb energy difference. 
These analog states are, however, surrounded by a very dense dis -

tribution of other states of 8 9Y and we must provide an explanation for 
the fact that only these states give rise to intermediate structure in the 
cross -sect ion before the interpretation becomes convincing. 

Robson [7] suggested that this comes about because the conservation 
of isospin is also valid in heavy nuclei. Thus we can characterize states 
by the values (T, T 3 ) of the total isospin and its 3-component. We shall use 
the convention that the nucléon (T = 1) state corresponds to a neutron 
if T3 = and a proton if T3 = - A l l the states of a given nucleus must 
thus have 

T 3 = * ( N - Z ) 1 
V (5.2) 

Nuclear forces produce greater binding for low T -va lues so that the ground 
states almost always have T = T 3 . The ground state isospin of the target 
nucleus is denoted T 0 . (In our example of 88Sr, T0 = 6 . ) 

The states of 89Sr which were drawn on Fig. 7 must all have T = T0 + j . 
If isospin is a good quantum number, the analog states in 8 9Y wil l also 
have T = T> = T0 + i . On the other hand, the dense distribution of states 
surrounding the analog states wil l have T = ^ = TQ - F r o m Eq. (4. 12) 
we thus have 

l<To - ¿M To +i>|2 <5-3> 

If nuclear forces conserve isospin, the only contribution to the matrix 
element could come f rom the long-range Coulomb force, but this has 
very smal l matrix elements between different orbital states and yields 
widths of at most 5 keV [8]. The actual widths are appreciably l a rger 
so that we can to a good approximation set 

Г* = 0 ' (5. 4) 

Thus isospin conservation provides a possible explanation why the analog 
states manifest themselves so strongly as doorway states. 

The question ar i ses as to how the compound states are in fact formed 
if the doorway states cannot decay into them, as (5. 4) indicates. The 
answer lies partially in the fact that the actual physical state of proton 
plus target is a mixture of different isospin states. This is most easily 
seen in terms of a model developed by Lane [7]. Let us denote the target 
state by I С у and its analog state by [ A . This is, namely, the state 
obtained by operating on | С with the isospin lowering operator T_ 
and normalizing. In our example it would be a linear combination of 
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states having a hole in one of the neutron g9/,2 or levels and a 
particle in the corresponding proton level. The analog states in S9Y are 
obtained by applying T_ to the low-lying states in 89Sr. It is easy to show 
that this gives 

|t0 + i T0 - 1> ' 1 T _ IT + i т0 + i > 
u u n/2T0 + 1 0 0 

so that the overlap between the incident state |pC )> (proton plus target) 
with the analog state | T0 + T0 - \ )> is indeed small. 

In Lane's model, we can write the Hamiltonian as 

H = HT0 + Ta + Va + V1 t- T0 + Vc (Í - t3) (5. 6) 

where Vc is the Coulomb force (1/2 - t3 = 1 for protons and 0 for neutrons) 
while the surface-peaked isospin-dependent term V j t - T is an idealiza-
tion of a term ^ V^T-"^ obtained by assuming that the coupling matrix 

í 
elements Vai between incident and target nucléons are independent of the 
orbit involved. To describe averaged cross-sections, we should add to 
the Hamiltonian (5. 6) an imaginary potential - iW which contains absorption 
into the background of T = T< states. To prevent this potential from 
acting in T = T> states (since the analog state is not damped to a first 
approximation), we append to - iW the projection operator 

TP - 2t • TP 
2T0 + 1 ( B " 7 ) 

onto T = T< states. 
Rearranging, we obtain for the Hamiltonian 

H = HTo + т а + v a + v c ( i - t 3 ) - + { ъ (5.8) 

If we now expand the solution of the Schrodinger equation (E - H)Y = 0 as 

Y = u p |pC> + u J n A > (5.9) 

we obtain the fol lowing coupled equations 

TP - Vp + v c - iW ^ - t ) up - E u P + ^ + ïïfriH = о " 

Tn + Vn - i W ^ + V l 3 ^ l ) u n - (E - A)un + J f ( V l + 2 ^ T l ) u P - 0 
(5. 10) 
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where use has been made of the matrix elements 

<Pc It- T0 |pC> = - T0/2 

< nA |T • T0 |nA> = (T0 - D/2 

< nA 11 • 
-* 

T 10 |pc> = VT0/2 

and the eigenvalue equations 

H TJc> = 0 Н Т О | А > = Д | А > 

Equations (5. 10) correspond closely to what we would expect on the 
basis of physical intuition, for example, that for large T0 ( i .e. heavy 
nuclei) the absorptive potential W acts mostly on the entrance channel 
I pC у and hardly at all on the analog state | nA )>. The only feature which 
is perhaps unexpected is the appearance of the absorptive potential in 
the coupling terms between the two equations. 

To solve (5. 10), one could proceed as before, eliminating un between 
the two equations and deriving a resonance formalism (complicated by 
the imaginary potential iW) for up . Actually it is simpler to solve the 
coupled equations directly by numerical integration. For this purpose 
one requires real proton and neutron potential wells Vp and Vn for which 
the usual optical model Saxon-Woods potentials may be used, and similarly 
an imaginary well W. The energy shift Д is obtained from empirical data 
while Vi can be estimated on the basis of the shell model. 

360 - < 

so —1 1 — 1 1 L-
5.0 5.5 6.0 6.5 7.0 

Ep (MeV) 

FIG.8. Calculated differential cross-sections at 90° for p + œsr. The resonances at 5.06, 6.06 and 
7.07 MeV are d5^2 , s1/2 and d3/2 , respectively (Courtesy of American Institute of Physics) 

The results of such a calculation are indicated by the curves on Fig. 8. 
The positions of the three resonances are easily fitted by adjusting Vn and 
the spin-orbit potential, although it is important that the required strengths 
are consistent with those normally used in the shell model and the optical 
model. The real success of the model lies, however, in the fitting of the 
resonance shape. Since the resonance term itself is small, the largest 
effect comes from its interference with the potential scattering. Since 
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this is very sensitive to relative phases, one must be able to influence 
the relative phase in order to get a good fit. It turns out that for this 
to be possible, the appearance of W in the coupling terms plays a decisive 
role . 

6. A P P L I C A T I O N S 

If we consider an appropriate energy-averaging interval and include 
contributions f rom more than one doorway state, the average transition 
matrix (4. 15) is given by 

/ T s _ T , v < ^ " 4 1 v r K > < ^ I V r M O + ) > 
\ / ~ o + / : — : : (6.1) 

d E - E d + ! < r ] + r ] ) 

(this is actually only true when ^ a * d a s d , vanishes for d' f d, as we have 
s 

seen). How should we now go about to do an actual calculation with this 
expression? 

The transition matrix T0 and the wave functions фQ*' are simply 
obtained f rom the solutions of the single-particle equation 

( T a + Va) ^0(±) = * 4 ( ± ) (6.2) 

where V'a is a real potential for which we could for example use a 
Woods-Saxon wel l . This part of the calculation simply produces a nuclear 
size effect and corresponds in the bound state problem to finding the 
ze ro - o rde r energy levels before diagonalizing the residual interactions. 

To calculate the matrix elements in (6. 1), one further needs the 
residual interaction VR , the target wave function ф0 and the doorway 
wave function фй. These are all obtained by means of some dynamical 
nuclear model. We could for example in light nuclei use a pure shell model, 
for heavier nuclei introduce a vibrational collective model and in the r a r e 
earth region include rotations. Once the matrix elements are known, so is 
the escape width F d (Eq . (4 . 1)) which is just 2n times the absolute value of 
the denominator in (6 .1 ) . 

The only unknown that is left is therefore the decay width r| . It con-
tains our ignorance concerning the many-particle compound system. In 
some cases it may become smal l compared with Fd due to the operation 
of a selection rule such as angular momentum or isospin. Otherwise it 
could be retained as an unknown parameter. 

Let us look in somewhat more detail at a few examples where this 
f o rma l i sm has been applied to light nuclei, assuming that the decay width 
vanishes, so that the фй a re already compound states. 

6.1. 15N + p or n 

In the shell model, the ground state of 15N is represented by a hole 
in the proton lpi/2 level. Fo r giant dipole states Brown [9] has suggested 
a particle-hole description. This can be extended to al l the excited states 
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of the A = 16 system rather than only the 1" states. As a basis for the , 
one can thus use states consisting of a lp3/2 hole plus a particle in the 
ld 5 / 2 ) 2s1j/2 , or Id3/2 level. Adding a residual interaction term of the 
f o rm 

(a + b o r a 2 ) 6 - ? 2 ) 

one can now diagonalize the Hamiltonian in this basis, thus constructing 
the eigenstates which are identified with the 4/¿. The widths as wel l as 
the energy shifts can now be calculated. The results of such a calculation 
[10] are shown on Fig. 9. 

E (M«V) 

FIG. 9. Calculated cross-section as a function of energy for the J = 1" channel in nucleón + A = 15 

Each angular momentum and parity defines a different channel. The 1" 
channel :is shown on the f igure. Resonances are found at 1. 85, 4. 52, 6. 54 
and 9.28 MeV with widths 300, 9, 800 and 580 keV, the last two correspond-
ing to giant dipole states. Notice the wide range of widths obtained f r om 
this formulation in spite of the fact that the states al l have the simple 
l p - l h structure. 

6.2. 12C + n 

The same techniques have been applied to the scattering of neutrons 
f r om 12C [11] except that the pertinent states of 13C are now 2p - lh states. 
The comparison between the calculated (broken line) and measured (solid 
line) cross -sect ions is shown on Fig. 10. The resonances at 1. 9, 2.7 
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and 3. 2 MeV have calculated widths of 80, 200, and 500 keV and correspond 
(tentatively) to 5/2 + , 3/2 + , and 3/2+ states. What is again impressive 
is not so much that the correct resonance energies could be fitted but 
that the estimates of the widths agree so well with experiment. 

FIG. 10. Comparison between the calculated (broken line) and measured (solid line) cross-sections for 
the scattering of neutrons from 12C 

It is interesting to note that the same system has also been studied 
assuming that the states of 13C consist of a deformed 12C core with an 
extra neutron coupled to the rotational band [12]. Here the states фА 

were not described as 2p - lh states of the shell model but by means of 
wave functions 

ф, - Ц ( а ) ^ м к } 

where the curly brackets denote that coupling to definite total angular 
momentum must be performed. A surface quadrupole residual inter-
action was used. The analysis was not performed by means of the 
Feshbach formal i sm but in terms of R -mat r ix theory. The compound 
nuclear levels were, however, calculated by the diagonalization of a 
realistic interaction. The results are very s imilar to those obtained by 
means of the shel l -model calculation described before. 

6.3. The giant dipole state 

In the case of analog resonances, conservation of isospin resulted 
in smal l decay widths Г* so that essentially only the escape widths Г* 
had to be calculated. The opposite situation occurs for the giant dipole 
resonance, whose width of about 5 MeV is much la rger than typical 
calculated escape widths ( ~ 50 keV) and consists almost entirely of the 
decay width. 

This resonance occurs in photodisintegration (y, n) reactions at 
about 15 MeV in a typical heavy nucleus like 208Pb. Since photons of 
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this energy transfer smal l momenta, we expand the transition operator 
into multipoles and keep only the electric dipolè part: 

z 

i = l 

However, since we are not interested in photon scattering by the total 
nuclear charge but rather in excitations, we should use a dipole operator 
with co-ordinates measured with respect to the centre of mass 

A 

X = £ x l / A of the nucleus. Thus we obtain 

i . 

1 . z 
2 A x3 i) x , = D (0) + D (1) (6.4) 

i = l 

where we have decomposed D into parts which t rans form like a scalar 
and the third component of a vector in isospin. The factor e ( l/2 - Z / A - t 3 ) 
where t3 is the third component of the nucleón isospin t , summarizes 
the effective charges carr ied by protons and neutrons. 

P r o t o n s Neut rons 

Ж 

I 

I 
FIG. 11. Schematic filling of proton and neutron shells in a heavy nucleus 

Denote the ground state of the target nucleus by | T = T0 , T03 = T0 

Operating on this with D^0) and D^1' of Eq. (6.4) produces respectively 
•a state with T = T0 and a l inear combination of states with T = T0 and 
T = T 0 +1. Now since the D ' s are one-particle operators these excitations 
are of a particle-hole type. Let us analyse their structure in more 
detail. 1 F igure 11 indicates the schematic filling of proton and neutron 
shells in a heavy nucleus. We divide the levels into three groups: I is 
f i l led by protons and neutrons, II by neutrons only, and III is empty. 
The possible excitations produced by D can be grouped according to 

(1) proton-proton hole a* (II) ap(I) 



528 LEMMER 

(2) neutron-neutron hole an(II I )añ ( I I ) 

(3) nucleon-nucleon hole at (III) a¡ (I) 

where each particle-hole pair is coupled to J = 1", and the notation is p 
or n for particle, p or ñ for hole. 

Now while excitations of type (1) or (2) cannot change the isospin 
of the target nucleus, this is no longer true for type (3) in which the 
nucleon-nucleon hole pair can couple to isospin Tph = 0 and 1. Type (3) 
therefore contributes to isospin states of the total system with T = T0 

and T = T0 + 1 according to 

I (Tph - 'T())T. T0 > = £ (Tph T Z T 0 T03 I T T0) [a* (III) а . Ц ) ] ^ | TQ T03 > (6.5) 

in an obvious notation. In particular 

1(1, T 0 ) T 0 , T0> 

= - j = = { J Ç [ a + n ( I I I ) a s ( I ) - a + p ( I I I ) a p ( I ) 3 | T 0 , T 0 > + а ; ( Ш ) а - ( 1 ) |т„. T0 - 1 > | 

(6.6) 

for Tp h =1, T = Т 0 and 

|(1, T 0 )T 0 + 1 , T 0 > 

= { ^ 2 [ a + n ( I I I ) a ñ ( I ) " a P + ( U I ) a P ( I ) ] TO > - ^ o a+n(IH)a-d)|T0, TQ - 1>} 

(6.7) 
for T p h= 1, T = T0 + 1. 
To construct I T0, T0 - 1)> we use the isospin lowering operator T_ defined 
in Eq. (5. 5). Thus the second term in both (6. 6) and (6. 7) reads 

а+ (Ш)а р ( 1 )|т 0 , T0 - 1 > = а + Ц Ш а р Ш ^ щ - ! ^ , TQ> 

= ^ = - a í ( I I I ) a p ( I ) a J ( I I ) a ñ ( I I ) | T 0 , T 0 > (6.8) 

i. e. it is a two-particle - two-hole excitation with the pair a J (II) añ (II) 
coupled to spin J = 0+ and the pair a* (III) a^(I) coupled to J = 1" as indicated 
in Fig . 12. The 1" states with T = T0 therefore have the structure 

¿D = { Y A n n a í a ñ + Y B P P a î a p } ' T Û' T 0> 

+ У с 1 Г | ( О , Т 0 ) Т 0 , T ^ + y ^ j l d T , ) ^ , т 0 > (6.9) 
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while states with T = T0 + 1 are given by ^ F i î l U> T o ) T o + 1> T o> - F o r 

a heavy nucleus (T0= (N - Z)/2 large ) we note (a) that the 2p - 2h com-
ponent in the state | (1, T0) T0, T0^> is effectively suppressed by the factor 
(T0 + 1)"* , and (b) the part of |(1, T Q )T 0 + 1, T„> that is reached directly 
by the dipole operator is suppressed by the same factor. One therefore 
expects ф-Q in (6. 9) to ca r ry most of the dipole strength. Peterson [14] has 
estimated the contribution to the total width of the dipole state in 208рь 
coming f rom the nucleón decay (mostly neutrons) of Фо as given by (6. 9). 
He finds a total escape width Г* 4 500 keV which is about one tenth of 
the observed total width. 

FIG. 12. Two-particle - two-hole excitation required to make up a state of good total isospin in Eq.(7.4) 

FIG. 13. Result of a shell-model calculation for 160 

An estimate of the damping width Г* can be obtained by considering 
higher excitations such as 2p-2h, 3p-3h etc. It turns out that energy 
considerations only allow the f i rst type to make a substantial contribution. 
Estimates of 2p-2h level densities in the energy region of the dipole 
state [15] lead to a value of about 50 levels per MeV. Thus more than 
200 levels would be within the experimental width. This determines 

34 
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the density D"1 which enters Eq. (4. 12). Depending on the strength of 
the interaction, one obtains a damping width Г* between 500 keV and 
2. 5 MeV for 2°8pb which,when supplemented with Г* , is at least beginning 
to approach the observed width. 

In heavy nuclei the damping width is much larger than the escape 
width. The opposite situation holds for light nuclei. In fact, the shell 
model already overestimates the escape width. Figure 13 shows the 
result of a shel l -model calculation for the 1 6 0 absorption cross-section [ 16] 

The structure of the giant dipole state is st i l l not fully understood. 
It does seem to fit into our general treatment of intermediate resonances, 
but unlike the analog states, it is not prevented f rom being damped away 
by selection rules, and the reason why it does not damp too strongly 
may be a consequence of its coherent nature. To obtain better insight into 
its structure, it may be useful to look at 1" states in nuclei other than 
the dipole state. 
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CHAPTER 10 

MICROSCOPIC COLLECTIVE THEORIES 

D . J . ROWE 

1. Introduction. 2. Hartree-Fock self-consistent field theory. 2.1. Hartree theory. 2.2. Hartree-
Fock theory. 2.3. Realistic forces and hard cores. 2.4. The shell model. 2.5. The deformed shell 
model. 3. Rotation theory. 3.1. Peierls- Yoccoz theory. 3.2. The moment of inertia. 3.3. Villar's 
theory. 4. Pairing force theory. 4.1. The inadequacy of HF theory. 4.2. Particle in a degenerate 
j-shell. 4.3. Two particles in non-degenerate levels. 4.4. N particles in non-degenerate levels 
(BCS theory). 4.5. Comments on the BCS approximation. 4.6. Existence of a superconducting solution. 
4.7. Consequence of pairing and comparison with experiment. 4.8. Charge-independent pairing forces. 
5. Generalized Hartree-Fock theory. 6. The Tamm-Dancoff approximation. 6.1. The Tamm-Dancoff 
approximation. 6.2. The schematic model. 6.3. The particle-hole interaction. 7. The random 
phase approximation (RPA). 7.1. The philosophy of the RPA. 7.2. The equations of motion. 7.3. The RPA. 
7.4. Properties of the solutions. 7.5. Transitions and sum rules. 7.6. The extended schematic model. 
7.7. The validity of the RPA. 7.8. Comparison with experiment. 8. Time-dependent Hartree-Fock 
(TDHF) theory. 8.1. The TDHF equations. 8.2. Problems of interpretation. 8.3. Normal co-ordinates 
for a quantum system. 8.4. Time-dependent Hartree-Fock theory. 9. Iterative solution of TDHF theory. 
9.1. Introduction. 9.2. The TDHF dispersion equations. 9.3. The mass parameters. 10. Derivation 
of the unified model. 10.1. The collective model. 10.2. Collective co-ordinates and collective 
parameters. 10.3. The VPM as a time-dependent shell model. 10.4. The VPM dispersion equation. 
10.5. The collective mass parameters. 10.6. Excited state wave functions. 10.7. Matrix elements. 
10.8. Relationship between the VPM and the schematic model. APPENDIX: The occupation number 
representation and second quantization. 

1. INTRODUCTION 

The problem of nuclear structure is, of course, the many-body 
problem. Before tackling it , therefore, we should look around at other 
branches of many-body theory, notably atomic physics, solid-state 
physics, elementary part icle physics, etc., and see if some of the same 
techniques can be applied. Frequently they can, and in fact most of the 
important advances have been stolen f rom other fields. For example, 
the Har t ree -Fock theory comes f rom atomic physics; pairing force 
theory f rom the theory of superconductivity; vibration theory f rom the 
Bohm-Pines theory of plasma oscillations of electrons in metals; methods 
of quantized field theory f rom elementary particles, etc. In return, some 
of the group theoretic methods developed for nuclear physics have now found 
an application to elementary part icles. 

Although the nucleus has much in common with other many-body 
systems, it has its own distinctive features. For example, the nuclear 
part icles are bound together solely by their mutual attraction without 
the aid of any external field, as for atomic electrons, making the applica-
tion of self-consistent field methods less certain. Unlike solid-state 
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United Kingdom, is now in the Department of Physics and Astronomy, The University of Rochester, Rochester, 
N . Y . , United States of America. 
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systems, the nucleus is a finite many-body system, containing perhaps 
only a few or at most a few hundred particles. Approximations which 
are valid to order 1 /N, where N is the particle number, are therefore 
not always very rel iable. On the other hand, there are usually too 
many particles for a few-body treatment. Thus the nucleus poses its 
own special problems, which makes it often infuriating but ra re ly dull. 
On the credit side, it has the simplifying feature of being essentially 
always at zero temperature; nuclear excitations are usually of the order 
of an MeV or a keV, whereas room temperature corresponds only to 
1 /40 eV, so that, at equil ibrium, the nucleus remains in its lowest 
energy eigenstate. 

In this paper we shall be concerned principally with many-body 
methods, which have application over a wide range of nuclei, but which 
may not necessari ly be the best in specific cases. Thus we are concerned 
mostly with systematic properties of nuclei, such as collective phenomena, 
rather than the idiosyncrasies of part icular nuclei or local shell structure. 

Although we describe several theories, there is a common theme 
runing throughout. This is the Har t ree -Fock method. Essentially it is 
an approximation for reducing the problem of many interacting particles 
to one of non-interacting particles in a field. Clearly this effects an 
enormous simplification of the problem, but it is an approximation and 
neglects a large part of the interparticle forces. These neglected forces 
we cal l the residual interactions. The major problem of nuclear structure, 
and to a large extent of nuclear reactions also, is how to include these 
residual interactions. 

Most of the methods that I shall describe can be regarded as extensions 
of the simple HF theory. For example, BCS theory, which is designed 
to account for the short-range part of the residual interactions, can be 
regarded as a special case of a generalized HF (or GHF) theory. HF 
theory can also be made time-dependent (TDHF theory) to describe excited 
states and to take into account, in particular, the long-range or field-
producing part of the residual interactions. This theory is also expressed 
in other language as the random phase approximation (RPA ). The 
advantages of both extensions can furthermore be incorporated in a 
generalized T D H F (or GTDHF) theory, which is equivalent to the perhaps 
better known quasi-particle RPA (or QRPA). 

Thus we might have entitled this course 'A unified theory of nuclear 
structure1 which, together with a 'unified (or HF) theory of nuclear re -
actions', would provide a unified theory of nuclear physics. 

2. H A R T R E E - F O C K SELF-CONSISTENT F I E L D THEORY 

2 . 1 . Hartree theory 

The physical principles of HF theory are i l lustrated by deriving it 
intuitively and neglecting particle exchange. Consider the Hamiltonian 
for atomic electrons 

A A 
H = ^ { T i + u 0 ( i ) } + g v ( i , j ) 

i i j 
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where T is the kinetic energy, u 0 the centra l Coulomb f ield of the nucleus, 
and V( i , j ) is the electrostat ic interaction between electrons. Neglecting 
the interact ion, the part ic les are independent and have wave functions 
satisfying the wave equation 

The tota l nuclear wave function, neglecting ant i -symmetr iza t ion , is then 

9=^(1)^(2) фА(А) 

Now include interact ions. The average interact ion felt by part ic le i , due 
to a l l other electrons, is 

u

i(
?

i) ^ / d r ^ f f r ^ ^ ) V(?1, 

Thus we get the modified Schrodinger equation 

which is s t i l l a s ingle -par t ic le equation and solvable. Better single-
par t ic le wave functions can now be calculated, which can in turn be used 
to generate a better f ie ld. I terat ing in this way, one f inal ly achieves 
self -consistency between the f ield and the part ic le density. 

This intui t ively appealing method can be made more r igorous by 
der iv ing i t f r o m a var ia t iona l pr inciple . This we now do and at the same 
t ime cor rec t for the ma jor deficiency of Har t ree theory, which is that 
i t neglects exchange t e r m s which only appear when the wave function is 
a n t i - s y m m e t r i z e d . 

2. 2. H a r t r e e - F o c k theory 

The var ia t iona l pr inciple is that, for an eigenstate, the expectation 
of the energy is stat ionary. Thus the best approximation ф of a given 
type, to the ground state wave function, is given by the var ia t iona l 
equation 

6 < ф | ( Н - Е 0 ) | ф > = 0 (2 .1 ) 

where; Eq is a Lagrangian mul t ip l ie r , providing the normal izat ion 
constraint, which takes the role of the ground state energy. 

I f i Ф is the a n t i - s y m m e t r i z e d product of s ingle-par t ic le wave functions 

<р = л/ф1{1)ф2{2) фА(А) (2 .2) 

the energy expectation of the Hamil tonian 

A A H =

 Z
T¡ +

 2 X
V(?i

'
 ?j) (2

-
3) 

i i j 
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<ф|н|ф> = £ J d r 0 f ( r ) T ( f r , ( r ) 
i 

i j 

- \ У y y d ? d ? ' ^ f ( ? ) ^ f ( r ' ) V ( ? , (2 .4) 

Applying the variat ion, we obtain the single-part icle wave equation 

T ^ (?) + Y f d r ^ j t f ' ) V(?, ?') ^ (?) 

j 

- Y / d ? ' (?') V(?. = е ^ ( ? ) (2.5) 

where e¡ is a Lagrangian mult ip l ier constraining the ^ (r) to be normalized 
and taking the role of a single-part icle energy. Equation (2. 5) can be 
wr i t ten more concisely 

fi2 Г 

+ J d ? ' u ( ? ' = <Ч^(?) (2.6) 

where u(r, r ') is the self-consistent field 
u(r , ?') = 6 ( ? - ? ' ) ? " ) ^ ( г " ) ^*(?«) 

j 

- ^ V ( r , г ' ) ^ ( ? ) (//*(?') (2.7) 

j 

The f i rs t t e r m is the direct te rm, corresponding to the Har t ree field, 
the second is the exchange contribution which is non-local. It is seen 
that the range of non-locality of the HF field is of the order of the range 
of the two-body interaction V ( r , r ' ) . 

General ly the two-body interaction itself is non-local; it contains 
velocity dependence and exchange forces. The more general expression 
for the field is then 

и(?! . ?;) = Y f f d ?2 d?¿v(?i?2 ; ?í?&)0j(?¿) 
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or, more compactly, 

u(?i , ?i') = J f d r 2 dr • V(?! ?2 ; r{r¿) p(r¿r 2) (Vp ) (2.8) 

where V is the ant i -symmetr ized interaction 

V ( r 1 ? 2 ; r 'r¿) = v ( r 1 r 2 ; rfrty - v ( r 1 ? 2 ; r¿r¡) (2.9) 

and p(r ' , r) is the single-part icle density, which for a product wave 
(Eq. (2.2)) is 

A 
p(r ' , ?) = <a+a r , > = (2-10) 

j 

To solve these equations, we must again proceed i terat ively in the 
cycle 

U — ф{ — p — u = J^ Vp 

starting now f rom an inspired guess for the field u. We finally obtain a 
set of single-particle states. In the HF ground state | these are a l l 
occupied f rom the lowest energy state up to the F e r m i surface. 

In the following, we shall often have cause to refer to the HF state 
I as the vacuum. Single-particle states above the F e r m i surface are 
then particle states and wi l l be labelled by the subscripts m, n (see Fig. 1), 
while single-particle states below the F e r m i surface are hole states and 
labelled by the subscripts i, j . 

i 
A disadvantage of variat ional methods generally is that one does not 

know bow good the answer is. Fortunately it is possible to express HF 
theory!in another manner to exhibit the residual interactions explicitly. 
For this purpose it is convenient to go over to the language of second 
quantization. 

The Hamiltonian becomes 

H = Y ТШ/' + 4 X a ja ja^a , , , (2. 11) 
vv' JJi/JJ1!/' 
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where we now take V^ , , , , to be ant i -symmetr i zed 

= J J d r d r ' ( p * ( r ) q > * ( r ' ) V { r . ?')Ф„,(?)Ф„,(?') 

- J j d r d?' Ф * ( г ) <p*(ï') V ( r , г") Фд1(?') Ф„,(г) 

hence the factor 1 /4 . Now expand the interact ion in norma l order , with 
respect to the H F vacuum, using Wick's theorem 

H = + 2 I VmV < Kvl •>< I > 

+ Y < I a í I > {а+» aw> + I ^ ^ . „ . { a t a+ a ^ , } 

Now 

{a+a,, ,} = a+a^, - < | а | а у , | > 

so that 

a^ a , ^ a i 
mm' 

12) 

The f i rs t t e r m is a s ingle-part ic le operator and can be diagonalized by a 
suitable choice of the single-part ic le basis 

T , + ) V , , < | a + a , | > = 6 ,e (2.13) 
vv' / flu il v ^ M M ' Vl) v 

W' 

This basis is of course the H F basis and this equation the H F equation; 
compare this equation in the fo rm 

T . + u . = ó ,e (2. 14) vv' VU' VU' V ' 

where 

u
w ' = Y ^ ' » ' = < H ^ r 2 ( V p ) | ¡ , ' > (2.15) 

with Eqs. (2. 6) and (2 .8 ) . 
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In this H F basis, the density m a t r i x elements are diagonal and are 
equal to 1 for a hole state, and 0 for a part ic le state; 

< l a í a j > = V ' 
i 

Equation (2. 12) therefore becomes 

H = ¿ £ v i W + I J v m ' V U t a + a , , a , , . } ( 2 . 1 6 ) 

where 

^ = + I V j l ( j l ( (2 .17) 
j 

(cf. Eq. (2. 5) for v= i ) . 

The H F approximation is now c lear . The H F wave function is an 
eigenstate of 

но = • \ ZV i j i j ( 2 Л 8 ) 

ij 

= 4 {4 а + ц а и' а ""} (2. 19) 

T o show that |)>satisfies the var ia t iona l equation, we can invoke 
Thouless1 theorem. A var ia t ion of the product wave function can be ex-
pressed (see Appendix) 

l > - ( 1 + X C ™ a t m a i + - - - ' l > 

so that an in f in i tes imal var ia t ion can be wr i t ten 

i>= X6 C m i a®ai '> 

for a r b i t r a r y SCmi . Thus we requi re 

; < 1aT a m H I > = < | н а +
т а ; | > = 0, a l l m, i (2 .20) 

which is satisfied separately for H 0 and Vres . 
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Another expression of the var ia t iona l equation, which we w i l l have 
cause to use, is in t e r m s of the density mat r i x . I f | )> is any wave 
function, not necessar i ly an eigenstate, which is specified at t ime t 
and allowed to develop in t ime according to the t ime-dependent Schrodinger 
equation, the expectation of any operator , in par t icular the density m a t r i x 

PaB = < l a e a a l > 

w i l l also develop in t ime . The t ime der ivat ive at t ime t is given by the 
Heisenberg equations of motion 

i f t ^ f = < | [ a j a a , H ]|> 

I f I y were an eigenstate, the expectation of any operator would be a 
constant in t ime . The H F condition requires only that this be true for 
s ingle -par t ic le operators i . e. 

< | [ag a„, H] | > = 0, a l l a , /3 (2.21) 

This is a general izat ion of Eq. (2 .20) and is readi ly seen to hold for both 
H o a n d V r e s . 

The HF Hamil tonian H 0 has been ta i lo r -made to give a good approx-
imat ion to the ground state. It can nevertheless be used to set up a 
complete basis. Thus we have lph (1 par t ic le-hole) states 

H o a ^ a J ) = (E0 + em - e ^ a ^ a j ) (2.22) 

where 

H 0 I > = E 0 | > 

with 

e° = X e ¡ " ¿ XV i j i j (2-23) 
i i j 

2ph states 

H 0 a + m a í a i a j l > = № o + e m + e n " e i " e j ) a + m a + n a i a j l > 

etc. One can then hope to use these as a basis in which to diagonalize the 
res idua l interact ions. 

2 . 3 . Real ist ic forces and hard cores 

It almost goes without saying that a necessary condition for the 
success of the H F method is that the two-body interact ion should have no 
singular i t ies. Unfortunately, phase shift analysis of high energy 
(~300 MeV) nucleon-nucleon scattering leads one to believe that the 
interact ion is inf ini tely repulsive at a distance of ~ 0 . 4 f . In other words, 
the nucleus has a hard core. 

> 
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At f i rst sight, this is disastrous for the HF method. Why? Because 
matr ix elements of a hard core interaction, taken between independent 
particle wave functions, are infinite. The particles may therefore be 
expected to scatter far and wide out of their HF orbits. Nevertheless, 
in spite of the hard core, the shell model seems to work very well, so 
how can this be? 

Consider the wave function for the relative motion of two independent 
part icles in a potential well . In a relative s-state, the unperturbed 
wave function penetrates the core and leads to an infinite energy expecta-
tion (see Fig. 2). The perturbed wave function, then, must clearly not 
penetrate the core. It must go to zero at its boundary. 

FIG. 2, Unperturbed and perturbed wave functions for the relative motion of two independent particles in 
a potential well 

Now a perturbation correction for the hard core is not going to work, 
unless one is prepared to go to infinite order when each order alone 
diverges. However as Moszkowski and Scott [ l ] point out, the strong 
attractive forces, just outside the hard core, rapidly compensate. The 
perturbed wave function bends over faster than the unperturbed and, at 
the 'separation distance1 d, reaches the same logarithmic derivative. 

MoSzkowski and Scott suggest therefore that one should separate the 
potential into two parts, Vs (for r < d) which is singular, and V,, (for r > d) 
which is wel l behaved. As far as the wave function for r > d is concerned, 
one can, to a good approximation, discard Vs and retain only Vj . The 
total volume of space, for which r < d, is a small fraction of the nuclear 
volume and, unless one is specifically interested in short-range two-body 
correlations, the e r r o r in the wave function in this region w i l l not much 
mat ter . 

V j , being wel l behaved, can now be used in a HF calculation. There 
is a complication however, in that the separation distance depends on 
the relat ive momentum of the particles (it is defined by the condition 
that Vs gives zero phase shift for a part icular relative state). This 
means that the effective interaction has a rather complicated velocity 
(or state) dependence. 

Even after the removal of Vs, the force is st i l l comparatively short 
ranged and is not taken fully into account in the HF self-consistent field. 

PERTURBED WAVE FUNCTION (V { ) 

.PERTURBED WAVE FUNCTION (V 5 +V t ) 

— V UNPERTURBED 

0-4fm 
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In brief, there are residual interactions. Fortunately for HF theory, they 
are not too strong and are prevented f rom doing too much damage by the 
Pauli principle. In part icular, they are restrained f rom scattering 
particles which are deeply embedded in the F e r m i sea, just because there 
are no free states for them to scatter into. In terms of the relative 
wave function, the Pauli principle effects a healing of the wave function 
within a comparatively short distance. (This distance is of the order 
1/kp, where kp is the average momentum of a particle at the F e r m i 
surface. ) 

The short-range forces are not restrained, however, f rom scattering 
part icles near the top of the F e r m i sea, where they bring about a diffuseness 
of the F e r m i surface. In this way, they are responsible, as we discussed 
in the phenomenological course, for stabilizing the spherical shape of the 
near closed shell nuclei. We shall return to the treatment of the short-
range residual interactions later , in terms of 'pairing force theory'. 

2 .4 . The shell model 

Although HF theory presents a formal ly solvable problem, in practice 
it is not t r i v i a l and only recently is it being seriously tackled. However, 
i f we could determine the self-consistent field directly, we could start 
with that, rather than the two-body interaction, and so by-pass a l l the 
hard work. This is the principle behind the shell model. 

The shell model potential was constructed historically to reproduce 
the shell closure, or 'magic numbers'. The essential ingredients were 
found to be a central potential, intermediate between a harmonic oscillator 
and a square well , and a spin orbit potential: 

A potential which meets these requirements, and is also consistent with 
our knowledge of nuclear distributions, is the Woods-Saxon potential 

u(r) = V( r ) + f ( r ) (? .s ) 

V ( r ) = 
1 + e<r'R>/a 

i l lustrated in Fig. 3, together with the spin-orbit potential 

R 

FIG.3. Woods-Saxon potential 

Suppose now we use this shell model potential to calculate a set of 
single-part icle wave functions and energy levels for a closed shell 
nucleus, such as 2 0 8Pb. How can we check the results with experiment? 
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The best we can do is to look at the neighbouring nuclei, e. g. 209Pb and 
2 0 7Pb and observe what energy levels the extra part icle, or hole, goes 
into. Figure 4 shows the result of such a comparison. The agreement 
is very good. It is not perfect, but then it is not supposed to be. Since 
the extra particle modifies the field, the energy levels in 209Pb and 207Pb 
are not quite the same as those in 208Pb. In shell model language, the 
extra particle polarizes the core. Allowing for such polarization, even 
better agreement can be obtained. 

Observed Calculated 
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FIG.4. Comparison of experimental neutron energies in 208Pb with shell-model energies as calculated 
by Blomquist and Wahlborn [ 2 ] . (diagram taken from Brown's book [2 ] , courtesy of North-Holland 
Publishing Co . ) 

For closed shell nuclei, the shell model is simply a f i rst approx-
imation to HF theory. How good an approximation it is depends on how 
closely the potential wel l resembles the self-consistent field. For nuclei 
with part icles outside a closed shell, the conventional shell model is no 
longer an approximation to HF theory. Its method is to set up a basis of 
wave functions by putting the extra-core particles into the various un-
occupied levels of the unperturbed closed shell core. The two-body 
interaction is introduced explicitly and diagonalized within this configura-
tion space. By eliminating the core in this way, that is, by taking it into 
account only via the exclusion principle and the potential wel l it generates, 
the shell model reduces the many-body problem to a few-body problem. 
For two or three extra-core particles this works very well . If it is 
generalized to include core excitations it is potentially exact, although 
in practice it is very much l imited by the volume of configuration space 
that can be handled by a computer. For this reason its usefulness is 
restr icted to the near closed shell nuclei. 

2. 5. The deformed shell model 

The HF method treats a l l particles in the nucleus, core and extra-
core, on an equal basis, as a many-body problem. However there is a 
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fundamental difference between the results for a closed shell and a non-
closed shell nucleus. Because of the independent particle constraint, 
the HF state, for a non-closed shell nucleus, turns out to be deformed.1 

Consequently, the wave-function does not have good angular momentum 
and cannot represent an eigenstate of the nucleus. To obtain physical 
states f rom the H F wave function, we have the choice of projecting f rom 
it components of good angular momentum, inserting it as an intrinsic 
wave function into the rotational model, or following some other approxi-
mate procedure. Clear ly there are going to be problems of mathematical 
r igour, but the fact that the HF method produces wave functions of large 
deformation, in just those regions of the periodic table where rotational 
spectra are observed, is physically appealing. 

Although we can speculate about the nature of the HF solutions, they 
are difficult to c a r r y through. But, again, we can introduce a deformed 
shell model or Nilsson model (which has already been described in 
Chapter 2), as a f i rst approximation. What to do with the wave 
function when we have it, is anothe problem. Since this is a 
paper on microscopic theory, we would prefer not to introduce phenomen-
ology or, for that matter , dubious theory, by blatantly labelling it an 
intrinsic wave function and employing redundant rotational variables. 
However Kurath and Pieman [3] have found the following very encouraging 
result . They calculate the wave functions for nuclei in the lp shell, and 
ear ly 2s - Id , in two different ways. F i rs t ly , they use the conventional 
shell model approach of interacting particles in a spherical potential. 
Secondly, they project out components of good angular momentum f rom 
the deformed shell model wave function - independent particles in a 
deformed potential. The overlap between the two results is in most 
cases better than 98%. 

Since the projection method seems to yield such good results in 
cases where it can be tested, it gives us some degree of confidence in 
its re l iabi l i ty generally. As we shall see in section 3, this projection 
method does have considerable theoretical backing. 

3. ROTATION THEORY 

3 . 1 . Peier ls-Yoccoz theory [4] 

I f the HF wave function cp(x) has a non-spherical density distribution, 
it defines a direction in space. Now, since the Hamiltonian is invariant 
under rotations, HF wave functions cp(0, x) with different orientations 
are a l l degenerate in energy. This degeneracy can be used to construct 
a better t r i a l wave function, by taking the l inear combination 

1 For a discussion of this, see the notes on the aligned coupling scheme (Phenomenological collective 
models, chapter 2); the aligned coupling scheme is nothing more than the phenomenological approach to 
HF theory. 

(3. 1) 
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The function f(0) is to be determined variationally by minimizing 
subject to the constraint that ф(х) remains normalized. Thus we get the 
variat ional equation 

(H - X) ! 0> = 0 

which gives the integral equation for f(0) 

Jh(61 - 0) f(0) d0 - Л^п(0' - в) f(0) d0 = 0 

where 

h(0' - в) = <ф(0 1 ) |н |ф(б)> 

n(0' - 0) = <Ф(0 ' ) |Ф(0)> 

(3.2) 

(3.3) 

For HF solutions with axial symmetry, which is the only case we shall 
consider, the z-projection of angular momentum is a good quantum 
number, К say. It can then be shown that 

f ( 0 ) = i S ^ K ( 0 ) (3.4) 

satisfies the above integral equation. 
The physical significance of the Peier ls-Yoccoz wave function is 

readily seen. Expand 

Фк(х) = ^ c j q / K ( x ) 

J 

Then, rotating this wave function to an angle 0, we get 

J M' 

The Peier ls-Yoccoz wave function is therefore 

*IKM © = f ® uк ( е ) ф к ( е > de' = S r i C I
 ф

м ® (3. 5) 

which is just the component, of Фк(х), of angular momentum I . 
This variat ional method provides the justification for projecting out 

states of good angular momentum f rom the Nilsson wave function. By the 
nature of variat ional methods, i t is difficult to say what approximation is 
involved, but the results of Kurath and Pieman indicate that the t r i a l 
wave function is of sufficient generality to provide a very good approximation. 

One of the f i rst things that strikes one about the wave function 
^IKM (x)< i s its s imi lar i ty to the unified model wave function for rotations. 
I f , for a specified set of co-ordinates x, the wave function Фк(0, x) is 
sufficiently sharply peaked about a part icular value of 0 = 0(x), (sufficiently 
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sharp, that is, that ^ > ^ ( 0 ) var ies l i t t le over this peak) then the in tegra l 
in the wave function can be dropped and we get the rotat ional wave function 

^ i k m ® - • S ' L K W ^ ' P K ^ © . 2) 

This should happen in the l i m i t of ve ry large deformation, when the wave 
function Фк(б, x) becomes v i r tua l ly ' intr insic1 . 

The spectrum of energy levels is given in the Pe ie r ls -Yoccoz theory 
by 

_ / h t f l d ^ f l d t C Q B g ) 
E I K - r . m ^ I _ , / _ _ „ OÍ ( 3 - 6 ) 

where 

/ n O J d ^ d t c o s j S ) 

h(0) = h(0, ¡3, 0) 

n(/3) = n(0, ¡3, 0) 
(3 .7) 

These overlap integrals are general ly assumed to be smal l , for nuclei of 
sizeable deformation, except in the region of (3 = 0. So we expand 

dKK<« = 1 - | U ( I + 1) - K2]/32 + ... 

I t is easy to see that insert ing this expansion in Eq. (3. 6) w i l l lead to a 
rotat ional 1(1 + 1) spectrum, to leading order . It has been pointed out 
by V e r h a a r [5] that the overlap integrals are also sizeable in the region 
/3 = 7Г, i . e . when the nuclei are pointing in exactly opposite direct ions. 
Thus there are important correct ions f r o m d 1 ^ ^ - |3). F o r К = 1 /2 , 
for example 

giving an energy spectrum of the f o r m 

E , v - i = E„ + ^ H " l ( I + 1) + a ( - l ) I + i ( i + a iK=i - T 2 > (3 .8) 

Important correct ions to the rotat ional 1(1 + 1) spectrum are also found for 
other K-bands. But these do not always correspond to the correct ion 
turns in the rotat ional model. 

The evaluation of the moment of iner t ia and other parameter's is 
f o r m a l l y possible, although in pract ice not ve ry easy. The ma jor problem 
is the evaluation of the overlap integrals h(/3) and п(Э). (For a fur ther 
discussion of this approach see chapter 11. ) 

A good test of the model is to see how we l l i t works for t ranslat ional 
motion, where the answer is known beforehand. The corresponding 
P e i e r l s - Y o c c o z wave function is 

^ x ) = (x - r)dr 
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It is found that the energy expectation of this state <( H | ф-^yis not quite 
equal to 

E ^ = E° + 2ÍMk2 

as it should be, if the method were exact. It is very easy to see what is 
wrong. Expand 

<p(2) = Y J d k C n ( k ) e i k ' X X n ( q ) 
П 

where X is the centre-of -mass co-ordinate, and Xn are the eigenstates of 
the intrinsic Hamiltonian. The Peier ls-Yoccoz wave function is therefore 

= e i 7 - * ^ C n ( k ) X n ( q ) 

n 

which is just the component of good centre-of-mass momentum k. However, 
it w i l l not lead to the correct mass, since the intrinsic part of the wave 
function is k-dependent. 

An exception occurs for a harmonic oscillator potential, when the 
intrinsic and centre-of -mass parts of the wave-function are separable. 
In this part icular case, Peier ls-Yoccoz theory leads to the correct 
result . The corresponding condition that Peier ls-Yoccoz theory give the 
correct result for rotations is that the HF wave function should be made 
up of a superposition of states belonging only to the ground state band. 

To obtain the correct result for translations, for a general potential 
well , Peier ls and Thouless [6] have proposed taking the more general 
l inear combination of wave functions 

= f f c ^ v . ?) Ф-(х - r) dr dv 

where Ф^Кх) is the HF wave function in a reference frame moving with 
velocity This leads to a wave function of the form 

Ï £ ( 5 ) = e ^ - X ^ d k ' g(k') £ c n ( k > ) Xn(q) 
n 

The co-factor of exp i k . is now independent and must clearly lead to 
the correct mass. 

The corresponding t r i a l function for rotations is 

' =
 e W

x ) d ? d S (3.9) 

This waye function should give better results, simply because of the extra 
generality of the t r i a l function. Unfortunately it is much harder to work 
with. 
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3. 2. The moment of iner t ia 

A method for der iving the moment of iner t ia d i rect ly is due to 
Thouless [7]. I t is ve ry s im i l a r to the cranking model which, as we shall 
see, appears as an approximation to the Thouless method. The method is 
to find the best product wave function for the nucleus, subject to the con-
straint that it have a smal l but specified mean angular momentum. Thus we 
get the var ia t iona l equation 

б <(¿/|(H - E 0 - u J x ) | ^ > = 0 (3 .10) 

where и is a second Lagrangian mul t ip l ie r , which has the significance of 
an angular velocity. The moment of iner t ia is deduced by equating 

< ( ф х \фу = L>JX ( 3 . 1 1 ) 

A convenient way to c a r r y out the var ia t ion is to use Thouless ' 
theorem, and wr i te the wave function 

Iфу = exp X C m i a m a i (3 .12) 

Because of gauge invariance, we can va ry \ф~) and <((//] independently. 
To leading order in C m i 

j ^ T 0 | ( H - E 0 - W J x ) | ^ > 
mi 

= < | а 1 а т ( 1 + ^ С ; а | а п ) ( Н - Е 0 - U J x )(1 + £ C n j a * ü j ) | > = 0 ( 3 . 1 3 ) 

nj 

The Hamil tonian in the H F representat ion is 

н = X е " a" + 4 aí V a , - } " 2 X v.... iji] 

Thus we get 

(em * e¡)Cmi + ^ ( V m j i „ Cn j + V m n i j C * ) = w(Jx )m i (3. 14) 

S imi la r ly , f r o m 

5 7 Г - < ^ | ( H - E 0 - u J x ) | 0 > = 0 

we get the complex conjugate equation. 

35' 
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Now the moment of iner t ia is given f r o m Eq. (3. 11) as 

Л = I X [ ( J x ) i m c m i + ( J x ) m l c * 1 (3. 15) 

mi 

where the C m i a re defined by Eq. (3. 14). The solution for these coefficients 
involves a m a t r i x inversion. However, i f we neglect the interact ion t e r m s 
the m a t r i x is diagonal and the inversion t r i v i a l . We get 

I f the H F theory is approximated by the deformed shell model, this 
expression is just the cranking model result . The fu l l Thouless t reatment , 
by working with H ra ther than H H F , in the in i t i a l var ia t iona l equation, 
al lows for a modif ication of the self-consistent f ield due to the rotat ion,! 
which the cranking model does not do. A change in the f ield can af ter 
a l l be expected due to the centr i fugal and Cor io l is forces. 

The effect of the interact ion t e r m s may we l l be important . Cer ta in ly 
the residual interactions, which are neglected altogether in this t reatment , 
a re v e r y important . The most important of these, namely the short - range 
pa i r ing forces, can be included in a general ized H F t reatment , and bring 
the cranking model expression down f r o m the r ig id body value to something 
2 to 5 t imes smal le r and more in l ine with exper iment . We shal l describe 
the general ized H F theory in the succeeding chapter, but the modif ication 
to the cranking model formula has already been discussed in Chapter 2. 

Since i t is a s e m i - c l a s s i c a l method and uses H F wave functions which 
a r e not eigenstates of a rotat ional ly invariant Hamiltonian, it is not easy 
to say what approximations are involved in Thouless' derivat ion. However, 
l ike the cranking model, we can show that it leads to exact results in the 
t ransla t ional case. The t ranslat ional equivalent to Eq. (3. 13) is 

(3. 16) 

< R a m ( l + ^ C * a ? a n ) ( H - E 0 - v P ) ( l + ^ C n j a +
n a j ) | > = 0 (3 .17) 

nj nj 

Making use of the fact that 

a j a j > . 0 

and 

< | a I a m ( H - E 0 ) | > = 0 

this equation can also be wr i t ten 

< | a * a m [ ( H - E 0 ) , £ ( C n j a +
n a ] - C * a + a n ) l | > = v P m i (3 .18) 

nj 
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We can now drop E 0 in the commutator, since it is just a number. In 
this form, the solution for the Cnj can be deduced by comparison with 
the equation 

< | a * a m [ H , x ] | > = - ^ P m i 

We find 

. A M v Cnj = i — vXn 

Putting this solution into the expression for the mass (cf Eq. (3. 15)) 

mi 

. A M 
1 _ i r ^ ( < | p | m i > < m i | x | > - < | x | m i > < m i | p | > ) 

= i ^ f " < | [ P . X ] | > = A M (3.19) 

An interesting question now arises: If both the pushing model and 
the Thouless model for translations give the exact answer, what has 
happened to the interaction terms? The answer is that the pushing model 
only gives the correct answer for a local shell model potential, i . e . when 

tu S M ( r ) , X ] = 0 

It would not give the correct answer if it were used with the non-local 
HF potential, since 

[u (r, ?•), X] f 0 

Thus, i f the'HF potential were used, the interaction terms of the Thouless 
method are also needed to get the correct answer. But, conversely, if 
the HF potential ia approximated by the shell model in the Thouless 
method it is inconsistent to include also the interaction terms. 

Unfortunately it is difficult to make corresponding statements in the 
rotational case. 

3 .3 . V i l lar s ' theory [8] 

The microscopic theory of rotations is really not in a very satisfactory 
state. The rotation-like spectra and also the wave functions can be 
derived well enough with Peierls-Yoccoz theory. Such spectra also have 
a simple explanation in terms of the shell model and the SU(3) coupling 
scheme. But these are not really rotational theories. They are very 
enlightening in themselves but they do not explain directly the very con-
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siderable success of the phenomenological rotational models. A recent 
and very promising onslaught on this problem has been made by V i l l a rs , 
which I shall present in outline. 

The objective is to introduce collective co-ordinates and effect a 
transformation of the Hamiltonian into rotational and intrinsic parts, 
together with the inevitable coupling terms. This is an old idea which 
has not hitherto been very successful. The major problem has been 
that the intrinsic co-ordinates are complicted. They do not have a simple 
one-to-one correspondence with the individual particles and consequently 
the possibility of independent particle wave functions is lost. V i l l a rs 
gets around this problem by never introducing intrinsic co-ordinates 
explicit ly, but working always in the original particle basis. 

The method is most easily demonstrated for translations. Here we 
already know the answer 

H - Hintr. + Htrans. (3.20) 

where 

H„ 2 A M ' 
Hintr. " H " 2AM 

But can we find a systematic way of achieving this separation without 
using our a pr ior i knowledge? 

Given that the Hamiltonian is translat ion-invariant, i . e . 
• 

[H, P] = 0 (3.21) 

i t follows that H is a function only of P and not of X . So we expand 

H(P) = H ( 0 ) + P H ( 1 ) + t í P 2 H ( 2 ) + . . . (3.22) о. 

where the H*") are functions only of the intrinsic co-ordinates: 

[ H ( n ) , X ] = [ H ( n ) , P] = 0 

The problem therefore reduces to finding the set of intrinsic functions H ( n ) 

We now use a general property of conjugate co-ordinates, which enables 
us to derive a l l the derivatives of H(P) with respect to P; namely 

f(P), X 

for any function f(P) . Thus we define 

. 3f(P) 
ЭР 

X<°> (P) = H = H<0) +PH< 1 > + A p 2 h P ) + . - . 

X ( 1 ) (P) = k X ( 0 ) , X ЭН 
ЭР = н ( 1 ) + P H { 2 ) + ~ P 2 r f 3 ) + • • - (3.23) 2! 

x ( 1 ) ( P ) = J X1 (1) X L _ 3 - H(2) _i_ -p тл 
ЭР2 ~ + P H 

(3 ) + ^ p 2 H<4> + • • • 

etc. 
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These equations can be inverted, using the relations 

H ( 0 ) = H(P= 0), H W = — 
ЭР p = o etc., 

and a Taylor expansion about arb i t rary P. We get 

H (n) L i ¿ x
( k + n) ok (3. 24) 

To see how this works out, let us evaluate these functions: 

H X ( 0 . ) 

X ( D 

f(2)
 =
 L 

H, X 

P 

Whence 

A M 

X ( 3 ) = 0, etc. 

О 
= 

X 

p 

A M 

1 A M 

(3. 25) 

H^' = H 

H™ = 0 

2AM 

(3. 26) 

tí (2) 1 
A M 

t(3) Hv ' = H (4) _ 0 

which is the required result. 
Now let us apply this method to the case of two-dimensional rotations. 

Rotational invariance 

[H, J] = 0 (3. 27) 

implies that H can be expanded 

H = H<°> + J H ^ + j r J2 H<2> + • • • 

To derive the H(n) we must introduce a co-ordinate angle cp conjugate to J, 
i . e . satisfying the equation 

[J, e i ("] = e' (3. 28) 

A natural choice for <p is the angle specifying the orientation of the principal 
axes of the inert ia tensor. I f cp is a function simply of the particle со-
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ordinates, then, provided that the two-body interactions are local, the 
rotational sequence, like the translational, cuts off at 

How can we use this separation to derive, for example, the moment of 
inertia? F i r s t we must find the eigenstates, or some approximation to 
them. These must be eigenstates of angular momentum. Consider an 
eigenstate with eigenvalue К of J. The wave function is of the form 

УК(Ф, q) = e iK^K( q ) (3.29) 

where q is the setof intrinsic co-ordinates. Thus ^K(q) is an eigenstate 
of the intrinsic Hamiltonian H K , 

H K A q ) = E(K)^K (q) (3.30) 

where 

H K = H ( 0 ) + К H ( 1 ) + K 2 H02' (3.31) 

An exact Solution is not easy, because of the complicated nature of the 
intrinsic co-ordinates for one thing. V i l la rs 1 idea is to diagonalize in 
te rms of the original particle co-ordinates, inwhichi t is, in any case, 
already expressed. This is, of course, a redundant basis and, in an 
exact solution, leads to degeneracies. Thus 

Н кх к (ф, q) = Е(К)Х к (ф, q) . (3.32) 

where 
Хк (ф, q) = ^K(q) g(q>) (3.33) 

with a rb i t ra ry g ^ ) . In an approximate HF diagonalization, this degeneracy 
w i l l be lifted, but that is of l i t t le consequence unless we are also interested 
in intrinsic excited states, when the problem of recognizing spurious states 
w i l l ar ise. 2 

Thus the HF ground state energies E(K) are, for quantized K, the 
energy levels of the ground state rotational band. What result does this 
give for the moment of inertia? 

The HF determinant XK can be related to the determinant Xo using 
Thouless1 theorem. 

x K = e i K F X ° (3.34) 

where F is a single-particle operator. Having found Xo we can derive F 
f rom the variat ional equation 

6 < X ° | e - i K F H K e i K F | x ° > = 0 (3.35) 

2 This problem can be handled with the RPA, when the spurious states come out with zero excitation 
energy. For the ground state band, we are only concerned with obtaining a good relative approximation for 
E(K); relative}that is, to E(K') for other K' # K. 
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Using this equation, and expanding E(K), we obtain f rom the coefficient of 
the K 2 t e r m 

j = <X°|{H<2) + i [ (H (D + 1кН< 2 >) , F]} |XO> (3.36) 

V i l l a rs shows that with certain approximations, this leads once again to 
the Thouless result. 

If we want the wave functions, these can also be obtained by pro-
jection f rom Хк(ф, q). «Thus 

Y (ф, q) oc Je i K «" ХК (Ф - ф', q) dф, 

« e i K ^ K (q ) J e ' 1 * ? ' g ( q > < ) dq>< (3.37) 

which is s imi lar to, but an improvement on, the Peier ls-Yoccoz wave 
functions. 

4. PAIRING FORCE THEORY 

4 .1 . The inadequacy of HF theory 

HF theory takes into account only that part of the two-body inter-
action which can be expressed in terms of a static field. The reason it 
works so wel l is because the Pauli principle inhibits particles f rom 
scattering strongly, due to the shortage of unoccupied status to scatter 
into. The situation where HF theory works part icular ly wel l is for closed-
shell nuclei. This is because it costs a lot of energy for two particles 
to scatter out of their HF orbitals; the energy required ~2fiw, where-fiu is 
the shell spacing (see Fig. 5). 

FIG. 5. A 2 ph configuration weakly coupled to the HF wave-function by the residual interactions, for 
a closed-shell nucleus 

For a partly f i l led shell, on the other hand, very l itt le energy is re -
quired and the residual interactions can be very important (see Fig. 6). 
The result is a smearing of the F e r m i surface and with it the loss of an 
independent particle description of the nucleus, as a good zero order 
approximation. This is a serious loss, because without this enormous 
simplif ication the many-body problem is not manageable. Fortunately, 
it is possible to generalize HF theory and consider independent quasi-
particles, which again proves a good zero order description of the non-
closed shell nuclei and at the s a m e t ime retains most of the simplicity of 
standard HF theory. 
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We f i rst consider how the problem of a schematic short range 
residual interaction, namely the 'pairing force1 , can be solved in terms of 
the shell model. In the following chapter we w i l l then apply the methods 
developed to the more general HF problem. 

Fermi surface 

4 . 2 . Part ic les in a degenerate j - she l l 

A characteristic of short-range attractive interactions is that two 
particles, in a j2 configuration, are strongly bound when coupled to 
J = 0 and weakly bound otherwise. (See Chapter 2 . ) Fur thermore, the 
J f- 0 states cluster within an energy region narrow compared with the 
separation of the J = 0 state. This suggests the use of a simple schematic 
interaction which acts only in J = 0 states. Such an interaction is the 
'pairing force': 

r-.(+> 
H = - G ) a l a ^ - a - , a , , ( a +

m н a t ) ( 4 . 1 ) / m m m ' m 1 ' v m j m ' x 

where the + sign over the summation index means that summation is 
only required over magnetic projections m > 0, and a barred suffix refers 
to a t ime- reversed single-particle state. It turns out that the pairing 
force exactly diagonalizes Racah's seniority coupling scheme. 

In the (m, m) two-part icle sub-space, H has the form 

H = - G 

1 1 1 

1 1 1 

1 1 1 

(4.2) 

It is clear that for two particles this matr ix has lowest energy eigen-
function 

Ф о = 

¡\ 
i V ( + ) t 

7¿L a+™asl"> (j)2 J = 0> (4.3) 

W 
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where |— )>is the bare vacuum and 

Q = i ( 2 j + 1) 

is the number of pair states (m, m) with m > 0. The energy of this J = 0 
state is 

E 0 = - G f i (4. 4) 

while a l l orthogonal two-par t ic le states have energy zero. 
To solve the N - p a r t i c l e problem, let us define the operator 

which creates a two-par t ic le J = 0 state. In t e r m s of this operator 

H = - G f i A + A (4.6) 

The commutation relat ions are 

[A, A + ] = 1 - I (4 .7) 

where n is the number operator 

V + + n = ( a A + a m a m ) (4 .8) 

The seniori ty zero eigenstates of the Hamil tonian now follow f r o m 
the equation of motion 

[H, A f ] = -GA+ (Г2 - n) = -G(S Î - n + 2)A+ (4. 9) 

Starting f r o m the bare vacuum |— )> of zero part ic les we get 

H Af | - > = - G « A + | - > = - G Q | N = 2, v = 0 > 

H ( A f ) 2 | - > = - 2G( t t - 1 ) (A + ) 2 | - > = - 2G(Q - 1) | 4, 0> (4 .10) 

H ( A t )N / 2 = _ £ N ( 2 n - N + 2 ) (A + ) N / 2 | - > = - f N(2f2 - N + 2) I N, 0> 

In addition one can define (Г2 - 1) operators B f , which create two-
part ic le states orthogonal to A^ and obey the equation 

[H, В* ] = 0 (4. 11) 
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With these operators we can now construct the complete set of eigenstates 
for the even nuclei 

H | - > = h | n = 2, v = 2> = 0 

H в] В} |- > = H14, 4 > = 0 (4.12) 

H A^ Bj+ I —y = HI 4, 2 y = -G( f i - 2) | 4, 2> 

etc. 

Thus for N = 4 we get the energy spectrum of Fig. 7. 

-|-Л(Л-3) ( 2 Л - 2 ) G 

Л - 1 Л Б 

1 о 

Degeneracy ( j ) 4 E j 4 ) - E Q ( 4 ) 

FIG.7. Four-partiçle spectrum corresponding to a pure pairing force Hamiltonian 

For odd nuclei, we can s imi lar ly generate eigenstates 

H A f a + J - > = - G ( i î - 1) A+ a f J - > = - G (П - 1) | N = 3, v = 1> 

etc. Generally one obtains the eigenvalues 

E V (N) = - j (N - v)(2iî - N - v + 2) (4. 13)' 

giving the excitation energies 

E V ( N ) - E 0 ( N ) = | v ( 2 f i - v + 2 ) (4.14) 

The interesting feature of this result is that the energy spectra for a l l 
nuclei are identical regardless of N. This, as we shall see, has very 
important consequences. 

4 . 3 . Two particles in non-degenerate levels 

Suppose now that there are several non-degenerate levels lying within 
the range of the short-range interactions. For a short-range interaction it 
transpires that 

l < ( j a ) 2 J = 0 | v | ( j f i ) 2 J = 0 > | » I <(jce)2 J ¿ o | v | ( j 0 ) 2 J ^ 0 > | (4.15) 

and that the J = 0 matr ix elements do not vary over a very wide range 
(see Lane [9]). We therefore set up the more general pairing Hamiltonian. 

e ™ a
+

„a„ - G ^ а+а£а„-а,, (4. 16) 
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where the e ,̂0' are the unperturbed single-particle energies. 
For two particles, the wave functions |o)> (N = 0 states only) can 

be expanded 

I <*> - ^ Cctv 

where the Са„ are solutions of the equations 

- E e ) C a „ - G Y С а , = 0 
M 

This equation yields the eigenvalue equation 

v w 1 1 
L - E a - G 

V 

which is solved by graphical means, as i l lustrated in Fig. ; 

(4. 17) 

(4. 18) 

(4.19) 

VG ^ ^ 1 1 i / / / E . 

« r r H t \ 
FIG.8. Graphical solution of the eigenvalue equation. The eigenvalues are sandwiched between the 
unperturbed energies 2 e¡i0>. For spherical nuclei the £¿0> are degenerate, corresponding to j - sub-shells, 
with the result that most of the solutions are unperturbed. These are pure | ( j )2 J Ф 0> states and are 
marked by crosses. The 1 = 0 states, marked by dots, are all depressed but one is depressed much more 
than the rest. For non-spherical nuclei, the unperturbed energy levels are not degenerate and the crosses 
disappear, together with J as a good quantum number in the intrinsic frame. 

4 . 4 . N particles in non-degenerate levels (BCS theory) 

For this problem there is no known exact treatment and we have to 
resort to approximate methods. 

By analogy with the degenerate case, one would guess that the 
N-par t ic le ground state (N even) is of the fo rm 

| h > - ( £ С и I у (4.20) 

(cf. Eq. 4. 10) 
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This expression could be used as a t r i a l function in a variat ional equation. 
Unfortunately, it is not an independent particle wave function which makes 
the variat ional calculation rather difficult. 

However, we can regard |N^>as the projection onto the N-par t ic le 
space of the wave function 

I > = Д ( и „ + v y a t a t ) | - > (4.21) 
v > 0 

namely 

P N | - > (4.22) 

which means that 

r № v„ Cv x — u v 

The wave function |)>is very much easier to work with than |n)>, for the 
simple reason that it is the vacuum of a set of single-particle operators: 

К а м - V i l l i (u, + v„a+a+ - ) | -> = 0 a l l ц (4.23) 

v>0 

Thus I )> is the vacuum for quasi-particles, as defined by 

av = - v„a„- a+„ = uuaf
v + v v a ü 

(4. 24) 
g\- - u a+- + v a a+- - u û - - v c¿ v ^v v Vvav v v u Vv 

a = u a - v a^ a = u a + v a-
V V U V V V V V V V V 

û - = u a - + v a1" a- = u û-- - v 
V V V viz V V V V V V 

This is known as a Bogolubov-Valatin transformation. For the trans-
formation to be unitary, we must require that 

4 + v l = 1 (4.25) 

Now the quasi-particle vacuum | does not have a definite number 
of physical particles. However, in the degenerate case we found that the 
spectrum was independent of particle number. There is every reason to 
believe !that, in the non-degenerate case at least, near neighbours w i l l 
have very s imi lar spectra. Consequently some uncertainty in particle 
number should not make too much difference to the results. In the next 
section we shall apply the quasi-part icle (or BCS) method to the degenerate 
case, where we know the exact solutions, and see how wel l it works. 
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The wave function | )> is optimized by min imiz ing the expectation of 

H ' = H - Xn 

= > ( e ^ - Л)(а+а„ + a+a„-) - g ) a + a ^ - a , , (4 .26) 
L i L—i 

where Л is a Lagrangian mul t ip l i e r , chosen to ensure that the mean 
par t ic le number is cor rect ; 

< | n | > = N (4 .27) 

Thus X(N) must have a value given by the condition 

K i n ) _ 
8N 

x ^ ü J f Ü 

which is just the chemica l potential. 
The vacuum expectation of H ' can be obtained by picking out the con-

stant U, in its n o r m a l order expansion with respect to quasi -par t ic les 

H'= U + H n + H 2 0 + H r e s (4 .29) 

where Н ц is a single quas i -par t ic le operator of the f o r m a f a , H 2 0 creates 
or annihilates pairs of quasi -par t ic les ( a + a + + aa) and H res contains 
products of 4 quas i -par t ic les in n o r m a l order and is the res idual in te r -
action, not included in the BCS t rea tment . U is given by 

Z (ei0) - X ) « | a + „ a J > + < | a +
i a - J » 

Yw 
( < | a t a - | > < | a + a j > + < | a+ а+

д | > < | a¿a J » 
L I 

flV 

= ^ [ 2 ( £ f ' - X ) v „ 2 - G v : i - G ^ u v v v ) (4 .30) 

C a r r y i n g out the var ia t ion 

3v„ 

with the condition 
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we obtain 

4 ( 4 0 ) - À)v„ - 4Gvy - 2G ( u , + v„ § = 0 (4. 31) 

Evaluating 9u„ /9v„ f r o m Eq. (4. 25) and mult iplying through by u„, this 
equation reduces to 

2(e„ - A.)u„v„ - - v 2 ) = 0 (4 .32) 

where 

= J") 

(+) 
Д = G ) 

(4. 33) 

These equations have solution for u„, v„ 

u„ 2 - U l + , ~ Î — Л , V2 Л / i - , - I (4 .34) 
2 L .J(ev -\)¿ + Á¿> 2 I д€и . x)a + да f 

where Д and X are solutions of the gap equation 

G V W 1 
2

 I - ' x ) 2
+ A 2 ( 4 ' 3 5 ) 

which follows f r o m the definition of Д, together with the number equation 

< | n | > = 2 ^ V 2 = N 

v—.M г - , 

I t
1 = N (4 ЗД 

Excited states in the BCS fo rma l ism are the quasi -part ic le excitations 

I I )>, сг+ e + cct | etc. 

But note that 

I y , o + a t I y , etc 

contain only admixtures of even numbers of r e a l part ic les, while 

o+ I y , a+a+o-t etc. 
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contain only odd numbers. The quasi -par t ic le states of an even nucleus 
a re consequently res t r ic ted to even numbers and v i c e - v e r s a (c f .senior i ty ) . 

The energy of a v -quas i -par t i c le state is obtained f r o m H n . Now 

r-,(+) 
H

n
 + H

2 0
 = ^ (4

0 )

 - X) [{а+аЛ + { a ^ - } ] 

r-,(+) 
- G ^ [ < | a j a t | > { a 5 a „ } + < | a - a j > { a j a t } 

+ < K a ¿ l> Ц а Л + < 1 < а « |> Ц а „ - } ] (4 .37) 

which gives 

H i i E J « l + . H 2 0 = 0 (4.38) 

where 

E„ = J(ev - X)2 + Д2 (4 .39) 

Thus we see that the m i n i m u m excitation energy of an unperturbed 
2 -quas i -par t i c le state is 2Д, which is sometimes called the energy gap. 

Although the pair ing force is ve ry schematic, it nevertheless ex-
plains in a most convincing manner many dramat ic and systematic features 
of nuclear spectroscopy. F o r instance, it explains why the even-even 
nuclei have spin zero ground states and very few low- ly ing states; why 
odd nuclei, for which the low- ly ing states are 1 -quas i -par t ic le states, 
a re more complex; and why odd-odd nuclei, for which low- ly ing states are 
a proton quasi -par t ic le coupled to neutron quasi -par t ic le , are s t i l l more 
complex (see Chapter 2, F ig . 6). 

Also explained is the odd-even mass dif ference; a single quasi-
par t ic le state has a min imum energy of Д. 

4. 5. Comments on the BCS approximation 

F o r the degenerate problem, we a l ready have an exact solution and 
the BCS equations are t r i v i a l l y solvable. It is possible therefore to make 
comparisons between the results and learn something of the accuracy of 
the BCS approximation. 

The exact energy spectrum, for an N - p a r t i c l e nucleus, is given by 

E v (N) = - j N(2tt - N + 2) + j v(2SÎ - v + 2) (4. 40) 

The chemical potential X ^ is 

.(N) _ 3 E 0 ( N ) 
Л " 9N = - y < n - N + D (4.41) 
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The exact energy spectrum for the Hamiltonian 

is given, therefore, by 

H' = H - X ( N o )n 

E; (N) = E V (N) - ^ (Í2 - N0 + 1) 

= f (N - N0 )2 - j Nq - f v (2П - v + 2) (4. 42) 

and is shown in Fig. 9. 

2 ffl-l) G _ 

ÛG 

0 N = N0 0 

FIG.9. Exact energy spectrum for the Hamiltonian H' = H - n 

Now the component of the BCS wave function of definite particle 
number N, 

l > « С a V -
N/2 

"> (4.43) 

has the correct form for the N-par t ic le ground state. In the exact solution 
C„ is independent of N and so it is possible to construct a wave function, 
of BCS form, f rom only ground state wave functions. It is also clear 
that a l l the С v of the BCS approximation are equal on symmetric grounds. This 
means that wave functions, of definite particle number, projected f rom 
the BCS wave function are exact ground states. 

Unfortunately this is not true in the non-degenerate case, since the 
exact С у are not constants and do depend on N although often rather weakly, 
especially in the case of near degeneracies. But even if the projected 
components P n I ^ a r e n ° t exact, the particular component P n J ^ should 
be pretty good, since the wave function is optimized for this number of 
part icles. 

In.practice it is unusual to project and so we must enquire into the 
consequences of the number fluctuation. - The spread in particle number 
may be defined by 

(AN)2 = < I (n - N)2 |> = 4 ^ u2v2 (4.44) 
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In. the degenerate model the u„ and v„ are a l l equal and hence 

? N 9 N 
= 2T2 = < 4 - 4 5 ' 

Thus 

(AN)2 = 2 N ( I - ^ ) (4.46) 2Q 

which means a fractional uncertainty in particle number 

(4.47) N ~ \i N 1 

What effect wi l l this number fluctuation have on the ground state 
energy? Since the mean particle number is correct, only the quadratic 
t e r m in E 0 (N ) is affected and hence, f rom Eq. (4.42), the energy expect-
ation of I )> should be 

G л , -т,2 E 0 = E 0 ( N ) < | ( n - N)2 |> 

= E 0 ( N ) + f 2 N ( I - ^ ) (4.48) 

Thus the fractional e r ro r is of order 1/S7 (cf. Eq. (4. 40)). This is exactly 
the BCS energy 

u = < | h | > 

obtained by putting the solutions of Eq. (4. 45) into Eq. (4. 30) for u. 
Now the BCS wave function | )> is only appropriate for an even nucleus. 

An odd N-par t ic le nucleus is described in BCS theory by the qua si-part icle 
state 

l> ,,(N-1) 
M u> 0 

П ^ Г 1 ' ^ r ^ a t ) ^ ! - ) 

where the coefficients , v^1 ^ are optimized for the even (N - 1) 
nucleus. Ideally these coefficients should be optimized directly for the 
N-par t ic le nucleus. It is not difficult to see what the result would be 
If the single-particle level is occupied by a rea l particle, this level 
becomes 'blocked' and is no longer available for the pair correlations of 
the other particles. We therefore have the problem of N - 1 particles 
in Г2 - 1 pair states. Similar effects can be expected in even-quasi-
particle states so that the general solution fo a v-quasi-part icle state 
can be obtained f rom the BCS ground state solution by the substitution 

N — N - v, ft — Г2 - v 

36" 
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Taking into account the number fluctuation correction, 

E 0 ( N ) = - j N(2Q - N - v + 2) 

generalizes to 

E V (N ) = - j (N - v) (2fi - N - v + 2) 

which is the exact answer. 
While these blocking corrections are simple enough, there is a 

disadvantage to applying them in general. It is that they require a 
different quasi-particle basis for each energy level, which makes it 
difficult to relate wave functions or calculate transition matr ix elements. 
It is usually more convenient therefore to optimize the basis for the even 
nucleus ground state and describe corrections, to other states, in terms 
of configuration mixing. The force responsible for the mixing is of course 
Hres , which is neglected in the BCS treatment. The unperturbed excited 
state energies are given by H n , which, in the degenerate case, is easily 
shown to be 

1 1 
U n = 2 Gf i ^ («J «„ + at a . ) = j Gfiv (4. 49) 

where v is the quasi-particle number operator. It is seen that this gives 
exactly the right excitation energy for the 2-quasi-part ic le states and is 
generally correct to order v/fl. 

Now it may be noted that the BCS treatment gives Г2 distinct 2-quasi-
part icle states, whereas the exact solution allows only (Г2 - 1) seniority 
two states. The origin of the spurious state is easy to see; it is the 
state 

(n - N) I > 

which is a superposition of 2-quasi-part ic le states and yet must be a 
super-position of only seniority zero ground states. If H r e s is diagonal-
ized in the 2-quasi -part ic le sub-space, because of the symmetry, (Q - 1) 
combinations remain degenerate while the spurious state falls in energy. 
It w i l l not fa l l to zero energy because it has a different number fluctuation 
to the BCS state. In the non-degenerate case, a spurious 2-quasi-part ic le 
state also exists but the problem of recognizing it may be more difficult, 
especially in any approximate diagonalization of the residual interaction. 

In concluding this section we sould emphasize that the e r ro r in BCS 
theory arises solely f rom the neglect of H res ; or equivalently f rom the 
choice of t r i a l wave function. No e r ro r is introduced by the Bogolubov-
Valat in transformation. Consequently if H res were diagonalized in the 
complete quasi-part icle basis, exact eigenstates, with no particle 
fluctuations, must result. 

In applying BCS theory to nuclei, it must also be remembered that 
the pairing force only simulates the short-range part of the shell model 
residual interactions. If one is interested in collective states, the long-
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range part is also most important. Normal ly it is included, in a sche-
matic treatment, by adding into H res an appropriate multiple force, such 
as the P x force (see chapter 2). 

4 . 6 . Existence of a superconducting solution 

It is clear that the basic BCS equations 

Д = G « V 

n(+) 
N = 2 ) v2 

always have the t r i v i a l solution 

Д = 0, vM = 1 or 0 u^ = 0 or 1 

corresponding to a sharp F e r m i surface. But generally there is a non-
t r i v i a l superconducting solution of lower energy, for which Д f 0. How-
ever, if G is too small, it may transpire that no superconducting solution 
exists. For example, consider the two degenerate level situations, б! and 
e2 , and suppose that, in the unperturbed shell model, ej is ful l and e2 
empty. For a superconducting solution, X must be somewhere intermediate 
between êj and e2 (Fig. 10) in order to satisfy the number equation, when 

. X (superconductor) 

. X (shell model) 
e, 

FIG. 10. Position of X for a superconducting solution 

not a l l particles are in eĵ  . Now if, for such a value of X, G is so small 
that 

G \ < 1 V _L 
L ev -

it is clear that a solution to the gap equation 

I G 
2 / , Г 

( e „ - X ) J l + Л 2 

(e„ -

does not exist. This is the situation for closed shell nuclei, when the 
pairing force is not sufficiently strong to l i f t particle pairs into the next 
major shell. 
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For a nucleus with a partly fi l led degenerate level, a superconducting 
solution must always be possible, however weak the-interaction. 

Because a superconducting solution may not exist it does not mean 
that the pairing interaction has no effect. It simply means that no i m -
provement, in the zero order approximation, results f rom extending 
independent particles to independent quasi-particles. In such a case 
the whole pairing interaction must be considered as a residual interaction. 

4. 7. Consequences of pairing and comparison with experiment 

Throughout this chapter we have considered only one kind of particle, 
whereas in nuclei there are two kinds. To avoid the problems posed by 
the possibility of neutron-proton pairing, most calculations to date have 
either been with single closed shell nuclei, leaving effectively one kind of 
part icle or have neglected the neutron-proton residual interaction, consider-
ing pairing only between like particles. We w i l l discuss mostly the results 
of calculations carr ied out by Kisslinger and Sorensen [10] for single 
closed shell nuclei. 

There are many phenomena which exhibit the consequences of pairing 
among which are the following: 

(a) The odd-even mass difference: Because of pairing, the last particle 
in an Odd mass nucleus is much less strongly bound than in the neighbouring 
even-even nuclei. The mass difference can be defined by 

e n + I + e N - I - 2 E N = 2 EJ ~ 2 Л 

where N is odd and the odd mass nucleus is supposed to be a single quasi-
part icle state j . A comparison of theory with experiment is shown in 
Fig. 11 and is seen to be very good. 

FIG. 11. Even-odd-A mass difference. 
The dots are experimental mass differences Efj+1 + Ец-1 - 2Е^. The theoretical curves are simply 
2Ej, twice the energy of the lowest lying quasi-particle for the odd-A isotope. Curves a and b correspond 
to G = 19/A and 23/A, respectively. Curve с (for lead only) corresponds to G = 30/A. (Courtesy of 
Mate atisk Fysiske Meddelelser) 
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(b) Energy spectra: Apart from a few collective states, whose energies 
are depressed by the residual field interactions, no excited states are 
expected for spherical even-even nuclei, below the minimum 2-quasi-
part icle energy 2Д. In contrast, odd or odd-odd nuclei exhibit no such 
energy gap and the low-lying spectra are expected to be, and indeed are, 
much less simple (see Fig. 6 of chapter 2). 

(c) Matr ix elements: Electromagnetic multipole moments and transitions 
are sometimes strongly modified by pairing and sometimes hardly at al l . 
Consider the matr ix element, between 1-quasi-part ic le states, of a general 
operator Q: 

< k Q « t ' !> = k ^ a X , l> 
ав 

= < И О К > ( U „ U „ . - T V . V , , ) ( 4 . 5 0 ) 

where т = ± 1 according as Q is i v e . , under t ime reversal . Thus 
electr ic moments, ' in part icular electric quadrupole moments, and 
electr ic transitions, are oftent substantially reduced in odd nuclei, 
whereas magnetic moments and transitions are barely affected. For 
even nuclei the reverse occurs. The matr ix element of Q between the 
ground state and a 2-quasi -part ic le state is 

< I q « X - . I> = Х ^ М / з х К а ^ х , |> 
a S 

= О 1 I Q к > (u„v„. + T V „ U „ , ) ( 4 . 5 1 ) 

Thus electric moments are barely affected while magnetic moments are 
reduced. 

(d) Spectroscopic factors: Experiments of part icular interest, as far 
as pairing is concerned, are the stripping and pick-up reactions. After 
applying stripping theory, such experiments determine the spectroscopic 
factors 

S(J, jJ 0 ) = <¥jm |Фш(3. Jo )>2 (4-52) 

where YJM is the odd-particle parent nucleus and Ф1М is the coupled 
channel state of nucléon j and even daughter nucleus J0 . If we take the 
daughter nucleus as the quasi-particle vacuum |)>, with J0 = 0, and 
suppose that the parent is the quasi-particle state 

= l> 

then we get 

S ( j . j 0 ) = < k ] m a ^ m | > 2 = u 2 (4.53) 
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Thus spectroscopic factors are a means of measuring the coefficients 
u„, v„ directly. In Fig. 12 are shown experimental values of v̂  obtained 
by Cohen and Pr ice [11] f rom (d, p) and (d, t) experiments on the Sn 
isotopes; the theoretical values are f rom Kisslinger and Sorenson. The 
agreement is very satisfactory, especially considering the uncertainties 
both in stripping theory and in the pairing calculations. 

2 

FIG.12. Experimental values of V j obtained by B.L. Cohen and R.E. Price [11] from (d,p) and ( a . t) 
experiments on the Sn isotopes as compared to the theoretical values of Kisslinger and S^rensen [10] 

4. 8. Charge-independent pairing forces 

If both the neutron and proton shells are open, then we have two types 
of particle to consider. What is generally done is to allow pairing between 
the neutrons and between the protons independently. Thus one obtains 
a wave function 

I > = [ I [ u » + v„ (n)a+(n)at(n)] Д WJp) + v„ (p)a+ (p)at(p)] | - > (4. 54) 
v>0 v>0 

which is an eigenfunction of a pairing Hamiltonian Hn n + Hp p (with neglect 
of H res ( n n ) and H res (pp)). Clear ly this Hamiltonian is not charge inde-
pendent, and as a consequence | )>does not have good isospin. 

A charge-independent pairing Hamiltonian is 

where• 

H = H n n + Hp p + Hn p (4. 55) 

H 1 ^ 
np 2 G ^ . 4 ( р ) at(n) ay-,(n) a„,(p) 
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Expanded in normal order in te rms of H n p becomes 

H n p = - ^ G ^ I a t W a ^ n j I x U t i r t a » ^ 
V 

- I G ^ [ < I a t ( n ) a „ - ( n ) | > { a ¿ (p) a » } + < | a + > ) a „ ( p ) | > { a t ( n ) a > ) } ] 

V 

+ H res (np) (4. 56) 

Now it was observed by El l io t t and Lea [12] that the Hamiltonian 

С - i G ^ I l p l a ' M a j n l a . l p ) (4.57) 

gives exactly the same expansion as H n p , apart f r o m differences in H r e s 

which we neglect anyway. 
H<f> is in fact much easier to work with, since it can be expressed 

H ( e f f ) 
H n P 4 ¡ G ^ у » а » а ; , ( п ) а „ , ( р ) - У а > ) aj(p) 

VV* U 

\ G ^ a * , ( n ) aB,(p) a+
y(p) au(n) - \ G ^ a > ) a » 

= "I G ( T + T _ + T _ T + ) - G n (4 .58) 

= 

Thus if the component of definite isospin (T, T 0 ) and part ic le number N, 
|)>NTXo is projected f r o m the wave function H^p

ff) is already diagonal, 
i . e . 

H ' I>NTT 0 = №n + E p + | G ( T ( T + 1) - T 2 - f N ] | > N T T o (4 .59) 

In many cases of interest , where one is interested in energy d i f fe r -
ences, it appears that the extra te rms, introduced by making the pair ing 
force change independent, cancel. It is possible therefore that they can 
be neglected for most purposes with impunity, although this needs further 
investigation. 

Unfortunately we cannot yet re lax . The above charge-independent 
pair ing force does not answer a l l the problems. In par t icular , it can 
only simulate the short range interactions in re lat ive T = 1 states. It 
turns out, that, for a reasonable nucleon-nucleon force, the interaction 
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is every bit as strong in some T = 0, J = 1, 3, . . . configurations as in 
the T - 1, J =• 0. For the lighter nuclei, where neutrons and protons are 
f i l l ing the same shell, this is a part icular problem. A brief review of 
some of the progress made is given in the book by Lane [9]. 

5. G E N E R A L I Z E D H A R T R E E - F O C K THEORY 

Having seen how to get a good approximate solution for a schematic 
short-range residual interaction in terms of the shell model, we can now 
apply these methods to the general HF problem using forces taken f rom 
'nature' [13] . 

We right away start by making a Bogolubov-Valatin transformation 
to quasi-part icles 

4 = V v a l + w v a e (5.1) 

but with the single-part icles basis v and the coefficients uv, wv as yet 
undefined. We now seek the best wave function of the fo rm of the quasi-
part icle vacuum 

|> = П К + v y a + a + ¿ | - > (5.2) 
v> 0 

with the restraint that it should have the correct mean number of particles. 
Thus we must minimize the expectation of H1, where 

VU1 ДУ̂ '1/1 

Proceeding as in standard HF theory, arrange H 1 in normal order with 
respect to the quasi-part icle vacuum We get, as in the schematic 
treatment 

H' = U + H n + H 2 0 + H res (5.4) 
where 

U = V 

_ v H11 + H 2 0 - ^ 

СГ„„.- ^ O + l ^ V ^ . ^ l a t a J ) C l a + a J ) 
fifi' 

+ i l <Ка+м1><1%,а„, l> 
fll/fj'l/1 

+ ï I [ < I < a; I > íaMia„i} + < I V a J > {a>;} ] 

(5. 5) 

4 f̂lUfl'u' i a î a J afl' ayl } 
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These expressions can be expanded with the following useful identit ies: 

<l4a6 l> = 6a8 Va 
(5. 6) 

< 1 а £ а в 1 > = < l a 0 a J > = 6àB u a v a = " 6aB UBV8 

í 4 a
6 } = u ^ g ^ o - g - v a v B a ¡ a á + u a v B a l a ¡ + v a u 0 o d a& 

= u a v B a a a i 5 " + u a u e + VocVgd-̂ o-g (5.7) 

/ i - + t , + + . 
i 3 » ^ / " V c ^ B 0 ^ 0 " u a v B a e f f n + v a v s a ¿ £ í j + u a u g a a a s 

Consider f i rs t ( H n + H 2 0 ) . This can be wr i t ten in the abbreviated form 

( H u + H 2 0 ) = ^ ( e „ „ , - " „ , ) { а > „ , } - i ^ A w , [ { a , 7 a „ , } + { a + a t , } ] (5 .8) 

where 

= T , + \ V . . <• I a+ a . I Ъ = T , + У V , V 2 
vu' / V-VjiV \ ' fj fi ' ' vv' / * ¡iuiih' Ц 

fifi' H 

" l ^ V ™ 1 <1а+м'ам!> = - I ^ V ^ - ' m í ' <1ада / ] -1> (5. 9) 
мм' цц' 

2 / ^W¡>v¡ U(JV(J 

Now a necessary and sufficient condition that | )> m in imize the expectation 
of H 1 is that 

< | H 2 0 = H 2 0 | > = 0 (5 .10) 

which expresses the condition that 

< K « „ H > | > = < | H ' 0 J a + J > = 0 a l l ¡J.V 

We also require that Н ц should be diagonal, so that the quasi -par t ic les 
should be independent. The la t ter condition gives us the s ingle-par t ic le 
basis wave functions v and the f o r m e r the coefficients u¡,, v„. Anticipat-
ing the resul ts , we choose a s ingle-par t ic le representat ion in which 
ev v , is diagonal and assume for s impl ic i ty , although this is not s t r ic t ly 
necessary, that this choice also diagonalizes Д у ц , , 3 

3 For a spherical nucleus this is guaranteed in almost all practical cases by angular momentum 

conservation. Generally we have to postulate a conservation law 

The problem could have been avoided by diagonalizing the whole of H n directly, rather than in parts, 

but this complicates the formulae. 
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Thus we obtain 

H 

H 

= £ [ ( * „ - X)(u2 - v 2 ) + 2 Д „ и Л ] c l a v 

V 

= - - al + a0au) 

(5 .11) 

Requir ing that H2o vanishes gives 

(e - X) 2u v = Д (u2 - v 2 ) 

which, together with the normal izat ion and number constraints 

* V„! . 1 

p -

(5. 12) 

(5. 13) 

= N 

is sufficient to determine u u , vv and Л . The following solutions emerge 

(5 .14) û. 1 I. , Су - X 
U y " 2 1 - X ) 2 + Д2 

2 = 1 J ev - X 
V" ' 2 I - x f + Д2 

where Д„ and X a re solutions of the gap equation 

= _ 1 v _ v ^ - v 

Vх 

J(e„, - Л)2 + Д2 , 
(5 .15) 

and the number equation 

II Zy - X 
*J(e - X)'¿ + Д2 

= N (5 .16) 

Gather ing t e r m s we f inal ly end up with 

H 11 

ri2o = о 
(5.17) 

H 4 Y Уцуц'у* 
UUtl'v' 
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where 

= * Л ) 2 + A l (5. 18) 

These equations are v e r y s im i l a r to those obtained with the schematic 
pa i r ing force. F o r pract ica l purposes the only significant di f ference is 
that Av is no longer a constant but depends on v. However, i t appears 
that, for reasonable nuclear forces, Au var ies ve ry l i t t le in fact, with v. 

Results calculated with the schematic pair ing force should therefore 
be pret ty re l iab le . 

I f H tes is neglected, excited states are quasi -par t ic le states. But 
i f one is interested in collective states then H res cannot sensibly be 
neglected. In the following sections we shall be concerned with collective 
v ibrat ional states and how H r e s can be taken into account. 

6. T H E T A M M - D A N C O F F A P P R O X I M A T I O N 

We now come to a discussion of excited states. F o r s impl ic i ty we 
shal l forget a l l about pair ing for the t ime being in the knowledge that 
i t can be simply included la ter , when we have worked out the essential 
many-body techniques. 

6 . 1 . The T a m m - D a n c o f f approximation 

The T a m m - D a n c o f f approximation is a natura l one. It is to accept 
the H F wave function | y for the ground state, and to set up a basis of 
excited H F configurations among which the residual interactions can be 
diagonalized. 

The lowest unperturbed configurations are the 1 ph states 

l m i > = a m a J > 

(Remember that the subscripts m, n are reserved for par t ic le states or 
s ing le -par t ic le states above the HF F e r m i surface, while i , j a re reserved 
for hole states or s ingle -par t ic le states below the H F F e r m i sur face. ) 
Such configurations are coupled by the residual interact ion 

Hres 4 ^ Vfivfi'p' íalal 
flip' V1 

not included in the self -consistent f ie ld (section 2). The coupling between 
two par t ic lè -ho le states is 

< m i | H r e s - | n j > = V m j i n 

= / / Ф*(?)Ф*(?') V(?, ?•) ф4(?) фп(?') d?d?' 

- f f Ф*(?) Ф*(?') V(?. ?') cpn(r) Ф; (г") dr dr 1 

which is expressed graphical ly in F ig . 13. 
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Matr ix elements of the full Hamiltonian, between part icle-hole states, are 

< m i | H | n j > = 0 т п 6 ц ( Е 0 + e m i ) + V m j i n 

where E 0 is the ground-state energy and emi = em - e¡ is the unperturbed 
part ic le-hole energy. 

(b) 

FIG. 13. Graphical expression of the matrix element Vj^jj j j 

(a ) Directterm: Я 4 A ^ 

(b) Exchange term: // (?) »>*(?) V ( 7 , ? ) (r ) v j ( r ' ) dr dr' 

Assuming that an excited eigenstate |hu^>, of excitation energy Ь и, 
has the part icle-hole fo rm 

i
hu

>
=

X'
mi> (бл) 

mi 

we get the secular equation 

(«ml - f i " ) Y m i + ^ V m j l n Y n j = 0 (6.2) 

Matr ix elements for a general one-body operator Q, which might, 
for example, be an electromagnetic multipole operator, are given by 

< f i u | Q | > = Q m i (6.3) 

where 

Qmi = < m | Q | i > = / c p * ( ? ) Qq>i(?)d? 

F o r j a closed-shell nucleus the Tamm-Dancoff method is immediately 
applicable. The shell model provides a good approximation to the HF 
wave functions and pairing can justif iably be neglected. In such a case 
the method is, of course, no more than a conventional shell model 
treatment, for which several calculations have been performed. Some 
of the earl iest and most well-known are those of El l iott and Flowers [14] 
for the odd parity states of 1 6 0 . Generally speaking, their fits to the 
experimental energies and l i fet imes were good. But more interesting 
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than merely fitting data are some of the general trends that emerge f rom 
such calculations, in part icular the appearance of collective states. 

Consider the 1 - , T = 1 states, for example. F r o m among the un-
perturbed configurations, one l inear combination separates out and is 
pushed up in energy by the residual interactions. Furthermore, it 
acquires collective properties by taking with it the bulk of the E l strength. 
Thus the shell model with residual interactions explains rather wel l the 
energy and strength of the giant dipole resonance.4 

For the 3 - , T = 0 states, one state again gathers the bulk of the 
collective strength, but this t ime fal ls below the others in energy. It 
appears to be a general feature of such calculations that T = 1 states 
r ise in energy, with the most collective among them having the highest 
energies, while T = 0 states are depressed and the most collective are 
the lowest. This is in general agreement with observation. 

6 .2 . The schematic model 

The physics behind the above results was explained rather nicely by 
Brown et al. [15] with the schematic interaction 

(6.4) 

M 

Neglecting exchange terms 

(G.5) 

where 

D m i = < m | r % | i> 

The secular equation becomes 

which is easily solved, since is a constant. Hence 

nj 

(6.6) 

where N is a normalization constant such that 

mi 

4 Its width and structure are also readily understandable in terms of particle emission broadening 
and coupling to more complicated configurations, although such aspects are not easy to calculate. 
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We also obtain a dispersion formula for the energy ñu 
I _ 12 

DmiYm i = X ) 
mi mi nj 

or 

I 
X 

(6.7) 

mi 

The graphical solution of this equation proves to be rather instructive, 
and is shown in Fig. 14. 

A l l the solutions, save one, are trapped between the unperturbed energies. 
The solution that is not trapped falls a long way below the rest and becomes 
collective, i . e . it acquires much more than its fa ir share of electro-
magnetic multipole strength. 

This is demonstrated most forcefully in the degenerate l imi t , when 
a l l the part icle-hole energies tn l i are equal to a common e. In this 
l imi t , a l l solutions save one are trapped_ at the unperturbed energy e. 
For the, solution that is not trapped 

w 
FIG .14. Graphical solution of the dispersion formula for But for x>0 

"J 

and, f rom the dispersion equation, 

(6. 8) 

mi 
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The multipole strength for this state is 

|<fiu>|rJYJ(j | > f = I Y Y * D mi mi 
2 

mi 

(6.9) 

mi 

which is equal to the sum of a l l the strength of the unperturbed states. 
I f the part icle-hole interaction is repulsive, i . e . X < 0, s imi lar 

results t ranspire. One state is then pushed up in energy above the rest 
and, in the degenerate l imi t , collects a l l the multipole strength. 

Qualitatively s imi lar , but less extreme results can be expected 
with non-degenerate levels and more real ist ic interactions. 

6 . 3 . The part icle-hole interaction 

Another question we may ask in trying to understand the behaviour 
of the Tamm-Dancoff solutions is "when should the part icle-hole inter-
action be predominantly attractive and when repulsive?" 

There are two sorts of particles in the nucleus, thus it is possible 
to construct both T = 0 and T = 1 part icle-hole excitations. These can 
be writ ten schematically 

where P refers to a proton particle state and P a proton hole state. If 
we suppose a simple attractive par t ic le -par t ic le interaction, the matr ix 
elements for the different components are 

where D is the direct matr ix element (Fig. 13 (a)) and E is the exchange 
(Fig. 13 (b)). Thus for the part icle-hole matr ix elements we obtain 

F o r a short range interaction, D = E and we get the result that, for an 
attractive part ic le-part ic le interaction, the part icle-hole interaction is 
attractive in T = 0 states and repulsive in T = 1 states. This result 
s t i l l holds good for any reasonable exchange mixture. The physical 
interpretation is that, since protons and neutrons move in anti-phase in 
a T = 1 excitation, the motion is opposed by the attractive force between 
them, whereas in a T = 0 excitation they move in phase and consequently 
the motion is favoured by their interaction. 

ph> = - p ( P P ± N N ) , T = 0, 1 

< рр|н|рр> = D - E 

< p p ] h | n ñ > = D 

< p h | H | p h > = 2D - E for T = 0 

= - E for T = 1 
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7. T H E RANDOM PHASE A P P R O X I M A T I O N (RPA) 

7 . 1 . The philosophy of the RPA 

The Tamm-Dancoff approximation works very wel l but it fails in at 
least one systematic way in that it does not satisfy the energy-weighted 
sum rule. As a consequence, it tends to underestimate, and often rather 
badly, the strength of the low-lying collective states. The 3 - , T = 0 
collective states of 1 6 0 and 40Ca, for example, are underestimated by 
something like a factor of three. Experimentally, these states are 
extremely strong. The 1 6 0 octupole state actually over-exhausts the 
sum shell model strength for 1 йш excitations by a factor 2. 13, and 
exhausts ~ 0 . 64 of the total strength. 

There are three things we could t ry to do improve the situation: 

(a) Enlarge the part icle-hole configuration space to include 3fiu 
excitations. This helps a l itt le but not nearly enough. 

(b) Include more complicated configurations, 2ph, 3ph, etc. Such 
configurations have zero multipole strength and are unlikely to help 
very much. 

(c) Take into account the effects of the residual interactions on the 
ground state. By modifying the ground state wave function, the non-
energy weighted sum rule itself , which is very model-dependent, can 
be incremented. 

Clear ly we can do a l l of these things, but the complexity of the 
problem so rapidly escalates that it is not possible to take them very 
fa r . Fundamentally the problem is that wave functions real ly are ex-
t remely complicated, and however much effort is expended in calculating 
them, the result w i l l inevitably be almost orthogonal to the exact wave 
function. This does not mean that we should abandon the problem, but 
it does mean that we should design our efforts to optimizing those aspects 
of the wave function that concern us. 

What aspect of the nucleus does HF theory optimize? It is of course 
the single-part icle aspect. For the exact ground state |o)>, the expecta-
tion of any a rb i t ra ry operator Q, 

Q = < 0 I QI 0 > 

is a constant in t ime. This gives a condition on the wave function 

i f i | S = < 0 | [ Q , H ] | o > = 0 , a l l Q 

This is a very stringent condition and, if satisfied for a l l possible Q, 
ensures that | 0 is an exact eigenfunction. Now the HF approximation 
I )>to I 0 У satisfies this equation only for Q, a single particle operator. 
Thus the HF approximation can be expected to give good results for 
observables corresponding to single-particle operators, such as nuclear 
density distributions, magnetic or quadrupole moments, etc. It cannot 
be expected to give good results for phenomena involving two or more 
particle correlations such as quasi-deuteron processes as evidence in 

37 
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high-energy photo-absorption, etc. In physical terms, the probability 
that a l l the nucléons are simultarieously in their HF orbitals is surely 
rather small, but the chance that any particular orbital has its HF 
occupancy is very much larger . 

We can s imi lar ly apply this principle to the calculations of excited 
states. The properties of an excited state that most interest us are 
its excitation energy and its single-particle matr ix elements with the 
ground state. What we have been attempting to dois to calculate ground 
and excited state wave-function independently. But the above observables 
involve not so much the wave functions themselves as the relationships 
between them. We should therefore attempt a more direct onslaught of 
calculating the appropriate relationships rather than the separate wave 
functions, thereby optimizing our efforts to give the best possible values 
for the observables. This is the philosophy behind the random phase 
approximation RPA - at least as presented here. The RPA derives, 
as we shall now show, f rom the well-known equations of motion method for 
solving the harmonic oscillator problem. 

The RPA also goes under other names, in particular the quasi-boson 
approximation, the method of l inearized equations of motion and t ime-
depèndent Har t ree -Fock theory. In a l l cases the final equations are identi-
cal, although it is not always immediately obvious that the approximations 
of the different methods are equivalent. Indeed some of the methods of 
l ineariz ing the equations of motion are real ly not derivations at a l l but 
prescriptions. The variation described here is not (yet) to be found in 
the l i terature, but has the advantage of a much f i rmer basis, is simple 
and is readily extended to higher order. 

7 .2 . The equations of motion 

The equations of motion, for a harmonic oscillator Hamiltonian of 
frequency to, are 

[H, 0 + ] = иЮ* 
(7. 1) 

[H, O] = - u O 

where we put ñ = 1, and where O, 0 + are boson operators with the 
commutators 

[O, O f ] = 1 (7.2) 

F r o m the solution to these equations, a set of eigenfunctions can be 
constructed, defined by 

o|o> = 0 

o + | o > = I 1 > (7.3) 

37* 
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Thus instead of solving the set of eig'enfunction equations 

HI n > = (n + I) и j n > 

the equations-of-motion method determines operators О*, О which relate 
eigenfunctions. This then is the sort of approach required for finding 
nuclear excited states. The problem is to generalize the method to a 
non-harmonic Hamiltonian. 

The solution to the above equation for О*, in terms of eigenfunctions, 
is 

CO 

s/(n + 1) |n + l > < n | 

n = 0 

Now suppose that the Hamiltonian is not completely harmonic, but has a 
harmonic spectrum of energy levels up to the m'th level. By this we 
mean that Eq. (7. 3) holds for a l l n s m and that 

E . - E = w, a l l n á m 

n + l n * 

where и is a constant independent of n. If O* is given the fo rm 

m О* = Y S t ^ V W + l > < n | + Y cpq l p > < q l 
n = 0 p, q>m 

for a rb i t ra ry Cpq , it is seen that Eqs. (7. 1) - (7. 3) are st i l l satisfied 
provided they are allowed to operate only in that sub-Hilbert space spanned 
by the eigenvectors n s m. In other words, the equations of motion can 
be wri t ten 

[H, 0 + ] = uO* + P 
+ (7.4) 

[H, O] = - uO - P T 

and the commutators 

! [О, 0 + ] = 1 + Q (7.5) 

where 

p | n > = P + | n > = Q | n > ü O , a l l n S m 

Equation (7.4) can be put into a much more tractable form: P r e -
mult iply the f i rst equation by an a rb i t ra ry operator R and the second 
by R* , then take the expectation of the f i rst plus the Hermit ian conjugate 
of the second, with respect to a wave function Provided lies 
within the harmonic region of Hi lbert space, we obtain 

< < p | [ R . ( [ H , 0 + ] - u O + ) ] | ф > = 0, a l l R (7.6) 
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Simi lar ly 

<<p|[.R, ( [H, О] + uO)] |<p> = 0, a l l R 

so that both 0 + and О should appear as solutions of Eq. (7. 6) with 
eigenfrequencies ± u respectively. 

Now the nuclear Hamiltonian is mildly harmonic in the so-called 
vibrat ional modes, but not at a l l in the multitude of other modes. Thus 
the harmonic region of Hi lbert space is rather small . But note that it 
never vanishes, regardless of the Hamiltonian. It must always contain 
at least the one-dimensional space of the ground state wave function. 
Thus if lip)' = I 0 Eq. (7. 6) is exact for any Hamiltonian. But the great 
advantage of this approach is that the results of Eq. (7. 6) should not 
depend very cr i t ical ly on the details of the wave function | <p)> chosen. 

7 . 3 . The RPA 

While Eq. (7. 6) is exact, it cannot be solved without making some 
approximations. F i r s t we need a wave function which lies within 
the harmonic sub-space. The f i rst approximation of the RPA is to 
suppose that this condition is satisfied by the HF wave function | . 
The RPA equation of motion is therefore 

< | [ R , ( [H, 0 + ] - u O + ) ] I > = 0, a l l R (7.7) 

The second approximation is to l imi t the form of the operator 0 + in 
order to have a problem of manageable dimensions. The fo rm chosen 
is the simplest possible which leads to consistent solutions;5 i . e . the 
part icle-hole fo rm 

0 + = У (Y . a+ a ; - Z . a + a m ) (7. 8) 
/ 4 mi m i mi i m ' \ • / 

mi 

We could equally wel l take O* to be a general single-particle operator 
but it t ranspires that the part ic le-part ic le and hole-hole parts vanish in 
Eq. (7. 7) leaving only the part icle-hole components. 

5 The s t i l l s i m p l e r f o r m of the T a m m - D a n c o f f approx imat ion 

O f = У Y . a + a . 
/ mi m i 
mi 

does not lead to cons is tent so lut ions, f o r whi l e 

< I [
 a

l a m > [H, 0
+

 ] ] I > = (e
m
 - e ¡ ) Y m i + Y V

m j i n
 YnJ 

nj 

= U < | [ a î a n . 0 + ] | > 

the conjugate equat ion i s not s imul taneous ly sa t i s f i ed 

<|[alam , [H. 0 ] ] | > - £ VmniJY* * u < ![>!«„,. О] | > = 0 
ni 
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The problem is now wel l defined. Taking for R f i rst a¡ a m and then 
aj ,a¡, we obtain the usual equations of the RPA 

( «Ш - € l ) Y m i + Y ( y m j i n Y n i + V m n i j Z n j ) = u Y m i 

nj 

( e m - C i ) Z m i + Y < V i n m j Z n j + V i j m n Y n j ) = " U Z ^ 

a l l m, i (7.9) 

These equations may be writ ten in matr ix f o r m 

- B * - A 7 \ Z / \ Z 

(7.10) 

with obvious notation. 

F r o m the symmetry of the matr ix , it is clear that the RPA is a 
consistent approximation. Thus if one solution is 

with frequency u, another solution is 

О = ( Z* 
\ Y * 

with frequency -u . 

»mnij 

FIG. 15. Graph of a matrix element V mnij 

w 

y-ray 

(b) 
FIG. 16. (a) Creation of a particle-hole pair by a y-ray. (b) Annihilation of a particle-hole pair 
already present in the ground state, by a y-ray 

I f the mat r ix В were identically zero, then the RPA would reduce to 
the Tamm-Dancoff approximation. However, В is not zero. A matr ix 
element of В is shown graphically in F ig . 15. The non-vanishing of В 
impl ies that coupled to the HF vacuum are 2ph configurations in f i rs t . 
order , 4ph in second order, etc. The admixture of these configurations 
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into the ground state is re fer red to as 'ground-state correlat ions' . The 
existence of these correlations can be very important in calculating 
transit ion matr ix elements. For example, the nucleus can be excited by 
absorption of a 7 - r a y in one of two ways. The 7 - r a y can either create 
a part icle-hole pair , as in Fig. 16(a), or it can annihilate a part icle-hole 
pair already present in the ground state, as in Fig. 16(b). 

7 . 4 . Propert ies of the solutions [16] 

(a) Normal izat ion 

Provided the excitation operators O a obey the pseudoboson 
commutation relations 

< o | [ o e , o+] | o > = 1 , % > 0 (7.11) 

the normalization of the excited state |a)>is ensured; 

< a | a > = < 0 | O a O a
+ | 0 > = < o | [ O a , 0 + ] | 0 > 

Under the RPA assumption that | )>lies within the harmonic sub-space, 
we also require 

< | [ O a . o £ ] | > = 1 , « „ > 0 (7.12) 

Now [ O a , o£ ] is a single-part icle operator, and since the ground state 
expectation of a single-part icle operator is given wel l by the HF wave 
function, these two equations are fortunately simultaneously satisfiable 
to a good approximation. Equation (7. 12) is most easily calculated and 
gives the normalizat ion 

J ( | Y m i ( a ) | 2 - | z m i ( * ) | 2 ) = 1 . " a > 0 (7.13) 

mi 

Note that O* and О are both solutions of the same Eq. (7. 7), with 

u a = ± | u a | respectively. Thus for ua< 0 the role of the two operators 
becomes interchanged, giving the normalization 

< | [ O e , 0+ ] I > = Y ( | Y m i ( « ) | 2 - U m i ( o ) | 2 ) = - 1 , " a < 0 (7.14) 
mi 

(b) Orthogonality 

For the excited states | a )> and | j3 )> to be orthogonal we require 

< a | 0 > = < 0 | [ 0 „ , 0 6
+ ] | 0 > « < | [ O e . 0 j ] | > = .6aB , ы а > 0 
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X 
mi 

( Y m i ( O ) Y m i 0 ) - Z * 1 ( û ) Z m i № ) ) = 6 a 6 , U „ > 0 

Consider 

(Y* (a) Z * (a ) ) / А В \ / Y ( 0 ) \ (Y* (a ) Z * (a)) / Y (P ) \ 

\ B * A* J \ z ( | 3 ) / 8 \ - Z № ) y 

Interchanging a and 0 and taking the hermit ian conjugate, we find 

( Y * ( e ) Z * ( e ) ) I Y(/3)\ 
("a - "в) = 0 

\ -Z(/3) j 

so that 

(Y* (o ) Z * (a )) I Y(j3)\ 6 a 6 , u a > 0 (7.15) 
-Z(J3)/ -6 a S , u a < 0 

(c) Spurious states 

It is wel l known that in calculating excited states within the f ramework 
of the shell model, one has to be careful about spurious states corresponding 
to excitation of the centre-of -mass motion in the shell model potential. 
The problem arises because the shell model Hamiltonian is not t ransla-
tionally invariant; i . e . 

[ H S M , P] фо 

The problem is complicated by the fact that the spurious states do not 
separate out as eigenstates. 

In this respect the RPA is much superior. Since the ful l t rans-
lationally invariant Hamiltonian is used in the equation of motion, it 
follows that 

< | [ R , [ H , P ] ] I > = 0 , a l l R 

and hence that 

(7.16) 

where P in the last equation is the column vector P m i . Thus, in the 
RPA, the centre-of -mass motion is an eigenstate with zero frequency. 
This is as it should be, since if the centre of mass is displaced there is 
no restoring force and no oscillation. 
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However, the m e r e existence of a zero frequency solution can cause 
problems. F o r instance i t is self -orthogonal . 

A l l tne other solutions are paired off wi th u a = ± | w a | . However, i f u = 0 
the state is ident ical to its opposite. As a consequence, for every ш = 0 
solution the eigenvectors are one short of forming a complete set. In 
the above example it is easy to guess that the position co-ordinate X 
conjugate to P should provide the extra vector needed to complete the set. 
Because of Gal i lean invar iance 

i t fol lows that 

= ш p 

< | [ R . [ H , y ] ] | > = ¿ < | [ R , P ] | > 

where Y = i X and hence that 

(7. 17) 

It is easy to show that the solution to this equation for ¥ provides the 
other vector needed to make up the complete set. 

T h e r e can also be other zero frequency solutions corresponding to 
Other invar iances of the Hamiltonian. F o r example, for a deformed H F 
wave function, angular momenta is not a good quantum number, but 

[H , J] = 0 

and gives r ise to a solution corresponding to a rotation. Again if we 
w e r e to use the general ized H F wave function, for which the part ic le 
number is not a good quantum number, the invariance 

[ H, n] = 0 

where n is the number operator , leads to a spurious state corresponding 
to a number fluctuation. This is the spurious two quasi -par t ic le state 
discussed previously. The fact that these spurious states do separate 
out exactly is one of the significant advantages of the RPA. 

7. 5. Transi t ions and sum rules 

The m a t r i x elements between ground and excited state for a 
s ingle -par t ic le operator W, are 

< o | w | a > = < o | [ w , o * ] | o > 

» < | [ W , 0 * ] | > = £ ( W ^ Y m i ( a ) + W r a i Z m i ( * ) ) (7 .18) 

mi 
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This result may be compared with the Tamm-Dancoff expression 

< | w | a > = £ Ymi(a) 
mi 

The extra t e r m in Z can often bring about a considerable enhancement of 
the matr ix element. 

In the Tamm-Dancoff approximation the total multipole strength is 
l imi ted by the sum rule 

TD V1 I I I 4 I2 V I I2 

SNEW = ¿ L < | W K > | = ^ | W M I | 

a mi 

In the RPA, because of the admission of ground-state correlations, there 
is no simple l imi t to this sum rule. Because of the negative sign in the 
normalization (Eq. (7. 13)) the Y m i and Z m i can become very much larger 
than Y m i in Tamm-Dancoff , with the result that the matr ix elements 
(Eq. (7. 18)) can be much enhanced. There can also be cancellation, of 
course, if Y m i and Z m i have opposite sign, and this happens in some 
notable cases which we shall discuss later . 

The energy weighted sum rule 

S E W = i < 0 | [ W ; [ H , W ] ] |o> = Y u J < o | w | a > | 

which should be pretty wel l model-independent, is obeyed exactly by the 
RPA. Evaluating the sum rule in the HF state 

3ew = "K | [ W , [ H, W ] ] I > = t ( W * - W) I А В 
(7. 19) 

в * -

I f we assume that there are no spurious states with the angular momentum 
and parity of W, then 

S E W 

^ „ ( W * - W) A В \ / Y(a) \ (У(<> ) Zv (<0) / W 

„ B* A* \z(a) \ W 

v (W" W) , y ( a ) \ (У ' (a ) / . ''(о )) I W 

/ 

= Y " J < o | w | a > | 2 (7.20) 

a> 0 



586 ROWE 

Thus the part icle-hole excitations of the RPA completely exhaust the 
energy weighted sum rule. 

If there is a spurious state with the quantum numbers of W (centre-
of-mass motion has quantum numbers J17 = 1 - , T = 0), then before agree-
ment can be obtained, it is necessary to subtract the spurious strength 
f rom the sum rule. This can be done and the RPA excited states (ua > 0) 
exactly exhaust the remainder. 

7 . 6 . The extended schematic model [17] 

The behaviour of the RPA solutions is also i l lustrated very well by 
using a schematic interaction. Again neglecting exchange terms, 

Vm j l n = - X D m i D * , Vm n i j = - X D m i D n j (7.21) 

The RPA equations become 

(e Ш1 - " ) Y m i - XDm, Y ( 'V V . + D n J Z n J ) = 0 

,*. V mi / (emi + U) Z m i - XD£i ^ (Dnj ZnJ +• Dnj Yn j ) = 0 
nj 

with solution 

NDn 
E m i + 

(7.22) 

where N is a constant given by 

N = X V ( D * Y n j + D n j Z n j ) (7.23) 

and can be determined by the normalization, Eq. (7. 13). F r o m Eqs. (7. 22) 
and (7. 23) we get the dispersion equation 

j i V j l f m i 1 I ~2X <7-24> 

This equation may be solved graphically, just as in the Tamm-
Dancoff case. I f X > 0 (attractive force), one solution falls below al l 
the rest and becomes collective, while if X < 0 one solution rises above 
the rest and again becomes collective. 

To compare more quantitatively with the Tamm-Dancoff results we 
again go to the degenerate l imi t . A l l solutions but one are trapped at the 
energy u = e . For the solution that is not trapped 

u¿ = e¿ - 2Xe 
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This may be compared with the square of Eq. (6. 8) 

| 2 \2 
<4.D. = e 2 - 2 X e I

 + |Dmi|

7 
mi 

Thus we see that, for a given interaction strength, the RPA energy is 
always lower than the Tamm-Dancoff . 

The multipole strength for excitation of the state |u^>is 
2 i i , i ,2 Г Y - ' i .2 2e 

k ^ l ^ Y j J o ) ! = N ^ ID 'mi 1 ç2 - (j2 

where the normalization N is given by comparison of Eq. (7. 22) with (7. 13); 

N2 > iDmil2 = 1 I (
e
2 -

 u
2 ) 2 

We obtâin 

I <u)|rJY j M | 0 > | 2 = J ^ |E)mi I2 (7.26) 

For some of the low-lying collective states, in part icular the quadrupole 
and octupole vibrational states, e /со « 2, which means a very considerable 
enhancement of the sum rule due to ground-state correlations. (Equation 
(7. 26) álso follows directly f rom conservation of the energy-weighted sum 
ru le . ) 

7 .7 . The validity of the RPA 

The f i rst major approximation of the RPA is to restr ic t the phonon 
operator to be a single-part icle operator. Now as we saw in Chapter 2, 
the obsérved anharmonicities of vibrational spectra require a mixing 
of one- and two-phonon states. In other words, the true excitation 
operators should be a mixture of one- and two-body operators. The 
RPA can be generalized to a higher RPA in this way, although the problem 
of diagonalizing the matr ix that results is prëtty formidable. 

The second major approximation is to use the HF wave function | )> 
instead of the correlated wave function | 0 )> in the equation of motion. 
If the admixtures of excited states in | )> were a l l within the harmonic 
region, this would be no approximation at al l . However, since hardly 
any excited states are real ly harmonic in practice, we may enquire what 
difference using | 0 )> would make. Now it can be shown that the double 
commutator, in the equation of motion, is predominantly a single-particle 
operator. We have supposed that ground-state matr ix elements of single-
part icle operators are given wel l in the HF approximation, so let us see 
if this is true. 
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The correlated ground state wave function is defined by 

O a | 0 > s 0 a l l a 

This equation can be solved approximately, and one finds that 

< 0 j at
 & i
 I 0 > - < |aj

a i
| > - \ £ |zm>)|2 

am 

< 0 | a +
m a m | 0 > ~ \ £ | z m i ( o ) | 2 

a i 

The schematic model indicates that as u/e - * 0, Ymi' and Z m i become 
more and more nearly equal. Thus to preserve the normalization they 
must get la rger . This means that ground-state correlations build up as 
a collective state falls in energy and, in part icular, the e r ro r of approxi-
mating a single-part icle matr ix element by its HF value becomes large. 
The RPA breaks down therefore in this adiabatic l imi t . 

7. 8. Comparison with experiment 

A number of RPA and Tamm-Dancoff calculations have been made. 
Some of part icular interest are due to Gil let et al. [18] for 12C, i e O and 
4 0 Ca. The intention was to fit the various excited states of these nuclei 

M 2 

0.020 

0.015 

0.010 

0.006 

0 
0 0.5 1.0 1.5 2.0 

4 H 
FIG.17. Form factor of the 2+ T = 0, 4.43-MeV state of i2C. Dotted line, IP model; dashed line, 
Tamm-Dancoff approximation: solid line, RPH (Courtesy of American Institute of Physics) [19] 
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in both Tamm-Dancoff and the RPA to see which would give the better 
results. Thei r conclusion was that energy levels could be fitted more 
or less equally wel l with either. However, a common interaction could 
be used for a l l the nuclei in the RPA, whereas a different interaction 
was needed for each in Tamm-Dancoff . 

Transit ion strengths, part icular ly for the low-lying collective states, 
are generally fitted very wel l in the RPA and poorly in Tamm-Dancoff . 
This is demonstrated rather forcefully by the calculations of Gillet and 
Melkanoff [19] of form factors for inelastic electron scattering, an ex-
ample of which is shown in Fig. 17, for the 4. 43 MeV, Jw = 2+ of 12C. 

8. T I M E - D E P E N D E N T H A R T R E E - F O C K (TDHF) THEORY 

We now present an alternative method of deriving the RPA, namely 
T D H F theory. This approach is often preferred as being more physical 
and it has even been claimed that it provides the justification for the 
'more dubious' methods of the UPA. 6 This latter c la im is completely 
false for, as we shall see, T D H F theory is completely equivalent to the 
RPA. However, it is indeed more physical and for this reason has a 
special mer i t of its own, in part icular because it enables a microscopic 
derivation of the unified model. 

8. 1. The T D H F equations 

What is the object of looking for a time-dependent wave function? 
Suppose we have at t ime t = 0 an arb i t ra ry wave function ф which we 
can expand in terms of eigenstates 

then by picking out the different frequency components we determine the 
corresponding eigenfunctions. 

T D H F theory seeks a time-dependent wave function, which is at 
every instant in t ime a single-Slater determinant. Using Thouless' 
theorem we can wri te such a wave function 

n 

If we can find the t ime development of this wave function, 

(fr(t) = Y a n^n e " W n t 

n 

(8 .1 ) 
mi 

6 The authors of such claims had not, of cóurse, read section 7. 
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The coefficients Cm i are to be determined by the variat ional equation 

<6cp(t)|(H - i | ^ ) | c p ( t ) > = 0 ( C 2 ) (8.2) 

which is solved to leading order; the C m i 's being taken as infinitesimals. 
Now 

< c p ( t ) | H | c p ( t ) > = E 0 + ^ IС m i Q + У emi I 

+ ^ ^rnjin Cm¡ Cnj + 2 VmnijCmiCnj + 2 ^ijmn Cm¡Cn j (8.3) 

mnij mnij mnij 

and 

< <p(t) 11 Ĵ lcpm > = E0 + £ I cm¡ Q + ̂  c;:r i cmi 

Diffexentiating with respect to C'^j gives 

e m i C m i + ^ V m j i n c n j + Y v m n i j c; ; j = i c m i (8. 4) 

Since we are seeking oscillating solutions, let us put 

С . ОС Y + Z * . e'Wt (8.5) mi mi mi 4 ' 

Equating positive and negative frequency components, we get 

У " - r с У . + : V V ' ; V .. Z . = wY . mi *Ш1 / mjin nj / mnij mi mi 

emi + i ^inmj Znj + ^ijmn w Z
m i 

(8.6) 

These are the equations of the RPA. In a way this is very nice, 
because it appears to be a natural extension of the stationary HF picture; 
it allows a self-consistent oscillation of the potential with the particles. 
However, there are problems ahead, concerned mainly with answering 
the question "what do these equations mean, in terms of the present 
time-dependent description?" 
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8. 2. Problems of interpretation 

The obvious interpretation, at f i rst sight, is to extract the different 
frequency components and cal l these eigenstates. We find 

|ф(1)> = е-'Е»£ | >
+
c e -

I f t + U J t

 £ Y m i aj,a¡ I )> + e e £ Z ^ a J ) 

mi mi 

+ 0 ( e 2 ) 

where e is the infinitesimal proportionality constant of Eq. (8. 5). Taken 
l i tera l ly , this means that | )> is the ground state and there are two states, 
for each solution, with energies и above and below the HF energy. Clear ly 
this interpretation w i l l not do, part icular ly since the two states are not 
remotely orthogonal. 

Another possibility is to adopt the attitude: " we recognize these 
equations and we know what they mean in terms of the RPA; what more 
do we need?" This is a l l right, but it means essentially that we discard 
T D H F theory as having nothing further to add to the RPA. This would be 
a pity since it has the potentiality of giving a very physical description 
of nuclear vibrations. 

A third possibility is to go to the physical extreme and forget a l l about 
the structure of the wave function |<p(t)>. The corresponding density 
distribution p(t) is oscillating harmonically. Let us go to the classical 
l imi t of finite amplitude of oscillation. We know the frequency and can 
calculate the emission of radiation. Then extrapolating f rom our knowledge 
of the harmonic oscillator, we can deduce the energy spacing (which is just 
the frequency) and the transition strength of the low energy eigenstates. 
This is known as a semi-c lassical treatment. It leads to the same results 
as the RPA. However, it is not a very tenable interpretation for several 
reasons. In particular because T D H F theory is only valid for small 
amplitudes. If the amplitude is even as large as the RMS amplitude in 
just the f i rst excited state, the method breaks down. Thus it is dubious 
to extrapolate the results to the l imit of large oscillator quantum numbers. 
Again, harmonic states of large oscillator quanta do not exist in pr actice 
for any modes, let alone the non-collective modes. 

Hpwever, this last approach does seem to have some promise and so 
we shall develop it properly in terms of the classical correspondence 
principle for a harmonic oscil lator. As we shall see, there is no necessity 
to go to finite amplitudes or to large oscillator quantum numbers to get 
classical behaviour. Neither is it necessary to make any semi-classical 
approximation; we shall work always in the language of quantum mechanics. 

8 .3 . Normal co-ordinates for a quantum system 

Consider the harmonic oscillator Hamiltonian 
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The c lassical solution is 

q = € cos ut, p = -b)âSe sinut, 

E = 

where u = •Jé/Ш 
(8. 8) 

In quantum mechanics, p and q are interpreted as operators p and q, 
with commutators 

[q , p ] = i , (ft = 1) (8.9) 

The harmonic oscillator problem is solved by defining phonon operators 

( . i Л , 

(8. 10) 

О 

with commutators 

, i 

[ o + , О] = 1 (8. И) 

f rom which one can generate a set of eigenstates. 
Now according to the correspondence principle it is always possible 

to regain the classical equations of motion from quantum mechanics, 
provided one replaces each classical variable by the expectation value 
of the corresponding quantal operator. 

Consider the stationary state |n^>, and let its q -var iab le be displaced 
a distance e at time t = 0, 

V>(t = 0 ) > = exp ( - i £p )|n> 

= exp ( o \ - O) In> (8.12) 

substituting with Eq. (8. 10). The time development of this wave function 
fol lows f rom the Heisenberg equation of motion 

[H , O f ( t ) ] = i f - t 0 + ( t ) = 

which has solution 

Thus 

o + ( t ) = ó V i ü J t 

i -iW t 
k n ( t ) > = e n exp n > (8. 13) 
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This wave function has all the required classical properties 

<( q y = £ cos ut, = - u ^ e sin ut (8. 14) 

< H > = Wn + I e 2 u 2 ^ 

Fo r the pure harmonic oscillator considered here there is no limit 
to the amplitude 6. In practice most systems become anharmonic for 
large amplitudes. We wil l now show that for infinitesimal amplitude 
any Hamiltonian has the c lassical correspondence properties of a harmonic 
osci l lator. 

The important point is that, to leading order in e, the Eqs. (8. 14) 
only involve in their derivation the stationary states |n)> h ^ i y n ± 
They follow therefore, provided only that |n)> is within the harmonic 
region. But if |n^> = |o)>, this condition is satisfied trivially for any 
Hamiltonian. 

Thus for any excited state | a of a system governed by any Hamiltonian, 
it is possible to define the normal co-ordinates 

and to generate a time-dependent wave function that describes small 
oscillations in these co-ordinates. It is meaningful, therefore, to 
describe them as normal co-ordinates and the corresponding oscillations 
as normal modes. They should perhaps be described as pseudo co-ordinates, 
since, just like the excitation operators О*, O, they only have the proper 
commutators when operating on the ground state, or any state within the 
harmonic region. Thus 

'8.4. Time-dependent Har t ree -Fock theory 

F r o m the development of the last section, we see that, to leading 
order in e, 

(8.15) 

[q , p] |0> = i |0> (8. 16) 

/ м \ Г Iй& /^t -iwt i u n \ l l n \ ф0 (t) > = e exp e J — (О e - О e ) | 0 > (8. 17) 

is a good time-dependent wave function. This suggests the use of a 
variational equation 
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to determine the excitation operators. Expanding, we get 

< O|R 1 + e iüJt + -ÍWt . (О e - О e ) íw0t / . Э Л -iw„t 
e у " 1 8 t у 

1 + e 
, + -ÍWt iwt , 
(O e - Oe ) 0> = 0(e ) , all R 

or 

<0|R / 3 \ , + -iwt 
( H - i n ) . (O e Oe 0> = 0 

Separating the positive and negative frequency components, we have 

<O|R ( [H , O + ] - шо + ) | о> = 0 

<O|RT ( [H, O ] + uO )|o> 0 
all R 

which must be simultaneously satisfied. These can be put into the single 
equation 

<0| [R , ( [H, 0 + ] - W0+ ) ] '|0> = 0 (8.18) 

which is just the equation of motion on which the RPA was based. 
Suppose now we make the RPA approximations to solve Eq. (8. 18), 

i . e . give О* the particle-hole form 

О1 = V (Y . a* a, - Z . a+ a ) / 1 mi m i mi i m ' (8. 19) 

and substitute [ > for |o> . Clearly we get again the RPA Eqs. (7. 9) or (8.6) 
The wave function becomes 

|lfr0 (t )>- |x (t)> = e'iEot exp J UâB -iwt „ 10Д . 
— (O e - Oe ) 

which can also be written 

|x(t)> = e"lEot exp Г Y (СпиМ а1 а1 - C m í W ^ m ) 

(8.20) 

Now since 

4 am I> = « 

I X(t) > is essentially the TDHF wave-function |cp(t) > . In fact 

I <p(t) > = ( l + l C m i W | 2 ) | x ( t ) > + 0 ( e 3 ) 
(8.21) 

39' 
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The difference is only one of normalization. However, the normalization 
factor is time dependent and one must be careful . Fortunately, it con-
tributes nothing to the variational equation. Thus we see that the TDHF 
method must give the R P A equations with exactly the same meaning, and 
involving exactly the same approximations. 

But what happens to al l the c lassical correspondence properties when 
the R P A approximations are introduced? The fact that | y is now a 
mixture of eigenstates makes no difference to the oscillation of the q and 
p co-ordinates (provided | y lies within the harmonic sub-space) ; 

< <p(t) I § I <p(t) > = e cos ut, <q>(t) |p|<p(t) > = - u ^ e sin ut (8.22) 

However, it could make a difference to the energy expectation. Now if all 
components of | y are within the harmonic region of the spectrum, the 
diagonal contributions to the energy just add to give the c lassical increment. 
However, of f -diagonal contributions may also occur, but since different 
eigenfunctions can only be coupled by an unequal number of excited state 
creation and destruction operators, such elements must be time dependent 
with zero time average. Up to second order, the time-dependent part of 
the energy increment AE(t ) is 

AE(t ) = e ^ f < | [ H , 0 + ] I )> е"'Ш1 + c . c . 

< | [ 0 + , [H , 0 + ] ] | > e"2iwt + С . С . (8.23) 

The f irst term vanishes identically for o t a single-particle operator, just 
because | y is the HF wave function (see section 7. 1). The second term 
vanishes under the R P A assumptions that | y lies within the harmonic 
sub-space. For the R P A solutions, AE(t) is réadily shown to vanish 
identically, so that the R P A is at least consistent in this respect. Thus 

,<ф(1)|н|ф(1)> = ( l + ^ |Cm i ( t )|2 ) E0 + + 0 ( e 3 ) (8.24) 

and al l the c lassical correspondence properties hold. 

9. I TERAT IVE SOLUTION OF TDHF THEORY 

9.1. Introduction 

The usual method of solving TDHF theory is to diagonalize the non-
hermitian R P A matrix, Eq. (7. 10), as it stands, within some limited 
configuration space. However, there is no reason why the TDHF equations 
should not be solved in exactly the same way as the static equations. In 
the static problem we would start by making a guess u ^ (?) for the se l f -
consistent field u 0 ( r ) ; for this guess calculate a wave function ф ^ , a 
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density distribution p ^ (r), and hence recalculate the field u[,2' ( r ) . In 
other words, we would follow the cycle 

u ( i ) - , ¿(2) _ p(2) _ u(2) 
0 V0 p0 0 

and iterate until convergence is obtained, when the self-consistency 
equation 

u™ (?,- ?' ) = J d ? ! d?{ V ( r r j ; ) p f (v{ , \ ) = u(01} (r, ?') (9. 1) 

is satisfied. 

Let us assume that the static problem has been solved. The t ime- • 
dependent field u(t) can be expanded 

u(t) = u0 + u^ t ) 

where ux (t) is the oscillating part of the field of infinitesimal amplitude. 
We can now attempt the cycle 

u(l> ( t ) _ X<2> (t) pf > (t) - u f > (t) 

and iterate until the self-consistency equation 

u ^ (r, r t ) = Jdrx dr{ V ( r ?1 ; r1 ?•) p f ) (?', r 1 ; t) = u ^ (?, t) (9. 2) 

X(t) > = e"iEot exp 2 (О e - Oe ) 

is satisfied. However, while we can guess the mode of oscillation of the 
field, we must not guess its frequency of oscillation. This is something 
that is quantized by the self-consistency equation, which of course is only 
achieved after many iterations. An intermediate self-consistency equation 
wi l l therefore be required to quantize the frequency for each iteration. 

9.2. The TDHF dispersion equations 

The time-dependent wave function | X(t) y , of Eq. (8. 2), can be written 

j > 

= e"iEot exp [ - i ( o p + w^|3q)] | > (9.3) 

where 

a = < X(t) I q I X(t) > = e cos ut 
(9.4) 

4 = - - ¿ à <X(t )|p|x ( t )> = e s inut 

Thus it follows that the time-dependence of the density is contained in the 
parameters a , ft 

Pit) = p(a, /3) 
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Now since a , p are infinitesimals, of amplitude e, we can expand 

. 0 9 p 
p (o , /3) = p0 + Q 

a=B = 0 
dp (9.5) 

a = 6 = 0 

Similarly the field 

u(r, ?'; t) = J J d r j d r j V l r r j ; r ' r ^ p (r { , r 1 ; t) 

can be expanded in the same manner 

u(<*, |3) = u0 + a I 7 
a = 8 =0 

Эи 
ьр 

(9.6) 

(9.7) 

where p0 and u0 are the static HF density and field respectively. 
Suppose now that we have some guess 3u(D /да for Эи/Эa, and 

3u(D /ЭР for ди/др, then, since a and j3 are infinitesimals, we can solve 
for |xP) (t) у in f i rst order perturbation theory, keeping the frequency as 
an unknown parameter . Let us write | X(2) (t) )> in particle-hole form, 
using Eqs . (8. 1) and (8. 21): 

X ( 2 ) ( t ) > = е"1Г,°' iEnt 
1 ) | c m i ( t ) l 2 + 

In f i rst order perturbation theory, 

Зи'1» 
Cmi (t) = f < m За > 

le 
2 + гт- < m 

Эи' Cl J 

ър и - en и + ег 

; е cos wt 

. |au(1)|. N . leu™ I 
-

mi 

. y iu 

+ e sin cot 

Эи (DI 
'dp 

а 1 
, Эи < m -г— 

4 à a 

(D| 
I i y iu 

,2 _ ^2 (9.9) 

where Эи (1)Эа and ди(1)/др are to be evaluated at a = P = 0 and em i is the 
particle-hole energy (em - e¡ ) . 
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The next stage of the cycle is to calculate the density p f ) (t) from the 
coefficients Cmi . Right away we have the density matrix elements 

< m | p f ) ( t ) | i > = < x ^ ( t ) | a f a m | x ^ ( t ) > = Cmi (t) 

and hence from Eq. (9. 9) 

О 

о 

Эр (2) 

да О = 
О 

Эи (1)| 

Ю emi + < т 
Эи (i) i 

и2 - е2 . mi 
Ü L 

|i> iu 

Эр (2) 
О = 

< т Эи CD i 

Ü L | i> emi - < т 
Эи 
Эа 

(1) [ 

IО iw 

- e L mi 
From the matrix elements we can construct the density 

л(2) F, r« ; t) = <r|p ( 1 2 ) (t )|r l> 

(9.10) 

(9.11) 

Y [ < г|т><т|р^ 2 ) ( 1 )и><1|? ' > + <?|i><i|p (12) (t)|m><m|?'>] 

= Y i c m i (t) фш(?) Ф?(?') + с;;, (t) Ф1 (?) Ф* (?•>] (9. 12) 

Integrating over the two-body interaction, according to Eq. (9. 6), we 
obtain the second approximation u^2'(t) to the field ^ (t). Thus we can 
iterate the process until it converges, provided we have some means 
of quantizing the frequency и at each successive stage. For this purpose 
we need some intermediate self-consistency condition. 

The full self-consistency condition 

Эи (2) Эи (D Эи (2) Эи' (1) 

да да Э/3 э/3 

being an equality of two functions over all space, can only be achieved 
after many iterations. But merely to quantize the frequency we can 
manage with a far less stringent condition; for example we can require 
the numerical equality 

Г в Ц эи(2) Гэр(1) эи(1) /_ ГГ д ^ г ^ эи(1) г , 

Гэр (1) эи(2) . f d ¿ 
J д/3 d¡3 J э/з 

ЭиР 
дЦ 

(9. 13) 

In the limit that 

Эи' Эи 
Э0 

Эи 
да 

Эи 

(Eqs. (9. 13) should lead to exact frequencies w, regardless of Эр^'/Эа and Эр^/Э/3. This 
is important because we expect that our guesses Эи(1)/Эа and Эи^'/Эр for the field will be 
considerably more realistic than the corresponding guesses др^ /да and Эр^/9/З for the 
density. 
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Since we calculate Эр® /да rather than Эи^2'/Эа it is convenient to make 
use of the identities 

, r ( j £ fi£v , r ( j £ ! v i < £ ) -
\да da J \Э a 9 a J \àa да J 

^ Ч э Р ЭР ) ^ Ч э / З ЭР / ^ Ч э р эр У 

Thus we take as the intermediate self -consistency equations 

/ я„(1) я (2) 

в Л . Гэ_Ц_ 
\д/3 9/3 J J Э/3 Эр 

- а (1) Q (1) Эр Эи 
Эа да 

(9.14) 

(2 ) (2 ) 
Inserting the matrix elements of Эр /да and dp- '/д$ f rom Eq. (9. 11) 
into the trace, we finally obtain 

Эи (D 

да 
m > 

. |Эи ( 1 ,|.ч . |Эи(1,|. ' 

2 2 u - em¡ mi 

'эр + c 
• « • •/ i f 

(1) я (1) 
Эи 
да 

(9. 15) 

1<* 
Эи_ 
эр 

(1) 
т > 

l > emi * < т 1 э ^ ~ Ю Ш 
ÈÈ. 

2 2 и - Ш1 
'+С 

я W я,'1 ) dp du 
эр эр 

This is a pair of coupled dispersion equations in со, which can be solved 
for any guess Эи^'/Эа and Эи^/Эр. The number of solutions wil l be 
equal to the number of particle-hole configurations included in the 
calculation. In iterating, therefore, one must be careful to select con-
sistently the solution corresponding to the same normal mode at each 
stage. 

9.3. The mass parameters 

The mass parameter SB, associated with a particular normal mode, 
is given in the TDHF approximation by the energy increment 

<X( t )|H|x ( t )> £ <X(t) 
. Э 
xat 

X(t) > = E0 + i e 2 u 2 (9.16) 
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which can be evaluated after convergence is achieved. F rom Eq. (9. 8) 
fo r I X(t) > 

<X(t) 
at X(t)> = E 0 + ^ C * m i i ^ f - - ! ] [ i - l c - I 2 

9 t I mi I 

E0 + II * ЭС С i "-mi 1 at 
mi • dC m j 

' 1 at c n 

Inserting the expressions for Cm ¡ f rom Eq. (9. 9) we obtain 

( / 1Эи1 \ , y I Эи I . v . V . . |au 
= 1 V ( ^ I ^ W ^ l f g l 1 ) 1 ^ 

ü ¿ 

(9.17) 

m ) gmi -

mi 

+ c . c . (9.18) 

10. DERIVATION OF THE UNIFIED M O D E L 

10.1. The collective model 

We have shown that, quite generally, we can define a set of normal 
co-ordinates q a , pa for all excited states |a)>, and a time-dependent 
wave function 

0W ( t ) = e" iWot exp ^ p ( O l e - ^ 1 - О а е - " ^ ) |o> (10.1) 

describing small amplitude harmonic oscillations in these co-ordinates, 

< i ^ ( a ) ( t ) | q a k ( a ) ( t ) > = e = e cos и t 

< ^ ( a ) ( t ) | p U ( a ) ( t ) > = 13 = e sin u t (10.2) 

with energy expectation 

< Л ) | н | Л ) > = W0 

= wn + + (10.3) 

Now it is c lear that, within the harmonic region of Hilbert space, H can 
be identified with 

H vib W 0 + X " a o l o a 

= W0 - 1 X "a + X { ш [ Pa + I ^ 
a a 

(10.4) 
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since this Hamiltonian gives correct eigenstates and excitation energies 
within this region. This gives meaning to the collective model approach, 
at least for f irst excited states, even for modes which are not in the least 
harmonic. 

However, to be useful the collective model must specify the normal 
modes. The guess made for the low-lying collective states is, by analogy 
with the oscillations of a liquid drop, a pure volume-conserving oscillation. 
Th is is a bad guess, as we saw in Chapter 2, because it puts all the collective 
strength into a single normal mode, whereas we know f rom experiment 
that, although one state may contain a large fraction of the strength, it 
does not contain al l of it. But to make a better guess is not easy. 

10.2. Collective co-ordinates and collective parameters 

The problem with the collective model is that the collective mode 
is not a normal mode. But since we are interested in the distribution 
of collective strength, it is convenient to define a collective co-ordinate, 
even though it is not a normal co-ordinate. One possibility is to define 
the collective state (which is not an eigenstate) as the state which contains 
al l the1 multipole strength. Thus if f is the collective co-ordinate, for 
а Л, iu = 0 mode, 

where u' and have the dimensions of a frequency and a mass para -
meter respectively and are included to normalize the 'collective' phonon 
operators A + , A by the pseudo-boson commutators 

A 

which can also be written 

such that 

A|o> h 0 

< 0 | A A + | 0 > = <o| [A , A + ] |o> = 1 

Let us now expand the collective state in terms of eigenstates 

a 

so that! 

10Ja ¿3B a ~ |n 4 

a a 
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Hence we obtain the transformation between the normal co-ordinates and 
the collective co-ordinate8 

b £ ba J^fjf qa = £ ka Ча (Ю.5) 
a a 

Similar ly the conjugate momentum co-ordinate Ç is expressed 

To span the space, other co-ordinates | 2 . . . ly . . . , ?2 • • • • • • can 
be defined in any convenient manner.9 The transformation between this 
new set of co-ordinates (sometimes re fe r red to generically as collective 
co-ordinates) and the normal co-ordinates is 

Z ь"а \ u[%[ " Zкм (10.7) 

co-ordinates but, because of the coupling between the different co-ordinates, 
it becomes rather complicated. It only has the simple decoupled fo rm 
of Eq. (10.4) when expressed in terms of normal co-ordinates. 

Fo r oscillation of the system in a particular normal mode a, described 
by the wave-function t) of Eq. (10. 1), 'we can define a collective para -
meter a = cr(t) as the instantaneous mean value of the collective co-ordinate 

ff(t) = < ф^Нt) I f I ^ ( a ) ( t ) > = к л = kae cos uat (10. 8) 

The energy expectation is 

< ^ ( a ) ( t ) | H | ^ ( a ) ( t ) > = W0 + i & a c * l + Ы а а 2 а 

= w. + | B > 2 + i С a 2 (10.9) 

where B a and C a are defined by 

k2aBa = ^ a , ka С = A (10.10) 

8 Note that for | to be hermitian the bn must be real (Eq. (9. 5)). This is in fact no 
restriction since the phase of the wave-function |â > is arbitrary. Note also that, for the 

transformation to be unitary, we require VbJ = 1, so that ^ ^ a ф 1. 
a a 

9 Note that the above definition of the collective co-ordinate is not at all unique. It 
is a natural choice, but later we shall find it more useful to choose the collective mode as 
our guess to a normal mode. 
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so that 

¡A* - (10.11) 

Thus the collective parameters B a and C a are equally as good as the 
normal mode parameters 3Ba and -¿éa for calculating the frequency u a . 
They are even more useful for calculating transition strengths 

< a ] (e¿|0> = < a | l | 0 > = ka < a | q a | o > 

= k ' * 
a \l 2ua 3B a 

( 1 0 Л 2 ) 

10. 3. The V P M as a time-dependent shell model 

The vibrating potential model (VPM) , or unified model approach is 
to suppose that the vibrating nucleus is describable, at all instants in 
time, as a system of independent particles moving in an oscillating 
potential well. This is c learly an approximation to TDHF theory, which 
represents the best possible description of this kind. The V P M method 
is to guess the motion of the field corresponding to a normal mode 
oscillation of the nucleus, and for this guess to derive a dispersion 
equation for the frequency and a mass parameter. It is, in fact, nothing 
more than the f irst iteration of a full TDHF calculation; in other words a 
time-dependent shell model.10 Its validity must therefore depend on how 
good this guess is to the motion of the field. Let us examine therefore 
what is the best f irst guess that we can make and whether it can reasonably 
be expected to give a good result without a second iteration. 

F r o m Eq. (9. 7) we have the important result that the oscillating field 
does not have a simple cos ut time dependence, but also contains powers 
of sin ut; 

Ui (t) = ecos wt + e sin ut + . . . (10. 13) i da dp 

However, one wonders whether the two f irst order terms can be united 
into a single term of the fo rm e cos (ut + б)- (Эи/Эа1), which would give 
us one rather than two objects to guess. It appears that, except in the 
extreme adiabatic limit, this is not generally possible, although one 
can go a long way in making Эи/Э¡3 small . What can be done'is to make 

10 The relat ionship of the V P M to TDHF theory is d i rec t ly equivalent to the re lat ion-
ship between the shel l model and static HF theory. In both cases one guesses the f ie ld, 
which is usually taken to be a loca l potential wel l , and calculates a wave-funct ion. But no 
attempt is made to i terate o r achieve se l f -cons is tency . It is probably more appropriate, 
there fo re , to cal l the V P M the 't ime-dependent shell model1 . 
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ди/да positive under time reversa l and Эи/Э/3 negative.11 Now if we are 
considering predominantly 3 = 0 , T = 0 modes, as for example the low-
lying 2+ or 3" states of even-even nuclei, our f irst guess wil l naturally 
be a purely spatial field. Fo r a spatial field, time reversa l is equivalent 
to complex conjugation which means that Эи/Эa must be purely real and 
Эи/Э/3 purely imaginary. The self-consistent field is also hermitian so 
that 

Whence it follows that the diagonal, or local part of Эи/Э/3 must vanish. 
Now for a local two-body interaction the non-locality of the field is of 
short range (of the range of the two-body interaction) and comes solely 
f r o m the exchange terms. We shall therefore neglect Эи/Э/3. If we were 
to neglect exchange completely, as in Hartree rather than HF theory, 
the field would become local and Эи/Э/3 vanish. The neglect of Эи/Э/3 
is therefore better than the Hartree approximation, since the bulk of 
the exchange terms are included in ди/да which does not vanish in the 
local limit. 

The problem remaining now is what approximation should we make 
fo r Эи/Э a . In deciding this there are two considerations: 

(a) Nuclear matter is virtually incompressible. This means that 
the nucleus exerts a large restoring force against any attempt to compress 
it. This does not mean that compressional motion cannot occur, but that 

11 This is achieved by defining the normal modes in terms of excited states classified 
according to their time reversal properties rather than their angular momentum properties, 
i .e . define 

Эи 
да (r, ?') = j f (?', ?) = g (?•, ?) (Real) 

Эи 
да 

(10. 14) 

Э/З ( г ' г ' = Э/Г ( г ' ^ = " Э/З ( Г ' г ) (Imaginary) 

°3м+ l °> =75<i +T)|JM> 

°ш- lo> =TÎ<I - t)|JM> 

where т is the time reversal operator. With such a classification it follows that 

= l*(-t)> 

Hence 

Tp(t) = p(-t) 

and, since the two-body interaction is time reversal invariant. 

Thus it follows that 

Эи _ Эи 
да да 

Эи Эи 
Т Э/З " " Э/З 
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it wil l be associated with a large energy increment. Conversely, for a 
given energy increment the amplitude of compressional motion must be 
very smal l and its effect on the field correspondingly small. 

(b) As far as calculating a wave-function is concerned, the overal l 
shape of the field, associated with the coherent long-range density 
oscillations, is likely to be very much more important than details 
associated with incoherent short-range density fluctuations. This is the 
impression one gets f rom shell model calculations, where the deforma-
tion field of the Nilsson potential can be of much more significance than, 
for example, the differences between a harmonic oscillator and a Woods -
Saxon potential. 

These considerations suggest that, within some sub-space of normal 
modes, there is one component of each mode which has much more in-
fluence on the field than any other. This is the volume-conserving mode, 
in which the motion of the density has maximum coherence and involves 
no compressional motion. It is defined as the mode for which the equi-
density surfaces all oscillate in phase and enclose volumes independent 
of deformation. The volume-conserving mode is not a normal mode. 
It wil l be appropriate rather to define it as the collection mode according 
to section 10. 2. The V P M approximation is to neglect the effect on the 
field of al l but this collective component of the density motion in any 
particular normal mode of oscillation of the nucleus. 

These remarks can be expressed more precisely. The application 
of static HF theory (without residual interactions) to excited states 
implies that no component of the density motion affects the field. This 
is a bad approximation and, in particular, does not give r ise to collective 
states. ; In TDHF theory, we admit that the field must reflect the motion 
of the density and produce a feedback. The magnitude and form of this 
feedback, for the a'th normal mode, is characterized by (ua Эи/Эaa 

since ( u a « a ) - l is proportional to the RMS amplitude of the motion in, 
for example, its one-phonon state. Transforming to collective co-
ordinates, 

1 Эи = 1 /Эи Эо_ + у Эи_ Э о Д 
Эаа~ \Эст Эаа ¿_j Эсту Эа а { 

V*1 

¡ = {ка Й +1куа Ш" 
и*1 

= b 1 Эн + Y ъ ' 1 — 
а L va J и ' ® ' Эст„ 

- i " " 
The V P M approximation is to neglect the last term on the right, on the 
grounds that either Эи/Эov has little effect on the wave function, or 
that its Coefficient (ц) is small, because this component involves 
compressional motion, or both. Thus we make the substitution 
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One might question the validity of this approximation for a normal 
mode with negligible collective strength when b a 0 and the neglected 
term may well be the la rger . However, it is the absolute and not the 
relative magnitude of terms that is important. In the limit of zero 
collective strength no term is considered important and the V P M gives 
the static HF result as expected. Thus the V P M approximation-is to 
admit a feedback via the self-consistent field of just the collective com-
ponent of the various normal modes of the density. This is not equivalent 
to guessing the normal mode of the density. To see whether it is a good 
approximation one must go through the second iteration and see what 
changes appear. One can nevertheless see immediately why the unified 
model, as real ised in the VPM, is so much superior to the collective 
model. One also sees why it is possible to consider exactly the same 
motion of the field for many orthogonal normal modes which can be 
parametrized in terms of the same collective parameter a which is not, 
and is not intended to be, a collective co-ordinate. 

Viewing the V P M in this light, as a f i rst approximation to TDHF 
theory which we fully understand, let us examine the equations that 
result and their correct interpretation. In particular, let us see how 
to derive transition probabilities without resorting to semi -c lass ica l 
approximations and without treating the collective parameter a as a 
dynamic or a redundant co-ordinate. 

10.4. The V P M dispersion equation 

Fo r the a'th normal mode, the V P M approximation of not continuing 
beyond the f i rst iteration is the approximation 

du я du (1) = Эи 
Эоа " Эаа " а Эа 

(10. 16) 

8и_ Э и ^ 
Й ЭЙ 

= о 

In this approximation the coupled TDHF equations (9. 15) reduce to a single 
V P M dispersion equation 

I Э и I . 4|2 

у = - [ ¡ £ » f = K (10.17) 
e2 -и2 J да да 

The important result is that this equation does not involve the constant к 
and is therefore the same for all normal modes. Consequently, all 
solutions of this equation are meaningful, unlike those of the TDHF 
equations where we must select the particular solution appropriate to 
the normal mode under consideration. 

The parameter a is a parameter characterizing the instantaneous 
shape of the nucleus for a volume-conserving deformation. Fo r a harmonic 
oscil lator shell model potential, this could conveniently be taken as the 
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Nilsson parameter. Generally it can be defined in terms of the deformation 
parameters аХ ц used in the unified model. Fo r a volume-conserving 
deformation, equipotential surfaces are given by 

( l + I 4 Л 
Хм 

to leading order in the deformation parameters aX(J . Fo r a X-pole mode, 
we can take 

= { o ^ + вх" ' ' ц *0 

(10. 19) 
= ако, ц. = 0 

corresponding to modes positive under time reversa l . The deformed 
potential u 0 ( r , 6) is related to the undeformed potential by 

uo( re> 0 ) = u o ( r ) 

0) = u o | —E I , M ^ o 
i + ц = (Yxtl (в) + Y x ; (в) 

•JJ 

Thus we obtain 

Эи 
da 9r <¡2 ' 

f f r ^ l f l , M = 0 (10. 20) 

Similarly Эр /да can be evaluated, giving us al l the information required 
f o r a solution of Eq. (10. 17). 

LHS 

FIG. 18. Graphical solution of the dispersion equation (10.17) 
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The dispersion Eq. (10.17) is readily solved graphically as illustrated 
in Fig . 18. It is clear that one solution fal ls much lower than the rest and, 
as we shall see, acquires extra collective strength. A l l of the other 
solutions remain trapped between the unperturbed energy levels. 

10. 5. The collective mass parameters 

The mass parameter áé¡. is given in the TDHF approximation by 
Eq. (9. 18). Making the V P M approximation, Eq. (10. 16), this becomes 

\ / Э и • \ I2 

= 2 k a ) (ц2 . e2 )2 (10.21) 
a mi 

Now we do not know the ka and so have no direct means of calculating these 
mass parameters . However, these parameters are in any case of very 
little practical value. Much more useful are the associated collective 
parameters defined by Eq. (10. 10). Not surprisingly, it is these para -
meters that emerge naturally in the V P M ; 

В = 2 
m 

Эа1 

i2 

• > U „ 

К - )2 
(10. 22) 

The collective strength of a given excited state |a]>, associated with 
the a'th normal mode, is given according to Eq. (10. 12) by 

< a l f l ° > = N / Í S 7 ( 1 0 - 2 3 ) 

which we can now evaluate in spite of the fact that the collective co-ordinate 
f of the volume-conserving mode has not and wil l not be defined explicitly. 
Thus if B a is smal l the a'th normal mode has a large collective strength 
and vice versa . Now it is c lear that for the lowest frequency solution, 
the denominators (и2 - e^i ) 2 , in Eq. (10. 22), have on average their 
maximum value, so that the collective mass parameter В wil l normally 
be minimized for this normal mode which wil l correspondingly have the 
bulk of the collective strength. 

10.6. Excited state wave functions 

Since the V P M is a f i rst approximation to TDHF theory and hence 
of the RPA, we know how excited states are defined. According to Eq. (8. 5) 
we write 

Ст1 (а.) = К { У т 1 ( а ) е - ^ + Z * ; (a) e1"*1 } 



MICROSCOPIC COLLECTIVE THEORIES 609 

Comparison with Eq. (9. 9), and making the V P M approximation, gives 

Y m i (a) = N 

/ S u • \ < m x— i > 'Эa' x 

Zm i (a) = N -

The normalization constant N is defined by the condition 

X { | у . ш И 2 - | z m ï ( a ) f t = 1 (10. 24) 

which gives 

N 
£ k - l f s l o i 4 

( e 2 . - u 2 ) 2 
> mi a' 

2 u a B a N ' 

Thus we have in the V P M approximation 

(a) = 

/ S u • \ 

Л ^ в ; emi - "a 
zmi(a ) 

/ • 9 u ч < i — m > 4 1 Эа 1 ' 
em¡ 

Excited states are now defined in the usual manner; 

|а> = о Ц о > ~ 

o a | o > = o 
all a 

where 

Ol { Y m i ( a ) a + m a i - Z m i ( a ) a { a m } 

(10. 25) 

(10. 26) 

(10. 27) 

Because of the V P M approximation, it is conceivable that these 
states wil l not be orthogonal. Orthogonality is guaranteed, within the 
approximations of the RPA , by the pseudo-boson commutators 

< | [ o a , o ; i i > = ôab 

In the V P M approximation 

< | [O a , o J ] | > { Y * i ( a ) Y m i ( b ) - Z * ¡ (a) Zm i (b) } 
mi 

I H ^ M 

(10. 28) 

•>/4uaBaiobBb 

ч/4иаВашьВь (u. 

.(emi - ша) ( e mi " "b) («mi + "a ) ( e m i + "b ) 

- L - У l<. - Uh) L-J 
|2 

ç2 - (j2 mi , 

39 
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Now ua and u b are both solutions of the dispersion equation (10. 17) so 
that, provided иа the right-hand side of this expression vanishes. 
If a = b then it is normalized to unity by Eq. (10. 24). In the case of 
degenerate solutions it is always possible to orthogonalize the solutions 
so that Eq. (10. 28) is satisfied generally. Thus the V P M wave functions 
are all orthogonal to within the limitations of the RPA . 

It is apparent that the wave functions defined by Eqs. (10. 26) and 
(10. 27) will not ar ise naturally in a phenomenological derivation of the 
model. However, in practice it is rare ly necessary to derive wave 
functions explicitly, provided we know how to calculate matrix elements. 
Let us see, therefore, if the phenomenological formulae for matrix 
elements are confirmed in this microscopic treatment. 

10.7. Matrix elements 

Matrix elements for a single-particle operator W are given, according 
to the RPA, by 

a W ON = У { Y * , (a) W . + Z* . (a) W. } ' / mi 4 mi mi 4 ' îm J 

mi 

- 1 — У - 1 
<ilfg|m><m|wli> <i|w|m><m|fgli> 

"mi w a 
(10. 29) 

The expression reduces to the unified model result in the special case 
when W is proportional to Эи/Э a, since 

<a 0> = 
1 

s/2uaB. I 
1 

+ и 

= , к (10.30) 
•j 2u aB a 

This happens, for example, for the quadrupole oscillations of a harmonic 
oscil lator potential; i. e. if 

u 0 ( r ) = -V0 + v r 2 

then f rom Eq. (10. 20) 

Эи 3u(j о 2„ r, 
^ = - 3 T r Y 2 0 = - 2 v r - Y 2 0 , M = 0 

In general this does not happen for any reasonable choice of shell 
model potential. It is nevertheless possible to der ive the unified model 
expression by making the additional approximation of neglecting all but 

39' 
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the contribution f rom the collective component to the multipole strength. 
Making this approximation we obtain 

< M t ) | r x Y , 0 I Mt>> < | г л | ; a ( t ) = ^ < H > < M t ) | f | 4 t ) > 

(10. 31) 

to leading order in the deformation. Hence follows the unified model 
expression 

Since other components of the motion, orthogonal to the collective, may 
also have some multipole strength, this expression should be a slight 
underestimate. 

10. 8. Relationship between the V P M and the schematic model 

To simplify the R P A equations it is common to suppose that the 
anti -symmetrized two-body interaction is separable (section 7.6) 

V ( ? ! ? 2 ; г/r¿) =r> - X Q ^ , ? ' ) Q ( r 2 , r¿) (10.33) 

Fo r such a separable interaction the R P A equations also reduce to a single 
dispersion equation 

mi 

The similarity between this equation and the V P M equation is remarkable, 
but is not coincidental. The two approaches are equivalent. 

Since TDHF theory and the R P A are equivalent, it is c lear that all 
two-body interactions which generate the same self-consistent field must 
yield the same R P A solutions. In particular, for some specified normal 
mode, we can make the substitution 

V(?! ?2 : П 3 > => - й (?! 3 ) t Ъ ?2 ) - é ¡ Щ ¡ï> g < V?„•> (1 о•3 5) 

where 

Now since dp/да and Эи/Эа are positive under time reversa l while 
àp/dfi and 9u/9|3 are negative, and since all are hermitian, it fol lows 
that 

Г Эр Эи = Г Эр Эи 
J dadfi ~ J 9J3 da 
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The substitution of Eq. (10. 35) wil l therefore generate the correct field 

J 

Эи ,-> ->.. 

-> ->. ->.. Эр ,-«•.-• . ,-> __ Эи 1" Г Эи Эр 
V ( r l Г2 ; Г1 âp Щ Г2 ) 2 d r ¿ - âjî <Г1 Г1> 

(10. 36) 

Эи 
эр •1*1' 

Inserting this sum of two separable potentials into the R P A equations, 
one can also rederive the coupled TDHF dispersion equations (9. 15). 

Now this interaction must inevitably be different for every normal 
mode and is therefore of little value. However, if we make the V P M 
approximation 

we have a single separable interaction, which is the same for a whole 
c lass of normal modes. Using this interaction in the R P A gives immediately 
the V P M dispersion equation (10. 17). 

The two models are thus equivalent, although the V P M has the 
advantage of physical argument to support its choice of separable inter-
action, whereas the schematic model choice is purely one of mathemat-
ical convenience. The V P M also specifies the coupling constant. 

APPENDIX 

THE O C C U P A T I O N N U M B E R R E P R E S E N T A T I O N AND 
SECOND Q U A N T I Z A T I O N 

A. 1. C R E A T I O N AND DESTRUCTION O P E R A T O R S 

Suppose we have a complete set of orthonormal single-particle wave 
functions cp„. F r o m these we can construct a set of anti-symmetrized 
product wave functions, for the A particle system, which fo rm a complete 
basis for the expansion of any more general wave functions. These A 
particle basis wave functions are Slater determinants. 

Now the determinant is in a sense overdescriptive. It involves 
putting labels onto the particle co-ordinates, whereas indistinguishable 
particles cannot, stricly speaking, be labelled. Of course, since we 
anti -symmetrize, no harm is done. However a more compact description 
is c lear ly desirable. Now it is c lear that all the information needed to 
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construct the determinant is given if the single-particle states and 
their order are specified. Thus we write in occupation number representa-
tion 

I a /3 y. . . > = 
•JÂ 

< p a ( l ) c p g ( l ) <p ( 1 ) 

Фа(2) фв(2) фг(2) ( A . l ) 

In order to manipulate wave functions, evaluate matrix elements, 
etc. , it is necessary to construct an algebra. This is done conveniently 
in the language of second quantization. F i rst we define the particle 
creation operator which creates a particle in the state v. Thus we 
equate 

/3 7 . . . > 
t t t 

a a„a a 6 у (A. 2) 

where |— у is the bare vacuum wave function describing a state of zero 
particles. 

In order that the A particle wave function be anti -symmetric under 
interchange of particles we must require that 

a + a+ a1" d a dfl •> = f a+ a* S а | - > 

Furthermore, it is not permitted that two particles should occupy the 
same state and hence 

t t t 
•> = о 

These two requirements can be simultaneously expressed by the anti-
commutation relations 

t t 
{ a + , at ) = a* at + a„ a = 0 1 a ' 6J а В в a (А .З ) 

If we construct the adjoint equation to (A. 2) 

< a /3 7 . . . I = < - | . . . a y a B a a (A. 4) 

then 

j <> Py...\ct ¡3 у. . . У = < - | . . ,a y a e a a a+ a a+ a^ . . . | - > = 1 

It follows that 

| - > = a a 4 I " ) = a B a a a a a + e l ~ > e t c • 

and that the hermitian conjugate av of a^ is an operator which annihilates 
a particle in the state v. 
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We also have 

a e a ' a * a j . . . | - > = -a f l a+ a^a* . . . | - > - - a ^ a j . . . | - > 

= ~ aa ав аб аГ • ' • I - У 

{ a s , а+}|/3 7 . . . > = 0, a f ¡3 

In this equation the anti-commutator is operating on the most favourable 
wave function; namely, one with state ¡3 occupied and state a unoccupied. 
Operating on any other wave function, both elements of the anti-commutator 
must vanish separately. Thus 

{ a 0 , a a } = 0 , afl3 

generally. Now 

aaal|a ¡3 y. ..> = 0 aa a+ | ¡3 y 6. . . > = 1 

a l a « I " 0 7 . . . > = 1 а + а а | ( 3 т 6 . . . > = 0 

The general anti-commutation relation is therefore 

{ a 6 > a + a > = ô a s (A. 6) 

One can also define operators a*, a r which create and des t roya 
particle, respectively, at the point r . These operators behave in exactly 
the same manner as those defined in configuration space. Thus 

| г > = а г + | " > 

< r | r ' > = < -|a ra r + , | - > = ó(r - r ' ) 

{ a r , a * } = 6(r - r ' ) 

(A. 5) 

The two sets of operators are related by 

a+ = J dr(p„Wal 

ly = J d?q>tWai 

A. 2. O N E - AND T W O - B O D Y O P E R A T O R S 

W e now come to the problem of expressing operators in the language 
of second quatization. F r o m Eq. (A. 5) we have immediately one useful 
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operator; the operator n„ which measures the occupancy of the single 
particle level v 

n„ = a > „ (A. 7) 

The number operator n which measures the total number of particles is 
therefore 

n = ^ a + a „ (A. 8) 

V 

Consider a general single-particle operator, 

T = ) T ( i ) (A. 9) 
i i 
i 

for example the kinetic energy operator. The expectation of T in some 
state I a. ¡3 y . . . )> is 

< a /3 y . . . |Т|« 13 у ... > = T a a + Т е в + Т „ + ... 

The matrix element of T between states differing by the state of only one 
particle is, for example 

< a 13 y . . . |т|а /3' у . . . > = Tgg, , /3 f /3' 

The matrix element between states differing by the state of two or more 
particles vanishes 

, < a /3 y . . . |т|а ' /3'7 . . . > = 0 a.Pfa'.P' 

It is c lear that al l these expressions are reproduced by 

т = X 
V, ul 

Consider a two-particle operator 

(A. 10) 

V = 2 X V ( Í ' j ) ( А Л 1 ) 
i. j 

fo r example the two-body interaction. We define matrix elements of V 
between anti -symmetrized two-particle states 

= J f à r d P Ф * ( ? ) ф* (? ' ) V ( r , г 1 ) ф а , (? ) ф в , ( ? ' ) -

-JJdrdr' Ф*(? )Ф*(Г ' ) V ( r , г ' ) фв,(?>) ф6, (?) (А. 12) 

(Note that this expression is appropriate only to a local interaction but is 
trivial ly generalized. ) 
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Since the wave functions are anti-symmetric 

v * f i a .B . = -v6a*.e. = " v = ve«6-a . 13> 

In second quantization, V is expressed 

V = 4 X ( А Л 4 ) 

циц'и' 

One can readily ascertain that this expression leads to correct matrix 
elements in any case of interest; for example 

< a /3 7 ó . . . I v|e ' /3' 7 à ... > 

= -г V V„, i —I . . . a, a a 0 a a* a+ a ,a~Ta'\at,atat . . . I— У 4 ¡svfi'u' \ I о у В a v д ц' «' et' В' у 6 1 ' 
jjvii'v' I 1 1 1 

4 (VBаВ'а< ' veaa'0' " VaBe'a' + VaSa'B' ' 

= V aSa'S" 

which is what we obtain by working with the determinants. 

A . 3. N O R M A L ORDERED PRODUCTS 

The normal ordered product, of a set of creation and destruction 
operators, is the product arranged in the most unfavourable order, 
with respect to some specified vacuum, multiplied by a factor ± 1 
according as the necessary rearrangement requires an even or an odd 
number of permutations of the operators, respectively. We shall write 
the normal ordered product of the product of operators ABCD. . . as 
{ A B C D . . . } . 

(a) One obvious choice of vacuum is the vacuum of the operators 
themselves, i . e . the bare vacuum [— y . The most unfavourable order is 
then with all destruction operators on the right and creation operators 
on the left; e. g. 

i a a a S > = a+aaS 4 a ! } = " a a a B 

{ « M l = а+с«аб = ' ( A - 1 5 ) 

{ a а aB aу } = ~ a a a y a 6 = a y a a a B 

etc. 
(b) Another possibility is the HF vacuum | y . Throughout this paper 

we reserve the indices i j к 1 to label single-particle states occupied 
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in the HF wave function and m n p q to label unoccupied states, (see 
F ig . 19). 

mnpq ' unoccupied states 
{particle states) 

FIG. 19. Labelling of particle and hole states 

Thus 

I > = | i j k l . . . > 

and ' 

• a t |> = 0 a ¡ |> = I f i ) " 1 ) 
(A. 16) 

a m | > = 0 a + J > = |m> 

With .respect to the HF wave function | )> a more natural set of operators 
might be the quasi -particle operators 

t t <*m = a m (creates a particle) 
(A. 17) 

a¡ = a¡ (creates a hole) 

which have the property 

av I > = 0 all v (A. 18) 

In terms of these quasi -particle operators the normal ordéring is as 
above; destruction operators to the right, creation operators to the 
left, e . g . 

{ « I <4 û6 i = - a l a ] <*&<*& 

However, it is equally possible to arrange the ordinary particle operators 
in normal order directly; e . g . 

í a m a i a j a n } = Í V i a J a J = ' V j aian = - a +m a j a Í an 19> 

The rule, is that the operators must be arranged in the most unfavour-
able order; any operator which gives zero when operating on the vacuum 
goes to the right and any operator which does not goes to the left. As a 
consequence we obtain the significant result that the vacuum expectation 
of any normal ordered set of operators vanishes 

< { A B C D . . . } > = 0 (A. 20) 
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A . 4. THE ' W E L L - K N O W N ' F I E L D T H E O R E M 

This theorem is a simple case of a more general theorem known as 
W icks ' theorem. It states that a set of creation and destruction operators 
A B C D . . . can be expressed as a sum of these operators arranged in normal 
order for al l possible contractions. 

A B C D . . . = { A B C D . . . } 

+ { A B C D . . . } + { A B C D . . . } + . . . + { А В С D . . . } + . . . 

+ { A B C D . . . } + { A B C Ï Ï E . . . } + . . . + { Á ¿ ¿ D . . . } + . . . 

+ . . . (A. 21) 

A contraction of two operators is defined as the vacuum expectation of 
these two operators; e . g . 

{ A B C D . . . } = < A B > { C D . . . } 
(A. 22) 

{ А В С D E F . . . } = - < A C > < B D > { E F . . . } 

The theorem is readily1 proved for two operators. Clear ly 

А В = { А В } + С (А В) 

where C ( A B ) is a constant depending on whether A B needs rearranging or 
not, to get it into normal order . Taking the vacuum expectation of both 
sides of this equation and using Eq. (A. 20) gives C (AB ) and we obtain 

A B = { A B } + < A B ) = { A B } + { A B } (A. 23) 

The general theorem now fol lows by induction, f rom a consideration of 

A { B С D . . . } = { A B C D . . . } + { Á B C D . . . } + { À B Ô D . . . } 

+ and al l possible contractions involving A. (A. 24) 

A case of particular interest is the normal ordering of the set of 
operators ocurring in the two-body interaction: 

+ t r + t 1 
&v a|ia|j'ai/' " l-aua(ja(j'ayli 

+ < a l a - u<> {а+мад1> - <а^ай , > { a j a „ , } 

+ < a Í V > { а 1 а > Л - < a î a y , > {а+„ад,} 

+ < а > У . Х а > й . > * < a t v > < a ; a , . > (A. 25) 

Note that the contraction 

{ a j a^a^a , , , } = <a*a¿ > ' { a ( I , a„ , } (A. 26) 
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vanishes. But this is only true if the particular vacuum chosen has a 
definite particle number, as for example the bare vacuum or the HF 
vacuum. Later on we shall have cause to introduce more general quasi-
particle operators by the transformation 

which do not conserve particle number. The vacuum | )> of these quasi-
particles, defined by 

I > = 0 all У 

does not describe a definite number of physical particles. If we make 
a normal order expansion of the two-body interaction with respect to 
this vacuum, contractions of the type of Eq. (A. 26) no longer vanish and 
must be included. 

A . 5. THOULESS ' T H E O R E M 

Since the c lass of anti -symmetrized product wave functions is so 
important, it is useful to have a simple method of transforming the 
total wave function under a transformation of the single-particle basis . 
W e now take j y to be a general product wave function 

I > = П I — > ( A - 2 7 ) 
i = l 

where i runs over al l occupied orbitais. 
Thouless ' theorem states that any other product wave function | 

not actually orthogonal to | y , can be expressed in unnormalized f o rm 

> 

l > (A. 28) 

mi mi nj 

fo r some particular set of coefficients Cml.. 
It is apparent that 

l > ' = П ь ! 1 - > ( a - 2 9 ) 
i = l 

where 

>' = exp 

CO Л 

I I 
m = A + l i=l 

С . a a. mi m i 

= 1 + Z + i I Z С Л am a i a +n a j + • • • 

bi = a I + Cmi am 

m 

(A. 30) 
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One can also check that 

ьт1У = ьЛ>' = 0 

where 

bm = am * ) Cmi ai " I 
i 

(A. 31) 

Note that this transformation does not preserve the normalization 
either of the single-particle wave functions or of | )>'. We always have 
the normalization 

< | > ' = 1 (A. 32) 

and hence the proviso that | )> must not actually be orthogonal to I > . 

A. 6. GENERALIZED THOULESS' THEOREM 

If Thouless' theorem is expressed in terms of the quasi-particle 
operators, with respect to which | ) is the vacuum 

av I > = 0 all v 

then it takes a much more general form. The vacuum | of any other 
quasi-particles, which is not actually orthogonal to | can be expressed. 

I >' = exp [ i £ C | W a j e î ] | > 

fIV 

fJV flV (I'l/1 

where we take C ^ to be anti-symmetrized 

CM„ = -C„M (A. 34) 

It is readily observed that | is the vacuum of the operators 

0Î = - ^ C^v av 
V 

(A. 35) 



621 

R E F E R E N C E S 

[ 1 ] MOSZKOWSKI, S.A., SCOTT, B.L., Ann. Phys. 11 (1960) 65. 
[ 2 ] BLOMQUIST, J., WAHLBORN, S., Ark. Fys. 16 (1960) 545, after BROWN, G.E., Unified Theory 

of Nuclear Models, North-Holland Publishing Co., Amsterdam (1964). 
[ 3 ] KURATH, D., PICMAN, L., Nucl. Phys. 10 (1959) 313. 
[ 4 ] PEIERLS, R.E., YOCCOZ, J., Proc. phys. Soc. 70 (1У5Т) 381. 
[ 5 ] VERHAAR, B.J., Nucl. Phys. 45 (1963) 129; 

VERHAAR, B.J., Nucl. Phys. 54 (1964) 641. 
[ 6 ] PEIERLS, R.E., THOULESS, D.J., Nucl. Phys. 38 (1962) 154. 
[ 1 ] THOULESS, D.J., Nucl. Phys. 21 (1960) 225; 

THOULESS, D.J., VALATIN, J.G., Nucl. Phys. 31 (1962) 211. 
[ 8 ] VILLARS, F.M.H., Nucl. Phys. 14 (1965) 353. 
[ 9 ] LANE, A .M. , Nuclear Theory, Benjamin, New York (1964). 

[10] KISÇLINGER, L.S., SORENSEN, R.A., Mat.-fys. Meddr 32 9 (1960). 
[11] COHEN, B. L., PRICE, R.E., Phys. Rev. 121 (1961) 1441. 
[12] ELLIOTT, J.P., LEA, D.A. , Phys. Lett. 19 (1965) 291. 
[13] BELYAEV, S.T . , Mat.-fys. Meddr 31 11 (1959). 
[14] ELLIOTT, J. P., FLOWERS, В. H., Proc. R. Soc. 24 2A (1957) 51. 
[15] BROWN, G.E., BOLSTIRLI, M., Phys. Rev. Lett. 3 (1959) 412. 
[16] THOULESS, D.J., Nucl. Phys. 22 (1961) 78. 
[17] BROWN, G.E., EVANS, J.A., THOULESS, D.J., Nucl. Phys. 24 (1961) 1. 
[18] GILLET, V., Nucl. Phys. 51 (1964) 410; _ 

GILLET, V. , VINH MAU.N., Nucl. Phys. 54 (1964) 321; 
GILLET, V. , SANDERSON, E.A., Nucl. Phys. 54 (1964). 

[19] GILLET, V. , MELKANOFF, M., Phys. Rev. 133 (1964) B1190. 





CHAPTER 11 

EQUILIBRIUM SHAPES OF LIGHT NUCLEI 

G. RIPKA 

1. Kinetic and potential energy in the independent particle model. 1.1. Kinetic and potential 
energy. 1.2. Separation energies and single particle energies. 1.3. Correlation functions in the inde-
pendent particle model. 2. The Hartree-Fock theory. 2.1. Symmetries of the Hartree-Fock Hamiltoniar 

2.2. Choice of the expansion of the orbits. 3. Single major shell Hartree-Fock calculations. 3.1. Ad-
ditional practical details. 3.2. Solutions of the Hartree-Fock equations in even-even N= Z nuclei. 
3.3. The effect of spin-orbit splitting. 3.4. Ellipsoidal symmetry and maximum spatial symmetry. 
3.5. The 28Si degeneracy. 4. Rotational bands in the 2s-Id shell nuclei. 4.1. Method A: the adiabat: 
approximation. 4.2. Method B: angular momentum projection. 4.3. Magnetic moments of odd-A 
nuclei. 4.4. Projected Hartree-Fock spectra. 5. Major shell mixing Hartree-Fock calculations. 
5.1. Radial Hartree-Fock calculations. 5.2. Quadrupole deformations. 5.3. The model of Mottelson. 
5.4. The kinetic energy. 5.5. Major shell mixing Hartree-Fock calculation. 

1. KINETIC AND POTENTIAL ENERGY IN THE INDEPENDENT 
PARTICLE MODEL 

Since we shall be concerned with the independent particle model 
let us establish a few useful formulae and properties of this model. In . 
the independent particle model the wave function of the nucleus is ap-
proximated by a Slater determinant |cp) made up of orbits described by 
the nucléons 

|ф> =ь1 1 < 2 . . .blA ¡0> (1.1) 

ь+х is the operator which places a nucleón in the orbit X. 
The orbits |X> are eigenstates of a single particle Hamiltonian h. 

j h|x> = ex|x> (.1.2) 

|X) is the wavefunction of the orbit X and e^ is its energy. When the 
single particle Hamiltonian is calculated explicitly in terms of the inter-
action between the nucléons by a variational procedure discussed later, 
it is called the Hartree-Fock Hamiltonian. Only in this case do the ' 
energies have a physical meaning (Fig. 1). 

The Hamiltonian h may be invariant under various symmetry operations 
which may be reflected by the wavefunction | <рУ . Some of the most 
frequently met symmetries are: 
Time reversal symmetry in even-even nuclei. In a real representation 
this is equivalent to a rotation of ж about the y-axis: 

[Ь,е
Ш

У] = 0 e
W

y = | * > (1.3) 

The author is at the Centre d'études nucléaires de Saelay, Commissariat à l'énergie atomique, France. 
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Proton-neutron exchange symmetry. In nuclei with equal numbers of 
neutrons and protons, this symmetry is violated by.the Coulomb inter-
action but it remains a good approximation in light nuclei. 
Axia l symmetry is a frequent occurrence. The Hamiltonian h commutes 
with Jz : 

[ h , J z ] = 0 

and the orbits have a definite angular momentum component along the 
z - ax i s . 

h | x> = e j x > , J z |X> = mx|\> (1.4) 

Time reversa l and proton-neutron exchange symmetry may be com-
bined in even-even N = Z nuclei in which the orbits X are four - fo ld de-
generate: we may place a neutron and a proton in each orbit |X̂ > and 
in the time reversed orbit: 

eiwIy |X>=|-X> 

The configurations of the ground states of even-even N = Z nuclei are 
of this type as shown in F ig . 2. 

FIG.l . Energies of single particle orbits in the independent particle model. Full lines represent occupied 
orbits, dashed lines represent empty orbits. The energies e^ of the orbits are measured relative to the edge 
of the potential well and they are equal to the energy required to extract a nucleón in the level X from the 
nucleus 

H -

FIG.2. The four-fold degeneracy of even-even N=Z nuclei. Protons are represented by shaded circles, 
neutrons by open circles. Upward and downward pointing arrows distinguish orbits |X> from the time 
reversed orbit | - X ) = exp iffjy|) 

In the case of axial symmetry where Jz| X> = m\| X> the orbit | -X ) has Jz | -X ) = -m^J -X> and the 
state |<p> has no angular momentum projection along the z-axis 
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Invariance under rotations. The Hamiltonian h will not in general be in-
variant under rotations. Closed shells are the only exceptions. But if 
the Hamiltonian h is spin independent it is invariant under rotations in 
spin-space only: 

[h, S] = 0 [ h , L ] j i O (1.5) 

Such a symmetry is broken by the spin-orbit interaction which does 
not act very strongly in even-even nuclei up to about A = 26. 

Then neglecting the Coulomb interaction the Hamiltonian h in these 
nuclei also commutes with the isospin operator and the orbits X factorize 
into spatial, spin and isospin components: 

where |X>=|Xx > |Xo> |XT> (1.6) 

Xx is the wavefunction of the orbit in configuration space (it is a function 
only of the position r of the nucleón with respect to the centre of mass 
of the nucleus), and X0 and XT are spin and isospin functions. Even-even 
nuclei may then be built up of quartets of nucléons each in a given orbit 
Xx and forming a closed shell of spin and isospin. This state may also be 
represented by F ig . 2 in which the arrows represent the actual spins. 

The wavefunction |cp̂ > then has spin zero: 

ч S|cp> = 0 

It is therefore an L - S coupling wavefunction. 
This is a special case of four - fo ld degeneracy. The four- fo ld de-

generacy is more general and does not necessari ly imply the factorization 
of the orbit Xinto space and spin parts. 

1.1. Kinetic and potential energy 

The Hamiltonian h is not the nuclear Hamiltonian. Is it only used to 
generate the orbits X and hence the wavefunction |cp)> which approximates 
the nuclear wavefunction. The nuclear Hamiltonian is 

2 

1=1 i^j 

where P?/2m is the kinetic energy of the ith nucleón, and v ( i j ) is the inter-
action between the i th and j * nucléons. The nuclear Hamiltonian may be 
written in second quantization in any representation, in particular in the 
representation X of eigenstates of h: 

H = I<Xl1 Z I 
2m 

l x 2 > b l i b X z + | (1.8) 

X.X,,X<,X. 
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<C 1̂ -2 ̂  matrix element of the kinetic energy operator, and 

K. ^-зЛг!v = - *ч ' Ч Л г М ^ ' Ц ^ is the antisymmetrized matrix element 
of the nucleón-nucleón interaction. 

The binding energy of the nucleus when approximated by the. wave-
function Icp)1 is easily found to be: 

A 2 A 
Е=<Ф|Н|Ф>= ^<XM|V|X/U> (1.9) 

\=1 x,(j= 1 

The sums over X are extended over the occupied orbits only. (To 
derive equation (1.9) use Wick's theorem or any other tedious method!). 

Consider the special case of L -S coupling in which the orbits X 
factorize into spin and space parts as in Eq. (1 .6 ) . Assume the nucleon-
nucleon interaction is a central potential with spin and isospin exchange 
components: 

v(12) = (W + B P 0 -H P T +M P x ) v ( r 1 2 ) (1.10) 

where v(r1 2 ) is a potential depending on the relative co-ordinates |r,-r2| 
such as a Gaussian or a Yukawa potential. PQ and PT are the spin and 
isospin exchange operators 

= l + ^ . g j j =1+T! 
о 2 ' r 2 1 1 , 1 

whose effect is to exchange the spin and isospin co-ordinates of the 
nucléons. The space exchange operator Px when acting on anti-
symmetrized wavefunctions equals Px = -P0 PT . Px exchanges the spatial 
co-ordinates of the nucléons. W, В, H, and M measure the intensity of 
what are called the Wigner, Bartlett, Heisenberg and Majorana components 
of the nucleón-nucleón potential. Then the matrix element appearing 
in Eq. (1 .9 ) becomes: 

<Х^|у|Х^> =<XxX0XT,MxM0HT| W + B P a -H PT + M px |XxX0XT,MxM0Mr>D 

-<ХхХ0Хг,мхМаМт|Ж+В po -H PT + M px к м а м т , х х х а х т > 0 

We have made explicit the direct and exchange terms. The subscript 
D in the matrix element 

7 
<«(3|V(12)|76>d = 

a p 

means that only the direct term should be taken; the states a and 7 refer 

40' 
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to co-ordinates of nucleón 1 and the states /3 and 6 re fe r to co-ordinates 
of nucleón 2. The matrix element <̂ X/u|v|X;u )> then becomes 

<Хц\у\Хц>= w í < V x | v ( r ) | X x M x > - < V x | v ( r ) M x > 6 x д \ д 

<XxMx |v(r)|xx^x >\ o ( l o -<X x^ x|v(r )|AJ xX x > 6 X ^ 

<XxAix|v(r)|ХхцхУ&к ц -<XxAix|v(r)|MxXx > á x д 
r r о а 

<X x M x |v ( r )|X x A <х>\д о \ „ т - < М х И г ) к Х х > (1.12) 

+ В 

H 

M 

The spin and isospin sums are now easily performed in the expression 
(1 .9 ) for the binding energy which becomes: 

E 
n 2 n 

= 4 Z <^\L\x*>+2s I <\лИг>1\мж> 
V 1 V r 1 

^<A x M x |v ( r ) |M x X x > - 2G (1.13) 

•̂x̂ x 

S and G are the following linear combinations of W, B, H and M: 

S = 4W+ 2B- 2H-M, G = W + 2B- 2H-4M (1.14) 

We see that when the orbits of an even-even N = Z nucleus factorize 
into space and spin parts the binding energy given by Eq . (1 .13 ) depends 
on only two combinations S and G of spin and isospin exchange parameters . 
An attractive Rosenfeld force for example has S = 0 and G > 0. 

Closed shell nuclei 4He, 1 6 0 and 4 0Ca are necessari ly of the type 
considëred here even if the orbits X are eigenfunctions of a Hamiltonian h 
which contains a spin-orbit interaction. This is because the determinental 
wavefunction | <p)> is invariant when an occupied orbit is replaced by any 
l inear combination of other occupied orbits. Thus the wavefunction of 
1 6 0 is the same whether one considers the filled P - she l l to be composed 
of the orbits 

1/2 \¡ 3 oT V 3 V 

рЗ/2 = + 2 Г1 
1/2 \¡3 от ^3 1 

рЗ/2 = р 
3/2 *1Т 

(1.15) 



T A B L E I. B INDING ENERGIES OF E V E N - E V E N N = Z N U C L E I W I T H A s 40. 
OS 
CO 00 

The binding energy of a bound nucleus is defined as negative. E and E / A are the binding energy and 
binding energy per particle. E c is the Coulomb potential energy. E - E c and E - E c / A are the binding energy 
and binding energy per particle corrected fo r the Coulomb energy 

Nucleus E E/A E с E-Ec E-Ec/A 

4 He - 28.29 -7. 07 0. 76 - 29.05 - 7.26 

8Be - 56.54 -7.07 3. 95 - 60.49 - 7.56 

12С - 92.16 -7. 68 9. 22 -101.38 - 8.45 

160 -127.62 -7. 98 15. 26 -142. 88 - 8.83 

20 Ne -160. 64 -8. 03 21.34 -181.98 - 9.10 

"Mg -198. 25 -8. 26 30. 46 -228. 71 - 9.53 

28 Si -236.53 -8.45 40. 73 -277. 26 - 9.90 

32 S -271.77 -8.49 51.46 -323.23 -10.10 

" A -306. 71 -8.52 62. 71 -369.42 -10.26 

40 Ca -342. 05 -8.55 74.92 -416.97 -10.42 
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o r of the l inear combination of orbits 

P t = [lp1/2+ f | p 3 / 2 

0 1/2 V 3 1/2 

p . ' " J i # 

p3/2 
3/2 

which factorize into spin and space parts. 
F o r nuclei such as 8Be, 12C, 20Ne, 24 Mg and possibly 28Si, it is a 

good approximation for the energy to assume the orbits factorize into 
spin and space parts . 

The binding energies of even-even N = Z nuclei are known exper i -
mentally and they are given in Table I. They contain a Coulomb r e -
pulsion which is easi ly subtracted in the following way. 

The Coulomb interaction is very long ranged and it is a good approxi-
mation to assume the nucleus is an uniformly charged sphere of radius 
proportional to A1/3 . The Coulomb potential energy is then: 

E c ( Z . A ) = e ^ p ^ (1.17) 

a is a proportionality constant which can be calculated for each nucleus 
by comparing the binding energies of the m i r r o r nuclei which have a 
proton or a neutron less than the even-even N = Z nucleus. The difference 
between the binding energies of the m i r r o r nuclei is assumed to be due to 
the Coulomb potential alone. Using this method the binding energies shown 
in Table I are obtained. We shall discuss later the variation of E/A 
with A . 

How much of the binding energy is kinetic energy, how much is 
potential energy? 

One can only answer this question in the f ramework of a nuclear 
model; and let us consider the oscil lator model of the spherical nuclei 
% e , l é O and « C a . 

These nuclei are formed by making up quartets of nucléons which 
respectively fill the Is , l p and the 2s - Id shell orbits of the harmonic 
osci l lator . The kinetic energy of these nuclei is equal to the mean 
value in the state |ф У of the operator 

L 2m (1.18) 2Am 
i = l 

-, A 
P = £ P. is the momentum of the centre of the mass of the nucleus and it 

i=i 1 

is necessary to subtract the centre of mass kinetic energy. 
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In the present case the centre of mass correction amounts to multi-
plying the mean value of the kinetic energy operator E P.2/2m by the 
factor (1 -1/А) . i 1 

In a harmonic oscil lator orbit |X̂ > = |nim)> the total energy is: 

h|ním)> = ^2n+j8—|^hu|nj8m> and the kinetic energy is = 

< n i m | - ^ | n £ m > = | h u ( 2n + i - | ^ . 

Summing over all the orbits and correcting for the centre of mass 
kinetic energy one obtains: 

K . E . = 93.46 a 2 for 4He 

= 716.47 a2 for 1 6 О (1.19) 

= 2461 a2 for 4 0Ca 

where a is the harmonic oscil lator constant a - ^(mu/ti) 

•hu = 41. 54 a2 MeV (a in fm" 1 ) (1.20) 

The values of a are known f rom the mean square radii of the 4He, 
l f b and 4 0Ca nuclei. These have been measured by electron scattering 
èxperiments [1] . The root mean square radii of 4He, 1 60 and ^ C a are 
measured to be 1.61 fm, 2 . 64 fm and 3.52 fm, respectively. The values 
of a which yield these values are: 

» = 0.756 in 4He 

a = 0.568 in 160 (1.21) 

a = 0.492 in 40Ca 

Thus we need to know the nuclear radii in order to estimate the 
kinetic energy in the independent particle model. Substituting the values 
(1. 21) in E q . ( l . 19) and using the fact that the total energy given in 
Table I is the sum of the potential and kinetic energies we obtain the 
following values of kinetic and potential energy per particle in 4He, 1 60 
and « C a (Table Ha). 

In nuclear matter using the independent particle model with Fermi 
momentum k f = 1.36 fm"1, the kinetic energy per particle is 23 MeV and 
the potential energy per particle is -39 MeV . 

1.2. Separation energies and single particle energies 

Separation energies and single particle energies are easily calculated 
in the independent particle model. Let be the wavefunction of an 
even-even N = Z nucleus (Eq .1 .1 ) . One may expect the ground state of 
the A - l nucleus with a neutron missing to be well represented by the 
hole wavefunction: 

|фх> = \ | ф > (1.22) 

where X is an occupied orbit. The ground state would be the state 
where X is the highest occupied orbit. 
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T A B L E Ha. K I N E T I C , P O T E N T I A L A N D T O T A L E N E R G Y 
P E R P A R T I C L E IN C L O S E D S H E L L N U C L E I 

Nucleus К. E. /А <V> /А E/A 

"He 13.35 -20. 61 - 7.26 

160 14,45 -23. 38 - 8.93 

40Ca 14.89 -25.31 -10.42 

T A B L E lib. T H E E N E R G Y O F T H E L O W E S T E M P T Y O R B I T 
e x = E ( A + 1 ) - E ( A ) , T H E E N E R G Y OF T H E H I G H E S T F I L L E D O R B I T 
e a = E ( A ) - E ( A - l ) AS G I V E N B Y T H E E X P E R I M E N T A L V A L U E S 
O F T H E N E U T R O N S E P A R A T I O N E N E R G Y OF T H E A + l A N D O F 
T H E A N U C L E U S . T H E L A S T C O L U M N SHOWS T H E V A L U E O F 
T H E E N E R G Y G A P e a - e x S E P A R A T I N G T H E L O W E S T E M P T Y 
A N D H I G H E S T F I L L E D O R B I T S . 

Nucleus A E(A+1)-E(A) E(A)-E(A-1) Gap 

4 He 4 -1.04 -20. 58 19.54 

8 Be 8 -1.66 -18. 90 17.24 

12 С 12 -4.95 -18.72 13.77 

16 -4.14 -15.67 11.53 

20 Ne 20 -6.76 -16. 87 10.11 

21 Mg 24 -7.33 -16. 54 9. 21 

28 Si 28 -8.48 -17.17 8.69 

32 s 32 -8.65 -15. 08 6.43 

36 Ar 36 -8.79 -15.27 6.48 

40 Ca 40 -8.36 -15.36 • 7.27 

44 Ti . 44 -9.41 -16. 39 6.98 
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The neutron separation energy is equal to the difference between the 
binding energies of the A - l nucleus and of the even-even nucleus. It is 
equal to the energy required to lift a neutron from the highest occupied 
orbit out of the potential wel l . The energy of the orbit is therefore: 

ех = <ф|н|ф>-<фх|н|фх> 

2 A 

= ^ <Xm|V|Xm> (1.23) 

IJ = I 

The expression (1. 23) gives the energy of any occupied orbit, although 
the states of the A - l nucleus will not all be adequately described by the 
wavefunction (1.22) . We have also tacitly assumed that the wavefunction 
of the orbits X have not been changed by the removal of a neutron. 

Note also that the value of e , the energy of the single particle 
orbit X, given by Eqs . (1. 23) and (1 . 22) are the same only if h is the 
Hart ree -Fock Hamiltonian. If not the expression (1.23) for e x is the 
only one which has physical significance. 

When the orbits separate into spin and space parts as in Eq . ( 1 .6 ) 
and when the nucléons interact with the central force (1.10) the energy of 
the orbit is still given in terms of the coefficients S and G (1.14) only: 

n 

< V x M r ) M x > (1-24) 

The separation energy of the A + l nucleus gives directly the energy 
of the lowest empty orbit a : 

e a , = <ф|Ь а НЬ^ф>- <Ф|Н|Ф> 

2 A 
= < e | ^ | e > + £ w | v | * n > (1.25) 

e = i 

The energy difference between the lowest empty orbit a and the 
highest filled orbit X (often called the Fe rmi level) is called the energy 
gap separating the occupied and empty orbits (F ig . 1). 

The values of e x , ea and of the gap are shown on Table lib. The Fermi 
level e x remains fair ly constant in a major shell. The gap decreases 
with A . 

It should be emphasized that in this chapter the energetics of the in-
dependent particle model are presented in their crudest f o rm. We have 
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completely neglected the question of angular momentum. Independent 
particle wavefunctions most often do not have a definite angular momentum 
and this must be allowed for when comparing them with nuclear states 
which do. We shall see that the orbits of odd-A nuclei are somewhat 
different f rom those of an even-even nucleus due to polarization effects. 
Finally nuclear states are more complicated than suggested by the inde-
pendent particle model. There is evidence for mixtures of various states 
|cp/>even in the nuclear ground states. None the less the independent 
particle model provides a very useful basis f rom which to study 
nuclear states. 

1.3. Correlation functions in the independent particle model 

It is instructive to express the potential energy (1. 13) in terms of 
the density operator which is defined as 

A 

p(r, ?') = V ф*(?) ф ( ? ) (1.26) 
¿_i л K 

\= l 
—* 

where Фх (г) is the spatial part of the orbital wavefunction (1.6). P is a 
density operator because it satisfies the equations 

Jdr p{r1,r) p(r, r 2 ) = p ( r 1 , r 2 ) P 2 = P 

(1.27) 

J " d r p ( r , r ) = n T rp = n 

where n = A/4 is the number of different orbits in configuration space 
occupied by four nucléons. The diagonal element p(r, r) is just equal to 

the density of matter at the point r . Nucléons are not localized in space 
and thus the density operator is non-local. 

The potential energy (13) may be written thus: 

n n 

< V > = 2 S ^ < Х Л | У ( г ) | Х х м х > - 2G £ < V x N r > K X x > 

X M =1 
X 

= 2S / dr^ drg p ( r 1 < r i ) p ( r 2 , r 2 ) v ( r 1 2 ) 

2G ^ ? ^ ? 2 | р ( ? 1 ( ? 2 ) | 2 У ( г 1 2 ) (1.28) 
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where r12 = | ra - r 2 | . Introducing the two correlation functions 

v(r) = / àRp(rlt гг) p(r2, r„ ) 

(1.29) 

which satisfy the equations 

v (0 ) =K (0 ) , / dr i/(r) = n , / dr K(r ) = n (1.30) 

the potential energy (1.28) becomes 

< V > = 2S / dr v(r) v( r) - 2G / dr K(r ) v ( r ) (1.31) 

The integrals (1.29) should be understood thus: Trans form the 
integrand into a function of relative and centre of mass co-ordinates 
r and R: 

r = rl"r2> 
1 

R = ? ( r 1 + r 2 ) (1.32) 

and integrate over R. 
Let us consider the spherical nuclei 4He, 1 60 and 40Ca in the oscil lator 

model. Fo r these nuclei it is quite easy to per form the sum (1. 26) and 
the integral (1.29) analytically since harmonic oscil lator wavefunctions 
are well known. We use the index 0, 1 and 2 for the correlation functions 
v and К in 4He, 1 6 0 and 40Ca, respectively. One finds 

vAv) = K . ( r ) 
ct3 1 -a2r2/2 

д.З/2 %J2 ( 4 He ) (1.33) 

a3 1 31 + 6(arr)2 + ( e r f 

K l ( r ) = ^7"2 8 ^ T |з1-10(«г)2 +(arr)4 

-a2r2/2 

-a2r 2/2 
( 1 6 0 ) (1.34) 

- ff3/2 1 2 8 / 2 
1945 + 540(ar)2 + 98(ar)4 + 4(er)6 +(ctr)1 -a.V/2 

K„(r) 2 ^372 128/2 1945-1220(ar)2 + 290(ar)4 -28(от)6 + ( a r ) ! 
-a2:2/2 

( 4 0 Ca) (1.35) 
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In nuclear matter where the orbits are plane waves 

— — » 
,ik. r 

q>r(r) = e Jq 

the density operator is 

kskf 
kf is related to the density by the relation 

k3 
n _ f 
ñ " 6^2 

sin X COS X 
and j^x ) is the spherical Besse l function ^ (x ) = — 

In nuclear matter the functions v and К are: 

nk? 3nk? /jWkfrjX2 

Figures 3 and 4 show the curves of the functions 47ГГ2 v(r) and 
47гг2 K ( r ) fo r 4He, 1 60, 40 Ca and infinity nuclear matter, divided by the 
number of particles. The functions are plotted using the values (1.21) 
of the oscil lator constant a which reproduce the observed root mean 
square radii of each nucleus. It is seen that with an attractive force the 
potential energy term 2S jv(r ) v(v) dr will give more and more binding as 
the nucleus gets heavier. In order to estimate how much of the co r re -
lation function the force v ( r ) wil l see, a Yukawa force (ехр-г//и)(г/^) - 1 

with ¡j equal to the Compton wavelength of the w meson is shown by a 
dashed line on the f igures . Clear ly the force only sees the beginning of 
the functión v ( r ) . The curve for infinite nuclear matter was drawn 
using the Fe rmi momentum k f = 1. 36 fm. If this is indeed the correct 
value to use in infinite nuclear matter it is seen that v(r) in 40Ca is still 
f a r f rom reaching its value in nuclear matter even within the range of the 
force v ( r ) . Finally note that the potential energy term 2S / v (r ) v(r) dr 
increases as the nucleus gets heavier. The increase of the binding 
energy per particle as a nucleus gets l a rger is interpreted as a surface 
energy effect, s imi lar to the one encountered in a liquid drop. It appears 
in the semi -empir ica l mass formula of Weiszàcker as a repulsive term 
proportional to the nuclear surface. 

The potential energy term -2G / K(r ) v ( r ) dr on the other hand is very 
s imi lar in 4He, 160 and 40Ca. This is the exchange term in configuration 
space. The exchange term appears therefore to contribute less to the 
surface energy. It is amusing to note that if the ratio k {/a is chosen in 
such a way as to make the kinetic energy per particle equal in nuclear 
matter and in the finite nuclei 4He, 1 60 and 40Ca then the correlation func-
tions v ( r ) and K ( r ) are very s imi lar at r = 0 and the function K(r ) in the 
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finite nucléus follows very closely its values in infinite nuclear matter, 
within the range of the force v ( r ) . But with the experimental values (1. 21) 
of a this would mean that k, =1 .1 fm. 

FIG.3. The functions Цг) divided by the number of particles in 4He, 1бО, 40Ca and nuclear matter plotted 
against the distance r in fm. The functions are calculated with oscillator constants (1.21) which yield the 
experimental mean square radii. For infinite nuclear matter the value kf = 1.36 fm is used. The dashed 
line represents a Yukawa force: (exp -r/д) (г/д)"1 with ц = 1.435 fm dawn on an arbitrary scale 

If the nuclear force v ( r ) has a hard core the potential energy (1.31) 
will diverge unless the correlation functions v(r) and K ( r ) go to zero at 
smal l distances. Equation (1.29) shows that i/(0) - 0 and that v(0) is zero 
only when p(r, r ) = 0 at all points. It is therefore impossible for an inde-
pendent wavefunction to have a vanishing correlation function at small 
distances, and it is not possible to use a nuclear Hamiltonian (1.7) with 
hard cores in the independent particle model. Thus if the nucleon-
nucleon interaction has a hard core, the potential v(i, j) in Eq . ( 1 .7 ) can 
only be an effective interaction f rom which the hard core has been 
removed. 

2. THE H A R T R E E - F O C K T H E O R Y 

The purpose of the Hart ree -Fock theory is to determine the wave-
function X of the orbits described by the nucléons in the independent par -
ticle model. 
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This is achieved by requiring that the energy [Eq. (1.9)] of the state | <p~} 
be stationary and minimum. The state | <рУ wil l then represent the 
nucleus at equilibrium. 

FIG.4. The functions K(r) divided by the number of particles in4He, l sO, 40Ca and nuclear matter. The 
same oscillator constants a and Fermi momentum kj are used as in Fig.3. The dashed line is a Yukawa force 
(exp-r//j) (r/fj)"1 with д = 1.435 fm drawn on an arbitrary scale 

A convenient way to obtain the wavefunctions of the orbits is to ex-
pand them on a basis of known wavefunctions with which one is able to 
calculate matrix elements of the nucleon-nucleon interaction. 

Harmonic oscil lator wavefunctions for example provide a useful 
basis which has the advantage of making the orbital expansion rapidly 
converging, as we shall see. Thus we expand: 

|X> = ̂ CJXm|jm> (2.1) 

jm 

where j stands for the three quantum numbers n, £ and j . Other expansions 
may be more convenient. Fo r example it is eas ier to use the uncoupled 
| ^ т г т 3 ) > representation in the special case where L - S coupling wave-
functions |ф)> can be used as trial wavefunctions. We shall specialize 
to the expansion (2.1) because it is trivial to pass f rom one representation 
of the orbits to another. 
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The Slater determinant |cp)is now determined by the expansion pa-
rameters Cj^ and the energy will be stationary when: 

ЭСХ* jm 
<ф|н|ф>-еЛ C ;̂ ct = 0 (2.2) 

The e x ' s are introduced here as Lagrange multipliers which ensure 
that the variations made on the wavefunctions X preserve their norm. 

The matrix element<X¿u|v¡X/lj) appearing in the expression (1.9) for 
<Сф|н|ф)> may be expressed in terms of the expansion coefficients C^ : 

<Лдк|Лм> = Y C ^ C Í m l < j l m i ' Í 2 m 2 l v I Í 3 m 3 ' j 4 m 4 > ( í r a , C í 4 m 4 < 2 - 3 ) 

rn1 m2 rn3 m4 

Substituting Eqs . (1 .9 ) and (2.2) in expression (2.1) we obtain the 
following set of coupled equations: 

> <jm|t|i rn > C.X + V c f * < jmj 0 m 0 |v| i 0 mj„m / 1 > C.X См 
/ J 1 |J2 2 j m / J m J J2 21 lJ3 3 J4 4 ' j m j,n f—i 2 2 I — ' 2 2 3 3 4 

ITlj r 

= e, X jm (2 .4 ) 

The equation (2.4) has the form of an eigenvalue problem: 

h|x>=ejx> (2.5) 

where h is a one-body operator defined in terms of its matrix elements: 

A 

<Ji m i | h | j 2 m 2> = < ^ 1 т 1 М з 2 т 2 > + У <j1 m i .^|v|j2m2 < X> (2.6) 
\= 1 

The sum over X is limited to the orbits occupied in the state |ф) 
(1 .1 ) . The Eqs . (2. 5) and (2. 6) are the Hart ree -Fock equations, h i s 
called the Hart ree -Fock Hamiltonian and the ex are the energies of the 
orbits in the Hart ree -Fock ( H - F ) field. 

The matrix element: 

( ^ т ^ Н ^ . Х ) ^ C ^ < j 1 m 1 , ó 3 m 3 | v | j 2 m 2 , j 4 m 4 > C ^ m 4 (2.7) 

u 
Шзт4 

is easi ly calculated when a convenient basis |jm)> is used, such as that 
provided by harmonic oscil lator wavefunctions. 
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The Hart ree -Fock equations are solved by an iteration process con-
sisting of the following steps: 
(1) An initial guess at the wavefunctions Л. is made. One may choose the 
leading term in the expansion (2 .1 ) . One might also choose the initial 
set of С^т coefficients to be those of Nilsson orbits in a defromed har -
monic oscil lator wel l . The initial guess may be quite crucial because 
different initial guesses may lead to different solutions. 
(2) With this set of coefficients the matrix element (2.7) is com-
puted and the Hamiltonian h (2 .6 ) is diagonalized in order to satisfy 
E q . ( 2 . 5 ) . The result of the diagonalization is a set of e x ' s and a new 
set of C ^ coefficients. 

The second step is repeated until successive sets of coefficients 
are the same. Rapid convergence is usually obtained. The actual calcu-
lations are usually performed on a computer. The time involved in 
solving the Hart ree -Fock equations depends on the possibility of storing 
the matrix elements in the fast memories of the computer. Time is 
consumed in the actual calculation of a matrix elements, but once they 
are stored an iteration is a matter of seconds or less on a computer such 
as the IBM-7090. 

2.1. Symmetries of the Hart ree -Fock Hamiltonian 

We have already mentioned in Section 1 some of the symmetries 
encountered in the independent particle model. The Hartree -Fock theory 
allows us to make a systematic analysis of the possible symmetries of the 
average field and hence of the wavefunction . A given symmetry may 
not be arbitrar i ly assumed. Fo r example one might limit the expansion 
(2.1) to states of a given angular momentum in the initial guess of the 
wavefunctions. But in general the Hartree -Fock Hamiltonian (2.6) will 
have non-vanishing matrix elements between states of different angular 
momentum in spite of the initial guess, so that at the next iteration the 
expansion (2 .1 ) wil l contain states of various angular momenta. This 
will о с cur in all cases except when the occupied orbits happen to form a 
closed shell. A symmetry which, once assumed at the initial guess of 
the orbital wavefunctions, is preserved in the successive iterations is 
called a self-consistent symmetry. Such a symmetry is due to the ex is -
tence of an operator which commutes with the Hart ree -Fock Hamiltonian 
(2.6). 

To investigate which self-consistent symmetries may occur we use 
the following theorem [2] : 

Theorem: Let U be a unitary operator which commutes with the 
nuclear Hamiltonian H. Then if U leaves the set of A occupied orbits 
invariant, it commutes with the Hart ree -Fock Hamiltonian h. 

If U commutes with the nuclear Hamiltonian then 

H = U _ 1 H U = U"1t U + U _ 1 v U 

The Har t ree -Fock Hamiltonian (2.6) is therefore equal to 

A 

<i|h|j> = <i|U _1t U|j> + £ <iX|u_1 v U|jX> 

\=i 
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We use the notation i and j to denote all the quantum numbers of any 
known basis on which we choose to expand the occupied orbit X. Let us 
denote by a bar the states |i)> which undergo the transformation U: 

10 = u|i>, 

^Strictly |i> = U aj|0> = (U a[ U 1 )U|o> =at|o> 

a ] = U â  U"1 and u|0> = |0> ^ where 

so that: 
n 

<i|h|j>=<r|t|j> + ^ < i \ | v | J x > (2. 

X= 1 

Now if U leaves the set of occupied orbits invariant any occupied 
orbit A which undergoes the transformation U can be expressed as a 
linear combination of occupied orbits only: 

A 

u|x>= £ x > > 

M = 1 

where 

У XX""XV= 6,,, and ) X** Xх = б 
l_. M ц KK ¿_, е д дм 

Il x 

Thus the interaction term in equation (2.8) becomes 

A A A £ < l x | v | " j x > = £ Y X f < î H v | j M ' > X X 

X= 1 X= 1 w « = l 

A 
= ÍM|V| j U > 

д=1 

Substituting into equation (2.8) we find that 

A 

<i|h| j > = <7 |t|7> = <7|t| J> +^<7m|v| Ja¡ > = <l|h| J> 

ii=i 

= <i|u_1 hU|j> 
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so that 

h = U 1 hU (2.9 ) 

h commutes with U, and the orbits and are degenerate. 
We can check that the four- fo ld degeneracy of the orbits which we 

assumed in section 1 is indeed a self-consistent symmetry of even-even 
N = Z nuclei. 

Fo r if neutrons and protons are equal in number we may place them 
in the same orbits, because the exchange of a neutron with a proton will 
then leave the set of occupied orbits invariant. The proton-neutron ex-
change operator commutes with the Hamiltonian if Coulomb forces are 
neglected. Furthermore if there is an even number of protons and 
neutrons, we may place a neutron in the orbit |x^>and another in the orbit 
|X^= (exp iirJy)|X^> . Then the operator (exp i)rJy) which commutes with 
the nuclear Hamiltonian will leave the set of occupied orbits invariant. 

Axial symmetry is always a self-consistent symmetry. Fo r if we 
choose the orbits |x)> to be eigenstates of j , then the unitary operator 
(exp i^Jz) which commutes with the nuclear Hamiltonian will leave the 
set of occupied orbits invariant. 

This does not imply that the axial symmetry, or any other symmetry 
will actually occur in nuclei. A better solution of Hart ree -Fock equations 
with a lower energy may be found which does not have the same symmetry. 
Fo r example 24Mg has a solution which has lower energy than the axially 
symmetric solution. 

In each case the possible symmetries of a nucleus must be investi-
gated separately. Often the spectrum and transition probabilities suggest 
or eliminate certain symmetries . 

2.2. Choice of the expansion of the orbits 

In practice the expansion (2.1) is always limited. It is f irst limited 
by. the symmetries of the solution. In axially symmetric solutions for 
example, the states |jm)> all have the same projection m x of angular 
momentum along the z -ax i s so that the expansion becomes: 

We may also expect the expansion (2 .1 ) to be rapidly converging and, 
in particular, limit the expansion of each orbit to one ma jo r shell since 
ma jo r shells are separated by large energy gaps. Although we shall see 
that wavefunctions obtained this way do not yield good quadrupole moments 
and are not a fa i r estimate of kinetic energy in deformed nuclei we shall 
investigate this case in some detail because it is simple and most of the 
features of Har t ree -Fock wavefunctions are already apparent there. We 
shall therefore call a s ing le -ma jor - she l l ( S . M . S . ) Hart ree -Fock calcu-
lation one in which the expansion (2.1) is such that each orbit belongs to 
one major shell of a harmonic osci l lator. 

(2.10) 

41 
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We shall investigate separately in the next two Sections the single-
ma jor - she l l Hart ree -Fock calculations and those in which major shell 
mixing is allowed in the expansion of the orbits. 

3. S INGLE MAJOR S H E L L H A R T R E E - F O C K C A L C U L A T I O N S 

In section 1 we already described the spherical nuclei 4He, 160, 40Ca 
as closed shell nuclei. We assumed that nucléons in these nuclei described 
orbits |jm^> of a spherical harmonic oscil lator wel l . When extra nucléons 
are added to these nuclei the Hartree -Fock ( H - F ) field is no longer 
spherical . The f irst effect of the deformation of the Hartree -Fock field 
will be to mix the degenerate states which belong to a ma jo r shell of the 
oscil lator wel l . In this chapter we consider this mixing only and we 
neglect entirely the mixing of states |jm)> belonging to different ma jor 
shells of the osci l lator. The expansion (2.1) of the orbits will be: 

|X> c i J j m > 

jm 

where 

j = is1/2 for Is shell orbits 

j = lp3/2 and lp1/2 for lp shell orbits 

j = ld5 / 2 , 2s1/2 and ld 3 / 2 for 2s - Id shell orbits 

etc. (3.1) 

When the expansion (3.1) is used, it is better to rewrite the Hart ree -Fock 
Hamiltonian in such a way as to use the closed shell nuclei as a reference. 
Let us choose 160 as a reference nucleus. In the ground state of 1 6 0 the 
four l s - she l l orbits and all the 12 lp - she l l orbits are fi l led. Fo r another 
nucleus the filling will be different and we can compare it to the 1 60 
fil l ing by writing the sum appearing in the potential terms of the 
Hart ree -Fock Hamiltonian (2 .6 ) thus: 

A M N 

I = I + I - Z ' ( 3-2 ) 

\= 1 Xels, lp (J = l и =1 

The orbits ц are the orbits which are filled in the nucleus under con-
sideration but empty in 1 60. These we call particle orbits. The orbits v 
are the orbits which are empty in the nucleus under consideration but 
which are fil led in 1 60. These we call hole orbits. In 20Ne for example 
we add two neutrons and two protons to the 1 60 closed shell. This 
nucleus has M = 4 particle orbits ц in the 2 s - l d shell but no hole orbits v. 
12C on the other hand can be obtained by removing four nucléons f rom 
160, so it has N = 4 hole orbits v but no particle orbits. Negative parity 
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states of 19F can be formed by placing four nucléons in the 2s - Id shell 
and leaving a hole in the lp - she l l . These states have M = 4 particle 
states ц and N = 1 hole states v. 

The Hart ree -Fock Hamiltonian (2.6) can be written: 

< j 1 m 1 |h|j 2m 2>=<j 1 m j |t|j2m2>+ ^ <jx m 1 , X|v|j2m2, X> 

Xels.lp 

M N 

+ y < j i m 1 . J " | v | j 2 m 2 , M > - y< j 1 m 1 , i /|v| j 2 m 2 , i /> (3.3) 

(1=1 

The f irst line of equation (3.3) is simply the Hart ree -Fock 
Hamiltonian of 1 60 which is spherical and therefore diagonal in the |jm)> 
representation: 

<i m ¡t I j m > + V < j m , Xlvlj m , X > = e 5 6 (3.4) 
1 1 ' ' 2 2 /_, 1 l ' 1 |J2 2 ' ' j j j m m 

Xe ls . lp 

е̂  are the energies of the orbits in the 1 60 ground state field. Indeed 
because the expansion of the orbits is limited to one major shell only, 
the sum over X in Eq . ( 3 . 4 ) is independent of the C^m coefficients of the 
Is and lp orbits. This simply reflects the fact that the 1 60 ground state 
determinant is unaltered when its orbits are replaced by a unitary linear 
combination of themselves. 

With the help of Eqs . (3.3) and (3.4) the Hartree -Fock Hamiltonian 
becomes: 

M 
< j m |h|j m > = e 6 6 + V < j m ii|v|j2m 

1 J1 J2 12 '—> 
M = 1 

N 

- y < J i m i , v | v | j 2 m 2 , y > (3.5) 

Only the particle and hole orbits appear in this expression and the 
kinetic energy is replaced by the single particle energies e. of the 
spherical 160 field. 

By expressing the sums appearing in Eq . ( 2 . 9 ) in terms of sums 
over particle and hole orbits as in Eq . ( 3 . 2 ) we find the following ex-
pressions for the Har t ree -Fock energy: 

M N 

E = v l + ! У <vv<\v\vv<> 

! vv'=l 

M N 

" У 7 < , v | v ^ > + y < , | K | , > - y < x | K | X > (3.6 ) 

(J= 1 y = 1 M X 
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E 0 is the 160 binding energy 

Eo = = У <X|t|X>+-| Y <^ ' |v|XX '> (3.7) 

\e ls,ip X 'e ls . lp 

E 0 is also independent of the C j m coefficients of the Is and lp shell 
orbits. When the Har t ree -Fock equations are solved the Hart ree -Fock 
energy can be calculated with the following expression: 

M 

E=E°+i I 
iN 

fj =1 V = 1 

where К is the 1 6 0 spherical field operator 

(3 .8 ) 

< j 1 m 1 |K| j 2 m 2 > = e j i6 j i .26m i r 

The Hart ree -Fock equations: 

(3.9) 

Ь|и> = ер |ju>, h|v> = e„|i/> (3. 10) 

are solved by the iteration procedure described in section 2. 
We have now formulated the Hartree -Fock problem with reference 

to the 1 60 closed shell . This formulation is suitable to the description 
of 2s - Id shell nuclei in which A-16 nucléons are in 2s - Id shell orbits 
and where the 1 60 core remains inert. This is just the shell model 
description of these nuclei, in which the nuclear Hamiltonian is diagonalized 
among the A-16 nucleón configurations in the 2s - l d shell. 

Such diagonalizations are very lengthy and the S . M . S . Hart ree -Fock 
theory is an approximation to the exact diagonalization. 

3.1. Additional practical details 

In order to car ry out a Hartree -Fock calculation it is necessary to 
choose the osci l lator constant a = (mw/h), the single particle energies e. 
and a suitable effective interaction v. 

The osci l lator constant a may be chosen so as to fit the experimental 
mean square radius of the nucleus which is known from electron scattering. 
Since <jm|r2|jm^> is the same for any state |jm)> of a given major shell, 
the mean square radius is independent of the C j m coefficients in a single-
ma jo r - she l l calculation. It is easy to check that for a nucleus which has 
M . proton particle orbits and N p proton hole orbits, the mean value of 

Z 2 the monopole operator £ r^ is: 

<r2>42 
7M„ 

1 8 + -
2 (3.11) 

and the mean square radius is R = ( < r 2 > / Z ) i 
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T A B L E III. M E A N S Q U A R E R A D I I A N D C O R R E S P O N D I N G 
O S C I L L A T O R C O N S T A N T S 

Nucleus 
Mean-square radius 

( f e r m i ) 

a 
( f e r m i " 1 ) 

4 He 1 .62 0.756 

12C 2.37 0.620 

160 2.64 0.568 

M M g 2.98 0.547 

! 28si 3 .04 0.548 

32s 3.19 0.531 

40Ca 3. 52 0.492 

The values of a obtained from mean-square radii measured by 
electron scattering [1] are shown in Table III. 

The mean-square radii are expressed in fermis and a in inverse 
f e rmis . Each nucleus should be calculated with the appropriate a . 

The single particle energies may be obtained from the 1 60 and 1 7 0 
neutron separation energies and f rom the 1 70 and 1 50 spectrum. It 
follows f rom equation (3.5) that the eigenstates of h for 170 and 150 which 
are respectively one particle and one hole in 1 60 are just the | j m ) states 
of the 1 60 field. We have seen in section 1 that the difference between the 
1 60 and 1 50 binding energies is the energy e. of the highest occupied orbit. 
1 50 has a 1/2" ground state. Thus the energy of the lp1/2 state will be 
given by the binding energy equation: 

= 16 0_15 0 = -15.67 MeV (3.12) 
Pi z 

1 50 has a 3/2" excited state at 6.16 MeV which is easily seen in an 
1 6 0(p , d) 150 experiment in which a neutron is picked up from 1 60. This 
state is probably a lp3^2 hole state, of energy: 

e, = - 1 5 . 6 7 - 6 . 1 6 = - 2 1 . 83 M e V 

4 
Similar ly 1 7 0 has 4.14 MeV more binding than 1 60. The 170 ground 

state is 5/2+ so that the energy of the Id5/2 state is elds/2 = -4 .14 M e V . 
The excited states l/2 + and 3/2+ at 0.871 MeV and 5.08 MeV, respectively, 
may be considered as the 2s1/2 and Id3/2 particle states so that 

e2s 1/2 = -4 .14 + 0.87 = - 3 . 27 MeV 
(3.13) 

e 3/2 = -4 .14 + 5.08 = +0.94 MeV 
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The energies ê  may be visualized as the energies of the |jm)> states 
relative to the edge of the 160 spherical Hartree-Fock potential. When the 
energies Cj are taken from experimental binding energies it should not be 
forgotten that they represent the sum (3.4) calculated with the oscillator 
constant a which yields the 1 60 mean square radius. The e j ' s will change 
when a different value of a is used in another nucleus. The variation of 
€j with a may be taken into account by considering the 40Ca Hartree-Fock 
closed shell solution. In 40Ca the Hartree-Fock orbits are also |jm)> 
states and the energy of the orbits in 40Ca are: 

24 

e¡ = e + У <j,M|v|j,M> (3.14) 
t ) 
(i=i 

since the 24 particle orbits ц of the 2s-ld shell are filled in 40Ca. The 
energies e¡ are known experimentally from pick-up experiments on 
40Ca. 

= -21 73 MeV 

e2sV* = -18 20 MeV (3.15) 

eidV> = -15 73 MeV 

We can always write the two-body interaction in the form V0 v(12) 
where V0 measures the strength of the interaction. Then we have the 
set of four equations: 

24 

|i=1 * (3.16) 

24 

E«ca - E « o = 2 У (2j + l)e. Vo ^ <MM'|v|W'> 

j flM' = 1 
where j = ld5/2, 2s1/2 and ld3/2 . 

The unknown quantities in equations (3.16) are V0 and the three e j ' s . 
The latter represent the expression (3.4) calculated with a =0.492 fm"1 , 
the 40Ca value. The ej's are given in Eq.(3.15) and the difference 
E4oCa-Ei60 between the 40Ca and 160 binding energies is found from 
Table I: 

Eca - 4 0 " E 0 - 1 6 = -416.97 + 142.88 = -274.09 MeV 

The sums in Eq.(3.16) must be calculated with the interaction chosen 
and with a = 0. 492 fm"1 . For example if a Rosenfeld force 

v(12)=V0e" ( r/f i )2 ^ ^ [0.3 + 0.7 ^ .ç, ] (3.17) 
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with ^ = 1.48 fm is used, the solutions of Eqs . (3 .16 ) will yield a strength 

V =+70.82 MeV 0 

and single particle energies to be used in 40Ca: 

eld5/2 = -6 .19 , £2^/2 = -3 .22 , e l d 3/2 = - 0 . 2 5 (3.18) 

Since the e¡ fo r a = 0. 492 in 40Ca are quite s imi lar to the ones for 
a = 0.5(38 in " o it may be reasonable to extrapolate them linearly for the 
values of a in the intermediate nuclei. The results presented in these 
lectures will have been obtained this way. 

This method has the advantage of treating symmetrical ly 1 60 and 
40Ca nuclei which open and close the 2s - Id shell. The advantage of using 
experimental values Of €j comes f rom the fact that the central forces 
commonly used in shel l -model calculations fail to yield the correct €j 's 
when directly calculated f rom Eq . ( 3 . 4 ) . A central force will yield no 
spin-orbit splitting for example. 

The choice of ah effective interaction is more delicate. One might 
choose an effective interaction derived from realistic potentials which 
fit scattering data [3] . But if central forces are used the strength is 
fixed by Eqs . (3 .16 ) and in even-even N = Z nuclei only the components 
S and G (see Eq . (1 .14 ) ) contribute significantly. La rge gaps are only 
obtained with a smal l value of S compared to G; a Rosenfeld force may 
then be adequate for most N = Z nuclei of the 2s - l d shell. At the present 
time a systematic investigation of nuclei with neutron excess is not 
completed. 

3.2. Solutions of the Hart ree -Fock equations in even-even N = Z nuclei 

Kelson [3] was the f i rst to solve the Hart ree -Fock equations for 
even-even N = Z nuclei of the 2s - Id shell. Results obtained with the 
Rosenfeld force [17] are shown in Tables IV, V, VI and VII. On Fig. 5 the 
energies of the Hart ree -Fock orbits are plotted, and the eigenvalue of 
Jz is marked wherever the Hart ree -Fock solution has axial symmetry. 
It is seen that the energy of the highest occupied orbit is remarkably 
constant, and that the gap is a slowly decreasing function of A . The 
gap and the binding of the highest occupied orbit are somewhat smal ler 
than the experimental ones shown in Table lib. They both increase when 
ma jo r shells are allowed to mix. Ba r -Touv and Kelson [2] found that 
24Mg and 32S have an ellipsoidal solution with a lower energy and a l a rge r 
gap than the axially symmetric solution. In the ellipsoidal solution the 
Har t ree -Fock Hamiltonian no longer commutes with Jz but it retains 
the ellipsoidal symmetry of rotation by an angle ж about the x, у and 
z axes: 

; [h, exp(i7rjy ) ] = [h, exp(Í7rJx)] = [h, exp(i7rJz ) ] = 0 (3.19) 
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TABLE IV. AXIALLY SYMMETRIC SOLUTIONS ' со 

The first three lines give the values of the oscillator constant and of the three single particle energies of the l d s ^ 2 , 2s1/2 and ld5^2 states; the underlined numbers are the energies of the H.F. orbits; 
the energy of each orbit is followed by its components; the energies of K= 1/2 orbits are followed by their components on the l d ^ 2 , 2$ M2 and states respectively; the energies of К = 3/2 orbits 
are followed by their components on the Id ^ and Id ^ states ; orbits not followed by components are К = 5/2 orbits which are pure Id states. The bet torn line gives the value of the H. F. energy (3. 6). 
The radial wavefunction of the 2s state is proportional t o ( 3 / 2 - a 2 c 2 ) e x p ( - a 2 r V 2 ) . 

20 Ne " M g as i oblate ^Si prolate 32S oblate 32S prolate 36 Ac 

a = 0.559 a = 0 .547 a = 0.548 a = 0.548 a = 0 531 a = 0.531 a = 0.496 

d ^ - 4 . 3 8 d 5 / ! = -4 .71 d 5 / ! = -4.68 d 5 ^ 2 » -4.68 d5/*= -5.14 d s / i = - 5 . 1 4 d S ' ! = -6.09 

s = -3. 26 -3 .26 s = -3. 26 s l / 2 = -3.26 = -3 25 S ' / ! = - 3 . 2 5 s , / ! = -3.22 

d 3 ^ 2 = 0.79 0 .605 d 3/ 2= 0.62 d '/ 2 = 0.62 d 3 ' ! = 0.36 0.36 д , / г = -0.18 

814.58 а -16.33 а -18.53 a -19.37 а -18.26 a -19.74 a -20.92 а 

-0 7576 -0 7895 -17.98 a -0.7763 -0 7475 -0.8846 -19.78 а 

-0. 5273 0 5459 -0.5783 0. 6188 -0.5902 0.4641 0.9941 

-0. 3847 0 2806 -0.7596 0.1203 0.3048 0.0203 0.1084 

-6.58 -11.99 » 0.2977 -17. 97 * -17. 97 a 
-19.91 a -18.80 а 

-0. 9932 0 9704 -14. 99 a -0.9531 -16.44 a 9932 -0.9753 0.8054 
0. 1167 -0. 2414 0.6935 0.3027 -0. 5632 

8064 
0.2209 0.5873 

-5 .19 -9.86 0. 7204 -14. 68 * 0. 

5632 
8064 

0.5873 
-5 .19 -15.51 a 0.0801 

-0. 6357 -0 5443 -8.32 -0.4572 0.1802 
-0.2985 -15.82 а 

-0. 7298 -0 4114 -0.4212 -15.18 a 
-0.2985 

-0.4393 7298 4114 
0.7204 

-0.4212 -15.18 a 
-0.5350 -0.4393 

-0. 2516 -0. 7311 
-0.6935 

-0.7833 
0.8794 -0.7903 0.6822 

-5 .14 
-7.52 -8.11 -9.28 0. 4761 -14.33 a -0.5844 

-2.36 
-4.91 0.8044 

-14. 74 а -0. 1481 
-4.91 

-0.4702 
-6. 50 -11. 31 -10.23 -14. 74 а 

0. 4351 0 2837 
0.3630 0.4340 -0. 4761 0.2209 0.1084 

-0. 8881 0 7299 
-4.10 0.6630 0. 8794 0.9753 -0.9941 

-0.26 -0 6219 
0.1358 -0.6099 

-10.14 0. 2167 -3.01 -9.79 -10.03 -10.14 

0. 9932 0. 2414 
—Q 11Э1 

0. 3522 0.3559 0.3979 9932 
-0.8830 0.3027 

0.7060 0. 9704 
-0.8830 

0. 0370 0.7060 -0.4355 
0. 9352 0.6123 -0.8075 

-35. 78 -73.14 -123.00 -122.01 -169.20 -168.80 -220.48 

S л > 

Occupied orbit 
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Magnesium-24 a=0.547 l5/2 = -•4.71 s l / 2 = -3.26 d3 / 2 = 0.61 E=-76. 73 

e x d5/L - 3 / 2 
d 5/ 2 

1/2 /2 
3/2 

d

l / 2 
d3/2, 
- 3/2 

-16. 89a -0.2118 -0. 7794 0.1213 0. 5327 0.1544 -0.1595 

-14.48a 0. 7553 0.1051 0. 0870 0.3343 0.5201 0.1690 

- 7.90 0.3945 -0.5034 -0. 6553 -0.3544 -0.1644 0. 0945 

- 6.94 -0.3558 0. 2971 -0. 7253 0. 3311 0.3828 -0. 0545 

- 4.92 -0.2788 -0.1976 0.1486 -0. 5581 0. 6951 0.2577 

- 2.45 -0.1570 -0. 0294 -0.0120 0. 2403 -0. 2212 0. 9315 

Sulphur-32 ct= 0.531 d 5 / 2 = . 5.14 S V 2 = -3.24 d3/2=0.35 E= -170.64 

-19.99a -0.1048 0. 2115 -0. 8853 0. 3995 -0. 0297 -0. 0044 

-19.19a 0.6669 -0.5839 -0. 3381 -0.2743 -0.1055 -0.1167 

-16.31a 0.5865 0.4134 0. 2452 0.4427 -0.4771 -0. 0367 

-15. 46a 0.1133 0. 4510 -0.0696 -0. 3552 0. 2246 -0. 7760 

- 9.93 0.1931 0. 4858 -0.1752 -0.5901 -0.0246 0.5893 

- 8.26 0. 3874 0. 0624 0. 0788 0. 3080 0.8422 0.1885 
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en 
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13 m en 
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a Occupied orbit 
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T A B L E VI . S P H E R I C A L CLOSED S H E L L SOLUT IONS ° 

Energies es/2, e1/2 and e3^ of the Id5/2, 2s'/2 and Id3/2 orbits in the spherical field of closed shell solutions of various nuclei. The first line indicates the 
value of the oscillator constant used in each nucleus. The next three lines are the values of the single particle energies £j used in the Hartree-Fock Eqs. (3.5). 
The bottom line is the value of the Hartree-Fock energy E-E0 relative to the 160 energy given by Eq. (3. 8). 

Nucleus 16 o a ^Si 32 g 36A 40Caa 

a 0.568 0.548 0.531 0.496 0.492 

5/2 
e -4.14 -4.68 -5.14 -6. 08 -6.19 

eV2 -3.27 -3.26 -3.25 -3.22 -3.22 
£3/2 0.93 0.62 . 0.36 -0.18 -0.25 

e5/2 -4.14 -14.41b -16.19b -20.34b -21.73b 

e1 '2 -3.27 -10.18 -17.08b -11.21 -18. 20b 

3/2 
e ' 0.93 - 8.96 -11. 65 -14.44b -15. 73b 

E 0 -114.57 -168. 64 -217.10 -274. 09 

3 Closed shell 

b The single particle energies and the interaction strength are chosen so as to fit the observed single particle energies 6j in 160 and ê  in 40 Ca, 
as well as the 40 Ca binding energy. 



TABLE VII. CARBON-12 SOLUTIONS 

The table of deformed solutions lists the energies e^ of the Haitree-Fock orbits and their components от the states j of the p-shell and of the 2s-ld shell. The Hartree-Fock energy E is the 12C binding energy 
relative to the 160 binding energy. The single particle energies Cj used in the Hartree-Fock Hamiltonian were the same for both solutions. 

« С deformed solution a = 0.620 E = 41.06 

ex * l/l "Я "Я < 
-18.29a 0 1 0 0 0 0 0 0 0 

-14.79a 0.7343 0 0.6789 0 0 0 0 0 0 

- 2.71 0 0 0 0 0 1 0 0 0 

- 1.84 0.6789 0 -0.7343 0 0 0 0 0 0 

- 1.64 0 0 0 -0. 2450 0 0 -0. 9652 0.0914 0 

0.13 0 0 0 0 0. 8521 0 0 0 0.5234 

3.40 0 0 0 0.9493 0 0 -0. 2196 0.2251 0 

4.35 0 0 0 0 0.5234 0 ' 0 0 -0. 8521 

8. 01 0 0 0 0.1972 0 0 -0.1419 -0.9700 -

СЧ 
§ 

P 
3 
a 

<s> 
X > 
13 m сл 
О -п 

О 
ас 
н 
z 
с 
n 
5 12С spherical solution 

I ipV IP'1/2 Id*/2 1/2 2s ' Id'" 

£i -22.01 -15. 85 -4.15 -3.28 0.93 

ei -13.24a - 8.43 +0.83 -1.19 +5.12 

Occupied orbit 

О5 
СЛ 
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With these symmetries the expansion of an orbit ц may be limited to 
the following states: 

,5/2 ,5/2 ,5/2 ,3/2 „3/2 , „1/2 . „ 
5/2 1/2 -3/2 1/2 -3/2 ' a n d S l / 2 < 3 - 2 0 > 

and to each orbit |/u)> there corresponds another fil led orbit е'^У orthogonal 
to JM/1. This expansion ensures further that the x, у and z -axes are the 
principal axes of the eJLipsoidal field. 

- 1 2 

-K-

- 1 0 

- 1 2 

- 1 8 • 

- 20-

- 2 2 

"g Si (obi) Si (proI.) 

- 1 8 

- 2 0 

FIG. 5. Energies eji of the Hartree-Fock orbits of even-even nuclei of the 2s-ld shell 

Compare the orbits and the Hartree -Fock energies of the ellipsoidal 
and axially symmetric solution of 24Mg. The gap is l a rger for the 
ellipsoidal solution suggesting its greater stability. 

Spherical minima are only obtained for 160 and 40Ca. Compare the 
orbits and the Har t ree -Fock energies of the spherical and deformed so-
lutions of 12 C, 28Si and 32S. In each case a better energy and a reason-
able gap is obtained with the deformed solution, although the 32S solutions 
are very close in energy. 

3.3. The effect of spin-orbit splitting 

In the absence of spin-orbit splitting the Hart ree -Fock solution of 
even-even N = Z nuclei converges towards the L - S coupling wavefunction 
discussed in section 1. The orbits factorize into spin and space parts 
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as in E q . ( 1 . 6 ) . Hart ree -Fock solutions with no spin orbit splitting may 
be obtained by assuming the e l d3/2-e l d5/2 splitting is due to a term of the 
form ai-s and letting a-> 0. The energies e1(j3/2 and elds/2 then come to a 
common energy equal to 

(2e ld3/2 + 3e l d y 2 ) 

The 20Ne occupied orbit then becomes: 

-0.629d5 / 2 + 0.584 S V 2 - 0 . 5 1 3 d3/2 = ( -0 .812 dn + 0.584 Sn) t (3.21) 
1/2 1/2 1/2 v 0 

and the M M g occupied orbits become: 

(0.739 d0 - 0 . 653 S Q -0 .12 d 2 - 0 . 1 2 d.2 ) t 

7 2 ( d l + d - i ) T 

States in which four nucléons f i l l each orbit forming closed shells 
of spin and isospin have a zero expectation value of the spin-orbit splitting 

a i - S . Considered as a perturbation the f irst order effect of the spin-
orbit on the energy is zero. In fact the effect of the spin-orbit splitting 
on the Hart ree -Fock energy of 20Ne and 24Mg is quite smal l . When the 
full spin orbit splitting is 'switched on the wavefunctions of the orbits 
(which can be read off Table V) are: 

in 20Ne: 
( -0 .832 d 0+0.527 s 0 ) t-0.179 dx i 

in 24Mg: 

( - 0 . 70 d +0.53 s +0.12 d +0.05 d , ) t +(-0.26 d , -0 .37 d , ) l I V U ¿ m¿ — J. J. 

(0.75 d_1 +0.47 d 1 ) i + (0.19 d_2+0.09 d 2 -0 .25 dQ+0.33 sQ ) t 

It is seen that the spin-orbit splitting introduces significant changes 
in the orbital wavefunctions compared to their L - S limit given by 
Eqs . (3 .21 ) and (3.22) . The energy which is a stationary quantity will 
not be seriously affected by the change in the wavefunction due to the 
spin-orbit splitting. Other quantities such as magnetic moments of 
odd-A nuclei are sensitive to the spin orbit splitting as we shall see. 
A small change in the energy does not guarantee a smal l change in all 
the other properties of a nuclear wavefunction. 

The gap separating filled and empty orbits is introduced by the spin-
orbit splitting, and it is greatest in the L - S limit of vanishing spin-orbit 
splitting. The large gap hinders the effect of the spin orbit term a i . S in 
so f a r as it makes it difficult to produce particle-hole excitations which 
are the f i rst order corrections to the L - S wavefunction. But as the 
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n u c l e u s g e t s l a r g e r , t h e o s c i l l a t o r c o n s t a n t b e c o m e s s m a l l e r ( s e e T a b l e I V ) 

a n d t h i s e f f e c t i v e l y r e d u c e s t h e i n t e r a c t i o n v a n d h e n c e t h e g a p . D i s -

t o r t i o n s d u e t o t h e s p i n o r b i t t e r m w h i c h d o e s n o t d e c r e a s e b e c o m e m o r e 

i m p o r t a n t a n d t h i s i s p a r t i c u l a r l y t r u e o f 3 2 S i n w h i c h t h e e l l i p s o i d a l , t h e 

a x i a l l y s y m m e t r i c p r o l a t e a n d o b l a t e a n d t h e s p h e r i c a l c l o s e d s h e l l s o -

l u t i o n s a r e q u i t e c l o s e a s s e e n o n F i g . 6 . 

SPIN ORBIT STRENGTH 

FIG. 6. Energies of the spherical closed shell and various deformed H.F. solutions of 32S plotted against 
the spin-orbit splitting of the ds'2 and d3/? states [ 6 ] 

T h u s i n 3 2 S t h e s p i n - o r b i t s p l i t t i n g a p p a r e n t l y d e s t r o y s t h e s t a b i l i t y 

o f t h e d e f o r m e d i n t r i n s i c s t a t e a g a i n s t /3 a n d y v i b r a t i o n s . W e s h a l l s e e 

e v i d e n c e f o r t h i s i n t h e m a g n e t i c m o m e n t o f 3 3 S . 

O b v i o u s l y t h e s p i n - o r b i t s p l i t t i n g i s f a r m o r e e f f e c t i v e i n l o w e r i n g 

t h e s p h e r i c a l s o l u t i o n s . F o r e x a m p l e i f i t i s i n c r e a s e d s o a s t o l o w e r 

t h e e n e r g y € i ¿ ¡ / 2 o f t h e d 5 / 2 s t a t e b y 1 M e V , t h e s p h e r i c a l s o l u t i o n s o f 

a n d 3 2 S , i n w h i c h t w e l v e p a r t i c l e s f i l l t h e d 5 ^ 2 s h e l l , a r e l o w e r e d b y 

1 2 M e V . 

I t s h o u l d b e b o r n e i n m i n d t h a t t h i s d i s c u s s i o n o f s p i n - o r b i t e f f e c t s 

h a s b e e n l i m i t e d t o t h e e f f e c t s o f t h e s p i n - o r b i t s p l i t t i n g o c c u r r i n g i n t h e 

s i n g l e p a r t i c l e e n e r g i e s e j . A b e t t e r d i s c u s s i o n , w h i c h h a s n o t y e t b e e n 

m a d e , w o u l d b e o b t a i n e d w i t h a f o r c e v w h i c h c o u l d r e p r o d u c e t h e s p i n -

o r b i t s p l i t t i n g i n t h e C j ' s f r o m E q . ( 3 . 4 ) a n d w h i c h c o u l d h e n c e e v a l u a t e t h e 

s p i n - o r b i t i n t e r a c t i o n b e t w e e n t h e n u c l é o n s i n t h e 2 s - l d s h e l l . T h e l a t t e r 

i n t e r a c t i o n h a s b e e n n e g l e c t e d h e r e . 

3 . 4 . E l l i p s o i d a l s y m m e t r y a n d m a x i m u m s p a t i a l s y m m e t r y 

W e h a v e s e e n i n E q s . ( 3 . 2 1 ) a n d ( 3 . 2 2 ) t h a t i n t h e a b s e n c e o f s p i n -

o r b i t s p l i t t i n g t h e T I a r t r e e - F o c k s o l u t i o n c o n v e r g e s t o a n L - S s o l u t i o n 
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i n w h i c h f o u r n u c l é o n s f i l l t h e s a m e o r b i t i n c o n f i g u r a t i o n s p a c e . E q s . ( 3 . 2 3 ) 

s h o w t h a t t h i s r e m a i n s t r u e t o a c o n s i d e r a b l e e x t e n t e v e n i n t h e p r e s e n c e o f 

s p i n - o r b i t s p l i t t i n g . A n L ~ S s o l u t i o n i n w h i c h f o u r n u c l é o n s o c c u p y t h e s a m e 

s p a t i a l o r b i t i s a w a v e f u n c t i o n w i t h m a x i m u m s p a t i a l s y m m e t r y . I n d e e d 

t h e H a r t r e e - F o c k w a v e f u n c t i o n s a r e q u i t e c l o s e t o t h e w a v e f u n c t i o n s o b -

t a i n e d f r o m E l l i o t t ' s ( X , ц ) c l a s s i f i c a t i o n s c h e m e [ 7 ] , o r t o N i l s s o n ' s 

a s y m p t o t i c w a v e f u n c t i o n s [ 8 ] . M a x i m u m s p a t i a l s y m m e t r y w a v e f u n c t i o n s 

c o m e c l o s e t o m i n i m i z i n g t h e p o t e n t i a l e n e r g y o f a c e n t r a l f o r c e . T h e 

e l l i p s o i d a l s o l u t i o n o f 2 4 M g , w h i c h d o e s n o t h a v e a x i a l s y m m e t r y , i s 

n o t h i n g b u t a n a t t e m p t o f t h e w a v e f u n c t i o n t o h a v e m a x i m u m s p a t i a l 

s y m m e t r y [ 5 , 9 ] . 

I n 2 0 N e t h e o r b i t h a s b o t h s p a t i a l m a x i m u m s y m m e t r y a n d a x i a l 

s y m m e t r y . B u t i n M M g t h e o n l y w a y t o o b t a i n a x i a l s y m m e t r y w i t h t h e 

d-L a n d d . - ц o r b i t w o u l d b e t o f i l l t h e d l t a n d d . l J r o r b i t s . T h e n t h e n u c l é o n s 

w i t h s p i n u p a n d d o w n a r e n o t i n t h e s a m e s p a t i a l o r b i t a n d t h e s p a t i a l 

s y m m e t r y i s p a r t l y d e s t r o y e d . B u t i f t h e n e u t r o n s a r e p l a c e d i n t h e 

(dj^ + d . j ) o r b i t t h e n a x i a l s y m m e t r y i s d e s t r o y e d b u t s p a t i a l s y m m e t r y i s 

p r e s e r v e d . I n f a c t t h e H a r t r e e - F o c k c a l c u l a t i o n s e n t i r e l y c o n f i r m t h e 

s y m m e t r i e s p r e d i c t e d b y E l l i o t t ' s ( X , ц ) c l a s s i f i c a t i o n s c h e m e . 

3 . 5 . T h e 2 8 S i d e g e n e r a c y 

2 8 S i h a s t w e l v e p a r t i c l e s i n t h e 2 s - l d s h e l l . E x a c t l y h a l f o f t h e 2 s - l d 

s h e l l o r b i t s a r e o c c u p i e d i n 2 8 S i . T h e r e a r e t w o n e a r d e g e n e r a t e s o l u t i o n s 

f o r t h i s n u c l e u s w h i c h h a s o p p o s i t e s i g n s f o r t h e q u a d r u p o l e m o m e n t [ 6 ] . 

T h e y a r e b o t h s h o w n i n T a b l e I V . O n e i s o b t a i n e d b y f i l l i n g а К = 1 / 2 , 

3 / 2 a n d 5 / 2 o r b i t a n d t h e o t h e r i s o b t a i n e d b y f i l l i n g t h e r e m a i n i n g t w o 

К = 1 / 2 o r b i t s a n d o n e K = 3 / 2 o r b i t . T h e f o r m e r s o l u t i o n h a s a n e g a t i v e 

q u a d r u p o l e m o m e n t a n d o b l a t e s h a p e , t h e l a t t e r h a s a p o s i t i v e q u a d r u p o l e 

m o m e n t a n d p r o l a t e s h a p e . T h e t w o s o l u t i o n s a r e v e r y o r t h o g o n a l t o o n e 

a n o t h e r , a n d b o t h h a v e a l a r g e g a p . 

T h e o c c u p i e d o r b i t s o f t h e o b l a t e s o l u t i o n a r e n o t e x a c t l y t h e s a m e a s 

t h e e m p t y o r b i t s o f t h e p r o l a t e s o l u t i o n e s s e n t i a l l y b e c a u s e o f t h e s p i n 

o r b i t s p l i t t i n g . 

T h e p r o b l e m o f t h e p o s s i b l e m i x i n g o f t h e H a r t r e e - F o c k s o l u t i o n s 

w h i c h d i f f e r b y t h e r e a r r a n g e m e n t o f a l a r g e n u m b e r o f p a r t i c l e s i s n o t 

y e t s o l v e d . 

4 . R O T A T I O N A L B A N D S I N T H E 2 s - I d S H E L L N U C L E I 

H o w d o w e r e l a t e t h e H a r t r e e - F o c k w a v e f u n c t i o n |cp)> t o t h e a c t u a l 

n u c l e a r s t a t e s o f a g i v e n a n g u l a r m o m e n t u m ? T h e r e a r e b a s i c a l l y t w o 

m e t h o d s u s e d t o o b t a i n t h e n u c l e a r s t a t e s w h i c h h a v e g o o d a n g u l a r m o -

m e n t u m f r o m H a r t r e e - F o c k w a v e f u n c t i o n s w h i c h d o n o t : 

A - T h e a d i a b a t i c a p p r o x i m a t i o n 

B - A n g u l a r m o m e n t u m p r o j e c t i o n . 

M e t h o d A i s a n a p p r o x i m a t i o n o f m e t h o d B . 

4 . 1 . M e t h o d A : t h e a d i a b a t i c a p p r o x i m a t i o n 

T h i s m e t h o d i s b a s e d o n t h e u n i f i e d m o d e l o f B o h r a n d M o t t e l s o n [ 1 0 ] 

a n d i t i s t h e o n e u s e d b y N i l s s o n [ 8 ] . T h e H a r t r e e - F o c k w a v e f u n c t i o n 
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|cp)> i s a s s u m e d t o b e a s t a t e p e r m a n e n t l y d e f o r m e d i n a f r a m e o f r e f e r e n c e 

a t t a c h e d t o t h e n u c l e u s . T h i s s t a t e a n d f r a m e o f r e f e r e n c e a r e o f t e n c a l l e d 

i n t r i n s i c t o t h e n u c l e u s . W h e n t h e i n t r i n s i c H a r t r e e - F o c k s t a t e |ф)> i s 

e x p e c t e d t o b e v e r y s t a b l e , a s t h e l a r g e e n e r g y g a p s u g g e s t s , t h e d e g r e e s 

o f f r e e d o m w h i c h r e q u i r e l e a s t e n e r g y a r e e x p e c t e d t o b e r o t a t i o n s o f t h e 

i n t r i n s i c s t a t e . I n s u c h a r o t a t i o n t h e n u c l e u s b e h a v e s l i k e a s y m m e t r i c 

t o p a n d t h e r o t a t i o n w i l l p r o d u c e s t a t e s o f a n g u l a r m o m e n t u m J a n d p r o -

j e c t i o n M o n t h e z - a x i s o f t h e l a b o r a t o r y f r a m e w h i c h a r e d e s c r i b e d b y 

t h e s y m m e t r i c t o p w a v e f u n c t i o n s D j ^ ( f 2 ) . 

T h e D * ( Q ) w a v e f u n c t i o n i s d e f i n e d a s : 

D ^ CT = < J M | R ( Q ) | J K > ( 4 . 1 ) 

w h e r e r e p r e s e n t s t h r e e E u l e r a n g l e s ( a , | 3 , y ) a n d R i s t h e r o t a t i o n 

o p e r a t o r : 

R ( i ! ) = e i a ,
Z e - i 8 I y ( 4 , 2 ) 

Q r e p r e s e n t s t h e o r i e n t a t i o n o f t h e n u c l e u s , t o w h i c h t h e i n t r i n s i c f r a m e 

o f r e f e r e n c e i s a t t a c h e d , w i t h r e s p e c t t o t h e l a b o r a t o r y f r a m e , К i s t h e 

p r o j e c t i o n o f t h e a n g u l a r m o m e n t u m o f t h e H a r t r e e - F o c k s t a t e |ф )> a l o n g 

t h e z - a x i s o f t h e i n t r i n s i c f r a m e . K 

C o n s i d e r a n e v e n - e v e n n u c l e u s w i t h К = 0 . 

I f i t s H a r t r e e - F o c k s t a t e | ф 0 ) > i s s t a b l e , t h e m o t i o n o f t h e n u c l é o n s 

i n t h e i n t r i n s i c f r a m e i s a s s u m e d t o b e u n c o u p l e d t o t h e r o t a t i o n . T h e 

w a v e f u n c t i o n o f t h e n u c l e u s w i t h s p i n J a n d p r o j e c t i o n M w i l l t h u s 

f a c t o r i z e : 

T h e c o - o r d i n a t e S7 a n d t h e c o - o r d i n a t e s o f t h e H a r t r e e - F o c k w a v e -

f u n c t i o n | ф 0 ^ > i n t h e i n t r i n s i c f r a m e a r e t r e a t e d a s i n d e p e n d e n t v a r i a b l e s . 

T h a t t h e w a v e f u n c t i o n ( 4 . 3 ) r e p r e s e n t s a n u c l e u s r o t a t i n g w i t h a n g u l a r 

m o m e n t u m J i s o b v i o u s f r o m t h e r e l a t i o n 

D * J ( a , / 3 , y ) = J I g I - s ¿ ( j 3 . a ) ( 4 . 4 ) 
MO NJ 2j + l M 

w h e r e Y j ^ f i S , » ) i s a s p h e r i c a l h a r m o n i c . 

T h e w a v e f u n c t i o n ( 4 . 3 ) i s t h e e i g e n f u n c t i o n o f t h e H a m i l t o n i a n 

H = S + H o 
—> 

w h e r e R i s t h e a n g u l a r m o m e n t u m o p e r a t o r o f t h e r o t a t i n g i n t r i n s i c 

f r a m e . I t a c t s o n l y o n t h e v a r i a b l e Í 2 : 

R 2 D M > > = J ( J + 1 > D ^ > ( 4 - 5) 
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m o t i o n i n t h e d e f o r m e d H a r t r e e - F o c k f i e l d : 

Н о = ) е х Ь х Ь , ( 4 . 6 ) 

x 

a n d i t a c t s o n l y o n t h e i n t r i n s i c s t a t e | q > 0 ) : 

H o 

A 

k > = E o k > = ( X e x ) k> 
X =1 

T h u s t h e s p e c t r u m o f t h e s t a t e s У g e n e r a t e d b y t h e i n t r i n s i c s t a t e 

| c p 0 > i s : M ° 

V < ^ o l H 0 = Eo+èJ (J + 1> <4'7> 

A s p e c t r u m o f t h e f o r m ( 4 . 7 ) i s c a l l e d a r o t a t i o n a l b a n d , a n d 0 i s t h e 

m o m e n t o f i n e r t i a o f t h e n u c l e u s . 

W h e n a p a r t i c l e o r h o l e i s a d d e d t o a n a x i a l l y s y m m e t r i c c o r e |cp0 У 

i t w i l l g o i n t o a n o r b i t \ w h i c h h a s d e f i n i t e a n g u l a r m o m e n t u m p r o j e c t i o n 

К = m x a l o n g t h e i n t r i n s i c z - a x i s . 

T h e i n t r i n s i c s t a t e n o w h a s a n g u l a r m o m e n t u m К a l o n g t h e z i n t r i n s i c 

a x i s a n d i n s t e a d o f t h e w a v e f u n c t i o n ( 4 . 3 ) t h e f o l l o w i n g w a v e f u n c t i o n m u s t 

b e u s e d t o r e p r e s e n t t h e n u c l e u s i n a s t a t e o f s p i n J . 

I*MK> = { D > > l\> -)J+K кк>} <4.8} 

У i s t h e p a r t i c l e o r h o l e i n t r i n s i c s t a t e , 
те 

k > = b I k > o r b x k > -

k K > = ( e x p " ^ y i k K > 

К e q u a l s m ^ f o r a p a r t i c l e s t a t e a n d - m x f o r a h o l e s t a t e . 

T h e s e c o n d t e r m i n E q . ( 4 . 8 ) i s i n t r o d u c e d b e c a u s e o f t h e e x p ( - i î r J y ) 

s y m m e t r y . W h e n K = 0 t h e w a v e f u n c t i o n ( 4 . 8 ) r e d u c e s t o t h e w a v e f u n c t i o n 

( 4 . 3 ) f o r e v e n v a l u e s o f J a n d v a n i s h e s f o r o d d v a l u e s o f J . T h u s t h e 

r o t a t i o n a l b a n d g e n e r a t e d b y а К = 0 i n t r i n s i c s t a t e w i t h t h e e x p ( - i T r J y ) 

s y m m e t r y w i l l c o n s i s t o f o n l y e v e n v a l u e s o f J . 

T h e H a m i l t o n i a n o f t h e o d d s y s t e m i s 

2 2 

H = f é + H o = L ! F - + H o < 4 - 9 > 

42 
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s i n c e t h e t o t a l a n g u l a r m o m e n t u m J i s t h e s u m R + j o f t h e d e f o r m e d c o r e 

a n d o d d p a r t i c l e a n g u l a r m o m e n t a r e s p e c t i v e l y . 

T h e p a r t i c l e o p e r a t o r ^ a c t s o n t h e i n t r i n s i c s t a t e 1 ф к ^ > a n d J a c t s o n 

t h e v a r i a b l e П . W e n o w h a v e 

H 0 ( ф к > = E 

o + e x . p a r t i c l e s t a t e s 

= E q - e ^ f o r h o l e s t a t e s I J \ 
T h e c r o s s - t e r m J . j i n t h e H a m i l t o n i a n ( 4 . 9 ) w i l l m i x s t a t e s p ^ / 

w i t h d i f f e r e n t v a l u e s o f K . S i n c e t h e o r b i t s e ^ a r e _ c j u i t e c l o s e t o o n e 

a n o t h e r t h i s m i x i n g i s n o t n e g l i g i b l e . T h e t e r m J . j i s c a l l e d t h e 

C o r i o l i s p e r t u r b a t i o n . S o H m u s t b e d i a g o n a l i z e d a m o n g t h e p o s s i b l e 

I ^ M K ^ c o n f i g u r a t i o n s . T h e C o r i o l i s p e r t u r b a t i o n a f f e c t s t h e d i a g o n a l 

e n e r g i e s o f K = 1 / 2 b a n d s , a n d i t i s r e a d i l y s h o w n t h a t t h e s p e c t r u m 

g e n e r a t e d b y a R = 1 / 2 b a n d i s 

E T ¿ [ J ( J + l ) + a ( - ) J + 1 / \ 1 / 2 ( J + l / 2 ) ] ( 4 . 1 0 ) 

w h e r e a = £ c f ( j + l / 2 ) ( - ) 
j + 1 / 2 

T h i s p e r t u r b a t i o n w h i c h i s s p e c i a l t o К = 1 / 2 b a n d s i s c a l l e d t h e d e -

c o u p l i n g o f К = 1 / 2 b a n d s . 

T o i l l u s t r a t e h o w t o u s e t h e w a v e f u n c t i o n ( 4 . 6 ) l e t u s c a l c u l a t e a 

m a t r i x e l e m e n t o f a t e n s o r o p e r a t o r T q o f r a n k k a n d c o m p o n e n t q . A n y 

o p e r a t o r m a y b e e x p r e s s e d a s a s u m o f t e n s o r o p e r a t o r s . 

T h e m a t r i x e l e m e n t i s c a l c u l a t e d i n t h e l a b o r a t o r y f r a m e a n d w e m u s t 

f i r s t e x p r e s s T k i n t h e i n t r i n s i c f r a m e : 

Г к - V D k * 
ч L i " 

(П) T,K ( 4 . 1 1 ) 

T h e t e n s o r T k n o w o p e r a t e s o n t h e i n t r i n s i c w a v e f u n c t i o n | ф к ^ -

U s i n g t h e r e l a t i o n 

d S Í D ( Q ) D k (Г2) D * 2 ( Л ) = -
, qy M,K. 

8 т г 2 
" J 2 

k Jil J 2 k J J 

2 J a + l L M 2 q M J L K 2 v K J 
( 4 . 1 2 ) 

t h e m a t r i x e l e m e n t o f T ^ b e t w e e n w a v e f u n c t i o n s ( 4 . 6 ) i s : 

4 M l K l 1 V M 2 K 2 

J 2 ^ J J 

L ^ ч 

J 2 
t K 2 

k J ! 
< " K 1 | Т К | К > i i/i 2 ( 4 . 1 3 ) 

42' 
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I n e x p r e s s i o n ( 4 . 1 3 ) a n d | - К ) > a r e t h e i n t r i n s i c s t a t e s | ф [ ( / > a n d 

( e x p - i 7 T J y ) | ф к > _ . 

~h h J 

n i j m 2 M 
a r e C l e b s c h - G o r d a n c o e f f i c i e n t s ( n o t 3 - j s y m b o l s ) . T h e 

f i r s t C l e b s c h - G o r d a n c o e f f i c i e n t i s a r e s u l t o f t h e W i g n e r - E c k a r t t h e o r e m . 

T h e s e c o n d a n d t h i r d C l e b s c h - G o r d a n c o e f f i c i e n t s a r e a r e s u l t o f o u r m o d e l 

a c c o r d i n g t o w h i c h t h e s t a t e s a r e g e n e r a t e d f r o m a n i n t r i n s i c s t a t e 

| ф к Х t h e y y i e l d t h e a d d i t i o n a l s e l e c t i o n r u l e : 

| K r K 2 | ^ k ( 4 . 1 4 ) 

4 . 2 . M e t h o d B : a n g u l a r m o m e n t u m p r o j e c t i o n 

A n i m p e r f e c t i o n o f t h e a d i a b a t i c m o d e l i s a p p a r e n t w h e n o n e c o u n t s t h e 

n u m b e r o f v a r i a b l e s o f t h e w a v e f u n c t i o n ( 4 . 8 ) . T h e i n t r i n s i c s t a t e | ф к / > i s 

a l r e a d y a f u n c t i o n o f a l l t h e d y n a m i c a l v a r i a b l e s o f t h e s y s t e m i n c l u d i n g 

П w h i c h w a s t r e a t e d a s a n i n d e p e n d e n t v a r i a b l e . T h e a d i a b a t i c m o d e l i s 

n o n e t h e l e s s v e r y u s e f u l b e c a u s e o f i t s s i m p l i c i t y a n d i t i s o f t e n a v e r y 

g o o d a p p r o x i m a t i o n . W e s h a l l s e e i n t h i s s e c t i o n t h a t t h e m e t h o d o f 

a n g u l a r m o m e n t u m p r o j e c t i o n p r o d u c e s a w a v e f u n c t i o n w i t h n o 

r e d u n d a n t v a r i a b l e s a n d t h a t t h e a d i a b a t i c m o d e l i s a n a p p r o x i m a t i o n o f 

t h e f o r m e r . I n t h e a n g u l a r m o m e n t u m p r o j e c t i o n m e t h o d t h e w a v e f u n c t i o n 

K*>is [ 1 1 ] 

( 4 . 1 5 ) 

N J K 

T h e w a v e f u n c t i o n ( 4 . 1 5 ) i s n o r m a l i z e d w h e n 

2J + 1 
N

J K 
f d Q D ^ Q ) ^ | R ( í í ) | q > > ( 4 . 1 6 ) 

U К К 

F o r M = K E q . ( 4 . 1 5 ) i s a p r o j e c t i o n o f | ф к ^ o n t h e s u b s p a c e o f a n g u l a r 

m o m e n t u m J b e c a u s e i t i s e a s i l y c h e c k e d t h a t 

J d f i D ¿ * ( C Í ) R ( Í 2 ) = £ | < * J K > < a J K | ( 4 . 1 7 ) 

a 

w h e r e a i s a n y c o m p l e t e s e t o f q u a n t u m n u m b e r s o t h e r t h a n J a n d K . 

L e t u s c a l c u l a t e a m a t r i x e l e m e n t o f t e n s o r o p e r a t o r T ^ b e t w e e n 

s t a t e s ( 4 . 1 5 ) 

. J , , k , J 2 \ _ ( 2 J i + 1 ) ( 2 J 2 + 1 ) 

I q I M2 K2 - ( 8 ) r y N l / 2 N l / 2 
J ,KJ J

2
K

2 

X J d ^ d Q 2 D ¿ i K i l í i j ) D ¿ ' K 2 ( n 2 ) < K l I R - 1 ( П 1 ) T k R ( n 2 ) | K 2 > ( 4 . 1 8 ) 
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W e c a n r e d u c e e x p r e s s i o n ( 4 . 1 8 ) t o a s i n g l e i n t e g r a l . T k b e i n g a 

t e n s o r o p e r a t o r h a s t h e f o l l o w i n g c o m m u t a t i o n r u l e s w i t h t h e r o t a t i o n 

o p e r a t o r R ( f 2 2 ) : 

( 4 . 1 9 ) 

R o t a t i o n s f o r m a g r o u p , h e n c e t h e p r o d u c t R _ 1 ( Г 2 а ) R ( f 2 2 ) i s e q u a l t o 

a s i n g l e r o t a t i o n R ( f 2 3 ) : 

R - ^ i J R ^ ) = R ( n 3 ) o r R f f i j ) = R ( S 2 2 ) R - 1 ( n 3 ) ( 4 . 2 0 ) 

T a k i n g m a t r i x e l e m e n t s o f ( 4 . 2 0 ) b e t w e e n s t a t e s I ^ M j ) a n d ^ K ^ ) 

o n e o b t a i n s 

D

M
1
K

1

( n i ) =

I
D

^
( n

2 '
 D

K ; > 3 > (4.21) 

E q u a t i o n s ( 4 . 1 9 ) , ( 4 . 2 1 ) a n d ( 4 . 1 2 ) y i e l d t h e d e s i r e d m a t r i x e l e m e n t : 

1 т к I J2 ( 2 J 2 + 1 ) 
\

1

M , K , П М.К. / M j K l l q M 2 K / - 8 ^ 2 n 1 / 2 n 1 / 2 

J ]K
A
 J

2
 K

2 

^ ^1 
M q M 

2 1 J 

< 1 
J 2 к J i 

L K 2 v ц 
[ d Q D * J i ( S 2 ) < K . 1 | R ( f i ) T k | K „ > ( 4 . 2 2 ) 

T h e m a t r i x e l e m e n t ( 4 . 2 2 ) i s s i m i l a r i n s t r u c t u r e t o t h e m a t r i x 

e l e m e n t ( 4 . 1 3 ) o b t a i n e d i n t h e a d i a b a t i c a p p r o x i m a t i o n . B e c a u s e o f 

a x i a l s y m m e t r y t h e i n t e g r a l o v e r r e d u c e s t o a s i n g l e i n t e g r a l : t h e 

t e r m ( 4 . 1 6 ) a n d t h e i n t e g r a l ( 4 . 2 2 ) b e c o m e : 

N 
JK ^ / S Ü 1 0 < к ( / 3 ) < Ф к | е ' Ш , У | ф к > d/3 

2J, +1 n * j , , , . 
— V / d S Î D 1 ( П К К л R ( ^ ) T k K 2 > 

ОТГ J 

V 

- f s i n / 3 d J
K ( Р ) < Ф К | e " i 6 J y Т ^ | ф к > d í3 ( 4 . 23 ) 

2 J 1(J 

T h e a d i a b a t i c a p p r o x i m a t i o n i s o b t a i n e d b y a s s u m i n g t h e o v e r l a p 

f u n c t i o n s < ф к | е " 1 б 1 У | ф к > a n d < ф к | e " i 6 J y Т к | ф к > a r e s t r o n g l y p e a k e d a t 
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t h e a n g l e s / 3 = 0 a n d /3 = тг. O n e c a n d e r i v e t h e m a t r i x e l e m e n t ( 4 . 1 3 ) f r o m 

t h e e x p r e s s i o n ( 4 . 2 0 ) b y k e e p i n g o n l y t h e c o n t r i b u t i o n o f t h e s e a n g l e s t o 

t h e i n t e g r a l . T h e К s e l e c t i o n r u l e ( 4 . 1 4 ) i s o n l y s t r i c t l y t r u e i n t h i s 

a p p r o x i m a t i o n . 

T h e e n e r g y o f t h e s y s t e m i s a p a r t i c u l a r c a s e o f ( 4 . 2 3 ) b e c a u s e t h e 

H a m i l t o n i a n H , g i v e n b y e q u a t i o n ( 1 . 8 ) , i s a t e n s o r o f r a n k к = 0 . T h u s 

t h e e n e r g y E j o f a s t a t e o f s p i n J g e n e r a t e d b y a n i n t r i n s i c s t a t e | ф К ) > i s 

1Г 

J s i n / 3 d ^ K ( 0 ) < ? K | e - i « y H ^ K > 

E , = - ( 4 . 2 4 ) 

7Г 

J s i n / 3 4 « 3 ) < Ф к | е - 1 а д У | Ф к > 

0 

I n o r d e r t o u s e e x p r e s s i o n ( 4 . 2 4 ) i t i s n e c e s s a r y t o c a l c u l a t e t h e 

o v e r l a p f u n c t i o n s <(cp K | ( e x p - i / 3 j y ) T y
k | c p K )> . 

C o n s i d e r t h e m a t r i x e l e m e n t ^ c p ^ e x p - i ^ J y ) | c p 2 )> w h e r e ^ ^ a n d 

| ф ^ a r e t w o S l a t e r d e t e r m i n a n t s : 
2 

k ^ b l X - - - b l j ° > 1 2 A 
( 4 . 2 5 ) 

| Ф 2 > = Ь ; 1 ь ; г . . . b M + j o > 

w h e r e : 

| x > = y C x | j m , > 

J ( 4 . 2 6 ) 

I C J I j m ^ 

J 

T h e n : 

е - щ у | ф > = ь ; . ь ; . . . . ь ; | 0 > 
¿ 1 2 A 

w h e r e : 

b t = e - ' w i b t e i e , y 
(j* M 

a n d 

| m ' > = Y C j V i B I y l j m M > = y c!*djt ( | 3 ) | j m ' > ( 4 . 2 7 ) 

j j m ' 
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T h u s : 

<Ф , | e " i S J y |ф > = < 0 | b . . . K b . b + b + , . , . b + | o > 1 1 1 2 \ A \ ~xt М>1 д.2 (j. i 

= d e t [ N (/3)] ( 4 . 2 8 ) 

i s t h e A X A m a t r i x o f t h e s c a l a r p r o d u c t s o f t h e o r b i t s 

X o f w i t h t h e r o t a t e d o r b i t s / j ' o f | ф 2 ) . T h e v a l u e o f t h e s c a l a r 

p r o d u c t i s o b t a i n e d f r o m E q . ( 4 . 2 7 ) : 

N = У C X C | J d i
 m ((3) ( 4 . 2 9 ) 

\(i / i J J m x m ) j 
j 

O n e c a n e v a l u a t e t h e m a t r i x N ^ . a n d t h e d e t e r m i n a n t ( 4 . 2 8 ) n u m e r i -

c a l l y . T h e o v e r l a p f u n c t i o n < ( ф к | е - 1 8 1 у | ф У i s s i m p l y o b t a i n e d f r o m ( 4 . 2 8 ) 

b y u s i n g | ф х > = | ф 2 > = | ф к > . к 

F o r t h e o v e r l a p f u n c t i o n <(ф w e u s e a c o m p l e t e s e t o f 

i n t e r m e d i a t e s t a t e s | n ) > : 1 

< Ф К 1 | е - ' в 1 У Т к | ф К 2 > = ^ < Ф К 1 | е - Ш 1 У | п > < п | Т у
к | ф К г > ( 4 . 3 0 ) 

n 

T h e o p e r a t o r e x p ( - i £ J y ) c a n o n l y c h a n g e t h e m a g n e t i c q u a n t u m n u m b e r 

o f a s t a t e | j m / > a n d c a n n o t m o v e a p a r t i c l e f r o m o n e s h e l l t o a n o t h e r . T h u s 

t h e s e t |n)> o f t h e i n t e r m e d i a t e s t a t e s i s l i m i t e d t o s t a t e s i n w h i c h a l l t h e 

p a r t i c l e s a r e i n t h e s a m e m a j o r - s h e l l a s i n | ф г ^ . I f T k i s a o n e b o d y 

o p e r a t o r , a m u l t i p o l e m o m e n t f o r e x a m p l e , t h e s e t | n ) > i s f u r t h e r l i m i t e d 

t o p a r t i c l e h o l e e x c i t a t i o n s : 

| n > = b j b J ? K 2 > ( 4 . 3 1 ) 

w h e r e v a n d /л a r e , r e s p e c t i v e l y , e m p t y a n d f i l l e d o r b i t s b e l o n g i n g t o t h e 

s a m e m a j o r s h e l l a s t h e o r b i t s ц . 

I f T k i s a t w o - b o d y o p e r a t o r , t h e s e t |n)> i n c l u d e s i n a d d i t i o n t o t h e 

p a r t i c l e - h o l e s t a t e s ( 4 . 3 1 ) t h e t w o p a r t i c l e - t w o h o l e s t a t e s 

l n > = Ь м 2 1 ф к > < 4 - 3 2 > 

S i n c e e a c h i n t e r m e d i a t e s t a t e |n)> i s s t i l l a S l a t e r d e t e r m i n a n t t h e 

o v e r l a p f u n c t i o n ^ K J ( e x p - i / 3 j y ) | n ) > c a n b e c a l c u l a t e d w i t h a i d o f e x p r e s s i o n 

( 4 . 2 8 ) , a n d < C n | T k | ф к у i s a s i m p l e m a t r i x e l e m e n t o f t h e o p e r a t o r 

T h e l i m i t a t i o n s o f t h e 2 s e t | n ) > m a k e t h e a n g u l a r m o m e n t u m p r o j e c t i o n 

m e t h o d q u i t e f e a s i b l e o n a c o m p u t e r . 
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4 . 3 . M a g n e t i c m o m e n t s o f o d d - A n u c l e i 
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A s a n a p p l i c a t i o n o f a d i a b a t i c m o d e l , c o n s i d e r t h e m a g n e t i c m o m e n t 

o p e r a t o r ц : 

ju= ^ ( G S + G £ Л . ) ( 4 . 3 3 ) 

i —1 

G s a n d G ^ a r e t h e g y r o m a g n e t i c r a t i o s o f s p i n a n d o r b i t a l a n g u l a r 

m o m e n t u m . 

G ^ l G s = 5 . 5 8 f o r p r o t o n s 

G i = 0 G s = - 3 . 8 5 f o r n e u t r o n s ( 4 . 3 4 ) 

W h e n S a n d SL a r e e x p r e s s e d i n u n i t s o f h , /u i s e x p r e s s e d i n u n i t s o f 

n u c l e a r m a g n e t o n s e h / 2 m p с . 

W e c a n s e p a r a t e t h e c o n t r i b u t i o n s o f t h e e v e n - e v e n c o r e a n d o f t h e 

o d d - p a r t i c l e ( o r h o l e ) i n t h e e x p r e s s i o n ( 4 . 3 3 ) b y w r i t i n g 

У (GS.+G £.)= G D R ( 4 . 3 5 ) 
/ s i e i R 

w h e r e G R i s t h e g y r o m a g n e t i c r a t i o o f t h e c o r e . 

T h e n 

ц = Gr R + G s S + G e i ( 4 . 3 6 ) 

I n E q . ( 4 . 3 6 ) S a n d S. a r e t h e s p i n a n d o r b i t a l a n g u l a r m o m e n t u m o f 

t h e o d d p a r t i c l e ( o r h o l e ) . T h e t o t a l a n g u l a r m o m e n t u m o f t h e s y s t e m i s : 

J = R + 1 + S 

s o t h a t w e o b t a i n t h e f i n a l e x p r e s s i o n f o r t h e m a g n e t i c m o m e n t 

M = G r J + ( G s - G r ) S + ( G î - G r ) Ï ( 4 . 3 7 ) 

T h i s e x p r e s s i o n f o r t h e m a g n e t i c m o m e n t i n a n a l o g o u s t o t h e e x ^ 

p r e s s i o n ( 4 . 9 ) o b t a i n e d f o r t h e H a m i l t o n i a n i n t h e a d i a b a t i c m o d e l . J 

o p e r a t e s o n t h e v a r i a b l e £7, S a n d i o p e r a t e o n t h e i n t r i n s i c w a v e f u n c t i o n 

I n t h e a b s e n c e o f s p i n o r b i t c o u p l i n g t h e e v e n - e v e n c o r e i s a c l o s e d 

s h e l l o f s p i n a n d t h e s p i n p a r t o f E q . ( 4 . 3 5 ) d o e s n o t c o n t r i b u t e . W h e n 

t h e r e i s a n e q u a l n u m b e r o f p r o t o n s a n d n e u t r o n s t h e a n g u l a r m o m e n t u m 

o f n e u t r o n s i s t h e s a m e a s t h a t o f t h e p r o t o n s s i n c e t h é y a r e i n t h e s a m e 

o r b i t s , h e n c e G R = 0 . 5 . 



664 RIPKA 

T A B L E V I I I . M A G N E T I C M O M E N T S O F O D D - A N U C L E I [ 1 2 ] 

Nucleus К J Even core Calculated Experimental Schmidt 

1 1

В 3/2" 3/2" 

12C 

2.57 2.69 3.79 

1 3

 С 1/2- 1/2-

12C 

0.86 0.72 0.64 

1 9

F 

L / 2 + 1/2 + 

20Ne 

2.82 2. 63 2.79 
1 9

F 

1/2 + 5/2 + 

20Ne 

3.86 3.5 ±0 .5 4.79 

Z1Ne 3/2 + 3/2 + . -0.582 -0. 66 1.14 

23Na 3/2 + 3/2 + 

" M g 

2.44 2. 22 0.12 

25Mg 5/2+ 5/2+ 

" M g 

-1.01 -0. 85 -1.91 

27 Al 

5/2 + 5/2 + 28Si 3.78 

3.64 4.79 27 Al 

l / 2 + 5/2 + 

28 Si oblate 

3.81 

3.64 4.79 

29Si l / 2 + 1/2 + 

28 Si oblate 

-0.47 

-0.56 -1.91 29Si l / 2 + 1/2 + 

^Si prolate -1.689 

-0.56 -1.91 

33S 3/2 + 3/2 + 

oblate 

32„ 
0.05 

0.64 1.14 33S 3/2 + 3/2 + 

prolate 1.22 

0.64 1.14 

35 Ci 3/2+ 3/2 + 36дг 0.63 0.82 0.12 
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T h e m a g n e t i c m o m e n t s o f o d d n u c l e i c a n b e c a l c u l a t e d u s i n g e x p r e s s i o n 

( 4 . 1 3 ) a n d t h e w a v e f u n c t i o n s o f t h e o r b i t s g i v e n i n T a b l e I V . A x i a l l y 

s y m m e t r i c s o l u t i o n s a r e u s e d t o g e t h e r w i t h t h e a p p r o x i m a t i o n G R = 0 . 5 . 

T h e g r o u n d s t a t e s o f t h e n u c l e i a r e a s s u m e d t o b e I = К r o t a t i o n a l b a n d 

h e a d s , a n d C o r i o l i s m i x i n g o f t h e r o t a t i o n a l b a n d s i s n e g l e c t e d . T h e 

r e s u l t s a r e s h o w n o n T a b l e V I I I [ 1 2 ] . 

4 . 4 . P r o j e c t e d H a r t r e e - F o c k s p e c t r a 

A s a n a p p l i c a t i o n o f t h e a n g u l a r m o m e n t u m p r o j e c t i o n m e t h o d c o n -

s i d e r t h e e n e r g y E j g i v e n b y E q . ( 4 . 2 4 ) [ 1 3 ] , w r i t i n g : 

< Ф к | е " В Д У Н | ф к > = < Ф к | е " В Д У | Ф к > Е н р_ + ^ J e " ^ | П > < П | Н | Ф К > ( 4 . 3 8 ) 

w h e r e E H p = < ( ф к | н | ф к ) > i s t h e H a r t r e e - F o c k e n e r g y g i v e n b y E q . ( 3 . 6 ) 

w e o b t a i n : 

n 

У J s i n / 3 d J
K K ( / 3 K ^ K | e " i S J y | п > < п | н | ф к > 

E J = E H . F . + 

J s i n / 3 < к ( 3 ) < Ф к | е " Ш У | ф к > 

5 E H . F . + A J ( 4 - 3 9 > 

A j i s t h e s h i f t b e t w e e n t h e H a r t r e e - F o c k e n e r g y a n d t h e e n e r g y o f t h e 

p r o j e c t e d s t a t e I n e q u a t i o n s ( 4 . 3 8 ) a n d ( 4 . 3 9 ) t h e s t a t e s |n^> a r e 

l i m i t e d t o t h e t w o p a r t i c l e t w o h o l e c o n f i g u r a t i o n s ( 4 . 3 2 ) b e c a u s e 

t h e m a t r i x e l e m e n t o f t h e n u c l e a r H a m i l t o n i a n b e t w e e n a H a r t r e e - F o c k 

s t a t e | ф к ) > a n d a p a r t i c l e h o l e s t a t e ( 4 . 3 1 ) i s z e r o . 

< ( п | н | ф к ) > i s a s i m p l e m a t r i x e l e m e n t : 

<п|н|Фк> = < < p K | b t b + b ^ b ^ Н | ф к > = | v | ^ / i 2 > ( 4 . 4 0 ) 

F i g u r e s 7 a n d 8 s h o w t h e o v e r l a p f u n c t i o n s : 

< Ф к | е " ^ у | ф к > a n d £ < Ф к | е " е 1 У | П > < П | Н | Ф К > 

w h e n |ф i s t h e s o l u t i o n o f 2 0 N e g i v e n i n T a b l e I V . 

T a b l e I X g i v e s t h e v a l u e s o f N ^ c a l c u l a t e d w i t h b y e q u a t i o n ( 4 . 2 3 ) 

f o r 2 0 N e , 2 8 S i a n d 3 6 A . T h e v a l u e s o f N J K s h o w h o w t h e v a r i o u s a n g u l a r 

m o m e n t a a r e d i s t r i b u t e d i n t h e H a r t r e e - F o c k w a v e f u n c t i o n . F o r i f w e 
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e x p a n d t h e H a r t r e e - F o c k w a v e f u n c t i o n i n t h e i n t r i n s i c f r a m e o n s t a t e s 

o f g o o d a n g u l a r m o m e n t a w e f i n d 

J 

w h e r e P ^ i s t h e p r o j e c t i o n o p e r a t o r g i v e n b y E q . ( 1 7 ) . N J K i s z e r o f o r 

o d d v a l u e s o f J b e c a u s e o f t h e e x p ( - i î r j y ) s y m m e t r y . N J K i s z e r o f o r 

J > 8 b e c a u s e t h e m a x i m u m a n g u l a r m o m e n t u m o f t w o p r o t o n s a n d t w o 

n e u t r o n s i n t h e 2 s - l d s h e l l i s J = 8 . T h e s a m e h o l d s f o r 3 6 A b e c a u s e 

t h i s n u c l e u s i s e q u i v a l e n t t o f o u r 2 s - I d h o l e s i n 4 0 C a . T h e r o -

t a t i o n a l b a n d s o f 2 0 N e a n d 3 6 A a r e s a i d t o h a v e a c u t - o f f a b o v e J = 8 . 

ROTATION ANGLE DEGREES 

FIG. 7. The overlap of the 20Ne H.F. deformed state with the same state rotated by an angle 0 about the 
Oy axis. The curve is symmetrical about 90° [ 5 ] 

F i g u r e 9 s h o w s t h e s p e c t r a o f 2 0 N e , 2 8 S i a n d 3 6 A o b t a i n e d b y p r o -

j e c t i n g t h e g r o u n d s t a t e i n t r i n s i c s t a t e s g i v e n i n T a b l e I V . T h e r e a r e 

s o m e s y s t e m a t i c d e v i a t i o n s f o r e x p e r i m e n t . 

T h e d i s t a n c e s b e t w e e n t h e 0 + a n d t h e 2 + s t a t e s a r e t o o s m a l l . T h e 
2 8 S i s p e c t r u m i s a l t o g e t h e r t o o c o m p r e s s e d . T h e r e a s o n w h y i s n o t c l e a r 

y e t . I t m a y b e f o r e x a m p l e t h a t t h e s t a t e s o f l i g h t n u c l e i a r e m i x t u r e s o f 

v a r i o u s d e t e r m i n a n t s . 
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ROTATION ANGLE DEGREES 

FIG. 8. The overlap function 

F ( 6 ) = - £ <ф| H| n> <n] (exp-ifljy)| о) 
n=2p2h 

needed to calculate <o| HPJ| 0) for MNe [5 ] 

T A B L E I X . T H E D I S T R I B U T I O N N j r O F A N G U L A R M O M E N T U M 

I N T H E D E F O R M E D I N T R I N S I C S T A T E S O F 2 0 N e , 

T H E O B L A T E S O L U T I O N O F 2 8 S i A N D 3 6 A F O R V A L U E S O F J 

U P T O ' 8 W H I C H I S T H E N A T U R A L C U T - O F F F O R T H E 2 0 N e A N D 
3 6 A R O T A T I O N A L B A N D S [ 5 ] . 

J « N e 28SÍ 36Ar 

0 0.109 0.079 0.132 

2 0. 398 0.313 0.440 

4 0.336 0.326 0.314 

6 0.134 0.194 0.100 

8 0.022 0.071 0.013 
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Л J Л J Л 
J J J 

_1.B4 2 
.1.95 2 2 

- 3 .06 0 _2.65 0 _2.37 0 

28Si (oblate) 36Ar 

FIG. 9. Projected Hartree-Fock spectra of 20Ne, the oblate solution of 28Si and 36Ar. To the left of each 
level is the energy A;(Eq. (4.39)),which equals the difference between the energy of the projected Hartree-
Fock state and the Hartree-Fock energy of the unprojected state 

5 . M A J O R S H E L L M I X I N G H A R T R E E - F O C K C A L C U L A T I O N S 

I t i s e a s y t o s e e t h e l i m i t a t i o n s o f t h e H a r t r e e - F o c k c a l c u l a t i o n s 

d i s c u s s e d i n s e c t i o n 3 , i n w h i c h t h e m o t i o n o f e a c h n u c l e ó n w a s l i m i t e d 

t o c o n f i g u r a t i o n s o f o n e m a j o r s h e l l o f a n i s o t r o p i c h a r m o n i c o s c i l l a t o r . 

F r o m t h e v a r i a t i o n a l p o i n t o f v i e w t h e H a r t r e e - F o c k w a v e f u n c t i o n s o b -

t a i n e d t h i s w a y a r e n o t s t a b l e a g a i n s t p a r t i c l e - h o l e e x c i t a t i o n s f r o m o n e 

m a j o r s h e l l t o a n o t h e r . I t i s t r u e , o f c o u r s e , t h a t a s l o n g a s d e f o r m a t i o n s 

o f e v e n p a r i t y a r e c o n s i d e r e d a p a r t i c l e h a s t o j u m p t w o m a j o r s h e l l s i n 

o r d e r t o p r o d u c e a p a r t i c l e - h o l e c o n f i g u r a t i o n o f e v e n p a r i t y w h i c h c a n 

m i x t o t h e g r o u n d s t a t e . B u t e v e n s m a l l a d m i x t u r e s c a n p r o d u c e l a r g e 

e f f e c t s i f t h e y a r e c o h e r e n t . A n y c o n f i g u r a t i o n b e l o n g i n g t o a g i v e n m a j o r 

s h e l l h a s t h e s a m e k i n e t i c e n e r g y . H e n c e t h e t r i a l w a v e f u n c t i o n s u s e d i n 

s e c t i o n 3 c a n a t b e s t m i n i m i z e t h e p o t e n t i a l e n e r g y . M o r e e n e r g y m a y 

b e g a i n e d b y a l l o w i n g t h e k i n e t i c e n e r g y t o r e d u c e a n d w e s h a l l s e e t h a t 

t h i s i s a n i m p o r t a n t e f f e c t . 

L a r g e q u a d r u p o l e d e f o r m a t i o n s a r e o b s e r v e d i n t h e 2 s - I d s h e l l 

n u c l e i ; t h e y a r e l a r g e r t h a n t h o s e e x p e c t e d f r o m 2 s - I d s h e l l c o n -

f i g u r a t i o n s . 1 7 0 h a s a s t a t i c c h a r g e q u a d r u p o l e m o m e n t e q u a l t o - 2 . 6 f m 2 

( = - 0 . 0 2 6 b a r n s ) 1 . T h e n e u t r o n c a r r i e s n o c h a r g e a n d t h e p r o t o n c l o s e d 

s h e l l h a s z e r o a n g u l a r m o m e n t u m a n d s o i t c a n n o t p r o d u c e a q u a d r u p o l e 

m o m e n t . T h e 1 7 0 q u a d r u p o l e m o m e n t i s u n d e r s t o o d a s a p o l a r i z a t i o n 

e f f e c t o f t h e o d d n e u t r o n o n t h e c l o s e d s h e l l 1 6 0 c o r e . I f e a c h p r o t o n 

o r b i t a c q u i r e s a s m a l l e x t r a q u a d r u p o l e m o m e n t d u e t o a n e x t e r n a l f i e l d 

p r o d u c e d b y t h e n e u t r o n t h e s e w i l l a d d u p c o h e r e n t l y t o p r o d u c e a t o t a l 

q u a d r u p o l e m o m e n t . 2 1 N é h a s a c h a r g e q u a d r u p o l e m o m e n t e q u a l t o 

9 f m 2 . W i t h s i n g l e m a j o r s h e l l c o n f i g u r a t i o n s t h i s q u a d r u p o l e m o m e n t 

c a n o n l y b e p r o d u c e d b y t h e t w o p r o t o n s i n t h e 2 s - l d s h e l l . T h e m a x i -

m u m q u a d r u p o l e m o m e n t w h i c h t w o p r o t o n s c a n h a v e i s t h e o n e o b t a i n e d 

1 fm = fermi = 10 "13 cm 
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b y p l a c i n g t h e m b o t h i n t h e ( n x , n y , n z ) = ( 0 , 0 , 2 ) o r b i t . T h e i n t r i n s i c 

q u a d r u p o l e m o m e n t o f 2 1 N e i s t h e n : 

i = l 

2 X | - 2 X | 

T a b l e I V s h o w s t h a t i n 2 0 N e h / m u 0 = 1 / ( 0 . 5 6 ) 2 s o t h a t Q 0 = 2 5 . 5 f m 2 . 

I t c a n b e s h o w n u s i n g e q u a t i o n ( 4 . 1 3 ) t h a t t h e m e a s u r e d q u a d r u p o l e 

m o m e n t o f a s t a t e o f s p i n J g e n e r a t e d b y a n i n t r i n s i c s t a t e |cpK)> i s g i v e n b y 

3 K 2 - J ( J + 1 ) , . 
4 ( J + l ) ( 2 J + 3 ) 0 

s o t h a t Q = 5 . 1 f m 2 , w h i c h i s m u c h l e s s t h a n t h e e x p e r i m e n t a l v a l u e . I t 

i s t h e r e f o r e n e c e s s a r y t o e x t e n d t h e c o n f i g u r a t i o n s p a c e b e y o n d t h e l i m i -

t a t i o n s u s e d i n s e c t i o n 3 . T h i s m e a n s t h a t t h e e x p a n s i o n ( 3 . 1 ) o f t h e 

o r b i t s i s n o l o n g e r a d e q u a t e a n d m a n y o f t h e r e s u l t s w h i c h a r e d e p e n d e n t 

c r i t i c a l l y o n t h i s e x p a n s i o n c e a s e t o b e v a l i d . 

F i r s t t h e a d v a n t a g e o f u s i n g 1 6 0 a n d 4 0 C a a s r e f e r e n c e n u c l e i i s l o s t . 

A l t h o u g h t h e d e r i v a t i o n o f E q . ( 3 . 5 ) i s r i g o r o u s a n d d o e s n o t d e p e n d o n t h e 

e x p a n s i o n ( 3 . 1 ) i t i s o f n o p a r t i c u l a r u s e s i n c e t h e s i n g l e p a r t i c l e e n e r g i e s 

e j m a y n o l o n g e r b e o b t a i n e d f r o m 1 7 0 a n d 1 5 0 b i n d i n g e n e r g y d a t a . I n -

d e e d t h e c o n f i g u r a t i o n s w h i c h p r o d u c e t h e o b s e r v e d q u a d r u p o l e m o m e n t 

o f t h e g r o u n d s t a t e o f 1 7 0 m a y w e l l c h a n g e i t s e n e r g y w h i c h w i l l t h e r e f o r e 

n o l o n g e r b e e q u a l t o t h e e n e r g y o f a d 5 / 2 n e u t r o n o u t s i d e a n c l o s e d 

s h e l l g i v e n b y t h e e x p r e s s i o n ( 3 . 4 ) . W e m u s t t h e r e f o r e s o l v e t h e H a r t r e e -

F o c k e q u a t i o n s u s i n g t h e e x p a n s i o n ( 2 . 6 ) f o r t h e H a r t r e e - F o c k 

H a m i l t o n i a n . 

W e m a y i n f a c t e v e n q u e s t i o n t h e u s e o f o s c i l l a t o r w a v e f u n c t i o n s t o 

d e s c r i b e a s p h e r i c a l n u c l e u s s u c h a s 1 6 0 o r 4 0 C a . O s c i l l a t o r w a v e f u n c t i o n s 

c e r t a i n l y h a v e t h e w r o n g a s y m p t o t i c f o r m r s exp(-a2 r2/2). I f a n o r b i t X 

w i t h a n g u l a r m o m e n t u m к i s b o u n d a n d h a s a n e n e r g y e ^ , i t s a s y m p t o t i c 

f o r m ( o r t a i l ) i s r £ e " S r w h e r e : 

2 m e x 

W e s h a l l f i r s t i n v e s t i g a t e t h e v a l i d i t y o f t h e u s e o f o s c i l l a t o r w a v e -

f u n c t i o n s i n H a r t r e e - F o c k c a l c u l a t i o n s o f c l o s e d s h e l l n u c l e i , a n d t h e n 

i n v e s t i g a t e t h e q u a d r u p o l e d é f o r m a t i o n s o f d e f o r m e d n u c l e i . 

5 . 1 . R a d i a l H a r t r e e - F o c k c a l c u l a t i o n s 

I n c l o s e d s h e l l n u c l e i s u c h a s 1 6 0 a n d 4 0 C a t h e o r b i t s h a v e d e f i n i t e 

p a r i t y a n d a n g u l a r m o m e n t u m , a n d t h e y m a y b e e x p a n d e d o n h a r m o n i c 
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o s c i l l a t o r w a v e f u n c t i o n s ] n i j m ^ > w i t h d i f f e r e n t p r i n c i p a l q u a n t u m 

n u m b e r s n : 

| X > = ^ C > i > j m > ( 5 . 2 ) 

t h e c o e f f i c i e n t s C ^ m e a s u r e t h e c o m p o n e n t s o f t h e o r b i t X o n v a r i o u s 

m a j o r s h e l l s . n . T h e a r t o f a H a r t r e e - F o c k c a l c u l a t i o n i n w h i c h m a j o r 

s h e l l s a r e m i x e d i s i n t h e c h o i c e o f t h e t w o - b o d y i n t e r a c t i o n v t o b e u s e d 

i n t h e H a r t r e e - F o c k H a m i l t o n i a n ( 2 . 6 ) . W e h a v e s e e n i n s e c t i o n 1 t h a t 

t h e h a r d c o r e p o t e n t i a l s c a n n o t b e u s e d . A p r o p e r d i s c u s s i o n o f t h e i n t e r -

a c t i o n v t o b e u s e d i s o u t s i d e t h e s c o p e o f t h e s e l e c t u r e s a n d i t i s s t i l l 

a s u b j e c t o f d e b a t e [ 1 4 ] . T h e r e h a v e b e e n a t t e m p t s t o d e r i v e t h e e f f e c -

t i v e f o r c e t o b e u s e d i n a H a r t r e e - F o c k c a l c u l a t i o n f r o m f o r c e s k n o w n 

t o f i t t h e t w o - n u c l e o n s c a t t e r i n g d a t a . 

P h e n o m e n o l o g i c a l p o t e n t i a l s h a v e a l s o b e e n u s e d . A g i v e n f o r m i s 

t h e n a s s u m e d f o r t h e r a d i a l d e p e n d e n c e o f t h e p o t e n t i a l a n d t h e v a r i o u s 

p a r a m e t e r s u s e d a r e c h o s e n s o a s t o f i t v a r i o u s d a t a , s u c h a s t h e b i n d i n g 

e n e r g y p e r p a r t i c l e , a n d t h e e q u i l i b r i u m d e n s i t y o f n u c l e a r m a t t e r a n d 

o f t h e f i n i t e n u c l e u s , f o r e x a m p l e . 

S i n c e a l l t h e c o m p o n e n t s o f t h e o r b i t X i n E q . ( 5 . 2 ) h a v e t h e s a m e i , 

j a n d m , t h e r a d i a l w a v e f u n c t i o n r e m a i n s t o b e d e t e r m i n e d . T h e d e -

t e r m i n a t i o n o f t h e c o e f f i c i e n t s C * - i s c a l l e d a r a d i a l H a r t r e e - F o c k 

c a l c u l a t i o n . 

A c a l c u l a t i o n o f t h i s t y p e h a s b e e n m a d e b y D a v i e s , K r i e g e r a n d 

B a r a n g e r [ 1 5 ] . T h e y u s e d a v e l o c i t y - d e p e n d e n t i n t e r a c t i o n o f t h e f o r m 

h 2 

v = — 
i m 

-А^'^+Щ P 2 e t V i + B i e ' ^ i p 2 ( 5 . 3 ) 

w h e r e t h e i n d e x i d i s t i n g u i s h e s t h e p o t e n t i a l s b e t w e e n t w o n u c l é o n s i n a 

s i n g l e t a n d t r i p l e t s t a t e . T h e p a r a m e t e r s c h o s e n w e r e : 

S p i n s t a t e A ( f m " 2 ) В n ( f m ) 

S i n g l e t 0 . 8 3 5 0 . 5 2 

T r i p l e t 2 . 5 6 0 . 7 1 . 4 3 

T h i s i n t e r a c t i o n y i e l d s a b i n d i n g e n e r g y o f - 1 5 . 4 8 M e V a n d a n e q u i -

l i b r i u m F e r m i m o m e n t u m o f k f = 1 . 4 1 7 i n n u c l e a r m a t t e r . I t i s a s s u m e d 

t o a c t o n l y w h e n t w o n u c l é o n s a r e i n a r e l a t i v e S - s t a t e . A v e l o c i t y -

d e p e n d e n t p o t e n t i a l o f t h e t y p e ( 5 . 3 ) h a s a s i m i l a r e f f e c t o n t h e S - w a v e 

p h a s e s h i f t a s a h a r d c o r e . 

T h e S - w a v e p h a s e s h i f t o f t w o n u c l é o n s i n t e r a c t i n g w i t h a n a t t r a c t i v e 

l o n g r a n g e p o t e n t i a l a n d a s h o r t r a n g e h a r d c o r e w i l l r e v e r s e i t s s i g n a t 

a g i v e n e n e r g y . I n t h e s i n g l e t s t a t e t h e S - w a v e p h a s e s h i f t r e v e r s e s 

s i g n a t 2 2 0 M e V , i n t h e t r i p l e t s t a t e i t r e v e r s e s s i g n a t a b o u t 3 0 0 M e V . 
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T h e f a c t o r P 2 = h 2 Д 2 / 2 ш i n t h e p o t e n t i a l ( 5 . 3 ) e n s u r e s t h a t t h e 

s h o r t r a n g e r e p u l s i o n w i l l o n l y b e f e l t w h e n t h e t w o n u c l é o n s h a v e a 

l a r g e e n o u g h r e l a t i v e k i n e t i c e n e r g y . Y e t n o d i v e r g e n c e w i l l o c c u r i n 

a H a r t r e e - F o c k c a l c u l a t i o n b e c a u s e t h e v o l u m e i n t e g r a l o f t h e p o t e n t i a l , 

w h i c h i s e q u a l t o t h e p o t e n t i a l e n e r g y o f t w o n u c l é o n s w i t h z e r o r e l a t i v e 

m o m e n t u m , h a s n o c o n t r i b u t i o n s f r o m t h e r e p u l s i v e p a r t o f t h e f o r c e . 

T h e p a r a m e t e r s u s e d f o r t h e p o t e n t i a l ( 5 . 3 ) o n l y g i v e t h e c o r r e c t q u a l i t a -

t i v e b e h a v i o u r o f t h e S - w a v e p h a s e s h i f t . T h e p a r a m e t e r s w e r e c h o s e n 

s o a s t o f i t n u c l e a r m a t t e r r a t h e r t h a n s c a t t e r i n g d a t a , a n d a s i m u l -

t a n e o u s f i t o f b o t h w a s n o t p o s s i b l e w i t h t h e p o t e n t i a l ( 5 . 3 ) . 

T h e c o n v e r g e n c e o f t h e e x p a n s i o n ( 5 . 2 ) w a s i n v e s t i g a t e d u p t o n = 8 

m a j o r s h e l l s f o r v a r i o u s n u c l e i a n d i t w a s f o u n d e x c e l l e n t . T h e r a d i a l w a v e -

f u n c t i o n s o f t h e l s O - o c c u p i e d o r b i t s w h e n t h r e e m a j o r s h e l l s a r e i n c l u d e d 

a r e f o u n d t o b e 

| X l s > = 0 . 9 8 4 2 | l s > + 0 . 1 7 2 5 | 2 s > + 0 . 0 3 8 4 | 3 s > 

( 5 . 4 ) 

| X l p > = 0 . 9 9 3 6 | l p > + 0 . 0 9 9 7 | 2 p > + 0 . 0 5 2 6 | 3 p > 

T h u s o s c i l l a t o r w a v e f u n c t i o n s a p p e a r t o b e a g o o d a p p r o x i m a t i o n t o 

t h e r a d i a l w a v e f u n c t i o n s w i t h i n t h e n u c l e u s . A t l a r g e r d i s t a n c e s i n t h e 

s u r f a c e o f t h e n u c l e u s t h e e x p o n e n t i a l t a i l i s o n l y a p p a r e n t w h e n a l a r g e 

n u m b e r o f r a d i a l w a v e f u n c t i o n s a r e u s e d . T h e e q u i l i b r i u m m e a n s q u a r e 

r a d i u s o f 1 6 0 w a s f o u n d t o b e 2 . 9 1 f m , a b o u t 1 0 % l a r g e r t h a n t h e e x p e r i -

m e n t a l v a l u e , a n d t h e b i n d i n g e n e r g y p e r p a r t i c l e w a s - 5 . 5 M e V . B u t 

b e t t e r a g r e e m e n t w a s o b t a i n e d f o r s i n g l e p a r t i c l e e n e r g i e s , a n d t h e s e 

a r e i m p o r t a n t i n s h e l l - m o d e l c a l c u l a t i o n s . 

5 . 2 . Q u a d r u p o l e d e f o r m a t i o n s 

S i n c e h a r m o n i c o s c i l l a t o r w a v e f u n c t i o n s a p p e a r t o b e a g o o d a p p r o x i -

m a t i o n f o r t h e o r b i t s o f s p h e r i c a l n u c l e i , i t i s n o t u n r e a s o n a b l e t o c o n -

s i d e r d e f o r m e d h a r m o n i c o s c i l l a t o r w a v e f u n c t i o n s t o b e a g o o d a p p r o x i -

m a t i o n f o r t h e w a v e f u n c t i o n s o f d e f o r m e d n u c l e i , e s p e c i a l l y s i n c e i t i s 

k n o w n t h a t d e f o r m e d n u c l e i h a v e l a r g e q u a d r u p o l e d e f o r m a t i o n s . L e t u s 

t h e r e f o r e c o n s i d e r h t o b e a d e f o r m e d h a r m o n i c o s c i l l a t o r : 

' h = ë + i m u « x 2 + i m u y y 2 + i m u i z 8 (5-5 ) 

T h e e i g e n f u n c t i o n s o f h m a y b e w r i t t e n i n t h e ( n x , n y , n z ) r e p r e -

s e n t a t i o n w h e r e n x , n y a n d n z r e p r e s e n t t h e n u m b e r o f q u a n t a i n t h e x , 

y a n d z d i r e c t i o n s . F o r a n i s o t o p i c o s c i l l a t o r 

шх = ш у = l J z = w o t 5 - 6 ' 

a n d t h e s u m n x + n y + n z i s c o n s t a n t i n a n y m a j o r s h e l l . T h e I s s h e l l h a s 

n x = n y = n z = 0 , t h e t h r e e l p s h e l l o r b i t s h a v e n x + n y + n z = 1 , t h e s i x 2 s - l d 

s h e l l o r b i t s h a v e n x + n y + n z = 2 e t c . T h e ( r ^ , n , n z ) r e p r e s e n t a t i o n i s 
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s i m i l a r t o t h e N i l s s o n a s y m p t o t i c r e p r e s e n t a t i o n v a l i d f o r a v a n i s h i n g 

s p i n - o r b i t i n t e r a c t i o n . 

W h e n t h e a x e s o f t h e o s c i l l a t o r a r e n o t e q u a l t h e o r b i t s ( n , n , n ) -i x y z ' 

c . a n b e e x p r e s s e d a s a m i x t u r e o f o r b i t s b e l o n g i n g t o v a r i o u s m a j o r s h e l l s 

o f a n i s o t r o p i c o s c i l l a t o r . M a j o r s h e l l m i x i n g t h u s i s r e p r o d u c e d b y t h e 

d e f o r m a t i o n o f t h e o s c i l l a t o r . E v e n - e v e n N = Z n u c l e i m a y b e b u i l t b y 

f i l l i n g e a c h ( n x , n y , n z ) o r b i t w i t h f o u r n u c l é o n s . 4 H e w i l l c o n s i s t o f t h e 

( n x , n y , n z ) = ( 0 , 0 , 0 ) o r b i t ; 1 2 C w i l l c o n s i s t o f t h e ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) , 

( 0 , 1 , 0 ) o r b i t s . I t d o e s n o t m a t t e r w h i c h o f t h e t h r e e p - s h e l l o r b i t s a r e 

u s e d t o m a k e u p 1 2 C s i n c e t h e r e s u l t i n g w a v e f u n c t i o n s c a n b e o b t a i n e d 

o n e f r o m a n o t h e r b y t h e p r o p e r e x c h a n g e o f t h e x , y a n d z a x e s . 2 0 N e 

m i g h t c o n s i s t o f t h e ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) , ( 0 , 1 , 0 ) , ( 1 , 0 , 0 ) a n d ( 0 , 0 , 2 ) 

o r b i t s , e t c . 

C o n s i d e r a n e v e n - e v e n n u c l e u s w h e r e n = A / 4 o r b i t s o f t h e d e f o r m e d 

o s c i l l a t o r ( 5 . 5 ) a r e f i l l e d . W e c a n d e f i n e t h e t o t a l n u m b e r o f q u a n t a i n 

t h e x , y a n d z d i r e c t i o n s t h u s : 

n n n 

= N y = I ( v i ) N z = I ( V ! ) <5-
\=i >.=1 \=i 

T h e c h a r g e q u a d r u p o l e m o m e n t o f t h e n u c l e u s i s 

Q o = 2 < 2 Z - - X 
2 2 \ . 

" У / ' 
2h „ N z N x N v 

2 — - ¿ 
. u z u x " y j 

( 5 . 9 ) 

T h e c h a r g e m o n o p o l e m o m e n t o f t h e n u c l e u s i s 

2h 
< r 2 > < x 2 + y 2 + z 2 > = 

2 J m cov u „ u . 
( 5 . 1 0 ) 

C o n s i d e r a n a x i a l l y s y m m e t r i c e l l i p s o i d o f u n i f o r m l y d i s t r i b u t e d 

n u c l e a r m a t t e r ; l e t a b e t h e m a j o r a x i s a l o n g t h e z - d i r e c t i o n a n d l e t b 

b e t h e m i n o r a x i s . T h e q u a d r u p o l e a n d m o n o p o l e m o m e n t s o f t h i s e l l i p s o i d 

a r e r e s p e c t i v e l y : 

Qo = f(a2-b2) 

< r 2 > = I ( a 2 + 2 b 2 ) 

(5 .11) 
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T h e v o l u m e o f t h e e l l i p s o i d i s 4 / 3 it R 3 w h e r e R = ( a b 2 ) = i s t h e e q u i v a -

l e n t r a d i u s o f t h e e l l i p s o i d . 

W e c a n v a r y t h e r a t i o a / b o f t h e p r i n c i p a l a x e s o f t h e e l l i p s o i d k e e p i n g 

R c o n s t a n t . I n d o i n g t h i s w e d e f o r m t h e e l l i p s o i d i n t o p r o l a t e s h a p e s 

( a > b , Q > 0 ) o r o b l a t e s h a p e s ( a < b , Q < 0 ) k e e p i n g i t a t c o n s t a n t v o l u m e . 

T h e m o n o p o l e a n d q u a d r u p o l e m o m e n t s m a y b e e x p r e s s e d i n t e r m s o f t h e 

r a t i o a / b a n d R t h u s : 

<r
2

> = 
R 2 -

\ b J 
( 5 . 1 2 ) 

Q r 
2 R 

5 ï f - G 

.2/3-1 
( 5 . 1 3 ) 

W e s e e t h a t a t c o n s t a n t v o l u m e t h e m o n o p o l e m o m e n t o f t h e e l l i p s o i d 

i n c r e a s e s w i t h d e f o r m a t i o n . W e s h a l l s e e t h a t a n u c l e u s b e h a v e s v e r y 

m u c h l i k e a n i n c o m p r e s s i b l e e l l i p s o i d . T h u s i f w e w i s h t o v a r y t h e 

o s c i l l a t o r p a r a m e t e r s c o x , coy a n d coz i n s u c h a w a y a s t o r e p r o d u c e t h e 

d e f o r m a t i o n s o f a n i n c o m p r e s s i b l e e l l i p s o i d w e m u s t k e e p t h e p r o d u c t 

u u со = io„ x y z о ( 5 . 1 4 ) 

c o n s t a n t . I t i s t h e n c o n v e n i e n t t o w r i t e 

ы = e u о » u y = e со 0 ' 
- (a+8) 

U* = e ' (On ( 5 . 1 5 ) 

5 . 3 . T h e m o d e l o f M o t t e l s o n 

A s i m p l e m o d e l h a s b e e n f o r m u l a t e d b y M o t t e l s o n [ 1 6 ] . T h e p o t e n t i a l 

s e e n b y t h e p a r t i c l e s i n a n u c l e u s i s a s s u m e d t o h a v e t h e s a m e s h a p e a s 

t h e m a s s d i s t r i b u t i o n o f t h e n u c l e u s . T h e p r i n c i p a l a x e s o f t h e p o t e n t i a l 

o f t h e o s c i l l a t o r ( 5 . 5 ) a r e p r o p o r t i o n a l t o l / w x , 1 / i d y a n d l / w z . A c c o r d i n g 

t o e q u a t i o n ( 5 . 8 ) t h e p r i n c i p a l a x e s o f t h e m a s s d i s t r i b u t i o n a r e p r o p o r t i o n a l 

t o < x 2 > * , < y 2 > ^ a n d < z 2 > * , t h a t i s t p ( N x / c o x ) * , ( N y / u y ) * a n d ( N z / i o z ) * . 

I f t h e r a t i o s o f t h e p r i n c i p a l a x e s a r e s a m e f o r t h e p o t e n t i a l a n d f o r 

t h e m a s s d i s t r i b u t i o n t h e n 

N „ co„ : N y u y = N z u z ( 5 . 1 6 ) 

T h e d e f o r m a t i o n o f t h e n u c l e u s m a y b e m e a s u r e d b y t h e r a t i o 

Q 0 / " \ r 2 ^ > o f t h e q u a d r u p o l e t o t h e m o n o p o l e m o m e n t s . 

I n a n i s o t r o p i c o s c i l l a t o r f o r w h i c h 10 = i o = i o _ 

QO -

< r 2 > " 

2 N - N - N z x " y 
N + N + N x y z 

Ш = 10 = CO x y z 

(5 .17) 
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F o r a d e f o r m e d o s c i l l a t o r w h o s e a x e s o b e y t h e r e l a t i o n ( 5 . 1 6 ) o f t h e 

M o t t e l s o n m o d e l : 

I n 2 0 N e w h e r e t h e I s , l p s h e l l o r b i t s a n d t h e ( 0 , 0 , 2 ) o r b i t s i n t h e 2 s - l d 

s h e l l a r e f i l l e d o n e h a s N x = N y = 7 / 2 a n d N z = 1 1 / 2 . A c c o r d i n g t o e q u a t i o n 

( 5 . 1 7 ) t h e d e f o r m a t i o n i n a n i s o t r o p i c o s c i l l a t o r w i l l t h e n b e 0 . 3 2 , a n d 

a c c o r d i n g t o e q u a t i o n ( 5 . 1 8 ) t h e d e f o r m a t i o n i n a d e f o r m e d o s c i l l a t o r w i l l 

b e 0 . 6 6 , w h i c h i s t w i c e t h e v a l u e i n t h e i s o t r o p i c o s c i l l a t o r . A s i m i l a r 

r e s u l t i s f o u n d f o r o t h e r n u c l e i . T h u s M o t t e l s o n ' s m o d e l p r e d i c t s t h a t 

q u a d r u p o l e d e f o r m a t i o n s w i l l d o u b l e w h e n o n e p a s s e s f r o m a n i s o t r o p i c 

o s c i l l a t o r ( s i n g l e m a j o r s h e l l ) c o n f i g u r a t i o n t o a d e f o r m e d o s c i l l a t o r 

( m a j o r s h e l l m i x i n g ) c o n f i g u r a t i o n . T h e ( 0 , 0 , 2 ) o r b i t w h i c h i n t h e i s o -

t r o p i c o s c i l l a t o r h a s a q u a d r u p o l e m o m e n t o f 4 ( i n u n i t s o f h / m u > 0 ) h a s a 

q u a d r u p o l e m o m e n t e q u a l t o 5 . 8 9 i n t h e d e f o r m e d o s c i l l a t o r . T h e c l o s e d 

I s a n d l p s h e l l s w h i c h h a v e z e r o q u a d r u p o l e m o m e n t i n t h e i s o t r o p i c o s -

c i l l a t o r a c q u i r e a q u a d r u p o l e m o m e n t o f 3 i n t h e d e f o r m e d o s c i l l a t o r . 

T h e s e i n c r e a s e s a r e a m u t u a l p o l a r i z a t i o n e f f e c t o f t h e c l o s e d s h e l l c o r e 

a n d o f t h e v a l e n c e p a r t i c l e s i n t h e ( 0 , 0 , 2 ) o r b i t s . P o l a r i z a t i o n s d o u b l e 

q u a d r u p o l e d e f o r m a t i o n s , a n d t h i s f a c t i s o f t e n e x p r e s s e d b y s a y i n g t h a t 

n e u t r o n s h a v e a n e f f e c t i v e c h a r g e o f l / 2 e ( e i s t h e c h a r g e o f t h e e l e c t r o n ) 

a n d t h a t p r o t o n s h a v e a n e f f e c t i v e c h a r g e o f 1 . 5 e . W i t h t h e s e e f f e c t i v e 

c h a r g e s t h e 2 s - I d s h e l l c o n f i g u r a t i o n s i n a n i s o t r o p i c o s c i l l a t o r h a v e 

r o u g h l y t h e c o r r e c t e x p e r i m e n t a l v a l u e s . B u t t h e e f f e c t i v e c h a r g e i s 

o n l y a n a m e , t h e p o l a r i z a t i o n i s t h e p h y s i c a l e f f e c t w h i c h i s e n t i r e l y d u e 

t o t h e a d m i x t u r e o f c o n f i g u r a t i o n s o u t s i d e o f t h e 2 s - I d s h e l l . 

5 . 4 . T h e k i n e t i c e n e r g y 

T h e r e l a t i o n ( 5 . 1 6 ) f i x i n g t h e r a t i o o f t h e a x e s o f t h e d e f o r m e d o s -

c i l l a t o r ( 5 . 5 ) o b t a i n e d f r o m t h e m o d e l o f M o t t e l s o n i s e x a c t l y t h e s a m e 

a s t h a t w h i c h w o u l d b e o b t a i n e d b y m i n i m i z i n g t h e k i n e t i c e n e r g y o f t h e 

n u c l e u s s u b j e c t t o t h e c o n s t a n t v o l u m e c o n d i t i o n ( 5 . 1 4 ) . 

T h e k i n e t i c e n e r g y o f t h e s y s t e m i s 

QQ _ 2 N Z 2 - N x - N y 

( 5 . 1 8 ) 

N x w x = N y U y = N z u . 

T ( a , P ) = 4 I { N x u x + N y U y + N Z u z } 

= 2 f t u 0 { N x e a + N y e 8 + N 2 e - ( a + 6 > } ( 5 . 1 9 ) 

T h e k i n e t i c e n e r g y i s m i n i m u m w h e n : 

S T _ Э Т 
= 0 ( 5 . 2 0 ) 

S а Э / З 
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T h i s i m m e d i a t e l y y i e l d s t h e r e l a t i o n ( 5 . 1 6 ) . T h e r e f o r e t h e d e f o r -

m a t i o n s o b t a i n e d w i t h m o d e l o f M o t t e l s o n w i l l b e c o r r e c t i f t h e p o t e n t i a l 

e n e r g y c a l c u l a t e d w i t h t h e e x p r e s s i o n ( 1 . 9 ) u s i n g t h e ( n x , n y , n z ) w a v e -

f u n c t i o n s f o r t h e o r b i t s X a n d ц r e m a i n s c o n s t a n t w h e n a a n d /5 a r e v a r i e d . 

T h i s w o u l d b e t r u e o f a z e r o r a n g e ¿ - f o r c e . T h e r e a r e i n d i c a t i o n s t h a t 

t h i s w o u l d s t i l l r e m a i n t r u e t o a c o n s i d e r a b l e e x t e n t w i t h a f i n i t e r a n g e 

f o r c e . I f i t i s t r u e a n o t h e r i n t e r e s t i n g f e a t u r e a p p e a r s . 

A t t h e m i n i m u m t h e k i n e t i c e n e r g y o f a c o n f i g u r a t i o n { N x , N , N z } i s 

T, min 6 h u 0 ( N x N y N z ) 5 ( 5 . 2 1 ) 

T h i s r e l a t i o n t e l l s u s w h i c h c o n f i g u r a t i o n h a s l o w e s t k i n e t i c e n e r g y . 

S i n c e t h e p o t e n t i a l e n e r g y i s t h e s a m e f o r a = j 3 w e m a y u s e t h e m o d e l o f 

E l l i o t t [ 7 ] t o c h o o s e t h e c o n f i g u r a t i o n w h i c h h a s l o w e s t p o t e n t i a l e n e r g y . 

A c c o r d i n g t o t h i s m o d e l i t i s t h e c o n f i g u r a t i o n w h i c h m a x i m i z e s t h e 

q u a n t i t y 

G = X 2 + j u X + / U 2 + 3 ( X + M ) ( 5 . 2 2 ) 

w h e r e X = N Z - N y a n d ju = N y - N x . S i n g l e m a j o r - s h e l l H a r t r e e - F o c k c a l c u -

l a t i o n s a g r e e w i t h t h e g r o u n d s t a t e a s s i g n m e n t s o f t h e E l l i o t t m o d e l . I t 

i s s h o w n o n T a b l e X t h a t f o r a l l t h e c o n f i g u r a t i o n s o f 2 s - I d s h e l l n u c l e i 

i n w h i c h f o u r p a r t i c l e s f i l l v a r i o u s ( n x , n y , n z ) o r b i t s t h e c o n f i g u r a t i o n s 

w i t h a l o w e r p o t e n t i a l e n e r g y a l s o h a v e a l o w e r k i n e t i c e n e r g y . T h u s 

k i n e t i c a n d p o t e n t i a l e n e r g y a r e m i n i m i z e d b y t h e s a m e c o n f i g u r a t i o n 

{ N x , N y , N z } , t h e p o t e n t i a l e n e r g y i s a l r e a d y m i n i m i z e d i n t h e s i n g l e m a j o r -

s h e l l c a l c u l a t i o n , a n d t h e m i x i n g o f m a j o r s h e l l s m i n i m i z e s t h e k i n e t i c 

e n e r g y . 

5 . 5 . M a j o r s h e l l m i x i n g H a r t r e e - F o c k c a l c u l a t i o n 

A r e t h e r e s u l t s o f t h e p r e c e d i n g s e c t i o n v e r i f i e d i n a n a c t u a l H a r t r e e -

F o c k c a l c u l a t i o n ? V o l k o v h a s p e r f o r m e d c a l c u l a t i o n s i n t h e p - s h e l l i n 1 9 6 4 

a n d c a l c u l a t i o n s i n t h e 2 s - l d s h e l l h a v e o n l y r e c e n t l y b e g u n . T h e y h a v e 

n o t y e t b e e n p e r f o r m e d w i t h v e r y s a t i s f y i n g f o r c e s s o t h a t i t i s n o t y e t 

c e r t a i n t o w h a t e x t e n t t h e p o t e n t i a l e n e r g y r e m a i n s i n d e p e n d e n t o f a- a n d 

/ 3 . T h e p r e l i m i n a r y r e s u l t s i n d i c a t e t h a t t h e k i n e t i c e n e r g y c h a n g e s m o r e 

t h a n t h e p o t e n t i a l e n e r g y . T h e q u a d r u p o l e d e f o r m a t i o n s a r e q u i t e w e l l 

p r e d i c t e d b y t h e M o t t e l s o n m o d e l . 

L e t u s i l l u s t r a t e t h i s w i t h t h e r e s u l t s o f a m a j o r s h e l l m i x i n g c a l c u -

l a t i o n u s i n g a V o l k o v f o r c e [ 6 ] : 

- 7 8 . 0 3 e " ( c / 1 - 5 ) 2 + 8 2 . 5 e " ( r / 0 , 8 ) 2 ( 0 . 2 9 + 0 . 2 P o - 0 . 0 5 P r + 0 . 7 1 P X ) ( 5 . 2 3 ) 

T h e H a r t r e e - F o c k H a m i l t o n i a n ( 2 . 6 ) w a s s o l v e d ; t o t h e k i n e t i c e n e r g y 

o p e r a t o r t a s i n g l e p a r t i c l e s p i n - o r b i t f i e l d a i . s w a s a d d e d , a n d t h e v a l u e 

o f a w a s c h o s e n a s t o f i t t h e s p i n - o r b i t s p l i t t i n g o b s e r v e d n e x t t o t h e 
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T A B L E X . V A R I O U S S T A T E S O F E V E N - E V E N N U C L E I 

O B T A I N E D B Y F I L L I N G O S C I L L A T O R O R B I T S ( n x , n „ , n z ) 

B Y F O U R N U C L E O N S . 

T h e s e c o n d c o l u m n i n d i c a t e s w h i c h o r b i t s a r e f i l l e d . T h e t h i r d 

a n d f o u r t h c o l u m n s i n d i c a t e t h e v a l u e o f ( > . , ц ) a n d t h e w e i g h t G o f 

t h e s t a t e o b t a i n e d . T h e s t a t e s a r e o r d e r e d b y d e c r e a s i n g v a l u e s 

o f t h e w e i g h t . T h e l a s t c o l u m n g i v e s t h e p r o d u c t N x N y N z . 

I n t h e M o t t e l s o n m o d e l , t h e k i n e t i c e n e r g y a t e q u i l i b r i u m i s 

p r o p o r t i o n a l t o t h e c u b e r o o t o f t h i s p r o d u c t . 

Nucleus 
Filled 2s-Id 
shell orbits 
( n ^ i y r ^ ) 

(X.fi) 

G 
( = \2 + Ji\+(i2 

+3 (X+M)) 
{ N x , N y , N z } 

20 Ne 

002 (8,0) 88 539/8 

20 Ne 

110 (0.4) 28 567/8 

24 Mg 

002 
011 

(8.4) 148 140 

24 Mg 

002 
020 

(0.8) 88 144 

24 Mg 

002 
110 

(4.0) 28 150 

24 Mg 

101 
011 

(4.0) 28 150 

28 Si 

200 
020 
110 

(0.12) 180 2025/8 

28 Si 

002 
011 
101 

(12,0) 180 2057/8 

28 Si 

002 
101 
110 

(8.4) 148 2145/8 

28 Si 

200 
020 
101 

(4,8) 148 2145/8 
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T A B L E X . ( c o n t . ) 

Filled 2s-ld G 
Nucleus shell orbits ' ( M ) (=&•(JX+/J2 { N x , N y , N z } 

( n x , n y , n z ) +3(\+fi ) ) 

{ N x , N y , N z } 

002 
020 (0,0) 0 2197/8 

200 
28Si 

110 
101 (0,0) 0 219.7/8 

Oil 

200 
020 
101 

(4, 8) 148 432 

110 

200 
110 
101 

(8,0) 88 441 

Oi l 
32 s 

200 
020 
002 

(0.4) 28 448 

110 

200 
020 
011 

(0,4) 28 448 

101 

020 
200 
110 (0,8) 88 5415/8 
101 
011 

36Ar 36Ar 

002 
020 
200 (4,0) 28 5491/8 
101 
011 
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c l o s e d s h e l l n u c l e i . Q u a d r u p o l e d e f o r m a t i o n s a r e n o t s e n s i t i v e t o a . T h e 

e x p a n s i o n ( 2 . 1 ) o f . t h e o r b i t s w a s l i m i t e d t o t h e s t a t e s 

j = l s l / 2 i l d 5 / 2 ) 2 s 1 / 2 j l d 3 / 2 j 2 s 5 / 2 j 2 s 3 / 2 t l g 7 / 2 f o r р о з Ш у е 

p a r i t y o r b i t s a n d t o t h e s t a t e s 

j = l p 3 / 2 , l p 1 / 2 , l f 7 / 2 , 2 p 3 / 2 , 2 p 1 / 2 , l f 5 / 2 ( 5 . 2 4 ) 

f o r n e g a t i v e p a r i t y o r b i t s . 

W i t h t h i s e x p a n s i o n e v e r y o r b i t w h i c h h a s a m a i n c o m p o n e n t b e -

l o n g i n g t o a g i v e n m a j o r s h e l l c a n a d m i x c o m p o n e n t s b e l o n g i n g t o t h e 

n e i g h b o u r i n g m a j o r s h e l l s o f t h e s a m e p a r i t y . T h e H a r t r e e - F o c k 

e q u a t i o n s w e r e s o l v e d f o r s u c c e s s i v e v a l u e s o f t h e ' o s c i l l a t o r c o n s t a n t a 

w h i c h d e t e r m i n e s t h e r a d i a l w a v e f u n c t i o n s o f t h e c o m p o n e n t s ( 5 . 2 4 ) u n t i l 

t h e H a r t r e e - F o c k e n e r g y w a s m i n i m u m . Q u a d r u p o l e d e f o r m a t i o n s d e -

f i n e d a s t h e r a t i o o f t h e e x p e c t a t i o n s v a l u e s i n t h e H a r t r e e - F o c k s t a t e o f 

t h e q u a d r u p o l e m o m e n t o p e r a t o r t o t h e m o n o p o l e m o m e n t o p e r a t o r a r e 

c a l c u l a t e d . T a b l e X I s h o w s t h e q u a d r u p o l e d e f o r m a t i o n s o b t a i n e d f r o m 

a s i n g l e m a j o r s h e l l c a l c u l a t i o n a n d t h o s e o b t a i n e d f r o m a m a j o r s h e l l 

m i x i n g c a l c u l a t i o n . W e s e e t h a t p r o l a t e d e f o r m a t i o n s d o u b l e a s p r e d i c t e d 

b y t h e M o t t e l s o n m o d e l . I t i s a l s o p o s s i b l e t o c a l c u l a t e t h e s t a t i c q u a d r u -

p o l e m o m e n t s o f t h e o d d - A n u c l e i . T h e s e a r e g i v e n b y t h e e x p r e s s i o n 

( 5 . 1 ) i n t e r m s o f t h e i n t r i n s i c q u a d r u p o l e m o m e n t Q 0 . T h e V o l k o v f o r c e 

T A B L E X I . E F F E C T O F C L O S E D S H E L L P O L A R I Z A T I O N S 

O N Q U A D R U P O L E D E F O R M A T I O N S 

Nucleus Single major shell Major shell mixing 

12C -0 .3 -0 .47 

M N e 0.31 0. 59 

" M g 0. 30 0. 63 

28Si oblate -0.30 -0 .49 

2 iSi prolate 0. 30 0. 75 

32S oblate -0. 08 -0 .13 

32S prolate 0.17 0. 35 

36Ar -0.15 -0 .24 



T A B L E X I I . Q U A D R U P O L E M O M E N T S 

( i n u n i t s o f 1 0 " 2 6 c m 2 ) 

Nucleus К J Even core Single shell Shell mixing Experimental 

" В 3/2" 3/2" 12C -1. 52 -2. 54 ±3 .1 

21 Ne 3/2 + 3/2 + 20Ne 4.83 9.65 9. 0 

23Na 3/2+ 3/2+ 

24Mg 

5.70 12.0 11 

25,, Mg 5/2 + 5/2 + 

24Mg 

11.2 23.2 22 

27 Al 

5/2 + 5/2 + 

28Si oblate 

-11.3 -20 

15 27 Al 

1/2+ 5/2 + 

28Si oblate 

9.15 16.1 

15 

33S 

3/2 + 3/2+ oblate -2 .52 -4.32 

-5. 5 33S 

3/2 + 3/2 + prolate 7.6 11.8 

-5. 5 

35C1 3/2 + 3/2 + 36Ar -5 .84 -9 .8 -7 .9 

m 

a 
CD Я 

W 
Œ > 
43 ra сл 
О 
m 

О 
X 
H 
z 
G 
D 

оэ 
-a 
CD 
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TABLE XIII. VALUES OF <r2>, Q0/<r2> , a/b AND R FOR 28Si 

Solution <V42> a/b R 

Single major shell oblate 90.2 -0 .30 0. 85 12.45 

Major shell mixing oblate 99.8 -0 .49 0.74 13. 00 

Major shell mixing prolate 124.7 0.75 1 .41 12.8 

d o e s n o t g i v e v e r y g o o d e q u i l i b r i u m r a d i i . I n o r d e r n o t t o b e e x p o s e d t o 

e r r o r s i n t h e o v e r a l l s i z e o f t h e n u c l e u s t h e q u a d r u p o l e m o m e n t s w e r e 

c a l c u l a t e d u s i n g t h e d e f o r m a t i o n o b t a i n e d f r o m t h e H a r t r e e - F o c k c a l c u -

l a t i o n a n d t h e e x p e r i m e n t a l m o n o p o l e m o m e n t ( d e r i v e d f r o m t h e m e a n 

s q u a r e r a d i u s ) . T h e r e s u l t s a r e s h o w n i n T a b l e X I I . T h e c a l c u l a t i o n o f 

m a g n e t i c a n d q u a d r u p o l e m o m e n t s m a y h e l p u s c h o o s e b e t w e e n t h e t w o 

d e g e n e r a t e s o l u t i o n s o f 2 8 S i d i s c u s s e d i n s e c t i o n 3 . T a b l e V I I I s h o w s t h a t 

t h e m a g n e t i c m o m e n t o f 2 9 S i i s o n l y o b t a i n e d w h e n a n o b l a t e 2 8 S i c o r e i s 

a s s u m e d . B u t t h e c a s e o f 2 7 A 1 r e q u i r e s s p e c i a l a t t e n t i o n . 2 7 A 1 i s a 

p r o t o n h o l e i n 2 8 S i . I t h a s s p i n 5 / 2 a n d i t s q u a d r u p o l e m o m e n t i s p o s i t i v e , 

e q u a l t o 1 5 f m 2 . 

A n a t u r a l w a y t o o b t a i n t h i s w o u l d b e t o c o n s i d e r 2 7 A 1 a s a J = K = 5 / 2 

h o l e s t a t e i n t h e p r o l a t e s o l u t i o n o f 2 8 S i . B u t H a r t r e e - F o c k c a l c u l a t i o n s 

s h o w t h a t u n l e s s a n u n u s u a l l y s t r o n g s p i n o r b i t s p l i t t i n g i s u s e d , t h e 

p r o l a t e s o l u t i o n o f 2 8 S i i s m a d e u p o f t w o K = 1 / 2 b a n d s a n d o n e k = 3 / 2 b a n d , 

b u t n o К = 5 / 2 b a n d ( s e e T a b l e I V ) . T h e o b l a t e s o l u t i o n o f 2 8 S i h a s a 

К = 5 / 2 b a n d b u t t h e c o r r e s p o n d i n g J = К = 5 / 2 s t a t e h a s a n e g a t i v e q u a d r u p o l e 

m o m e n t . I t i s i n t e r e s t i n g t o n o t e t h a t t h e К = 1 / 2 J = 5 / 2 a s s i g n m e n t g i v e s 

a q u a d r u p o l e m o m e n t o f t h e r i g h t s i g n a n d m a g n i t u d e ; i f o n e c a l c u l a t e d 

t h e m a g n e t i c m o m e n t w i t h t h i s a s s i g n m e n t a g o o d v a l u e w o u l d a l s o b e 

o b t a i n e d . W i t h t h i s a s s i g n m e n t 2 9 S i a n d 2 7 A 1 a r e a p a r t i c l e a n d a h o l e 

i n t h e s a m e o b l a t e 2 8 S i e q u i l i b r i u m s h a p e . W e m a y f i n a l l y i n v e s t i g a t e 

w h e t h e r t h e c o n s t a n t v o l u m e a s s u m p t i o n i s v e r i f i e d . W e m a y c a l c u l a t e 

t h e m a j o r a n d m i n o r a x e s o f a n e q u i v a l e n t e l l i p s o i d b y r e q u i r i n g t h a t i t 

s h o u l d h a v e t h e s a m e q u a d r u p o l e a n d m o n o p o l e m o m e n t s . O n e m a y t h e n 

c h e c k w h e t h e r R = ( a b 2 ) 5 c o n s t a n t a s o n e g o e s f r o m a s i n g l e m a j o r 

s h e l l t o a m a j o r s h e l l m i x i n g c a l c u l a t i o n . T h e v a l u e s i n T a b l e X I I I 

a r e o b t a i n e d f o r 2 8 S i . 

W e s e e t h a t t h e i n c r e a s e o f t h e m o n o p o l e m o m e n t w i t h d e f o r m a t i o n 

i s v e r y s i m i l a r t o t h a t o f i n c o m p r e s s i b l e e l l i p s o i d . 
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CHAPTER 12 

GROUP THEORY AND NUCLEAR STRUCTURE 

M . M O S H I N S K Y 

1. Introduction. 2. The many-body problem. 3. The unitary group, i r reducib le 
representations and Gel ' fand states. 3.1. Generators of the unitary group. 3.2. I r r e -
ducible representations ( IR) of the unitary groups. Gel ' fand states. 3.3. The concept 
of weight. 3.4. Generators that ra ise or l ower the weight. 3.5. The polynomial of 
highest weight. 3 .6. How to get an arb i t rary state fo r a given irreducible representation 
f r om the highest weight state. 3.7. Definition and eigenvalues of Cas imir opera tors . ' 
4. The problem of a single shell . 4 .1 . The concept of general ized pairing interaction. 
4 .2 . The chain of groups <tiu*\ 4.3. The angular momentum operator . 
4 .4 . The eigenstates of the pairing interaction. 4.5. Spin and isospin part of the wave 
function. 4 .6 . The highest weight state fo r a physical ly significant chain of sub-groups. 
4. 7. Detailed determination of the quantum numbers fo r the highest weight state. 
5. Symmetry of the harmonic osc i l la tor and eigenstates of the quadrupole-quadrupole 
interaction. Applications to nuclear structure in the 2 s - l d shell . 5.1. Symmetry group 
of the harmonie osc i l la tor ( h . o . ) . 5 .2 . The chain of groups in the 2s - ld shell . 
5 .3 . Determination of highest weight states of SU3 and U4 in the 2s - l d shell. 5.4. Lower ing 
operators in the SU3 z> K 3 chain and the determination of the full set of states. 5 .5. The 
quadrupole-quadrupole and the pairing interáctions. 5 .6. Applications to nuclear structure 
in the 2s - l d shell . 6. Application of group theory to the few nucleón problem. 6.1. The 
auxi l iary Hamiltonian, its symmetry groups and eigenstates. 6 .2. Elimination of spurious 
states due to the cent re -o f -mass motion. 6 .3 . Physical chains of sub-groups. 6 .4 . The 
four-part ic le problem. 6 .4 .1 . The orbital part of the state. 6 .4 .2 . The spin isospin 
part of the state. 6 .4. 3. The full ant i -symmetr ic wave function and the matrix elements 
of the physical Hamiltonian. 6 .4 .4 . Energy l eve ls of the four-nucleon system. 7. The 
harmonic osc i l lator ( h . o . ) and shell model states. 7.1. States with permutational 
symmetry . 7 .2. Chains of groups associated with a mult i -shel l structure. 8. The 
harmonic osc i l la tor and clustering. 8 .1. Definition of c lustering. 8 .2. Clustering 
interaction. 9. Summary and conclusion. 

1 . I N T R O D U C T I O N 

T h e p u r p o s e o f t h i s C h a p t e r i s t o i n d i c a t e h o w t e c h n i q u e s o f g r o u p 

t h e o r y c a n b e u s e d i n a s y s t e m a t i c w a y i n t h e m a n y - b o d y p r o b l e m s 

a s s o c i a t e d w i t h n u c l e a r s t r u c t u r e . B y t h i s i s n o t m e a n t a n y o f t h e u s e s 

o f t h e p r o p e r t i e s o f t h e t h r e e - d i m e n s i o n a l r o t a t i o n g r o u p a n d i t s i r -

r e d u c i b l e r e p r e s e n t a t i o n s ( I R ) i n t h e , b y n o w , w e l l - k n o w n r e c o u p l i n g 

t e c h n i q u e s . H e r e w e c o n c e n t r a t e o n t h e u s e s o f t h e I R o f t h e u n i t a r y 

a n d r o t a t i o n g r o u p s o f a n a r b i t r a r y n u m b e r o f d i m e n s i o n s i n t h e c l a s s i -

f i c a t i o n o f n - n u c l e o n s t a t e s . O n c e t h e s e s t a t e s a r e o b t a i n e d e x p l i c i t l y , 

w e s h a l l i n d i c a t e h o w t o d e t e r m i n e t h e m a t r i x e l e m e n t s o f r e l e v a n t 

H a m i l t o n i a n s w i t h r e s p e c t t o t h e m , s h o w i n g , i n p a r t i c u l a r , t h a t s t a t e s 

a s s o c i a t e d w i t h i r r e d u c i b l e r e p r e s e n t a t i o n s o f c e r t a i n c h a i n s o f g r o u p s 

a r e e i g e n s t a t e s o f p h y s i c a l l y s i g n i f i c a n t i n t e r a c t i o n s . 

The author is at the Instituto de F í s i ca , Universidad de México, Mexico City, D . F . 
The chapter has been compiled f r om notes taken by various participants. Fo r details 
see the Acknowledgements at the end of the chapter. The work was supported by the 
Comisión Nacional de Energía Nuclear , Mex ico City, D . F . 
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O u r d i s c u s s i o n o f t h e c l a s s i f i c a t i o n s o f s t a t e s f r o m a g r o u p -

t h e o r e t i c a l s t a n d p o i n t d i v i d e s n a t u r a l l y i n t o t w o p a r t s , s e c t i o n s 1 t o 3 

i n c l u s i v e f o r m i n g t h e f i r s t p a r t a n d s e c t i o n s 4 t o 8 i n c l u s i v e , t h e s e c o n d . 

I n t h e f i r s t p a r t o u r s t a t e s a r e g i v e n i n t h e s e c o n d q u a n t i z a t i o n 

p i c t u r e s , s o t h e P a u l i p r i n c i p l e i s s a t i s f i e d a b i n i t i o a n d i t i s n o t n e c e s -

s a r y t o m e n t i o n t h e I R o f t h e s y m m e t r i c g r o u p o f n - p a r t i c l e s S n e x p l i c i t l y . 

I n t h e s e c o n d p a r t w e c o n s t r u c t t h e w a v e f u n c t i o n s o f o u r s t a t e s 

s e p a r a t e l y i n t h e c o n f i g u r a t i o n a n d t h e s p i n - i s o s p i n s p a c e s a n d t h e n c o m -

b i n e t h e m t o s a t i s f y t h e P a u l i p r i n c i p l e . T h i s w o u l d r e q u i r e t h a t i n e a c h 

s p a c e t h e s t a t e s l i e a s s o c i a t e d w i t h I R o f S n . F u r t h e r m o r e , i n t h i s 

a p p r o a c h w e t a k e f o r t h e s i n g l e - p a r t i c l e s t a t e s t h o s e i n a s p h e r i c a l l y 

s y m m e t r i c a l h a r m o n i c o s c i l l a t o r p o t e n t i a l , m a k i n g f u l l u s e o f t h e s y m -

m e t r y g r o u p o f t h i s s i n g l e - p a r t i c l e H a m i l t o n i a n , i , e . t h e u n i t a r y g r o u p 

i n t h r e e d i m e n s i o n s U 3 . 

I n t h e f i r s t p a r t o u r m a i n o b j e c t i v e i s t o r e s t a t e t h e m a n y - b o d y p r o b l e m 

w h o s e H a m i l t o n i a n i s 

H •I 
- 2 . 

2 m 
+ U ¡ I V . . (1.1) 

i = l i< j = l 

( w h e r e U ¡ , V ¡ j a r e s i n g l e - b o d y a n d t w o - b o d y p o t e n t i a l s , n e i t h e r o f w h i c h 

i s n e c e s s a r i l y c e n t r a l ) i n s u c h a w a y t h a t i t s g r o u p - t h e o r e t i c a l n a t u r e 

b e c o m e s e x p l i c i t l y a p p a r e n t . B e f o r e a t t e m p t i n g t h i s , w e s h a l l b r i e f l y 

d i s c u s s a n e l e m e n t a r y p r o b l e m o f q u a n t u m m e c h a n i c s , t h e a s y m m e t r i c 

t o p , f r o m a g r o u p - t h e o r e t i c a l s t a n d p o i n t . W e s h a l l l a t e r s e e t h a t t h i s 

p r o b l e m h a s m o s t o f t h e f e a t u r e s t h a t w e s h a l l e n c o u n t e r i n o u r r e s t a t e -

m e n t o f p r o b l e m ( 1 . 1 ) . 

T h e H a m i l t o n i a n o f t h e a s y m m e t r i c t o p c a n b e e x p r e s s e d a s 

w h e r e L 1 , L2, L 3 a r e t h e c o m p o n e n t s o f t h e a n g u l a r m o m e n t a i n a s y s t e m 

f i x e d i n t h e b o d y w i t h i t s c o - o r d i n a t e s t a k e n a l o n g t h e t h r e e p r i n c i p a l 

a x e s , a n d I i , I 2 , I 3 a r e t h e m o m e n t s o f i n e r t i a a l o n g t h e s e a x e s . T h e 

c o m m u t a t i o n r e l a t i o n b e t w e e n t h e L ' s ( t a k i n g ft = 1 a n d r e m e m b e r i n g t h a t 

t h e L ' s a r e g i v e n i n t h e s y s t e m f i x e d i n t h e b o d y ) a r e 

[ L 1» L 2 ] - Í L 3 » a n d c y c l i c a l l y . ( 1 . 3 ) 

F r o m ( 1 . 3 ) w e c o n c l u d e t h a t L j , L 2 , L 3 a r e t h e o p e r a t o r s a s s o c i a t e d w i t h 

t h e i n f i n i t e s i m a l r o t a t i o n s o f t h e t h r e e - d i m e n s i o n a l r o t a t i o n g r o u p R 3 , 

a n d f u r t h e r m o r e t h a t t h e t o t a l a n g u l a r m o m e n t u m 

L 2 = L 2 + L | + L 2 ( 1 . 4 ) 

c o m m u t e s w i t h t h e L ¡ ' s a n d t h e r e f o r e a l s o w i t h t h e H a m i l t o n i a n ( 1 . 2 ) . 

O u r p u r p o s e n o w s h o u l d b e t o f i n d a m a t r i x r e p r e s e n t a t i o n f o r b o t h 

H j a n d L 2 , a n d b y d i a g o n a l i z i n g t h e s e m a t r i c e s s i m u l t a n e o u s l y t o o b t a i n 

t h e e n e r g y a n d a n g u l a r m o m e n t u m e i g e n v a l u e s . T h i s w e c a n a c h i e v e 
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e n t i r e l y b y g r o u p - t h e o r e t i c a l a r g u m e n t s o f a v e r y f a m i l i a r t y p e . F r o m 

t h e c o m m u t a t i o n r e l a t i o n ( 1 . 3 ) w e c o n c l u d e t h a t t h e e i g e n s t a t e s | t o > o f 

L 2 , L 3 h a v e t h e e i g e n v a l u e s 

L 2 | t o > = í ( j í + l ) | j í m > ( 1 . 5 a ) 

L з | i m ) = m I to) ( 1 . 5 b ) 

a n d t h a t t h e m a t r i x e l e m e n t s o f L 1 ; L 2 , L 3 h a v e t h e f o r m 

< i m ' | L 1 | i m > = I { [ ( ¿ - m ) ( i + m + l ) ] i 6 m . m + 1 + [ ( i + m ) ( ¿ - m + 1 ) ] * 6 m . m - i } 

( 1 . 6 a ) 

i m 1 1 L 2 I £шУ = | - { [ ( i - m ) ( i + m + l ) ] * 6 m . m + 1 - [ ( i + m ) ( i - m + 1 ) ] 1 6 m . m - ! } 

( 1 . 6 b ) 

< to' I L g I to) = m ô m . m ( 1 . 6 c ) 

T h e m a t r i x o f t h e H a m i l t o n i a n i s t h e n g i v e n b y 

< im'|Hx| to> = ( I ) ( I I 1 - ^ 1 ) 

X { [ ( í - m - l ) ( i - m ) ( i + m + l ) ( i + m + 2 ) ] * 

X 6 m . m + 2 + 2 [ i ( i + l ) - m 2 ] 6 m . m 

+ [ ( i + m - l ) ( i + m ) ( i - m + l ) ( i - m + 2 ) ] ^ 

X 6 m . m - 2 } + [ ( 2 1 2 ) 1 i t i + D + i d ^ - I i W i e m ' m U - ' ) 

a n d i t s d i a g o n a l i z a t i o n p r o v i d e s t h e e n e r g y l e v e l s a s s o c i a t e d w i t h t h e 

a n g u l a r m o m e n t u m ! . . 

F o r t h e p a r t i c u l a r c a s e w h e n I j = I 2 , i . e . a s y m m e t r i c t o p , t h e 

H a m i l t o n i a n i s c l e a r l y d i a g o n a l a n d t h e e n e r g y l e v e l s a r e g i v e n b y t h e l a s t 

b r a c k e t o f ( 1 . 7 ) . T h i s , o f c o u r s e , a l s o h a p p e n s w h e n e i t h e r I 2 = I 3 o r 

I i = I 3 , b u t i n t h o s e c a s e s t h e b a s e s | to) m u s t b e d e f i n e d b y L 2 , L j o r 

L 2 , L 2 i n s t e a d o f L 2 , L 3 , i . e . w e m u s t c h o o s e o u r | . t o ) s o t h a t t h e y a r e 

n o t o n l y b a s e s f o r a n i r r e d u c i b l e r e p r e s e n t a t i o n o f t h e g r o u p R 3 , b u t a l s o 

t h a t a n a p p r o p r i a t e t w o - d i m e n s i o n a l r o t a t i o n s u b - g r o u p i s e x p l i c i t l y 

r e d u c e d . 

W e s h a l l s h o w i n t h e n e x t s e c t i o n t h a t a s e c o n d q u a n t i z e d v e r s i o n o f 

t h e H a m i l t o n i a n E q . ( 1 . 1 ) c a n b e r e f o r m u l a t e d i n s u c h a w a y t h a t i t w i l l 

h a v e m a n y a n a l o g i e s w i t h t h e s i m p l e p r o b l e m w e h a v e j u s t d i s c u s s e d . 

2 . T H E M A N Y - B O D Y P R O B L E M 

I n t h i s s e c t i o n w e w a n t t o d e v e l o p a g r o u p - t h e o r e t i c a l d e s c r i p t i o n o f 

t h e m a n y - n u c l e o n p r o b l e m . W e d i s c u s s t h e H a m i l t o n i a n o p e r a t i n g o n 

t o t a l l y a n t i - s y m m e t r i c m a n y - p a r t i c l e w a v e f u n c t i o n s s o t h a t i t s d e s c r i p t i o n 

i s m o s t n a t u r a l l y g i v e n i n s e c o n d q u a n t i z e d f o r m a l i s m . 
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L e t u s c o n s i d e r t h e c r e a t i o n a n d a n n i h i l a t i o n o p e r a t o r s b j a n d b p , 

s a t i s f y i n g t h e f e r m i o n a n t i - c o m m u t a t i o n r e l a t i o n s : 

f t p * ] t p' ' p' t p' 
- < b p , b > - = b p b + b b p = 6 p 

| b j , b j } = | b p ' , b p | = 0 ( 2 . 1 ) 

T h e l a b e l s p s p e c i f y t h e q u a n t u m n u m b e r s o f t h e s t a t e s . I n g e n e r a l w e 

s h a l l u s e a c l a s s i f i c a t i o n i n v o l v i n g t h e q u a n t u m n u m b e r s w h i c h c h a r a c t e r -

i z e t h e e i g e n f u n c t i o n s o f a h a r m o n i c o s c i l l a t o r , v , £ , m , p l u s t h e s p i n 

о a n d i s o s p i n т w h e r e t h e l a s t t w o t a k e t h e v a l u e s + i . e . 

p 5 vi m, ат 

A n a l t e r n a t i v e c h o i c e i s 

p = v £ j m ; T 

w h e r e o r b i t a l a n g u l a r m o m e n t u m a n d s p i n a r e c o u p l e d t o a t o t a l a n g u l a r 

m o m e n t u m j . W a v e f u n c t i o n s e x p r e s s e d i n s e c o n d q u a n t i z e d f o r m a r e 

e q u i v a l e n t t o S l a t e r d e t e r m i n a n t s 

• ь ; ь ; 2 ь ; . . . b j j o > h - p ^ i d . . . ^ ( n ) ( 2 . 2 ) 

w h e r e P i n d i c a t e s a p e r m u t a t i o n o f v a r i a b l e s 1 . . . n , a n d ( ~ l ) p i s + 1 

o r - 1 i f P i s e v e n o r o d d . 

W e a l s o n e e d t o d i s c u s s t h e o n e - a n d t w o - b o d y o p e r a t o r s w h i c h o c c u r 

i n t h e n u c l e a r m a n y - b o d y p r o b l e m . W e h a v e o n e - b o d y o p e r a t o r s s u c h a s 

p a r t i c l e k i n e t i c e n e r g y , s p i n o r a n g u l a r m o m e n t u m , w h i c h w e r e p r e s e n t b y 

W = f r 1 - o r 1 1 o r s i ( 2 . 3 a , b , c ) 
1 2 m 1 

a n d t w o - b o d y o p e r a t o r s s u c h a s a t w o - b o d y p o t e n t i a l 

v l 2 = v ( ' r l 2 ) ( 2 . 3 d ) 

T h e s e b e c o m e , i n t h e s e c o n d q u a n t i z e d p i c t u r e , 

o r = Y < p i l w i \ p ' i > b l i b p l ( 2 " 4 a > 
Pi Pi 

w i t h 

Ol|Wi|p'> = J ^ ( l J W ^ p j U J d T ! ( 2 . 4 b ) 
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a n d 

\ I < 0 i e J v J p i e p b X b P l b P ° ( 2 . 5 a ) 

P1P2 p;P; 

< P
1
P

2
| V

1 2
 I Pi P ¿ > ' J ^

P 2
( 2 ) V

1 2 

X Ф р [ { 2 ) Ф Ь { 2 ) d T l d T 2 ( 2 - 5 b ) 

W e s h a l l s t a r t o u r d i s c u s s i o n b y j u s t a n a l y s i n g a g e n e r a l H a m i l t o n i a n , 

i n d e p e n d e n t o f s p i n a n d i s o s p i n , i . e . 

n 

Y V < r U ) < 2 - 6 > 

O u r a i m n o w i s t o e x p r e s s t h i s H a m i l t o n i a n i n t e r m s o f t h e g e n e r a t o r s 

o f a c e r t a i n g r o u p a n d t h e n d e t e r m i n e t h e m a t r i x e l e m e n t s o f t h e H a m i l t o n -

i a n w i t h r e s p e c t t o s t a t e s c h a r a c t e r i z e d b y t h e i r r e d u c i b l e r e p r e s e n t a t i o n s 

( I R ) o f t h i s g r o u p a n d i t s s u b - g r o u p s . T h e d i a g o n a l i z a t i o n o f t h i s m a t r i x 

p r o v i d e s u s w i t h t h e e n e r g y l e v e l o f t h e s y s t e m a n d w i t h t h e e i g e n s t a t e s 

e x p r e s s e d a s a l i n e a r c o m b i n a t i o n o f S l a t e r d e t e r m i n a n t s o f t h e t y p e ( 2 . 2 ) . 

T h i s p r o c e d u r e w o u l d t h e n b e e n t i r e l y a n a l o g o u s t o t h e o n e f o l l o w e d i n 

s e c t i o n 1 f o r t h e a s y m m e t r i c t o p , w h e r e t h e g r o u p w a s t h e f a m i l i a r r o t a -

t i o n g r o u p i n t h r e e d i m e n s i o n s . 

W e s h a l l a c h i e v e o u r a i m b y a s i m p l e t r a n s c r i p t i o n . L e t u s f i r s t 

d i v i d e p i n t o t w o p a r t s 

<T = 

w i t h 

' n НЕ

Г(й
+и

<
г

«0
+ 

i = l 

p = v i m , а т = Al, S ( 2 . 7 a , b , с ) 

Ц = v Л m d e a l s w i t h t h e o r b i t a l p a r t 

s = а т d e a l s w i t h t h e s p i n - i s o s p i n c o - o r d i n a t e s . 

W e a l s o i n t r o d u c e a n e n u m e r a t i o n p r o c e d u r e f o r ц a n d s . F o r e x a m p l e , f o r 

s w e d e f i n e 

s 1 2 3 4 

а т 
i i i i а т 2 2 2 2 2 2 2 2 

(2.8) 

T h i s d i v i s i o n i s c o n v e n i e n t i n t h e c a s e w h e r e w e d e a l w i t h o p e r a t o r s i n -

d e p e n d e n t o f s p i n a n d i s o s p i n . I n t h i s c a s e w e c a n i n t e g r a t e s e p a r a t e l y 

o v e r t h e o r b i t a l a n d s p i n v a r i a b l e s i n ( 2 . 4 b ) a n d ( 2 . 5 b ) , o b t a i n i n g t h e 
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e x p r e s s i o n s 

^ I S I L W J \ ц[ s\ > =<Цг I W J M I > ¿S) ( 2 . 9 ) 

I V 1 2 И s ' M ¿ S ^ > = < ^ 1 í í 2 | V 1 2 | A < Í Í Í ¿ > б ' | ó j * ( 2 , 1 0 ) 

N o w w e c a n d e f i n e 

< - I b î , b " ' ' ( 2 . 1 1 ) 
s 

W i t h t h e s e o p e r a t o r s , a n d m a k i n g u s e o f t h e c o m m u t a t i o n r e l a t i o n s ( 2 . 1 ) , 

t h e o n e - a n d t w o - b o d y o p e r a t o r s c a n b e r e w r i t t e n a s 

o r = Y . I ^ i l w i k X î b ^ b " 1 , 1 

CL MÍ SJSI 

= Y l w i H > ( 2 Л 2 ) 

Pi Ml 

r = | Y Z | v ( r 1 2 < y ¡ ¡ í - 6 ¡ £ ( 2 . 1 3 ) 

MI CI МГМГ 

S o f a r w e h a v e s i m p l y r e w r i t t e n t h e H a m i l t o n i a n i n t e r m s o f t h e 

Çg 4¡ o p e r a t o r s . W e w a n t t o d i s c u s s t h e s e o p e r a t o r s a n d t h e i r p r o p e r t i e s 

a n d , i n f a c t , t o s h o w t h a t t h e y c o r r e s p o n d t o t h e g e n e r a t o r s o f a c e r t a i n 

g r o u p . 

( a ) H o w m a n y o p e r a t o r s d o w e h a v e ? A s м i s a s h o r t h a n d n o t a t i o n f o r 

v , i , m , i f w e c o n s i d e r t h e f u l l p r o b l e m w e s e e t h a t й c a n t a k e a n i n f i n i t e 

n u m b e r o f v a l u e s w h i c h m e a n s t h a t w h a t e v e r g r o u p t h e s e o p e r a t o r s b e l o n g 

t o , i t w i l l h a v e a n oo n u m b e r o f g e n e r a t o r s a n d s o b e i n t r a c t a b l e . W e 

t h e r e f o r e m a k e t h e b a s i c a s s u m p t i o n t h a t w e c a n l i m i t o u r s e l v e s t o a f i n i t e 

n u m b e r o f s i n g l e - p a r t i c l e s t a t e s . 

F o r e x a m p l e , i n t h e d i s c u s s i o n o f e v e n - p a r i t y s t a t e s o f n u c l e i b e t w e e n 
1 6 O - 4 0 C a , i t w o u l d b e r e a s o n a b l e t o r e s t r i c t o u r s e l v e s t o t h e 2 s , I d s h e l l 

w h e r e 

2 s v = 2 JP = m = 0 h a s 1 s t a t e 

( 2 . 1 4 ) 

I d v = 2 SL = 2 m = - 2 , . . . + 2 h a s 5 s t a t e s 

s o i n t h i s c a s e w e h a v e a t o t a l n u m b e r o f ( 5 + 1 ) = 6 s t a t e s i n c o n f i g u r a t i o n 

s p a c e . L e t u s a s s u m e t h e n t h a t Ц h a s a l i m i t e d n u m b e r o f v a l u e s r , a n d 

e n u m e r a t e t h e s e i n s o m e o r d e r , i . е . ц = 1 , 2 . . . , r . T h e n w e s e e t h a t t h e 

n u m b e r o f o p e r a t o r s i s e q u a l t o r 2 . 
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( b ) H e r m i t i c i t y p r o p e r t y 

s 

( c ) C o m m u t a t i o n r e l a t i o n s o f t h e 'W ^ . F r o m t h e a n t i - c o m m u t a t i o n 

r e l a t i o n o f t h e b , b ^ ' 5 ' o p e r a t o r s , a n d t h e d e f i n i t i o n o f t h e 'Sf j j ' w e o b t a i n 

[ < • < 1 = « - « " ( 2 - 1 5 ) 

W e s h a l l s e e i n t h e n e x t s e c t i o n t h a t t h e s e c o m m u t a t i o n r e l a t i o n s a r e 

t h o s e o f t h e g e n e r a t o r s o f a u n i t a r y g r o u p . 

T h e H a m i l t o n i a n n o w c o n t a i n s a l i n e a r a n d q u a d r a t i c f o r m o f t h e 

g e n e r a t o r s o f a u n i t a r y g r o u p o f r d i m e n s i o n s . T h u s t h e f o r m u l a t i o n 

o f o u r m a n y - b o d y p r o b l e m i n r e l a t i o n t o t h e g e n e r a t o r s o f i s a n a l o g o u s 

t o t h a t o f t h e a s y m m e t r i c t o p i n r e l a t i o n t o t h e g e n e r a t o r s o f R 3 . 

3 . T H E U N I T A R Y G R O U P , I R R E D U C I B L E R E P R E S E N T A T I O N S 

A N D G E L ' F A N D S T A T E S 

I n t h i s s e c t i o n w e d i s c u s s t h e p r o p e r t i e s o f t h e u n i t a r y g r o u p s a n d i n 

p a r t i c u l a r d e t e r m i n e t h e g e n e r a t o r s o f t h e g r o u p s . W e l a t e r d i s c u s s t h e 

i r r e d u c i b l e r e p r e s e n t a t i o n s ( I R ) o f t h e s e g r o u p s a n d t h e b a s e s f o r t h e I R , 

i . e . G e l ' f a n d s t a t e s . W e g i v e t h e s e b a s e s i n t e r m s o f m a n y - b o d y s t a t e s 

t h a t a r e l i n e a r c o m b i n a t i o n s o f t h e S l a t e r d e t e r m i n a n t s o f t h e p r e v i o u s 

s e c t i o n , w h i c h w e r e e x p r e s s e d i n t e r m s o f t h e c r e a t i o n o p e r a t o r s . 

3 . 1 . G e n e r a t o r s o f t h e u n i t a r y g r o u p 

W e s t a r t b y c o n s i d e r i n g a u n i t a r y t r a n s f o r m a t i o n i n a n r - d i m e n s i o n a l 

s p a c e . 

x ; . = ( 3 . 1 ) 

M 

F o r a n i n f i n i t e s i m a l t r a n s f o r m a t i o n t h e o p e r a t o r U c a n b e t a k e n a s 

U = I + i e B ( 3 . 2 ) 

w h e r e I i s t h e u n i t o p e r a t o r a n d В i s a n a r b i t r a r y h e r m i t i a n o p e r a t o r 

d i v i d e d i n t o a s y m m e t r i c p a r t S a n d a n a n t i - s y m m e t r i c p a r t A , b o t h r e a l , 

i . e . 

В = S + i A ( 3 . 3 ) 

i n w h i c h c a s e 

U * U = ( I - i e B t ) ( I + i e B ) = l ( 3 . 4 ) 
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W h e n t h e c o - o r d i n a t e s t r a n s f o r m a c c o r d i n g t o ( 3 . 1 ) a w a v e f u n c t i o n 

Ф ( х М ' ) b e c o m e s : 

Ф ( х ' . ) = Ф X p . + i e ^ ( S ^ . + i A ¡ ¡ . ) x j 

С 

i ( 3 . 5 ) 

a n d i f i t i s d e v e l o p e d i n a T a y l o r s e r i e s w h e r e t h e t e r m w i t h M = M' i s 

w r i t t e n s e p a r a t e l y , w e o b t a i n 

Ф ( Х ^ . ) = Ф ( х м . ) + i e Y S ? ( S M ' + X " + • • • 

ми' 

= Ф ( х м . ) + i e ^ S j l x ^ + i e V S ^ : [ ( * „ ¿ ¡ ¡ . f V ¿ r ) Ф 

|j < (j' 

+ i e I ̂  [ - x " " A ) * 9x^ 
M < M' 

w h e r e A¡, / j 1 = 1 , 2 . . . r 

( 3 . 6 ) 

W e t h e n h a v e f o r t h e g e n e r a t o r s o f t h e u n i t a r y g r o u p r , t h e o p e r a t o r s 

Э _ Э _ _ Э _ . ( _ Э Э \ 

Э х " ' х м Э х " ' V ЭхМ ' 1 И м Э х М ' V Э х M у 
( 3 . 7 ) 

o r , i n a n a l o g y w i t h L ± o p e r a t o r s o f R 3 , w e c a n c o n s i d e r l i n e a r c o m b i n a -

t i o n s o f t h e l a s t t w o , i . e . 

Э , Э 
xv Э х м ' + х м ' Э х м ± i 

1 ( X , ¿ - V ¿ : ) ] } ( 3 . 8 ) 

f r o m w h i c h w e o b t a i n t h e g e n e r a t o r s 

a n d ¿ Г > M) 

s o t h a t f i n a l l y t h e r e a r e r 2 g e n e r a t o r s d e n o t e d b y 

" ti' Э 

M = х м 3ÍM' 

( 3 . 9 ) 

( 3 . 1 0 ) 

w i t h o u t a n y r e s t r i c t i o n f o r p , yu ' . 

F r o m t h e d e f i n i t i o n ( 3 . 1 0 ) w e g e t t h e c o m m u t a t i o n r e l a t i o n s 

•f б*1' -ф^'б"'" 
M M" M" M 

(3.11) 

w h i c h a r e t h e s a m e a s t h e r e l a t i o n ( 2 . 1 5 ) . T h i s p e r m i t s u s t o i d e n t i f y t h e 

o p e r a t o r s J¡* a s t h e g e n e r a t o r s o f a u n i t a r y g r o u p . A t t h i s p o i n t i t i s 

44 
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n e c e s s a r y t o d i s c u s s w h i c h u n i t a r y g r o u p s a p p e a r i n t h e m a n y - b o d y 

p r o b l e m s ( M B P ) . W e h a v e d e f i n e d t h e o p e r a t o r s b + = b + s w h e r e í ü i / i m 

a n d s = о т . T h e t o t a l n u m b e r o f o r t h o n o r m a l s t a t e s (Us i n t h e H i l b e r t s p a c e 

i s 4 r , a n d a s ¿ ' b a s i c s y m m e t r y g r o u p ' f o r t h e M B P w e s h a l l c o n s i d e r 

f i r s t t h e U 4 r g r o u p w h i c h c o n s e r v e s t h e o r t h o n o r m a l i t y p r o p e r t i e s o f t h e 

s t a t e s / j s . F o r e x a m p l e , f o r t h e s - d s h e l l w e s h a l l s t a r t w i t h t h e g r o u p 

U 2 4 - W e d e n o t e t h e U 4 r g e n e r a t o r s w i t h 

C " ' = b W = b H " '
5

' ( 3 . 1 2 ) 
P P MS 

w h o s e n u m b e r i s ( 4 r ) 2 . T h e i r c o m m u t i n g r e l a t i o n i s s i m i l a r t o t h a t f o r 

<3? Ü a n d Ф j j . T h e n w e c a n c o n s i d e r s u b - g r o u p s o f U 4 r . F o r e x a m p l e , 

w e c a n c o n s i d e r u n i t a r y t r a n s f o r m a t i o n s t h a t a f f e c t t h e i n d i c e s M a n d s 

s e p a r a t e l y a n d t h u s w e s h a l l d e a l w i t h t h e c h a i n U 4 r э < g / r ® U 4 . T h e 

g r o u p s a n d U 4 h a v e , r e s p e c t i v e l y , r 2 a n d 1 6 g e n e r a t o r s d e f i n e d a s : 

4 

= I b l b " f o r < & t ( 3 . 1 3 ) 

s - 1 

f o r U 4 ( 3 . 1 4 ) 

r e s p e c t i v e l y , w h e r e C * s a t i s f y t h e c o m m u t a t i o n r e l a t i o n s f o r u n i t a r y 

g r o u p s , i . e . 

r c ; " . с ; : I - C f ô j i - c j : 6 f ( 3 . 1 5 ) 

3 . 2 . I r r e d u c i b l e r e p r e s e n t a t i o n s ( I R ) o f t h e u n i t a r y g r o u p s . 

G e l ' f a n d s t a t e s 

D u e t o t h e f a c t t h a t w e a r e d e a l i n g w i t h a s y s t e m o f n f e r m i o n s , t h e 

g r o u p p r o b l e m s i m p l i f i e s v e r y m u c h b e c a u s e w e h a v e t o c h o o s e a m o n g a l l 

t h e i r r e d u c i b l e r e p r e s e n t a t i o n s o f U 4 r o n l y t h o s e c o m p l e t e l y a n t i - s y m m e t r i c , 

w h i c h w i l l b e c h a r a c t e r i z e d b y t h e p a r t i t i o n 

[ 1 , 1 , . . . 1 , 0 , . . . 0] 
< . ' ' . ' ( 3 . 1 6 ) 

n 4 r - n 

T h e n t h e d i r e c t p r o d u c t s u b - g r o u p ¡ ® U 4 i s a s s o c i a t e d w i t h t h e 

W i g n e r s u p e r m u l t i p l e t c l a s s i f i c a t i o n . F u r t h e r , w e s h a l l c h o s e a m a t h e -

m a t i c a l l y n a t u r a l c h a i n o f s u b - g r o u p s w h i c h a l l o w s u s t o l a b e l t h e s t a t e s 

c o m p l e t e l y . T h i s k i n d o f c l a s s i f i c a t i o n s c h e m e w a s s y t e m a t i c a l l y d i s -

c u s s e d b y G e l ' f a n d a n d Z e t l i n ( D o k l . A k a d . N a u k 7 1 _ ( 1 9 5 0 ) 8 2 5 ) , a n d w e 

s h a l l d e n o t e t h e c o r r e s p o n d i n g s t a t e s a s G e l ' f a n d s t a t e s . L a t e r o n w e 

s h a l l p a s s t o c h a i n s o f s u b - g r o u p s w h i c h h a v e p h y s i c a l m e a n i n g . 
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I f w e c o n s i d e r t h e c h a i n s o f s u b - g r o u p s 

э 

a n d 

U 4 э 

« ^ r - ! 0 

0 1 

« ^ r - 2 0 0 0 . . 0 

0 1 0 Э . . э 0 1 . . 0 ( 3 . 1 7 ) 

0 0 1 / w 0 . . 1 / 

U 3 

0 

U 2 0 0 

0 1 0 

0 0 1 

U i 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

( 3 . 1 8 ) 

a n d c h a r a c t e r i z e t h e i r i r r e d u c i b l e r e p r e s e n t a t i o n s b y t h e p a r t i t i o n s 

[ h l r , h 2 r , h r r ] a n d U 4 - { v 1 4 724 v 3 4 v 4 4 > 

^ f l ^ h l r - l , h 2 r . b . . . h r . 1 > r . J 

- [ h n ] 

t h e G e l ' f a n d s t a t e s c a n b e n o t e d b y 

U 3 - » fri3 v 2 3 v 3 3 } 

U

2 i
v

12
 v

2 2 > 

U j fruí ( 3 . 1 9 ) 

h lr > n 2r< 

h i r - i . 

h r r 

h r - l , r - l 

v 1 4 V 2 4 

'13 ' 23 

r 34 V 4 4 

' 33 

'12 

1 11 ( 3 . 2 0 ) 

A p a r t i t i o n c a n b e r e p r e s e n t e d g r a p h i c a l l y b y a Y o u n g d i a g r a m , i . e . a 

t a b l e a u o f b o x e s a r r a n g e d i n r o w s a n d c o l u m n s , i n w h i c h e a c h r o w ( c o l u m n ) 

i s s m a l l e r t h a n o r e q u a l t o t h e r o w a b o v e ( c o l u m n t o t h e l e f t ) . 

( 3 . 2 1 ) 

F o r t h e p a r t i t i o n [ h l r , h 2 r , . . . h „ ] t h e n u m b e r o f r o w s i s r a n d t h e 

r o w i h a s h i r b o x e s . 

T h e p a r t i t i o n [ v 1 4 , v 2 4 , v 3 4 , v 4 4 ] h a s 4 r o w s w i t h v 1 4 , v 2 4 , V 3 4 , v 4 4 

b o x e s r e s p e c t i v e l y . T h e s e t w o p a r t i t i o n s w i l l b e s h o w n t o b e a s s o c i a t e d , 

t h a t i s , o n e c a n b e o b t a i n e d f r o m t h e o t h e r b y i n t e r c h a n g i n g t h e r o w s a n d 

t h e c o l u m n s . T h i s p r o p e r t y i s r e q u i r e d b y t h e a n t i - s y m m e t r y o f t h e 

t o t a l f u n c t i o n . 
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T h e t o t a l n u m b e r o f b o x e s i n e a c h o f t h e s e p a r t i t i o n s i s e q u a l t o n , 

t h e n u m b e r o f p a r t i c l e s : 

h l r + h 2 r + . . . h r r = v 1 4 + v 2 4 + v 3 4 + v 4 4 = n ( 3 . 2 2 ) 

T h e c o m p a r i s o n o f t h e c h a i n ( 3 . 1 7 ) w i t h t h e c h a i n R 3 э Ç ^ 2 ^ s u g g e s t s 

t h a t t h e r e l a t i o n b e t w e e n t h e p a r t i t i o n s [ h l r , h 2 r , . . . h r r ] a n d [ h i r - i , 

h 2 r . 1 , . . . h , - ! , - i ] i s o f s i m i l a r t y p e t o t h e r e l a t i o n b e t w e e n i a n d m , 

i . e . i t i s t h e p r o b l e m o f r e d u c t i o n o f a r e p r e s e n t a t i o n o f a g r o u p w i t h 

r e s p e c t t o a s u b - g r o u p . 

B e f o r e p r o c e e d i n g , l e t u s , i n T a b l e I , b r i e f l y r e v i e w t h e s i t u a t i o n 

b y c o m p a r i n g t h e c o r r e s p o n d i n g c o n c e p t s w e h a v e i n t r o d u c e d i n c o n n e c t i o n 

w i t h t h e a s y m m e t r i c t o p ( A T ) a n d i n c o n n e c t i o n w i t h t h e m a n y - b o d y 

p r o b l e m ( M B P ) . I t i s i m p o r t a n t t o s t r e s s t h e f a c t t h a t t h e H a m i l t o n i a n 

o f t h e a s y m m e t r i c t o p i s n o t i n v a r i a n t w i t h r e s p e c t t o t h e t h r e e - d i m e n s i o n a l 

r o t a t i o n g r o u p R 3 a s s o c i a t e d w i t h a c o - o r d i n a t e s y s t e m f i x e d i n t h e b o d y , 

b e c a u s e , a s c a n e a s i l y b e s e e n [ L ¡ , Н т ] ф 0 . ( T h e e q u a l i t y [ L i ( H T ] = 0 

f o r a l l i = 1 , 2 , 3 t a k e s p l a c e o n l y f o r = I 2 = I 3 . ) 

W e a r e n e v e r t h e l e s s a b l e t o c l a s s i f y t h e e i g e n s t a t e s o f H ? b y t h e 

i r r e d u c i b l e r e p r e s e n t a t i o n s o f R 3 , b e c a u s e [ H T , L 2 ] = 0 , a n d t h e r e t h u s 

e x i s t s a b a s i s i n w h i c h H T a n d L 2 c a n b e s i m u l t a n e o u s l y d i a g o n a l i z e d . 

( I f 1 г = 1 2 , t h e s t a t e s c a n a l s o b e c l a s s i f i e d ( l a b e l l e d ) b y t h e i r r e d u c i b l e 

r e p r e s e n t a t i o n s o f R 2 . ) 

T h e s a m e t y p e o f c o n s i d e r a t i o n s a r e v a l i d f o r t h e M B P H a m i l t o n i a n . 

T h e M B P H a m i l t o n i a n i s n o t a n i n v a r i a n t o f t h e U 4 r g r o u p , b u t w e c a n 

l a b e l t h e e i g e n s t a t e s o f t h e M B P H a m i l t o n i a n b y t h e i r r e d u c i b l e r e p r e s e n -

t a t i o n s o f t h e U 4 r g r o u p . T h e r e i s , h o w e v e r , o n l y o n e i r r e d u c i b l e r e -

p r e s e n t a t i o n o f U 4 r o f p h y s i c a l i n t e r e s t f o r a s y s t e m o f n p a r t i c l e s , n a m e l y 

[1 1 . . . 1 0 0 . . . 0 ] . 

n 4 r - n 

3 . 3 . T h e c o n c e p t o f w e i g h t 

L e t u s n o w c o n s i d e r t h e p r o b l e m o f t h e r o t a t i o n g r o u p a n d s o m e o f 

i t s c h a r a c t e r i s t i c s . L e t 

P ( x , y , z ) ( 3 . 2 3 ) 

b e a h o m o g e n e o u s p o l y n o m i a l o f d e g r e e n . T h e n , b y E u l e r ' s t h e o r e m : 

r • V • P = n P ( 3 . 2 4 ) 

s o t h a t t h e h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e n c a n b e c h a r a c t e r i z e d a s 

e i g e n p o l y n o m i a l s o f t h e o p e r a t o r r - V , b e l o n g i n g t o t h e e i g e n v a l u e n . 

W e s h a l l t r y t o c l a s s i f y t h e s e t o f h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e 

n i n t o d i s t i n c t s u b - s e t s w h i c h s h o u l d c o n s t i t u t e b a s e s f o r t h e i r r e d u c i b l e 

r e p r e s e n t a t i o n s o f t h e R 3 g r o u p . 

L e t L + 1 , L 0 , L . - l b e t h e g e n e r a t o r s o f R 3 

L ± 1 = ± i L y ] 

(3. 25) 
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T A B L E I. R E V I E W O F T H E P R O B L E M S 

A s y m m e t r i c top ( A T ) Many-body p rob l em ( M B P ) 

Hamil tonian H = k l + L2 L i 
21j 212 2I3 

g T = 9Г + <T where 

p, Pi 1 

is a s ing le -body opera tor and 

PjP; 
P2P2 

is a two-body opera tor 

Group used 
f o r c l a s s i f i -
cation of 
states 

R3 

Genera to rs 
of the group 

I-i 

i = 1 , 2 , 3 

- ht к15' - bpb 

p, p' = 1, 2, . . . , 4r 

Cp 

Commutat ion 
re la t ions f o r 
the gene ra to r s 

[ L j . L j ] = - i ñ L k 

( i , j , к) = (1, 2, 3) and 
cyc l i c permutat ions 

[ с » 

States with 
r espec t to 
which matr ix 
e lements 
have to be 
calculated 

The functions | i m ) 
which cor respond 
to a g iven i r r e d u c -
ib le r epresenta t i on 
¿ of the group R 3 , 
and a re labe l l ed by 
the i r r educ ib l e r e -
presentat ion m of 
its sub-group R 2 

( t r ans f o rm as IR 
of R 2 ) 

The "Ge l ' f and s ta t es " 

Ur h2i, • . h „ , V 1 4 V 2 4 V 3 4 V 4 4 

1r-l.r-l 
V 1 3 V 2 3 V33 

• V 1 2 V 2 2 

11 V„ 

that co r respond to the representa t ion 

[1 1 1 . . . 1 00 . . . 0] 

4r - n 

of the group U4r and a r e labe l l ed by the sequences 
of i r r educ ib l e representa t ions [h l r . h2r. . . . h r r ] , 

[hi,r-i hj.j, r_! ] , . . . [ hu í and 
{ v14 , . . . v 4 4 } , . . . { v j j } of its chains of sub-groups 

« ¡ V i 0 

u 4 => 
U3 0 

Ui 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

If the one - and two-body potent ia ls 9C and V a r e independent of spin and isospin. then 
the s tar t ing group used f o r the c lass i f i ca t i on of the states i s ® ' , and its genera to rs 
a r e Ъ Ч ' 
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A s r • V i s a s c a l a r , i t c o m m u t e s w i t h L ± 1 , L 0 

[ L q , t • V ] = 0, q = 1, 0, - 1 ( 3 . 26) 

t h i s i m p l i e s t h a t t h e h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e n ( e i g e n p o l y -

n o m i a l s o f r • V ) c a n s i m u l t a n e o u s l y b e e i g e n p o l y n o m i a l s o f o n e o f t h e 

o p e r a t o r s L , f o r e x a m p l e o f L 0 

L 0 P = m P ( 3 . 2 7 ) 

W e s h a l l c a l l t h e e i g e n v a l u e m o f L 0 t h e w e i g h t o f t h e p o l y n o m i a l P . 

W h a t h a p p e n s t o t h e e i g e n p o l y n o m i a l s o f L o i f w e a p p l y t o t h e m t h e 

o p e r a t o r s L ± 1 ? T h e s e o p e r a t o r s w i l l n o t t a k e u s o u t o f t h e g i v e n s e t o f 

e i g e n p o l y n o m i a l s o f r • V ( b e c a u s e , a s w e h a v e s e e n , L ± i a n d ? • V 

c o m m u t e ) , b u t t h e y w i l l p r o d u c e p o l y n o m i a l s b e l o n g i n g t o a n o t h e r e i g e n -

v a l u e o f L o - I t c a n e a s i l y b e s e e n t h a t 

L 0 ( L ± 1 P ) = ( m ± l ) ( L ± 1 P ) ( 3 . 2 8 ) 

i . e . L t l P c o r r e s p o n d s t o t h e e i g e n v a l u e ( m ± l ) , o r L ± 1 P i s a p o l y n o m i a l 

o f w e i g h t m + 1 . 

T h e o p e r a t o r L + 1 i s t h u s a n o p e r a t o r t h a t r a i s e s t h e w e i g h t , w h i l e 

L . j i s a n o p e r a t o r t h a t l o w e r s t h e w e i g h t . 

I f w e a p p l y s u c c e s s i v e l y t h e r a i s i n g ( s t e p - u p ) o p e r a t o r L + i , s t a r t i n g 

f r o m a p o l y n o m i a l P m o f g i v e n w e i g h t m , w e s h a l l g e t a s e q u e n c e o f 

p o l y n o m i a l s 

h a v i n g t h e w e i g h t s 

m + 1 , m + 2 , . . . ( 3 . 3 0 ) 

T h i s s e q u e n c e i s f i n i t e , i . e . w e s h a l l r e a c h a p o l y n o m i a l f o r w h i c h 

L + 1 P m + k = 0 ( 3 . 3 1 ) 

W e s h a l l c a l l P m + k a p o l y n o m i a l o f h i g h e s t w e i g h t a n d , f o r s h o r t , d e n o t e 

i t b y P . I n o r d e r t o s e e t h a t t h e r e e x i s t s a v a l u e o f к f o r w h i c h E q . ( 3 . 3 1 ) 

t a k e s p l a c e , l e t u s d e f i n e 

• ±i = ^ ( x ± i y ) 

( 3 . 3 2 ) 

£0 = Z 

T h e m o s t g e n e r a l p o l y n o m i a l o f d e g r e e n t h e n h a s t h é f o r m 

I n+ n0 n . 
1 n + n . n - x + l x o x - l ( 3 . 3 3 ) 

(П++П + n . = n) 
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F r o m ( 3 . 2 5 ) a n d ( 3 . 3 2 ) w e g e t 

r - Э Э 
L o - x + 1 — x - i Э х , Э х - ! 

( 3 . 3 4 ) 

a n d t h e r e f o r e 

n+ n0 n - n+ n. n -
L o ( x + 1 x o x - i ) = ( n + - n - ) x + 1 x 0 ° x . 1 ( 3 . 3 5 ) 

i . e . t h e e i g e n v a l u e s o f L 0 a r e l e s s t h a n n . W e c o n c l u d e t h a t w e c a n n o t 

r a i s e t h e w e i g h t i n d e f i n i t e l y , a n d t h a t t h e r e t h u s e x i s t s a p o l y n o m i a l o f 

h i g h e s t w e i g h t . 

F r o m t h e d e f i n i t i o n o f a n n - d e g r e e h o m o g e n e o u s p o l y n o m i a l o f 

h i g h e s t w e i g h t a s a p o l y n o m i a l t h a t s a t i s f i e s t h e t h r e e e q u a t i o n s : 

r • VP : Э , Э x 
x + i — — + x n + x . . 

Э х +l Э х , Э х . 
P = n P 

T го - ! Э _ _ Э _ 
L ° F = L X + 1 Э х + 1

 X - 1 Э х . г 

L + i P = " l x + i ¿ : + x o ¿ 

P = SL\ 

P = 0 

( 3 . 3 6 ) 

( 3 . 37 ) 

( 3 . 3 8 ) 

w e o b t a i n s t r a i g h t f o r w a r d l y t h e h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e n a n d 

h i g h e s t w e i g h t Ü 

n -1 

PnJ¡=x¡(r2)2 ( 3 . 3 9 ) 

w i t h 

SL = n , n - 2 , n - 4 , 1 o r 0 ( 3 . 4 0 ) 

w h e r e 

г 2 ЕЕ x 2 + y 2 + z 2 = x\ ~2x1x_1 ( 3 . 4 1 ) 

B y s u c c e s s i v e l y a p p l y i n g t h e l o w e r i n g o p e r a t o r t o e a c h p o l y n o m i a l 

P n Ц w e g e t a c o m p l e t e s e t o f l i n e a r l y i n d e p e n d e n t h o m o g e n e o u s p o l y n o m i a l s 

n-g 
i - m i 2 2 

P n,£ ,m s L - 1 x + l < r ) . m = l , 2, . . . , 2 i ( 3 . 4 2 ) 

w h i c h a r e n o t h i n g b u t t h e s o l i d s p h e r i c a l h a r m o n i c s o f o r d e r SL. 

W e h a v e t h u s d e c o m p o s e d t h e s e t o f a l l h o m o g e n e o u s p o l y n o m i a l s 

o f d e g r e e n i n t o s u b - s e t s c h a r a c t e r i z e d b y t h e n u m b e r 1L, e a c h s u b - s e t 

c o n s t i t u t i n g a b a s i s f o r t h e i r r e d u c i b l e r e p r e s e n t a t i o n SL o f R 3 . 

L e t u s n o w d e t e r m i n e t h e c o n c e p t s o f w e i g h t a n d h i g h e s t w e i g h t f o r 

t h e g r o u p r . 
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I n o r d e r t o d o t h a t , l e t u s d i v i d e t h e s e t o f t h e g e n e r a t o r s 

o f t h e g r o u p i n t o t h r e e p a r t s : 

M' 

( i ) c o n t a i n i n g a l l g e n e r a t o r s ¡¡ w i t h ju < ¡ л ' 

( i i ) c o n t a i n i n g a l l g e n e r a t o r s <3? j j ( ц = 1 , 2 , . . . , r ) 

( i i i ) c o n t a i n i n g a l l g e n e r a t o r s 'W ^ w i t h . / u > ¡ u ' . 

T h e s t a t e s o f t h e M B P w i l l b e l i n e a r c o m b i n a t i o n s o f t h e n - p a r t i c l e w a v e 

f u n c t i o n s 

\bP2 ••• bln l°> 
n a m e l y , a l l l i n e a r l y i n d e p e n d e n t h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e n 

i n t h e b p . , a p p l i e d t o t h e v a c u u m s t a t e 

P n ( b j ) | 0 > ( 3 . 4 4 ) 

W e c a n n o w a s k w h a t a r e t h e h o m o g e n e o u s p o l y n o m i a l s o f d e g r e e n 

t h a t a r e s i m u l t a n e o u s l y e i g e n p o l y n o m i a l s o f t h e s e t o f g e n e r a t o r s 

<V\, ...,<ig\ ( 3 . 4 5 ) 

T o b e a b l e t o d o t h a t w e m u s t f i r s t v e r i f y t h a t a l l o p e r a t o r s ( 3 . 4 3 ) 

c o m m u t e : 

[ < S T ¡ ¡ , = q r ¡ ¡ ' ó ¡ ¡ . - < r ¡ ¡ . ó { ¡ ' = 0 ( 3 . 4 6 ) 

I t i s t h u s p o s s i b l e t o f i n d p o l y n o m i a l s P n | o ) s u c h t h a t 

< Г ¡ ¡ P n | 0 > = W / J P n j 0 > f o r a l l ju = 1 , 2 , . . . , r ( 3 . 4 7 ) 

W e s h a l l c a l l t h e s e t o f e i g e n v a l u e s 

( W l , w 2 , w r ) ( 3 . 4 8 ) 

o f t h e o p e r a t o r s ( 3 . 4 5 ) c o r r e s p o n d i n g t o t h e s a m e e i g e n p o l y n o m i a l 

P n I О У t h e w e i g h t o f t h e p o l y n o m i a l Р п | О У . 

T h e s e t o f r e i g e n v a l u e s ( 3 . 4 8 ) c o n s t i t u t e s f o r t h e W r g r o u p t h e 

e q u i v a l e n t o f t h e m v a l u e f o r t h e R 3 g r o u p . 

L e t u s n o w i n t r o d u c e a n o r d e r i n t o t h e s e t o f s e q u e n c e s ( 3 . 4 8 ) . W e 

s h a l l s a y t h a t t h e s e q u e n c e 

A = ( W j , w 2 , . . . , w r ) ( 3 . 4 9 ) 

i s g r e a t e r t h a n t h e s e q u e n c e 

В = ( w ' , w ¿ , . . . , w r ' ) ( 3 . 5 0 ) 

( A > B ) i f i n t h e s e q u e n c e o f d i f f e r e n c e s 

A - В = (w -l - w j , w 2 - w 2 , . . . , w r - w j ) ( 3 . 5 1 ) 
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t h e f i r s t n o n - z e r o t e r m ( w h e n r e a d i n g f r o m l e f t t o r i g h t ) i s p o s i t i v e . 

E x a m p l e : L e t 

A = ( 4 , 3 , 2 ) a n d 

( 3 . 5 2 ) 

В = ( 4 , 2 , 3 ) 

T h e s e q u e n c e o f d i f f e r e n c e s b e i n g 

A - B E ( 0 , 1, - 1 ) ( 3 . 53 ) 

w e c o n c l u d e t h a t A > B . 

3 . 4 . G e n e r a t o r s t h a t r a i s e o r l o w e r t h e w e i g h t 

W e s h o u l d n o w l i k e t o d e t e r m i n e g e n e r a t o r s t h a t c o r r e s p o n d , f o r 

t h e g r o u p f / x , t o t h e r a i s i n g a n d l o w e r i n g g e n e r a t o r s L + 1 a n d L . j . W e 

s h a l l p r o c e e d t o s h o w t h a t t h e g e n e r a t o r s ^ < / U ' } a r e g e n e r a t o r s 

t h a t r a i s e t h e w e i g h t ( i . e . b y a p p l y i n g t h e m t o a f u n c t i o n o f g i v e n w e i g h t 

o n e o b t a i n s a f u n c t i o n o f h i g h e r w e i g h t ) w h i l e t h e g e n e r a t o r s { < 3 ? | л > Ц , } 

l o w e r t h e w e i g h t . 

F o r t h i s p u r p o s e , l e t u s f i r s t w r i t e d o w n t h e c o m m u t a t i o n r e l a t i o n 

b e t w e e n a n o p e r a t o r b e l o n g i n g t o t h e s e t { < & j}} a n d a n o p e r a t o r b e l o n g i n g 

t o o n e o f t h e o t h e r t w o s e t s : 

« , д ] = <ЙГ " " б " , - < Г Р . б»1" - ó ^ " ) ( 3 . 5 4 ) 
M M /j Ц M (1 M С (J v 

N o w , l e t p | 0 > b e a p o l y n o m i a l 1 o f w e i g h t ( w j , w 2 , . . . , w r ) a n d l e t u s 

c o n s i d e r t h e p o l y n o m i a l 

P ' | 0 > = q ? £ ' p | o > ( 3 . 5 5 ) 

( w h i c h i s a l s o o f d e g r e e n a s i s e a s i l y s e e n ) . P ' | o ^ i s a l s o a p o l y n o m i a l 

o f a g i v e n w e i g h t w h i c h m a y b e d e t e r m i n e d b y u s i n g t h e c o m m u t a t i o n 

r e l a t i o n ( 3 . 5 4 ) . W e g e t 

<*t<*£p\o> = 4 r ¡ ¡ : « r ¡ { p | o > + < j r j : (6 ¡ ¡ . - 6 p p | o > 

= [ W ( 1 + (6 ¡ ¡ . - 6¡f ) ] < y ¡ ¡ : p | 0 > ( 3 . 5 6 ) 

I t f o l l o w s t h a t P ' | o > i s a n e i g e n f u n c t i o n o f ^ ¡ j c o r r e s p o n d i n g t o t h e e i g e n -

v a l u e W j j + ( 6 ¡ J . - ô j j ) , s o t h a t f o r j u 1 < i u " t h e w e i g h t o f t h e f u n c t i o n 

1 We shal l speak in the f o l l ow ing of the ' po l ynomia l s ' 

I V , . . p n V P , " - \ I 0 > 

but it should not be f o rgo t t en that in fact this function is a l inear combinat ion of Slater 
de te rminants . Our denomination, although i n co r r e c t , is intended to s t r e ss the po lynomial 
cha rac t e r of the above exp r ess i on with r espec t to the c rea t ion ope ra to r s bj5.. 
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P ' | 0 > = q ? j j " P | 0 > i s 

( w - j , . . . , w , + 1 , . . . , w ., - 1 , . . . , w f ) ( 3 . 5 7 ) 

w h i l e f o r / u ' > / u " t h e w e i g h t i s 

( w l a . . . , w ., - 1 , . . . , w , + 1 , . . . , w r ) ( 3 . 5 8 ) 

T h e r a i s i n g - p r o p e r t y o f , / и ' < ¡ л " a n d t h e l o w e r i n g p r o p e r t y o f 

Ц' > V" is t h u s e s t a b l i s h e d . 

3 . 5 . T h e p o l y n o m i a l o f h i g h e s t w e i g h t 

L e t u s n o w d e f i n e , i n a n a l o g y w i t h t h e r o t a t i o n g r o u p ( f o r w h i c h t h e 

h i g h e s t w e i g h t f u n c t i o n i s d e f i n e d a s t h e s o l u t i o n o f t h e p a i r o f e q u a t i o n s , 

L о P = i P , L 4 l P = 0 ( 3 . 5 9 ) 

a h i g h e s t w e i g h t f u n c t i o n i n t h e s e t o f h o m o g e n e o u s e i g e n p o l y n o m i a l s o f 

d e g r e e n . T h i s p o l y n o m i a l o f h i g h e s t w e i g h t w h i c h w e s h a l l d e n o t e b y 

P I О У i s d e f i n e d b y t h e s e t o f e q u a t i o n s 

« - ¡ ¡ P | 0 > = h M P | 0 > ( 3 . 6 0 ) 

^ ¡ ¡ ' p | 0 > = 0 f o r a l l A* < M ' ( 3 . 6 1 ) 

T h e h i g h e s t w e i g h t i s i n t u r n d e n o t e d b y t h e s e t o f e i g e n v a l u e s 

[ h 2 , h 2 h r ] ( 3 . 6 2 ) 

A s t h e o p e r a t o r c o u n t s t h e n u m b e r o f t i m e s t h a t t h e i n d e x /u 

a p p e a r s i n t h e p o l y n o m i a l , t h i s m u s t b e t h e s a m e i n e a c h m o n o m i a l 

Ц . , , b j 2 s 2 . . . b j n s n | 0 > a n d s o w e c o n c l u d e ( a s t h e p o l y n o m i a l i s o f d e g r e e 

n ) t h a t t h e n u m b e r o f t i m e s a n y o f t h e i n d i c e s ju a p p e a r s i s n , n a m e l y , 

h a + h 2 + . . . + h r = n ( 3 . 6 3 ) 

W e s h a l l n o w p r o v e t h a t i f ¡л < , t h e n h ^ ë h ^ . . I t w i l l t h e n f o l l o w 

t h a t [ h j , h 2 , . . . , h r ] r e p r e s e n t s a p a r t i t i o n o f n . L e t u s f i r s t o b s e r v e 

t h a t i f /л < n < w e h a v e 

<3P ii' P 1 0 > = 0 ( 3 . 6 4 ) 

b u t t h a t i n g e n e r a l , 

< r ¡ ¡ . p | 0 > f = 0 ( 3 . 6 5 ) 

L e t u s t h e n t a k e t h e s c a l a r p r o d u c t o f t h e s t a t e <ír¡J. p | o > w i t h i t s e l f . A s 

( Ч Г Ц - ) 1 = V Ï ' ( 3 . 6 6 ) 
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w e c a n w r i t e , b y a l s o t a k i n g i n t o a c c o u n t ( 3 . 6 4 ) 

о s < о I < s r { i - ) t P | O > = < 0 | P * < 3 f { ¡ ' ^ { J . P | 0 > 

= < 0 | p t [ < r j j ' , 1 0 > ( 3 . 6 7 ) 

B u t 

[ V { f , q r j . p ] = < r £ , ] p + ( з . 6 8 ) 

P r o m ( 3 . 6 4 ) a n d « ' { i ' | 0 > = 0 i t f o l l o w s t h a t [ <3P ¡i', P ] | 0 > = 0 a n d o u r 

i n e q u a l i t y b e c o m e s 

< 0 | P t [ « , { ¡ ' , < ^ . ] p | o > § 0 ( 3 . 6 9 ) 

T a k i n g i n t o a c c o u n t t h e c o m m u t a t i o n r e l a t i o n 

« У ] = S ? " fi»1' - " ' б С = < r f | - ( 3 . 7 0 ) 
M M ' M M' M' M ц V 

i t f o l l o w s t h a t 

о g <0 |pt(qr{¡ - <r¡;:)p|o> = (ь^-ьм,)<о |ptp|o> (3.71) 

A s t h e h i g h e s t w e i g h t p o l y n o m i a l p [ o ^ > i s n o n - v a n i s h i n g w e h a v e 

<o|ptp|o> > 0 ( 3 . 7 2 ) 

a n d a s a r e s u l t h ^ - h ^ . è 0 i f ¿u < /л1. 
W e h a v e t h u s o b t a i n e d 

h x ë h 2 ê . . . è h r è 0 ( 3 . 7 3 ) 

s o t h a t t h e s e t o f n u m b e r s t h a t g i v e s t h e h i g h e s t w e i g h t i s a c t u a l l y a 

p a r t i t i o n o f n . 

L e t u s n o w c o n s i d e r t h e U 4 g r o u p . T h e p o l y n o m i a l s w e h a v e d e f i n e d 

t i l l n o w h a v e a g i v e n w e i g h t w i t h r e s p e c t t o t h e g r o u p . D u e t o t h e 

f a c t t h a t t h e g e n e r a t o r s o f ( w h i c h a c t s i n o r b i t a l s p a c e ) a n d U 4 ( w h i c h 

a c t s i n s p i n - i s o s p i n s p a c e ) c o m m u t e 

[ <rj¡', СП = 0 (3.74) 

w e c a n d e f i n e p o l y n o m i a l s t h a t a r e a t t h e s a m e t i m e o f h i g h e s t w e i g h t w i t h 

r e s p e c t t o b o t h r a n d U 4 . F o r U 4 w e c a n a g a i n d i v i d e t h e s e t o f g e n e r a -

t o r s i n t o t h r e e s u b - s e t s 2 

{ C j ' , s < s 1 } , { С ® } , { C f , s > s ' } ( 3 . 7 5 ) 

T h e p o l y n o m i a l s o f h i g h e s t w e i g h t ( w i t h r e s p e c t t o U 4 ) w i l l b e s o l u t i o n s 

T h e r e a re 2 J + 4 = 16 g ene ra t o r s . 
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o f t h e e q u a t i o n s 

C * p | o > = v s P I 0 > ( 3 . 7 6 ) 

C | ' P | 0 > = 0 f o r a l l s < s 1 ( 3 . 7 7 ) 

T h e h i g h e s t w e i g h t f o r U 4 w i l l b e t h e v e c t o r 

{ v j , v 2 , v 3 , v 4 } ( 3 . 7 8 ) 

f o r w h i c h a g a i n i t m a y b e p r o v e d t h a t v1 + v 2 + v 3 + v 4 = n a n d t h a t i f 

s < s ' , v s ê v s , , i . e . v 1 È v 2 ê v 3 ë v 4 . T h e s e t o f n u m b e r s ( 3 . 7 8 ) a l s o 

c o r r e s p o n d s t o a p a r t i t i o n o f n . 

W e s h a l l n o w w r i t e d o w n t h e e x p r e s s i o n o f t h e p o l y n o m i a l w h i c h i s 

o f h i g h e s t w e i g h t w i t h r e s p e c t t o b o t h < 3 / r a n d U 4 . W e s h a l l a d m i t w i t h -

o u t p r o o f t h a t f o r e a c h p a r t i t i o n o f n t h e r e i s o n l y o n e p o l y n o m i a l o f 

h i g h e s t w e i g h t i n a n d U 4 . T h i s i s r e l a t e d t o t h e f a c t t h a t t o a g i v e n 

i r r e d u c i b l e r e p r e s e n t a t i o n [ l n ] o f U 4 r c o r r e s p o n d w e l l - d e t e r m i n e d i r -

r e d u c i b l e r e p r e s e n t a t i o n s o f t a n d U 4 , w h i c h a r e a s s o c i a t e d w i t h e a c h 

o t h e r . 

L e t u s d e s c r i b e t h e c o n s t r u c t i o n o f h i g h e s t w e i g h t e i g e n p o l y n o m i a l s 

b y a n e x a m p l e . W e s h a l l t a k e n = 8 p a r t i c l e s . N o w w e t a k e a Y o u n g 

t a b l e a u o f 8 b o x e s a n d p u t i n e v e r y b o x o n e c r e a t i o n o p e r a t o r b j s i n s u c h 

a m a n n e r t h a t t h e r o w ¡и h a s o n l y ц s t a t e s a n d t h e c o l u m n s h a s o n l y s 

s t a t e s . B e s i d e s t h i s , t h e p a r t i t i o n s f o r m e d w i t h r e s p e c t t o b o t h t y p e s 

o f s t a t e s m u s t r e s p e c t t h e p r o p e r t y t h a t i f Ц < ц ' ( s < s ' ) t h e n h ^ ê h ^ . 

( v s ê v S ' ) . L e t u s t a k e , f o r e x a m p l e , [ 3 2 2 1 ] w i t h r e s p e c t t o u s t a t e s 

a n d { 4 3 1 } w i t h r e s p e c t t o s s t a t e s . T h e n w e w i l l s h o w b e l o w t h a t t h e 

h . w . s t a t e f o r b o t h W r a n d U 4 i s g i v e n b y 

b i l b ï 2 
b t 

13 

bJi b ¿ 2 

b ï i ь;2 

b ¡ x 

( 3 . 7 9 ) 

T h i s Y o u n g t a b l e a u r e p r e s e n t s t h e s t a t e 

t . t , t , t . + , t , t , t 
Ь п Ь ^ З Ь 2 1 Ь 2 2 Ь 3 1 Ь 3 2 Ь « l ° > ( 3 ' 8 0 > 

T o d e m o n s t r a t e t h a t ( 3 . 8 0 ) i s a h . w . f o r b o t h a n d U 4 w e s h a l l a p p l y 

t o t h e s t a t e e i t h e r 4 ? ¡ í ' ( j U < j u 1 ) o r C f ( s < s ' ) , a n d t h e r e s u l t w i l l b e z e r o 

b e c a u s e t h e s e o p e r a t o r s m o v e t h e p a r t i c l e s i n t h e s t a t e s w h i c h a r e a l r e a d y 

o c c u p i e d o r a n n i h i l a t e s t a t e s w h i c h d o n o t e x i s t . ( <3? Jf m o v e s t h e i n d i c e s 

o n c o l u m n s a n d C f t h e i n d i c e s o n r o w s . ) 

N o w a p p l y i n g t h e o p e r a t o r s «SPJj a n d C | w e o b t a i n t h e d e g r e e o f t h e 

m o n o m i a l ( 3 . 8 0 ) w i t h r e s p e c t t o i n d i c e s /u a n d s . I n t h e i n d e x ц 

( й = 1 , 2 , . . . , r ) t h e d e g r e e s f o r m t h e p a r t i t i o n [ 3 2 2 1 0 . . . 0 ] = [ 3 2 2 1 ] 

a n d i n t h e i n d e x s ( s = 1 , 2 , 3 , 4 ) t h e d e g r e e s f o r m t h e p a r t i t i o n 

{ 4 3 1 0 } = { 4 3 1 } . 
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T h e p r o c e d u r e o f c o n s t r u c t i n g t h e h i g h e s t w e i g h t s t a t e h a v i n g b e e n 

i n d i c a t e d , t h e f i r s t q u e s t i o n i s : t o w h a t G e l ' f a n d s t a t e d o e s t h i s h . w . s t a t e 

c o r r e s p o n d ? F o r t h i s l e t u s l o o k i n t o t h e g e n e r a t o r s o f < i / x a n d U 4 a n d 

i n t o t h e g e n e r a t o r s o f t h e s u b - g r o u p s w h i c h e n t e r i n t o t h e i r m a t h e m a t i c a l l y 

n a t u r a l c h a i n s . F o r t h e m o m e n t l e t u s c a r r y o u t t h e a n a l y s i s f o r t h e 

c a s e o f U 4 a n d p u t i t s g e n e r a t o r s i n t o a s q u a r e a r r a y 

( 3 . 8 1 ) 

c i C4 

I f w e r e s t r i c t o u r s e l v e s t o t h e f i r s t t h r e e i n d i c e s , t h a t i s , t a k e a w a y t h e 

r o w a n d t h e c o l u m n w h i c h c o n t a i n t h e i n d e x 4 , w e j u s t o b t a i n t h e g e n e r a -

t o r s o f U 3 . T h e n i f w e r e s t r i c t o u r s e l v e s t o t h e f i r s t t w o i n d i c e s , w e 

o b t a i n t h e g e n e r a t o r s o f U 2 a n d , a t l a s t , r e s t r i c t i n g o u r s e l v e s t o t h e 

f i r s t i n d e x , w e o b t a i n t h e g e n e r a t o r s o f t h e c h a i n 

U j 0 0 0 

1 0 

0 0 0 

( 3 . 8 2 ) 

a s s u b - s e t s o f t h e g e n e r a t o r s o f t h e g r o u p U 4 . 

N o w i f w e r e c a l l w h a t a n h . w . s t a t e f o r U 4 s a t i s f i e s , i . e . 

C * P | O > = v s 4 p | o > ; C F ' P | 0 > = 0 

f o r s < s ' w h e r e s , s 1 = 1 , 2 , 3 , 4 
( 3 . 8 3 ) 

( t h e i n d e x 4 i n t h e f i r s t e q u a t i o n s p e c i f i e s t h a t w e a r e d e a l i n g w i t h U 4 ) 

w e o b s e r v e t h a t P | 0 i s a t t h e s a m e t i m e a n h . w . s t a t e f o r U 3 , U 2 a n d 

U j b e c a u s e t h e E q s . ( 3 . 8 3 ) c o n t a i n t h e e q u a t i o n s w h i c h g i v e t h e h . w . 

s t a t e s f o r U 3 , U 2 a n d U j , a s t h e s e t o f g e n e r a t o r s o f T J 4 c o n t a i n s a s 

s u b - s e t s t h e g e n e r a t o r s o f U 3 , U 2 a n d U j . 

O n t h e o t h e r h a n d , w e h a v e s e e n i n t h i s s e c t i o n t h a t t h e c o m p o n e n t s 

o f t h e W e i g h t b e l o n g i n g t o a n h . w . s t a t e f o r m a p a r t i t i o n t h a t c h a r a c t e r i z e s 

t h e s t a t e . I n o u r c a s e t h e s t a t e P | O ) > 

b e c h a r a c t e r i z e d b y t h e p a r t i t i o n [ v 1 4 

i s a n h . w . s t a t e o f U , a n d t h u s c a n 

24' '34 ' '44J f o r m e d f r o m t h e 

c o m p o n e n t s o f i t s w e i g h t . B u t P|O ) > i s a n h . w . s t a t e o f U 3 w i t h t h e w e i g h t 

o f c o m p o n e n t s v 1 3 = v j '23 '33 '34 r e s u l t i n g f r o m E q . ( 3 . 8 3 ) 

w r i t t e n f o r U 3 . T h e n i t c a n a l s o b e c h a r a c t e r i z e d b y t h e p a r t i t i o n 

[v. "24' 34' M o r e o v e r , b e i n g t h e h . w . s t a t e f o r U 2 a n d U j , i t c a n b e 

a n d [ v 1 4 ] a s s o c i a t e d w i t h t h e c h a r a c t e r i z e d b y t h e p a r t i t i o n s [ v 1 4 , 

c o m p o n e n t s o f i t s w e i g h t i n U 2 a n d U j , r e s p e c t i v e l y . 
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F o l l o w i n g t h e s a m e c o n s i d e r a t i o n s f o r ^ a n d i t s n a t u r a l c h a i n w e 

c a n c h a r a c t e r i z e a n h . w . s t a t e o f b y a s e q u e n c e o f p a r t i t i o n s r e -

p r e s e n t i n g t h e p r o p e r t y t h a t t h i s h . w . s t a t e o f i s a n h . w . s t a t e f o r 

a l l g r o u p s i n t h e n a t u r a l c h a i n 

r - l . 3 О ^ ( 3 . 8 4 ) 

T h e n , a n h . w . s t a t e o f t h e d i r e c t p r o d u c t ® U 4 , i . e . a n h . w . s t a t e 

f o r b o t h a n d U 4 , c a n b e w r i t t e n a s a d e f i n i t e G e l ' f a n d s t a t e 

h l r h 2 r h 3 r h 

г-1, г 

( 3 . 8 5 ) 

N o w t h e q u e s t i o n a r i s e s o f h o w t o c o n s t r u c t t h e m o s t g e n e r a l G e l ' f a n d 

s t a t e . T h e a n s w e r t o t h i s q u e s t i o n m u s t t a k e i n t o a c c o u n t t h e f o l l o w i n g 

p r o p e r t y : I f w e h a v e a n I R o f c h a r a c t e r i z e d b y t h e p a r t i t i o n [ h l r , 

h 2 r , . . . , h r r ] a n d w a n t t o f i n d I R o f , w h o s e p a r t i t i o n s [ h l r . ь 

h . h г - 1, r - lJ t] a r e c o n t a i n e d i n i t , t h e c o m p o n e n t s h i m ' o f t h e s e 

t w o p a r t i t i o n s s a t i s f y t h e i n e q u a l i t y ( H . W e y l , T h e T h e o r y o f G r o u p s a n d 

Q u a n t u m M e c h a n i c s , D o v e r ( 1 9 3 1 ) 3 9 1 ) 

ë h Ir - 1 ë h 2 r = h 2 r - ê h r - l . r - 1 ê h r r 1 0 ( 3 . 8 6 ) 

T h i s i s a f u n d a m e n t a l r e l a t i o n f o r t h e u n i t a r y g r o u p a n d i t i s t h e e q u i v a l e n t 

o n e t o t h e r e l a t i o n SL ê m ё - Í f o r t h e c h a i n R 3 э R 2 o f r o t a t i o n a l g r o u p s . 

K e e p i n g t h i s p r o p e r t y i n m i n d , w e s h a l l t r y t o g e t a g e n e r a l G e l ' f a n d s t a t e 

s t a r t i n g f r o m t h e h . w . G e l ' f a n d s t a t e . 

T h i s p r o b l e m s e p a r a t e s i n t o t w o p a r t s , o n e r e f e r r i n g t o a n d t h e 

o t h e r t o U 4 . F o r t h e m o m e n t w e r e s t r i c t o u r s e l v e s t o . O u r a i m i s 

t o g e t t h e s t a t e 

• l , r - 1 

4 l 

( 3 . 8 7 ) 

f r o m t h e h . w . s t a t e . T h e f i r s t t h i n g w e h a v e t o d o i s t o f i n d t h e c o m p o -

n e n t s o f t h e w e i g h t f o r s u c h a s t a t e . F o r t h i s p u r p o s e l e t u s d e f i n e t h e 

o p e r a t o r 

ЛГ r I 
M = 1 

К ( 3 . 8 8 ) 
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T h i s o p e r a t o r r e p r e s e n t s a c o n t r a c t i o n o f t h e u p p e r a n d l o w e r i n d i c e s o f 

t h e g e n e r a t o r a n d t h e r e f o r e w o u l d b e i n v a r i a n t u n d e r u n i t a r y t r a n s f o r m a -

t i o n s o f t h e c r e a t i o n a n d a n n i h i l a t i o n o p e r a t o r s . O n e t h e r e f o r e e x p e c t s 

t h a t c o m m u t e s w i t h a l l t h e g e n e r a t o r s , w h i c h w e p r o c e e d t o s h o w . 

Г г г 

Д =1 

ó " " 
С f 

) 
ц ¡i-

¡1=1 (1 = 1 

<r J" У ( Ô " " - 6 " ) = 0 
' Z_, с ц ( 3 . 8 9 ) 

(i = i 

O p e r a t o r s t h a t c o m m u t e w i t h a l l t h e g e n e r a t o r s w i l l b e d e n o t e d h e r e a s 

C a s i m i r o p e r a t o r s , t h o u g h t h e w o r d i s u s u a l l y u s e d i n a m o r e r e s t r i c t e d 

s e n s e . T h e o p e r a t o r , Ж Г , b e i n g l i n e a r i n t h e Ч Г j ¡ ' , w i l l b e d e s i g n a t e d a s 

a C a s i m i r o p e r a t o r o f t h e f i r s t o r d e r f o r t h e g r o u p < g / r . O b v i o u s l y , t h e 

f i r s t o r d e r C a s i m i r o p e r a t o r o f i s 

^ r - l = \ « ( 3 . 9 0 ) 

(i- 1 

N o w , u s i n g t h e d e f i n i t i o n a n d t h e p r o p e r t i e s o f w e c a n f i n d t h e 

w e i g h t o f a g e n e r a l G e l ' f a n d s t a t e . F o r t h e w r c o m p o n e n t l e t u s c a l c u l a t e 

h l r h 9 r 

. . . h , . . 

= i) 

t ( h l r + h 2 r + . . . h r r ) - ( h l r _ 1 + h 2 r . 1 + . . . h r . l i t . , ) ] 

h l r . h 2r 

h ir-1- • • h r - l , r - 1 

a n d o b t a i n 

W r = < h l r + h 2 r + • • • h r r ) - ( h l r - l + h 2 r - l + . . . h r - l . r - l ) < 3 - 9 2 ) 

a s t h e d i f f e r e n c e b e t w e e n t h e e i g e n v a l u e s o f J ' , a n d H e r e t h e 

e i g e n v a l u e s a r e t h e s a m e a s t h o s e f o r t h e h . w . s t a t e o f a n d b e -

c a u s e t h e C a s i m i r o p e r a t o r c o m m u t e s w i t h t h e g e n e r a t o r s o f t h e g r o u p a n d 

i n p a r t i c u l a r w i t h t h e l o w e r i n g g e n e r a t o r s w h i c h p a s s u s f r o m t h e h . w . 

s t a t e t o a n a r b i t r a r y s t a t e . 
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T o o b t a i n t h e w x c o m p o n e n t w e a p p l y t o t h e G e l ' f a n d s t a t e t h e 

o p e r a t o r = ~ ^ r - 2 < a n d s 0 o n - G e n e r a l l y , t h e w M c o m p o n e n t i s : 

w „ = ( h 1 ( J + h 2 ( J + . . . h M ( 1 ) ~ ( h
1 ( J . j + h 2 j J . 1 + . . . h ^ . ^ ^ l ( 3 . 9 3 ) 

T h e s e t w p w h e r e p = 1 , 2 , . . . r g i v e s t h e w e i g h t o f a g e n e r a l G e l ' f a n d 

s t a t e o f t h e u n i t a r y g r o u p i n r d i m e n s i o n s a n d , a s o n e s e e s f r o m t h e e x -

p r e s s i o n o f W j j , t h e r e a r e i n g e n e r a l s e v e r a l G e l ' f a n d s t a t e s c o r r e s p o n d i n g 

t o a g i v e n w e i g h t e x c e p t f o r t h e h i g h e s t w e i g h t s t a t e w h i c h i s s i m p l e . T h i s 

r e s u l t d o e s n o t o c c u r i n R 3 w h e r e o n l y o n e s t a t e c o r r e s p o n d s t o a g i v e n 

w e i g h t . 

3 . 6 . H o w t o g e t a n a r b i t r a r y s t a t e f o r a g i v e n i r r e d u c i b l e 

r e p r e s e n t a t i o n f r o m t h e h i g h e s t w e i g h t s t a t e 

F o r t h e t h r e e - d i m e n s i o n a l r o t a t i o n g r o u p , t h e h . w . s c o r r e s p o n d i n g 

t o t h e i r r e d u c i b l e r e p r e s e n t a t i o n S. a r e s o l u t i o n s o f t h e e q u a t i o n s 

L 0 Y { £ = £ Y U ( 3 . 9 4 ) 

L + Y £ s = 0 ' ( 3 . 9 5 ) 

T h e s t a t e s o f g i v e n w e i g h t Y i m a r e o b t a i n e d f r o m Y ¡ ¡ b y a p p l y i n g t o i t 

t h e l o w e r i n g o p e r a t o r L - : 

L - Y £ i
 Œ Y t i i - i ( 3 . 9 6 ) 

T h i s s u g g e s t s t h a t b y a p p l y i n g t h e l o w e r i n g g e n e r a t o r s o f < $ / t t o t h e h . w . 

s t a t e s , w e s h o u l d b e a b l e t o g e n e r a t e a l l t h e o r b i t a l s t a t e s o f t h e n p a r t i c l e 

s y s t e m . T h i s i s i n f a c t t r u e w i t h t h e o b s e r v a t i o n t h a t b y f o l l o w i n g s u c h a 

w a y w e s h a l l , n o t s u c c e e d i n c a r r y i n g o u t o u r s t e p - d o w n p r o c e d u r e v i a 

G e l ' f a n d s t a t e s . T h i s h a p p e n s b e c a u s e f o r Í S / Í t h e r e a r e s e v e r a l w a y s 

o f g o i n g d o w n f r o m a f u n c t i o n o f h i g h e s t w e i g h t t o a f u n c t i o n o f l o w e r w e i g h t , 

h a s s e v e r a l l o w e r i n g o p e r a t o r s ) i n c o n t r a s t w i t h t h e R 3 g r o u p , w h e r e 

t h e w a y o f o b t a i n i n g s t a t e s o f l o w e r w e i g h t i s u n i q u e (R3 h a s o n l y o n e 

s t e p - d o w n o p e r a t o r ) . 

I f w e a r e p e r m i t t e d a n a n a l o g y , t h e s i t u a t i o n f o r i s s o m e w h a t 

s i m i l a r t o g e t t i n g d o w n f r o m t h e p e a k o f a m o u n t a i n ( t h e h . w . s t a t e ) . 

T h e r e a r e g e n e r a l l y s e v e r a l w a y s t o g e t d o w n f r o m a p e a k , b u t w e a r e 

i n t e r e s t e d i n a w e l l d e f i n e d w a y o f g e t t i n g d o w n , n a m e l y , t h e w a y t h a t 

p a s s e s o n l y t h r o u g h G e l ' f a n d s t a t e s . ( A c t u a l l y w e h a v e t w o m o u n t a i n s : 

a n d U 4 ! ) 

W e s h a l l c a r r y o u t t h e s t e p p i n g - d o w n a n a l y s i s f o r . L e t u s f i r s t 

c o n s i d e r t w o p a r t i c u l a r c a s e s r = 2 a n d r = 3 . T h e a n a l y s i s o f t h e p r o c e s s 

o f s t e p p i n g d o w n f o r t h e s e c a s e s w i l l e n a b l e u s t o i n f e r t h e g e n e r a l r u l e . 

L e t u s b e g i n w i t h r = 2 w h o s e g e n e r a l G e l ' f a n d s t a t e i s 

45 
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I t s w e i g h t i s ; 

( h n , h 1 2 + h 2 2 - h n ) 

I f w e n o w w a n t t o a p p l y t h e l o w e r i n g o p e r a t o r t o 12 ' 2 2 

w e f i r s t o b s e r v e t h a t t h e n u m b e r s h 12> 1122 c a n n o t c h a n g e b e c a u s e t h e y 

c h a r a c t e r i z e t h e i r r e d u c i b l e r e p r e s e n t a t i o n o f < $ / 2
 t 0 w h i c h t h e f u n c t i o n 

h 12 h 2 2 N 

h i l 
b e l o n g s . S o o n l y h j j w i l l c h a n g e a n d w e o b t a i n E 

112 h 22 \ 1112 h 22 \ 

h i ! / " h ' n / 

T h e v a l u e o f h j ^ i s o b t a i n e d b y o b s e r v i n g t h a t , 

[ r é \ , = - i . e . = Ç f g C W - 1 ) 

( 3 . 98) 

( 3 . 99 ) 

w h e n c e 

r<g\r<?\ 
i22 

4 1 

( h n - 1 ) « ' J 
'22 

' 1 1 

( 3 . 1 0 0 ) 

s o t h a t 

N o w , a n a r b i t r a r y s t a t e 
4 2 22 

h l i 
i s o b t a i n e d f r o m t h e h . w . 

, h „ - h , 
s t a t e , b y a p p l y i n g t o t h e h . w . s t a t e t h e o p e r a t o r ( 1 2 " 1 1 

hi2- h.] h 1 2 h 2 2 

'11 

(3. 101) 

The state sa t i s f i e s the two e igenva lue equations: 

"11 

h 12 h22 

h n 

h12 h s 

h n 

( h 1 2 + h 2 2 - h n ) 
h12 h 2 2 

hn 

If we apply the gene ra to r of a group to a state belonging to a g i ven i r r educ ib l e 
r epresenta t i on of that group, we get a state be longing to the same i r r educ ib l e r epresen ta t i on . 

5 We should get , in fact , a sum o v e r Ge l ' f and states with the same and h22 but with 

45* 
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T h i s i s a n a l o g o u s t o t h e R 3 r e l a t i o n 

( L _ ) C ~ m | i . O = I £ m У ( 3 . 1 0 2 ) 

I t w o u l d p e r h a p s b e i n s t r u c t i v e t o p o i n t o u t t h a t t h e c o r r e s p o n d e n c e 

b e t w e e n r e l a t i o n s ( 3 . 1 0 1 ) a n d ( 3 . 1 0 2 ) i s n o t o n l y a n a n a l o g y b u t e v e n a 

o n e - t o - o n e c o r r e s p o n d e n c e , w h i c h c a n b e d e t e r m i n e d i f w e o b s e r v e t h a t 

t h e o p e r a t o r s 

L + J L 0 , L _ ( 3 . 1 0 3 ) 

c a n b e p u t i n t o c o r r e s p o n d e n c e w i t h t h e o p e r a t o r s 

( 3 . 1 0 4 ) 

T h i s o r i g i n a t e s f r o m t h e f a c t t h a t t h e o p e r a t o r s ( 3 . 1 0 4 ) a r e o b t a i n e d f r o m 

t h e f o u r g e n e r a t o r s o f t h e G S 2 g r o u p b y t a k i n g t h e l i n e a r c o m b i n a t i o n s 

+ Щ). -
m o v i n g t h e o p e r a t o r 

u n i t a r y t r a n s f o r m a t i o n 

i n s t e a d o f t h e o p e r a t o r s 2 a n d b y r e -

' 1 + <3? 2 ) w h i c h i s j u s t t h e g e n e r a t o r o f t h e 

U = e i 5 I s ( 1 + i ô ) I , w h e n б « 1 ( 3 . 1 0 5 ) 

B u t , a s f o r a g e n e r a l u n i t a r y t r a n s f o r m a t i o n U , w e h a v e d e t U = e 1 ' ' , w e 

c o n c l u d e t h a t b y r e m o v i n g t r a n s f o r m a t i o n s o f t y p e ( 3 . 1 0 5 ) o n e g e t s t h e 

u n i t a r y u n i m o d u l a r g r o u p i n t w o d i m e n s i o n s S U 2 . T h i s i s e q u i v a l e n t t o 

+ 1 ) f r o m t h e s e t 

- o n e g e t s t h e g e n e r a t o r s o f t h e g r o u p 

t h e f a c t t h a t b y r e m o v i n g t h e g e n e r a t o r 

S U 2 , w h i c h , 

a s w e k n o w , i s h o m o m o r p h i c t o T h e e q u a l i t y b e t w e e n 

t h e p o w e r s o f t h e l o w e r i n g o p e r a t o r s i n ( 3 . 1 0 1 ) a n d ( 3 . 1 0 2 ) r e s u l t s , i f o n e h 1 2 h с 
- О c o r r e s p o n d s t o o b s e r v e s t h a t 

4 2 '22 
h 12 

>22^ 
a n d | i m ) c o r r e s p o n d s 

w h i l e t h e o p e r a t o r L 0 c o r r e s p o n d s t o ~ T h e 

•m o f t h e e i g e n v a l u e s o f L 0 f o r t h e s t a t e s | . < ! . O a n d 

t o h h i i 

d i f f e r e n c e £ -

s h o u l d c o r r e s p o n d t o t h e d i f f e r e n c e o f t h e e i g e n v a l u e s o f ! ( < « ? J -

f o r t h e s t a t e s 
4 2 

4 2 
a n d 

'12 x22 

L l l 
W e h a v e 

a n d 

' I ) = 2 [ h 1 2 - ( h 1 2 + h 2 2 - h 1 2 ) ] 

= è ( h 1 2 - h „ „ ) 
4 2 n 22 

42 
( 3 . 1 0 6 ) 

h 12 h 2 2 \ 

h n 

= l [ h n - ( h . 2 + h 2 2 - h „ ) ] 

4 2 
( 3 . 1 0 7 ) 
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T h e d i f f e r e n c e b e t w e e n t h e t w o e i g e n v a l u e s g i v e s t h e p o w e r o f t h e l o w e r -

i n g o p e r a t o r a n d i s e q u a l t o h 1 2 - h n , a s i t s h o u l d b e . T h e e q u a l i t y ( 3 . 1 0 1 ) 

h a s b e e n w r i t t e n u p t o a n o r m a l i z a t i o n c o e f f i c i e n t , w h i c h m a y b e s h o w n 

t o b e 

N 
4 2 1 2 2 

= N 

4 1 

42 

( h n — h 22) ' 

( h 1 2 - h n ) ! ( h 1 2 - h , 9 ) ! 2 2 ' 

' 2 2 

4 1 

( ? J ) h U ' 1 " 

( 3 . 1 0 8 ) 

( 3 . 1 0 9 ) 

L e t u s n o w c o n s i d e r a n a r b i t r a r y G e l ' f a n d s t a t e o f „ 

( 3 . 1 1 0 ) 

a n d t r y t o o b t a i n i t b y a s t e p p i n g - d o w n p r o c e d u r e f r o m t h e h . w . s t a t e 

h i 3 h 2 3 h 33 

4 з 23 ( 3 . 1 1 1 ) 

4 3 

A s w e k n o w h o w t o o b t a i n a n y U 2 s t a t e f r o m t h e U 2 h . w . s t a t e , w e s h a l l 

n o w o n l y w o r r y a b o u t o b t a i n i n g t h e s t a t e o f h . w . i n U 2 

( 3 . 1 1 2 ) 

f r o m t h e U 3 h . w . s t a t e ( 3 . 1 1 1 ) . T o a c h i e v e t h i s , w e s h a l l s t a r t b y 

e x a m i n i n g t h e e f f e c t o f t h e l o w e r i n g o p e r a t o r s > eg>i u p o n a g i v e n 

G e l ' f a n d s t a t e . T h e c o m m u t a t i o n r e l a t i o n 

,2] 
3J 

0 ( 3 . 1 1 3 ) 
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F r o m t h e c o m m u t a t i o n r e l a t i o n s ( 3 . 1 1 ) w e g e t 

? 2 r/p2 _ 2 , „ 2 3 < 3 ? 2 

3 ^ 3 
2 ( ^ 3 + 1 ) ( 3 . 1 1 5 ) 

^ 2 ^ 3 = ^ 3 ( ^ 2 

s o t h a t w h e n w e r e p l a c e b y o r <3? 3 i n ( 3 . 1 1 4 ) , w e s e e t h a t t h e s t a t e 

h 1 3 h 2 3 h 33 

V Ï h 1 2 h 2 2 \ . ( 3 . 1 1 6 ) 

h i 2 
I 

h a s w e i g h t 

( h 1 2 , h 2 2 - l , h 1 3 + h 2 3 + h 3 3 - h 1 2 - h 2 2 + l ) ( 3 . 1 1 7 ) 

W e s e e f u r t h e r m o r e t h a t f a n d . c o m m u t e , s o t h e s t a t e ( 3 . 1 1 6 ) i s o f 

h i g h e s t w e i g h t i n t h e s u b - g r o u p . W e c o n c l u d e f r o m ( 3 . 1 1 7 ) t h a t 

( 3 . 1 1 8 ) 

L e t u s n o w e x a m i n e t h e e f f e c t t h a t h a s u p o n t h e s t a t e 

T h e g e n e r a t o r ^ 3 h a s t h e f o l l o w i n g c o m m u t a t i o n r e l a t i o n w i t h t h e w e i g h t 

g e n e r a t o r s 

\<в\, ^3] = - <<g\\ 

w h i c h t e l l s u s t h a t 

: Ч Г | . < * \ \ = 0 ; [ < V \ . q r j ] ( 3 . 1 1 9 ) 

( 3 . 1 2 0 ) 

i s a n e i g e n f u n c t i o n o f < S ? j ¡ , ц = 1,2,3 w i t h e i g e n v a l u e s 

( h 1 2 - 1 , h 2 2 , h 1 3 + h 2 3 + h 23 l33 22 + 1 ) ( 3 . 1 2 1 ) 

T h e w e i g h t o f ( 3 . 1 2 0 ) i s t h e n g i v e n b y ( 3 . 1 2 1 ) . 

L e t u s n o w c o n s i d e r t h e o p e r a t o r < j ? i < j ? 2 , w h i c h h a s t h e s a m e c o m -

m u t a t i o n r e l a t i o n s w i t h t h e w e i g h t o p e r a t o r s a s < 3 ? * , n a m e l y , 

' j , % q ~4> 3J 2 * 3 = W Q W q 

9g §] = 0 

ivl, <<gV - Qg ÍQ0¿ 
«> 3 

( 3 . 1 2 2 ) 

( 3 . 1 2 3 ) 

( 3 . 1 2 4 ) 
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T h e i d e n t i t y o f t h e c o m m u t a t i o n r u l e s o f a n d w i t h t h e w e i g h t 

o p e r a t o r s t e l l s u s t h a t t h e e f f e c t o f <$\(ig\ u p o n t h e w e i g h t o f a G e l ' f a n d 

s t a t e w i l l b e t h e s a m e a s f o r Ч Р ^ . W e h a v e t h e n t h e h o p e t h a t t h e r e e x i s t s 

a l i n e a r c o m b i n a t i o n o f < g \ a n d w h i c h , a p p l i e d t o a f u n c t i o n o f 

h . w . i n ' & ' g ' s h o u l d g i v e u s a f u n c t i o n o f h . w . i n < ^ 2 • T h a t i s , w e w a n t 

t o d e t e r m i n e a a n d b s u c h t h a t 

h 13 h 2 3 133 ' 

h 1 2 - l 

h i 2 - l ( 3 . 1 2 5 ) 

A s t h e r e s u l t i n g s t a t e i s o f h i g h e s t w e i g h t i n < 3 / 2 , t h e a p p l i c a t i o n o f a 

r a i s i n g o p e r a t o r i n U 2 s h o u l d g i v e z e r o . W e t h u s g e t t h e f o l l o w i n g e q u a -

t i o n f o r t h e d e t e r m i n a t i o n o f a a n d b 

A s 

> 2 ( a + b 
3 

= 0 ( 3 . 1 2 6 ) 

q ? Í h 1 2 h 2 2 

h 

w e c a n w r i t e E q . ( 3 . 1 2 6 ) i n t h e f o r m : 

4 3 ^ 3 

42 

[ < r ; , ( a < # \ + b < r 2 « f , ) ] 

= 0 ( 3 . 1 2 7 ) 

( 3 . 1 2 8 ) 

B u t 
Г<з? 2 <2? M = - <3?5 
1 те 1 » ^ 3 ! £ ( 3 . 1 2 9 ) 

a n d 

( 3 . 1 3 0 ) 

s o E q . ( 3 . 1 2 8 ) b e c o m e s 

0 = [ - a Ç ? 2 + b [ ( 3 . 1 3 1 ) 
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• a + b ( < y i - < # 2
2 ) ] < # l 

h 1 3 h 2 3 

42 

oc [ - a + b ( < r I 1)1 

^ 1 3 h 2 3 

h 1 2 h 2 2 _ 1 

1 1 2 

( 3 . 1 3 2 ) 

t h e l a s t e q u a t i o n r e s u l t i n g f r o m ( 3 . 1 1 8 ) . W e f i n a l l y g e t 

[ - a + b ( h i 2 - h 2 2 + 1 ) ] h 12 h 2 2 _ 1 

4 2 

( 3 . 1 3 3 ) 

w h e n c e 

a = b ( h 1 2 - h 2 2 + l ) ( 3 . 1 3 4 ) 

A s w e a r e n o t i n t e r e s t e d y e t i n ' t h e n o r m a l i z a t i o n p r o b l e m , w e c a n 

p u t b = 1 a n d g e t 

a - h 1 2 - h 2 2 + 1 ( 3 . 1 3 5 ) 

W e h a v e t h u s s u c c e e d e d i n o b t a i n i n g t h e o p e r a t o r w h i c h , a p p l i e d t o 

a G e l ' f a n d s t a t e o f < $ ¿ 3 o f h i g h e s t w e i g h t i n t h e s u b - g r o u p , g i v e s u s 

a n o t h e r G e l ' f a n d s t a t e o f h i g h e s t w e i g h t i n : 

^ 3 ( h 1 2 - h 2 2 + 1 ^ + ^ 2 « 1 1 

h 13 h 23 

h 12 h 22 

h l 2 

h 1 3 h 23 

( 3 . 1 3 6 ) 

W e s h a l l n o w i n t r o d u c e t h e f o l l o w i n g d e f i n i t i o n s . W e s h a l l c a l l L 2 t h e 

l o w e r i n g o p e r a t o r f o r U 2 , w h o s e e f f e c t i s 

h 1 2 h 2 2 

h n 

A s w e h a v e a l r e a d y s e e n , 

1 12 n 2 2 

h n - l 
( 3 . 1 3 7 ) 

(3.138) 
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a n d t h e f o l l o w i n g a r e l o w e r i n g o p e r a t o r s f o r U 3 

4 - •1+1) + ( 3 . 1 3 9 ) 

( 3 . 1 4 0 ) 

w h e r e t o g e t ( 3 . 1 3 9 ) w e r e p l a c e d i n ( 3 . 1 3 6 ) t h e e i g e n v a l u e h 1 2 - h 2 2 + 1 

b y t h e o p e r a t o r w h i c h p r o d u c e s i t w h e n a c t i n g o n t h e G e l ' f a n d s t a t e m ( 3 . 1 3 6 ) . 

A n a r b i t r a r y G e l ' f a n d s t a t e m a y t h u s b e o b t a i n e d f r o m a n h . w . G e í ' f a n d 

s t a t e b y t h e e q u a t i o n 

hi3 h 23 h 33 

1 1 1 2 h 2 2 

h 1 2 h 2 2 
= N ' N 

h i 3 h 2 3 h 3 

h 1 2 h 2 2 

v , T l . h 1 2 " h U , T l . h 1 3 " h 1 2 , T 2 . h 2 3 " h 2 2 A \i-<2> 3) h-13 ^23 

hi3 

w h e r e N ' a n d N a r e n o r m a l i z a t i o n f a c t o r s a s s o c i a t e d 

' 2 

( 3 . 1 4 1 ) 

r e s p e c t i v e l y , w i t h 

t h e o p e r a t o r ( L ^ ) h i 2 " h n t h a t a c t s i n < g / 2 a n d t o t h e p r o d u c t o f o p e r a t o r s 

( Ц ) 
h i 3 " h i 2 ( L 2 ) h 2 3 " h 2 2 t h a t a c t s i n « / 3 . 

O n c e w e k n o w t h e e x p r e s s i o n s f o r t h e l o w e r i n g o p e r a t o r s , t h e c a l -

c u l a t i o n o f m a t r i x e l e m e n t s o f a g e n e r a t o r < & v ' b e t w e e n G e l ' f a n d s t a t e s 

o f & о " 

h 1 3 h 2 3 h 33 

h ' 12 '22 < ( 3 . 1 4 2 ) 

i s r e d u c e d t o a c a l c u l a t i o n o f c o m m u t a t i o n r e l a t i o n s b e t w e e n ^ ¡ l a n d t h e 

o p e r a t o r s L 2 , L 3 , L § , a n d t h e e x p l i c i t e x p r e s s i o n s a r e g i v e n i n R é f . [ 1 ] • 

T h e p r o c e d u r e f o r d e t e r m i n i n g t h e l o w e r i n g o p e r a t o r s f o r <8^3 h a s 

b e e n g e n e r a l i z e d t o t h e c a s e t b y N a g e l a n d M o s h i n s k y a n d t h e e x p l i c i t 

e x p r e s s i o n o f t h e l o w e r i n g o p e r a t o r s f o r t h i s g e n e r a l c a s e a s w e l l a s 

o f t h e n o r m a l i z a t i o n c o e f f i c i e n t s i s g i v e n i n R e f . [ 2 ] . F u r t h e r m o r e t h e 

m a t r i x e l e m e n t s o f t h e g e n e r a t o r s o f w i t h r e s p e c t t o G e l ' f a n d s t a t e s 

w e r e a l s o o b t a i n e d b y t h e s a m e p r o c e d u r e a s t h a t i n d i c a t e d f o r ^ 3 i n 

( 3 . 1 4 2 ) t h u s g i v i n g a n i n d e p e n d e n t d e r i v a t i o n o f t h e a n a l y s i s o f G e l ' f a n d 

a n d Z e t l i n . 

3 . 7 . D e f i n i t i o n a n d e i g e n v a l u e s o f C a s i m i r o p e r a t o r s 

F o r t h e p u r p o s e o f o u r a n a l y s i s w e d e f i n e a s a C a s i m i r o p e r a t o r 

a n o p e r a t o r f o r m e d f r o m t h e g e n e r a t o r s o f a g r o u p t h a t c o m m u t e s w i t h 

a l l o f t h e m . 
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E x a m p l e s : F o r t h e R 3 g r o u p t h e o p e r a t o r 

L 2 = L 2 + L 2 + L 2 ( 3 . 1 4 3 ) 

i s a C a s i m i r o p e r a t o r a s i t c o m m u t e s w i t h L ¡ i ± 1 , 2 , 3 . 

F o r t h e < i / r g r o u p 

r 

J T X = Y ( 3 . 1 4 4 ) 

ц = 1 

i s a C a s i m i r o p e r a t o r , a s w e s h o w e d i n a p r e v i o u s s u b - s e c t i o n t h a t i t 

c o m m u t e d w i t h a l l W e c o u l d h a v e s e e n t h i s a l s o f r o m t h e f a c t t h a t 

a s ¿ r t i s g i v e n b y a c o n t r a c t i o n b e t w e e n a c r e a t i o n a n d a n a n n i h i l a t i o n 

o p e r a t o r t h a t t r a n s f o r m b y c o n j u g a t e u n i t a r y t r a n s f o r m a t i o n s , i s 

c l e a r l y a n i n v a r i a n t w i t h r e s p e c t t o a n d s o w e w o u l d e x p e c t t h a t i t 

c o m m u t e s w i t h a l l g e n e r a t o r s o f t h a t a r e i n f a c t a s s o c i a t e d w i t h i n -

f i n i t e s i m a l u n i t a r y t r a n s f o r m a t i o n s . T h i s s u g g e s t s t h e n t h a t i n v a r i a n t s 

u n d e r s u c h a s 

г 

Г Г = Y « " ¡ ¡ ' « " Ï - ( 3 . 1 4 5 ) 

¡i.ii' = i 

s h o u l d c o m m u t e w i t h a l l t h e g e n e r a t o r s o f w h i c h w e e a s i l y c h e c k 

b y m a k i n g u s e o f t h e c o m m u t a t i o n r e l a t i o n s ( 3 . 1 1 ) . T h e r e f o r e F r i s a 

C a s i m i r o p e r a t o r o f a n d w e s h a l l r e f e r t o i t a s s e c o n d o r d e r C a s i m i r 

o p e r a t o r t o d i s t i n g u i s h i t f r o m , Ж Г . W e c o u l d b y a p r o c e d u r e s i m i l a r 

t o ( 3 . 1 4 5 ) d i s c u s s C a s i m i r o p e r a t o r s o f h i g h e r o r d e r , b u t a s t h e y w i l l b e 

o f n o s p e c i a l u s e t o u s , w e r e s t r i c t o u r s e l v e s i n t h i s s e c t i o n t o t h e a n a -

l y s i s o f t h e e i g e n v a l u e s o f Г г . 

T o o b t a i n t h e s e e i g e n v a l u e s w e s h a l l a p p l y Г г t o a G e l ' f a n d s t a t e , b u t 

b e f o r e d o i n g t h i s w e s h a l l d i s c u s s t h e c o r r e s p o n d i n g p r o b l e m f o r R 3 . 

I f w e a p p l y L 2 t o t h e s t a t e | i m > w e n o t e f r o m t h e f a c t t h a t L . 

c o m m u t e s w i t h L 2 = L . L + + L 0 ( L 0 + 1 ) t h a t w e c a n w r i t e 

L 2 | i m > = 
( I + m ) ' . 

(£ -m)! 2i\ L .
C

'
m

L
2

| ii> 

( I + m ) ' 

( i - m ) l 2 Í ! 

= i ( i + l ) | im> 

L-
 m

 [L.L
+
 + L

0
( L

0
 + 1)] I U > 

( 3 . 1 4 6 ) 

w h e r e w e u s e d t h e f a c t t h a t f o r t h e h i g h e s t w e i g h t s t a t e L + | í j O = 0 . 

T h e a n a l y s i s o f t h e p r e v i o u s p a r a g r a p h , t o g e t h e r w i t h a d e v e l o p m e n t 

s i m i l a r t o ( 3 . 1 4 6 ) f o r s u g g e s t s t h a t i n t h e s e a r c h o f t h e e i g e n v a l u e s 

o f Г г w e c o u l d r e s t r i c t o u r d i s c u s s i o n t o t h e a p p l i c a t i o n o f Г г t o t h e h . w . 
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s t a t e o f i . e . 

h l r . . . . h r _ ! r 

= r p | o > 

W e n o w r e w r i t e Г г i n t h e f o l l o w i n g f o r m : 

n • I 
M f = 1 

г 

• I 

ЯГ" qr"' 
f M 

(1<|J' = 2 

= 2 I V 

ï Ï + / < < 

( i<( i ' = 2 

= 2 
M с 

1 ( Í > i j ' = i 

r 
г—» 

г 

1 K> 2 • I 
M = 1 =2 

г г г—1 

- Z 
М = 1 |1<м' = 2 

[ ч с Ц . « " ¡ U 

'M - с<?С 

( 3 . 1 4 7 ) 

( 3 . 1 4 8 ) 

I n t h i s l a s t s u m m a t i o n t h e f i r s t t e r m a c t i n g o n t h e s t a t e o f h i g h e s t w e i g h t 

g i v e s z e r o , d u e t o t h e e f f e c t o f t h e r a i s i n g g e n e r a t o r ^ J j ' /л < ¡ j < . T h e 

s e c o n d t e r m g i v e s ^ h ^ h ^ , t h e t h i r d 2 ^ ( h ^ - h ^ . ) - A d d i n g u p w e 

g e t f o r Y r i n M = 1 м < м . = 2 

Г Г Р | 0 > = 7 r p | 0 > ( 3 . 1 4 9 ) 

t h e v a l u e 

w h e r e 

7 r = Z { Ь м ( Ь м - 2 ^ ) } + n ( r + l ) 

n = ^ h/u ( 3 . 1 5 0 ) 
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4 . T H E P R O B L E M O F A S I N G L E S H E L L 

4 . 1 . T h e c o n c e p t o f g e n e r a l i z e d p a i r i n g i n t e r a c t i o n 

W e w i s h t o i n v e s t i g a t e i n t e r a c t i o n s w h i c h c a n b e d i a g o n a l i z e d i n a 

w a y s i m i l a r t o t h e c a s e o f t h e s y m m e t r i c t o p . T h i s m e a n s w e w a n t t o 

e x p r e s s o u r i n t e r a c t i o n s i n t e r m s o f C a s i m i r o p e r a t o r s o f p h y s i c a l l y 

m e a n i n g f u l s u b - g r o u p s . W e f i r s t c o n s i d e r t h e c a s e o f p a r t i c l e s i n a 

s i n g l e s h e l l s p e c i f i e d b y £ , i n w h i c h c a s e w e h a v e 

r = 2£ + 1 ( 4 . 1 ) 

T h i s m e a n s t h a t w e r e s t r i c t o u r q u a n t u m n u m b e r s p = vim., стт t o o n e 

f i x e d v a l u e o f v £; m c a n t a k e 2 i + l v a l u e s f r o m + £ t o - £ . S o i n s t e a d 

o f s p e c i f y i n g t h e g e n e r a t o r s b y t h e s e t Ц = v£m,/u' = v£m', w e c a n 

s i m p l y u s e m : 

( 4 - 2 ) 

I f w e d e f i n e a n o r d e r 

M = 1 , 2, 3, 2 i + 1 

( 4 . 3 ) 

m= £, £-1, £-2 , . . . , - £ 

w e o n l y h a v e t o n o t i c e t h a t i n c r e a s i n g ju c o r r e s p o n d s t o d e c r e a s i n g m s o 

t h a t t h e r i s i n g g e n e r a t o r s ^ c o r r e s p o n d t o m > m ' a n d t h e l o w e r i n g 

g e n e r a t o r s t o m < m 1 . L e t u s n o w l o o k a t t h e H a m i l t o n i a n E q . ( 2 . 6 ) 

н = I ( ¿ + u ( r 0 + X v ( v ( 4 - 4 ) 

1 i < j 

g T = 9 Г " + < Г ( 4 . 5 ) 

T h e s t a t e s | v i m > c o u l d b e c h o s e n t o d i a g o n a l i z e t h e s i n g l e - p a r t i c l e 

p a r t o f t h e H a m i l t o n i a n 

2 
W l = + U ( r i ) ( 4 - 6 ) 

<( v i m ' I W j I v£m У = < 5 m m . Е „ г ( 4 . 7 ) 

S o t h e o n e - b o d y p a r t t a k e s t h e v e r y s i m p l e f o r m 

9 Г = Y | y í m - > < T m 

= E VÍJT ( 4 . 8 ) 
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that is, the single-particle energy multiplied by the number operator. 
The two-body operator 

(4.9) 

can be rewritten by introducing the total orbital angular momentum 
two-partic le functions 

\v£v£, = Y (4.10) 

Using the properties of the Clebsch-Gordan coefficients 

Y (Mrmtnz ¡ / ^ t U U m ^ l / u t ) = Ô (4.11) 

and the fact that V ( r 1 2 ) is rotationally invariant and so diagonal with 
respect to Л ! X we may write 

= + (4.12) 

with У being the quadratic and the linear part of (4.9) , with the 
f i rst part given by 

9 Г ' = l Z (2ÎTTT <v*>v*> / | v ( r 1 2 ) | ^ , v i , / > ^ ( / ) (4.13) 

where 

&>(j?) = Y Y Y (2£+i)<¿¿mim2u^txtim^i/ 
m m^jiriim; (4.14) 

We call this operator the generalized pairing interaction. If V 
is a central interaction such that its matrix elements for a two-particle 
system are zero for all £ f J this means that the two particles only inter-
act when their angular momenta are coupled to a definite value £ - J. 
For J = 0 this definition gives 

<i/i vi o |v|yi vl 0> = 2i + l (4.15a) 

<v£ v£ / I v\v£ vi / > = 0 for / f 0 (4.15b) 

The simple attractive pairing interaction - &>(0) is such that for a two-
particle system in a single shell I , for which # = 0, 1, . . . , 2£, it will 
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lower the level with angular momentum f = 0, leaving.the others un-
touched. This is Racah's definition of pairing lorce and is the reason 
for the name of generalized pairing force for This effect of &>(0) 
is s imilar to that of a delta type of interaction which out of $ - 0, 1, . . . , 2SL 
two-particle states will also lower the state with £ - 0 much more 
pronouncedly than the others, though the remaining states / = 1, . . . , 2i 
will no longer remain degenerate. 

In a s imilar way one can obtain for <y" 

У " = I Y ( ( 2 / + l ) ( 2 i + l ) ^(vt vi / | V 1 2 \ví vi. / 

/ (4.16) 

So T " can be coupled to Ж to fo rm a term which just multiplies the 
Л ' operator. We then need only to be concerned with the term <X"'. 

Looking at Eq . (4 . 13) we See that the interaction is separated into 
two factors, one geometrical and the other dynamical. The <&>(#) are 
geometrical concepts depending only on group-theoretical properties, 
independent of the dynamics of the system. The coefficients are two-
body matrix elements of V12 that can be evaluated easily and that are 
related to the detailed dynamical aspects of the problem. 

Let us now discuss the standard pairing interaction in Racah's 
definition 

= &>(0) (4. 17) 

< ^ ( 0 ) = ) (2i + 1) ( i£ m, mo | 00 ) ( i i m' m!,| 00) '-é ¡I!.1 'é (4.18) 
Z_j 1 1 2 

mi ni2 
mj m¿ 

From the particular value of 

< i j f m i m 2 | 0 0 > = (2i + l ) " M - l ) m i 6 m i , - m , (4.19) 

we get 

^ ( 0 ) = £ ; ( - i ) m + m v (4.20). 

mm' 

This gives us the pairing interaction in terms of the generators of сё/21лу 

We shall show in the next sub-rsections that the pairing interaction can 
be further expressed in terms of the Casimir operators of the í ^ f + l g roup 
and its orthogonal sub-group Ç 2 e + 1 , and that the eigenstates of these inter -
actions are classif ied by the following chain of sub-groups 

+ i 3 02É + 1 d g,i^Rg) (4.21) 

where the last is the irreducible representation of R 3 of order Í given 
in terms of (2 i + t )X (2 i + l ) orthogonal matrices. 
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4.2. The chain of groups + 1 3 ^21 + 1 

We must determine the generators of the group O z e + 1 of interest to 
us in terms of l inear combinations of the generators ¡¡j' of "8<2C + i • • F o r 

this purpose we shall f irst discuss the transformation properties under the 
rotation group of bJ i m > o T and b" t m . °т . For a fixed v i we could denote 
the creation and annihilation operators by the short-hand notation 
bm s , s =стт. As b+,s t ransforms under rotation in configuration space 
in the same way as Y i m (в, cp), then bms = ( b j ^ j t transforms under rota -
tion as 

[ Y { m ( e , ? ) ] * = ( - 1 Г Ге_т[в,<р) (4.22) 

We can therefore express the annihilation operators in the same covariant 
notation as the creation operators if 

bmS = Y. g "™ ' b m S ( 4 " 2 3 ) 

m' 

where f rom (4.22) the metric tensor gmm. is given by 

gmm' = ( - l ) m ô m i . m . (4.24) 

Making use of the metric tensor (4. 24) we can put the generators of 
^ 2 { + i in the purely covariant form 

= I « W < 4 " 2 5 ) 
m" 

or 

We now define the operators 

Л mm" = mm- - ^ г г ' ш ) И - 2 7 ) 

and proceed to show that they are the generators of an orthogonal group 
of 2JP + 1 dimensions. We note first that the number of independent A m m ' 
in (4.27) is 1 r ( r - 1) where r = 2£ + 1, which is the number of generators 
of О 2f + i. Furthermore, f rom the commutation relations of the we 
obtain immediately that 

[ A m m - , A n y - m » . ] = i ( A m m - g m " m ' + Л m' ш" 8 т " ' т + Л т ' " т ' 8 т т " + Л т " т gnVm'" ) 

(4. 28) 

so that the Л т т . are the generators of a sub-group of To show 
that this sub-group is О 2c + 1, we note that the infinitesimal t rans forma-
tions of this sub-group can be written as 

О = I + eA (4. 29) 
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where A is a real matrix which, because of the orthogonality property 

OO = (I + eA)(I + eA) = I + e ( A + A ) + . . . = I (4.30) 

has the property that the transposed matrix A equals - A so that A is 
anti -symmetric. 

An infinitesimal transformation on an r-dimensional space 

x '. = x. + e i i ь .. X j , lj J i, j =1, . . . r, a , , = - a „ (4.31) 

implies 

Mx'.) = ¿(XjJ + e I дф , a., x. 7 х + . . ч J Эх, 

= Ф М + 2e I [I ( ч 9xf Эх. 
i<l 

(4.32) 

This shows that the generators of the orthogonal group are the anti-
symmetric combination of the ones of the unitary group 

' 4 ' Эхj 
(4. 33) 

(4. 34) 

The commutation relations of-the A¡j are identical to those in (4.28), 
except that g m m ' is replaced by 6¡¡. which is the metric in this case, 
the A m m ' are related to the ÇT mnV in the same way as Л ¡j and , 
conclude that А т т . are generators of the group O 2s + i-

Using the metric defined above, we can ra ise one of the indices 
write 

As 
we 

to 

A . -<r r 

, m' = ( - ) m + m « r . 

This gives the A m in a mixed covariant and contravariant way as 

л т т ' = è ( q r m m - ( - ) m ' + m < r . r n . " m ) 

We can contract indices to define the operator 

- I 
л П1* . л т A, 

(4.35) 

(4.36) 

(4.37) 

(4. 38) 
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We can furthermore check, using the commutation relations (4.28), that 
Ф commutes with all A™' and so is a Casimir operator of 02ц + у 
Explicitly 

Ф = 2 I ( ^ m m > m m - ( - Г ' ™ ' V m m ' V - m m ) (4.39) 
mm' 

If we compare with the Casimir operator of ^ c + i 

• I Г = ) <¡fmm <Г (4.40) m " m 
mm' 

we get 

Y ( - ) m + m ' ^ r a m ' & - m ~ m = Г - 2Ф (4.41) 

mm' 

^>(0) = Г - 2Ф (4.42) 

which is exactly the expansion of the interaction we wanted. 
Let us look at some properties of the A™' . They can be considered 

as an element of a (2 i + l ) X (2i +1) matrix, m1 specifying columns, m the 
rows, in a decreasing order ( í , i - 1, . . . , - £ ) . The anti-diagonal elements 
of the matrix 

A m " m = ( q? m ' m - < r m m ) = 0 (4.43) 

The terms below the anti-diagonal are equivalent to those above 

A . m " m ' = ! ( < r - m - m ' - ( - ) " m ' - m ) 
(4. 44) 

= - ( - ) m 4 m ' A m m 

Above the anti-diagonal we can divide them into 3 sets. 

(1) The Am that commute among themselves 

Am = -<3f -m) (4.45) 

Being linear combination of weight generators o f <^ 2 i + 1, the eigenvalues 
of A ffi are half integers or integers 

A S P | 0 > = i U j - m + i P | 0 > (4.46) 

The set of eigenvalues of 2Aj£, SL ï m i l gives the weight 

(Uj , u 2 . . . , ) (4. 47) 
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(2) The operators A™. , m' > m" > - m ' are a combination of weight-
raising generators of <2/21 +1 a n d f rom (4. 28) can be shown to be weight-
raising generators of O 2£ + 1. 

(3) Similarly, A™", - m " < m ' < m" are combinations of weight-lowering 
generators of t¿2i + \ a n (* f r o m 28) can be shown to be weight-lowering 
generators of О21 +1-

Therefore the generators A™ above the anti-diagonal can be divided 
into raising, weight and lowering generators as indicated symbolically 

A m m p | 0 > = H f . m + 1 P | 0 > (4.49) 

A m m ' p | 0 > = 0 , m > m' > - m (4.50) 

The set (X j , X 2, . . . , X { ) characterizes the highest weight state. If we 
have this state of highest weight, we can also obtain the eigenvalue of 

the Casimir operator Ф = A^A , ^™ by an analysis entirely s imilar 
mm' 

to the one given for the Casimir operator Г in section 3.7, obtaining the 
eigenvalue 

к 

<P = f Y Xp (X^ +Г-2Ц) (4.51) 

m ~ 1 
with К = i ( r - l ) r odd 

К = | r r even 
We have included the r even case because the result is general, but 
in our problem we only have r odd ( = 2 i + l ) . Combining y with Yrof 
(3.150) we have determined the eigenvalues for the pairing operator 

&>(0) = Г - 2 Ф (4.52) 

and so the energy levels associated with this force are given by 

2{ +1 e 

Ehi" . 'x2/ + 1 = X M h M - 2 Й ) - ^ Х , ( Х , + 2 ^ + 1 - 2 Й ) + n ( 2 i + 2 ) (4.53) 
e = i (i = 1 
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How can we determine the states of &>(0)? In the case of Gel ' fand chains 
we found an explicit way of obtaining the states. How should we proceed 
now? We shall indicate one way and illustrate the technique for the case 
of the p shell, for which l = X, r = 2£ + l =3, and so we have the chain 
'OS s о 0 3 and the generators 

Л 

AJ 

0 

л 0 

(4.54) 

F rom the discussion in section 3 we can determine the matrix e l e -
ments of ™ , m, m' =1, 0, -1 with respect to Gel ' fand states, for which 
we use the enumeration convention 

1 2 3 

m 1 0 -1 
(4. 55) 

In fact, these matrix elements are given explicitly in Ref. [1]. 
As the generators of <?3 are given by (4.37), we clearly have also 

the matrix elements 

elements of the Cas imir operator of 

Ф = 1 Л т Л т ' И " 5 7 ) 
mm' 

Once we have the matrix elements of Ф we can diagonalize them to obtain 
the eigenstates corresponding to the eigenvalues (4.51). In the process 
we determine the transformation brackets which take us f rom the Gel ' fand 

state in the э О 3 chain. 

46' 
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In this example we go f rom states classif ied by the IR of the chain 
of groups 

(«г"з ) • => 
<г/2 о 

o i 

0 
0 \ 

0 1 
0 

(4. 59a) 

0 0 1 

to states classif ied by the chains of groups 

<9¿ z э 0 3 => О g (4. 59b) 

The matrix elements of i*?2 with respect to the Gel ' fand states have 
beeri-given in another publication (Réf. [1 ] ) and a computei' programme has 
been elaborated to obtain the transformation brackets explicitly. The re -
fore we can determine any state.in the 3 0 3 chain as a linear com-
bination of the Gel ' fand states, which in turn can be obtained in terms of 
Slater determinants by the procedures of section 3. 

A similar procedure can be followed in the case + 1 D ^ "c +1 > 
though the programmes equivalent to the above are not yet available. 
Other procedures for determining the states in the chain &21 + 1 э О 21 + i 
have been discussed in previous publications (Refs . [1, 3, 4] ) . 

So far we have only discussed the generators and the states associated 
with the О 21 +1 sub-group. : We note that with respect to the index m, the 
bins, m = i , . . . , -£ not only fo rm 2jC+1 dimensional vectors corresponding 
to the irreducible representation (IR) [1] of both W 2 i + 1 and O 2t +1 , but 
that the vectors are the basis for an IR of order SL of the R 3 group, i. e. 
that under rotations in physical space they are transformed by the 
(2 i + 1) X (2 i +1) dimensional matrices ^> £ (R 3 ) . These matrices, which 
constitute an IR of R 3 , are clearly a sub-group6 of O 2t + 1 and therefore 
of + i , so that we would; like to determine both the generators of R 3 

in terms of those of £?2e + i and the states classif ied by all the groups in 
the chain (4. 21). 

The generators of R 3 are clearly the angular momentum operators 
and we shall proceed to derive them in the next sub-section. 

4.3. The angular momentum operator 

The operator of angular momentum is a one-body operator acting 
in configuration space only, so it can be written in terms of the generators 
f / ' o f « < 2 i + 1 . With Eq. (2. 12) 

= Y < ¡ / im|L q |v im ' > (4.60) 

where vSL are fixed since we¡ are in a single shell. With the Wigner -Eckart 
theorem, the coefficients can be calculated immediately and we get 

= ^ J i ( i + l ) < i l m ' q | i m > i T ™ ' (4.61) 

6 Actually the matr i ces are unitary but not orthogonal; This is due to the 
fact that the b^ s t ransform as the YCm (в, which are not rea l . Had we made a choice 
of rea l spherical harmonics, the corresponding IR of order Л would have been real and 
so the matr i ces would have been orthogonal. 
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We proceed to show that is actually a l inear combination of the genera -
tors of the orthogonal group <32г + 1 which were defined above. Indeed we 
can write 

mm' 

Y SÏÏÏ'-+ ) J £ ( £ + l ) ( J e l - m q | i - m , ) < 

mm' 

(4.62) 

Now 

< i l - m q | i - m ' > = - ( - ) m + m ' < £ 1 m' q | £m > 

so that 

= Y s f l Û + T ) < í 1 m ' q | i m > Am m ' (4.63) 
mm' 

From the way they were formed, we know also that must satisfy the 
following commutation relations: 

[ 2> a , ¿ " t i I = ± & i\ (4.64) 

[5T-!, STj] = 

This can easily be checked by using the commutation relations of either 
the generators of IS21 + 1 i n (4.60), or of О ц * \ i n (4.63). The operators 
áf q are therefore the generators of the sub-group R3 of O 2í + i -

We will compare now the generators of the groups ¿?2£+i . 
and R 3 with some unit generators considered by Racah. We note that 

has indices m and m' taking values f rom - £ to +£ and with respect 
to each one of the indices it transforms like a spherical harmonic. We 
now define the operators 

u kq = ^ mm' ' ^ ^ 

mm' 

These are l inear combinations of & m m . and f rom the orthogonality 
properties of the Clebsch-Gordan coefficients it follows that 

^mm' = X < - f i m m ' | k q > u k q (4.66) 

kq 

so that either m m ' or ukq can be used as generators of the group. 
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Interesting properties of u kq are 

(a) the possible values of k: 

к = 0, 1, ..., 2SL 

(b) f rom the symmetry properties of the Clebsch-Gordan coefficients: 

< j « m ' m | k q > = + < i j f m m ' | k q > 

we see that we have 2 classes of operator u i<q depending on whether к is 
even or odd. If к is odd then 

Uk4 = 2 " I K « m m > | k q > <ym|n. + < i i m m ' | k q > V m .m I 
mm' 

= < « m m ' | k q > A m l n . (4.67) 

so Ukq к odd is another way of writing the generators of C?2i+1 • W e 

note also that u l q is proportional to so that the generators of the 
different groups in the chain are given below in terms of ukq 

+ 1 э <5 26 + 1
 D R

3 

u k q Ukq u k q 

k = 0 , l , 2 . . . j e к = 1, 3, к = 1 

- k á q á k - к S q S к - l S q ë l (4.68) 

4.4. The eigenstates of the pairing interaction 

From (4.42) we saw that the pairing interaction could be expressed 
in terms of the Cas imir operators of ^21+1 and 0 2 ¡ +1 and so the c o r -
responding eigenstates could be characterized by the IR of these two 
groups. Since, in addition, we would like to have states with definite total 
orbital angular momentum, the configuration part of our eigenstates is 
given by the ket 

Ithj . . . h 2 ( + 1 ] o ( X 1 . . . X ( ) n L M > 

^2C + l => 02Í + 1 => ЯЧЩ) 

tj¡7 m' л m' у? 
® m " m q 

where under the corresponding quantum numbers we have put the groups 
for which they are IR, as well as the generators of these groups. The 
symbols a, Q indicate the extra sets of quantum numbers needed to 
characterize the states, as the chain of groups is not a canonical one. 
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4.5. Spin and isospin part of the wave function 

This corresponds to the U 4 part of the decomposition U4r э r X U4 

where U 4 has generators С 8 . We recal l that the s index is the following 
enumeration of the spin-isospin states: 

s 1 2 3 4 

стт i i 
2 2 

1 1 
2 2 

1 1 
2 2 

1 1 
2 2 

(4.69) 

We shall proceed to determine linear combinations of these 16 generators 
which are physically meaningful. They correspond to the second quantized 
form of total spin and isospin operators and of the operators appearing 
in allowed Gamow-Te l l e r (GT) transitions. 

Consider the one-body operators S0 

so = Y < s | s 0 | s ' > C s s 

From 

<CTT]S0|ct'T'> = . aóg. 

we have 

s0 = £ ore» с 
ота'т' 

- 1 - е -

-i -i 

Si = (Cf+c|) (4.70b) 

- í ^ хАг 1 * " ^ - A r 1 " * ^ -A , - . " 
" 2 H 2 S 4 2 - H 2 4 -i 

= ï(.c\ + c f - С ^ - С | ) (4.70a) 

In a s imilar way we calculate 

72 

S- i = ^ ( C j + C 1) (4.70c) 

T i = ~ (4. 70d) 

T0 = i (Cj +Cg - C 2 - C 4 ) (4. 70e) 

T - i = j 2 ( C 2 + C 4 ) (4. 7Of) 



GROUP THEORY AND NUCLEAR STRUCTURE 727 

So we have found six generators corresponding to the spin generators of 
the SU2 group associated with spin and isospin which incidentally satisfy 
the commutation relations 

[S . j , S J = S0, [S„, S ± 1 ] = ± S ± 1 , [ T 0 , T ± 1 ] = ± T ± 1 , [ T . j , T J =T0 

[ S q , T q ] = 0 (4.71) 

This implies that the U4 group has the following physically relevant 
sub-group: 

(°) (r) 
U 4 " => SU2 X SU2 

We still have to find 10 operators independent of Sq , Tq and of each 
other, which would constitute, with the generators of SU^0> X SU^T), a 
set equivalent to the generators C|' of U 4 . For this purpose let us define 

= I I G k a ' q | i c r > < ! k T ' q | Í T > C°aTT' ( 4 .72 ) 

o r O'T' 

where к = 0,1 and similar ly for к, while of course q = 0 if k = 0 and 
q = 1, 0, -1 if к = 1 and s imi lar ly for k, q. Because of the orthonormality 
of the Clebsch-Gordan coefficients, the 16 operators are linearly 
independent, and f rom the previous discussion in this section we clearly 
see that 

where .Ж is the number operator ^ 
s 

independent operators are given by 
in the fo rm 

C j . The remaining © - » q l inearly 

and, as they can be rewritten 

0 l q g = f R q q = f £ < T I V q I > C o r ( 4 ' 7 4 ) 

от 

we conclude that they are related to the operators Rqq associated with 
allowed GT transitions (Ref. [ 5 ] ) . 

4 .6. The highest weight state for a physically significant chain 
of sub-groups 

In previous sections we have determined the state of highest weight 
in t/\ and U4 and proceed to show that it corresponds to a definite Gel ' fand 
state. In the previous paragraphs of section 4, we discussed chains of 
groups of physical significance for both the configuration and the spin-
isospin part of the state, and if we introduce the classification scheme 
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that they suggest, our states would be characterized by the ket 

I [h г . . . h2t + 1 ] a (A1 { V x . . . V 4 } ^ S T , J M > 

+ ь 02í + 1, R 3 ; U 4 , SV¡a) , SU^T), J = L + S 
(4.75) 

where underneath the relevant quantum numbers we have put the groups 
for which they give IR. As indicated above, а, Г2, ¡3 would be extra 
quantum numbers associated with the fact that our chain of groups is not 
canonical. 

We can now ask the question whether the highest weight state in 
and U4 corresponds to a particular state of the type (4.75). We shall 
answer the questions for the particular example of highest weight state 
discussed in section 3, noting before that f rom Table II all raising and 
weight generators of the groups involved in (4.75) are given respectively 
in terms of raising or weight generators of the groups U 4 . The 
example of highest weight state we will consider is: 

b ! i b 12 

CO 

XI 

b 2 1 
, t 

22 

b 31 
. t 
b 3 2 

, t 
b 4 i 

|0> (4.76) 

Hefore proceeding with its analysis we must specify the value of r . 
For this purpose let us assume that 

t(J> 

i = 2 r = 2Í + 1 = 5 

so the chain of groups we have is 

э О g э _0>2(R3); U4 э SU20) X SUl2 

and the state is 

I [h j h2 h3 h4 h 5 ] a ( X 1 X 2 ) Î Î L ; {V x V2 V3 V4}(3 S T M T J M > 

(4.77) 

(4. 78) 

(4. 79) 

Using the weight generators of Table II we show in the next sub-section 
that the state (4. 76) is 

I[3 2 2 1 0 ] (3 1) 7 {4 3 1 01 3 1 1 10 10> 

| [ h 1 h 2 h 3 h 4 h 5 ] (Xi X 2 ) L {V ! V 2 V 3 V 4 } S T M X J M > 
(4.80) 

where we have put underneath each set of numbers the quantum number it 
belongs to, but have suppressed а, Г2, /3 as they are redundant, there 
being only one state of this type. 
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T A B L E II. RAISING GENERATORS AND WEIGHT GENERATORS 
FOR SOME GROUPS 

Groups Raising generators Weight generators 

«Í^Í + I 
m > m1 

огт 
^ m 

О 21* l л m' л т 

m > m'> -m 

m 
A m 

Ft g Sf1 = i ( i + l )< im-l q|im> 1 

m m 

u4 ci 
s <s' 

Ci 

su2 
- 1 3 4 

S+i= ( C J + C J ) S„ " i (Cj + C® - Cg - Ĉ  ) 

su2 т 0 = 

4.7. Detailed determination of the quantum numbers for the 
highest weight state 

Let us now show how the particular numbers in (4.80) were obtained. 
F i rst of all we need an enumeration procedure. Let us take the following: 

M 1 2 3 4 5 

m 2 1 0 - 1 - 2 (4.81) 

Now let us consider 

(1) [h 1 h 2 h 3 h 4 h 5 ] : By definition, hj counts the number of squares in the 
i -th row. So we have [3 2 2 1 0 ] . 

(2) {Vj'Vg V3 V 4 } : By definition, V¡ counts the number of squares in the 
i -th column. So we get {4 3 1 0}. 

(3) ( X j X 2 ) : We have seen that 

Л™ P = i x
£
.

m + 1
 P (4.82) 

and 

Am = i(C™' -(-)m + m'c:™,) for m > m1 > - m (4.83) 
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Using these two relations and the enumeration procedure given above, 
we get 
For \ 1 P = 2 Л 2 Р 

Л 2 Р = ) P = 

= i ( 3 - 0 ) P = | P (4.84) 

So X j =3 

For X 2 : X 2 P = 2 A j P 

a j p = i ( < r i +<#:\)v = <v\) p 

= | ( 2 - l ) P = i P (4.85) 

So X2 = 1 

(4) L we can get by calculating 

I ^ o = ¿ m «у; 
m 

So 

i ^ 0 p | o > = ( 2 < g ' 2 + i < r î + o < r ° - i < r : 1 1 - 2 < ^ : 2 ) p | o > 

= (2<#\ + <Г2 - - 2 <3? g )P|0> (4.86) 

L = 2X3 + 2-1 
L = 7 

(5) S can be calculated by 

So = i ( C } + C 2 - C 3 - C j ) 

S 0 P|O> = 1(4 + 3 - L)P|o> (4.87) 

S0 = 3 
(6) T: T0 = i(cj - C2 + Ĉ  - Cj) 

So T0 P|0> = 1(4-3+1) P|0> (4.88) 

T =1 1 0 1 

(7) M T : This is the projection of the isospin and, as we are dealing with 
the state of highest weight, it is equal to the isospin itself. 

M T = 1 (4.89) 
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(8) J: The total angular momentum is given by 

Ji = 4 + S 1 

Jo L 0 + S0 (4.90) 

So Jo = 7+3 

Jo = 10 

(9) M: This is the projection of the total angular momentum, so, in 
this case, 

M = 10 (4.91) 

We have shown how to determine, in terms of Slater determinants, 
highest weight states in physically relevant chains of groups. All other 
states could be obtained f rom the highest weight state by use of lowering 
operators associated with the chains of groups in question. Detailed 
analysis of these techniques, as well as many short cuts in their appl ica-
tion, are given in the next section and also in Refs . [1, 3, 4, 6]. A com-
puter programme has been elaborated by F lores to implement these ideas 
numerically. 

5. S Y M M E T R Y OF THE HARMONIC O S C I L L A T O R A N D 
E IGENSTATES OF THE Q U A D R U P O L E - Q U A D R U P O L E 
INTERACTION . A P P L I C A T I O N S TO N U C L E A R STRUCTURE 
IN THE 2S-1D SHELL 

In the previous section we discussed the many-body problem in a 
single shell of fixed vJl. In this section we are going to generalize our 
results to the many shells of a single level of the harmonic oscillator 
with the purpose of using the symmetry properties of the latter problem 
in the analysis of special types of interactions of physical interest. 

5.1. Symmetry group of the harmonic oscil lator (h. o. ) 

Let us consider the symmetry properties of a simple harmonic 
oscil lator as a quantum mechanical system. We take units such that 

ñ = m = и = 1 

and then the Hamiltonian is given by 

H 0 = l ( p 2 + x 2 ) (5.1) 

The transformation in x and p should leave invariant the Hamiltonian H 0 , 
at the same time retaining the canonically conjugate relation of x and p, 
i . e . leave invariant the commutation [ x ¡ , p j ] = i б у or the corresponding 
Poisson 's bracket in the classical system. The orthogonal transformations 
in the 6-dimensional space of x and p leave invariant the Hamiltonian Ho, 
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but only a sub-group of this 06 group, the group of unitary transformation 
in a three-dimensional space (U3 ) , leaves also invariant the commutation 
relation between 5? and p. This can be easily seen through the introduction 
of creation-annihilation operators for the oscillator quanta 

at = - ^ ( 5 - i p ) 

a = ^ ( S + ip) 

where the commutation relations satisfied by a and a* are 

[ a ; , a t ] = 6y 

[ a , , a j ] = 0 = [at, a f ] 

We introduce a unitary transformation U 

a1 = Ua, a 1 ' = U*a f 

and see that the commutation relations (5.4) are maintained, i . e . 

[a; , a } 4 = I I 
= 1 u,k ü,< '¡i 

к, í 

) U U* б. „ 
Lj ik jí 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Similarly, one can trivially show that all the other commutation relations 
invariant. 

3 _ , 3 

are maintained. In addition, HQ is invariant. 

h0 = a + . a + | = S't + ! (5.8) 

What is the corresponding transformation in the six-dimensional space 
(x, p)? We can write in both systems 

1 
42 x = -яг ( a f +a) 

-» i 
P - a ) 
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So 

x- U V + U S ) 
(5.9) 

| ( U * - U ) x + | ( U * + U ) p 

(5.10) 

The six-dimensional matrix 

U + U * i ( - U " ' + U ) 

i ( U * - U ) U + U * (5.11) 

is an orthogonal matrix, but not the most general one. As a product of 
matrices of this form has again the same form, the matrices (5.11) are 
a representation of U3. 

It is convenient to use the spherical form instead of the cartesian 
system used above. In this form, the spherical tensor property of the 
operators is explicit. The metric is 

gqq' = ( - 1 ) 4 5 , q.-q ; q = -1, 0, 1 

a4 = ^ ( x l + i p Q ) 

[a4 , aj.: 

72 ( x « 

The commutation relations become 

The raising and lowering of indices can be done as follows: 

аЧ = ( - ) 4 a q , at = ( - )Ч а+-ч 

The corresponding commutation relations are 

K > 4 l = gqq' = H 4 , - q ' 

[a4 , a 4 ' ] =0 = [aJ, a (5.12) 

(5.13) 

(5.14) 

Now we introduce the generators of the group U 3 , 
They satisfy 

[ o ! , c s : ] = ^ - c q 6q n w с (5.15) -q > " q " J '-q " q " ^ q " " q 

We can form the Racah tensors of orders 2, 1 and 0 which will also span 
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the total space of nine generators, i . e . 

Q m = \ [ з Z < ' 1 S q - ' m l l q 1 ) - 2 S m S 2 (5.16) 

q" ,q' 

L q = / 2 ^ < l l q " q | l q ' ) c j ' - l S q S l (5.17) 

q'.q" 

H° = Z +2 (5Л8) 
q 

We shall drop the constant 3/2 in Ho and we note that it is then the Cas imir 
operator of f i rst order of the group U 3 . The Casimir operator G of 
second order is given by 

q,q' 

= X (")m + 2 Z (~)4L«L-q + I <Ho)2 

= Q 2 + I L 2 + | H ¿ (5.19) 

It can be veri f ied that L 0 are components of the angular momentum operator 
defined by 

L q = (2Xp) q 

The fo rm of G then shows immediately that the operator Q 2 would be 
diagonal in the scheme U 3 э R 3 . 

We can also rewrite Q m as 

(P) <
5

-
2 0 a

) 

where 3^2m(x) is the solid spherical harmonic 

^ ш й = r 2 Y 2 m ( e , <й 

As in a single level of the harmonic oscillator <Cx¡Xj У = 'чPiPj/* > w e con-
clude that for states restricted to a single level of the h.o . the Q2 operator 
in (5.19) is equivalent to 

Z M (5.20b) 
m 
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When we extend our analysis f rom 1 to n particles in the harmonic 
oscillator potential, the Q2 operator within a single level becomes the 
famil iar quadrupole-quadrupole force with added self- interaction terms. 

A single-particle state in the oscillator potential can be written as 

> = ( a ] ) " ' (a/))"' ( a t ) " " 
|o> (5.21) 

n/V no- " - i -

where 10 У =( 1 /7Г3/2) exp - j x2 is the I s ground state of the harmonic oscil lator. 
The set of degenerate states ф satisfying 

H 0ф = i/ф 

form a basis for the representation of the grotip U 3 . This is the set of 
states InjnQn.j ) ) such that na +n 0 +n_ 1 = v. In the Gel ' fand scheme the 
same state can be written as fol lows: 

n - l > = 

v, 0, 

(5. 22) 

The weight of the state (5. 22) is (n1 , n0, n . j ) . Instead of using the above 
Gel ' fand classification, we may characterize the single-particle states 
by quantum numbers of the rotational sub-group. Such states we denote 
by \v, SL, m У . The.chains of sub-groups involved in these two c l a s s i f i ca -
tions are, respectively, 

U , э U„ э U. 
and 

U , э R 

1 

o2 

(5. 23) 

There are many values of SL possible, i . e . SL - v, v - 2, . . . , 1 or 0, the 
total degeneracy being (v + l ) ( v + 2)/2. 

For an arb itrary central potential the degenerate eigenstates con-
stitute a representation of the group R 3 . This representation may or may 
not be irreducible. We have seen that the degenerate states of a harmonic 
oscil lator car ry a reducible representation of the group R3 , while the 
representation'of the group U3 is irreducible, as all states can be written 
as Gel ' fand states associated with the single representation (i/OO). 
illustrated in Fig . 1. 

This is 

( 400) 

(зоо) 

(200) 

( 1 0 0 ) 

(000) 

3s ig 
2p 

1p 

Id 

FIG. 1. Classification of simple harmonic oscillator states by U3 and R3, showing degeneracy of each 
oscillator level 
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The existence of accidental degeneracy of the oscillator is due to the 
existence of the higher symmetry (U 3 ) of the oscillator Hamiltonian. A 
similar degeneracy in the hydrogen spectrum is due to the invariance of 
the Coulomb Hamiltonian under the group 0 4 . 

5.2. The chain of groups in the 2 s - l d shell 

The generators с introduced before are single-particle operators. 
They could be expressed in the second quantized form by using as a 
basis the complete set of states bp, р=мs where ju = (ni non- i ) and s is 
the spin-isospin index. We shall illustrate this by considering the example 
of the ( 2 s - l d ) shell. We introduce the following enumeration convention 

M 1 2 3 4 5 6 

( n l n O n - l ) (2 0 0) (110) ( l o i ) (0 2 0) ( O U ) (0 0 2) (5.24) 

F rom (2.12) the corresponding second quantized operators are 

W 

The commutation relations between Ĉ J are the same as those among cqq. 
This is shown as fol lows: 

• « q . « h-II < He?" k > <»\4 k > « " i f . 
№ № 

= £ X < ^ Í c Q I A4' ><A«|o3' >[ЧГ J' 6 g-' -ЧГ^' 6 JJ'J (5.26) 

W C/J' 

Now we have to use the fact that the states )> form for operators such 
as c£j a complete basis, i . e . 

Y к Х м ' К " = 1 (5.27) 

and also that the cjj' satisfy the commutation relation 

We then get 

[ c 4 ' , c—' 1 = c4 ' ô- — с— б L^q ' w q 1 q q q q 

: 4 , С - ] = € 4 ¿S - С 5 ôq' (5.28) 4 q q q q q 
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The are linear combinations of the generators <SfjJ of (or of 
the generators of <$¿t , r = \{v + l ) (y + 2) if we extend our analysis to an 
arbitrary level of v quanta of the h . o . ) whose commutators can again be 
expressed in terms of the С J}'. Therefore they are the generators of a 
sub-group U3 of . The existence of this sub-group becomes clear when 
we note that the operators bn^n^ , от t ransform under a unitary t rans -
formation of the a q , q = 1, 0, -1 in the same way as the states (5. 21) with 
n j +n 0 + n . j =2. As the latter states form a basis for an IR of U3 charac -
terized by (200), which, furthermore, f rom Fig. 1 contains the 2s and Id 
states, our chain of groups is clearly 

/ ^ ( 2 ) ( R 3 ) 0 \ 
э D ( 2 0 0 ) (U 3 ) э (5.29) 

\ 0 ^ < ° > ( R 3 ) / 

In the ( 2 s - l d ) shell the total number of states is 6X4 =24. The group 
chain of classification of states is then 

U24 Э X U4 

[ l r 

F \p (5. 30) 

i . e . the completely antisymmetry state i n U 2 4 i s broken into space and 
spin-isospin parts with associate representations. The spin-isospin part 
is further classif ied by U 4 d S u £ " X SU (T) , while the spatial part of the 
wave function is classif ied by the chain of groups (5.29) . This c lass i f ica -
tion scheme, however, may not be complete, in which case we need to 
use additional quantum numbers. Apart f rom these, the state we have 
constructed could be written as 

I th jh^hgh^ .hg ] ( k j k ^ L , { V 1 V 2 V 3 V 4 } , ST, J M > (5.31) 

where we have coupled the angular momentum L with the total spin S to 
give the total angular momentum J. The quantum numbers кг, k 2 are 
the eigenvalues of the operators 

С с - 1 - к i - -i " i 

C°o - - k2 

(5. 32) 

These quantum numbers characterize the IR of SU3 and are related to the 
(X,M) of Elliott ( P roc . R. Soc. A 245 (1958) 128) by X = kj - k „ , ц = k2 . 

5.3. Determination of highest weight states of SUa and U4 in the 
2 s - I d shell 

How can we construct explicitly states of the type (5. 31)? We shall 
show that the Slater determinants can be "weighed" according to the SU3 

and U 4 groups and that linear combinations of Slater determinants of the 
same weight can have maximum weight in these two groups. Once we have 
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these maximum weight states we can obtain all other states with the help 
of lowering operators in the appropriate chain of groups. 

We shall f i rst illustrate the procedure of the previous paragraph in 
the elementary case of the R3 group. Starting f rom two states of angular 
momenta £ г , i 2 , i. e. | i j , n i j ) | ü2, m 2 X we would like to construct a -state 
corresponding to a given IR of R 3 and at f i rst of maximum weight, i . e . with 
M = L . We consider a linear combination of all states of two particles 
with weight iBj + m 2 = L , i . e . 

| L , L > = Y A m | j e 1 , m > | i 2 , L - m > (5.33) 

ш 

To guarantee that this state is of maximum weight, we apply to it the 
operator L + and 

L + | L , L > = (L<+1) + L ( 2 ) ) I L, L > 

= I « A „ , - l < * r m l L ? k > m - ! > 
m 

+ A m < i 2 , L - m +1 I L+2' I Í.2, L - m > ) 

| i 1 , m > | j e 2 , L - m + l > } = 0 (5.34) 

where L^1 ' , L(2) are the corresponding angular momentum operators of 
particles 1 and 2. This equation implies a recursion relation for the 
A m which in fact determines the Clebsch-Gordan coefficient 

m, L ~ m | L , L У up to a normalization coefficient. All other 
states |L,M^> are then obtained from | L, L by applying L Í " m. 

We shall follow the same steps for the determination of the state 
(5.31) which we will illustrate by the detailed discussion of the example 

\ф У = |[ 22] (44) L, { 22} ST, J > (5.35) 

we denote our creation operators by b j s where for /j and s we use the 
enumeration procedure given in (5.24) and (4.69) respectively. As [22] 
is a partition of 4, the state (5. 31) must be a l inear combination of 
Slater determinants of the form 

b î s b j s b+ . bt |0> (5.36) Ml5! H2S2 Мз53 H4S4 1 

where the eigenvalues of these states with respect to the weight operators 
{C^, C ¡ , Cg, C|} of U4 and ( € \ - IClJ, t j - ( t i j ) of SU3 must be r e spec -
tively {2200} and (44). F rom Tables III and IV, in the f irst of which the 
(£ ч were expressed in terms of jj using (5. 25), we see that the most 
general state of the desired weight is 

l<P>= ( f f b Î l b Î l Ь 1 2 Ь L + P bÎ2 Ц1 Ь22 + У b U h¡2 hIl bI2 ) I '0 > ^ 5 " 3 ^ 

Now I q> У will be of highest weight in U4 and SU3 if, \vhen applying the 

47 
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T A B L E III. WEIGHT AND RAISING GENERATORS OF U3 IN TERMS 
OF THE GENERATORS OF A S GIVEN BY (5. 25) 

Weight generators Raising generators 

c j =2^1 + ^1 + 4f 3 <t\ =4~2<ё\+42 J + 

C j = + 2<ЗГ* + <в\ <£ jJ = + r<g\ + J"2 3 

e ; ] = + <¿r J + 2<rc6 = +/2 <v\ 

T A B L E IV. L I N E A R L Y INDEPENDENT MONOMIALS WHOSE 
EIGENVALUES WITH RESPECT TO THE SET OF OPERATORS 
{с ] , c|, C3, cj> AND (dj-ci ; j , c ° -c ; j ) A RE, RESPECTIVELY, {2200}, (44) 

it I + it it 
11 21 22 42 

ut ut v.t ut 
Ь П 12 41 42 

raising generators in these two groups, we get zero. As the second index 
of the b + . in (5. 37) does not exceed 2, we see that C* , s < 3, C^, s < 4, 
when applied to (5.37) give zero, arid so we must only worry about С 2 which 
gives 

C\ = (a + flbk b ^ |0> = 0 (5.38) 

or e = -/3. After imposing this restriction on (5. 37) we proceed to discuss 
the effect of the raising generators of SU3 , € € j1, € '0 l on our state. 
F rom Table III we see that fiT^1, <E g1 are expressed in terms of generators 
of containing upper indices 3, 5, 6 in our enumeration procedure. Since 
among the indices ц in the b j s appearing in (5. 37) there are no such values, 
the application of (£ (£ ~1 to oui' state automatically gives 0 and so we 
have only to wori-y about 

€ ° = J2 + /2 <S?4 (5. 39) 

Applying <£ J to ( 5. 3 7) with /3 = - a we get 

€°J<P> = ( e - T H b ^ b ^ b ^ b ^ - b ^ b ^ b ^ Ь4! ) 10 > = 0 45.40) 

i . e . a = у = -/3. 
We have now derived the normalized state 

I [ 22] (44) L =4, {22} S = 2 T = 0, J = M = 6 > 

= ^ [ b U b 2 1 b 2 2 b 4 2 - b L b 2 l 4 . b I l + b n b L b I l b I 2 l ° > < 5 - 4 1 ) 

where IR {22} of U4 and (44) of SU3 were obtained by construction. 
The IR [22] of U(J comes in automatically as it is the associate partition 
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of {22}. This state, being of highest weight SU3 , is also of highest weight 
in its sub-group R3, and,as S f 0 = CtJ - the eigenvalue of angular 
momentum is L = 4. It is also of highest weight in the sub-group 
SU^' X SU(2T) , and looking into the expressions for S0, T0 in (4. 70) we see 
that their eigenvalues are S = 2, T = 0. Finally, as J+ = + s + applied 
to the state gives zero, the eigenvalue of JQ = + sQ, i . e . 4 + 2= 6, gives 
J and its projection. 

We have illustrated by an example how we could get states of highest 
weight of SU3 and U4 which could be considered the equivalent ones in our 
case of the |b, L ^ state for R 3 . We still have not outlined the procedure 
for determining the states equivalent to | l , m X i . e . the states (5.35) 
for any allowed L , S, T, J. We shall discuss this in detail in relation with 
the eigenvalue L , for which we f irst rewrite the generators <£ Jj' of U3 

in a more convenient way and then determine the lowering operators in 
the SU3 o R 3 chain. 

5.4. Lowering operators in the SU3 э R 3 chain and the determination 
of the full set of states 

The generators of U3 in the second quantized picture could be ex -
pressed as Racah tensors of order 2, 1, 0 following the same analysis as 
in (5.16) - ( 5 . 18), i. e. 

< 1 2 q » m | l q - > ( 5 . 4 2 ) 

q"q' 

£ f q = sT2 Y < i i q " q l 1 q ' > ( 5 - 4 3 ) 

q"q' 

ф = Y с , = v J T ( 5 . 4 4 ) 

q 

As the operators S m , are generators of SU3 , when applied to states 
(5. 31), they do not affect the IR of <8^, SU3 or of U4 and its sub-groups. 
We could therefore use for these states (before the L, S are coupled to a 
definite J) the shorthand notation 

I ( к j kg ) L ML (5.45) 

where there could be more than one state of definite L associated with a 
given (k jk 2 ) , in which case we could distinguish these states by some 
appropriate quantum number. 

Both 0 m and |(kjk2)L M L ) > are irreducible tensors with respect 
to the R 3 group, so it follows f rom the Wigner -Eckart theorem, and the 
observations of the previous paragraph, that 

Y { < 2 L M L m | L ' L ' > 2! m | ( k j k 2 ) L M L ) } » I f k j k ^ L ' L ' > (5.46) 
ML m 
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Since we could in turn express the state (5.45) in terms of the state 
I t k j k ^ L L ^ using the lowering operator Sfi-'^L, it follows that the operator 

< > . = X (5.47) 

MLm 

when acting on a state [ ( k j k ^ L L ) " gives us a state | ( k 2 k 2 ) L ' L ' with 
L ' = L ±2 , L ± l , L . The index 2 in the operator is introduced to 
indicate that, with respect to the R3 .group, the operator 2 m appearing 
in it is a Racah tensor of order 2. 

Starting then with the state | (kj k2 ) L = M = к j У we could apply the 
operator to obtain the states for all compatible L ' s . 

In a similar f a s ^ o n we could apply the generators R q q defined in 
(4. 74) to the U4 part of the state and obtain an operator that would give 
us all states of S, T compatible with the IR {V j V 2 V 3 V 4 } of U 4 , f rom the 
highest weight state for which 

Sh.w. = i (V1 + v2 -V3 -V4), Th w_ = ^(Vj -v 2 +v3 -v 4 ) (5.48) 

Explicit forms of these operators are given in Ref. [1]. 
As we could furthermore apply and S. to our states, we obtain all 

projections M L , M s in them, which we could finally couple to a definite J. 
In this way we get explicitly any state (5. 31) as a linear combination 

of Slater determinants, i . e . 

\фУ = |[hj . . . hH ] e k2 ) Í2L, {V j V2 V3 V4} ( 3STM T , J M > 

= X • • • ̂ n - sj ... s
n
) b J

i S |
 ... Ь^

5 п
 | 0 > (5.49) 

where а, Г2, |3 are extra quantum numbers we need to introduce into the 
chain (20)(SU3), SU3 э R3 and U4. э SU(2o) XSU (2T) respectively, and 
the А . . . s n ) are appropriate constants. 

5.5. The quadrupole-quadrupole and the pairing interactions 

We indicated above that <2m of (5.42) is the second quantized fo rm 
of the single-body quadrupole operator Q m . Therefore the corresponding 
operator associated with a quadrupole-quadrupole interaction (including 
self energy terms) is given by 

<S>2 = Y ( " l ) m ^ m 3 . m ( 5 . 5 0 ) 

m 

As the relation between the operators <£¡j-, v ^ are the 
same as those between сч' , Q m , L q , H 0 , we conclude f rom (5.19) that in 
the 2 s - l d shell 

á>2 = Г3 {2^V)2 (5.51) 
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where 

Г3 = Y < (5-52) 

q.q 

As the operators Г3 , 2 , .Ж are diagonal with respect to the states 
(5.49) characterized by IR (k 1 k 2 ) of SU3 , L of R 3 and the number n of 
particles, we conclude f rom (3.150), (5.32), that the eigenvalues a s -
sociated with have the form 

E[k 'k*> = [ f t k j +k 2 ) 2 - 2 k 1 ( k 2 - l ) - f L ( L + l ) ] (5.53) 

If we expand an interaction, say of Gaussian form, in inverse powers 
of its range, we can easily show that for states in a single level of the 
harmonic oscillator, the f i rst relevant term in this expansion is equivalent 
to a quadrupole-quadrupole interaction. Therefore the states (5.49), being 
eigenstates of ¿H2, have already correlations associated with long range 
interactions. If we would like now to see what is the effect of short range 
correlations, such as those of the pairing interaction, we have to apply 
them to the states (5.49). For this purpose we need to extend the concept 
of pairing interaction f rom one shell to several shells in a single level 
of the harmonic oscil lator. For different £'s the only matrix element 
different f rom 0 of the pairing interaction is 

v£, 0\V\vP, v£\ 0 > = •/(2i. + l ) ( 2 i ' +1 ) (5.54) 

In the case of a single level, v is fixed and £ changes. This means that 
we may suppress the index v in the creation operator, which can now be 
written as b j m The invariants of an orthogonal sub-group of the 
group are then'given by 

И ( - D " 1 С . , ЬТ (5.55) 

In the 2 s - l d shell we have six states in configuration space, five in the Id 
and one in the 2s, so that the above bilinear fo rm is invariant under an 
orthogonal group of six dimensions. The chain of groups involved is 

э о в э 
0 

/ д,(2> 

\ 

(R 3 ) 

0 
(5. 56) 

where <55 is the orthogonal group involved in the Id shell alone. The 
corresponding state characterized by the IR of the groups of the chain is 

|y> = I [ h a . . . h g l e ' ^ j ^ X g K i i j j u ^ n ' L , {V j V2 V3 V4 } J3STMT , J M ) 
(5.57) 

R

3 

where under each IR in the orbital part we have put the corresponding 



GROUP THEORY AND NUCLEAR STRUCTURE 743 

group. We can construct the states |x)> in terms of Slater determinants 
by a procedure entirely s imilar to the one used before for the \фУ states. 

In an" ear l ie r section we indicated how one could express a single-
shell pairing interaction in terms of Cas imir operators oí <$S2i + l a n d 
O 2í j-1. • A s imilar analysis holds in the many-shel l case. In particular 
for the 2 s - I d shell the pairing interaction &> is given by 

g> = Г - (5.58) 

where Г, Ф a re respectively the Cas imir operators of and Oe and jV 
is the number operator. F rom the discussion in sections 3 and 4 we 
conclude that the states (5.57) are eigenstates of with eigenvalues 

6 

[ h ( I ( h ) | - 2 M - 6 ) - x | -Л.2 (Х2 + 2 > - Х 1 ( Л 1 + 4 ) ] (5.59) 

M = 1 

If we want to apply the pairing interaction to the states (5.49) of the 
U3 chain, we can do this either by applying the pairing operator directly 
to the states using the computer programmes recently developed by 
F lores , or we can develop the states \фУ in terms of the states 
and recal l that the latter are eigenstates of ¡P with eigenvalue (5. 59). 
For the second case we need the transformation brackets <(x| ФУ, which 
for our present problem are equivalent to the transformation brackets 
< i m | I m 1 > = 

R5 

R, 

0) between the chains of R 3 

/ l 
R 3 э 

| i m > I i m 1 > 

Ro 

(5. 60) 

The latter transformation brackets were used to solve the asymmetric top 
problem f rom our knowledge of the eigenvalues of the Hamiltonian for 
two symmetric tops around axes x or z fixed in the body. The fo rmer 
transformation brackets 'xxll/'X which could be written explicitly as 

< x k > = < [ h r . . h.6]û'1(>.1X2X3)(Ai1A'2)n ib| [h1 . . . h 6 ] ^ ( k 1 k 2 ) n L > (5.61) 

as they are clearly independent of the spin-isospin part of the states, could 
be used to determine the matrix representation of the pairing interaction 

with respect to the states \фУ in a SU3 basis . Tables of transformation 
brackets are given for particular cases in Ref. [4] . They were obtained 
f rom scalar products of the corresponding states | x X IФУ, of highest 
weight in U 4 , given in terms of Slater determinants. 

As the pairing and quadrupole-quadrupole 2 2 interactions give 
r ise , respectively, to short and long correlations, we could inquire 
whether a l inear combination 

- V0 [ ( 1 - x ) # + x j 2 ] , O S x S l (5.62) 

would be a good model for a central interaction and, if so, how we could 
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FIG. 2. Energy levels for P + Q2 force as a function of x and for a Gaussian interaction as a function of the 
range а , for the partition [ 4 ] . Only some of the 18 levels have been drawn, in order not to confuse the 
graph (Ref. [ 3 ] , courtesy of North-Holland Publishing Co. ) 

determine its matrix elements with respect to the states \ф У. The latter 
point has been answered above in terms of either direct application of g> 
to the eigenstates |ф У of or of the use of transformation brackets 
^ х Ю - For the f irst point we consider simple 2- , 3 - and 4-particle p rob -
lems and compare the interaction (5.62) with a Gaussian interaction. We 
illustrate the analysis here only for the case of 4 particles with partition 
[4]. In F igs . 2(a) and (b) we indicate the behaviour of the levels as a 
function, respectively, of the parameter x or of the range a of the Gaussian. 
The ground level was taken as base line in both cases and the distance 
between ground and f irst excited level was kept fixed, i. e. independent of 
x or of a. The behaviour of the rest of the levels is clearly s imilar through-
out the range of the respective parameters . This indicates that (5. 62) is a 
good model for a central interaction and chat the parameter x plays the 
ro le of a range. 

5.6. Applications to nuclear structure in the 2 s - l d shell 

The model interaction (5.62) and a spin orbit coupling term given by 
the one-body operator 

were used in extensive calculations in the 2 s - l d shell. We report here 
a few illustrative cases. Detailed applications are given in Refs . [3] [4] 
and [6] . 

Let us f i rst consider the even parity states of 2 0Ne. These states 
can reasonably be represented by four particles in the 2 s - l d shell. We 
would expect the lowest state to come from the most symmetric r e p r e -
sentation of 4 particles in configuration space, i . e . [4] of <Ж6, as this 
would make the most effective use of the atractive interaction. This 
representation corresponds to {1111} of U 4 , which contains only a 
state S = 0, T = 0. Therefore the spin orbit coupling has no effect on these 

n 

(5.63) 

i = l 
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FIG.3. Experimental and theoretical spectra of Z0Ne (Re f . [ 4 ] , courtesy of North-Holland Publishing Co . ) 

states ( for which L = J) and so we can restrict our analysis to the model 
interaction (5.62) where the behaviour of the energy levels as a function 
of x is given in Fig . 2. Comparison with the experimental spectra for 
values of the parameter x are given in F ig . 3 where у = 1 - x. Column с 
of Fig . 3 indicates comparison of the f i rst band for the value of the p a r a -
meter, while column d indicates results of Pandya and Green obtained by 
other methods. Detailed expressions for the wave functions are given 
in Ref. [4] . 

As another example let us consider the even parity states of 20O. 
Again n = 4, but as T = 2 the representation of U4 containing this T = 2 that 
is most antisymmetric is {22} (which corresponds to the most symmetric 
compatible representation [22] of For T = 2 the only compatible 
s in the IR { 2 2 } of U 4 is s = 0, so we can restrict ourselves, as in the 
case of 2 0Ne, only to the model interaction. The behaviour of the energy 
levels as function of the parameter x is given in Fig . 4 where, on the 
left-hand side, there are the IR of Oq (ХцХгХз) and their corresponding 
L values, while on the right-hand side we have the IR of U 3 (not SU3 ) 
given by (k 1k 2k 3 ) (where kj = ~ к 3, к2 = /с2-Кз, n = i(/c j +/с2 +/с 3)) and 
the L values. The matrix elements were calculated with the help of the 
transformation brackets given in Ref. [4]. Reasonable agreement with 
experimental energy levels is obtained for x = 0.15. 

Let us now discuss a couple of examples for which WSê0ê (related 
to W , 0 . by (2. 12)) is relevant. In the f i rst example we consider 20F 
where again n = 4 but T = 1. Following the same reasoning as in the p r e -
vious paragraph, the lowest energy states should be well represented by 
the partition { 211} in U4 which contains s = 1, 0 associated with T = 1, 
to which corresponds the partition [31] of & 6 . Now the lowest level 
for a interaction would correspond to the highest weight SU3 state, 
i . e . (k1k2 ) =(71) in this IR [31] of . We could therefore explore the 
possibility of restricting our states to these representations ^ 6 and 
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FIG.4. Theoretical energy levels of 2°0 (Re f . [ 4 ] , courtesy of North-Holland Publishing Co . ) 

SU 3 . This has been carr ied out in Ref. [4 ] , the states associated with 
these IR being f i rst determined along the lines outlined in this chapter. 
Then the matrix elements with respect to these states of £>2 (diagonal 
and trivial ) , and . were explicitly calculated. Finally the 
matrix of 

was diagonalized as a function of the parameters . The f irst energy levels 
are given in Fig . 5 for some values of the parameters . In columns d and 
e, the S 2 force was multiplied by an exchange factor £ of the Rosenfeld 
type, whose explicit form was discussed in Ref. [7]. The eigenstates for 
the case d of Fig . 5 are given in Ref. [4] . A good fit to the energy levels 
can also be obtained with no pairing force, i . e . y = 0 as seen in Fig . 6 of 
Ref. [4]. 

Finally, we discuss the case of 2 2Na for which the number of particles 
in the 2 s - l d shell is n = 6 and T = 0. The most anti-symmetric representa-
tion of U4 that contains T = 0 is {2211} for which s is restricted to the value 
s = 1. The corresponding partition for в is [42] and among the IR of 
SU3 contained in it, the one that comes lowest in energy is (k ]k 2 ) = (1 0, 2). 
As the analysis of 20F indicated the possibility of neglecting the inter -
action for this odd-odd nucleus, for 22 Na we shall explore the effect of 
an interaction of the type 

- V 0 [x S 2 + y&> +z VTS 0 ] , x +y + z = 1 (5.64) 

* - = - V 0 — x â > 2 + ( 1 - х ) 9 Г , 
1 

(5.65) s. o. 

where the factor 1/10 is introduced to facilitate the graphication. Now 
0 2 is clearly diagonal and proportional to L ( L + 1) for definite IR 142] 
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FIG. 5. Experimental and theoretical spectra of Z°F. In (b) and (c ) exchange forces were not taken into 
account (Ref. [ 4 ] , courtesy of North-Holland Publishing Co . ) 

as base line (from Ref. [ 6 ] p. 129) 

of (10, 2) of SU3 and L of R 3 . The matrix elements of 5Ts 0 with 
respect to the states (5.49) can be evaluated using essentially the i r r e -
ducible tensor character of this interaction with respect to SU3 and the 
corresponding Wigner -Eckart theorem, as discussed in detail in R e f s . [ l ] 
and [6] . In this way we obtain matrices whose diagonalization gives the 
energy level as functions of x, as seen in Fig . 6. In this f igure the ex -
perimental ground state is taken as a base line to see at a glance whether 
one could obtain the ground state for some value of the parameter x- It 
is c lear f rom Fig. 6 that the ground state could be obtained correctly, 
i . e . J = 3+ , for sufficiently strong spin orbit coupling, and that in a limited 
region the f i rst excited state is J = 1+ in accordance with experiment. 
The next two (doubtful) experimental levels are not predicted corr ectly, 
but here an admixture of a pairing interaction could be helpful. The 
procedures given in this chapter allow us to obtain also the states a s -
sociated with these levels . 
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Discussions s imilar to the one given here for 2 2Na have been presented 
for all odd-odd nuclei in the 2 s - l d shell in Ref. [6]. A general computer 
programme along the lines presented in this section has been developed 
by F lores and will be applied to all nuclei in the 2 s - l d shell. 

The present picture can also be extended to negative parity states 
of nuclei between A = 16 to A = 40 by using particle hole configurations 
as discussed in Ref. [8] . 

6. A P P L I C A T I O N OF GROUP THEORY TO THE F E W - N U C L E O N 
P R O B L E M 

Up to now we have been discussing the application of group theory to 
the many-body problem in the formulation of second quantization. In this 
formulation the Pauli principle was automatically satisfied. Although 
no explicit mention of the symmetric group has been made, information 
about the symmetry properties of the orbital and spin-isospin parts has 
been implicitly taken into account by the irreducible representations of 

and U4 to which our wave functions belong. 
We now present another appr oach based upon the idea of constructing 

the total wave function by combining products of space and spin-isospin 
wave functions in such a manner as to satisfy the Pauli principle. We 
shall consider this old approach to the problem (originating already in 
Wigner1 s work on supermultiplet theory) in a new manner, namely, by 
f irst restricting ourselves to the problem of n nucléons in a harmonic 
oscil lator potential or interacting via two-body harmonic oscillator 
forces . 

The reason for doing this is the large symmetry of the problem 
which, as we shall see, is invariant under the U3n group. This group 
admits a large number of chains of sub-groups and it is possible to show 
that there exist well defined chains of sub—groups of to which some 
fundamental concepts of nuclear physics, such as the shell model, the 
collective model and the cluster model can be related. 

We shall start by discussing the problem of translationally invariant 
states (elimination of centre -o f -mass motion) for the general n nucleón 
problem, and then illustrate our general approach by discussing in detail 
the four-nucleon case. 

6.1. The auxiliary Hamiltonian, its symmetry groups and 
eigenstates 

Let us consider the Hamiltonian of n particles interacting with 
each other through harmonic oscillator forces : 

n 3 n 3 

(6.1) 

s = l i — 1 s, t - 1 i - 1 

By performing a transformation to Jacobi co-ordinates 
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S 

к* = [ s l s + l ) ] 4 Y x ' - s M s + l ^ x l 4 1 (6.2) 

• n -i V 1 
x ¡ = n ^ X j 

t=l 

3 

and adding a potential energy term | m u 2 ^ ( x " ) 2 the Hamiltonian (6.1) 
becomes 

i ^ v r + ^ t î <*{> ' (6.3) 
S - 1 i 1 S = 1 1 = 1 

The purpose of the addition of the potential energy term is to have in 
a dependence on the centre -o f -mass co-ordinate and momenta of the form 

3 3 

¿ Y (P¡f Y
 ( k

i
) ¿ ( 6

'
4 ) 

i l i l 

This would allow us to eliminate spurious states associated with centre-
o f -mass motion by restricting ourselves to eigenstates of (6. 3) which have 
zero quanta for the part (6.4) of this Hamiltonian. 

We shall now express our Hamiltonian (6.3) in terms of relative 
creation and annihilation operators 

which satisfy commutation relations for Bose operators. In terms of 
these operators a dimensionless may be expressed as 

-îî "J*!* (6-7> 
s =1 i = l s-1 i = 1 

We see f rom (6.7) that is invariant under an arbitrary 3n-dimensional 
unitary transformation I) Jn of the n!, i = l , 2, 3, s = l . . . n. Furthermore, 
f rom the commutation -elations of rj • , we note that c ; ; = n : ? ; (6.8) 
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TABLE V. SYMMETRY GROUPS AND THEIR GENERATORS 

Symmetry groups Generators 

u3„ 
„ st s _t 
Cu = n¡ 

U„ 

n £ 
s - 1 
3 

„ St Г Яя 
с = I c u 

1 = 1 

«C3 3 «С2 Э «Cj ?¡j , i, j S к, к = 3, 2. 1 

u„ => un_, => . . . 3 U p 3 .. . ID U, Си , s, t Sp, p = n, n - 1 . . . 1 

commute with g f and satisfy commutation relations that indicate they are 
the generators of U3n . This group contains as a sub-group, the direct 
product <^3 X U n , where is a unitary transformation in the co-ordinate 
space (space of the components), while Un is a unitary transformation in 
the particle index space. Their generators are obtained by contractions 
with respect to the upper indices and the lower indices respectively. The 
situation is summarized in Table V where we also include the generators 
of the sub-groups of and Un for the mathematically natural chain. 

Let us now construct the states corresponding to these chains of sub -
groups of the U3 n groups. The state for a system of n particles correspond-
ing to a definite number N of quanta will be obtained as a homogeneous 
polynomial of degree N in the creation operators T}¡ applied to the 'vacuum 
state': 

P ( !7 j )|0> (6. 9a) 

where the 'vacuum state' is now the ground state of the 3n-dimensional 
harmonic oscil lator: 

l 0 > = тг e x p f - ! ^ [ ( i p 2 - f t - ] ) (6.9b) 

Because of the commutation relations we could write 

- I ml э 
э n? 

(6.10) 

so it is clear that the effect of ^ f ac t ing upon a homogeneous polynomial 
of degree N is to reproduce this polynomial multiplied by its degree N. 
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The homogeneous polynomials (6.9) are thus eigenstates of g f . Fur ther -
more, all the homogeneous polynomials of degree N in rj| can be obtained 
f rom (rji )N by applying to it the generators C^ . As we also have 

C?jMrii)N|o> =0 for i < j , B<t , C J J ( n Í ) N | O > = N (4 Í )
N

| o>6 I 1 6 ' 1 

(6. l i a , b) 

we conclude that all the homogeneous polynomials of degree N form a 
basis for the IR 

[N, 0, 0, . . . 0] 
(6.12) 

3n - 1 

of U3 n . 
What are now the possible IR for the sub-group X Un and the 

corresponding basis functions? 
It may be proved (see Ref. [9] ) that the IR of the groups ъ and Un 

that appear in the reduction of the IR [N, 0, . . . , 0] of U 3 n are grouped 

3n- l 
in pairs , namely, if the representation of is 

[hx , h2 , h 3 ] with h j + h 2 +h = N, h 1 S h 2 È h 3 ë 0 (6.13) 

then for U n appears the following 'associate ' representation: 

[ h 1 , h 2 , h 3 , 0, 0, . . ., 0] 
(6.14) 

n - 3 

The basis states corresponding to these representations are the Gel ' fand 
states 

«<2 

hi h2 h 3 0 

4i 42 u2 u3 0 . . . 0 

v2 v3 0 . . . 0 

(6.15) 
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The highest weight state will be: 

This state may be given an explicit expression if we define 

p s being a permutation of the s indices. In terms of the functions (6.17), 
the h. w. state (6. 16) up to a normalization constant, has the expression 
(Ref. [9 ] ) 

( A { ) h ' - h 2 ( A ^ - h 3 ( A ^ ) h 4 0 > (6.18) 

where 

h j + h 2 + h3 = N ' (6.19) 

It may, in fact, be proved that by applying the raising generators ^ ¡ j 
(i < j) of the group <ЙГ3 to the state (6.18) one gets zero. Let us show 
for instance that ^ ^ |o> =0. 

' <Г12 A ' 2 | 0 > = (rjJçJ +П1?2)(Г711П2-П21П2)|0> = (nî i7i -4®rjJ)|0> =0 (6.20) 

In a s imi lar manner it may be shown that the application of the raising 
generators C s t (s < t) to (6.18) gives zero. The weight of the state (6.18) 
is obtained by applying the weight operators ЧРц, ^ 2 2 , ^33 for and 
С1 1 , C2 2 , . . . , Cnn for U . One obtains the weights [ h ^ h2 , h 3 ] and 
[h j , h2 , h3 , 0, . . . , 0] respectively. The general Gel 'fand states are 

n - 3 
obtained in the usual way by application of products of lowering operators 
to the h. w. state 

6.2. Elimination of spurious states due to the centre -o f -mass motion 

Let us remember that the creation operators r)¡ have been defined 
in connection with the Jacobi co-ordinates, so that the index s designates 
the relative co-ordinate s and not the co-ordinate of particle s. As the 
n-th Jacobi co-ordinate was associated with the motion of the centre of 
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mass , it is now simple to construct states with no quanta in the centre -
o f -mass co-ordinate; this may be real ized by requiring that the eigen-
value of the generator Cn n , which counts the number of quanta for the 
centre -o f -mass degree of freedom x" , be zero. But, as Cnn applied 
to a Gel ' fand state has the eigenvalue 

h 1 + h 2 + h 3 - ( u 1 + u 2 + u 3 ) (6.21) 

and as 

h S Uj ê h2 й u2 ê h 3 ï u 3 (6.22) 

we conclude that the states having zero number of quanta for the centre-
o f -mass oscillation are characterized by Gel ' fand states for which 

h 1 = u 1 , h 2 = u 2 , h 3 = u 3 (6.23) 

The Gel ' fand states (6.15) we introduced in connection with problem (6. 3) 
constitute the 'mathematically natural states'. 

6 .3. Physical chains of sub-groups 

Let us discuss now the physical chain of groups and the corresponding 
basis . 

For the unitary transformations in the space of the components the 
chain is 

й ' з Э (?3 3 (6.24) 

and this is a chain we are already famil iar with. 
Now as f a r as unitary transformations in particle space Un are 

concerned, the f i rst link in our group chain will certainly be 

ü„ (6-25) 

which eliminates the centre of mass . Let us remember that U,,^ are 
unitary transformations in the space of ( n - 1 ) relative co-ordinates 

x = ^ ( x - x ) 

(6.26) 

But the U n - i representation in the space of the Jacobi co-ordinates admits 
as a sub-group the IR 

D * " ' 1 , 1 ' ( S n ) (6.27) 

of the symmetrical group of n particle Sn . The ( n - 1 , 1) irreducible 
representation of Sn is given by ( n - l ) X ( n - l ) matrices, as is seen f rom 
(6. 26) and may also be proved by counting the number of ways the set of 

48 
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numbers {1, 2, . . . , n} may be arranged into a Young diagram 

n - 1 

(6.28) 

so that they should be situated in increasing order if read f rom left to 
right and f rom top to bottom. It should be stressed that the group Sn 

re fe rs to the permutations of the n particles, and not to their relative co -
ordinates. It can be easily shown that the ( n - l ) X ( n - l ) matrices in the 
IR D<n"-1 '1 ' (Sn ) are orthogonal ones. 

We have thus succeeded in getting as a final group of the reduction of 
the group £?3XSn, which is physically interesting as it provides 

orbital wave functions of definite angular momentum and of given symmetry 
with respect to the permutation of the particles. 

Between U n - ! and Di11"1- (Sn ) an On-i group may be included which 
has no physical significance, but provides us with labels for classifying 
the states. The chain of groups in particle space is thus 

.«^3 X U 

U n э Un 2 On„ n - l Di""1 ' ^ ( S J (6. 29) 

We shall il lustrate the problem of the construction of wave functions 
corresponding to'the above chains for the particular case n = 4. 

6.4. The four-part ic le problem 

6 .4 .1 . The orbital part of the state 

For the chain of groups (6.24) the basis functions are 

(6. 30) 
h l h 2 . h 3 

П L M 

and we have only to calculate the transformation brackets 

hi 

Q 

h2 

L (6.31) 

which is a problem that has already been discussed in section 3. The 
chain of sub-groups of the U4 transformations in particle space (6.29) 
becomes 

U4 э U3 (6.32a) 

U 3 э 0 3 э D<3' 1MS4 ) (6. 32b) 

It may be shown that the D ( 3 , representation of the S4 group is i s o -
morphic to the tetrahedral group in three dimensions T d . As we already 

47 



755 

(6.33) 

ü3 э 03 D 0 2 

(6.34) 
[h1h2h3 ] X ц 

we have only to worry about the transformation brackets between states 
corresponding to the chains (6. 34) and (6.32b). As in these chains we are 
dealing with the same U3 and 0 3 groups, we need only the transformation 
brackets between the states characterized by the IR of the sub-chains 

0 3 3 02 and 0 3 э D ( 3 ' ^ (S4) = Td (6.35a, b) 

The states associated with (6. 35a) can be denoted by the ket |Хя )> with 
X,/u being the IR of 0 3 and 0 2 , respectively. The IR of S4 are character-
ized by a partition f s [ f 1 f 2 f 3 f 4 ] of 4, and their rows by the Yamanouchi 
symbol r s ( l r2 r 3 r 4 ) . The corresponding ket can then be denoted by 
|Xxf 0> , where x is an extra quantum number that distinguishes between 
repeated IR of S4 contained in a given IR of 0 3 . The transformation bracket 
we need to determine is then 

<X/u|Xxfr> (6.36) 

As D ( 3 , 1 ) (S4) = Td, the determination of (6.36) is a problem well 
known in molecular physics and solid-state theory where it appears in the 
explicit construction in terms of spherical harmonics of the symmetry-
adapted wave functions of the tetrahedral group (see, for example, Jahn, 
Proc. R. Soc. 168 (1938) 469). A systematic determination of these 
coefficients has been given by Kramer and Moshinsky in Ref. [10] . 

Using then (6. 31) , (6.33) and (6.36) we can pass from the four-
particle states of the type (6.15) with zero excitation for the centre-of-
mass motion to the states 

hi 

и 

where we suppressed the redundant partitions for the U4 э U3 groups in 
the particle indices. We have therefore an explicit procedure for con-
structing the orbital part of the four-particle state and, in principle, this 
could be extended to the n-particle state. 

GROUP THEORY AND NUCLEAR STRUCTURE 

know the transformation brackets 

from the mathematically natural chain to the physical chain"' 

; <P Xx f r (6. 37) 
L M 

7 We have indicated under the groups in the chain (6.34) their corresponding IR. 
The quantum number <p plays fo r (6.34) the same ro le as S2 for (6.31) . 
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6 .4 .2 . The spin-isospin part of the state 

We would like now to introduce the spin-isospin part of the f ou r -
particle state so as to be able later to construct the complete anti-
symmetric wave function to which we would apply the physical interaction. 

The spin-isospin part of the state would be characterized by the total 
spin (S), isospin (T) and their projections ( M s , M T ) as well as by the IR 
of S4 associated with the partition f and the Yamanouchi symbol r, so 
that it could be denoted by the ket 

| S T M s M T , f r > (6.38) 

The explicit construction of states of this type for an arbitrary 
number of particles was given in R e f s . [ l l ] and [12]. We note only that the 
procedure followed there was very s imi lar to the one we have given in 
the previous sub-sections for the explicit determination of the orbital 
part of the state. 

6 .4 .3 . The full anti -symmetric wave function and the matrix 
elements of the physical Hamiltonian 

We could build up the ful l .anti -symmetric wave function by combining 
the orbital states of partition f and Yamanouchi symbol r with spin-isospin 
states of the associated partition F and Yamanouchi symbol r . We illustrate 
the relation between the partitions and Yamanouchi symbols and their 
associates by the example in (6. 39) 

f = [211], r = (1213), 
1 2 4 

3 
f = [31], r = (1121) (6.39) 

Furthermore, we vector couple L, S to a definite J so as to get the anti-
symmetric wave function 

|N> ^ ; (pX x f , STM T , JM 

_ V 1 t J Í 
" L ж 

h l h 2 h 3 

Ш L 
<pXxfr > | S T M _ , f r > (6.40) 

-lJM 

where is the dimension of the IR of S4 characterized by f, [ ] JM is the 
famil iar bracket notation for vector coupling of L, S, and ( - l ) r i s 1 if the 
Young tableau corresponding to r is obtained f rom 

1 h 

f 1 + l . . • ' i + f 2 
(6.41) 
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by an even number of successive interchanges of two numbers, and -1 
otherwise. When convenient we shall use the shorthand notation | n X 
where N is the number of quanta, for this state. 

We should now like to apply to our state (6.40) an intrinsic physical 
Hamiltonian H, where the adjective intrinsic means that we remove f rom 
this Hamiltonian the kinetic energy associated with the centre -o f -mass 
motions, i . e . for an n-particle system it is given by 

n-l 

H • I ¿ ( P S ) 2 + I (6-42) 

where ps are the momenta associated with the relative Jacobi co-ordinates 
(6.2) and V (s , t ) is a two-body, not necessari ly central, interaction between 
particles s and t. 

As the states (6.40) are eigenstates of g f , we could express the kinetic 
energy in (6.42) in terms of g f and the potential energy of the harmonic 
oscil lator interactions. Furthermore, as the states (6.40) are anti-
symmetric under interchange of the co-ordinates, spin and isospin of 
any two particles, we could write, in the shorthand notation introduced 
for (6.40), that 

< N ' | H | N > = ñu [N + | ( n - 1)] ô N'.N 

mu2 
+ I n ( n - 1 ) < N ' | V ( 1 , 2 ) - Î ^ - ( X 1 - x 2 ) 2 |N> (6.43) 

where the 6n',n is 1 only if all the quantum numbers in the states of bra 
and ket are equal. Fo r our particular problem the number of particles 
n = 4. 

Having then the explicit states (6.40) we must evaluate with respect 
to them the matrix elements of a two-body interaction associated with 
particles 1 and 2. This can be achieved in three steps: 
(a) We use standard Racah algebra to decompose the matrix elements 
in (6.43) in terms of a product of the reduced matrix elements of the 
separate orbital and spin-isospin parts in the interaction. 
(b) We determine f rom the explicit fo rm of the orbital state (6. 37) the 
fractional parentage coefficients (fpc) with whose help we can decompose 

the state into a part associated with the relative co-ordinate x 1 = (x1 - x 2 ) 

and a part associated with the other co-ordinates. We then use these 
fpc in the standard way to determine the orbital reduced matrix element. 
(c) We determine f rom the explicit form of the spin-isospin state (6. 38) 
the fractional parentage coefficient (fpc) with whose help we can decom-
pose the state into a part associated with spin-isospin co-ordinates of 
particles 1, 2 and a part associated with the other co-ordinates. We then 
use these fpc in the standard way to determine the spin-isospin reduced 
matrix element. Al l these steps have been carr ied out explicitly by 
K ramer and Moshinsky (Ref. [12]). 
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TABLE VI. PARAMETERS AND TALMI INTEGRALS 
OF THE SERBER FORCE 

The Serber Force 

V ( r ) 

V(r) = -V0 (jur) 1 exp(-pr) 

= 52.13 MeV 3ne = 0.7261 f"1 

'Vg = 46.87 MeV V = 0.8547 f"1 

Talmi integrals IP = (2/Г(р+f} / r2p+2e"r2 
0 

V(r) dr 

3Ig = -14.29 MeV, 3Ii = - 5 .2 MeV, = -2.61 MeV 

' i j = -9 .4 MeV, = -3.2 MeV, = -1.62 MeV 

fiu = 21.8 MeV 

6 .4 .4 . Energy levels of the four-nucleon system 

We have explicitly determined the matrix elements of (6.43) for 
n = 4 and N, N ' =0, 1, 2 for a Serber force of a type used recently by 
de-Shalit and Walecka (Phys. Rev. 147̂  (1966) 763) in their calculations 
of one-part ic le-one-hole excitations for the four-nucleon system. The 
parameters of this force and the Talmi integrals, for the üu = 21.8 MeV 
associated with the mean square radius of the a particle, are given in 
Table VI. 

As the interaction is a Serber force with exchange, we have that L, S 
are integrals of motion as, of course, will also be J11 and T, where n is 
the parity. We furthermore give the partition { f j f j f g ^ } for each level. 
This partition is almost a good quantum number since the Bartlet part of 
the force, when compared with the Wigner part, is relatively weak. 

The energy levels for the Serber force are given in Fig . 7. We note 
that there is only one state of negative energy, i . e . actually bound, as 
is the case for the a particle. The binding energy of = 24 MeV is not 
far removed f rom the experimental value of = 28 MeV . The ground state 
is a mixture of the states of N = 2 and N = 0 quanta with L = S = 0 and par t i -
tion [4 ] , though the ratio of the square of the amplitudes of the states 
1:10 indicates that the N = 2 admixture is still small . The f irst excited 
state is a 0 + state and afterwards follow the negative parity states as 
experimentally observed. The position of the levels with T = 1, 2 v i s - à - v i s 
those of T =0 is also in reasonable agreement with experiment. 

In F ig . 8 we present the way in which the negative parity states, i . e . 
those with N = 1,. are decomposed by a two-particle spin orbit force, for 
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FIG.7. Energy levels of a Serber force for a four-nucleon system with states up to N = 2 quanta. The 
quantum numbers indicated correspond to L S { f } I ï ï (Ref. [13 ] . courtesy of North-Holland Publishing Co. ) 

E 
MeV 

1 • 

0 - 2 " 2 " 

eirp. theor. ' e*p. theon. 
T=0 T=1 

FIG. 8. Effect of a two-body spin orbit interaction on the negative parity states N = 1 (Ref. [13] . courtesy 
of North-Holland Publishing Co. ) 

which there is only one Talmi integral l j s , whose value was taken as 
- 1 . 1 MeV. These energy levels are compared with experiment, it being 
assumed that the lowest negative parity level with T = 0, i. e. 2", agrees 
with the experimental one. 

The results presented have been taken f rom a paper by Kramer and 
Moshinsky given in Ref. [13 ] . 

It is c lear that in principle the approach presented here could be 
extended to any number N of quanta and n of particles. It seems that 
the present approach would have definite advantages over the second 
quantized one discussed in the previous sections, when n is not too large . 
The reason is that in this case the summation over the Yamanouchi 
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symbols r is not too large and so, by including l a rger values of N, we 
could go to configurations that would involve many shells for the f e w -
nucleon problem. 

7. THE HARMONIC O S C I L L A T O R (h . o . ) A N D S H E L L M O D E L STATES 

It is well known that harmonic oscil lator states play an important 
role in the calculations of the nuclear shell model, among other reasons 
because of the ease with which the matrix elements of two-body inter -
actions can be evaluated by using the transformation brackets to the centre-
o f -mass and relative co-ordinate system. A detailed exposition of this 
last point is given in Ref. [14]. 

In the above calculations, however, the harmonic oscillator is, so 
to say, grafted into an existing nuclear shell theory formal i sm. In this 
section we would like to turn the problem round and see how, in general, 
a multiple-shell configuration can be associated with a system of n 
particles in an h .o . potential. The explicit construction of the states a s -
sociated with this problem allows us to define a generalized concept of 
fractional parentage coefficients (fpc) for systems of n particles in an 
h.o . potential. These fpc are basic in any calculation of the matrix 
elements with respect to these states of one- and two-body operators. 

We shall start our analysis by f irst discussing the symmetry group 
associated with the problem of n nucléons in an h.o . potential rather 
than interacting through two-body h. o. forces as in the previous section. 
The Hamiltonian is now 

^ = Z ¿ r (pi)2+^mu2Z ui)2 (?л) 

i,s i,s 

and, with the creation and annihilation operators defined as 

the dimensionless Hamiltonian could be written as 

i. s 

The problem is then identical to the one discussed in the previous section 
except for the fact that s = 1, . . . , n stands now for the actual particle 
index and not for a Jacobi co-ordinate index. 

We then restate for g f of (7.3) the results we obtained in the previous 
section for the defined there. The symmetry group is U3n and the states 
could be further characterized by the X U n sub-group, with the genera -
tors of these groups being given by 

С 5 = r j j ç j . ЧГЦ - J ç ; . = (7.4a. b. с) 
s i 
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respectively. In the natural chain of sub-groups of and Un the states 
are described by the Gel ' fand states of (6.15), which are in turn constructed 
f rom the highest weight state (6.16) by applying the usual lower ing operators. 

The physical chain of sub-groups includes as before 

« - 3 3 £?з 3 0 2 (7.5) 

and the transformation of the states (6.15) to those associated with the 
chain (7.5) is again done by the transformation brackets (6.31) . 

The present problem dif fers f r om the one we discussed in the previous 
section only when we consider the physical chain of sub-groups associated 
with U n . As the index s is now the particle index itself, the sub-group of 
U n , with respect to which we would like to c lass i fy our states, is Sn , i . e . 
our chain has the form: 

Un 3 . . . 3 S „ (7.6) 

We have not included as yet any definite group between Un and Sn 

because we shall try to define this group in a way that its IR give in for -
mation on the multi -shel l structure of the state. We could obviously fit 
the group On between Un and Snbut while this group provides indices for 
a classification scheme, it has no particular physical significance. 

Be fore proceeding to derive the appropriate group to be included in 
the chain (7.6) , we shall give a method for actually projecting out of the 
Gel ' fand states (6.15), states that correspond to bases of an IR of the 
symmetric group Sn . 

7 .1. States with permutational symmetry 

We would like to find linear combinations of the states (6.15), t r ans -
formed to the <?з z> О g chain, that are characterized by an IR 
of Sn associated with the partition f = [fx f 2 . . . f j and that correspond 
to the row of the IR associated with the Yamanouchi symbol ( l r 2 . . . r n ) . 
Assuming that the IR f of Sn is contained in the IR [h 1h 2h 3On " 3 ] of Un 

(which can be found by standard methods as discussed in detail in 
references [10] and [12] ) we could obtain the states we are interested in 
by applying to the Gel ' fand state 

3 

M 

0 . . . 0 

u3 0 . . . 0 

(7.7) 

the projection operator 

it 
n! I í (P)P (6.15) 

where £f is the dimension of the IR f of Sn , D^ r (p) is a known IR of Sn 

characterized by f and r, and p is an arbitrary element of Sn . The 
partner functions associated with the same f but other r ' s could be ob-
tained by an appropriate ladder procedure. 
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As the permutations p form a sub-group of the group Un and are 
independent of the symmetry group associated with the component 
index of the vectors, it is c lear that we could apply the projection operator 
(7. 8) to (7.7) if we knew the effect of p on a Gel ' fand state in U n , i. e. 
if we could determine the matrix elements of p in the development 

hj h2 h3 0 . . . 0 

u i u2 u3 0 • • 

zi 

•I 
Ц h 2 h 3 0 . . . 0 

u j u - u^O...O 

h l h 2 h 3 ° . 0 

u- u ^ u ' 3 0 . . . 0 

\ h2 h3 0 . . . 0 

u i u 2 u 3 0 - - - 0 

(7.9) 

This problem is a particular case of determining the finite irreducible 
representations of the Un group. In the same way that in the case of 
the R 3 group we have the irreducible representations of the infinitesimal 
transformations of the group, i . e . the matrices 

I K i m ' l L j i m ) ] (7.10a) 

and irreducible representations for finite transformations, i . e . 

(7.10b) 

we have for the unitary groups Un the corresponding infinitesimal problem 

<h, РЯ |c s t lv> (7.11a) 

completely solved by Gel ' fand and Zetlin, and the corresponding finite 
problem which does not seem to have been fully solved as yet. 

It is easy to show, though, (see Ref. [15 ] ) that the finite representa-
tions of Un can be obtained in terms of the famil iar finite IR of SU2, i . e . 
(7.10b), and the matrix elements with respect to Gel ' fand states of the 
permutations. As the permutations in turn can be decomposed into t rans -
positions of neighbouring number, i . e . ( p - l , p ) , 'and as these are elements 
of Up , it is clear that we could give a full solution to our problem if for 
any n we could get the matrix element of the transposition 

h l h2 0 . . .0 

u'2 uj, 0 . . 0 ( n - l , n ) 

hi h2 h3 0 . . . 0 

U1 u2 u3 0 . . 0 

(7.11b) 

with respect to Gel ' fand states of Un . 
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For n = 2 this is trivial, while for n = 3 it already represents a rather 
complicated problem which was solved in Ref. [15] . The result turns out 
to be given in terms of a Racah coefficient and it is presented here for 
the sake of reference: 

h i h 2 h 3 

u' u' 1 2 (2, 3) 

h l h 2 h3 

U1 U2 

( 1 ) 3 6V¡ Vl 5 u; + u¿ - vi, h 1+ h2 + h3- U, - u2[(u,•- u2 + i ) ( u i - u j - H ) l i X W ( abcd ; e f ) 

a = - u ^ + h g - u ^ ) 

b = i ( V l - u 2 + h 2 - u - ) 

С = i (u| - v l + u l - h 2 ) 

d = i ( u | - V l + u ' ^ h 8 ) 

e = i ( h x - u ^ +V j - u 2 ) 

f = ¿ ( h j - u j + V l - u p 

(7.12) 

Once the explicit result of the type (7.12) is extended to the general 
matrix element (7. l i b ) , we are in a position to project states with given 
permutational symmetry out of Gel ' fand states. We would, however, have 
the problem that as soon as the number of quanta N = h j +h 2 +h 3 starts to 
increase, the IR of Sn of definite f in a given IR of Un repeat themselves, 
and so we have to find a procedure for distinguishing between them. For 
this purpose it is important to get an intermediate group between Un and 
Sn , whose IR could, at least partially, distinguish between the repeated 
IR of Sn in Un . In view of the success of the shell model, we would also 
like to see if this intermediate group could in some way be related to the 
shell structure. 

7.2. Chain of groups associated with a multi-shell structure 

The Gel ' fand states (7.7) are eigenstates of the set of generators Css, 
s = 1, . . . n with the set of eigenvalues 

(w 1 , . . . w n ) (7.13) 

which constitute prec ise ly the weight of the state in Un . Each eigenvalue 
w s , which is a non-negative integer number, tells us that particle s in 
the state (7.7) has w¡ quanta. Therefore, the weight (7.13) is actually 
giving us some information on the multi -shell structure of the Gel ' fand 
state. Fo r a given N = ha +h 2 + h 3 each w s may take some value in the 
interval 

ws = 0, 1, 2, 3, 4, 5, . . . N (7.14) 
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If we count the number of times each value in this interval appears, we 
would have the number of particles in each energy level of the h. o. for the 
Gel ' fand state in question. For example, if in the same order as in (7.14) 
we put the number of times the corresponding value of ws appears as 

3, 1, 2, 0, 1, 0, . . . , 0 (7.15) 

then this means that we have 3 particles in the Is shell, 1 particle in 
the p shell, 2 particles in the 2s - l d shell, 0 in the 2p - l f shell, 1 in the 
3 s - 2 d - l g shell, 0 in the 3p -2 f - lh shell, etc. 

Clearly the shell structure is related to the eigenvalues of the set of 
generators (C1 1 , . . . , C n n ) . This set must correspond to the generators of 
some sub-group of Un as the operators Css are closed under commutation 
and, in fact, the sub-group must be abelian as the Css commute. Which 
sub-group is this? 

The question is easily answered by considering the set of all diagonal 
unitary transformations,i . e. 

0 xi 

X2 (7.16) 

The matrices associated with infinitesimal transformations of this type 
are of the form 

/ 1+1 Vi 

0 

0 

1 + i <p2 

0 

(7.17) 

1 + i</>n / 

and so if we take all ^ s as zero except tps, we get the corresponding 
operator 

Э 
Эх. 

(7.18) 

as a generator of the group. As these operators are clearly equivalent 
to our previous C s s , we conclude that the C s s , s = 1, . . . , n are the genera -
tors of the n-dimensional abelian sub-group of Un , consisting of all d i a -
gonal unitary matrices. We shall designate this sub-group as A n and an 
arb itrary element of it as a. 

Clear ly then the sub-group An must in some way f igure in our chain 
of groups (7.6) if we want to have a multi-shell structure for our states. 
We cannot, however, naively introduce An between Un and Sn, as A n ' does 
not contain Sn and in fact has only the unit element in common with it. 
We note that A n is actually too restricted to characterize the multi-shell 
structure of our state as the eigenvalues of the Cffi not only tell us how 
many particles there are in each shell but identify these particles explicit-
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ly. This suggests then that we extend the An sub-group in such a way 
that it also includes the permutation group, so that while we could still 
have information on a definite number of particles in each shell, we no 
longer identify the particles explicitly. 

The extension can be made by considering the semi-direct product 

A n A S n = K n (7.19) 

which is then the group whose elements are all of the type 

ap (7.20) 

where a e A n and p e Sn . The f irst question is to see if this is a group, 
i . e . if 

(ap) (a 'p ' ) = a "p " (7.21) 

This is easily proved by noting that 

p _ 1ap = S (7. 22) 

where â is the diagonal unitary matrix whose elements are permutéd by p. 
Fo r example, if n = 2 

(7. 23) 

We can then write 

( ap ) ( a ' p ' ) = a(pa'p _ 1 )pp' = (aa ' ) (pp* ) (7.24) 

thus proving that the elements (7. 20) form a group, as we could also 
use (7. 24) to find the inverse of any element as well as the unit element. 

The group (7.19) is a semi-direct product as f rom (7. 22), A n is an 
invariant sub-group of K n and, as mentioned before, A n and Sn have 
only the unit element in common. As K„ contains Sn as a sub-group we 
clearly can now introduce the chain 

Un э K n э Sn (7.25) 

where the presence of An in K n will serve to characterize the states 
classif ied by the IR of the groups in the chain (7. 25) by their multi-shell 
structure. 

As is well known f rom the work of many authors and particularly of 
Macintosh (J. mol. Spectry. 5 (1960) 269; ibid. 10 (1963) 51) the IR of 
a semi-direct product can be fully determined f rom the knowledge of 
the IR of its component groups. Using these results, Kramer (J. math. 
Phys., in the press ) has fully discussed the IR of Kn and their reduction 
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under Sn as well as the reduction of the IR of Un under К n. An applica-
tion of this analysis has been given in the previously quoted reference 
of Kramer and Moshinsky for the 3-particle multi-shell states. Exten-
sion of this work to more particles is in progress . 

We could say that a definite group-theoretical procedure is available 
for the construction of n particle h. o. states which have a shell structure 
and specific permutational symmetry. These states are furthermore 
classif ied by the <$/3 group in orbital space, so they are eigenfunctions of 
the quadrupole-quadrupole (Q 2 ) interaction. When combined with the 
appropriate spin-isospin wave function (which will have the same structure 
as in the last section), these states will satisfy the Pauli principle and 
could serve as starting points of more detailed calculations, having the 
advantage that they already include the correlations associated with long 
range, i . e . Q 2 interactions as well as a definite multi-shell structure. 

8. THE HARMONIC OSC ILLATOR AND CLUSTERING 

In the previous section we showed how the states of n particles in an 
h.o . potential classif ied by an appropriate chain of sub-groups of the funda-
mental group U3 n exhibit a shell model structure. In this section we shall 
illustrate, through the analysis of the four-nucleon problem, the poss i -
bility of clustering effects in the h.o. states, and some consequences of 
these properties. A more extensive and detailed discussion of this problem 
is given in Ref. [12] as well as in papers in preparation. 

One great advantage of the harmonic oscillator model is that the co -
ordinates could be defined in a variety of ways without changing the form of 
what we called, in section 6, the "auxiliary Hamiltonian. For the f ou r -
nucleon problem we could, for example, rather than use the relative co -
ordinates x* defined there, introduce the co-ordinates 

x ^ i l x 1 - ? ) 

x = -Tdx - X ) 
4 , 2

 (8.1) 

x 3 = i i ^ + x 2 - ^ 3 - ; 4 ) 

= 

Eliminating the spurious states associated with centre -o f -mass 
motion, i. e. limiting ourselves to states of zero quanta in the co-ordinate 

we find that the orbital states characterized by the chain of groups 

cg¿ г => 03 => 02, U4 э U3 o U2 о U-l (8.2) 

are represented by 
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where here we use the full Dirac notation and indicate the variables xs, 
s = 1, 2, 3, because we want to distinguish these states f rom those in which 
the variables are x s or xs . Furthermore, we suppressed the redundant 

extra line giving the IR [hjl^hjjO] of U4 . The partition [h Lh 2h y ] giving 
the IR of U3 is a partition of the number of quanta N. The states (8.'3) 
depend on the co-ordinates represented diagrammatic ally in Fig . 9. 

8.1. Definition of clustering 

We could, in terms of the co-ordinates in Fig . 9, give the following 
definition of clustered states: The states (8.3) represent a set of 4 particles 
clustered in two sets of two particles each, if there is no internal excitation 
of the clusters, i . e . if the number of quanta associated with co-ordinates 
Й1 and Й2 is zero. Now, f rom the properties of Gel 'fand states, it is very 
easy to see that the states (8. 3) are clustered according to the above 
definition only if vi = 0 and U! +u 2 - v j = 0, but because of the inequality 
Uĵ  Ш Vj È u 2 this implies ux = u2 = Vj =0, which in turn leads to h2 = h3 = 0, 
h j = N. 

Therefore, f rom our definition of a two-cluster (of two particles each) 
state, it is clear that only states 

have this type of clustering. We use for these states the shorthand 
notation of the right-hand side where each parenthesis indicates one 
cluster as well as the number of particles in it. 

In section'6 we discussed the complete set of states for a system 
of four nucléons, in terms of the co-ordinates x s, s = 1, 2, 3 of (6. 2), for 
the chain of groups 

Э ¿3, Э O0, U, => U, =3 O Z> D ( 3 , 1 ) ( S 4 ) (8.5) 

We showed in Ref. [10] how we can express these states as linear com-
binations of the corresponding states in terms of the co-ordinates x s. A 
complete set of states characterized by the chain (8. 5) is then also 
given by 

[h ih 2 h 3 ] 
; <?A-Xfr 

Í2 L M 
(8.6) 
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F rom the scalar product of (8. 6) and (8. 4) we could estimate the 
degree of clustering in these general states. This, however, would be 
a measure of a kind of naive clustering, as (8.4) actually specifies that 
particle 1, 2 form one cluster and 3, 4 form another. We would like to 
be able to analyse the degree of clustering without specification to the 
particles involved in each cluster. 

For this purpose we shall introduce a cluster projection operator 
defined for the (2)(2) case by 

>(2)(2) 

:'. 2! Z X 
N L M p 

IN] 
; (2)(2) 

L M 
; (2)(2) 

L M 
(8.7) 

where p is an arbitrary permutation of the four particles and the 2! take 
into account the exchange of particles within the cluster. This operator 
will project f rom the states (8.6) (or of any linear combination of them 
that represents a physical situation as, for example, in the ground state 
of the a particle discussed in section 6) the part that has two clusters of 
two particles each, irrespective of the intercluster excitation or of the 
enumeration of the particles in each cluster. 

To see this point more clearly, let us analyse in detail the expecta-
tion value of the operator (8. 7) with respect to the states (8.6) . Fo r 
this purpose we f irst note that the application of a permutation p to the 
state (8. 6) gives 

iî L M / 7" \ 

[hi h 2 h 3 ] 

fi L M 
; <p\ <f r1 ) Dr r (p) (8.8) 

where D t f r (p ) is the IR of S4 characterized by f. Using the orthonormality 
properties of these IR, we easily conclude that 

[hi h2 h 3 j 
; <pAxf r 

Í2 L M 
) ( 2 ) ( 2 ) 

[h j h2 h 3 ] 
(p\x f r 

2'. 21 If i L L 
N L M 

[hih2h3 

Q L M 

Г2 L M 

[Ñ] 
; cp\xfr' (2)(2) ) 

L M / 
(8.9) 

where If I is the dimension of the IR of S4 . Clearly (8. 9) is zero unless 
[h !h 2 h 3 ] = [ N0 0] and in this case, it reduces to 

_41 1_ 
2'. 21 If I I 

[Nl 
; A x f r ' 

L M 

[N] 
; (2)(2) 

L M 
(8.10) 

so that, as before, clustering is present only in states of a single row and 
the degree of clustering for each state of this type is given by the non-
negative value (8.10). 
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As the operator (8. 7) is hermitian and its expectation value for any-
state is non-negative, we can also reach the conclusion that the eigenstate 
of ^ ( 2X 2 ) of maximum eigenvalue has the maximum possible clustering. 
This can be seen as follows: F i rst all eigenvalues of <2)(2) are non-
negative, because if the state | p У corresponds to the eigenvalue p then 

0 < <p| ^>(2)(2) |p> = p (8.11) 

and so p is non-negative. Any normalized state can be expanded 
in terms of states | p У as 

k > = Y \pXP\*>> where X (8.12) 

Then the expectation value 

<^<2X2> = Y р\<р\ф> 

íp. I К' \ф> (8.13) 

thus proving our assertion. 
If we have a set of states (8.6), the matrix elements of л ' with 

respect to this set could be obtained in a way very s imilar to (8. 9), so 
that they would be zero unless [h ih 2 h 3 ] = [ N0 0] and have the same [N] , 
L , M, f, r in bra and ket. The matrix associated with the operator ^(2X2) 
breaks into finite blocks of at most i ( N + l ) ( N + 2) dimensions. The 
diagonalization of these blocks provides us with the eigenstates of £?> (2)(2) 
associated with definite [N] , f, r (they are independent of L , M) among 
which the one corresponding to the maximum eigenvalue (pm ax) has the 
largest clustering. 

This p max can be easily obtained without even the need of determining 
explicitly all the matrix elements in the corresponding matrix associated 
with [N] f, as is shown in Ref. [12] . For f = [4] this р т а х is given as 
function of N in Fig . 10. Only for even N it is different f rom zero and 
takes the values indicated by the circ les . For N = 0 the pmax is clearly 
given by the geometrical factor 

4'. 
2'. 2'. 

= 6 (8.14) 

concerned with the number of ways we can distribute 4 particles in sets 
of two, as the number of quanta in the relative motion of any pair of 
particles is zero. For any other N, the maximum eigenvalue of ^>(2)(2) 
must be lower and, in fact, is given by 2. 

48 
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FIG. 10. Maximum eigenvalue of the cluster projection operator and of the clustering interaction 
as functions of the number N of quanta for f = [4 ] 

8.2. Clustering interaction 

The above definition of clustered state, for a four-nucleon system 
into sets of two particles each, suggests a two-particle interaction £&> (2 ) , 
which has matrix elements different f rom zero only when the number of 
quanta in the relative co-ordinates between the two particles is zero, i. e. 

< V i ' m ' | ^ 2 > | v i m > = 6„.06 r 0 6m,0 6u06IQ ôm 0 (8.15) 

where 

| i / im> = < ^ - ( x i - x 2 ) | y i m > (8.16) 

The interaction is fully defined by (8.15) if we limit its application 
to harmonic oscillator states. 

It is intuitively clear, and has also been checked explicitly for the 
four-nucleon system, that the eigenstates of , associated with the 
maximum eigenvalue of ¿?>C2) , show a large amount of clustering. For 
f = [4] we give (also in F ig . 10), the maximum eigenvalues of ^ as 
function of N. Again only for even N it is different f rom zero, and it 
approaches the value 2 for N - » oo , indicating that for well separated 
clusters it is equal to the number of internal pairs . Fo r even values 
of N closer to N = 0, the eigenvalue of is higher than 2 due to cluster 
overlap. This is also shown in Fig . 10. 

The clustering interaction <&> (2> is, f rom its definition, a short-range 
interaction that commutes with the long-range quadrupole-quadrupole 
(Q 2 ) interaction discussed previously, since the fo rmer is clearly a s -
sociated with the Un group while the latter is associated with . A 
l inear combination of them can therefore be exactly diagonalized, and 
was used by Kramer (Ref. [16] ) to discuss the binding energies of nuclei 
in the I s and lp shells. 

We have tried in this section to give a brief outline of the problem 
of clustering for harmonic oscillator states, using their group theoretical 
classification schemes. Even for the four-nucleon problem there are 
types of clustering we have not discussed here as, for example, (3XD, 

4 9 * 
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in which we have two clusters of 3 and 1 particles, respectively. Fo r 
this problem, and for the general analysis of clustering in n particle 
states, as well as for overlap between different types of clustering, etc., 
we re fe r the reader to Ref. [12] . 

m 
9. S U M M A R Y A N D CONCLUSION 

In this Chapter we have tried to outline how modern group theoretical 
methods can be used systematically in the analysis of the n nucleón problems 
associated with the understanding of nuclear structure. These methods 
can be implemented both in the second quantized picture and in the ordinary 
configuration and spin-isospin space of the particles involved. In the f irst 
case the Hamiltonian was expressed in terms of the generators of a 
certain fundamental group, and the states were characterized by the IR 
of sub-groups of this group. Explicit procedures were given for the 
determination both of these states, and of the matrix elements of physical 
interactions with respect to them, leading finally to the determination 
of energy levels and eigenstates. 

In the second case the configuration part of the state was described in 
terms of h .o . states, to make full use of the symmetry group associated 
with them. We saw that this allowed us to discuss in detail a few nucleón 
problems, shell model states and clustering effects. 

This Chapter mere ly constitutes an introduction to the subject. It 
is the belief of the author that group theoretical methods can be developed 
much further and that they will play an increasingly important role in our 
understanding both of nuclear structure and of many other fields of physics. 
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CHAPTER 13 

Selected topics in 
theoretical nuclear physics 

SHELL-MODEL DESCRIPTION 
OF NUCLEAR REACTIONS 

K. DIETRICH 

1. The general formalism. 2. Discussion of simple model situations. 2 .1 . One doorway state, 
one continuum. 2.2. Occurrence of shell-model resonances. 2 .3. Case of several doorway states and 
single-particle continua. 3. Inclusion of direct reactions. 4. Reactions with light-bound fragments. 
5. Practical treatment of the continuum-continuum interaction. 

My aim is to give an introduction to the shell-model description 
of nuclear reactions, i. e. to a formulation of the dynamical theory in 
which the shell model is explicitly used from the outset, as a lowest 
order approximation to the scattering. 

As a consequence, this theory is restricted to situations in which 
an independent particle approach makes sense in contrast to the general 
dynamical theory of reactions as developed by Feshbach [1]. 

Motivated by the success of the shell model in the theory of 
nuclear structure, several authors [2-8] incorporated this picture into 
the formulation of the reaction mechanism. Here the procedure of 
Weidenmüller [7, 8] is followed. It is based on a method devised by 
Fano [9] for the case of electron scattering by atoms, and is very 
similar to the formulation given by C. Bloch and V. Gillet [3]. 

Firstly, the basic formalism is introduced (section 1) and then, 
as a simple situation, the case of one doorway state embedded in one 
continuum is treated (sections 2.1, 2.2). This leads to the discussion of 
simultaneous occurrence of shell-model resonances and compound 
nucleus resonances (section 2.2). 

In section 2.3 the method of proceeding in a general case is shown. 
A generalization of the formalism is made so as to include direct 

reactions (section 3) and the scattering of light projectiles (section 4). 
In section 3, one is confronted with the rather cumbersome problem 
of a diagonalization of the Hamiltonian in the subspace of continuous 
shell-model states. In section 5, a method which seems to be well 
suited for a practical solution of this task is discussed. 

The work here described is closely related to that of Chapter 9. 

The author is at the Institute for Theoretical physics. University of Heidelberg, Federal Republic of 
Germany. 
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1. THE G E N E R A L F O R M A L I S M 

We are to find a stationary scattering solution of the total 
Hamiltonian H which contains, apart f rom an ingoing wave in channel a, 
only outgoing waves in all open channels. 

m a E = E Y a E ( 1 .1 ) 

We write the total Hamiltonian as a sum of a shel l -model Hamiltonian H0 

A A 

H0 = ^ T ( i ) + ^ U(i ) (1.2) 

i = l i = l 

and the residual interactions V 

A A 

V = ^ v ( i , j ) - ^ U ( i ) (1.3) 

i<j i = l 

where U( i ) represents a finite shel l -model potential. Therefore, the 
Hamiltonian Ho has discrete and continuous eigenfunctions, and ф6Е 

HJi = £¡</>1 

I M j « = ( E х+ОФхе (1-4) 

For the time being, we restrict ourselves to continuous eigenfunctions 
with only one nucleón in the continuum, e is the kinetic energy of this 
nucleón and E^ the threshold energy which corresponds to the shel l -
model state. фХе . X is the set of discrete quantum numbers which, 
apart f rom the continuous energy e, are necessary to specify a given 
shel l -model state. 

It is convenient to choose the energy scale in such a way that the 
threshold energy E j of the elastic channel is zero 

E j = 0 (1.5) 

We have to define the asymptotic behaviour of the continuous shel l -
model wave functions. It is convenient to use standing wave boundary 
conditions: 

s i n ( k x r - - ^ + 6 x ) 
ф. Q . - (1.6) 

2 
Here, k x= e is the kinetic energy in channel X, the quantity r is the 
radial co-ordinate of one of the A nucléons, and 6K are the angular 
momentum and the potential scattering phase shift in channel X, and 

is the remainder of the A-part ic le wave function. It can be shown 
that with the asymptotic behaviour (1.6) and appropriate phase conventions 
all matrix elements of the Hamiltonian H (see Ref. [7] ) become real . If 
the shell model is to be a reasonable lowest -order approximation, it 
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wil l be convenient to expand the total state in terms of shell-model 
states 

¥ aE = Y * i W + Y J d e ' - ^ v a i V e 1 ) (1.7) 

and rewrite the Schrodinger equation (1.1) in terms of a set of equations 
for the coefficients b(i), a (A'e ' ) . These coefficients depend, of course, 
on the entrance channel a, E : b a E (i), a a E (Xe ) . We shall, in general, 
omit these indices in order to keep the notation simple. 

The system of equations for the coefficients b(i ) and a(X'e ' ) is easily 
seen to be of the following form: 

^ V j t b W - E b ( i ) + Y f d e ' V j , X V a (X ' e ' ) =0 (1.8) 
i X1' 

^ bii)+YJde'vXe.r£- a (X ' e ' ) -Ea (X , e ) = 0 (1.9) 
i X' 

The matrix elements V ^ are all rea l and symmetric, as a consequence 
of our boundary conditions (1.6), and are defined as follows: 

V.. = < f | H U . > 

V Xe , i = O x J H U i > < 1 Л ° ) 

V. , = < A j HI ф,, ,> Xi, X'€ N r l £ 1 1 r \ ' c ' ' 

For the sake of simplicity, we shall assume that the Hamiltonian H is 
diagonal in the subspace of continuous shell-model states: 

V X e , X V = V XeXe 6XX- 6 ' ) = E X , 6 X V 6 ' > < 1 Л 1 ) 

Thereby we exclude the possibility of "direct reactions". We shall see 
later on (section 3) that it requires only a slight formal device to include 
such transitions. 

Furthermore, it elucidates the physical content if we distinguish 
between two classes of bound shell-model states ф1. States ф. which 
are directly coupled to continuum states (Vi Xe f O ) wil l be called doorway 
states (DWS)1. The other and more complicated shell-model states 
(MCS) have vanishing transition elements to the continuum: (Vi X£ = 0). 

Among the N bound shel l -model configurations there wil l be M < N 
such doorway states which we choose to label by i = 1, . . . , M. The 
DWS are embedded in the continuum and the system has to pass through 
them whenever a compound state is formed. So we expect them to be 
intimately connected with the occurrence of compound nuclear resonances. -

1 For a detailed discussion of the DWS concept see Ref.ClO], 
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With the assumption (1.11) and the distinction between DWS and MCS, 
the equations (1.8) and (1.9) wi l l have the form: 

X Vji b ( i ) - E b ( i ) + Y J < i € ' V j V e . a (X'e ' ) = 0 (for j = l . . . M ) (1.12) 

I 
i= 1 

У. b ( i ) - E b ( j ) = 0 (for j = M + l , N ) (1.13) 

I V . b ( i ) + ( E 4 - E ) a(X, e) = 0 \€,1 Л€ (1.14) 

We now have to discuss the solution of the set of equations (1.12) 
to (1.14). If we want to discuss the formation of compound states, it is 
convenient to f irst eliminate the coefficients a (X, e) and then discuss 
the resulting finite set of equations for b( i ) : If we eliminate a(X, e) 
f rom (1.14), the division is not defined for E = Ex e . We choose to 
define it by the principal value and retain the full generality by adding 
an arbitrary function Z X ( E ) at E = E x e (see Refs. [9,11] ) 

a (X,e ) : 
1 

E - E \e 
+ Z X ( E ) 5 ( E - E X J b( i ) (1.15) 

i = l 

We shall see that the functions Z>.(E) are determined by the asymptotic 
behaviour of and the condition of a non-trivial solution to the 
equations (1.12) to (1.14). 

Substituting (1.15) in (1.12) we obtain a set of N linear homogeneous 
equations for the coefficients b(i ) : 

with 

I 
i = l 

vj, b ( i ) = (1.16) 

v.. ji = V. Ji 6 E + Ï F h + Z . . (E )G , Î (1.16a) 

F^' ( E ) = p / \ ^ E V ^ ' € ' ' i d g ' (1.17) 

G U № ) = Vi.VE ViA-E в ( Е - - Е к . ) (1.18) 
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(E x = threshold energy for the shell-model continuum X). The quantities 
Fj¡ and Gj^ are, of course, only^O if i, j < M . A non-trivial solution 
wi l l only be obtained if 

det { Vy } =0 (1.19) 

which yields a condition for the functions Z\ (E ) . Our final purpose is 
to find the S -matr ix S ^ which is defined as the quotient of the amplitudes 
of outgoing and incoming waves: 

g _ amplitude of outgoing wave in channel X 2Q) 
a amplitude of ingoing wave in channel a 

In order to obtain the amplitudes of outgoing and incoming waves we 
have to consider the asymptotic behaviour of ¥aE : 

Q „ s i n ( k a r - ^ f + 6 a ) a ( « , e a ) 

(1.21) 

+ [ / d e , Q , sin ( V . - M + ô x ) a ( X , e , ) 

Хфа 
о о 

where (к = e • к = e ) \ \ a a 

and substitute the solutions a(X, ex) obtained f rom (1.15) and (1.16). By 
appropriate choice of Z\ (E ) there wil l be only outgoing waves in the 
channels \фа and an additional incoming wave in channel a. 

2. DISCUSSION OF S IMPLE M O D E L SITUATIONS 

2. 1. One doorway state, one continuum 

The simplest case to be considered is the one of only one DWS 
ф and one shell-model continuum фе . In this case we can omit the 
indices i and X, and Eqs. (1. 12) to (1. 14) assume the form: 

(E - E ) b + / ~ d e ' V , a ( e ' ) = 0 (2.1) Ф J € 

V b + (E - E ) a(e) = 0 (2.2) 

where 

Е 0 = < * | н | ф > 

Ve = < ф|н|фе > . (2.3) 

ó ( e - e » ) E e =< фе. I Н|ф£ > 
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Eliminating a(e) f rom Eq. (2.2) we obtain the following equation for b: 

[ E 0 - E + F (E ) + Z (E )G (E ) ] b = 0 (2.4) 

with 

F (E ) = P 
E - E , 

de' 
(2.4a) 

G(E)= V? 6(E) = vK2 

(We choose the energy scale in such a way that the threshold E p 0 and 
put E = E e for simplicity. ) 

A non-trivial solution is obtained if 

Ej, - E + F ( E ) + Z ( E ) Vg =0 

Z ( E ) = ^ ( E - E 0 - F ( E ) (2.5) 

The asymptotic behaviour of ¥ will be 

>Q Tde sin(kr — + 6£ )a (e ) (k2 = e) (2.6) 

where Q is again the remainder of the wave function фе. Substituting for 
a(e) we obtain 

£j. 
2 

¥ b Q j P de 
sin(kr —— + 6 i ) 

Е - e • V, 

(2.6a) 

+ Z ( E ) V e s i n ( k 0 r - — + 6 { ; 

Because of r -» oo the P J gives only a contribution for e = E. A very 

simple calculation leads to 

Y » b V c { [ Z (E ) - i 7 rJe i ( k ° r + 5 ) - [ Z (E) + i?r]e~ i (k°r+á '} r —* OO t 

where 1=0 and 6i = 6. 
F rom this we obtain the scattering amplitude 

S = - e 
2iô Z ( E ) - ÏTT 

Z ( E ) + ÍTT 
(2.7) 

S = - e 
2i6 2тг i 

Z (E ) + iTT 
2íó 

1 - i 
2TTVP 

E - E -F(E)+í7T\^ 
(2.8) 
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This formula lends itself to an obvious interpretation: The scattering 
amplitude S appears as a sum of an amplitude exp 2ió for elastic 
scattering by the shell-model potential Ü and an amplitude for resonance 
scattering. If VE « const in the energy region of interest E « E „ , then 
F ( E ) ^ 0 and the second term is the usual Bre i t -Wigner fo rm for an 
isolated resonance of width Г = 2тг V£ 

2. 

2ió 

E - E , + i f (2.9) 

F rom the expression (2.7) we conclude that poles of the S-matr ix 
occur for 

Z(E)=-iTT (2.10) 

If we substitute this value of Z ( E ) in (2.6a) we see immediately that in 
this case ¥ contains only outgoing waves, i. e. it is the well-known 
Gamow state. The complex solutions ERes of (2.10) give the position 
and width of the resonances. As long as the energy dependence of V2 

is small , the resonance energy is given by 

ERes « E + F (E ) - í t tV e 2 (2.11) 

i. e. F (E ) is the level shift and 2тг VE the width. 
If, however, the matrix element VE is strongly energy-dependent, 

as is the case in the neighbourhood of a single-particle resonance, 
the resonance energies are determined as the complex solutions of the 
equation 

E - E e - F (E ) + i7r VE = 0 (2.12) 

We now turn to that case in more detail. 

2. 2. Occurrence of shell-model resonances 

If the energy E is near to a shell-model resonance 

a 
„ a „ a a a Г 
E = Re E + i ImE = ReE - i у (2.13) 

it wil l be possible to write VE approximately as a sum of an energy-
independent and a resonating term. In order to find an adequate form, 
it is convenient to recur to the usual scattering states which are 
related to ФЕ by 

J2Ï ФЕ = e'í& 0(Е+) (2.14) 

F rom unitarity it follows that the amplitude e2 '5 for potential 
scattering must have the form 

2i¿ 2i| E - E 0 1 * 
8 = e Ё ^ Ж * " (2.15) 

where | is a real constant. 
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The function can be analytically continued and acquires a pole 
at the energy E = E a in the lower half plane of the second sheet. This 
will in turn lead to a singularity of the analytic continuation of the 
matrix element <( ф| V | So we have 

Vc = 727 ЧфМ*<Л = < Т - - 2 Г " « + R 
E - E a 

¡I 
(2.16) 

where the expression [ ] • exp if is just a convenient form of para-
meterizing the background and the resonance term. The quantities 
T and R can be seen to be real from VE = V^ and (2.15). Using (2.16) 
and (2.15) we obtain 

2 (T -ReE°R + E- R)2 

E IE-E"!
2 (2.17) 

and evaluating the principal value with (2.17) we find for |ra| <<ReE ° 

2 
F(E) -i!r VE = T - i;r. í ? - R 

. Г \¡ 2тг } E - E 

Now the resonance condition (2.12) takes the form 

n2 

1 . „2 
a "17TR 

E " E - - ' l T T - i é R J E - E 
1 2 + 17TR =0 

(2.18) 

(2.19) 

which can be written in terms of a determinant 

• E 

— — T - ÍTT ! — • R 
Г Nj27T 

J f x - , ^ R 

E»-iTT R - E 

= 0 (2.19a) 

This form is interesting since it can be compared with two other 
situations: 

(a) If Г-» 0 and R 0 which can be realized by adding to the single-
particle potential a repulsive barrier the height of which tends to 
infinity, then the single-particle resonance becomes a bound state. 
A more detailed discussion of this case leads to the result that 

[2IT 

lim I — T is finite and equal to the matrix element V12 between 
barrier-»- « 

the two bound shell-model states[12]. So the determinant approaches 
the form 

ReE01 - E 

Via 

V12 

E„ - E 
(2.20) 



SHELL-MODEL DESCRIPTION 781 

which is wel l known f rom the calculation of mixed configurations in an 
infinite shell-model potential. 

So the formal ism can be looked upon as a simple generalization of 
the classical shell-model theory. 

(b) If we specialize the general formal i sm of section 1 to the case 
of two doorway states and one continuum, we are led to the determinant 
(see (1.19)) 

e i + F i r i î V n •E ; Vi2 + F12 - in V1E V2E 

V12 +F 1 2 - íttV1e V2E ; e 2 + F 2 2 •i7rV2E - E 
= 0 (2.21) 

where we have put 

ë i = v i p è2= V22 

If V1E and V2E are weakly energy-dependent, the principal values F;; (E) 
are negligibly smal l and Eq. (2.21) is seen to be identical in form with 
Eq. (2.19a). Thus we see that one doorway state coupled to a continuum 
at resonance produces qualitatively the same effect as two doorway 
states coupled to the continuum far f rom a single particle resonance. 

If, in our formal ism, "shell-model resonances" appear in a 
different way than other resonances, this is only due to our using a 
shell-model bas is . It is satisfactory that in the final S -matr ix there 
is no way of telling the origin of a resonance. 

2.3. Case of several doorway states and single-particle continua 

Let us return to the general case (section 1): 
It is rather obvious how we have to proceed in a general case of 

several continua and several bound shell-model states. 
We have to fulfil the general boundary condition of only outgoing 

waves in all open channels X f- a and an additional incoming wave in 
channel a. This is obtained if we put 

Z X ( E ) = - i îT for Xfc ( 2 . 2 2 ) 

and determine the function Z a ( E ) f rom the condition (1.19) of a non-trivial 
solution. 

We obtain the S -matr ix Sg a for a reaction leading f rom the entrance 
• channel a to the exit channel /3 if we consider the asymptotic behaviour 

of y a E 

oEr + « Q [ Z (E) + iTr] e " i i k a r " V 2 + 6 « > V b _ ( i ) V . . 
a a / aE4 ' aE, 1 

+ JT Q J Z ^ E ) - ^ ] e + 1 ( k » ' " V f t6*> Y b a E ^ V i 

(2.23) 

Here we indicated explicitly the dependence of b( i ) on the entrance 
channel aE and otherwise used the definitions of section 1. With 
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(2.22) the diagonal and non-diagonal part of the S-matr ix follows f rom 
(2.23) 

s = jZjálLlH e2 i ô« (2 24) 
a a Z (E) + Í7T ( 2 - 2 4 ) a ' 

M 

b c(i) • 
-2Trie i (ós + 6 a ) ^ 

S s » = Z a (E) + Í7T M (with ^ + a ) (2.25) 

i = l 

The coefficients b an( i ) are to be obtained f rom the set of equations (1.16) 
where the Z X ( E ) are chosen in the above-mentioned way. In this 
context it is important to note that the matrix { Vjj } which is obtained f rom 
{ Vij } if we put all Z x = iv, is a complex symmetric matrix of finite rank. 
Such a matrix can always be brought into diagonal form by a complex 
orthogonal transformation O. 

£ Ôki vu Oj t = Y Oi^ii ° j i = 6ki#k (2.26) 
ij ij 

By writing the coefficients b aE(i) as a function of this transformation O, 
it can be shown quite easily [7, 8] that the following form of the S-matr ix 
ar ises 

S e a = 6 t o e 2 l â « - i (2.27) 
л i Í=1 

where 
м 

г Д : V i iX£ (2.28) 

i=l 

If the matrix elements Vit xj can be considered as energy-independent, 
the eigenvalues щ of the matrix and the transformation О are also 
energy-independent and we have obtained the desired decomposition of 
the S -matr ix into resonances and background. Then the complex 
quantities щ describe position and width of the resonances and the 
quantities ГЁХ are to be interpreted as the partial widths for the decay 
of the compound system £ into channel X. If, however, the energy-
dependence of the coupling elements Vi, XE is not negligible, i . e . if 
s ingle-particle resonances come into play, щ as well as Г{х depend 
on the energy E and do not have an obvious physical interpretation. 

In this case we may obtain the desired decomposition of the 
S -matr ix by generalizing the procedure which was outlined in section 
2.2 [8]. 
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3. INCLUSION OF DIRECT REACTIONS 

In our discussion of the basic equations (1.8) and (1.9) we made 
the assumption (1.11) 

V ^ V C = EXe (1.11) 

which precluded transitions f rom continuum to continuum, i . e . the 
so-ca l led direct reactions. It is formal ly quite easy to get rid of this 
restriction. For this we introduce instead of the a new set of 
continuum functions ф 

d e ' * V e . c e e U 4 - ) (3.1) 

к' 

We determine them in such a way that the Hamiltonian H is 
diagonal in this new basis while the original shell-model functions 
фке do not have this property. 

О М л . > = E 6 6 ( e - e ' ) (3.2) 
4 ae 1 ' 43 £ oe ai ' ' v ' 

We then use, instead of the continuous shell-model states фк€ , the 
functions фкс as basis functions in the expansion of (1.7). A l l the 
formal procedures of sections 1 and 2 can now be followed in exactly 
the same way with the only difference that the matrix elements Vi, 
are now defined with respect to the new basis 

Vi.bc < * i | H k £ > (3.3) 

and that the functions фкс show a more complicated asymptotic behaviour: 

ф » Q e ^ V - " ^ ) Y S Q e , i ( V f ) (3.4) k€ E -*• » к pk p 
P 

The matrix Sp\ which is determined by the diagonalization (3.1) and 
(3.2) describes those transitions X -» p which do not involve bound 
shell-model configurations as intermediate states. It is almost obvious 
that, beside the new definition (3.3) of the matrix elements V¡, ЛЕ , the 
only change due to the new basis is that in the final expression (2. 27) 
for the S-matr ix the amplitude for potential scattering is replaced by 
the S -matr ix S0a of direct continuum transitions: 

: S 0a 
- £ < з - 5 > 

1 = 1 

Therefore , even in the subspace of continuum states фк с , the diagonali-
zation of H cannot be per formed in perturbation theory. We shall 
come back to that problem in section 5. 
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4. REACTIONS WITH L IGHT-BOUND F R A G M E N T S 

One expects the shel l -model description to be useful also in the 
case of reactions of light projectiles like d, t, a with a heavy target. 
In order to extend the shell-model description to these cases [8] we have 
to include in the expansion (1.7) of YaE shell-model states with more than 
one nucleón in the continuum. We call a state with n nucléons in the 
continuum. The index a which characterizes the state will now, in 
general, contain more than one continuous quantum number. If ñ is the 
maximum number of nucléons in the continuum, determined by the mass 
of the heaviest fragment to be described, the expansion of must 
necessari ly be extended up to n = ft 

П 

ïaE = У 0 i O ) b ( i ) + ^ J d X ^ n ) а(Л,п) (4.1) 
i n = l 

Фаrep re sen t s the independent scattering of n nucléons by the 
shell-model potential U, the remaining (A -n ) nucléons being in a bound 
shell-model configuration. As all basis functions, the , too, are 
fully antisymmetrical. The problem is now to construct linear 
combinations of shell-model states ф^ which asymptotically describe 
bound fragments. 

To explain the procedure we propose, it is convenient to decompose 
the Hamiltonian H into three parts in the following way: 

We define operators Pn which project onto the subspace of shel l -
model states with n nucléons in the continuum: 

pn zY,fda ф ( * > < с ( 4 - 2 ) 

Then the total Hamiltonian can be written in the following way: 

with 
ñ 

=1 P„ H P n 
n = 0 
n 

«Г(1> Pn H P m ( 4 . 4 ) 

n, m = 1 
n +m 

й 

^ 2 ) = X ( P n H P 0 + P 0 H P n > 
n — 1 

The Hamiltonian describes direct transfer reactions, while ^ ( 2 ) 
implies the coupling between the continuous and bound states of the 
shell model and is therefore expected to lead to compound nuclear 
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reactions. The Hamiltonian^o contains that part of the interaction 
which leads to elastic and inelastic scattering and to break-up of the 
incoming fragment; at the same time, produces the binding of the 
fragments. 

Our purpose is now to introduce approximate eigenstates of 
and then use this basis in order to treat the Hamiltonian according 
to the Weidenmüller -Fano method and ^f ( i ) with some modified perturbation 
technique (see section 5). 

We neglect break-up channels, i. e. we restrict ourselves to reactions 
of the type 

A + X -> В + Y 

We know that asymptotically the total scattering wave function YaE must 
be a superposition of the following states гг'"' 

W = N a . ^ ] g a ( l , ..., n )G a (n+ l , ..., A ) ^ Y L a M m ) (4.5) 

Here g a is the exact intrinsic wave function of the bound fragment 
(X or Y ) , G„ is the target wave function represented as a superposition 
ofbound shel l -model states H0(°), j L a (R ) is the spherical Besse l function, 
R a unit vector connecting the two centres of mass and R their distance, 
N„ a normalisation factor, and Y l h ма the usual spherical harmonic. 
The operator ja^antisymmetrizes between the nucléons in different 
fragments, e is the kinetic energy of relative motion; 

We now project on the subspace of shell -model states ф^ 

ж(п) = P тг(п) (4.6) ас n ас 

and use these states as a basis for the diagonalization of . Another, 
and maybe more convenient basis is obtained if we replace in (4.5) 
the Besse l function by the scattering states Xi,a(R) in a shell-model 
potential U(R) . In any case, the states ж ^ represent a set of linearly 
independent functions which depend on only one continuous parameter, 
the kinetic energy e of relative motion. They are orthogonal with 
respect to all discrete quantum numbers a, but non-orthogonal with 
respect to the continuous quantum number e. The general form (3.5) 
of the S-matr ix remains the same with the only difference that S now 
dêscribes also direct transfer reactions, and in the matrix elements 
V¡, kc the continuous shell-model states фХе are to be replaced by the 
approximate eigenstates o f ^ V 

For practical calculations it wi l l be usually sufficient to consider 
the states with jL„ (R) replaced by Xl0 (R) as approximate eigenstates 
of^jPo- Physically this means that we neglect the intrinsic polarization 
of the fragments. 

5. P R A C T I C A L T R E A T M E N T OF THE C O N T I N U U M -
CONTINUUM INTERACTION 

Let us return to the problem of diagonalizing H in the subspace 
of continuous shell-model states and let us, for the sake of simplicity, 

50 
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restrict our attention to one-nucleon continua . Several methods 
have been used [3, 4, 6] and unfortunately I cannot discuss them all 
here. I shall only describe brief ly the procedure which was recently 
chosen by Glôckle, Hüfner and Weidenmüller [13] and which is based 
on a method of Weinberg [14]. This approach may be of quite general 
value whenever perturbation theory fails. We consider the general 
case of an integral equation 

У = v¥ = 0 + K(W)4f (5.1) W - h0 ' 

as it occurs in every scattering problem. Here Ф is a known function; 
h0 and v are to be the "undisturbed" and the interaction part of a 
Hamiltonian h = ho +v . The quantity W is a complex parameter. We 
ask the question, "How can we obtain the solution ¥ to the equation 
(5.1) in case v is not smal l?" 

Mathematically, the answer is contained in the two following 
theorems which can be found in any textbook on integral equations: 

Theorem I: Whenever the kernel K(W) is square-integrable (Hilbert-
Schmidt kernel), i. e. 

T r K + K < oo (5.2) 

it can be approximated by a separable kernel of finite rank n 

Ksep => |r„ > < r „ | (5.3) 

such that the norm of the difference Ki is smal ler than any given number 

||Kil! = l l K " Ksep II < e (5-4) 

Theorem II: The Born series 

2 

¥ = (1 + K + K + . . . )Ф (5.5) 

converges, if, and only if, all eigenvalues r¡u (W) of the kernel К 

K| T1/ (W)> =r7„ (W)|y y (W )> (5.6) 

lie inside the unit circle 
|n„ (W ) |< l (5.7) 

(Note: The eigenvalues r\v are determined by the requirement of a 
square-integrable s o l u t i o n . ) 
Usually this is not the case; but for a square-integrable K, at most a 
finite number N of eigenvalues rj 1 ) ( . . . , ¡iN lies outside the unit circle. 

For the following remarks it is convenient to introduce the resolvent 
operator F defined by 

Y = ( l + F)3> (5.8) 

50* 
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It is easily seen to satisfy the integral equation 

F = K + KF = K + FK (5.9) 

Let us now introduce a reduced kernel Ki as the difference between 
the original kernel К and a separable one which is used to approximate 
it: 

K j = К - K s e p (5.10) 

The corresponding resolvent operator Fi is defined as the solution of 
the equation 

F t = K ^ K j F J = Kj + EJ (5.11) 

By some simple algebra [14] it can be seen f rom the definition of K, 
Kj , F and Fj that the resolvent F can be expressed as a function of 

F = 5^(F1) (5.12) 

the detailed form of which is of no importance at the moment. 
Now the idea of Weinberg 's method is almost apparent: Choose 

a separable kernel Ksep such that all eigenvalues of the reduced 
kernel K j 

lie far enough inside the unit circle not only for the Born series for Fx 

F1 = K j + K j + . . . (5.14) 

to converge, but even for the first Born term K j to be a good 
approximation for Fj 

F j - K J (5.15) 

If this is so, the resolvent F and also the solution ¥ of (5.1) are 
obtained f rom a known function of K j 

F ^ S ^ K j ) (5.16) 

The function is in general quite complicated. There exists, however, 
an "ideal choice" [14] of the separable kernel Ksep by which it becomes 
very simple. This ideal choice consists in constructing |l¡,> and 
< Г„ I of (5.3) f rom the right and left eigenstates of К 

K l ^ (W )> =nv (W) ( W ) > (5.17) . 

< ¥ „ (W*) I v K = r ) y ( W ) < f u (W*) I v 

in the following way: 
N 

К 5 е р = ^ К 1 ^ ( W > > < V W * ) I V (5.18) 
v= 1 
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From (5.17) it is easily seen that the "Weinberg states" satisfy the 
orthogonality relations 

<Ум ( W * ) | v | ^ ( W ) > = 0MJ, (5.19) 

with an appropriate normalisation. 
F rom (5.19) it is immediately inferred that the reduced kernel 

has the following eigenvalues and eigenfunctions: 

K j I >MW) > = 0 for v = 1 . . . N 
(5.20) 

K j | ( W ) > =K|¥„ (W )> = rj„ K > îorv> N 

Consequently, it is sufficient for the Born series (5.14) to converge 
if the sum in (5.18) is extended over all eigenstates whose eigen-
values |n (W)|> 1. These eigenvalues are "projected to 0", and all 
the others remain unchanged. 

For this "ideal choice" of the separable kernel, the resolvent 
operator F has the fo rm 

N 

F = F l + Г l ^ i w ) K ( W ) > < ^ (W*)I v (5.21) 
v= 1 " 

and the T-operator of scattering theory is 
N 

T 

v = l 

Tj is defined as solution of 

IN 

= v| Y u ( W ) > T - J - ^ - < 4 ' u ( W ^ ) | v (5.22) 

T l = V l + V1 W ^ h " T l ( 5 ' 2 3 ) 

N 

V 

v^l 

Lo 
with Tx K vx 

- ^ T v l î j W l X Ï ^ |v (5.24) 

The last equation exhibits clearly the physical meaning of this approach: 
The interaction v is approximated by an optimally chosen sum of separable 
potentials and the difference is treated as a f i rst -order perturbation. 
Separable potentials have a long history in nuclear physics. The special 
merit of the above-mentioned one is probably its dependence on the energy 
W which is such that the difference may be small for a wide range of 
energies W (namely that range for which all eigenvalues of K 2 ( W ) 
remain inside the unit circle) . We can write equation (5.6) in the form 

hn + 
n u ( w ) 

Y U ( W ) > =W¥ 1 , (W )> (5.25) 

and may describe r)„(W) as that number by which we have to divide the 
interaction v in order to produce a "bound state" at the energy W [14]. 
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So r¡v (W) may be considered as a generalization of the well-depth 
parameter of effective range theory. F rom (5.22) we see that whenever 
r¡v (W) approaches 1, the scattering amplitude will exhibit a resonance. 
Furthermore, r¡v (W) = 1 for all bound states of the Hamiltonian h. The 
exact form of the eigenvalues 17 „(W) depends, of course, on ho and v. 
Weinberg [14] discusses the case of potential scattering of a single 
particle: 

h0 = T ; v = U (5.26) 

Glôckle et al. [13] treat two cases: 
(a) Scattering of a particle by a potential U to which they add a 

smal l perturbation u. 

h 0 = T + U ; v = u (5.27) 

(b) Scattering of a particle by a system of A - l particles confined 
to bound states of a shel l -model potential U. This last case is exactly 
the problem we were confronted with in section 3. 

h0 [ T ( i ) + U(i ) ] = H 0 (5.28) 

i= 1 

A A 

v V W ) = V 

i <j i ' 

Now the kernel К = [ l / ( W - H 0 ) ] V of the Lippmann-Schwinger equation 

î' = Ф + г ~ 4 з - V Y (5.29) 
W -H 0 

is in general not of the Hilbert-Schmidt type as can easily be seen. 
If, however, we confine ourselves to eigenstates of H0 with at 

most one nucleón in the continuum, it can be shown [13] that К is a 
sum K0 of separable terms plus a non-separable, but square-integrable 
part K1 which contains the continuum-continuum interaction2: 

K = w ^ " (Po + P i > V < P ° + P i > 
(5.30) 

K = (P° V P ° + P ° V P l + P l V P ° ' 

! Actually K ' is not square-integrable as it stands but can be easily made so [13]. 
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Here , P„ and Pj are projection operators defined as in section 4: 

P0 = ) Ф: ><< 

pa ° Y J á e , * v f > < ф * < - ( 5 - з 1 ) 

V 

K ° = W ^ ( P o V P o + P c V P 1 + P 1 V P 0 ) (5.32) 

V P l 

Thus the method of Weinberg can be applied in principle. The 
problem, however, remains to find a good approximation for the 
Weinberg states f u (W). Analytical forms for these functions of 
course only exist in very simple cases like potential scattering. 
Approximate Weinberg states of the kernel К are then obtained by 
expanding them in terms of a finite number of eigenstates Y/0̂  of a 
simpler kernel, and by diagonalizing (P0 + P2 ) [ H 0 + V/rj„] (Po + P i ) 
in this subspace. The simpler states are taken to be the eigenstates of 
a single-particle shel l -model kernel: 

V w > = 
(5.33) 

1 Ufl0) = {0) ( W ) ^ 
W - T 

So, again, the solution of the integral equation is reduced to the solution 
of a finite set of linear equations (for the coefficients cwi ). 

Pre l iminary results obtained by Glôckle et al. for the case of 
neutron scattering by 1 5N agree well with results which Lemmer and 
Shakin obtained by a different method [6]. 

Let me conclude these observations by summarizing "virtues and 
v i ces " of the shel l -model description of nuclear reactions: It is 
restricted to reactions of nucléons and very light projectiles (like d, t, a) 
with a heavy target nucleus. If the mass of the target nucleus is not 
very large, the violation of translational invariance which is inherent 
in any shel l -model treatment will lead to e r ro r s . 

On the other hand, if it can be applied it provides a simple 
description which is easily amenable to practical calculations, and it 
does not suffer complications by retaining full antisymmetry. 
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A COMPARATIVE DISCUSSION OF TWO FORMAL 
THEORIES OF RESONANCE REACTIONS 

L. FONDA 

Introductory remarks. 1. The case of two orthogonal channels and bound states embedded in 
the continuum. 2. The formalism of the two theories. 2. A. Feshbach theory. 2. B. Fonda-Newton theory. 
3. Comparative discussion. 

INTRODUCTORY REMARKS 

My aim here is to make a comparison of two recent formal theories of 
resonance reactions: that by Feshbach of 1958 [1] and that constructed by 
Newton and myself early in 1960 [2] . The great merit of Feshbach's 
work was that he succeeded in writing down a far-reaching theory of nuclear 
resonance reactions free from the concept of channel radius. Various 
applications of it have been performed (see Chapter 9). In spite of the 
great generality of the Feshbach theory, it could not explain however a 
situation which Newton and myself were confronted with in 1959, i . e . the 
appearance of a narrow resonance in a many-channel problem in an energy 
region where certainly the closed channels could not have any bound state. 
This is the reason why we have been stimulated to seek a new theory. What 
we have been able to construct is a general compound nucleus resonance 
theory which coincides with the Feshbach theory when the coupling between 
open and closed channels is weak. Even though the difference between the 
two theories from the mathematical point of view may seem to the unwary 
to be only formal, there is however a radically different way of looking at 
things, most particularly in the interpretation of the mechanism responsible 
for the formation of compound nucleus resonances. Feshbach, in fact, 
makes the bound states of the closed channel submatrix of the total 
Hamiltonian responsible for the compound nucleus resonances, while in 
the Fonda-Newton theory these resonances are produced by 'almost' bound 
states embedded in the continuum of the total Hamiltonian. 

1. THE CASE OF TWO ORTHOGONAL CHANNELS AND BOUND STATES 
EMBEDDED IN THE CONTINUUM 

Let us have a particle impinging on a target nucleus which is capable of 
only two states, the ground and an excited state. The impinging particle 
is different from those of the target nucleus, and no rearrangement can occur. 
The channels so obtained are then said to be orthogonal in this case. We 
define the projection operator on the channel consisting of the considered 
incident particle and the nucleus in its ground state 

P I = 1 Ф Г > < Ф Г 1 ( I . I ) 

The author is at the Istituto di Fisica teórica dell'Université, Trieste, Italy. 
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Ф1 ( N ) being the ground state of the nucleus: 

Н ы ф Г = V l 
(N) 

(1.2) 

The total Hamiltonian is 

H = HN + T0 + V0N (1.3) 

where T0 is the kinetic energy of the incident particle, whose mass has been 
replaced by the reduced mass, and V0N the mutual interaction between the 
nucleus and the impinging particle. 

Defining 

D - i ü - I \ / <N> 
P2 = 1 - P1 - |Ф2 > < Ф 2 

where ф2Ы) describes the excited state of the nucleus, the stationary 
SchrOdinger equation 

(E - H)ф = О 

gives r ise to the following coupled equations: 

( E - E ^ T o - V ^ P ^ V ^ P ^ 

( E - E 2 - T0 - V 2 2 ) Р 2 ф = V21 PJф 

(1.4) 

(1.5) 

(1.6) 

(1 .7 ) 

where E 2 is the energy of the excited state of the nucleus and Vy = P iV 0 N P j . 
To obtain an exactly solvable model so that certain properties of the 

system of Eqs . (1.6) and (1.7) be explicitly exploited, suppose that the 
interactions are separable: 

Vy = - g i g j / / d 3 p « J 3 p ' f i ( p ) f j ( p ' ) P i | p > < 5 ' (1.8) 

|p)> is an eigenstate of relative momentum p. f¡(p) is a real function. 
F rom the hermiticity of H it follows that either g j and g2 are both real or 
they are both purely imaginary. Note that g? positive or negative co r res -
ponds to attractive or repulsive Уй respectively. We have therefore either 
V u and V22 both repulsive or both attractive. 

The proper values of H are immediately obtained. Expanding P¡ ф as 

P ф d pc¡ (p ) P¡ |p > (1.9) 

we get the following coupled equations for the Cj 's 

2 

С; (? )=Е ;МР) Y f d V c j ^ J g j f j i p ' ) 

j=l 
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In order that ф be normalizable, f¡(p) must vanish for p2 = 2 ц (Ee - E¡ ) 
when consideration is giyen to a discrete eigenvalue E e falling on the 
continuous spectrum of H. These coupled equations have the solution (^У 
is a normalization factor independent of the channel index) 

Ci(p) = ^ M P ) 
P2 

provided that E satisfies the equation 

^ ( E ) = 1 - ф2(Е) (1.10) 
with 

2 Г 3 f i<P) 0¡( E ) = g 2 / d 3 p 

We are now interested in seeking solutions of (1.10) in the energy interval 
EJ < E < E 2 when the corresponding problem with g i= 0 does not exhibit 
normalizable eigenstates for E < E 2 ; that is, when there are no bound states 
of the isolated closed channel 2 (coupling V2i = 0). We choose therefore the 
case of V u and V22 repulsive (g2 and g|, negative). It is immediately seen 
that, owing to the large arbitrariness left to the parameters appearing in 
(1.10) we can certainly make a bound state embedded in the continuum to 
appear at the energy E = EE falling between the two thresholds. The cut-off 
function fi(p) must be chosen such that it vanishes at EE and such that $i(E) 
changes its sign in the interval E j < E < E 2 . We have then only to play on 
the values of g2 and g2 to obtain the desired normalizable state. Note the 
trivial fact that the result is independent of the sign of g2g2 and that there 
are no normalizable states with energy E < E i . The situation is illustrated 
in F i g .1 . 

FIG.l. The solid line represents the function i>j(E). The dashed line represents the function 1 - ®2(E). 
The intersection at E = Ee, accompanied by the vanishing of the cutoff function f 1(p) gives rise to a bound 
state embedded in the continuum 

This example clearly shows that one can reproduce a situation in 
which, even though channel 2, uncoupled from channel 1, does not exhibit 
any bound states for E < E 2 , i . e . the equation 

( T 0 + E 2 + P2 V 0 N P 2 ) * , = e , * , (1.11) 



796 FONDA 

has no normalizable solution, a bound state of the total Ilamiltonian can 
appear embedded in the continuum in the energy interval E 1 < E < E 2 . By 
many people it is usually tacitly assumed that in an energy region where 
some channels are open, H cannot have discrete eigenvalues unless there 
is no coupling between open and closed channels. The example given 
above shows that this assumption is incorrect. Moreover, the bound state 
embedded in the continuum can occur even if the closed channel submatrix 
TI2v contains a repulsive interaction. This means that, in this case, the 
bound state is present in a regime of strong coupling. 

2. THE F O R M A L I S M OF THE TWO THEORIES 

We shall now summarize the main features of the two theories for the 
general case when many channels are present. In the general case we 
define a projection operator P0 whose manifold contains all channels which 
are open in the energy region of interest [3] . If the open channels belong 
to different fragmentations, some closed channels wi l l have non-vanishing 
P0 -projection, but this fact wil l not matter, as we shall see. We next 
define the projection operator I^ as 

Then, all the open channels have vanishing Ц -projection, which is all 
that is necessary in what follows. 

W e are interested in looking for the resonances which appear in the 
scattering and reaction processes in the energy region below the closed 
channel threshold. The T -matr ix reads 

where cpf describes the relative free motion of the final fragments and their 
internal (bound) states, ф is that solution of the SchrOdinger equation satis-
fying outgoing wave boundary conditions with 'incident1 wave cp¡. cpf and 
cp¡ have non-vanishing projection only on the P0 -manifold: cpt f = P0cPi f . 
ф satisfies the channel equations 

Pc = 1 - P 0 (2.1) 

Tfi =((H-E)cpf, ф) (2.2) 

( E - H J V = Hoc Pc^ 

( E - H c c ) P c ^ = H c oP o0 

(2.3) 

(2.4) 

where H¡j is given by 

H ¡ j = P¡ H Pj , i, j = о and с. 

Let us first see how the Feshbach approach goes. 

2. A . Feshbach theory 

We obtain the closed channel wave function Рсф from (2.4) as 

P c ^ = G c H c o P o 0 (2.5) 
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where Gc is defined by 

( E - H C C ) G C = PC (2.6) 

and outgoing wave boundary conditions. Substitute now (2.5) in (2.3): 

( E - H o o - H o c G c H c o ) P o i i ' = 0 (2.7) 

Suppose now that the closed channel Hamiltonian Hoc has an isolated 
bound state 

H c c 0 s =e s ^ s (2.8) 

where <j>s has non-vanishing projection only on the P c -manifold: <j>s = IJ ф$. 
Let us then separate in Gc the contribution from фв : 

Фs ><</>s 
+ (2.9) 

The f irst term wil l then be clearly responsible for an isolated resonance. 
We now want to separate Р0ф into a resonant and a non-resonant part. 

Fo r this purpose write Eq. (2.7) as 

( Е - Н ' ) Р 0 ^ Н 0 С ф 3 (2.10) 

where 

H ' =H 0 0 + HOCG' H c o (2.11) 

H' is hermitian in the considered energy region. We now solve Eq.(2.10) 
formal ly, obtaining 

Р 0 ф = х \ } +G H -H o c ^ s (2.12) 

where 

(E - H' )xJ+ ) = 0 (2.13) 

( E - H ' ) G H . =P0 (2.14) 

X<+) and GH ' are defined with outgoing wave boundary conditions, 
contains as 'incident' wave <p¡. 
The quantity H c oPo^)/(E - e s ) can be evaluated by substituting in it 

the expression (2.12) for Р0ф. We get 

НСОР0^) 4 - H ç o ^ ) 
E - C s - E - e s - (Ф 5 ,Н с оСн - Hoc0 s ) » 
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The splitting of Р0ф into a resonant and a non-resonant part is com-
pleted. We can now write the T-matr ix as the sum of two terms, one of 
which is the contribution of Writing ф = \.\,ф + Рсф and using Eqs.(2.12), 
(2.15), (2.5) and the formulas 

P 0 ( l + H o c G ' c t ) ( H - E ) 9 f = ( Н ' - Е ) ф г , 

1 +H„ . G ¿ ' d + H o c G ' t ) (H -E )cp f 

= Hoof1 ( H ' - E ) 
ТГ v ( - > 

<Pf = HCOXf » 

we then get for the T -matr ix : 

T f . = ( (H ' -E )cp f , X<+)) 

(2.16) 

(X (f_), H ф)(ф,Н X(+) ) 
I * ОС Y s ' x ys * CO 1 ' 

E " HcoGH- h O M • 

Here Xf * is the solution of (2.13) satisfying incoming wave boundary 
conditions with 'incident' wave cpf. The matrix element appearing in the 
denominator can be written as: 

HcoGH HOC<U = * I (ф,. HcoX (± ) (E./I) ) I (2.17) 
С 

where A s determines the so-cal led level shift and is defined by the left 
hand side of (2.17) with G ^ substituted in place of GH . . G ^ is the standing 
wave or 'principal value' Green 's function. Either the X(+> or can 
be used in (2.17) at wil l , ц indicates all quantum numbers which together 
with the energy are necessary to specify x'4 ' completely. The second 
term at the right hand side is the total width of the resonance and it is 
given as a sum over the partial widths which appear in the numerator of 
the second term at the right hand side of Eq. (2.16). Eq. (2.16) has there-
fore the fami l iar Bre i t -Wigner form (apart f rom the energy dependence 
of the width and shift of the level). 

When some bound states of H c c lie close to each other, they give r ise 
to a situation of overlapping resonances. The derivation of an expression 
for the T -matr ix in which the rapidly energy-varying contribution coming 
from these bound states is separated is more complicated than in the case 
considered above. We give here only the result of Feshbach (see for 
details Réf. 1, Section V (b ) or Ref. 3 Section IV B) 

_ rpl I £ 
„ о 

(Xf Hc 
E - E 

(2.18) 
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and Uj is given by 

Uj ^ ^ (2.19) 
S 

а р being the solutions of the secular equation 

- W B ] a<j) = 0, (2.20) 

г 

Wsr = H C 0 G H " H J , ) . (2.21) 

G H " is the outgoing wave Green 's function belonging to H " . Note 
that in this case Im Ej is not given in compact form in terms of a sum over 
partial widths as in the case of an isolated resonance. There follows that 
in this case each of the resonance terms in (2.18) is not in the Bre i t -Wigner 
form. Only certain sum rules can be given, for example 

Let us see now how the Fonda-Newton approach goes. 

2 .B . Fonda-Newton theory 

W e solve now first Eq. (2.3) for the open channel wave function P0 ф: 

(2.22) 

^ + G o H o c P c 0 (+) (2.23) 

where 

( E - H )ф\' = 0 OO ' V01 (2.24) 

( E - H 0 0 ) G0 = P0 (2.25) 

ф^' and Gq are defined with outgoing wave boundary conditions 
contains as 'incident' wave cp¡. We substitute now (2.23) into (2.4) 

(E -H C C -H C O G 0 H O C ) P C Í & = Hco <£¿¡ (2.26) 

and solve for Pc ф 

P ф = if H <4(+) 
С v С C 0 r 0 1 (2.27) 
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where satisfies 

(E-£% c ) & c = Pc (2.28) 

and the usual outgoing wave boundary conditions. is the effective 
Hamiltonian describing the closed channels. It is non-hermitian. In fact 

âlf = H + H G H 
• с - C C X X C C СО О o c 

(P)
 ( 2

-
2 9 ) 

= H c c + HC0G0 H o c - Í7T He06(E - H00) Hoc 

where G ^ is the standing wave or 'principal value' Green's function. The 
eigenvalues of g?cc are then in general complex and, because the operator 
Нсоб (E - HoqJHqc is positive definite, their imaginary part is non-positive. 
In fact 

r c c U n = A n u n (2.30) 

Im A n = -IT (un. Н^б (E - H00) H^UJ,)-

-Tr^|(un (E) , HС0ф10±) (E,^))|2s 0 

(2.31) 

where either ф0+ or ф0 can be used at will, ц indicates all quantum 
numbers which together with the energy are necessary to specify ф^' 
completely. The un 's are supposed to be normalized. They have, of course, 
non-vanishing projection only on the Pc -manifold: un = Pc un. Note that the 
Hamiltonian g?cc, as well as its eigenstates un and eigenvalues A,,, is energy 
dependent. 

Writing ф = Р0ф + Рсф and using (2.27), (2.23) and the formula: 

P c ( 1 + H c o G Î H H - E ) < P f = Hc, 1 + G^ (H - E) n 4 nn ' <Pf s
 H

co¿oV' 

we then get for the T-matrix: 

Tfi + (2.32) 

Фаcontains as 'incident' wave cpf. If we introduce the set {vn} 
biorthogonal to { u n } defined by 

K l - n - K - n (2.33) 

with vn normalized, we can write as 

V u n ><v n = ) + Remainder 
4 ( v n , u n ) [ E - A n ( E ) ] 

(2.34) 
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where the remainder is the contribution from the continuous spectrum of 
$fcc. Fo r the T -matr ix we finally get 

u r ) (v r , Hco 

Tfi = Tpfi + > — r~2 (2.35) 
V (v r, u r ) [E - Re A r ( E ) + i i r E (E,/u), H ^ u ^ E ) ) ! ] 

where in the sum over r we have retained only those u r whose Re A r ( E ) » E 
and Im A r ( E ) « 0. A l l the others, together with the contribution from the 
continuous states of$?cc, have been lumped in TPf i . In writing (2.35) use 
has been made of (2.31). Note that for a sharp resonance (vr, u r ) « 1 (see 
for details Ref. 2 Section 4). 

If time reversa l invariance holds good, the two matrix elements 
involving <¡>Q ' and ф a r e connected. In fact, in that case we define 

V r ( s r , V r ) = ( - ) Ô U j t S j , - v r ) 

(2.36) 

a , , * . ) = (-)Si"" ie<A (o; ) ( -S, , s . . - * . ) 

where в is the time reversa l operator, s and v are the operators repre -
senting the spin and its projection on the z -ax is . 

If the theory is invariant for time reversa l we then have: 

Tr(f ) (S f t i / f . ¡ / г ) т г ( 1 ) ( - к ; , - г л , - v ) 

E - R e A ( E ) - Í7T E 1•y''1' (E) f 
M r 

(2.37) 

where 

(a) -* / ( - ) _ > \ 
7r (k a , ya , vt ) = [фоа (k a , sa,va ) H o c u r ( s , у ) J 

s. - V. / V" 1 

nr = ( - ) 1 ' ( e u r ( s r , -vt), u r (s , V r ) j . 

(2.38) 

The physics underlying these peculiar states ur can be understood if 
instead of playing around with the wave function ф we take into consideration 
the complete Green 's function (E + ie - TT)"1 . We have (the limit с - 0+ is 
understood): 

( E + ie - TT) _1= G + G f H ^ + H J t E + ie - II ) '1 (2.39) 

with G = G0 + Gc, where G0 and G c are defined through Eqs. (2.2 5) and 
(2.6), respectively. F rom (2.39) we get 

P 0 (E +ie - H) _ 1= G0 + G0 H 0 CPC (E +ie - H)"1 (2.40) 

P c ( E + i e - H ) " 1 = Gc + GC HC 0P 0 (E +ie - H) 1 (2.41) 

51 
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Substitute (2.40) into (2.41), multiply the resulting equation times 
(E - Hcc ) and then solve formal ly for Pc ( E + i e - H)"1 using the Green 's 
function given by (2.28) 

Pc ( E + i e - H ) - 1 = S%(1+HC0G0) (2.42) 

We finally get for the complete Green 's function (use (2.42) and (2.40)) 

( E + i e - H) = G0 + 

F rom (2.43) we also have 

i+GoHoe a?. H . o G o + 1 (2.43) 

-1 . 
P c ( E + i e - H) P (2.44) 

which tells us that if all physical considerations are limited only to the 
P c -mani fo ld we can replace the total Hamiltonian H with the effective non-
hermitian energy-dependent Hamiltonian which includes then all relevant 
couplings to the open channels. 

Of course, it is immediately realized that (2.43) leads again to the 
expression (2.32) for the T -matr ix . 

Eq. (2.43) gives us the sought-for physical meaning of the u r ' s . Suppose 
in fact that among the discrete eigenvalues of there is one which at 
Ee has Re A r (E e ) = Ee and Im A r (Ee) = 0. In this case â M E ) has a pole on 
the energy axis at E = E e and from (2.43) so does ( E + i e - H)"1 . E e is then 
an eigenvalue also for the total Hamiltonian H: we have a bound state em-
bedded in the continuous spectrum of H. 

It is instructive to see this directly from the SchrOdinger equation. 
In fact Eqs. (2.3) and (2.4) can be put in the form (see Eqs.(2.23) and 
(2.26)): 

Р0ф = ф0 + С0НжРсф (2.45) 

( Е - З ^ Е И Р с ^ Н с Д , (2.46) 

We solve then this set of coupled equations at E = Ee , and call the solution 
0e, by putting фа = 0. Considering that A r (E e ) = Ee we clearly have from 
(2.46) 

Рсф = u r (E e ) (2.47) 

rel rel 
We project Eq. (2.45) on фщ (¿,Blĵ b2j> where ф^ is the relative position 
eigenvector for the fragments in channel j whose internal (bound) states 
are described by the vectors and i/^j, respectively. Fo r x¡-» oo 
we get 

4 ' 7 X,- -» 00 j 4 7 

J (2.48) 

+ 0 ( x " 2 ) , 

51* 
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where kj = k j x j /x j . F rom (2.31), being Im A r (E e ) = 0, we get for all pi 

( ф ^ . ц ) . H ^ u ^ E j ) = 0. (2.49) 

There follows that the vector 

^ e = u r ( E e ) + G0 (E e )H0 Cu r (E e ) (2.50) 

is normalizable. The vanishing of the matrix element (2.49) makes 
clearly possible for the level E e of H to have infinite life time as required. 
It is characteristic of these states that their eigenfunctions do not vanish 
exponentially at infinity [4] . 

Suppose now that the forces which led to the actual bound state of H 
embedded in the continuum at the energy E e are slightly altered. As a 
consequence the bound state wi l l disappear, the level wi l l in fact in general 
acquire a finite (# 0) width giving r ise to a sharp resonance at E = E e in 
the scattering process . The nice point is now that, while H loses its 
eigenvalue, retains it. and, moreover, that Re A r (E e ) « Ee, 
Im A r (E e ) » 0. The so obtained resonance is then described by the eigen-
state ur of ur is now unstable, its time graph exploiting the usual 
exponential decay law at intermediate times [5] . 

Vice versa, if there is a sharp resonance due to an eigenvalue of 
such that Re A r (E e ) « E e and Im A r (Ee ) « 0, then a smal l perturbation 

can always shift A r on the real axis in such a way that Re A r ( E e ) = E e . 
We have then a bound state embedded in the continuum of H at the energy 
E e . The u r ' s are then in this approach compound nucleus states. By 
compound states we mean those states which can be made actually stable 
(infinite l i fe -t ime) by a proper smal l perturbation of the forces . Note that 
if the coupling between open and closed channels is weak this can be 
achieved by just turning off this very coupling; if the coupling instead is 
strong this wil l be achieved in a more complicated way. It is then clearly 
emphasized that sharp resonances can appear even when the coupling 
between the channels is strong [6] . 

The above discussion pertains to those bound states of H embedded 
in the continuum which are originated by real eigenvalues of for which 
A r (E e ) = E e . The last point to be discussed is whether to each bound state 
of II degenerate with the continuum there always corresponds an 
eigenvalue of &jfrr for which A r (E e ) = E e . But this is certainly true as one 
can easily see from Eq. (2.43) . In fact to a pole of ( E + i e - H)"1 there wi l l 
certainly correspond a pole of S?C(E) since G0 (E) cannot have a pole, 
except accidentally, at the same energy where ( E + i e - H) _ 1does. We must 
be reminded of the fact that G0 is obtained from (E +ie - H)"1 by turning 
off the coupling between open and closed channels. We come to the con-
clusion that the u r ' s are then in this scheme the compound nucleus states; 
in other words, every resonance which can be made infinitely sharp by 
slightly altering the forces is described by an eigenstate ur of g?cc. 

Finally, note that this theory treats on the same footing both the case 
of isolated and the case of overlapping resonances. Besides, in Eq. (2.35) 
each resonance term has the famil iar Bre i t -Wigner form (apart from the 
energy dependence of the y ' s ) . Note also that wide 's ingle-particle ' 
resonances wi l l be present in the term TPf¡ of (2.35). 
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3. C O M P A R A T I V E DISCUSSION 

As follows from the preceding review, the essential difference between 
the two theories consists in the identification of the compound nucleus 
states. While in Feshbach's approach they correspond to bound states of 
the closed channel submatrix H c c of the total Hamiltonian, in the Fonda-
Newton approach they are those normalizable eigenstates of the closed 
channel effective Hamiltonian gfCc = HCc + HcoG0Hoc which are near - in 
the sense of slightly altered forces - bound states embedded in the 
continuum of the total llamiltonian. 

The following remarks can be made. First of all it is c lear that the 
two theories give the same answers in the limit of weak coupling between 
open and closed channels. Second, when open and closed channels are 
strongly coupled, the Fonda-Newton theory reveals resonances which are 
not given by the Feshbach theory. This is shown by the model example of 
section 1, where an infinitely sharp resonance has been produced in a 
case in which H c c has no bound states. Third, Feshbach's level widths and 
shifts can become so large, when the coupling is strong, that the bound 
states of Hcc which fal l in the energy region of interest do not produce 
any resonance in that region, while in the Fonda-Newton theory no such 
situation ar ises . 

The last two remarks imply that no correspondence exists between 
the compound nucleus resonances foreseen by the two theories when the 
coupling is strong. 

The discussion here is formal in the sense that it takes as starting 
points certain properties of the Hamiltonian matrix ( e . g . the weak or 
strong coupling between open and closed channels) regardless of the actual 
nuclear situation. The next question is then whether in the actual case 
the coupling is weak or strong. This question is very difficult to answer. 
Here we would like only to note that the fact that the compound nucleus 
resonances are sharp by no means implies that the coupling is weak. 
Again this is demonstrated by our model example of section 1, in which 
an infinitely sharp resonance is constructed in a regime of strong coupling. 

The applicability of the theories considered is not limited to nuclear 
reactions. Of course, electron-atom scattering is covered just as well 
[7 ] , and it is conceivable that certain concepts, like that of bound states 
embedded in the continuum for the total Hamiltonian, can be extended to 
the relativistic domain of elementary particle physics [8] . 
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TREATMENT OF PAIRING CORRELATIONS 
WITHOUT VIOLATION OF CONSERVATION LAWS 

M. JEAN, X. CAMPI and H. VUCETICH 

1. Introduction. 2. General formulation. 3. Geometry. 4. B. C. S. -like approximation. 5. Method 
of solution and numerical results. 5.1. Degenerate model. 5.2. Non-degenerate model. 

1. INTRODUCTION 

During the past few years methods of approximation originally de-
veloped in studies [1-3] of the superconducting state in metals have been 
applied to nuclear physics by a considerable number of authors. In par-
ticular, one of these methods (the B. C.S. theory) has been extensively 
used [4-7] to study the effect of pairing forces on the structure of single 
closed-shell nuclei. The state of a nucleus is characterized by the proba-
bility amplitudes-ге- for occupancy of the pair states (jm, j-m) in the 
common average potential. The basic approximation of the theory is 
to describe the properties of a given nucleus as the average of the proper-
ties of an ensemble of nuclei. Then the state vector is not an eigen-
state of the particle number operator: 

N = X C Îm C im (D 
jm 

where Cjm and C*m are nucleón annihilation and creation operators. For 
instance the ground state of an even-even nucleus is represented by the 
state vector 

|0> =П(
и

1
+

^
т
с}

т
с/_

т
) |о> <

2

> 

where Sjm is a phase factor equal to ( - ) ' "m and |o> is the vacuum state 
vector. For the real parameters и and да one has the normalization 
conditions 

= 1 (3) 

and 

A=<0|N|0> = 2^ (4) 

j 
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where Q¡ = j+¿ is the pair degeneracy of level j, and A the nucleón number 
The approximate ground state is identified with what is called the quasi-
particle vacuum, the original system of interacting particles'being r e -
placed approximately by a system of non-interacting quasi -particles. 
These quasi -particles, the normal modes of the system, are introduced 
by a canonical transformation (Bogolubov-Valatin transformation [2, 3] ) 

)1+ = « . C f - s. w. C. (5) jm j jm jm j j -m v 

where n+ is the quasi-particle creation operator. By definition the state 
vector obeys 

rj |0>=0 (6) jm 1 

The parameters of transformation (5) are determined by minimizing the 
quantity 

H - X N (7) 

where H is the Hamiltonian of the interacting nucléons and X is a Lagrange 
multiplier. Then the approximate ground state energy EQ of the even-
even nucleus is given by 

E0 =<0|Н|0> (8) 

As explained above the exact Hamiltonian for the interacting nucléons is 
then replaced, through transformation (5), by the following approximate 
Hamiltonian: 

нар = Е о + > Ч Ч т ^ т (9) 
jm 

describing non-interacting quasi-particles (E j : f ree quasi-particle energy). 
In this approximation the lowest state in odd nuclei are described as single 
quasi-particle excitations, i . e . , by the state vectors 

|jm>=r jJ n|Ô> (10) 

The energy of such a state is E 0 . In the same manner the excited 
states of even-even nuclei are approximated by exciting two quasi -part ic les . 
If the unpaired nucléons are in levels and j2 the state vector and energy 
of such a state are 

\ т , Г)]гтг 
0 > and E0 +E¡ +E ¡ (11) 

J1 2 

The canonical transformation (5) has been generalized by Bogolubov [8] 
who let the l inear combinations of annihilation and creation operators be 
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a completely arb i t rary one. Therefore , we write instead of (5) 

(12) 

i 

where we put i for all quantum numbers of a single nucleón state and X 
for all quantum numbers of a quasi-particle state. Very little has beèn 
done with this formulation, the so-cal led Hartree-Bogolubov theory. Some 
attempts have been made to apply it to the description of deformed nuclei 
[9] and to the treatment of neutron-proton correlations [10 -13 ] . In 
each case one is led to introduce additional violations of conservation 
laws besides the non-conservation of particle number. The trial state 
vector |o]> is no longer an eigenvector either of the angular momentum 
or the isospin or of both operators. Then one meets with the difficult 
problem of eliminating spurious states. 

This is certainly one of the most serious drawbacks of the Hartree -
Bogolubov theory. Also there have been numerous efforts to improve 
on the basic approximation of this theory, especially in connection with 
the problem of particle number conservation. Without going into details 
we may mention Nogami 's work [14, 15) inspired by Lipkin's idea [16] 
to use in the B . C .S . theory the operator 

instead of (7), the Bayman method [17] which is based on the use of a 
number-conserving state vector and the projection technique of Kerman-
Lawson -MacFar lane [18] in which one employs the projected B . C . S . 
state vector for the evaluation of all observables . 

In this note we present another approximation scheme which formal ly 
is quite close to the Hartree-Bogolubov theory but in principle avoids the 
difficulties associated with the violation of conservation laws . This new 
method is inspired by Salusti 's work [19] in which it has been shown that 
the use of the trial state vector 

instead of (2) led to an approximate treatment of pairing correlations 
which though conserving the nucleón number is otherwise quite s imilar 
to the B . C . S . approximation. In (14) |A, jm^> is the state vector of the 
low-lying states of an odd nucleus and | A ± l , 0 ^ t h e ground state vector 
of the adjacent even-even nuclei. We have reformulated [20] Salusti 's 
idea in a way which brings it c loser to the Hartree-Bogolubov formal i sm 
and which is capable of further generalization. 

2. G E N E R A L F O R M U L A T I O N 

We consider a shell model Hamiltonian with a residual interaction 

H - \ N - X2 N' 
,2 

(13) 

A J j m > = « j C J t m | A - l i 0 > + s j m « « j Cj_m |A+1,0> j-m (14) 

с fimpq 
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The e ' s are the single-particle energies of the shell model. We take the 
residual interaction V to be already anti-symmetrized, so that 

Vjm.pq ~ ~Vmi ipq - - V { m i q p - Vpq> im (16) 

It should be invariant under rotations and time reversa l , but we leave 
all questions of geometry for later. 

Let us call |A, L )> a complete set of eigenvectors of H belonging to 
the eigenvalues e£, A being the nucleón number and L denoting the set of 
quantum numbers characterizing the state: 

H | A , L > = E £ | A , L > N | A , L > = A | A , L > ( 1 7 ) 

Some of these quantum numbers can be inferred from the invariance 
properties of H. We define the following amplitudes [21] : 

< ^ ( L , M ) = < A , L | c J | A - l , M > y ^ ( L , M ) = < A , L | C | | A + l , M > (18) 

which can be considered as coefficients of fractional parentage between 
the nucleus A and the two adjacent nuclei A ± l . These amplitudes are 
not all independent since one has 

« ^ " ( L . M ) = T F " 1 ( M , L ) ( 1 9 ) 

Taking matrix elements, between states of nucleus A, of the anti-
commutation relations of the c, s and c+, s one gets the ortho-normality 
conditions 

б « т б ш { < ^ A ( L ' ( M ' K ) K > } (2 0> 
к 

0 = ^ { r A ( L , K ) « ^ * ( M , K ) + r r £ ( L , K ) « ^ * ( M , K ) } (21) 

К 

The condition on the nucleón number gives, further, 

A 6 l m = £ < ( L , K W f i M , K) (22) 

UK 

In order to write the equations of motion of our amplitudes in a compact 
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form we define the quantities 

Рй А т (Ь,М) = < А , ь | с ^ С т | А , M > = ) (23) 

К 

M) = <A -1 , L|C m C £ |A+ l < M > = ^ £ a ( K , M) (24) 

^ ( L ' ^ V ^ m . p e ' p q ^ ' W (25a) 
PQ 

Г ím = ^ V í n _ m n (25b) 

By an obvious analogy we call p generalized matrix density, к generalized 
pairing tensor and Д generalized pairing potential. One has the following 
symmetry properties: 

p f ( L , M ) = pA ( M . L ) (26a) 
4m mi 

< m ( L , M ) = - < { ( L , M ) (26b) 

д ; т ( Ь , М ) = - Д ^ ( Ь < М ) (27a) 

Г т , = r P m (27b) 

The equations we seek will be obtained from the equations of motion of 
the annihilation and creation operators. The latter can be written 

[H, c ! ] =e. C j + V v * С V* С + С * (28a) 
' í i l ¿ ^ £n,mn m 2 m ím,pq p q v ' 

mn m,pq 

[ H , c t ] = - е £ С { - | Y C m V £ m . p q C c C p ( 2 8 b ) 

mpq 

Taking matrix elements of the f irst equation between states |A, L )> and 
|A-1, M > and of the second between states |A, L)> and |A+ l ,M ) >one gets, 
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using (17), (18) and (25) 

0 = ( E ^ M H > < ( L ' M > - X A £ ( M . K ) < ( L , K ) (29a) 
m mK 

0 = (E^ -E^ + 1 + e í ) r t ( L , M ) + ^ A í A m ( K J M ^ ( L , K ) (29b) 

mK 

Those are the equations of motion of our amplitudes, which bear a strong 
formal resemblance to the Hartree-Bogolubov equations [9] . The 
energy in the state |A, L/> can also be expressed in terms of the u 
and v's amplitude to give 

E t = X P « ( L ' L ) +2 X L ) L ) (30) 

£ mK ' 

We have thus obtained a set of coupled non-linear equations which are 
obeyed by the exact amplitudes. In principle it provides us with a means 
of solving exactly the problem of A interacting nucléons. This is in 
general impossible and one must now seek some approximation method 
to make our equations manageable. In this note we limit ourselves to 
showing that this can be done in at least one way which leads to an approxi-
mation which, though conserving the number of nucléons, is otherwise 
quite close to the B .C .S . method. 

3. GEOMETRY 

We have already stated that we assume our Hamiltonian to be in-
variant under rotations. There is one way, well adapted to the structure 
of our Eqs. (29), of writing that the residual interaction V possesses this 
invariance. It is 

pq = - 1 I °J ( í m ' Pq) <4 JM Xjp jq mp mq I JM > ( 31 ) 
JM 

The<(|jM^ are vector coupling coefficients. GJ(Xmpq) is independent 
of magnetic quantum numbers. It is real and, except for coefficients, 
can be regarded as the interaction matrix element between two particles 
p and q coupled to J, scattering into two particles im, coupled to J. 

The rotational invariance implies that among the quantum numbers 
denoted globally by the index L into the state vector [А.Ь/1 we can choose the 
total angular momentum J and its projection M. Thus from now on we 
shall write our state vector as 

|A, J M » > (32) 

where we put a for all the other quantum numbers needed to completely 
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specify the state. We can make use of the property of C t and 
aja ma 

i-m a a 

( - ) C a j a_m a to transform like irreducible tensor operators of rank 

j under rotations to define reduced amplitudes independent of the mag -
netic quantum numbers. In order to simplify the notation we shall make 
the assumption that giving j, m and parity is enough to single out a single 
particle state as this is true of most practical shell model calculations. 
F rom the Wigner -Eckart theorem it follows that we can write 

(Jlto, J 'M ' a ' ) = ( - ) J " M ( ¿ ¿J ) J ' « • ) (33a) 

¿ ^ ( J ® , J'e¡) (33b) 

where the<Ws andT^'s are the reduced amplitudes. 
Before going further we can use our assumption of time reversa l 

invariance of the Hamiltonian to prove in the standard way that the<Ws 
and T"'s can be taken as real quantities. 

Our task is now to rewrite the preceding definitions and equations 
in terms of the reduced amplitudes. Condition (19) becomes: 

= ( - ) J _ J + ] < r j A ( J ' a ' , J « ) (34) 

We find that the orthogonality condition (21) is identically satisfied while * 
(20) gives 

(2j + l ) (2J+l )6 a Q . = Y { r f ( J a ' j V ' r r A ( J o . ' , j V ' ) + < ^ A ( J a , J " a " W ¿ { J a \ j V ' ) } 

J"a" (35) 

We can write for the matrix elements (22) of the nucleón number operator 

A ( 2J+ l ) 6 a a , ^ j A ( J « , J"a")<2¿f(Ja', J ' V ) (36) 

j j-a-

In order to rewrite our equations of motion (29) in terms of the reduced 
amplitudes we have to express the generalized pairing potential in terms 
of the new amplitudes. F i rs t we define a reduced pairing tensor by 

^ M i m i m ( J M « > J 'M ' a ' ) =<A -1 , JMaUs. m C. ®s. C. }h 
J iM, j jm, j 2 m j » j2-m2 j2m2 ^ j , -m , Jimi _ M 

| A + l , J ' M ' a ' > ( - ) Í l + Í 2 + m i + m 2 

(37) 
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By straightforward calculation, we find that 

. ( j a , j v ) = Ж+ï V <&!A(jV', Ja)-rA(Jua", J'«,)ijT1,:iT2Ji,l(-)Jl+J'+r+j! 
JiJtJ2 1 L. i2 Jj I^J'JJ I 

J" a" 

Now we introduce a reduced generalized pairing potential 

W 

J "JJ ' 

and we put 

r = i \ r.Ji-Hi -нп 
2J+1 

j 'J 

then we find that Eqs . (29) transform into 

0 = ( E A - E a _ 1 -e +Т.)<ША(За, J 'a ' ) Ja J a" j j ' j4 

j 'J" a" 

0 = (E t - E " > e . ) - r A ( J a , J'a") 
Ja J a ] J 

(38) 

X ° d L / ^ I H ' A (39) 
l J l J2 Jl • 

r i 4 I (40) 

(41a) 

+ У ДА ( J ' V , J ' a ' ) ® A ( J a , J ' V ' ) (41b) 
Z_. J J *J J 

j ' J "a " 

It will be convenient for the following application to introduce the notations 

трА+L + E A - I 

<
4 2

> 

PA+1 _ rpA-1 
(43) 
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Then Eqs . (41) take the simpler form 

0 = (uA ( j J ' a , ) - e A ( j J , « ' ) ) < ^ ( Jo ' , J ' a ' ) + У (J'a-1, J "a " )T " A ( Ja , J ' V ) (44a) 
JA J / , JJJ J 

jTct* 

0= У A ^ . j í J V , J ' e ' J ^ t J e , J "a " ) + (u^a ( jJ , a l ) +e A ( jJ ' a ' )T - A (Ja ' , J V ) (44b) 

j'J'ct" 

One may remark the strong formal similarity between these equations and 
the Hartree-Bogolubov equations. 

Fo r the energy of the state | A, J M a ) one has f rom Eq. (30) 

К=2Ш{1 e j K i J a . J ' e ' ) ! 2 

-I I (45) 

¡•Га" 
Obviously rotational invariance is not the only symmetry property 

of the Hamiltonian one can exploit. Fo r instance, one may assume, as 
is usually done, charge independence of the Hamiltonian. In the same 
manner as we have done for angular momentum, one can extract f rom the 
amplitudes the Tz dependence to get reduced amplitudes <%l and У which 
depend only on T . One may also consider an invariant Hamiltonian in 
quasi-spin (seniority) space. Then, use of the Wigner -Eckart theorem 
gives us immediately the dependence of our amplitudes and with 
respect to the nucleón number A . 

4. В . С. S. - L IKE A P P R O X I M A T I O N 

We wish now to show that it is possible to derive, f rom our general 
formulation, an approximation scheme which is quite s imi lar to the 
usual B . C . S . method. As in the B . C . S . theory we shall restrict our 
discussion to the case of identical particles. 

Going back to the introduction it is easy to prove that Eq . (5 ) and its 
adjoint can be reversed to give 

CÎ = « . i i î + s . -гг. rj. (46a) jm j 'jm jm j j-m v ' 

C. =u.r\. +s. -га. r)t (46b) jm j 'jm jm j 'j-m 

It follows from the anti-commutation relations of the rj's and f rom (6) 
that the parameters « j and-Wj are related to the approximate ground state 
|0V of the even-even nuclei and to the approximate low-lying state |jm^> 
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of the odd nuclei (cf. Eq. (10)) by 

= < jm|c j „ |0> , ^ = < j -m| C jm |0> s._m (47) 

Comparison of this result to the definition (18) of o u r ^ A and<TA (A odd) 
amplitudes suggests strongly that we build our approximation scheme 
on the assumption that the parentage of the ground state of an even-even 
nucleus is restricted to the low-lying states of the adjacent odd nucleus. 
Looking back to Eqs . (33) we notice that j j ' and J obey the law of addition 
of angular momenta. Taking A an odd number and the ground state of the 
A ± 1 even-even nuclei having J' =0, our assumption means more precisely 
that we shall deal only with the reduced amplidudes 

0) =<WA T A ( j , 0) = T A . (48) 

where we have furthermore assumed that the |A, jm )> state is unique. 
Then the whole set of equations simplify considerably. The equations 
of motion (44) reduce to 

0 = ( uA -eA ) ( 4 9 a j 

0 = Д А ® А + ( и А + ? А ) Т А (49b) 

with 
A+l A-l 

л A 1 En +E n 

• 2 Г Г 

Tri A+l pA-l 
(51) 

ДА= l y p J J L ^ (52) 

j' 
i 

Г. = 
' i = W T ) G 0 ( j j ' j j ) ( 5 3 ) 

To be consistent with our fundamental assumptions one sees that the 
condition (36) on the number of nucléons must be written for the ( A + l ) 
nucleus. Using (34) one obtains 

A + l = ^ ) V A ) 2 (54) 

i 
S imi lar ly Eq. (35) gives 

(2j + l ) = (<WA+2) + P T A ) 2 (55) 
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Finally the ground state energy of the even-even nucleus ( A + l ) , taken 
f rom (45) can be expressed as 

E£+1 Ц ( г : А f +1 д ^ г ? } (56) 

At this point it is interesting to notice that the ground state energy of the 
even-even nucleus ( A - l ) can also be expressed in terms of the<Í¿.'s and 
y ^ ' s . One has1 3 

E f 1 = ̂ { ( 2 j + l ) ( e . - | r . ) - ( е . - Г . ) ( ^ ) 2 + 1 д а ^ а г а } ( 5 ? ) 

Thus, except for (55), our set of Eqs . (49)-(57) is completely ex-
pressed in terms o î ^ f and y ^ . Were we to ignore the difference be-
tween A + 2 and A in (55) this set would very much look like the famil iar 
equations of the B . C . S . theory. The resemblance can be made still 
stronger by introducing the quantities 

" A - "*'A -wf = " 1 i r f (58) 
J */2j+T J ' J Л Р 1 

as suggested by comparing the definitions (33) of the reduced amplitudes 
to the expressions (47) for the « j and ^ parameters of the B. C .S . theory. 
The re-definition (58) of our amplitudes amounts to using Clebsch-Gordan 
coefficients in (33) instead of 3 - j symbols. 

Then, to make our treatment still c loser to the B . C .S . one, we shall 
put 

G ° ( j j , j ' j ' ) = 2N/(2j + l ) (2 j ' + l ) G... (59) 

and use (58) so that we have finally to deal with the following set of 

1 This expression results from the following one: 

E l " 1 = I ( £ « ^ ^ K ^ ' l 2 " ! r { X * < K - L > < < K - L ) + g 4m(L,K)KA* (L,K) (57a) 
Í IK ÍpK imK 

which is obtained from the Hamiltonian (15) by reversing the order of the creation and 
annihilation operators. As an intermediate step between (57) and (57a) one has in terms 
of the reduced amplitudes 

И " Ja 
e, - r , 

|®r(J'«'.J в)Г-4 

¡Vct WÁ Г ra-

il 
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equations [22] : 

» A - _ A . / A ~A « A о =A j « j +(u j +e ¡ ) 

r r G i i 
E n -E„ 

To these are added the conditions 

J 

and 

Е Г 2 í W j G i j )-<ei ) ( « j A ) 2 + | A i « f 

(60) 

where A+ I + 1 ? A- I 
„ A - p A . l p , R 1 . 

j ~ i ~2 Jj 2 ( 6 1 ) 

j ~ j jj 2 ( 6 2 ) 

(63) 

A + i = гп^даА)2 (64) 

1 = ( « A + 2 ) 2 + (<*A )2 (65) 

The energies of the even-even nuclei ( A ± l ) are given by 

{q )2 } <66> 

(67) 

It is important to remark that as a consequence of our approximation 
it follows, as in the B . C .S . case, that we are taking into account only 
the J = 0 component (see Eq. (52) ) of the expansion (31) of the potential. 
One may say that we are extracting the pairing part of the nuclear force . 

5. METHOD OF SOLUTION A N D N U M E R I C A L RESULTS 

In this section we discuss numerical calculations which we have 
carr ied out in order to compare our approximation to known exact results 

52*" 
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and to the B . C . S . approximation. Fo r this reason we consider the so-
called "pair ing f o rce " . This means that we assume all matrix elements 
G -, defined by Eq. (59) to be equal to a constant G 

G j j t = G (68) 

5.1. Degenerate model 

F i rst let us discuss the degenerate model, wherein all single-
particle energies are equal. 

Cj = e V j (69) 

It is interesting to look at this case since it can be solved exactly very 
easi ly and is quite instructive. Furthermore we expect our theory to 
be exact for it. This is because we know that seniority is a good quantum 
number for the degenerate model, the ground state of our even-even 
nucleus having seniority v = 0. F rom the known transformation properties 
of the single-particle operators C j m and C*m in quasi-spin space it 
follows that the only parents of the ground state of an even-even nucleus 
are the seniority one-states of the adjacent odd nuclei. One shows easily 
that the pairing potential A is diagonal in the seniority representation 
and, because there is no excited state of seniority zero, our set of 
equations, in this case, is complete so that we must get the exact solution. 

One has 

Г. s г = G, 5 Д = -GJT (70) 

j' 

and 

"J 2 2 

From Eq. (60), inserting (70) and (71), we have 

E A + I _ E A - I 
?A=e~A = c . l G . f 0 _ _ f 0 _ ( 7 1 ) 

u = и =s/(e ^ 2 + (Д А ) 2 (72) 

Final ly it follows that the amplitudes etA and -ttA are independent of j. 
Putting 

(73) 

we get, both from (64) and (65), 

( ~ A > 2 = 1 - ^ T (74) 
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Fo r the even-even nucleus ( A + l ) one obtains 

ДА = - GÍ2 All (, (75) 
NI 2П I 1 ' 2Q. ' [ ' 

and for the ground state energy 

E A + 1 = 2П{е(-ггА )2+^ДА« !А -в г А } 

which is the exact result. We recal l the B . C . S . result 

(A + l ) - f ( A + l , ( l . ^ (77) 

Were we to ignore the difference between « A + 2 and ¿¿A and use condition 

( « j V + ^ j V - l (78) 

as done in B . C . S . theory (cf. Eq . (3 ) ) , instead of the exact one (65), the 
approximate E A t 1 would be 

E^a1pp = e ( A + l ) - ^ - ( A + l ) ( 1 - ^ с Г ) (79) 

Both approximate results (77) and (79) dif fer f rom the exact one by the 
renormalization of the single-particle energies. 

5.2. Non-degenerate model 

In this case the ê  take different values and it is no longer possible 
to get directly the amplitudes tc. and f rom Eqs . (64) and (65). One has 
to solve numerical ly the whole sent of equations. One important feature 
is that because Eq. (65) connects «¿A+2to wf there ar ises the necessity of 
treating several A values simultaneously. As we have seen that in order 
to get the exact solution of the degenerate case one has to use Eq. (65) 
rather than Eq.(78), we shall insist on retaining this difference f rom the 
B . C . S . theory. To circumvent this difficulty we shall use a step-by-step 
method. We assume that « A is known and we utilize Eqs . (60) and (64) 
to obtain and -геА. Then Eq. (65) allows us to determine «¿A+2 and to 
proceed further for higher A . As we know that 

« } = 1 -V-j (80) 

we start our step-by-step procedure for A = l . But before solving Eqs . (60 ) 
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T A B L E I. V A L U E S O F T H E G R O U N D S T A T E E N E R G Y IN T H E 
M O D E L O F R E F E R E N C E [ 2 3 ] , B O T H E X A C T L Y A N D IN V A R I O U S 
A P P R O X I M A T I O N S C H E M E S I N C L U D I N G T H E P R E S E N T W O R K 
( P . W . ) . T H E E N E R G I E S A R E IN UN ITS O F T H E S I N G L E P A R T I C L E 
S E P A R A T I O N S 

Exact B.C.S. Projected Nogami- P.W. Exact B.C.S. B.C.S. Zucker 

6.83 8.08 6.85 6.86 7. 20 

| B.C.S 1 N.Z. RW. 
EXACT B.C.S. 

PROJECTED 

FIG . l . Pawlikowski and Rybarska model where 6 particles interacting through the pairing force (G = 1) 
are distributed over 5 doubly degenerate levels (£ j = 1 ,2 ,3 ,4 ,5 ) . Values of the ground state energy obtained 
in various approximation schemes are compared to the exact one (\=2.503, (E - E4)/2 = 2.61) 

and (64) for the unknowns u¡ and -Kj one must real ize that we have a l -
together 2n unknowns (n being the number of j ' s which enter into our 
model) for 2n+l equations. Were our method an exact one, these equations 
would be compatible, as one can ver i fy in the degenerate model. We do 
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T A B L E I I . V A L U E S O F T H E S I N G L E P A R T I C L E L E V E L 

O C C U P A T I O N P R O B A B I L I T I E S I N T H E M O D E L 

O F R E F E R E N C E [ 2 3 ] . J 

„„ 2 Level 

J 
1 2 3 4 5 

B.C. s. 0.892 0. 810 0.649 0.418 0. 229 

Nogami -

Zucker 
0. 883 0.797 0.641 0.430 0.249 

Exact 0.911 0. 853 0. 716 0.338 0.182 

P.W. 0.872 0.822 0. 684 0. 396 0. 226 

1 . 0 -

о о1 1 1 i i i 
1 2 3 Í 5 

L E V E L 

FIG. 2. Density distribution in the ground state in the Pawlikowski and Rybarska model. The exact single 
particle level occupation probabilities V j are compare to those obtained in the B.C.S. approximation and 
in the present work ( P . W . ) (pairing force G = 1, 5 doubly-degenerate equidistant levels) 

not expect this to be the case so that we must in some way relax the se l f -
consistency of our equations. As we believe Eq. (64) is important to 
normalize our amplitudes to the correct number of particles, we introduce, 
by analogy with the B . C .S . treatment, a supplementary unknown X by 
putting 

(43) 
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T A B L E III. V A L U E S O F T H E G R O U N D S T A T E E N E R G Y 
I N T H E M O D E L O F T H E E V E N N I C K E L I S O T O P E S S O L V E D 
E X A C T L Y IN R E F E R E N C E [18]. 
E N E R G I E S A R E M E A S U R E D IN M e V 

A+l = 2 4 6 8 10 

c A + l 
co 

60 Ni 62 Ni № Ni 

B. C. S. -1.13 -1 .51 -1.09 -0.22 +2.48 

Nogami-
Zucker 

-1.49 -2.07 -1 .72 -0 .44 +1.85 

Exact -1.49 -2.11 -1.75 -0.51 +1.70 

P .W. -1.48 -2.07 -1.68 -0.39 +1.83 

T A B L E IV . V A L U E S O F T H E P A R A M E T E R X D E F I N E D 
B Y E Q U A T I O N (81) C O M P A R E D T O T H E S E L F - C O N S I S T E N T 
V A L U E X' = ( E £ + 1 - E a _ 1 ) / 2 

А 1 3 5 7 9 

ХА -0. 702 -0.264 0.197 0. 657 1.145 

рА+1 рА-1 
, .А . ^0 "ЕО 
Х 2 -0. 741 -0. 295 0.197 0. 643 1.109 

Thus if our theory were to be completely self-consistent, X should be 
equal to 

•pA+l t-, A-l 
x=E° ; E ° 

Hence our procedure to solve the set of non-linear equations is, for a 
given value of A, to start with the known value of « A and with a trial 
value of -wA. Then e^ and ДА are given functions of X which are used 
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NICKEL ISOTOPE N U M B E R 

FIG.3. Model of the nickel isotopes solved exactly by Kerman, Lawson and MacFarlane. The exact ground 
state energy is compared to the values obtained in the B.C.S. approximation and in the present work ( P . W . ) . 
The value of the coupling constant G and the positions of the single particle levels were as shown in the 
figure 

to obtain 

(df (Л) = n/?ja(X)2 + (A a (X ) 2 

гА(Х) = 
6 j M + u"(X) 

(82) 

The parameter X is fixed by imposing condition (64). And we go on by 
successive iterations. We found that this iterative procedure converges 
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Ш 
й 

N I C K E L - 5 7 59 Et 63 65 67 

NICKEL ISOTOPE NUMBER 

FIG. 4. Low-lying (seniority one) excited states in the odd nickel isotopes. The notations 3/2 etc. represent 
the spin of the state. The columns labelled E are those obtained from the exact calculations of Kerman, 
Lawson and MacFarlane, and the entries under В and P are the states determined in the BCS approximation 
and in the present work. The coupling constant G and the e's are the same as used in Fig.3 

very rapidly. The ground state energy of the ( A + l ) nucleus is given by 
(66) and the low-lying levels of the A nucleus by the differences between 
the u f ' s . 

We have considered successively two examples2 fo r which there are 
exact calculations: the Pawlikowski -Rybarska [23] model and the model 
of the nickel isotopes solved exactly by Kerman-Lawson and MacFarlane [18]. 

5 .2 .1 . Pawl ikowski -Rybarska Model 

In this model A + l = 6 identical nucléons are distributed over 5 doubly 
degenerate equidistant levels (Cj = 1, 2, 3, 4, 5). Numerical values have 

2 These examples have also been discussed by Nogami and Zucker (see Ref. [15] ) and by Do Dang 
and Klein (see Ref. [22] ) in a similar context. 
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been obtained for different values of A and G. In Table I, we compare 
for G = 1 our value ( PW ) of the ground state energy of the even-even 
nucleus A + l =6 with the B . C . S . , the projected B . C . S . , the Nogami-
Zucker [14, 15] and the exact result of Pawl ikowski -Rybarska. This 
is illustrated in Fig.,1. In order to get an idea of the non-self -consistency 
of our solution it is interesting to compare the X parameter with the calcu-
lated value of X' = (E®-E£ )/2 . We find Л = 2. 503 and X ' = 2. 612. We have 
observed that X converges to X' when G increases . This is to be expected 
since the differences between the ê  's become negligibly small com-
pared to G and we approach the situation of the degenerate case. Our 
result represents a considerable improvement over B . C . S . , but is in-
f e r io r to those of the projected B . C . S . and of the Nogami -Zucker method. 
Table II and Fig . 2 show a comparison of the density distribution (•»?) 
which again favours our ground state wave function against the B . C . S . one. 

5 . 2 . 2 . Nickel isotopes model 

Kiss l inger and Sorensen [6] have treated the pairing force problem 
for the nickel isotopes by the B . C . S . method taking 

G = 0 .331 e . =0 e . =0.78 e . =1 .56 e . = 4 . 5 2 3/2 5/2 1/ 2 9/2 

The model has been solved exactly by Kerman-Lawson and MacFarlane. 
In Table III and F ig . 3 we compare our results for the ground state 
energies of the even-even isotopes to those of the above authors. Our 
values are again considerably better than the B . C . S . ones and they are 
much nearer to the exact energies than in the previous example. Table IV 
gives the values Xa and X 'A = (E0A+1-E^"1)/2. The relative positions of 
the low-lying excited states of the odd-A nickel isotopes can be obtained 
f rom the differences of the Our results are compared to the exact 
ones in F ig . 4 where we have also represented the differences between 
the quasi-particle energies of the B . C . S . theory. The qualitative agree -
ment is satisfactory although the quasi-particle excitations seem to be 
quantitatively more rel iable. However, one should remark that the 
quasi-particle energies reproduced here are obtained by using condition (4) 
fo r an odd number of particles and the same equations as used for even-
even nuclei. Should we use the quasi-particle energies corresponding 
to the following even-even isotopes we would obtain levels which are 
represented by dotted lines. In that sense we may regard our results 
as not worse than the B. C .S . ones. 

In conclusion we may claim that this new formulation of the treat-
ment of pairing correlations in nuclei leads us to an approximation 
scheme which, in many respects, is comparable to the B . C . S . theory, 
the price we have to pay for a part ic le-number-conserving theory being 
now a loss of self -consistency. It remains to be seen if the improve-
ments suggested by the general formal ism itself can be carried out with-
out a considerable increase in complexity. 
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CHAPTER 14 

FUNDAMENTAL METHODS 
IN NEUTRON SPECTROSCOPY 

E. R. RAE 

1. Introduction. 2. Neutron sources and detectors. 2.1. Neutron sources. 2.2. Slowing down 
of neutrons. 2.3. Sources of polarized neutrons. 2.4. Neutron detectors. 3. Neutron spectrometers. 
3.1. General types of spectrometer. 3.2. Crystal spectrometer. 3.3. Time-of-flight spectrometers. 
3.3.1. Mechanical choppers. 3.3.2. Pulsed accelerators, (a) Electron linear accelerator, (b) Cyclotron, 
(c) Van de Graaff. 3.3.3. Pulsed reactor. 3.3.4. Nuclear explosions. 3.3.5. Time-of-flight 
electronics. 3.4, Slowing down time spectrometer. 3.5. Other types of spectrometer. 4. Low energy 
neutron spectroscopy. 4.1. Neutron resonances. 4.2. The transmission experiment. 4.3. Elastic 
scattering. 4.4. Capture measurements. 4.5. Capture gamma-ray spectra. 4.6. Fission cross-sections. 
5. Intermediate energy neutron spectroscopy. 

1. INTRODUCTION 

The neutron is a most important particle in the study of nuclear 
reactions and of the structure of solids and liquids. Because of the 
absence of charge, neutrons can be used as bombarding particles at 
very much lower energies than is possible with charged particles. 
Measurements of nuclear cross-sections for lev energy neutrons, 
for example, led to the observation of compound nucleus resonances 
which was of fundamental importance to the development of nuclear 
theory and there are many other aspects of nuclear structure which 
have been investigated sucessfully with the use of neutrons. Slow 
neutrons are also employed in crystallography and in the study of 
inelastic scattering from solids and liquids. This work too has proved 
to be basic to the understanding of the structure of bulk matter. 

Neutron spectroscopy is the name given to experimental studies in 
which the energy or wavelength of neutrons is measured, so that our 
field might include physical phenomena ranging from the study of the 
interaction of very slow neutrons with bulk matter, through the energy 
range from a few eV to a few tens of MeV where the interest is in 
nuclear structure, right up to high energy interactions where the topics 
studied arc the nucleon-nucleon forces or the structure of the nucléons 
themselves. In this chapter our primary field of interest is that 
of nuclear structure so that we shall restrict our discussions to methods 
relevant to that field. Some of the techniques described will, of 
course, be applicable also to the very low and very high energy studies. 

In discussing neutron spectroscopy we shall be mainly interested in 
studying the interaction of neutrons produced in a 'Neutron Source1 

with other nuclei chosen by the experimenter. The techniques described, 
however, can be and are also used to study the energy spectra of 
neutrons emitted in nuclear reactions. 

The author is at the Atomic Energy Research Establishment, Harwell, Didcot, Berks, United Kingdom. 
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2. NEUTRON SOURCES AND DETECTORS 

2. 1. Neutron sources 

The neutron is a neutral particle of mass comparable to the proton and is a 
constituent of nuclear matter. It was first observed in 1930 by Bothe and 
Becker (see, for example, Segré [1]) when they bombarded beryllium with 
alpha particles, but was not identified as being a neutral heavy particle until 
1932 when Chadwick [2] analysed the recoils of protons and other light nuclei 
following collisions with the new radiation and showed that all of the 
data were consistent with the existence of this new neutral particle of 
near protonic mass which he called the neutron. The simplest neutron 
sources still utilise the (a, n) reaction [3] in light elements and consist 
of an intimate mixture of an a-emitter such as Ra or Po with a light 
element such as Be. These sources are small in size and can produce 
typically 106 to 108 fast neutrons per second. The neutron spectrum 
obtained (Fig. 1) is rather ill defined owing to the straggling of the 
a-particles, the high excitation produced in the compound nucleus which 
allows the emission of neutrons leaving the residual nucleus in several 
different states, and the Doppler broadening of any sharp groups which 
might otherwise be present. 

Another type of radioactive source [3] consists of a mixture of an 
energetic y - ray emitter with Be or D. Here the y-rays are homogeneous 
in energy, and the excitation of the compound nucleus modest, so that 
a reasonably monoenergetic group of neutrons can be produced. (Energy 
range ~ 25 keV -» MeV). 

In this case the source strengths obtained are of the order 10s to 107 

neutrons per second, for a conveniently small source. 
For more intense neutron sources, accelerators or reactors must be 

used. Charged particle reactions with light elements can give intense 
sources of nearly monochromatic neutrons [4] over a range of energies 
up to ~ 20 MeV. The reaction 7Li + p - » 7 B e + n-1.647 MeV (endothermic) 
is an effective neutron source for energies from a few tens of keV up 
to ~ 600 keV whére a second group of neutrons appears (Fig. 2). Above 
this the reaction T + p -» 3 H e + n-0.764 MeV takes over (also endothermic) 
and is used up to ~ 4 MeV. For higher energy neutrons exothermic 
reactions such as D + D -» 3He + n+3.27 MeV and T + D - » 4 He + n+ 17.6 MeV 
are used. Very high energy neutrons (50 MeV and higher) are usually 
obtained by deuteron stripping or by charge exchange collisions with 
light nuclei (Fig. 3). 

White sources of neutrons: for slow neutrons, reactors can give 
fluxes up to ~ 1015 neutrons/cm2 sec and intense beams can be extracted. 
Intense pulsed white sources of neutrons for use in time-of-flight 
neutron spectroscopy are best obtained from accelerators [5] such as 
electron linacs where (y, n) and (y, F) reactions are used, or cyclotrons 
where heavy element targets are bombarded directly with energetic 
protons each of which can boil off several neutrons from the compound 
nucleus. With these machines, the neutron production rate during the 
pulse can be ~ 1018 n/sec. 
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2.2. Slowing down of neutrons 

Reactor sources of neutrons are normally provided by thermal 
reactors where the pr imary fast fission neutrons have been moderated 
by collisions with light nuclei, principally of deuterium or carbon. In 
such an environment, and in the absence of capture or escape, a fast 
neutron loses energy by elastic collisions with the moderator nuclei 
until finally coming into thermal equilibrium with the moderator atoms. 
It can easily be shown that in such collisions (before thermal equilibrium 
has been reached) a neutron has an equal probability of having an energy 
after the collision lying anywhere between E 0 and E0 [ (A-1)/ (A+1) ]2 

where Eg is its initial energy, and A is the mass of the moderator 
nucleus. For the case of hydrogen as a moderator, A = 1, and the final 
energy is equally likely to lie anywhere between Eo and 0. From this 
law of energy loss it can be deduced that the spectrum of neutrons 

( a ) 

(b) 

FIG. 1(a) The neutron energy spectrum from Po-a-Be as measured by Cochran and Henry and by 
Medveczky 

(b) The neutron energy spectrum from Pu-a-Be as measured by Stewart. The solid line is the 
spectrum calculated by Hess on the assumption that all the reactions proceed to levels in 11С 
(Ref. [4] p. 10).(Courtesy of Interscience Publishers, New York.) 

53 



834 RAE 

12 16 20 24 28 32 36 

ДЕр (keV) 

Il x 10 

10 

9 

э 2 

-

1 1 

l b ) 

1 1 \ 1 1 ! 

\ / 
- \ / -\ • \ / I / 

\ /ею -
\ / 
\ / 
\ / 
\ / 

/ 

• 
/ 

/ 
- / 

/ 
/ 

- \ / 
/ 

/ 

1-
-

a-

\J 
/ 

/ 
/ 

/ 
/ 

/ 

1 , t i i . i i 

2.0 

> u 
S 

1.Í 

1.0 £ 

o.s 

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 
Ep (MeV) 

FIG. 2(a) Neutron energies from a thin lithium target as a function of the difference ДЕр between the 
energy of the bombarding proton and the threshold energy, for various angles of emission in 
the laboratory system 

(b) Yield of neutrons at 0° from the Li(p,n) reaction as a function of the proton energy; target 
thickness 40 keV [Hanson, Taschek and Williams, Rev. mod. Phys. 21 (1949) 435]. 
(Courtesy of American Institute of Physics) 
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slowing down in a moderator, in the absence of capture or escape, is 
given by 

N
f
 d E o c ^ (2. 1) 
c E 

and the slowing down spectrum observed in well moderated reactors 
follows this law closely. 

FIG. 3. Energy distribution of neutrons obtained by stripping a 190-MeV deuteron on a 1. 27-cm-thick 
beryllium target. The curve is from the stripping approximation (Réf. [1] p. 533). (Courtesy of 
W.A. Benjamin Inc. ) 

"When the neutrons reach thermal equilibrium they give rise to 
the well-known Maxwellian spectrum which is the dominant feature of 
the spectrum of a well moderated reactor. This comes about since the 
slowing down process occupies about 10"4: sec while the neutrons spend 
perhaps 10~3 sec in thermal equilibrium before being captured or 
escaping. 

Moderators are also used with pulsed accelerator sources in order 
to degrade the energy of the neutrons produced into the energy range 
required. In this case however, since t ime-of - f l ight velocity measure -
ments are normally involved, it is desirable to obtain the shortest possible 
pulse and the moderator is normally a sheet of hydrogenous material 
a few centimetres in thickness placed close to the neutron source. 
The cr iter ia used in choosing such moderators will be discussed more 
fully later, but it is clear that escape of the neutrons from such a 
moderating slab is relatively easy which leads to a much weaker thermal 
peak, a relatively enhanced slowing down spectrum, and a marked 
hardening of the latter spectrum. 

2. 3. Sources of polarized neutrons 

Fast neutrons emitted f rom nuclear reactions such as 1 Li (p, n) 7Be 
are, in general, polarized [6]. High energy polarized neutrons can 
also be produced by scattering on helium [6] for example, where the 
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scattering is predominantly of a p3/i2 nature, i. e. p-wave scattering 
with the neutron's intrinsic spin parallel to the direction of the orbital 
angular momentum. 

Slow (thermal) neutrons can be polarized by the interaction of the 
neutron's magnetic moment with the atomic magnetic fields in a 
ferromagnet [7]. This interaction produces two distinct scattering 
lengths for interactions in which the neutron's spin is parallel or 
antiparallel to the magnetic field. Hence transmission of slow neutrons 
through a saturated ferromagnet produces a polarized beam, and 
polarizations of up to 50% have been obtained by this method. Reflection 
from a cobalt mirror where one amplitude is negative, can lead to 
complete polarization. Polarization of epithermal neutron beams can 
best be achieved by transmission through a paramagnetic crystal 
containing water of crystallization in which the protons in the water 
are aligned at low temperature in a magnetic field and then polarized by 
means of hyperfine coupling with the paramagnetic ions, using micro-
wave pumping [8] (Fig. 4). The large difference in cross-section between 
singlet and triplet interactions between the neutrons and protons pro-
produces a polarization of the transmitted neutron beam. 

FIG.4. Dynamic polarization (Ref. [8] p. 5) (Courtesy of Interscience Publishers, New York) 

2. 4. Neutron detectors 

Probably the most common detector of slow neutrons is the BF3 
proportional counter. Here the neutron is detected through the 
10B(n, a) 7bi reaction, and if boron highly enriched in 10B is used, the 
efficiency of these detectors can approach unity for thermal neutrons. 
The collection of charge in a proportional counter is however essentially 
slow and introduces a considerable time jitter ( 0.5 /usee) into the 
response of these counters, so that they are unsuitable for use in time-
of-flight spectroscopy where the timing error from other sources is 
< 1 цsec. 

A much more efficient and rather faster detector is obtained by 
the use of a 10B loaded liquid scintillator, or a mixture of 1 0В with a 
zinc sulphide scintillator. For fast timing however, two detectors stand 
out. These are 

(1) the 10B-plug with Nal crystal to detect the Y - rays following 
the emission of a-particles in the 10B(n, cr)7Li reaction which 
leave the 7 L i in an excited state 480 keV above the ground state. 
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For neutrons of energy less than 100 keV, the probability of 
the emission of the 7 - r a y is ~95%. 

(2) 6 L i loaded glass where the charged particles f rom the 6Li(n, a )T 
reaction are detected in a scintillating glass. 

Both of these detectors are capable of timing jitters of only a few nsec 
(provided a fast -s low system is used with the Nal detector). The 6 L i 
g lass has the higher efficiency below ~ 1 keV, but is more sensitive to 
Y - r ays f rom the neutron source: the 10B plug can preserve a relatively 
constant efficiency up to ~ 10 keV. At energies £ 100 keV, proton 
recoi l detectors become attractive, and in the MeV region they are the 
most common type, generally taking the form of a liquid or plastic 
organic scintillator. In the case of liquid organic scintillators, the 
sensitivity to Y - r ays can be drastically reduced by the use of pulse 
shape discrimination (PSD) in addition to pulse-height selection (PHS). 
Here one takes advantage of the difference in the decay time constants 
between the light pulses produced in the scintillator by protons and 
a -part ic les on the one hand, and electrons on the other. 

The properties of a range of neutron detectors are summarized [9] 
in Table I and Fig. 5. 

3. N E U T R O N S P E C T R O M E T E R S 

3.1. General types of spectrometer 

Most neutron spectroscopy at low energies (< 1 eV) utilizes neutron 
diffraction (Bragg condition) either as a monochromator or analyser. 
At high energies fe, 1 MeV ) the observation of the energies of charged 
reaction products (e .g . 3He(n, p )T ) or knock-on elastic collisions with 
protons can be used to infer the energies of fast neutrons. Experiments 
can also be carr ied out with neutrons produced by charged particle 
reactions such as 7 Li (p , n ) 7 Be where the neutron energy is fixed by the 
reaction. 

The only technique, however, which of fers a precise determination 
of neutron energies over the entire range of interest (certainly f rom 
10"2 -108 eV ) is that of t ime-of - f l ight where the neutrons are produced 
or re leased in short pulses, and their flight timed over a measured 
distance. Given sufficient intensity, the precision of these measurements 
can always be arbitrari ly increased by increasing the distance (flight-
path) over which the timing is accomplished, and furthermore the use 
of multi-channel time analysers permits measurements to be made at 
thousands of different energies simultaneously. We shall therefore 
devote most of our time in this section to studying the t ime-of - f l ight 
method and the properties of pulsed neutron sources. 

3. 2. Crystal spectrometer 

Figure 6 shows a schematic drawing of the Argonne crystal 
spectrometer [30]. Neutrons f rom the reactor are collimated into a 
para l le l beam and strike the crystal. The diffracted beam (again 
collimated) strikes the detector after passing through the sample being 
studied (transmission experiment). If the small angles of incidence 



TABLE I. PROPERTIES OF SLOW NEUTRON DETECTORS 
CO 

-CO 
CO 

Detector4 

Typical thickness 
Timing 

resolution 
MS 

Neutron peak 
Discriminât, 

against 
gammas 

References 

Detector4 

cm 
atom/barn 
10Bi or 6 Li 

Timing 
resolution 

MS Full width 
at half max. 

Eqv, electr. 
energy (MeV) 

Relative 
pulse height 

Discriminât, 
against 

gammas 
Specific General 

(1) "BF3 Counter 
(at 150 cm Hg) 

10 0.0004 > 0.5 ~ 5 % 2.3 - PHS 

(2) 10B-plug and 
Na l (T l ) cryst. 

2( I 0B) 

3(NaI) 0.14 0.05 -~10% 0.48 480 PHS 10 

(3) 6LiI(Eu) cryst. 2.5 0.046 <~0.1 12% 4.1 1400 PHS 11 12 

(4) 10B-loaded liq.scint. 1.0 0.006 —0.4 60% 0.10 10-20 
PHS 

&. PSD 
13 14.15 

(5) 10B-loaded glass 1.0 0.016 0.05 50% 0.18 (10) PHS 16,17 1 20 

' 21,22 

23 (6) ®Li-loaded glass 3.8 0.045 0.005 25% 1.6 200 PHS 18,19 

1 20 

' 21,22 

23 

(7) l 0B-ZnS(Ag) mixture 0.05 0.0004 " 0 . 1 No peak 
PHD 

& PSD 
24 

25.19 
26 

(S) Proton recoil 3 - ~ 0 . 0 1 No peak TOF 27.28 

(9) Self-indication - - ~0 .01 No peak (PHD) 29 

Detector compositions in percentage weight! 
(4) Toluene (50), Methyl borate (50) +4 g/1 PBD + 

0.02 g/l.POPOP ( r e f . l l ) . For other recipes see ref.56. 
( 5 ) N a 2 0 ( 1 4 . 4 ) , " в р з (47.3) , Al203 (30.7) . C ^ O j (7.6) (Ref. 13). 
(6) 6Li20 (11.7) . A12OJ (8 .8 ) , Ce 2Oj (3 .8 ) , SiOj (75.7) (Ref.62). 

(7) ZnS(Ag) (65) + Boron plastic (35) , prepared from ethyelene glycol, n-butanoi and boric acid 
in ratio 3.7 : 2.65 : 10 (re f .17) . 

k Method of discrimination against у-rays. 
PHS = Pulse Height Selection ( i . e . single channel). PSD = Pulse Shape Discrimination. 

PHD = Pulse Height Discrimination. TOF= Time-Of-Flight. 
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NEUTRON ENERGY (eV) 

FIG. 5. Neutron detector characteristics for various detectors 

BUCKY 

FIG. 6. The principle of the crystal monochromator for production of monoenergetic neutrons; shown 
here in schematic form is the apparatus at the Argonne heavy water pile (Ref. [7] p. 160). (Reprinted by 
permission from D.J. Hughes, Pile Neutron Research (1953),Addison-Wesley, Reading, Mass., USA) 

and reflection are both equal to в then the Bragg condition determines 
the wavelengths for which there is an interference maximum, namely 

2d sin 0 = n X (3.1) 

where d is the spacing of the lattice planes of the crystal (parallel to 
surface) , X is the neutron wavelength for Bragg reflection, and n is 
an integer denoting the order of the reflection. 

We have also 

Д X = — cos в Ав n 

i. е. = cot б Ав 
А 

(3.2) 

(3 .3) 
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o r f o r s m a l l 0 , 

C l e a r l y t h e e n e r g y r e s o l u t i o n ( Д Е / Е ) b e c o m e s w o r s e a s X a n d в 
b e c o m e s m a l l , s i n c e Д 0 ( a n d s o Д X) i s f i x e d b y t h e c o l l i m a t o r d e s i g n . 

W e h a v e t h e n 

Д Е 2 Д в 2 Д X . „ , „ 
- g - = — = — j — = c o n s t . 2 v ( 3 . 5 ) 

w h e r e v i s t h e n e u t r o n v e l o c i t y ( n o n r e l a t i v i s t i c ) . T h i s i s t h e s a m e l a w 

a s w i l l b e d e r i v e d l a t e r f o r t i m e - o f - f l i g h t s p e c t r o m e t e r s a n d t h e c o n s t a n t , 

w h i c h h a s t h e d i m e n s i o n s o f a n i n v e r s e v e l o c i t y i s n o r m a l l y e x p r e s s e d 

i n m i c r o s e c o n d s o r n a n o s e c o n d s p e r m e t r e . T h e f a c t o r 2 i s i n s e r t e d 

f o r c o n s i s t e n c y w i t h t h e t i m e o f f l i g h t a n a l y s i s ( E q . ( 3 . 7 ) ) . 

T h e u s e o f t h e c r y s t a l s p e c t r o m e t e r a t n e u t r o n e n e r g i e s m u c h 

b e l o w t h e r m a l i s l i m i t e d b y t h e i m p o r t a n c e o f h i g h e r o r d e r r e f l e c t i o n s 

( n > 1 ) i n v o l v i n g t h e i n t e n s e M a x w e l l i a n p e a k . T h i s d i f f i c u l t y c a n b e 

o v e r c o m e b y t h e u s e o f m e c h a n i c a l m o n o c h r o m a t o r s . A t h i g h e r 

e n e r g i e s i t s u s e f u l n e s s i s l i m i t e d b y i t s r e l a t i v e l y p o o r r e s o l u t i o n a n d 

i t s f a l l i n g i n t e n s i t y - t h e r e f l e c t i v i t y o f t h e c r y s t a l v a r i e s a s l / E . T h e 

u s e f u l n e s s o f c r y s t a l s p e c t r o m e t e r s i s t h e r e f o r e r e s t r i c t e d t o n e u t r o n 

e n e r g i e s b e l o w a b o u t 1 0 e V . 

3 . 3 . T i m e - o f - f l i g h t s p e c t r o m e t e r s 

T i m e - o f - f l i g h t s p e c t r o m e t e r s u t i l i z e n o r m a l l y a p u l s e d s o u r c e 

w h i c h p r o v i d e s n e u t r o n s o v e r a w i d e b a n d o f e n e r g i e s . T h e b a s i c 

p r i n c i p l e o f t h e m e t h o d i s t h a t t h e t i m e i n t e r v a l b e t w e e n t h e e m i s s i o n 

o f t h e p u l s e o f n e u t r o n s a n d t h e a r r i v a l o f i n d i v i d u a l n e u t r o n s a t a d i s t a n t 

d e t e c t o r i s a m e a s u r e o f t h e n e u t r o n v e l o c i t y , a n d s o e n e r g y . B y 

c o n n e c t i n g t h e o u t p u t o f t h e d e t e c t o r t o a m u l t i - c h a n n e l t i m e s o r t e r , t h e 

d i s t r i b u t i o n i n v e l o c i t y o f t h e n e u t r o n s f r o m t h e s o u r c e i s o b t a i n e d 

d i r e c t l y . L e t u s s u p p o s e t h a t t h e n e u t r o n p u l s e h a s d u r a t i o n A t , t h a t 

m e a s u r e m e n t s a r e m a d e o v e r a f l i g h t p a t h o f l e n g t h 1 a n d t h a t t h e 

d e l a y t b e t w e e n t h e s t a r t o f t h e n e u t r o n p u l s e a n d i t s d e t e c t i o n c a n b e 

d e t e r m i n e d e x a c t l y . L e t u s f u r t h e r a s s u m e t h a t t h e p h y s i c a l d i m e n s i o n s 

o f t h e p u l s e d s o u r c e a n d d e t e c t o r i n t r o d u c e a n u n c e r t a i n t y Д 1 i n t o t h e 

f l i g h t p a t h l e n g t h . T h e n w e c a n w r i t e t h e e n e r g y r e s o l u t i o n Д Е / Е a s : 

= — = 1 <3-6> 
Д 1 a n d A t b e i n g a s s u m e d t o h a v e i n d e p e n d e n t g a u s s i a n d i s t r i b u t i o n s , 

a n d v b e i n g , a s b e f o r e , t h e n e u t r o n v e l o c i t y . W e o b s e r v e a t o n c e t h a t 

i n t h e h i g h e n e r g y l i m i t , w h e r e ( v A t ) 2 » ( Д 1 ) 2 , t h i s e x p r e s s i o n b e c o m e s 

A E „ A t , „ „ , 
- Ë - - 2 V — (3.7) 

w h e r e A t / 1 i s t h e n o m i n a l r e s o l u t i o n i n m i c r o s e c o n d s o r n a n o s e c o n d s 

p e r m e t r e . 
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I t i s a l s o c l e a r t h a t i n t h e l o w e n e r g y l i m i t , t h e r e s o l u t i o n i s g i v e n 

b y Д Е / Е = 2 Д 1 / 1 w h i c h i s i n d e p e n d e n t o f t h e n e u t r o n ' s v e l o c i t y a n d o f 

t h e p u l s e l e n g t h p r o v i d e d t h e l a t t e r s a t i s f i e s t h e i n e q u a l i t y ( v A t ) 2 < ( Д 1 ) 2 . 

H e n c e t o a c h i e v e g o o d r e s o l u t i o n a t l o w n e u t r o n e n e r g i e s ( s a y E n < 1 0 0 e V ) 

t h e i m p o r t a n t f a c t o r s a r e a l o n g f l i g h t p a t h a n d s h o r t d e t e c t o r , w h i l e 

a t h i g h e n e r g i e s , s a y E n > 1 0 k e V , t h e m o s t i m p o r t a n t f a c t o r a p a r t 

f r o m t h e f l i g h t p a t h l e n g t h , i s t h e s h o r t n e s s o f t h e p u l s e A t . T h e 

t i m i n g u n c e r t a i n t y i n t h e m o d e r a t i o n p r o c e s s i n t h e c a s e o f p u l s e d 

a c c e l e r a t o r s c a n b e s h o w n t o b e r o u g h l y e q u i v a l e n t t o a n i r r e d u c i b l e 

l e n g t h u n c e r t a i n t y Д 1 o f t h e o r d e r o f a f e w c e n t i m e t r e s ( E q . ( 3 . 8 ) ) . T h i s 

f a c t m u s t b e b o r n e i n m i n d i n c a l c u l a t i n g r e s o l u t i o n w i d t h s . 

3 . 3 . 1 . M e c h a n i c a l c h o p p e r s 

A c h o p p e r c o n s i s t s e s s e n t i a l l y o f a r o t o r w h i c h i s o p a q u e t o t h e 

n e u t r o n s b e i n g s t u d i e d , b u t w h i c h h a s a s l i t o r s l i t s c u t a c r o s s i t w h i c h 

c o m e m o m e n t a r i l y i n t o l i n e w i t h a c o l l i m a t e d n e u t r o n b e a m a s t h e r o t o r 

s p i n s , t h e r e b y a l l o w i n g a p u l s e o f n e u t r o n s t o p r o c e e d d o w n a f l i g h t p a t h 

w h i c h i s e i t h e r e v a c u a t e d o r f i l l e d w i t h a g a s o f l o w n e u t r o n c r o s s -

s e c t i o n . M a n y d i f f e r e n t d e s i g n s o f c h o p p e r h a v e b e e n m a d e w i t h s l i t 

s y s t e m s d e s i g n e d t o g i v e h i g h t r a n s m i s s i o n , g o o d r e s o l u t i o n , g o o d 

s t o p p i n g p o w e r t o n e u t r o n s a n d g a m m a r a y s b e t w e e n n e u t r o n p u l s e s , 

a n d a l s o t o m o d i f y t h e n e u t r o n s p e c t r u m t r a n s m i t t e d s o a s t o p r e v e n t 

t h e p a s s a g e o f v e r y s l o w , n e u t r o n s w h o s e a r r i v a l a t t h e d e t e c t o r m i g h t 

c o i n c i d e w i t h t h a t o f f a s t e r n e u t r o n s f r o m t h e n e x t b u r s t . C h o p p e r s 

h a v e a l s o b e e n c o n s t r u c t e d w h i c h e m p l o y t w o o r m o r e p h a s e d r o t a t i n g 

s y s t e m s t o g i v e m o r e c o n t r o l o f t h e n e u t r o n s p e c t r u m a n d p u l s e l e n g t h 

a n d t o m a k e t h e s e q u a n t i t i e s i n d e p e n d e n t o f t h e p u l s e r e p e t i t i o n f r e q u e n c y . 

A g e n e r a l d i s c u s s i o n o n n e u t r o n c h o p p e r s p e c t r o m e t e r s w i l l b e f o u n d i n 

R e f . [ 3 1 ] . 

A l t h o u g h m a n y o f t h e e a r l y n e u t r o n r e s o n a n c e c r o s s - s e c t i o n 

m e a s u r e m e n t s w e r e m a d e w i t h c h o p p e r s , i t i s n o w g e n e r a l l y r e c o g n i z e d 

t h a t t h e d e v e l o p m e n t o f v e r y i n t e n s e p u l s e d a c c e l e r a t o r n e u t r o n s o u r c e s 

h a s r e s t r i c t e d t h e e n e r g y r e g i o n i n w h i c h c h o p p e r s a r e c o m p e t i t i v e t o 

b e l o w a b o u t 1 0 0 e V . ( T h i s l i m i t a t i o n i s d u e e s s e n t i a l l y t o t h e r a t h e r l o n g 

p u l s e , ~ 1 / u s e e ) . W e s h a l l n o t t h e r e f o r e d e v o t e t o o m u c h t i m e t o t h i s 

i n s t r u m e n t , b u t F i g . 7 s h o w s a s c h e m a t i c d r a w i n g o f t h e O R N L F a s t 

C h o p p e r ( t h e a d j e c t i v e f a s t i m p l i e s t h a t i t i s f o r u s e w i t h e p i t h e r m a l 

n e u t r o n s ) . T h i s i n s t r u m e n t , w h i c h i n n o r m a l u s e p r o d u c e s a 1 / u s e e 

p u l s e e v e r y m i l l i s e c o n d , i s u s e d w i t h f l i g h t p a t h s o f u p t o 1 0 0 m , w h e r e 

i t a c h i e v e s a n o m i n a l r e s o l u t i o n o f 1 0 n s e c / m . T h i s s h o u l d b e c o m p a r e d 

w i t h t h e c o r r e s p o n d i n g f i g u r e o f a b o u t 1 0 0 n s e c / m o b t a i n a b l e w i t h 

c r y s t a l s p e c t r o m e t e r s , a n d a l s o w i t h f i g u r e s o f b e t t e r t h a n 0 . 5 n s e c / m 

o b t a i n a b l e w i t h p u l s e d a c c e l e r a t o r s . C h o p p e r s , o f c o u r s e , h a v e f o u n d 

o t h e r u s e s i n c o n j u n c t i o n w i t h p u l s e d a c c e l e r a t o r n e u t r o n s o u r c e s . 

F o r e x a m p l e t w o c h o p p e r s a r e u s e d i n c o n j u n c t i o n w i t h t h e N e v i s P u l s e d 

C y c l o t r o n i n o r d e r t o r e d u c e g a m m a - f l a s h p r o b l e m s a n d n e u t r o n 

o v e r l a p [ 3 2 ] , a n d c h o p p e r s a r e a l s o u s e d t o a n a l y s e t h e t i m e d e p e n d e n c e 

o f n e u t r o n s p e c t r a i n m o d e r a t i n g s y s t e m s p u l s e d b y a c c e l e r a t o r s [ 3 3 ] . 
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FIG. 7. A schematic section of the ORNL fast chopper time-of-flight neutron spectrometer [Harvey, ] . A . , 
Neutron Physics (Уeater, M. L., Ed.) 2 (1962) 65, Academic Press]. (Courtesy of Academic Press, 
New York) 
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FIG. 8. Variation of neutron yield from uranium with electron energy [34] 
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3 . 3 . 2 . P u l s e d a c c e l e r a t o r s 

( a ) E l e c t r o n l i n e a r a c c e l e r a t o r . T h e c o m m o n e s t t y p e o f p a r t i c l e 

a c c e l e r a t o r t o b e u s e d a s a n i n t e n s e p u l s e d n e u t r o n s o u r c e i s t h e e l e c t r o n 

l i n e a r a c c e l e r a t o r . H e r e a p u l s e d e l e c t r o n b e a m , c h a r a c t e r i s t i c a l l y 

~ 1 A , i s p r o d u c e d f r o m a n e l e c t r o n g u n a n d a c c e l e r a t e d b y a n e l e c t r o -

m a g n e t i c w a v e t r a v e l l i n g a l o n g t h e i n s i d e o f a w a v e g u i d e . T h e w a v e -

g u i d e i s s u c h t h a t t h e e l e c t r i c f i e l d i s a x i a l , a n d i s l o a d e d s o t h a t t h e 

p h a s e v e l o c i t y o f t h e w a v e a t t h e i n p u t e n d m a t c h e s t h e i n j e c t i o n 

v e l o c i t y o f t h e e l e c t r o n s f r o m t h e g u n . T h e p h a s e v e l o c i t y i n c r e a s e s 

u n t i l a f t e r a f e w m e t r e s i t i s i n d i s t i n g u i s h a b l e f r o m t h e v e l o c i t y o f l i g h t . 

T h e e l e c t r o n b e a m e m e r g e s f r o m t h e e n d o f t h e w a v e g u i d e w i t h a n 

e n e r g y o f a t l e a s t s e v e r a l t e n s o f M e V a n d s t r i k e s a h e a v y e l e m e n t 

t a r g e t w h e r e i t p r o d u c e s a n e x t r e m e l y i n t e n s e f l a s h o f b r e m s s t r a h l u n g . 

T h e p h o t o n s p r o d u c e d e j e c t p h o t o a n d f i s s i o n n e u t r o n s f r o m t h e h e a v y 

t a r g e t a n d t h e s e a r e m o d e r a t e d i n a s l a b o f h y d r o g e n e o u s m a t e r i a l 

b e f o r e b e i n g a l l o w e d t o e s c a p e d o w n a s y s t e m o f f l i g h t t u b e s . F i g u r e 8 [ 3 4 ] 

s h o w s t h e v a r i a t i o n i n n e u t r o n y i e l d w i t h e l e c t r o n e n e r g y f o r s e v e r a l 

d i f f e r e n t h e a v y t a r g e t s a n d i t w i l l b e s e e n t h a t a n e l e c t r o n e n e r g y o f 

a t l e a s t 2 5 M e V i s r e q u i r e d f o r e f f i c i e n t n e u t r o n g e n e r a t i o n . A b o v e 

t h a t e n e r g y t h e n e u t r o n y i e l d i n c r e a s e s o n l y s l i g h t l y f a s t e r t h a n t h e 

e l e c t r o n e n e r g y a n d d e p e n d s e s s e n t i a l l y o n t h e t o t a l p o w e r i n t h e b e a m . 

T h e p r i m a r y n e u t r o n s p e c t r u m p r o d u c e d i s e s s e n t i a l l y a f i s s i o n 

s p e c t r u m p e a k i n g a t a n e n e r g y ~ 1 M e V a n d d r o p p i n g o f f f a i r l y r a p i d l y 

b o t h b e l o w a n d a b o v e t h i s e n e r g y . T h e n e u t r o n p r o d u c i n g t a r g e t 

f r e q u e n t l y h a s d i m e n s i o n s o f t h e o r d e r o f a f e w m e a n f r e e p a t h s i n o r d e r 

t o o b t a i n e f f i c i e n t c o n v e r s i o n o f t h e b r e m s s t r a h l u n g b e a m , s o t h a t s o m e 

d e g r a d a t i o n o f t h e n e u t r o n s p e c t r u m o c c u r s o w i n g t o i n e l a s t i c s c a t t e r i n g 

i n t h e h e a v y t a r g e t . H e n c e t h e e f f e c t i v e s p e c t r u m t e n d s t o p e a k r a t h e r 

b e l o w 1 M e V . T h i s n e u t r o n s p e c t r u m t h e n i n t e r a c t s w i t h t h e m o d e r a t o r 

i n o r d e r t o p r o d u c e a s l o w i n g d o w n s p e c t r u m w h i c h i n c r e a s e s t h e f l u x 

b e l o w a b o u t 1 0 0 k e V . 

F i g u r e 9 s h o w s a s c h e m a t i c s e c t i o n o f t h e S a c l a y n e u t r o n t a r g e t w h i c h 

c o n s i s t s o f a c y l i n d e r o f n a t u r a l u r a n i u m 3 c m i n d i a m . b y 1 0 c m l o n g , 

s u r r o u n d e d b y a w a t e r j a c k e t a n d b o r o n a b s o r b e r s . O u t s i d e t h i s a s s e m b l y 

a r e p l a c e d t h e t w o m o d e r a t o r s l a b s o f p o l y e t h y l e n e . T h e f u n c t i o n o f t h e b o r o n 

a b s o r b e r i s t o p r e v e n t t h e p a s s a g e o f s l o w n e u t r o n s b e t w e e n t h e t w o m o d e r a t o r 

s l a b s w h i c h w o u l d p r o l o n g t h e n e u t r o n p u l s e . T h e b o r o n i s n e v e r t h e l e s s 

t r a n s p a r e n t t o t h e p r i m a r y f a s t n e u t r o n s . F i g u r e 1 0 s h o w s t h e H a r w e l l 

b o o s t e d n e u t r o n t a r g e t . H e r e t h e e l e c t r o n b e a m i s s t o p p e d i n a c e l l c o n t a i n i n g 

f l o w i n g m e r c u r y , w h i l e m o s t o f t h e b r e m s s t r a h l u n g p r o d u c e d i s a b s o r b e d i n 

t h e 2 3 5 U s u b - c r i t i c a l a s s e m b l y w i t h w h i c h i t i s s u r r o u n d e d . T h e n e u t r o n s 

p r o d u c e d a r e m u l t i p l i e d i n t h e a s s e m b l y b y a f a c t o r o f l O . g i v i n g a p e a k n e u t r o n -

e m i s s i o n r a t e ~ 1 0 1 8 n / s e c . T h e n e u t r o n s t h e n p e n e t r a t e a b o r o n a b s o r b e r a n d 

a r e m o d e r a t e d i n t h e w a t e r t a n k s . T h e r e l a x a t i o n t i m e o f t h e m u l t i p l y i n g 

a s s e m b l y i s ~ 8 0 n s e c w h i c h i s t h e p r i c e p a i d f o r t h e m u l t i p l i c a t i o n 

o b t a i n e d . T h e r e l a x a t i o n t i m e o f t h e S a c l a y p l a i n t a r g e t i s o f t h e o r d e r 

o f t h e t i m e t a k e n f o r a p r i m a r y n e u t r o n t o c r o s s i t — s a y ~ 3 n s e c . I t 

i s t e c h n i c a l l y p o s s i b l e w i t h a n e l e c t r o n l i n a c t o a c h i e v e n e u t r o n e m i s s i o n 

r a t e s o f a f e w t i m e s 1 0 1 8 b y m a k i n g u s e o f t h e e n e r g y s t o r e d i n t h e 

w a v e g u i d e t o a c c e l e r a t e c u r r e n t s o f 2 0 o r 3 0 A o f e l e c t r o n s f o r a p e r i o d 

o f a f e w n s e c , w h i c h i s s h o r t c o m p a r e d t o t h e f i l l i n g t i m e o f t h e g u i d e . 
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T h i s t e c h n i q u e i s t h e n c o m p l e m e n t a r y t o t h e u s e o f a b o o s t e d t a r g e t 

a n d a l l o w s h i g h i n s t a n t a n e o u s e m i s s i o n t o b e o b t a i n e d i n s h o r t p u l s e s 

f o r u s e a t h i g h e r n e u t r o n e n e r g i e s . 

S E C T I O N V I E W 

(THE ELECTRON BEAM IS 
PERPENDICULAR TO THE SECTION) 

FIG. 9. Schematic section of the Saclay neutron target [36] 

NATURAL URANIUM g U 235 f 

FIG. 10. Neutron target (Harwell Booster) [34] 

F i g u r e 1 1 [ 3 5 ] s h o w s t h e s p e c t r u m f r o m t h e H a r w e l l b o o s t e d n e u t r o n 

s o u r c e w i t h a n d w i t h o u t t h e m o d e r a t o r p r e s e n t . T h e u n m o d e r a t e d f l u x 

f o r t h i s r a t h e r l a r g e n e u t r o n s o u r c e ( l i n e a r d i m e n s i o n s ~ 1 5 c m ) i s s h o w n 
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t o p e a k b e t w e e n 2 0 0 a n d 3 0 0 k e V , a n d t h e m o d e r a t e d f l u x i s g r e a t e r t h a n 

t h e u n m o d e r a t e d f l u x f o r e n e r g i e s b e l o w a b o u t 5 5 k e V , t h e i r r a t i o b e i n g 

a b o u t a f a c t o r o f 1 0 0 a t 1 k e V . W e s h o u l d a l s o n o t e h o w t h e p r e s e n c e 

o f t h e m o d e r a t o r r e m o v e s s o m e o f t h e s t r u c t u r e i n t h e s p e c t r u m d u e 

t o t h e s t e e l c a n n i n g o f t h e t a r g e t , a n d r e p l a c e s i t w i t h a n o t h e r s t r u c t u r e 

d u e t o t h e t h i n a l u m i n i u m w a l l s o f t h e m o d e r a t o r w a t e r t a n k a n d , a t 

h i g h e r e n e r g i e s , t h e o x y g e n i n t h e w a t e r ( 4 4 0 a n d 1 0 0 0 k e V ) . B e f o r e 

l e a v i n g t h i s s l i d e w e s h o u l d o b s e r v e t h a t t h e s m o o t h m o d e r a t e d s p e c t r u m 

b e l o w a b o u t 1 0 k e V h a s a n e n e r g y d e p e n d e n c e p r o p o r t i o n a l t o E ~ ó . 7 8 

( r a t h e r t h a n E " 1 ) d u e t o t h e l a r g e a m o u n ' o f l e a k a g e f r o m t h e s y s t e m . 

A b o v e a b o u t 1 0 k e V t h e s p e c t r u m d e c a y s - e v e n m o r e s l o w l y w i t h i n c r e a s i n g 

e n e r g y d u e , i n p a r t , t o t h e f a l l i n g n e u t r o n c r o s s - s e c t i o n f o r h y d r o g e n 

a b o v e t h i s e n e r g y 1 . 

BOOSTER LEAKAGE SPECTRA 

V 

/ 

WITHOUT WATER AND BORON 1 NORMALISED USING 
Г ELECTRON INPUT 

WITH WATER AND BORON J TO BOOSTER 

NEUTRON ENERGY (eV) 

FIG. 11. Neutron booster leakage spectra 

L e t u s n o w c o n s i d e r t h e p r o b l e m o f t h e c h o i c e o f m o d e r a t o r m a t e r i a l 

a n d t h i c k n e s s t o o b t a i n a n o p t i m u m s y s t e m , b o t h a s r e g a r d s f l u x a n d 

t i m i n g u n c e r t a i n t i e s d u e t o t h e s l o w i n g d o w n p r o c e s s . T h e c h o i c e o f 

m a t e r i a l i s e s s e n t i a l l y s i m p l e s i n c e c l e a r l y n e u t r o n s a r e m o d e r a t e d 

m o r e r a p i d l y i n h y d r o g e n t h a n i n a n y o t h e r m a t e r i a l , s o o u r m o d e r a t o r 

m u s t c o n t a i n a s m a n y h y d r o g e n a t o m s p e r u n i t v o l u m e a s p o s s i b l e . 

M i c h a u d o n [ 3 6 ] h a s s t u d i e d c a r e f u l l y t h e b e s t c h o i c e o f m a t e r i a l a n d 

1 The theory of neutron moderation shows that it is the product of the flux and the cross-section 
of the moderator nuclei which varies as 1/E for an infinite medium in the absence of capture. 
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c o n c l u d e s t h a t n y l o n ( 6 . 6 X 1 0 2 2 a t o m s / c m 3 ) a n d p o l y e t h y l e n e ( 7 . 9 X 1 0 2 2 

a t o m s / c m 3 ) a r e t h e b e s t p r a c t i c a l m o d e r a t o r s . W a t e r h a s a s i m i l a r 

h y d r o g e n a t o m d e n s i t y t o n y l o n b u t s u f f e r s f r o m t h e d i s a d v a n t a g e o f 

h a v i n g t o b e c o n t a i n e d . 

T h e c h o i c e o f t h i c k n e s s o f m o d e r a t o r i s m o r e c o m p l e x . M i c h a u d o n 

[ 3 6 , 3 7 ] h a s s t u d i e d t h i s p r o b l e m t h e o r e t i c a l l y a n d c a r r i e d o u t M o n t e C a r l o 

c a l c u l a t i o n s o n i n f i n i t e s l a b s o f m o d e r a t o r ( w a t e r ) o f v a r i a b l e t h i c k n e s s , 

c a l c u l a t i n g t h e n e u t r o n f l u x ( N ) , t h e s l o w i n g d o w n t i m e t a n d t h e v a r i a n c e 

cr2 o n . t h e l a t t e r q u a n t i t y a s f u n c t i o n s o f t h e s l a b t h i c k n e s s , a n d o f n e u t r o n 

e n t r a n c e a n d e m i s s i o n e n e r g y a n d a n g l e . I t w a s f o u n d t h a t b o t h t a n d cr 

i n c r e a s e w i t h t h e t h i c k n e s s i n i t i a l l y , t e n d i n g e v e n t u a l l y t o l i m i t i n g v a l u e s 

w h i c h c o r r e s p o n d t o t h e c o n d i t i o n s i n a n i n f i n i t e m o d e r a t i n g m e d i u m . 

I n F i g . 1 2 i s p l o t t e d t h e q u o t i e n t N / с г 2 w h i c h i s t a k e n a s a f a c t o r o f q u a l i t y 

o f t h e s o u r c e 2 , f o r 1 0 0 e V n e u t r o n s l e a v i n g t h e m o d e r a t o r . W e s e e 

t h a t t h e o p t i m u m t h i c k n e s s o f m o d e r a t o r i s a s e n s i t i v e f u n c t i o n o f t h e 

e n e r g y o f t h e p r i m a r y n e u t r o n s , a s o n e m i g h t e x p e c t , o n a c c o u n t o f t h e 

T H I C K N E S S ( \ ) 

FIG. 12. . N/o2 versus X for various Ee [36] 

F o r a f i s s i o n s o u r c e h o w e v e r , t h e o p t i m u m t h i c k n e s s a p p e a r s t o b e 

f r o m 3 t o 5 m e a n f r e e p a t h s a c c o r d i n g t o t h e h a r d n e s s o f t h e s p e c t r u m . 

T h i s t h i c k n e s s o f m o d e r a t o r t h e n l e a d s t o a m o d e r a t i o n t i m e j i t t e r 

e q u i v a l e n t t o a r e c t a n g u l a r d i s t r i b u t i o n o f d u r a t i o n 

2000 
A t ™ ~ i w m T n s e c 

2 This quantity is proportional to the neutron flux for constant resolution if the neutron burst 

is of very short duration. 
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This is equivalent to a length uncertainty in the flight path of the order 
of 2-3 cm. 

Figure 13 [36] shows the calculated spectra of the exit neutrons for 
various entrance energies and for a moderator of thickness 4X. The 
effect of the drop off in the hydrogen cross-section above 10 keV. is 
c learly seen. Finally Fig. 14 shows the variation of N and cr with exit 
angle and demonstrates that the high energy end of the spectrum 
becomes rather softer for large angles of emission. It should be 
mentioned here that the variation of a with 0exit shown in Fig. 14 takes 
account only of the variation in effective moderator thickness with angle. 
Since the moderator slab, in a practical case, is likely to be ~ 20 cm 
in diameter, the length uncertainty introduced into the flight path by 
having the finite slab other than normal to the direction of flight, far 
outweighs the rather smal l increase due to the change in effective 
thickness. 

EXIT ENERGY ( Es ) 

FIG. 13. Energy spectrum of exit neutrons versus thickness of the moderator for different entrance 
energies Ee [36] 

This discussion has shown that the problem of designing an optimum 
target arrangement for a pulsed accelerator spectrometer is very 
complex since there are many parameters which can be varied. In 
practice the pulsed source is normally being used simultaneously by a 
number of experimenters each of whom has different requirements, 
so that the final solution is inevitably a compromise. Figure 15, which 
shows the general layout of the Harwel l electron linac spectrometer 
system shows clearly how many beams can be used from the same 
pulsed source. These beams are used for t ime-of - f l ight experiments 
covering the energy region from about 10"2 to 107 eV. Under these 
circumstances the shortest pulse compatible with the relaxation time 
of the boosted target 100 nsec) is normally used, which optimizes 
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the system somewhere between 102 and 103 eV which is at about the 
geometric mean of the whole energy range used3. 

(b) Cyclotron. The use of the cyclotron as a pulsed neutron source 
has been developed at Columbia University where the Nevis 170-in. 
Synchrocyclotron has been used for many years in high resolution 
neutron spectroscopy. The synchrocyclotron accelerates protons to 
about 400 MeV, these particles forming a very intense bunch in the 
final orbit. This bunch can then be deflected downwards during one 
single orbit so that the whole bunch strikes the heavy lead target in 
a time short compared to the orbiting time. In the case of the Columbia 
machine, this ultimate burst width is about 20 nsec, and during this 
burst the instantaneous neutron production rate is ~ 5 X 1018n/sec, 

each proton boiling off several neutrons. Figure 16 [32] shows 
the general layout of the Nevis spectrometer including the two 
choppers referred to earlier which serve to remove the gamma flash 
and thermal neutrons from the beam. The discussion above concerning 
pulsed sources and moderation applies equally well to this accelerator, 
except the dimensions of the moderator are much greater (~10 cm) 
because of the higher energy of the incident neutrons. This leads to 
a slightly greater moderation time jitter than for the linacs, and to a 
slowing down spectrum which varies as E~0-9 . 

3 i . e . the accelerator pulse length becomes equal to the moderator time jitter in this energy range. 
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The 50 MeV sector focused cyclotron at Karlsruhe ¡38] has recently 
been used successfully as a neutron time-of-flight spectrometer. This 
accelerator can provide a high instantaneous neutron production rate 

1018) in a 1 nsec pulse and can also provide a very high repetition 
rate ( 2X 104 ppsec) which makes it a very powerful source for fast 
neutrons. In the resonance region, of course, the very short burst 
is not helpful because of the moderation time spread, and the high 
repetition rate cannot be used because of overlap. At 1 keV, for 
example, the moderation time spread is ~ 50 nsec, so that the effective 
neutron production rate is ~ 1016, and if á 100-m flight path is used to 
obtain a good resolution of 0.5 nsec/m, then the repetition rate must 
be reduced to, at most, 103 ppsec. Used under these conditions the 
count rate obtained would be at least an order of magnitude lower than 
the present Columbia or Harwel l capabilities. 

The Canadian proposal to build an Intense Neutron Generator (ING)[39], 
however, promises to provide a neutron t ime-of - f l ight system which will 
give fluxes in the resonance region which are several orders of magnitude 
higher than are presently available, for comparable energy resolution. 
This machine, which would provide facilities for a wide range of 
physics research, might be basically a ser ies of three separated 
orbit cyclotrons sequentially accelerating protons to 1 GeV. For 
time-of-flight spectroscopy, it would provide micropulses of 2.3 nsec 
duration providing a current of ~ 0.5 A of protons on target, at a 
cyclotron frequency of 50 MHz. Either single micropulses, giving an 
instantaneous neutron production rate of 3 X 1019 n/sec, or assemblies 
of a few micropulses, giving 4X 1018 n/sec, would be used, the repetition 
rate being adjustable, by the use of pulsed magnets, up to 104 pulses 
per second. Used in this direct way the performance of ING in the 
resonance region would be only marginally (if any) better than an 
advanced electron linac. It is proposed, however, that the output of 

' the accelerator might be dumped in a storage ring, to be withdrawn 
500 times per second to produce a 150-nsec pulse of staggering power, 
giving a neutron production rate in the pulse of 1023 n/sec. Even 
allowing for inefficiency of moderation because of the large size of the 
high power (65 M W ) target, such a machine would clearly provide a 
source for use in the resonance region which exceeds its competitors 
by several orders of magnitude. In all fairness, however, it must be 
pointed out that its cost would also exceed that of an electron linac by 
several orders of magnitude, and that we are talking here about a 
system which, if built, would be pushing technology to the limit or beyond. 

(c) Van de Graaff . The Van de Graaff accelerator is not competitive 
as a pulsed source of neutrons over a wide energy range with modern 
developments of pulsed linacs and cyclotrons. It does however have 
the advantage of comparatively low cost, and is unique in that it can 
produce very short pulses of neutrons in a narrow energy interval. 
With the advent of top terminal pulsing and the use of compression 
magnets, pulses of 10 mA of protons of duration 1 nsec can be produced. 
With the use of the 7Li (p , n)7 Be and T(p, n)3He reactions, these can produce 
short pulses of essentially monochromatic neutrons which can then be 
used to study by time-of-flight the spectra of neutrons inelastically 
scattered f rom suitable targets. The pulsed Van de Graaff accelerator 
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can also be used to study directly, by t ime-of - f l ight, the spectra of 
neutrons produced in nuclear reactions such as the (p, n) reaction for 
a range of target nuclei. 

APERTURE BAFFLE 
100 m HOUSE 

CYCLOTRON BLDG.' 

TARGET 

2 0 0 M HOUSE 

LOO m HOUSE 

И Х 47 АР.BAFFLE 

HOUSE 

CYCLOTRON' 
CHAMBER 

^CZLniT // H , J ^e-XJO-AP. T 
' SLOW // bai шли BAFFLE ' 

m ^ 

I ROAO \ V 

BALLOON 
FAST CHOPPER в 
SAMPLE CHANGER 

H* BALLOON-
BAFFLE 

TUNNEL 
WITH Hi FILLED 
BALLOONS 

AND 
N O t DETECTORS 

FIG. 16. Plan view of the Nevis neutron time-of-flight system including the synchrocyclotron and the 
200 m flight path [32]. (Courtesy of U.S. Atomic Energy Commission) 

The Van de Graaff accelerator has, of course, been used for many 
years as a continuous source of monochromatic neutrons, and this 
technique has been pushed by Newson close to its limit of resolution. 
By the use of the 7Li (p , n) Be reaction with conical collimation in a 
backward direction he is able to achieve a resolution of % 1 keV with 
counting rates ~ 1000 counts/min. This technique permits total neutron 
cross-sect ions to be measured rather rapidly one energy point at a 
time. The disadvantage is that this resolution is only really competitive 
with the pulsed accelerators using t ime-of - f l ight at energies in excess 
of 100 keV. This point is shown clearly in Fig. 17 [40] which compares 
the energy spread ДЕ obtained with various neutron spectrometers. 

3 .3 .3 . Pulsed reactor 

The IBR pulsed reactor at Dubna [41] is another pulsed source 
which has been extensively used for neutron t ime-of - f l ight spectroscopy. 
This machine is the antithesis of the synchrocyclotron, producing 
a long intense pulse of duration at least 40 /usee at half height. Here 
the accelerator pulse length exceeds the irreducible moderation time 
jitter at all useful energies so that good resolution can only be obtained 
with the aid of very long flight paths. In fact flight paths of up to 1 km 
in length are employed. 
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E N ( k * V ) 

FIG. 17. A summary of neutron energy resolution in the keV region. The Harwell pulsed cyclotron 
corresponds to the "pulsed cyclotron expected limit curve" above about 200 keV (Ref. [40] p.209). 
(Courtesy of North-Holland Publishing Co. ) 

The reactor core consists of a fixed part (plutonium rods inside 
a stainless steel shell) and two moving parts consisting of two lumps 
of 235U fastened to discs rotating about a horizontal axis. The larger 
of the two 235U lumps is mounted on a 110-cm diam. disc at a distance 
of 44 cm from its centre. It moves with a peripheral velocity of 
276 m/sec when the disc is rotating at its normal rate of 6000 rev/min 
and passes through the centre of the core with each revolution. A 
smaller lump of 235u is fastened to a small rotating disc of variable 
speed and passes with each turn through the edge of the core. When 
the two uranium lumps pass through the core simultaneously the 
reactor core becomes super-critical and generates an intense pulse of 
neutrons 8 times per second, of width ~ 36 jusec at half height. The 
purpose of the smaller lump of uranium is to enable the neutron pulse 
repetition rate to be altered without changing the pulse shape. 

The larger lump causes a reactivity change of 7.4%; the smaller 
lump a change of 0.4%. The peak intensity in the pulse is ~ 3 X 1018 n/sec; 
the mean intensity is 3 X 1014 n/sec. The upper limit to the mean power 
level is fixed by the cooling problems at about 6 kW. 

Used in this way the nominal resolution of the IBR with the 1000-m 
flight path is at best 40 nsec/m which is very poor except at low neutron 
energies. 

In 1965 however the IBR was successfully operated in a subcritical 
state (compare Harwell boosted target) being driven by a 30 MeV 
electron microtron giving a pulse length of 2^isec 50 times per second. 



NEUTRON SPECTROSCOPY 853 

The multiplication of the IBR during the pulse was 200, and out of the 
pulse was 10. Used in this way the neutron pulse length at half maximum 
was 4 цsec giving a t ime-of - f l ight resolution with the 1000-m flight 
path of 4 nsec/m which is intermediate between chopper and pulsed 
accelerator performance. This pulsed source has been used for many 
measurements including the first experiments with neutrons polarized 
by a dynamically polarized proton filter [42]. 

3 .3 .4 . Nuclear explosions 

The technique of using nuclear explosions for time-of-flight experiments 
has been developed at Los Alamos [43]. Here only a single pulse of 
neutrons is produced, but of such intensity that whole t ime-of - f l ight 
experiments are completed in one cycle, currents from detectors being 
recorded, rather than single events, as functions of the flight time. 
The nuclear device is situated at the bottom of a shaft 200 to 300 m deep, 
which serves as a flight path (it is evacuated), and the experimental 
equipment is set up in a tower above the shaft (Fig. 18). In the 

FIG. 18. Layout of a set of experiments using a nuclear explosion as a neutron source. The nuclear 
device was exploded a few seconds earlier two or three hundred metres underground. The vacuum 
pipe through which the neutrons travelled extends to the ground surface and on up the tower that houses 
the experiments. Two sleds containing experimental equipment are being towed to safety by winches 
while a third winch is pulling a package from the top of the tower. A few minutes later the ground will 
collapse and the tower will drop into a shallow crater (Ref. [43] p. 443). (Courtesy of North-Holland 
Publishing Co. ) 

' Pet re l ' explosion of June 1965 the moderator consisted of 5 cm of 
polyethylene with 6 cm of lead on the side towards the source, and 
2 cm of lead on the other side of the polyethylene. The nearest lead 
was 29 cm from the centre of the source, and it served to absorb 
gamma rays, to keep the moderator cool, and to control the velocity of 
the moderator. The duration of the pr imary pulse was less than 
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100 nsec, and by the time the neutrons were emitted from the 
moderator its thickness had been reduced to 8 mm, its velocity was 
5.5 cm/fisec, and its temperature 25 eV. In the Petrel experiment 
the lowest neutron velocity observed was 18 eV, corresponding to the 
velocity of the moderator, and the thermal flux peaked at 60 eV in the 
laboratory system, corresponding to 25 eV in the moving moderator. 
The moderator design can be adjusted to place the thermal peak in any 
desired energy region from a few eV to a few keV. 

The production rate of neutrons in the pulse is 1031 n/sec, so that 
1024 neutrons are produced in the 100 nsec pulse. This corresponds to 
running the present Harwell linac with 100 nsèc boosted pulses for at 
least 1010 seconds or about 300 years. Even if one allows say a factor 
of 10 for the large number of flight paths used with the linac, it still 
corresponds to 30 years of running, so that clearly a nuclear explosion 
is a very powerful time-of-flight source. Its most useful feature is 
the very short duration of the experiment which means that measure-
ments can be made on highly active materials which could not be 
attempted with more conventional methods. For example it becomes 
possible to measure very small sub-threshold fission cross-sections 
of highly active nuclides. The great disadvantage of course, apart from 
the cost and possible political difficulties, lies in the impossibility of 
repeating a measurement - and in the vulnerability to electronic 
failure. 

3. 3. 5. Time-of-f l ight electronics (data acquisition) 

This is a vast subject and is discussed at length in the literature [44]. 
It will suffice here to mention only the basic principles. A time-of-flight 
analyser consists essentially of a source of timing (clock) pulses, often 
locked to the basic cycle of the pulsed source, a scaler, and a memory 
of some sort. At the moment when the source is pulsed, or at some 
known time thereafter, the scaler is made to start counting the clock 
pulses. When the first neutron is detected at the end of the flight path, 
the scaler is stopped, so that its contents correspond to the time-of-flight 
of the neutron. The contents of the memory cell whose address 
corresponds to the contents of the scaler, is then incremented by one. 
In the case of the simplest (single-shot) type of electronics, the scaler 
contents are then set to zero and the whole process is repeated on the 
next cycle of the pulsed source. Thus there is built up in the memory 
a distribution of numbers corresponding to the time-of-flight spectrum of 
the neutrons. It is clear, however that if a second neutron is detected 
during a cycle, its time of arrival is not recorded, so that the single-
shot system tends to record too few counts in the later channels. If the 
count rate is small compared to the repetition rate of the pulsed source 
(p. r. f. ), this effect is small and is easily corrected for. If however 
the count rate begins to approach the p. r. f. then this simple system is 
insufficient. 

The next stage of development is to add a 'buffer' between the 
scaler and memory. This is a small fast temporary memory capable 
of recording only a few words of data. The scaler is then stopped only 
long enough to transfer its contents to the buffer and is then started 
again, its contents having been adjusted meantime to allow for the 
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momentary stop 1 цsec). This process can be" repeated severa l 
times during a cycle of the pulsed source. Meantime the process 
of incrementing the cells in the main memory whose addresses 
correspond to the words in the buffer , goes on at a much slower 
speed, the transfer time in this case may be as fast as ~ 20 /usee, in 
which case the buffer is not strictly necessary, or as slow as a few 
hundred ¡usee when the need for the fast buffer is obvious. With such 
a system for restarting the clock and for temporary storage of a few 
words of data, it is possible to operate at counting rates of a few 
times the p. r. f. with negligible losses. 

The clock pulses will be at the intervals chosen for the time 
channels, anywhere between a few nsec and a few /usee, and may 
even be programmed so as to give a certain number of very narrow 
channels followed by a number of wider channels, and so on, in order 
to achieve something approaching a constant value of ДЕ over the 
whole energy range studied. 

The main memory may be a core store memory with a relatively 
fast cycle time (a few /usee) or it may be magnetic tape with a relatively 
slow writing speed (few hundred psec) . The advantage of the former is 
fast writing speed, higher permiss ib le count rates with the same 
buffer , and immediate display of data. The advantage of the latter is 
relative cheapness, permanence of data, and very much la rger number 
of channels available. Core store memories in excess of 4000 channels 
become very expensive whereas quite inexpensive magnetic tape systems 
can give millions of channels if necessary. This is especially important 
if two-dimensional experiments are involved. The data recorded on 
magnetic tape are later analysed, in blocks, in a digital computer. 

The trend nowadays is towards the use of standard smal l computer 
hardware to provide both the core store and magnetic tape systems used 
for time-of-flight work. 

3. 4. Slowing down time spectrometer 

This instrument [45] does not compete in resolution with modern 
t ime-of - f l ight spectrometers. It consists of a large lead cube into 
which a pulse of fast (14 MeV) neutrons from the T(d, n) reaction is 
introduced f rom a 300 kV Cockcroft Walton set. It utilizes the fact that 
these fast neutrons slow down by many collisions with lead nuclei so 
that they remain as a nearly homogenous energy group, allowing the 
energy at which the neutrons are captured in a smal l sample placed in 
the cube to be deduced f rom the time between the initial pulse and the 
detection of the prompt capture gamma rays. The thermalization 
time is 2 msec in lead. This device has good enough resolution to 
allow some individual resonances in capture cross-sect ions to be 
observed, and has mainly been used for measurements of capture 
cross -sect ions in the energy range up to 50 keV. 

3. 5. Other types of spectrometer [46] 

Where the neutron source is weak and continuous, poor resolution 
measurements of fast neutron energy spectra can be obtained from the 
study of proton recoil tracks in nuclear emulsions, or f rom pulse 
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heights caused by suitably collimated recoil protons in proportional 
counters or scintillators. Another type of fast neutron spectrometer 
utilizes the exothermic reaction 3He(n, p)T + 0.76 MeV. Here the kinetic 
energy of the neutron is added to the reaction energy and can therefore 
be deduced from the pulse height obtained in a proportional counter 
containing the 3He. This type of reaction spectrometer has the 
advantage that no knowledge is required of the direction of motion of 
the incident neutron so that such an instrument is suitable for measuring 
fast neutron spectra close to a weak source. The resolution obtained 
here is typically >10%. 

4. LOW ENERGY NEUTRON SPECTROSCOPY 

4. 1. Neutron resonances 

By low energy neutron spectroscopy we mean essentially the study 
of neutron resonance interactions with nuclei, the cross-sections for 
these reactions, and the products of the reactions. The reactions we 
refer to consist of scattering and radiative capture which occur for all 
target nuclei, exothermic reactions such as (n, p) and (n, a) which occur 
for a few light nuclei like 3He, 6 Li, and ЮВ, and fission which occurs 
in 235u and some heavier nuclei. 

The energy region of sharp resonance peaks in the cross-section 
extends up to many MeV for the light elements, while for heavy fissile 
nuclei like 235U, all sharp structure is gone from the cross-section 
above a few keV. Of course we must be careful to distinguish between 
the absence of structure due to poor resolution, and that due to the 
genuine overlap of many resonances. Since our purpose in this 
section is to study resonance cross-sections and reactions, let us 
begin by considering what a resonance is, what are its measurable 
features, and how we should determine these with the aid of the 
spectrometers described in section 3. 

We find pronounced resonances, or peaks in the cross-section for 
nuclear reactions when semi-stationary states exist in the compound 
nucleus formed in the collision. By semi-stationary states we mean 
decaying states whose lifetimes are long compared with the periodic 
time of the compound nucleus - i . e. the time taken for the compound 
nucleus to return to its configuration at the moment of impact. This 
implies that the widths (Г) of the states are small compared with their 
separation (D). The widths of the states are related to their lifetimes 
through the uncertainty relationship, and we can write for a resonance, s 

and the mean separation is related to the periodic time in the same way 

Where the compound nucleus can decay in a number of different ways, 
the total width r s is the sum of the partial widths r¡$ corresponding to 
the various modes, or channels of decay. Each mode of decay for which 
the quantum mechanical states of the products are completely 

R S TS ~ -FT (4. 1) 

DT ~ fi (4. 2) 
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determined, is called a channel. Thus the probability of decay of 
the compound nucleus per unit time through channel i is given by 

.IL (4.3) 

In low energy neutron induced reactions, the open channels are those 
for neutron re -emiss ion, for charged particle emission in the case of 
a few light elements, for fission in the case of a few heavy elements, 
and for radiation. There are many channels for radiative decay, 
because of the large number of states lying below the neutron separation 
energy, so that very often only the sum of the partial widths of the 
radiation channels 

Г У = 1 Г Г Г ,<4-4> 
i' 

is observed. It might easily be imagined that the fission mode of decay 
would also occur through many channels, corresponding to the multitude 
of possible quantum states of the fragments. Experiment has shown, 
however, that the low energy neutron induced fission process corresponds 
to only a smal l number of open channels, which implies that the fission 
channels correspond not to the many possible final products, but to the 
smal l number of quantum states in which the compound nucleus can 
exist at the so-ca l led saddle point. This interesting topic is discussed 
in detail in the companion lecture course of J. E. Lynn (not published in 
these proceedings). 

The effect of the existence of a well isolated semi-stationary state 
on the cross-sect ion for a low energy ( s -wave ) neutron interaction is 
expressed in the Bre i t -Wigner single level formulae [47]. Since we 
are now speaking about a single level, we shall drop the superscript s 
and write for a reaction channel r, 

a . , t ( E ) - r ^ g ( J ) ( l i y < 4 - 5 > 

where X is the de Brogl ie wavelength of the relative motion of neutron 
and target (divided by 2тт), IJ, is the neutron width, Г the total width 
of the resonance, E is the neutron energy and ER the resonance energy, 
and g(J) a statistical spin factor depending on the total angular 
momentum J of the compound nucleus state associated with the 
resonance: g(J) = (2J + 1)/2(2I+ 1). IÏ is the width associated with 
the reaction being considered and may correspond to one or more 
channels. 

The total width 

Г = Гп + ЕГГ (4.6) 

The reason why we have grouped the partial widths in this way is 
that for neutron interactions, the neutron width Гп, corresponds to 
the entrance channel (we assume here low energy s -wave neutrons 
involved, and that only one neutron channel is open). The re -emiss ion 
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of a neutron through the entrance channel (elastic scattering) leads 
to a different behaviour of the cross-sect ion because of interference 
between the resonance scattered wave and the wave corresponding to 
hard sphere, or potential scattering. The Breit-Wigner single level 
formula for s-wave scattering is therefore 

q (E) = 7Г Я2 g(J) r°2 , ,4*Xg(J)rn (qp/4,r )* (E -E R ) 
crn.n (E ) n e ^ ' ( E - E R ) 2 + ( è r ) 2 ( E - E r ) 2 + ( V n 2 P { ' 

where crP is the cross-sect ion for potential scattering. The second 
term is the one describing the interference between the resonance and 
potential scattered waves. 

These formulae contain implicitly the assumption that kR « 1 
where к is the neutron number outside the nucleus (k = 2ir/X), and R is 
the nuclear radius. In this simple form, however, they represent a 
very good approximation to the behaviour of the cross-section up to an 
energy of several keV. We note that while the reaction widths in genera.1 
change only very slowly with E, the s-wave neutron width Гп , var ies 
as ч/Ê. It is c lear f rom the Brei t -Wigner formulae that "the total width 
of a wei l- isolated resonance is indeed closely related to the width of 
the cross-sect ion peak as observed on an energy scale. In the absence 
of resolution or other broadening of the curve it would be equal to the 
full width at half height of the peak in the cross-sect ion curve. These 
simple formulae can be general ized to allow for finite values of kR and 
1 > 0, or the much more elaborate multi level formal ism can be invoked 
to deal with the situation where Г is not small compared with D. Never-
theless the major i ty of the leve l parameters obtained f rom low energy 
neutron cross-sect ion measurements have been deduced with the use of 
the single leve l formulae only and we shall make use of them in the 
interpretation of the cross-sect ion curves, wherever possible. From 
an analysis of the cross-sections for low energy neutron induced 
reactions, we can hope to derive values of the potential scattering 
cross-sect ions, стР, the neutron and radiation widths of resonances in 
a wide variety of nuclei, and the fission widths in very heavy ;ч " le i . 
We can also observe the resonance spacings D, and in favourable cases, 
the angular momenta J, of the resonances. The spectra of gamma 
rays following neutron capture into definite resonance levels can be 
studied, and also in certain cases, the mass distribution of the fragments 
released in the fission of heavy nuclei. 

Since all of these quantities relate to highly excited semi-stationary 
states above the neutron separation energy, i. e. at excitations of 
5-10 MeV, we cannot hope in general to interpret these quantities 
individually in terms of nuclear theory. We can, however, hope to 
interpret the mean values of the widths and spacings and the ratios of 
these quantities. In particular we would wish to observe the variation 
of these mean values with nuclear mass and charge and hope to interpret 
the variations in terms of nuclear structure. In addition to the mean 
values of widths and spacings, we also obtain the statistical distributions 
of these quantities, and the dependence, if any, of the mean values and 
distributions on angular momentum. 

In the case of radiative capture, the study of resonance capture 
gamma-ray spectra helps to explain the behaviour of the total radiation 
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width Гу with nuclear mass and charge. It also throws light on the 
nature of low lying states in the compound nucleus, which are the final 
states reached in transitions from the capturing state. Here we obtain 
information about low lying states which can be fitted into detailed 
level schemes which depend strongly on the structure of the compound 
nucleus. Similarly in the study of fission cross-sections, we also 
obtain useful information concerning the low lying states of the highly 
deformed fissioning compound nuclei at the saddle point. 

4. 2. The transmission experiment 

This is the most fundamental method of deriving a cross-section, in that it 
provides an absolute measurement of the total cross-section through the defining 
equation 

T = N/N0 = ехр(-пстпт) (4.8) 

where Nq is the number of neutrons of fixed energy incident normally 
per unit time on a uniform slab sample of the pure nuclide under study, 
having a superficial atomic density of n atoms per barn (10"24 cm 2 ) and 
a total cross-section of стпх barns, N is the number transmitted per 
unit time without interaction, and T = N/Nq is called the transmission 
of the sample. Note that this equation follows immediately from the 
concept of the total cross-section as the effective cross-section area of 
the nucleus for incident point particles. 

Hence a measurement of T , with n known, defines стпт absolutely. 
Note that in such a measurement the efficiency of the neutron detector 
used need not be known, so long as it is constant, since the same 
eff iciency factor e wil l appear in both N and No and will cancel. The 
measurement must, of course, be done in good geometry, that is, the 
neutron source and detector must be well separated, so that the neutron 
flux is nearly normal to the sample, and the sample must be far from 
both the source and detector. If the sample is close to the detector or 
the source, there wil l be a considerable probability of neutrons scattered 
in the sample reaching the detector, so that the apparent total cross-
section measured wil l be too low. The sample must be far enough from 
both source and detector that the solid angle (divided by 4ж) subtended 
by either at the sample, is very much smaller than the uncertainty aimed 
at in the cross-section measurement. 

Again in a real experiment, one must distinguish carefully between 
those events observed in the detector which are due to the arrival of 
neutrons in the narrow energy interval being studied, and those events 
which are due to other causes (background). Merely to block the beam, 
or switch off the neutron source, is not normally a useful way of 
determining the background count rate, since part or even most of 
the background is usually associated with the neutron beam itself. In 
the case of the crystal spectrometer, it may be due to higher order 
Bragg reflections which introduce neutrons of energy different from 
the primary beam. In the case of monochromatic neutrons from nuclear 
reactions, there is the possibility of neutrons being thermalized and 
counted with high efficiency, and in the t ime-of-f l ight spectrometers, 
there is normally a very intense flux of gamma rays and fast neutrons 
through the detector early in the cycle, which may cause delayed events 
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i n t h e d e t e c t o r w h i c h a r e i n d i s t i n g u i s h a b l e f r o m s l o w e r n e u t r o n s . 

F u r t h e r m o r e t h e b a c k g r o u n d c o u n t i n g r a t e i s g e n e r a l l y d e p e n d e n t o n 

t h e t h i c k n e s s o f t h e t r a n s m i s s i o n s a m p l e b e i n g s t u d i e d , s i n c e m o s t o f 

t h e b a c k g r o u n d e v e n t s a r e d u e t o n e u t r o n s o r g a m m a r a y s w h i c h h a v e 

i n f a c t p a s s e d t h r o u g h t h e s a m p l e . 

T h e n o r m a l m e a n s o f d e t e r m i n i n g t h e t r u e b a c k g r o u n d i s b y t h e 

u s e o f r e s o n a n c e f i l t e r s i n w h i c h f i l t e r s o f m a t e r i a l s h a v i n g v e r y s t r o n g 

r e s o n a n c e s a r e i n s e r t e d i n t h e b e a m . C l o s e t o t h o s e r e s o n a n c e s t h e 

v a l u e o f n a n T f o r t h e f i l t e r i s v e r y l a r g e s o t h a t t h e t r a n s m i s s i o n T 

o f t h e f i l t e r a t r e s o n a n c e i s a r b i t r a r i l y c l o s e t o z e r o . T h i s t h e n g i v e s 

a s p o t m e a s u r e m e n t o f t h e b a c k g r o u n d a t t h e e n e r g y o f t h e f i l t e r 

r e s o n a n c e , a n d t h e e f f e c t o f t h e t h i c k n e s s o f t h e s a m p l e a n d t h e f i l t e r 

i t s e l f o n t h e b a c k g r o u n d m u s t b e s t u d i e d a n d c o r r e c t e d f o r . W h e n a 

n u m b e r o f b a c k g r o u n d p o i n t s h a v e b e e n e s t a b l i s h e d i n t h i s w a y , a n d 

t h e i r d e p e n d e n c e o n s a m p l e t h i c k n e s s u n d e r s t o o d , t h e b a c k g r o u n d c a n 

t h e n b e c a l c u l a t e d f o r a g i v e n e x p e r i m e n t . T h e r e s o n a n c e f i l t e r t e c h n i q u e , 

o f c o u r s e , c a n o n l y b e a p p l i e d w h e r e t h e s p e c t r o m e t e r r e s o l u t i o n i s 

r e a s o n a b l y g o o d , i . е . Д Е < D . 

L e t u s s u p p o s e t h e n t h a t w e h a v e a t i m e - o f - f l i g h t s p e c t r o m e t e r w i t h 

a m u l t i c h a n n e l t i m e a n a l y s e r s o t h a t w e c a n m a k e t r a n s m i s s i o n m e a s u r e -

m e n t s a t m a n y e n e r g y p o i n t s s i m u l t a n e o u s l y o v e r a r a n g e rcf e n e r g y u p 

t o a f e w k e V . W e s h a l l a s s u m e t h a t o u r t r a n s m i s s i o n m e a s u r e m e n t i s 

d o n e i n g o o d g e o m e t r y , t h a t w e h a v e e l i m i n a t e d t h e v e r y s l o w n e u t r o n s 

f r o m p r e v i o u s c y c l e s o f t h e p u l s e d s o u r c e b y u s e o f a s u i t a b l y c h o s e n 

b o r o n f i l t e r , a n d w e h a v e s t u d i e d c a r e f u l l y t h e b a c k g r o u n d c o n d i t i o n s s o 

a s t o e n s u r e t h a t t h e b a c k g r o u n d c o u n t r a t e i s s m a l l 1 0 % o f w a n t e d c o u n t s ) 

a n d k n o w n . W e a r e t h e n r e a d y t o m a k e t r a n s m i s s i o n m e a s u r e m e n t s a s 

a f u n c t i o n o f n e u t r o n t i m e - o f - f l i g h t , m o v i n g t h e t r a n s m i s s i o n s a m p l e i n t o 

a n d o u t o f t h e n e u t r o n b e a m e v e r y f e w m i n u t e s w i t h s o m e a u t o m a t i c 

d e v i c e , i n o r d e r t o m i n i m i z e n o r m a l i z a t i o n e r r o r s b e t w e e n N a n d N 0 . 

W e t h e n o b t a i n a t r a n s m i s s i o n c u r v e s u c h a s i s s h o w n i n F i g . 1 9 , o r 

p o s s i b l y a s e r i e s o f s u c h c u r v e s , f o r d i f f e r e n t s a m p l e t h i c k n e s s e s . I n 

o r d e r t o a n a l y s e t h e s e c u r v e s , l e t u s r e w r i t e t h e s i n g l e l e v e l B r e i t -

W i g n e r f o r m u l a f o r t h e t o t a l c r o s s - s e c t i o n ( a n n + a n r ) i n t h e f o l l o w i n g 

s i m p l e w a y 

стр 2 op a x 
n l 1 + x 2 X 1+x2 

( 4 . 9 ) 

w h e r e 

т 0 = СТПТ ( E r ) = 4л- Ж g r n / F 

к = ( Е - Е Я ) / ( | Г ) 

a n d 

стр = 4гга2 

w h e r e a i s t h e s c a t t e r i n g l e n g t h . W e n o t e t h a t E q . ( 4 . 9 ) l i k e ( 4 . 5 ) a n d 

( 4 . 7 ) r e f e r s t o c e n t r e o f m a s s e n e r g i e s a n d w a v e l e n g t h s . T h e s a m e 

f o r m s o f t h e e q u a t i o n s h o l d a l s o f o r l a b o r a t o r y c o - o r d i n a t e s , w h i c h a r e 
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the ones used in practice, except that in this case it is understood 
that the target nuclei are at rest. The target nuclei, however, have 
thermal motions and so the formulae for laboratory co-ordinates must 
take into account these thermal motions. (Doppler broadening) and we 
must write 

стЛпт = ( /З' х> + 0 03.x) + 4тга2 (4.10) 

where 

к is Boltzmann's constant, m and M are the masses of the neutron and 
target nucleus respectively, and Te f f is an effective temperature 
which depends on the Debye temperature of the target crystal 

p dy 

-oo 

and 

The expression for the transmission can then be written as 

T(E) = J exp • n % T (E ' ) j R(E'-E)dE' (4. 11) 

where R(E) is the resolution function of the spectrometer, which in 
general is a complicated skew function. 

FIG. 19. Transmission measurements on W [from Harvey, I . A . , Neutron Physics, (Yeater, M. L. , Ed.) 
(1962) 84] . (Courtesy of Academic Press, New York) 
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T h e m o s t o b v i o u s w a y t o d e t e r m i n e t h e p a r a m e t e r s o f t h e 

r e s o n a n c e s i n o u r m e a s u r e d t r a n s m i s s i o n c u r v e s i s t h e n t o a t t e m p t 

t o f i t t h e m w i t h t h e a b o v e f o r m u l a ( 4 . 1 1 ) . I n t h i s c a s e w e m u s t k n o w 

t h e r e s o l u t i o n f u n c t i o n R ( E ) o f t h e s p e c t r o m e t e r - ( s e l d o m e a s y t o 

a c h i e v e ) . T h e s h a p e a n a l y s i s p r o g r a m m e o f H a r v e y a n d A t t a [ 4 L i ] d o e s 

e x a c t l y t h i s f o r w e l l i s o l a t e d r e s o n a n c e s u s i n g t h e I B M 7 0 9 0 c o m p u t e r ' , 

p r o v i d e d t h a t t h e r e s o l u t i o n f u n c t i o n c a n b e r e p r e s e n t e d b y a g a u s s i a n 

f u n c t i o n , a n d t h a t t h e r e s o l u t i o n a n d D o p p l e r w i d t h s a r e s m a l l , c o m p a r e d 

w i t h t h e n a t u r a l w i d t h o f t h e r e s o n a n c e . T h e p r o g r a m m e s t a r t s f r o m a 

f i r s t e s t i m a t e o f E R , Г a n d g r n , a n d d e r i v e s b y a l e a s t s q u a r e s t e c h n i q u e 

a b e s t s e t o f p a r a m e t e r s . I t t h e n s t a r t s f r o m t h i s n e w s e t a n d r e - i t e r a t e s 

u n t i l a c o n v e r g e n c e c r i t e r i o n i s s a t i s f i e d . T h e c o s t o n t h e 7 0 9 0 c o m p u t e r o f 

f i t t i n g a s i n g l e r e s o n a n c e i n a s i n g l e s a m p l e ( s a y 2 i t e r a t i o n s ) w a s e s t i m a t e d 

a t a b o u t $ 2 . T h e p r o g r a m m e c a n h a n d l e u p t o 6 r e s o n a n c e s a t o n e t i m e . 

M o r e s o p h i s t i c a t e d s h a p e a n a l y s i s p r o g r a m m e s a r e n o w i n u s e , 

f o r e x a m p l e a t S a c l a y [ 5 0 ] w h e r e t h e p r o g r a m m e c a n h a n d l e m u l t i p l e 

r e s o n a n c e s a n d m u l t i p l e s a m p l e s s i m u l t a n e o u s l y , w h e r e t h e r e s o l u t i o n 

f u n c t i o n c a n b e g i v e n a r b i t r a r y s h a p e , w h e r e f i r s t o r d e r m u l t i l e v e l 

i n t e r f e r e n c e e f f e c t s a r e i n c l u d e d i n t h e a d d i t i o n o f t h e ' t a i l s ' o f r e s o n a n c e s , 

a n d w h e r e a l s o t h e c h a n g e i n t h e p o t e n t i a l s c a t t e r i n g p h a s e s h i f t w i t h 

FIG. 20. 2Aand R as functions of E for two flight paths on Harwell Linac, with and without cooling 

A l l s h a p e a n a l y s i s p r o g r a m m e s , h o w e v e r , r a p i d l y l o s e t h e i r 

u s e f u l n e s s w h e n Л o r R b e c o m e c o m p a r a b l e w i t h Г . S i n c e , h o w e v e r , 

Г i s n o r m a l l y m u c h l e s s t h a n D , t h e l e v e l s p a c i n g , t h e r e i s s t i l l a w i d e 

e n e r g y r e g i o n w h e r e Д a n d R a r e s m a l l c o m p a r e d w i t h D , s o t h a t s h a r p 

d i p s a r e s t i l l o b s e r v e d i n t h e t r a n s m i s s i o n c u r v e , e v e n a l t h o u g h t h e i r 

w i d t h s b e a r l i t t l e r e l a t i o n t o t h e r e s o n a n c e w i d t h s ( F i g . 2 0 ) . T h i s i s t h e 

e n e r g y r e g i o n w h e r e a r e a a n a l y s i s i s u s e f u l . P r o v i d e d t h e r e s o l u t i o n 

f u n c t i o n d o e s n o t h a v e l o n g t a i l s a s s o c i a t e d w i t h i t , t h e a r e a a b o v e a 

d i p i n t h e t r a n s m i s s i o n c u r v e i s i n d e p e n d e n t o f t h e r e s o l u t i o n f u n c t i o n , 

d e p e n d i n g o n l y o n t h e l e v e l w i d t h s a n d Д . I n d e e d f o r v e r y t h i n s a m p l e s . 
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the limiting area is also independent of Л being given by [51]: 
A e = 7гпа0Г/2 (па0 < 1) where AE is the area (in energy units) above 
the transmission dip when plotted on an energy scale. For thicker 
samples, the Doppler broadening becomes important, and for very thick 
samples the resonance area is dominated by the ,interfer ence term 
<¡>(¡3, x) in (4.10). This is an odd term which leads to the well-known 
interference minimum in the cross-section at an energy just below the 
resonance. For thick samples the increased transmission at this low 
cross-section point gives rise to a positive hump in the transmission 
curve (Fig. 21), and when the sample is thick enough this hump has a 

320 
72.70 

340 1 

69.92 
360 

67.30 
380 
64.83 

400 CHANNEL No. 
62.49 ENERGY eV 

FIG.21. The transmission of four samples of thorium over the 69 eV resonance (Ref. [86], p. 204). 
(Courtesy of North-Holland Publishing Co.) 
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FIG.22. Transmission area versus sample thickness. (Lynn, J .E. , Nucl. Phys. 7 (1958) 605, Fig.5). 
(Courtesy of North-Holland Publishing Co. ) 
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larger area than the resonance dip, leading to negative resonance areas 
(Fig. 22). In the method of analysis due to Lynn [52], the experimental 
resonance area measurement is used to obtain values of the quantity 
ст0а2/Х2 (barns) corresponding to a series of values of rX/a(eV). 
Several such curves are obtained from area measurements on the same 
resonance but with different sample thicknesses, and the convergence 
of these curves yields values of a0 and Г or gi;, and Г, the best fit 
being obtained by a least squares procedure using tangents to the 
curves close to the region of convergence (Fig. 23). 

T 1—i i i i 114 
< « 3 y = 86.5 

- 4 2 x y 1 6 0 = 1.69 

51 >?'30V = 8.55 
52 = 3.97 

66 eV resonance 2 3 8U + n 

\ 10 

1.0 

I \ 
I \ 

I i i i i i I I I 1 1 I i i ч 1 i i 
1.0 

Г Х / a (eV) 

FIG. 23. Resonance analysis with thick samples (Ref. [52], p. 315). (Courtesy of North-Holland 
Publishing Co.) 

Harvey and Atta [49] have also written a computer programme 
which fits resonance areas to up to 20 resonances at a time for a single 
sample thickness. This programme outputs the value of gI7, corresponding 
to a given value of Г so that if this is done for number of values of Г 
and for several different samples, in principle Г and gl^, can again be 
determined for each level. The cost here of the computing time was 
quoted as ~$10 for one sample and one value of Г. 

A further variation on the area method of analysis is the use of the 
self-indication area as used by the Columbia team [32]. Here the detector 
consists of a foil of the material under study surrounded by an array of 
7 - r a y detectors. The spectrum observed with no transmission sample in 
the beam is thus a series of peaks corresponding to the resonances, and 
the effect of the transmission sample is to reduce the intensity of these 
peaks (Fig. 24). The advantage of this method is that the background level 
is obtained at once, but the interpretation of the data is less straightfor-
ward than for a 'flat detector' and the method has not been adopted by other 
experimenters. 

Although the majority of tabulated values of grn and Г have been ob-
tained from area analyses, nevertheless shape analysis makes much better 
use of the available data; where for example two resonance curves overlap 
due to rather poor resolution, it is necessary to use a combination of shape 
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a n d a r e a a n a l y s i s i n o r d e r t o o b t a i n v a l u e s o f g r n f o r e a c h o f t h e t w o 

l e v e l s . O f c o u r s e i n s u c h a c a s e t h e s h a p e a n a l y s i s c a n n o t g i v e t h e v a l u e s 

o f Г w i t h a n y p r e c i s i o n , s i n c e w e p o s t u l a t e d p o o r r e s o l u t i o n . T o o b t a i n 

t h e f u l l w i d t h s i t i s n e c e s s a r y t o u s e t h i s t y p e o f f i t t i n g o n t h e t r a n s m i s s i o n 

c u r v e s f o r a n u m b e r o f v e r y d i f f e r e n t s a m p l e t h i c k n e s s e s . 

FIG. 24. Old (1956) self-indication curve for natural Ag showing resonant peaks at 133 to 172 eV, 
with and without an Ag transmission sample (Ref. [32], p. 395). (Courtesy of U. S. Atomic Energy 
Commission) 

A n o t h e r u s e f u l f e a t u r e o f s h a p e a n a l y s i s i s t h a t t h e s t u d y o f t h e c r o s s -

s e c t i o n b e t w e e n l e v e l s c a n r e v e a l s m a l l r e s o n a n c e - r e s o n a n c e i n t e r -

f e r e n c e e f f e c t s w h i c h c a n l e a d t o s p i n a s s i g n m e n t s o f r e s o n a n c e s o n c e 

t h e s p i n o f o n e r e s o n a n c e i s k n o w n [ 5 5 ] . I t m u s t a l s o b e n o t e d t h a t s u c h 

a c a r e f u l a n a l y s i s o f t h e s h a p e o f t h e t r a n s m i s s i o n c u r v e s i s n e c e s s a r y t o 

e x t r a c t t h e p o t e n t i a l s c a t t e r i n g c r o s s - s e c t i o n a p . 

F o r s e v e r a l n u c l e i i n t h e r e g i o n A ^ 5 0 - 6 0 t h e l e v e l s p a c i n g i s r a t h e r 

w i d e ( a f e w k e V ) , b u t t h e s - w a v e s t r e n g t h f u n c t i o n ^ Г „ )•/<( D ]> i s l a r g e 

w h i c h l e a d s t o s t r o n g o v e r l a p p i n g o f t h e r e s o n a n c e s ( F i g . 2 5 ) [ 5 6 ] . I n 

t h i s r e g i o n t h e s i n g l e l e v e l B r e i t - W i g n e r f o r m u l a i s n o t c a p a b l e o f p r o -

v i d i n g a f i t t o t h e s h a p e o f t h e c r o s s - s e c t i o n c u r v e , a l t h o u g h r o u g h v a l u e s 

o f t h e p a r a m e t e r s o f t h e r e s o n a n c e s c a n b e e x t r a c t e d . 

S i n c e f o r t h e s e n u c l e i Г п » Г у , t h e v a l u e o f J c a n a l s o b e o b t a i n e d b y 

i n s p e c t i o n o f t h e r e s o n a n c e p e a k c r o s s - s e c t i o n s w h i c h h a v e t h e v a l u e 

47Г A 2 g ( J ) . I n o r d e r t o f i t t h e c r o s s - s e c t i o n ( o r t r a n s m i s s i o n ) c u r v e s h o w e v e r , 

a n d t o o b t a i n стр , a m u l t i - l e v e l c r o s s - s e c t i o n f o r m u l a m u s t b e u s e d . 

T h e m e t h o d u s e d t o f i t t h e d a t a o n F i g . 2 5 i s d e s c r i b e d i n R e f . [ 5 7 ] . I t 

i s b a s e d o n t h e R - m a t r i x f o r m a l i s m o f W i g n e r a n d E i s e n b u d [ 5 3 ] , b u t 

m a k e s u s e o f a m o d i f i c a t i o n d u e t o T h o m a s [ 5 8 ] . T h i s r e d u c e s t h e c o m p l i -

c a t e d R - m a t r i x t o a r e l a t i v e l y s i m p l e f u n c t i o n i n t h e c a s e w h e r e t h e r e -

a c t i o n p a r t i a l w i d t h f o r e a c h c h a n n e l , e x c e p t t h e e n t r a n c e c h a n n e l , i s m u c h 

l e s s t h a n t h e l e v e l s p a c i n g . T h i s c o n d i t i o n h o l d s f o r t h e p r e d o m i n a n t l y 

s c a t t e r i n g c r o s s - s e c t i o n o f t h e n u c l e i i n t h e m a s s r e g i o n 5 0 - 6 0 , a n d i n 

55 
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t h i s c a s e t h e r e d u c e d R - f u n c t i o n ( f o r t o t a l a n g u l a r m o m e n t u m J ) c a n b e 

w r i t t e n 

Mn 
I . r. 

' 2 1 l\Jp 
( 4 . 1 2 ) 

w h e r e t h e s u m i s o v e r a l l l e v e l s X o f a n g u l a r m o m e n t u m J w i t h e i g e n v a l u e s 
2 

E \ j a n d r e d u c e d n e u t r o n w i d t h s 7 \ j n . T h e w i d t h T X J r i s t h e t o t a l r e a c t i o n 

w i d t h o f t h e l e v e l X . T h e n e u t r o n w i d t h ( f o r s - w a v e n e u t r o n s ) i s g i v e n b y 

r XIn= 2 k a ^Jn ( 4 . 1 3 ) 

w h e r e к i s t h e n e u t r o n w a v e - n u m b e r a n d a i s t h e a r b i t r a r y r a d i u s f o r t h e 

e n t r a n c e c h a n n e l . 

• 1 0 0 0 

i-u 
100 

2 

3 

CO
 

/ У Ц 
\ I ' * 

1.0 10 102 • 103 104 

NEUTRON ENERGY (eV) 

FIG. 25. The observed total neutron cross-section of manganese [56]. (Courtesy of American Institute 
of Physics) 

T h e c o l l i s i o n f u n c t i o n U j ( E ) w h i c h i s t h e a m p l i t u d e o f t h e o u t g o i n g w a v e 

i n t h e e n t r a n c e c h a n n e l r e s u l t i n g f r o m t h e s c a t t e r i n g o f a u n i t p l a n e w a v e i s , 

f o r s - w a v e s , 

U j ( E ) = e x p ( - 2 i k a ) 
1 + i k a R j ( E ) 

1 - i k a R j ( E ) 
( 4 . 1 4 ) 

a n d f r o m t h i s t h e t o t a l c r o s s - s e c t i o n i s g i v e n b y 

i + i 
2ir 

- k2 Y g j ( 1 - R e U j ( E ) ) 

1= i - i 

( 4 . 1 5 ) 

w h e r e R e s i g n i f i e s t h e r e a l p a r t o f t h e c o m p l e x U j ( E ) . 

I n t h e a p p l i c a t i o n o f t h e s e e q u a t i o n s t o f i t t i n g t h e c r o s s - s e c t i o n c u r v e , 

t h e R f u n c t i o n i s s p l i t u p i n t o 2 c o m p o n e n t s 

„ „ „ local „ residual 
R j ( E ) = R , + R j (4.16) 

55* 
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The f irst term is calculated f rom the parameters of the levels in the 
energy range under study, and is responsible for the main features in the 

residual 
observed curve. The second term, Rj is responsible for slow 
•background' variations in the cross-section and can be further split into 
a small real constant part R " which is due to the effects of large numbers 
of distant levels, and a power series in terms of (E - E^ ) where E i is 
the energy corresponding to the centre of the observed region. In principle 
there are two such series involving real and imaginary coefficients, but 
in practice the imaginary coefficients, which correspond to the reaction 
cross-section, can be neglected and only the f irst (linear) term in ( E - E i ) 
is necessary in the real series. We can therefore write 
„ residual „ „ „ „ . 
R, = A . +B E - E , ) . 

j j j г 
The object of the fitting procedure is thus to optimize the values of the 

parameters for the observed resonances, together with R™ and the coef-
ficients of the energy dependent terms due to neighbouring unknown 
resonances. 

One interesting result of a fit of this nature is that the determination 
residual 

of R leads to a determination of the s-wave strength function 
<Г„°)>/<(D)>. The slope B j of the residual R function is directly related 
to the strength function for levels of spin J, and if the data are good, the 
values of the strength functions for both spin values can be extracted from 
the fit. These values are based on the effect of many levels close to the 
experimentally observed region, and in the case of the fit to the data on 
vanadium [57], the inclusion of the data from R r e s i d u a l f r o m 

the local resonances led to a much better value of than could 
be obtained from the local measurements alone. The analysis of the 
residual R-function led to the conclusion that there was, in this case, 
no J-dependence of the strength function (contrary to the analysis of the 
local results) but that the potential scattering length was J-dependent. 

If we then summarize the information obtained from transmission 
measurements in the resonance region, we can say that we obtain in 
general values of grn and Г from both shape and area analyses. From 
the shape analysis we get in addition ap and sometimes also g, either from 
the value of peak cross-section when Гп » Гу , or from the study of level-
level interference. 

From both types of analysis we obtain values of 1̂ , when Гц«Гу 
by putting g = or in the case of f issi le targets we obtain 1 y + PF. To 
separate these two, and to obtain,in general, values of g and , requires 
the measurement of at least one partial cross-section in addition. Of 
course the use of the single level formalism to analyse the cross-sections 
of f iss i le nuclei is not justified since here D is small ( ~ 1 eV) and the 
fission widths are frequently comparable with the spacings. The use of 
the multi-level formalism is, however, much less satisfactory in this 
case than it is for scattering, since several channels other than the 
entrance channel, have widths comparable with the spacings, and the 
signs of the reduced widths are arbitrary. Hence such fitting procedures 
are tedious, since matrix methods must be employed, and furthermore 
the fits obtained are not unique. A more fundamental objection to these 
methods has been made by Lynn [5 9] who suggests that where really strong 
interference occurs in the fission channels, it is impossible to determine 
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from the cross-section curves even the approximate position of the 
R-matrix levels. It is probably true then that the analysis of the cross-
section curves for fissile nuclei can only be done with any confidence for 
those cases where Г is considerably less than D. In this context 239Pu 
is reasonably well behaved, but even here the use of multi-level formalism 
is only justified insofar as it permits unique determination of the level 
spins. 

Because of the strong interference effects in the cross-sections of 
the fissile nuclei, it is not possible to deduce with any certainty either the 
level parameters or the s-wave potential scattering and strength function 
from a detailed analysis of the resonances. The latter two quantities can, 
however, be deduced from measurements of the average total cross-
section. Indeed these nuclei are particularly suited for such measurements 
since their high value of Г/D minimizes the effect of resonance self-
shielding which is normally a source of difficulty in average cross-section 
measurements. 

The use of average cross-section measurements to obtain potential 
scattering and strength function parameters has been most rigorously de-
veloped by Uttley I 60] whose analysis is based on the formalism of Lane 
and Thomas 161]. Uttley's measurements utilize two 10B plug detectors 
in a flight path of total length 300 m. The first detector, at 120 m, pro-
vides on overlap filter for the longer 300-m flight path, so that he records 
the transmission of a sample over the energy range from 100 eV to 10 MeV. 
The shorter flight path covers 70 eV to 100 keV, and the longer 10 keV to 
10 MeV, giving a useful region of overlap. In measurements of this type 
great care must be taken to avoid systematic error. Firstly resonance 
self screening effects must be avoided as these lead to systematically low 
values for the average cross-section. This is achieved by the use of very 
thin samples and checked by the comparison of measurements with samples 
of different thickness, and with different effective values of the resolution 
width. Secondly with the use of thin samples, and hence nearly equal 
values for N and N0 (4. 8) automatic sample changers are essential, and 
the usual care must be taken with background measurements. Finally, 
although this is seldom a worry in time-of-flight measurements, the 
geometry of the experiment must be above reproach — there must be no 
in-scattering of neutrons by the sample. 

The analysis of the measurements is based on the expression for the 
average total cross-section ) > in terms of the average collision 
function over many levels: 

< a n T ( i ) > =2(2i + l ) 7 r X 2 ( l - R e < U ( i ) > ) (4.17) 

where 

< Щ Л > = е 
" 2 Ч (4. 18) 

where cp( is the scattering phase shift from a hard sphere of radius R, 
L = L + 1 where L is the logarithmic derivative of the outgoing wave at 
radius R, and is related to the modified shift factor Sc = S {+ 1 and the 
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penetration factor Pf according to L„ =S f + iPe . Rs =R e +Í7rSs is the 
R-function in which R~ is the overall effect of very distant levels, and 
S f is the strength function. 

F o r each partial wave SL, only two parameters enter the total c ross -
section, R " and St . The total cross-section can further be split into 
shape elastic and compound nucleus terms 

CT (j?) = (2i + 1) 7Г л 

and 

1 - < U ( i ) > | 2 

a C N ( i ) = (2i + l ) 7 r X 2 ( l - <U( i )>| 2 ) 

(4.19) 

(4. 20) 

We note that for s -wave neutrons and kR « 1, we can deduce f rom the 
general equations that 

crp =4ttR2 ( 1 - R " ) 2 = 4 t t R ' 2 (4.21) 

F igure 26 shows the fit to the average total cross-section of 235U using 
the above expressions and a value of the nuclear radius R of 1. 35 A^ fm. 
Here we have large Г/D, hence rather small fluctuations at low energies 
and the values of R™ and S0 were obtained f rom fitting to the cross-sect ion 
curve below 20 keV. The contribution of the higher SL-values was then 
obtained assuming S3 = Si , R" = R3 = 0. Thus the f ree parameters were 
R™, Sj and S2 and these were fitted to the whole curve to 1 MeV as shown. 

F igure 27 shows the fit to the average cross-sect ion of 93Nb over 
the energy range 10 keV to 2 MeV. This time Г/D is small so that 
average cross-sect ion measurements below a few keV are unreliable. In this 

CO 

case Su was obtained from published parameters [62, 63] and R0 obtained 
from shape fitting to the region between resonances, allowance being made 
for the tails of levels contributing significantly to the cross-sect ion ac -
cording to the expression 

R ' = R ( l - R - ) = R e f f e c t i v e Й Г ( 4 ' 2 2 ) 

The parameters for $= 1,2 and 3 were fitted as before. 
Measurements and analyses of this type provide the most convincing 

measurements of the higher Í value parameters, particularly S j and R " 
Other' measurements of Si have been made by identifying p-wave r e so -
nances at low neutron energy by shape analysis (no interference with s -
wave background) and f rom anomalous distributions of neutron widths 
which also seem to be reliable, but many early values of S j based on 
average capture cross-sect ion measurements in particular, have now 
been discredited due to their dependence on assumptions about level 
densities and radiation widths. 

This is probably the point at which we should stop for a moment and 
look at the data which have been obtained over the years f rom trans-
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1 MeV 

FIG. 26. Least squares fit to uranium 235 [60] 
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FIG.21 . Least squares fit to niobium 93 [60] 

mission measurements of one sort or another. Perhaps the simplest 
measurements, since no resonance analysis is concerned, is that of 
level spacing or level density. Figure28shows a plot of all level densities 
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obtained from neutron resonance studies. These have been corrected for 
variations in the binding energies and normalised to 6. 5 MeV according 
to the Fermi gas model (p « e x p ^ E ) . They have also been corrected 
for the (2J + 1) factor, and normalized to the values corresponding to 
J =' 0. The most prominent feature of the plot is the large dip in the level 
density near the doubly magic 2 0 8Pb nucleus. Subsidiary dips are also 
seen at other closed shells confirming the importance of shell structure 
in determining the level density. 
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FIG. 28. Corrected level density as a function of atomic number (from Lynn, J. E., unpublished lecture 
notes) 

Figure 29 shows some rathèr old Harwell data [64] on 238U which 
still serves to illustrate several points. The top part of the slide shows 
the usual 'staircase' plot of the number of levels below the energy E, as 
a function of E. Where only s-wave neutrons are involved, this plot 
should be linear over the rather small energy range considered (2 keV). 
A drop off from linearity at the higher energies indicates that levels 
are being missed due to poor resolution, while a steeper rise might 
indicate the inclusion of levels accessible to p-wave neutrons, since 
the neutron widths of these levels increase as E^ compared with E* of 
s- leve ls . 



872 RAH 

FIG. 29(a) A histogram of the level spacings observed in Lynn and Moxon's series of measurements 
compared with the exponential and Wigner forms 

(b) A histogram of the reduced neutron widths of the first 100 resonances of the 238 U neutron 
cross-section. A theoretical histogram based on the Porter-Thomas distribution is shown for 
comparison 

(c) The sum of reduced neutron widths from zero neutron energy to energy E as a function of E. 
The slope of this function is the neutron strength function F°/D (Ref. [64], p. 425). (Courtesy 
of North-Holland Publishing Co. ) 

The second part of the slide is a plot of the distribution of the reduced 
neutron widths of the s-wave resonances and shows this compared with 
the theoretical Porter-Thomas distribution. The third part of the figure 
shows the distribution of the level spacings (2 J 8U being even-even, only 
levels of spin 1/2 are involved) and this is compared to the Wigner one 
population distribution. 
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More recent work has, of course, confirmed the Porter-Thomas 
distribution, but some doubt was thrown on the validity of the Wigner 
distribution for cases where more than one population was present, 
particularly in measurements on odd nuclei at Columbia, where the 
results showed consistently a lack of small level spacings. A careful 
measurement on gold at Saclay [55], however, showed good agreement 
with a Wigner two population distribution and recent Russian measure-
ments on separated isotopes of silver also confirm the Wigner law [65]. 
Experimental distributions for next nearest neighbour spacings also 
agree with theoretical predictions [55]. 

Perhaps the most important quantity determined from the study of 
neutron resonances is the s-wave strength function <^ГП° У/^D У. The 
observed variation of this quantity with mass number A was one of the 
foundation stones of the optical model. Figure 30 shows a plot of Lynn's 
compilation of strength functions for separated isotopes, and the main 
optical model peaks are clearly seen, being distorted because of the 
presence of nuclear deformations. There are still some discrepancies 
between experiment and theory, but the strength function plot is a powerful 
tool for examining the average interaction of neutrons with the nuclei and 
in determining the conditions at the nuclear surface. There is some 
evidence of a J dependence of the s-wave strength functions [55] but this 
is very difficult to establish with any certainty. 

FIG. 30. Data on the s-wave neutron strength function compared with the model (solid curve) of a 
diffuse complex potential coupled to vibrational and rotational motion (from Lynn, J. E., unpublished 
lecture notes) 

Figure 31 shows a plot of the s-wave potential scattering length 
[ denoted by a or R1 =R(1 - R " ] ] a s a function of mass number A . We 
observe that, superposed on the smooth A* curve, are quite violent os-
cillations which involve a very rapid increase at the values of A corres-
ponding to the peaks in the s-wave strength function curve. This is easily 



874 ЯЛЕ 

understandable in a qualitative way, as being due to the variation in R " 
which is due predominantly to the coherent effect of the tails of the distant 
levels. For values of A below a maximum in the strength function, the 
s-wave giant resonance lies above the neutron separation energy, and the' 
tails of the strong resonances interfere destructively with the potential 
scattering, leading to a reduction in R1 (R0°" is positive). For values of A 
just above the peak in the strength function curve, the giant resonance lies 
below the neutron separation energy, and the interference is constructive 
(R0~ is negative). Half way between the peaks the effect vanishes and 
R' = R = 1. 35A* . 

FIG. 31. Potential scattering length data and comparison with models. The full curve is calculated 
from a spherical complex potential (Moldauer, 1963). The broken curve is for a complex potential 
with vibrational and rotational coupling, calculated by Jain (1964) (from Lynn, J.E., unpublished 
lecture notes) 

Figure 32 is a plot of the radiation widths obtained from neutron reso-
nances, again as a function of A and once again the effect of the double 
shell closure at 208 Pb is the most prominent feature. This corresponds 
basically to the increase in the level spacing in this region due to the 
restriction in the number of energetically possible particle transitions, 
the total strength being therefore shared among fewer states. 

Finally F ig . 33 shows the p-wave strength functions as compiled by 
Newson [67]. There is still some scarcity of p-wave data, but hopefully 
with time this curve will be completed and also possibly one for d -waves 
together with their complementary curves for R t . Uttley's measurements 
of Ri bear out the behaviour of the s-wave parameter, R " being positive 
below the strength function peak at A = 100, and negative above this peak. 
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FIG. 32. Radiation width as a function of atomic number (from Lynn, I .E. , unpublished lecture notes) 
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FIG. 33. A plot of p-wave strength functions. The measurements were repeated where in-scattering 
was too important for accurate correction [67]. (Courtesy of U.S. Atomic Energy Commission) 

4.3. Elastic scattering 

Measurements of the elastic scattering cross-section are most valu-
able in the case of low-lying resonances in medium weight and heavy 
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nuclei, where the level spacing is small so that Гп 

is weak compared with capture. For the lighter nuclei 'where scattering 
predominates, there is little point in attempting these measurements, 
since they are equivalent to transmission measurements, but very much 
more difficult to carry out. 

In order to understand the function of the scattering measurement in 
determining the resonance parameters, let us recal l that the transmission 
measurement, when shape fitting is possible, yields gFn and Г and that 
area analysis with several sample thicknesses leads to the same 
parameters. A r ea analysis with a single sample gives grn as a function 
of Г , in a relationship of the form gl^ ГР=,const., where 1. 

In a scattering measurement in the immediate vicinity of a resonance, 
we measure a cross-sect ion which is given by ann = ст nT Г п / Г . In 
particular the peak scattering cross-sect ion aon = сто Гп /Г or 4гг X2gFn 2/r2 , 
and the area under the peak in the scattering yield curve ( i . e. , plot of 
fraction of incident neutrons scattered as a function of E n ) in the thin 
sample l imit is given by: 

'AE(,câ.)= ™ 0 Г » / 2 

2 2 2
 ( 4

-
2 3 ) 

= 2тг gnX Гп /Г 

A measurement of either the peak scattering cross-sect ion, or the 
thin sample scattering area, then g ives a new relationship between g, Fn 

and Г so that in principle we can solve for all three parameters. If 
of course Гп » Гу., so that Г П ^ Г , then as pointed out before, g is obtained 
f r om a measure of the peak total cross-sect ion. In this case however, 
Гу is not determined and a measurement of the peak capture cross-sect ion 
or the thin sample capture area is necessary for a complete solution since 
t h i s y i e l d s a0y = а0Ту /Т o r 

A E ( c a P t ) = ™ f f o r r /2 = 2 / g n f ГПГ Г /Г (4.24) 

To return to the elastic scattering, then, we see that a scattering 
measurement, where Г П « Г , i . e . , for low-lying resonances in medium 
and heavy nuclei, allows us to solve for g, Гп and Г , and hence Гу in 
the absence of other reactions. In the case of f i ss i le nuclei, apart f rom 
the diff iculty of the f o rm of the cross-section curve, it is c lear that a 
second partial cross-sect ion measurement (either стПу or crnF ) is required 
in order to divide up the total reaction width (Г - Гп ) into Гу and rF . 

In pract ice, of course, the equations obtained f rom the various 
measurements are only approximate and the data are obtained in the fo rm 
of a few calculated values of g r n as a function of Г . In this case the best 
method of solution is by graphical display and least squares fitting, which 
can be applied to all the available data. F igure 34 shows the data for 
probably the f i rs t resonance to be analysed in this way, the 5 eV resonance 
in s i lver [68]. A s you will see, the curves in the ( Г П , Г ) plane co r r e s -
ponding to all the data are nearly concurrent for J = 1 (g = 3/4) and de-
finitely not so for J = 0. In this case least squares fitting is scarcely 
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necessary to obtain the parameters, but it is still needed to estimate the 
errors on the parameters and to justify the choice of J. Figure 35 shows 
much later data for the 35 and 93 eV resonances in Ho [69]. In the case 
of the 35 eV resonance, the choice of J is not so obvious, but is obtained 
with high probability from a least squares fit. 

FIG. 34. Combination of the experimental data to determine Г п and Г for the 5.2 eV resonance in 110Ag 
and the appropriate statistical weight factor, g. Ordinate and abscissa scales are in milli-electron-volts. 
Curves show the variation of Г п with Г as determined by: (a) radiative capture in a thin sample-, 
(b) thick sample transmission; (c) thin sample transmission! (d) elastic scattering (Ref. [68], p. 104) 
(Courtesy of North-Holland Publishing Co. ) 
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FIG. 35. Area analysis of resonances in holmium 

Since this section follows on from the analysis of transmission data, 
we have reversed our usual order here and considered how the elastic 
scattering data are analysed before describing how they are obtained. In 
general one can make scattering measurements in one of two basic ways. 
In the f irst, or conventional method, the velocity or energy of the neutrons 
before striking the sample is determined, say by time-of-fl ight. In this 
case the sample is placed at the end of a flight path and the scattered 
neutrons are observed in some detector suitably screened from the direct 
beam. 
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I n t h e s e c o n d m e t h o d t h e e n e r g y o f t h e n e u t r o n s i s d e t e r m i n e d a f t e r 

s c a t t e r i n g . I n t h i s c a s e ( t h e b r i g h t - l i n e m e t h o d ) t h e s a m p l e i s p l a c e d 

c l o s e t o t h e n e u t r o n s o u r c e , a n d t h e s c a t t e r e d n e u t r o n s a r e a l l o w e d t o 

f l y d o w n t h e f l i g h t p a t h t o t h e d e t e c t o r . 

T h e a d v a n t a g e o f t h e s e c o n d m e t h o d i s t h a t g a m m a r a y s a n d f a s t 

n e u t r o n s f r o m t h e n e u t r o n s o u r c e , t o g e t h e r w i t h p o s s i b l e f i s s i o n n e u t r o n s 

a n d c a p t u r e g a m m a r a y s f r o m t h e s a m p l e , a l l r e a c h t h e d e t e c t o r v e r y 

e a r l y i n t h e t i m e o f f l i g h t c y c l e , a n d s o d o n o t c o n f u s e t h e i n t e r p r e t a t i o n o f 

t h e s c a t t e r i n g y i e l d . T h i s m e t h o d h a s b e e n u s e d v e r y e f f e c t i v e l y b y 

S a u t e r a n d B o w m a n [ 7 0 ] a t L i v e r m o r e i n t h e s t u d y o f r e s o n a n c e 

s c a t t e r i n g f r o m f i s s i l e s a m p l e s . T h e g r e a t d i s a d v a n t a g e o f t h e m e t h o d i s 

t h a t i n t h e i n t e r e s t s o f i n t e n s i t y a n d s i g n a l t o b a c k g r o u n d r a t i o , t h e 

s a m p l e i s n o r m a l l y s u r r o u n d e d b y t h e n e u t r o n s o u r c e ( a r e a c t o r i n t h e 

c a s e o f t h e f i r s t e x p e r i m e n t s b y B o r s t [ 7 1 ] a n d W o o d [ 7 2 ] , a n d a 

m o d e r a t i n g s h e l l i n B o w m a n ' s c a s e ) . T h u s n e u t r o n s s t r i k e i t f r o m a l l 

d i r e c t i o n s , s o t h a t t h e n e u t r o n s s c a t t e r e d f r o m a s h a r p r e s o n a n c e a t E R 

c a n h a v e a n y e n e r g y f r o m E r d o w n t o E R [ ( A - 1 ) / ( A + 1 ) ] 2 c o r r e s p o n d i n g 

t o a t o t a l e n e r g y s p r e a d o f 4 E r / A . I n t h e c a s e o f p l u t o n i u m , t h i s r e p r e -

s e n t s a s p r e a d o f ~ 2 e V a t 100 e V , w h i c h i s e q u a l t o t h e m e a n l e v e l 

s p a c i n g . S i n c e t h e e n e r g y s p r e a d i s i n v e r s e l y p r o p o r t i o n a l t o A , t h e 

e f f e c t i s s t i l l s e r i o u s f o r l i g h t e r n u c l e i , d e s p i t e t h e i n c r e a s e d l e v e l 

s p a c i n g . 

H e n c e , i f f u l l u s e i s t o b e m a d e o f t h e r e s o l u t i o n o b t a i n a b l e f r o m t h e 

t i m e - o f - f l i g h t m e t h o d , t h e c o n v e n t i o n a l m e t h o d w i t h t h e d e t e c t o r s c l o s e 

t o t h e t a r g e t i s t h e m o s t g e n e r a l l y u s e f u l . I d e a l l y t h e d e t e c t o r s h o u l d 

h a v e 4ж g e o m e t r y i n o r d e r t o n u l l i f y t h e e f f e c t o f t h e c e n t r e o f m a s s 

m o t i o n . B o t h s a m p l e a n d d e t e c t o r s h o u l d a l s o b e p h y s i c a l l y s m a l l i n 

o r d e r t o m i n i m i z e t h e d i f f e r e n c e i n t o t a l f l i g h t p a t h l e n g t h b e t w e e n 

n e u t r o n s s c a t t e r e d a t 9 0 ° a n d t h o s e s c a t t e r e d a t s m a l l a n d l a r g e a n g l e s . 

T h e r e i s a l s o t h e v e r y s e r i o u s p r o b l e m o f m u l t i p l e s c a t t e r i n g . I f Г п / Г у 

i s s m a l l , w h i c h i s t h e c a s e o f m o s t i n t e r e s t , t h e n a s c a t t e r e d n e u t r o n 

w h i c h m a k e s a s e c o n d c o l l i s i o n i s l i k e l y t o b e l o s t . T h i s o f c o u r s e i s 

m o s t l i k e l y f o r t h o s e n e u t r o n s s c a t t e r e d c l o s e t o 9 0 ° i n a f o i l n o r m a l t o 

t h e b e a m . I t w o u l d s e e m t h e n t h a t t h e b e s t g e o m e t r i c a l f o r m f o r t h e 

s c a t t e r i n g d e t e c t o r i s i n t w o r i n g s , o n e i n f r o n t o f , a n d o n e b e h i n d t h e s a m p l e 

s o t h a t t h e n e u t r o n s o b s e r v e d a r e e m i t t e d a t r e a s o n a b l y l a r g e a n g l e s t o t h e 

s u r f a c e o f t h e s a m p l e , w h i l e t h e t w o d e t e c t o r s s t i l l t e n d t o o f f s e t t h e 

e f f e c t o f t h e c e n t r e o f m a s s m o t i o n f o r l i g h t e r t a r g e t s . 

T h e d e t e c t o r c h o s e n f o r a n e u t r o n s c a t t e r i n g m e a s u r e m e n t s h o u l d 

h a v e l o w s e n s i t i v i t y t o g a m m a r a y s , e s p e c i a l l y s i n c e w e s t u d y j u s t t h o s e 

c a s e s w h e r e c a p t u r e p r e d o m i n a t e s o v e r s c a t t e r i n g . I t s h o u l d a l s o h a v e 

g o o d e f f i c i e n c y , a n d f o r a t i m e - o f - f l i g h t e x p e r i m e n t , h a v e g o o d t i m i n g p r o -

p e r t i e s ; t h e s e v a r i o u s r e q u i r e m e n t s a r e t o s o m e e x t e n t m u t u a l l y e x c l u s i v e . 

E a r l y r e s o n a n c e s c a t t e r i n g m e a s u r e m e n t s s u c h a s t h o s e d e s c r i b e d i n 

R e f . [ 6 8 ] m a d e u s e o f B F 3 c o u n t e r s . I n t h o s e d a y s t h e r a t h e r l o n g p u l s e s 

o b t a i n e d f r o m p u l s e d s o u r c e s , o r t h e D C b e a m s f r o m c r y s t a l s p e c t r o -

m e t e r s m a d e f e w d e m a n d s o n t h e d e t e c t o r s p e e d , a n d t h e r a t h e r n a r r o w 

e n e r g y r a n g e w h i c h c o u l d b e s t u d i e d w i t h r e a s o n a b l e r e s o l u t i o n m e a n t 

t h a t t h e e f f i c i e n c y o f h i g h p r e s s u r e 1 0 B F 3 c o u n t e r s w a s a c c e p t a b l e . T h e 

d e t e c t o r u s e d b y C o l l i n s [ 6 8 ] a n d l a t e r b y F r a s e r a n d S c h w a r t z [ 7 3 ] t o 

s t u d y s c a t t e r i n g f r o m 2 3 9 P u c o n s i s t e d o f a n a n n u l u s o f 1 0 B F 3 c o u n t e r s 

g i v i n g n e a r l y 4 ж g e o m e t r y . T h e f o r m e r t o o k c a r e o f m u l t i p l e s c a t t e r i n g 
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corrections empirically by using a ser ies of samples of different thickness 
and plotting the observed areas divided by sample thickness as a function 
of sample thickness. They then extrapolated to zero thickness, being 
guided in the extrapolation by a Monte Car lo calculation which was made 
for the 5 eV resonance (in s i lver ) . In the F r a s e r and Schwartz experiment 
on 2 3 9Pu, only a single very thin foil was used having пстод everywhere 
< 0. 1 and the multiple scattering correction was calculated. In the case 
of 239 Pu the ratio of Гп to Г is very small, for the lower energy 
resonances ~ 1%, so that the correction for the detection of 7 - r a y s and 
f ission neutrons could not be ignored, even though the 10BF3 proportional 
counters were insensitive to both fast neutrons and 7 - r a y s . Hence the 
effect of the slow scattered neutrons was determined by taking the difference 
between the observed counts with and without a sleeve of B 4 C placed 
between the sample and detector. 

In all cases the fractional scattered yield was obtained by comparing 
the observed counting rate due to scattering f rom the sample, with that 
obtained with a thin sheet of lead replacing the sample. The scattering 
cross -sect ion of lead is known accurately f rom transmission measure -
ment (сгпу«ап п ) so the only remaining correction is that for the change in 
efficiency of the detector for neutrons scattered f rom the sample, and 
f rom lead, owing to the different energy shift in the two cases. I have 
described the early Harwel l scattering measurements, partly because 
I am famil iar with them, and partly because they were the f irst to produce 
enough spin measurements to make possible a confirmation of the 2J + 1 
factor in the level density for slow neutron resonances. Several other 
measurements have since been made with BF3 and other detectors using 
choppers and crystal spectrometers. 

In order to improve the technique however, and to take advantage of 
the fast pulses obtained f rom electron linacs and cyclotrons to push up-
wards the energy range accessible to scattering measurements, it has 
become necessary to use a much faster detector. 

Such an improvement was achieved by Asghar and Brooks [75] when 
they utilized lithium loaded glass detectors. They eliminated the gamma-
ray sensitivity of the g lass detectors by using two otherwise identical 
detectors, one loaded with lithium highly enriched in 6 L i , the other with 
the natural element. The gamma ray background was then removed by 
subtraction. F igure 36 shows part of the scattering yield f rom 2 3 3U 
(capture counts having been subtracted) and the low background is ev i -
denced by the appearance of interference effects. Since the response time 
of the g lass is a few nanoseconds, the limitation on resolution really lies 
with the geometry of the experiment. Those measurements were made 
on a 60-m flight path with length uncertainties of 5-10 cm, so that the 
geometrical part of the resolution ЛЕ/Е is a few parts per thousand in 
energy. This same technique has been employed by Asghar to measure 
the spins of 40 levels in the case of the f iss i le target 239Pu [76], the 
fission neutron sensitivity of the glass (which is very small ) being r e -
moved by subtraction of a constant times the yield of a small stilbene 
crystal used with pulse shape discrimination to remove the gamma- ray 
sensitivity of the stilbene. The relative efficiencies of the glass detector 
and the stilbene for fission events was obtained by the use of a 240 Pu 
spontaneous fission source. A s was stated ear l ier , these measurements 
are not so elegant as those made by Sauter and Bowman with the bright-
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line method, but the fact that the geometrical part of the energy resolution 
is an order of magnitude smaller allows the conventional measurements 
to be pushed to much higher energies. It should be mentioned that while 
scattering measurements become more difficult at higher energies because 
of Doppler broadening and poorer resolution, it is also true that multiple 
scattering corrections become much smaller because the energy lost in 
scattering becomes large compared to the level width so that the scattered 
neutrons easily escape from the sample. Hence while full Monte Carlo 
calculations are frequently necessary at low energies, first order cor -
rections suffice at higher energies. Scattering measurements have by now 
established the spins of a few hundred neutron induced resonances, and 
have contributed to the measurement of radiation widths of heavy nuclei 
such as uranium and thorium. 
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FIG. 36. Neutron scattering from 238 U (Ref. [106], p. 1048). (Courtesy of U. S. Atomic Energy 
Commission) 

4.4. Capture measurements 

Radiative capture measurements are most useful when Гп » Ij, . They 
are therefore useful in determining Г^ and J for higher energy resonances 
in medium and heavy nuclei, and are essential in the determination of IJ, 
for lighter nuclei. 

Where a monochromatic beam of neutrons is available, capture cross -
sections can be obtained by measuring the activity produced on irradiating 
a sample. This method, however, is only useful where the product 
nucleus is radioactive and has a suitable lifetime4. These methods have 
been used extensively to measure thermal capture cross-sections and 
the activation method is useful in the measurement of high energy c ross -
sections with Van de Graaff accelerators. Activation is the only method 
suitable for measuring very small (цЬ) cross-sections, but is not suitable 
for work in the resonance region. 

4 If no activity is produced, a mass spectrometer study is necessary to determine the number of 

nuclei which have captured neutrons. 
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T i m e - o f - f l i g h t m e t h o d s o f m e a s u r i n g c a p t u r e c r o s s - s e c t i o n s i n v a r i a b l y 

m a k e u s e o f t h e d e t e c t i o n o f t h e p r o m p t g a m m a r a y s e m i t t e d a s t h e c o m -

p o u n d n u c l e u s d e c a y s t o i t s g r o u n d s t a t e . T h e d e t e c t o r u s e d i n s u c h a 

m e a s u r e m e n t s h o u l d h a v e a l o w s e n s i t i v i t y t o s c a t t e r e d n e u t r o n s a n d a n 

e f f i c i e n c y w h i c h d e p e n d s o n l y o n t h e n u m b e r o f c a p t u r e e v e n t s , a n d t h e 

t o t a l e n e r g y r e l e a s e d , b u t n o t o n t h e d e t a i l e d c a s c a d e b y w h i c h t h e 

c o m p o u n d n u c l e u s d e c a y e d . 

T w o b a s i c t y p e s o f d e t e c t o r s a r e a v a i l a b l e w i t h e s s e n t i a l l y t h e s e 

c h a r a c t e r i s t i c s : t h e f i r s t , w h i c h a c h i e v e s n e a r l y c o n s t a n t e f f i c i e n c y b y 

m a k i n g t h i s e f f i c i e n c y a p p r o a c h 1 0 0 % , i s t h e l a r g e l i q u i d s c i n t i l l a t o r t a n k 

[ 7 7 - 7 9 ] ; t h e s e c o n d i s t h e M o x o n - R a e t y p e o f d e t e c t o r [ 8 0 ] w h i c h a c h i e v e s 

i n d e p e n d e n c e o f t h e c a s c a d e b y m a k i n g t h e e f f i c i e n c y f o r d e t e c t i n g a p h o t o n 

p r o p o r t i o n a l t o i t s e n e r g y . T h e M o x o n - R a e d e t e c t o r i s i n t r i n s i c a l l y 

i n s e n s i t i v e t o s l o w n e u t r o n s , a l t h o u g h i n i t s o r i g i n a l f o r m i t b e c o m e s 

s e n s i t i v e t o n e u t r o n s o f e n e r g y g r e a t e r t h a n a f e w h u n d r e d k e V ; t h e l a r g e 

t a n k c a n b e m a d e i n s e n s i t i v e t o s l o w n e u t r o n s b y l o a d i n g i t w i t h b o r o n 

a n d b i a s s i n g a b o v e t h e e n e r g y o f t h e b o r o n p u l s e s . . 

T h e l a r g e t a n k h a s t h e g r e a t a d v a n t a g e t h a t a t h i g h n e u t r o n e n e r g i e s , 

t h e p u l s e s c a u s e d b y p r o t o n r e c o i l s i n t h e s c i n t i l l a t o r a r e s t i l l s m a l l 

c o m p a r e d w i t h t h e c a p t u r e 7 - r a y p u l s e s a n d c a n b e r e m o v e d b y s u i t a b l e 

b i a s s i n g , s o t h a t t h e s e d e v i c e s c a n b e u s e d u p t o a n e u t r o n e n e r g y o f 

s e v e r a l M e V . A g a i n s t t h i s m u s t b e w e i g h e d t h e i r h i g h n a t u r a l b a c k g r o u n d 

b e c a u s e o f t h e i r g r e a t s i z e ( 1 - 2 m i n d i a m . ) , t h e i r r e l a t i v e l y s l o w r e s p o n s e 

(— 2 0 n s e c ) i f v e r y f a s t t i m i n g i s t o b e u s e d , a n d t h e f a c t t h a t f o r p r a c t i c a l 

d i m e n s i o n s , t h e i r s e n s i t i v i t y i s b y n o m e a n s i n d e p e n d e n t o f t h e c a s c a d e , 

i f a p p r e c i a b l e h i g h - e n e r g y c o m p o n e n t s e x i s t i n t h e s p e c t r u m . F o r e x a m p l e , 

f o r a 1 - m d i a m . t a n k , t h e p r o b a b i l i t y o f e s c a p e o f a 6 M e V p h o t o n i s 4 0 % . 

T h e h i g h m e a n e f f i c i e n c y o f s u c h a t a n k ( ~ 9 0 % ) d e p e n d s o n t h e e m i s s i o n o f 

a l a r g e n u m b e r o f r a t h e r s o f t q u a n t a , u n d e r w h i c h c o n d i t i o n s t h e l a r g e t a n k 

i s a n e x c e l l e n t d e t e c t o r . F o r c e r t a i n h e a v y n u c l e i h o w e v e r , w h i c h h a v e 

a n o m a l o u s l y i n t e n s e h i g h - e n e r g y t r a n s i t i o n s , o n e m u s t b e c a r e f u l b e f o r e 

a c c e p t i n g t h e c o n s t a n c y o f t h e t a n k e f f i c i e n c y . 

I n t h e M o x o n - R a e d e t e c t o r , t h e e l e c t r o n s p r o d u c e d f r o m t h e s u r f a c e 

o f a t h i c k g r a p h i t e c y l i n d e r s u r r o u n d i n g t h e c a p t u r i n g s a m p l e , a r e d e t e c t e d 

i n t h i n p l a s t i c s c i n t i l l a t o r s . T h e e f f i c i e n c y o f t h i s s y s t e m i s o n l y a f e w 

p e r c e n t f o r d e t e c t i n g c a p t u r e e v e n t s , b u t b e c a u s e o f t h e l i n e a r i t y w i t h 

e n e r g y o f t h e e f f i c i e n c y f o r d e t e c t i n g i n d i v i d u a l p h o t o n s , t h e e f f i c i e n c y f o r 

d e t e c t i n g c a p t u r e e v e n t s d o e s n o t d r o p o f f a p p r e c i a b l y f o r s i n g l e h i g h -

e n e r g y p h o t o n e v e n t s . C a l c u l a t i o n s b y M a c k l i n f o r a 1 - i n c h c o n v e r t e r 

s h o w a 3 5 % d r o p o f f a t 6 M e V , s i m i l a r t o t h e b e h a v i o u r o f t h e s c i n t i l l a t i o n 

t a n k , b u t h i s e x p e r i m e n t a l r e s u l t s s u g g e s t t h a t t h e f i g u r e i s c l o s e r t o a 

1 0 % d r o p f r o m t h e m e a n e f f i c i e n c y . T h e d r o p o f f w i t h t h e t h i c k e r ( I 5 i n . ) 

c o n v e r t e r u s e d a t H a r w e l l i s p r o b a b l y r a t h e r l e s s a n d n o s u c h e f f e c t h a s 

b e e n o b s e r v e d t h e r e e x p e r i m e n t a l l y s o t h a t t h e M o x o n - R a e d e t e c t o r i s 

d i s t i n c t l y l e s s s e n s i t i v e i n p r a c t i c e t o v a r i a t i o n s i n t h e c a s c a d e t h a n i s 

t h e l a r g e t a n k . T h e s p e e d i s a l s o m u c h h i g h e r ( 3 n s e c ) w h i c h , t o g e t h e r 

w i t h t h e s m a l l s i z e , h a s m a d e t h i s d e t e c t o r p a r t i c u l a r l y u s e f u l w i t h a s h o r t 

f l i g h t p a t h o n a V a n d e G r a a f f n e u t r o n s o u r c e [ 8 1 ] . B o t h d e t e c t o r s h a v e 

e x c e l l e n t d i s c r i m i n a t i o n a g a i n s t n e u t r o n d e t e c t i o n e n / e y < 1 0 - 4 . 

5 Macklin has also shown that the energy dependence of the efficiency can be improved by the 
addition of a small amount of high Z material, such as bismuth, to the convertor. 
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FIG. 37. Large liquid scintillator (Ref. [84], p. 6). (Courtesy of General Atomics) 
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Up till very recently, high backgrounds in large tanks prevented them 
f rom being used in practice in time-of-flight measurements above a few 
tens of keV while the Moxon-Rae detector, with its low background, could 
be used up to the onset of proton recoil detection — say 200 keV. Recently 
however, Block at RPI has improved the shielding and collimation of his 
tank system. He has also reduced the gamma ray and fast neutron flash by 
rearrangement of the neutron target geometry so that only back-scattered 
particles go down the flight path. Under these conditions the background 
in his experiments has been so reduced that he can now make measurements 
certainly up to 1 MeV [82]. F o r the Moxon-Rae detector it can also be 
said that developments which involve coincidence measurements between 
pairs of phototubes have been under consideration for some time in Geel 
[83] and these promise to remove the recoil proton restriction and increase 
the efficiency to maybe 10%. A version of this detector in which the 
plastic scintillator is replaced by a solid state electron detector has also 
been used to make capture cross-section measurements with highly active 
samples using a nuclear explosion [43]. Here too the measurements can be 
taken to high neutron energies, since the detector contains no hydrogen. 
Thus both detectors and their uses are under active development. 

F igure 37 shows what is perhaps the largest tank of all, that of 
Haddad at General Atomics [84]. This one is made of a ser ies of ' logs ' , 
each with its own phototubes which can be separately adjusted for gain to 
attain optimum pulse-height distributions. F igure 38 shows such distr i -
butions for resonances in the two isotopes of erbium, the difference in 
binding energy being obvious. We should observe the high value of bias 
used, which permits the removal of counts due to activity in the sample 
(note that this cannot be done with the Moxon-Rae detector). 

F r o m a t ime-of - f l ight experiment with a capture detector, one obtains 
a curve of counts per channel against t ime-of - f l ight. In/this case the raw 
data cannot readily be converted to a fractional yield curve.by comparison 
with some standard, as in the case of scattering. The most suitable 
standard is the 10B(n, a y ) cross-section, but the y - r a y energy emitted 
(480 keV) is too low for this to be used directly in a large tank. No rma l i -
zation is therefore performed in two stages: f irstly a 10B yield curve is 
taken, perhaps with an ion chamber, and the capture curve is divided by 
the l 0B yield curve and multiplied by the 10B(n, a) cross-section, channel by 
channel. The second stage is to convert this relative yield curve to a 
fractional yield, which is done by observing the yield f rom saturated 
low-energy resonances in heavy nuclei where Гп < Гу. The fractional 
yield here is close to unity, and the thin sample curve can be normalized 
to this. For a thin sample (ncrnT < 1) the fractional yield is (1-Т)стПу /сгпТ 

®=ncrny . Hence any (E) is obtained. 
F igure 39 shows such a curve for In (Haddad). Note the general 

I/n/Ë decay of the cross-sect ion in this energy range where Г п < 1 } . 
F igure 40 shows the capture cross-sect ion of Co as measured with 

the Moxon-Rae detector at Harwel l . Note that for this much lighter 
nucleus, the cross-sect ion is not so well behaved. Note also the absence 
of interference in the capture cross-section, despite the strong over -
lapping of levels . 

Measurements such as this [85] and those of Block [82] and 
Macklin [81] are slowly providing measurements of Гу for the lighter 
nuclei, but these are difficult experiments in view of the huge neutron 



ENERGY (MeV) ENERGY (MeV) 

FIG. 38. Liquid scintillator pulse height distributions. Left-hand graph: sum spectra from the 
5.97-eV 161 Er (n , y ) resonance and the 15.4-eV 166 Er ( n , y ) resonance. Right-hand graph: curves of 
the spectrum fractions for the 5. 97-eV and 15.4-eV erbium resonances. The data have been corrected 
for ambient and accelerator-associated backgrounds (Ref. [84], p. 10). (Courtesy of General Atomics) 
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NEUTRON ENERGY (eV) 

FIG. 39. Capture cross-section of indium (Ref. [84] , p. 12) 

FIG. 40. Neutron capture cross-section of cobalt [85]. (Courtesy of North-Holland Publishing Co. ) 

widths of the levels concerned, and the need for accurate multiple 
scattering corrections. Even so Moxon [85] was able to deduce that the 
mean radiation width for 59Co was 447 + 69 MeV with a natural spread of 
185 meV. This spread is consistent with a number of channels for 
radiative decay corresponding to the number of strong transitions ob-
served in the thermal neutron capture spectrum (assuming Porter-Thomas 
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d i s t r i b u t i o n s f o r t h e p a r t i a l w i d t h s ) . D e t e r m i n a t i o n s o f r a d i a t i o n w i d t h 

d i s t r i b u t i o n s a r e n o w b e c o m i n g p o s s i b l e e v e n f o r h e a v y n u c l e i w h e r e 

b o t h c a p t u r e a n d s c a t t e r i n g c r o s s - s e c t i o n s a r e m e a s u r e d [ 8 6 ] , a n d o n c e 

a g a i n t h e y a r e c o n s i s t e n t w i t h k n o w n f e a t u r e s o f t h e c a p t u r e g a m m a - r a y 

d e c a y s p e c t r a . 

S o f a r w e h a v e o m i t t e d a l l m e n t i o n o f r a d i a t i v e c a p t u r e m e a s u r e m e n t s 

o n f i s s i l e n u c l e i . T h e s e m e a s u r e m e n t s a r e e x t r e m e l y d i f f i c u l t s i n c e 

f i s s i o n e v e n t s p r o d u c e m o r e t o t a l e n e r g y i n t h e f o r m o f g a m m a r a d i a t i o n 

t h a n d o c a p t u r e e v e n t s i n t h e s a m e n u c l e i , s o t h a t t h e c a p t u r e d e t e c t o r 

m e a s u r e s a y i e l d p r o p o r t i o n a l t o ст„г + K a n F w h e r e К > 1 . T h e s e m e a s u r e -

m e n t s a r e h o w e v e r o f c o n s i d e r a b l e t e c h n o l o g i c a l i m p o r t a n c e . M e a s u r e -

m e n t s o f a n y f o r f i s s i l e m a t e r i a l s o f t e n e m p l o y a n a n t i - c o i n c i d e n c e t e c h -

n i q u e t o r e m o v e s o m e o r m o s t o f t h e f i s s i o n e v e n t s , o r e l s e a s e p a r a t e 

m e a s u r e m e n t i s m a d e o f o n F u n d e r i d e n t i c a l c o n d i t i o n s o f r e s o l u t i o n , 

a n d a s u i t a b l e n o r m a l i z a t i o n a n d s u b t r a c t i o n i s p e r f o r m e d . A n e x a m p l e 

o f t h e a n t i - c o i n c i d e n c e t e c h n i q u e i s t h e w o r k o f W e s t o n , d e S a u s s u r e a n d 

G w i n [ 8 7 ] , w h o u s e d a f i s s i o n c h a m b e r i n s i d e a l a r g e s c i n t i l l a t o r t a n k . 

V a n S h i - d i e t a l . [ 8 8 ] u s e d a c a d m i u m l o a d e d l i q u i d s c i n t i l l a t o r a n d d i s -

t i n g u i s h e d f i s s i o n f r o m c a p t u r e e v e n t s b y t h e p r e s e n c e i n t h e f o r m e r c a s e 

o f a d e l a y e d c o i n c i d e n c e d u e t o t h e e v e n t u a l c a p t u r e o f a m o d e r a t e d f i s s i o n 

n e u t r o n . S i n c e , h o w e v e r , t h e e f f i c i e n c y o f t h e i r d e t e c t o r f o r f i s s i o n s w a s 

o n l y 5 0 % , t h i s e x p e r i m e n t w a s i n r e a l i t y a n e x a m p l e o f t h e s u b t r a c t i o n 

t e c h n i q u e , w i t h t h e c o e f f i c i e n t К r e d u c e d b y a f a c t o r o f 2 b y t h e d e l a y e d 

c o i n c i d e n c e s y s t e m , t h e r e b y r e d u c i n g t h e e r r o r i n v o l v e d i n s u b t r a c t i o n . 

T h e a d v a n t a g e o f t h e s u b t r a c t i o n t e c h n i q u e i s t h a t t h e r e i s m o r e f r e e d o m 

o f c h o i c e f o r t h e f i s s i o n d e t e c t o r — i t c a n b e a r e c o i l p r o t o n d e t e c t o r f o r 

t h e f i s s i o n n e u t r o n s , i n w h i c h c a s e o - p a r t i c l e a c t i v i t y i n t h e s a m p l e 

c a u s e s n o p r o b l e m s a n d q u i t e t h i c k f o i l s c a n b e u s e d . T h e a d v a n t a g e i n 

s t a t i s t i c a l a c c u r a c y o b t a i n e d i n t h i s w a y c a n o u t w e i g h t h e d i s a d v a n t a g e o f 

t h e l a r g e c o r r e c t i o n f a c t o r K . 

4 . 5 . C a p t u r e g a m m a - r a y s p e c t r a 

T h e s t u d y o f t h e s p e c t r a o f g a m m a r a y s f o l l o w i n g n e u t r o n c a p t u r e i s 

a n o l d s u b j e c t , b u t o n e w h i c h h a s b e e n g r e a t l y s t i m u l a t e d b y t h e d e v e l o p -

m e n t o f t h e l i t h i u m d r i f t e d g e r m a n i u m d e t e c t o r . T h i s d e v i c e , w h i c h i s 

i n e f f e c t a s o l i d s t a t e i o n c h a m b e r w h i c h r e q u i r e s o n l y 3 e V o f p a r t i c l e 

e n e r g y t o p r o d u c e a n e l e c t r o n - h o l e p a i r , i s i n f e r i o r i n r e s o l u t i o n t o t h e 

b e n t q u a r t z c r y s t a l d i f f r a c t i o n s p e c t r o m e t e r b e l o w a f e w h u n d r e d k e V , 

b u t a t e n e r g i e s a b o v e 1 M e V i t i s s u p e r i o r . A t h i g h e r e n e r g i e s i t i s a t 

l e a s t a s g o o d a s t h e b e s t C o m p t o n s p e c t r o m e t e r s , s o t h a t i t h a s a h i g h l y 

c o m p e t i t i v e r e s o l u t i o n o v e r a w i d e e n e r g y r a n g e c o m b i n e d w i t h g o o d 

e f f i c i e n c y a n d t h e c a p a b i l i t y o f r e c o r d i n g t h e w h o l e s p e c t r u m o f c a p t u r e 

g a m m a r a y s f r o m a f e w h u n d r e d k e V t o s a y 1 0 M e V , s i m u l t a n e o u s l y . 

T h e s e d e s i r a b l e f e a t u r e s w e r e r a p i d l y e x p l o i t e d i n t h e s t u d y o f t h e r m a l 

c a p t u r e s p e c t r a , w h e r e t h e h i g h e f f i c i e n c y o f t h e g e r m a n i u m s p e c t r o -

m e t e r s p e r m i t s t h e s t u d y o f s m a l l s a m p l e s o f s e p a r a t e d i s o t o p e s , e v e n i n 

c a s e s w h e r e t h e c a p t u r e c r o s s - s e c t i o n i s l o w . T h i s h a s l e d t o a n e x -

t e n s i o n O f t h e a v a i l a b l e d a t a t o n u c l i d e s n o t p r e v i o u s l y s t u d i e d , a n d t o 

m u c h m o r e d e t a i l e d s p e c t r a o w i n g t o t h e r e m o v a l o f s u p e r p o s e d s p e c t r a 

f r o m o t h e r i s o t o p e s i n n a t u r a l e l e m e n t s a m p l e s . T h e s e i m p r o v e d m e a s u r e -

m e n t s a r e y i e l d i n g a m a s s o f d a t a o n t h e p o s i t i o n s o f l e v e l s i n t h e c o m p o u n d 
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n u c l e i f o r m e d , a n d i n t h e t r a n s i t i o n p r o b a b i l i t i e s b e t w e e n t h e m , w h i c h 

l e a d t o a s s i g n m e n t o f l e v e l p a r a m e t e r s a n d t o t h e i r i n t e r p r e t a t i o n i n t e r m s 

o f n u c l e a r m o d e l s . I n p a r t i c u l a r t h e i n f o r m a t i o n o b t a i n e d f r o m ( n , 7 ) 

w o r k i s c o m p l e m e n t a r y t o t h a t o b t a i n e d f r o m s t r i p p i n g r e a c t i o n s t u d i e s , 

a n d t h e c o m b i n a t i o n o f d a t a f r o m t h e t w o e x p e r i m e n t s c a n l e a d t o v e r y 

c o m p l e t e s p e c i f i c a t i o n o f t h e l e v e l s c h e m e s [ 8 9 ] . 

T h e s t u d y o f r e s o n a n c e c a p t u r e s p e c t r a g i v e s i n f o r m a t i o n a b o u t t h e 

t r a n s i t i o n s f r o m t h e c a p t u r i n g s t a t e s t o t h e l o w e r l y i n g s t a t e s . I n t h e r m a l 

c a p t u r e t h e s e t r a n s i t i o n s t r e n g t h s a r e a r b i t r a r y , a n d i n d e e d i t i s d a n g e r o u s 

t o m a k e a n y i n f e r e n c e a b o u t t h e n a t u r e o f l o w e r l y i n g s t a t e s f r o m t h e s e 

s t r e n g t h s . I n r e s o n a n c e c a p t u r e m e a s u r e m e n t s , o n e o b t a i n s s e t s o f 

t r a n s i t i o n s t r e n g t h s f r o m a v a r i e t y o f c a p t u r i n g s t a t e s , a n d s o m e a n 

v a l u e s o f t h e r e d u c e d s t r e n g t h s a r e o b t a i n e d w h i c h h a v e d e f i n i t e p h y s i c a l 

m e a n i n g s . T h e d i s t r i b u t i o n o f t h e s e s t r e n g t h s i s a l s o o b t a i n e d a n d c a n b e 

c o m p a r e d w i t h t h e o r y ( P o r t e r - T h o m a s ) . A f u r t h e r p r a c t i c a l a d v a n t a g e i n 

m a k i n g r e s o n a n c e c a p t u r e s t u d i e s i s t h a t t h e s p e c t r a f r o m i n d i v i d u a l 

i s o t o p e s a r e e a s i l y o b t a i n e d , b y s e l e c t i n g a p p r o p r i a t e r e s o n a n c e s f o r s t u d y , 

w i t h o u t t h e n e e d f o r s e p a r a t e d i s o t o p e s a m p l e s , a n d m a n y s p e c t r a c a n b e 

o b t a i n e d s i m u l t a n e o u s l y , t h e r e b y e l i m i n a t i n g e f f e c t s o f d r i f t s . 

I n t h i s f i e l d t h e a d v e n t o f t h e l i t h i u m d r i f t e d g e r m a n i u m d e t e c t o r h a s 

c a u s e d a r e v o l u t i o n s i n c e p r e v i o u s l y i n t e n s i t y c o n s i d e r a t i o n s h a d r e -

s t r i c t e d s u c h w o r k t o t h e u s e o f s o d i u m i o d i d e c r y s t a l s w h i c h g a v e , a t 

b e s t , a r e s o l u t i o n o f a r o u n d 2 0 0 k e V [ 9 0 ] . 

T h u s f o r h e a v y n u c l e i o n l y t r a n s i t i o n s t o a f e w l e v e l s c o u l d b e o b -

s e r v e d e v e n u n d e r f a v o u r a b l e c i r c u m s t a n c e s . W i t h g e r m a n i u m d e t e c t o r s , 

i n p r i n c i p l e , t h e r e s o l u t i o n a v a i l a b l e i n t h e r e s o n a n c e w o r k i s c o m p a r a b l e 

t o t h a t o b t a i n e d i n t h e r m a l s t u d i e s : i n p r a c t i c e i t h a s b e e n s l i g h t l y w o r s e 

b e c a u s e o f e x p e r i m e n t a l e f f e c t s a s s o c i a t e d w i t h t h e u s e o f t i m e - o f - f l i g h t 

s p e c t r o m e t e r s . T h i s m e a n s t h a t t h e r e s o l u t i o n a v a i l a b l e a t 5 - 1 0 M e V 

i s i n t h e 1 0 - 2 0 k e V r a n g e , r a t h e r t h a n t h e 5 - 1 0 k e V r a n g e r e a c h e d i n 

t h e r m a l s t u d i e s . S u c h a r e s o l u t i o n i s s t i l l m o r e t h a n a n o r d e r o f m a g n i t u d e 

b e t t e r t h a n w a s a v a i l a b l e w i t h s o d i u m i o d i d e s p e c t r o m e t e r s , a n d i s a d e -

q u a t e f o r t h e a n a l y s i s o f m o s t s p e c t r a . 

I n t h e s t u d y o f r e s o n a n c e c a p t u r e s p e c t r a b y t h e t i m e - o f - f l i g h t m e t h o d , 

i t i s e s s e n t i a l t o m i n i m i z e t h e ' g a m m a - f l a s h ' f r o m t h e n e u t r o n s o u r c e a n d 

t o u s e t h e s h o r t e s t p o s s i b l e t i m e c o n s t a n t s i n t h e a m p l i f i c a t i o n s y s t e m i n 

o r d e r t o m i n i m i z e t h e e f f e c t o f f l u c t u a t i o n s i n t h e t a i l s o f t h e g a m m a f l a s h 

p u l s e o n t h e a m p l i t u d e o f t h e s i g n a l p u l s e s . T h e s e c o n s i d e r a t i o n s l e a d t o 

a c o m p r o m i s e i n a m p l i f i e r b a n d w i d t h s i n c e t o o w i d e a b a n d w i d t h c a u s e s 

a l o w s i g n a l - t o - n o i s e r a t i o w h i c h a d v e r s e l y a f f e c t s t h e r e s o l u t i o n , w h i l e t o o 

s m a l l a b a n d w i d t h c a u s e s a d e g r a d a t i o n i n r e s o l u t i o n d u e t o t h e e f f e c t o f 

p i l e - u p o f t a i l s o f p u l s e s . W i t h a s u i t a b l e c o m p r o m i s e , r e s o l u t i o n s o f 

1 0 - 2 0 k e V c a n b e a c h i e v e d . 

F i g u r e 4 1 s h o w s t h e s p e c t r a o b t a i n e d w i t h s u c h a s y s t e m f o r c a p t u r e 

b y 1 9 9 H g o f t h e r m a l n e u t r o n s , a n d r e s o n a n c e n e u t r o n s o f e n e r g y 3 4 e V , 

1 3 0 e V a n d 1 7 5 e V [ 9 1 ] . T h e s e s p e c t r a w h i c h r u n f r o m 4 M e V u p w a r d s , 

a r e e s s e n t i a l l y t h e s p e c t r a o f t r a n s i t i o n s f r o m t h e c a p t u r i n g s t a t e s t o a 

s e r i e s o f b o u n d s t a t e s o f e n e r g y u p t o 4 M e V , a n d t h e f l u c t u a t i o n s i n t h e 

s t r e n g t h s o f t h e t r a n s i t i o n s a r e o b v i o u s . T h e s t a t i s t i c a l b e h a v i o u r o f 

t h e t r a n s i t i o n s t r e n g t h s c a n b e a n a l y s e d o n t h e a s s u m p t i o n t h a t a l l t h e 

o b s e r v e d t r a n s i t i o n s a r e o f E l c h a r a c t e r ( t h i s i s k n o w n t o b e t r u e f o r 

a l l t h e s t r o n g t r a n s i t i o n s o b s e r v e d i n t h e r m a l c a p t u r e i n 1 9 9 H g [ 9 2 ] . T h e 
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GAMMA RAY ENERGY (MeV) 

FIG.41. Gamma ray spectra for reaction ' " H g f n . y J ^ H g [91]. (Courtesy of American Institute 
of Physics) 

distribution of the reduced strengths ( S^E 3 ) for 88 E l transitions obtained 
from the mercury data (corrected for variation of detector efficiency with 
energy), is shownin Fig. 42. Corrections have also been applied for missed 
weak transitions, for overlap of lines and for the inclusion of Ml transitions 
on the assumption that the mean E l strength is 10 times the mean Ml 
strength. The theoretical curve shown for comparison is the Por te r -
Thomas distribution and the agreement is clearly good. Figure 43 shows 
the result of a least squares fit of the data to the chi-squared family of 
curves, which provides a more quantitative comparison with the theory. 
The result of this comparison'is that the best fit is to a curve whose 

+ 0.24 
number of degrees of freedom (channels) v= 0. 96 _n 1 7 This confirms 



NEUTRON SPECTROSCOPY 889 

that the Porter-Thomas distribution holds for the E l strengths and con-
f i rms the essentially real nature of the wave functions of the states in-
volved. Another experiment which provides a more rigorous proof of 
the Porter-Thomas distribution for E l transition strengths is that of 
Jackson et al. [93] in which they examined transitions in the compound 
nucleus 196Pt. They determined the strengths of transitions to the ground 
state and f irst two excited states in 196Pt, all of which are E l transitions 
f rom the 1 levels in i95Pt + n, and they did this for 22 resonances of 
this nature, giving 66 transitions in all. This is a smaller number of 

s /<s> 

FIG. 42; Corrected experimental histogram showing distribution of reduced strengths for 88 El transitions 
in 200 Hg. The Porter Thomas distribution is shown for comparison [91]. (Courtesy of American 
Institute of Physics) 

v 

FIG.43. Least squares fit to experimental distribution of El strengths [91]. (Courtesy of American 
Institute of Physics) 
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t r a n s i t i o n s t h a n w a s o b s e r v e d b y R a e e t a l . , b u t t h e e x p e r i m e n t i s b e t t e r 

b e c a u s e ( 1 ) a l l t r a n s i t i o n s w e r e p o s i t i v e l y a s s i g n e d a s E l , ( 2 ) t h e e n e r g y 

r a n g e o f t h e t r a n s i t i o n s w a s o n l y f r o m 7 2 3 1 t o 7 9 2 0 k e V s o t h a t c o r r e c t i o n s 

f o r v a r i a t i o n i n d e t e c t o r e f f i c i e n c y w i t h e n e r g y w e r e s m a l l , a n d a n y e n e r g y 

v a r i a t i o n i n t h e r e d u c e d m a t r i x e l e m e n t s w a s m i n i m i z e d , ( 3 ) t h e p r o b a b i l i t y 

o f m i s s i n g l e v e l s w a s n e g l i g i b l e . 

T h e r e s u l t o f t h i s w o r k w a s t o e s t a b l i s h t h e o b s e r v e d d i s t r i b u t i o n o f 

t h e r e d u c e d s t r e n g t h s a s a c h i - s q u a r e d f u n c t i o n w i t h a n u m b e r o f d e g r e e s 

o f f r e e d o m v = 1 . 2 3 ± 0 . 1 9 a g a i n c o n f i r m i n g t h e P o r t e r - T h o m a s d i s t r i b u t i o n 

a n d i m p l y i n g r e a l w a v e f u n c t i o n s . T h e y a l s o o b s e r v e d t h e d i s t r i b u t i o n o f 

t h e s u m o f t h e s t r e n g t h s t o t h e t h r e e l e v e l s , o v e r t h e 2 2 r e s o n a n c e s a s 

c o r r e s p o n d i n g t o a c h i - s q u a r e d f u n c t i o n w i t h v = 3 . 5 7 ± 1 . 0 0 , a g a i n c o n -

f i r m i n g t h e P o r t e r - T h o m a s d i s t r i b u t i o n . 

T h e s e t w o e x p e r i m e n t s a r e i m p o r t a n t i n t h a t p r e v i o u s e x p e r i m e n t s 

a n d t h e i r i n t e r p r e t a t i o n h a d l e d t o s o m e c o n s i d e r a b l e d o u b t [ 5 5 ] a s t o 

w h e t h e r v h a d t h e v a l u e 1 o r 2 . 

C o n s i d e r a t i o n s o f t h e r e d u c e d s t r e n g t h s o f t r a n s i t i o n s t o l o w - l y i n g 

b o u n d s t a t e s a v e r a g e d o v e r s e v e r a l c a p t u r i n g s t a t e s s h o w s i g n i f i c a n t 

d i f f e r e n c e s f o r b o u n d s t a t e s o f d i f f e r e n t c h a r a c t e r : f o r e x a m p l e i n t h e 

c a s e o f t h e c o m p o u n d n u c l e u s 2 0 0 H g , t h e m e a n r e d u c e d s t r e n g t h o f 

t r a n s i t i o n s f r o m t h e 1" c a p t u r i n g s t a t e s t o t h e 1 + s t a t e s a b o v e 1 2 5 5 k e V 

i s 4 3 . 9 ± 8 . 8 j u e V w h i l e t h e m e a n r e d u c e d s t r e n g t h t o t h e l o w - l y i n g c o l -

l e c t i v e s t a t e s i s 7 . 1 ± 3 . 6 j u e V . S i m i l a r e f f e c t s a r e a l s o o b s e r v e d i n o t h e r 

n u c l e i . 

A f u r t h e r t y p e o f c o m p a r i s o n , n o t y e t m a d e w i t h g e r m a n i u m d e t e c t o r s , 

i s t o c o m p a r e m e a n r e d u c e d s t r e n g t h s t o t h e s a m e l e v e l s o r b a n d s f o r 

s - w a v e a n d p - w a v e n e u t r o n c a p t u r e . M e a s u r e m e n t s o f t h i s t y p e c a n 

e s t a b l i s h t h e p a r i t i e s o f t h e l e v e l o r b a n d c o n c e r n e d [ 9 4 ] . T h e u s e o f h i g h 

r e s o l u t i o n g e r m a n i u m d e t e c t o r s s h o u l d p e r m i t s u c h p a r i t y a s s i g n m e n t s t o 

b e m a d e t o a l a r g e n u m b e r o f l e v e l s n o t p r e v i o u s l y r e s o l v e d . A n g u l a r 

c o r r e l a t i o n m e a s u r e m e n t s a n d p o l a r i z a t i o n c o r r e l a t i o n m e a s u r e m e n t s 

b e t w e e n p r i m a r y a n d s e c o n d a r y t r a n s i t i o n g a m m a r a y s f o l l o w i n g n e u t r o n 

c a p t u r e c a n d e t e r m i n e b o t h s p i n a n d ' p a r i t y o f t h e i n t e r m e d i a t e s t a t e [ 9 2 ] . 

T h u s a s t u d y o f t h e d e t a i l e d s p e c t r a a n d c o r r e l a t i o n s f o r t h e g a m m a 

r a y s e m i t t e d f o l l o w i n g n e u t r o n c a p t u r e i s i n p r i n c i p l e c a p a b l e o f p r o v i d i n g 

v e r y c o m p l e t e i n f o r m a t i o n a b o u t s p i n , p a r i t y a n d c h a r a c t e r o f s t a t e s i n t h e 

c o m p o u n d n u c l e u s . 

W e h a v e n o t s o f a r m e n t i o n e d t h e p o s s i b l e u s e o f t h e c a p t u r e g a m m a -

r a y s p e c t r a t o i n f e r t h e s p i n o f t h e c a p t u r i n g s t a t e . C e r t a i n l y t h i s c a n b e 

o b t a i n e d i n p r i n c i p l e i n t h e c a s e o f t h e s o o j j g c o m p o u n d n u c l e u s , f o r e x a m p l e 

b y o b s e r v i n g t h e s t r e n g t h o f t h e t r a n s i t i o n s f r o m t h e c a p t u r i n g s t a t e s t o 

t h e t w o 0 + s t a t e s a t l o w e n e r g y . T h e s e a r e E l t r a n s i t i o n s f o r 1" c a p t u r i n g 

s t a t e s , a n d a r e a b s o l u t e l y f o r b i d d e n f o r 0 s t a t e s . S u c h m e a s u r e m e n t s 

h o w e v e r a r e u n r e l i a b l e o w i n g t o t h e P o r t e r - T h o m a s d i s t r i b u t i o n i n r e d u c e d 

s t r e n g t h s w h i c h g i v e s a h i g h p r o b a b i l i t y o f v e r y w e a k ( u n o b s e r v a b l e ) t r a n -

s i t i o n s . T h e s p i n o f t h e c a p t u r i n g s t a t e w i l l h o w e v e r a f f e c t t h e m u l t i p l i c i t y 

o f t h e d e c a y c a s c a d e i n t h e c a s e o f h i g h s p i n c a p t u r i n g s t a t e s i n e v e n - e v e n 

c o m p o u n d n u c l e i , s i n c e t h e d e c a y w i l l p r o c e e d p r e f e r e n t i a l l y b y E l o r M l 

t r a n s i t i o n s . T h u s i f o n e o b s e r v e s t w o - p h o t o n d e c a y t o t h e g r o u n d s t a t e , 

f o r e x a m p l e , t h i s w i l l b e m o r e p r o b a b l e f o r t h e l o w e r p o s s i b l e s p i n i n 

s - w a v e c a p t u r e , t h a n f o r t h e h i g h e r v a l u e . A r e c e n t m e a s u r e m e n t o f t h i s 

t y p e o b s e r v i n g t h e r a t i o o f c o i n c i d e n c e s t o s i n g l e e v e n t s ( w h e r e t h e h i g h e r 
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multiplicity of the gamma rays f rom the higher spin state augments the 
coincidence count rate) was carr ied out by Coceva et al. [95] at Ispra. 
The compound nucleus was 106Pd and 17 spin assignments were made. 

4.6. Fission cross-sections 

The fission cross-sections of heavy nuclei are perhaps the most inter-
esting of all. The behaviour of neutron capture, scattering and total 
cross-sect ions can be explained very well in terms of simple concepts 
like the scattering of an attenuated neutron wave f rom a semi-transparent 
sphere (optical model) coupled with the concept of compound nucleus 
resonances which periodically produce zeros in the logarithmic derivative 
of the channel wave function. On the basis of these ideas we can explain 
all of the phenomena of neutron scattering. There is some difficulty in 
the case of capture in that the observed radiation widths, although varying 
qualitatively with A, N and Z in the manner expected, are larger 
than would be expected theoretically on the basis of existing level 
density theory. This however is a single systematic effect presumably 
requiring a more sophisticated treatment of the level density theory. 

In the case of fission, however, these simple ideas cannot be applied 
directly. Fo r example, up to the mid 1950's fission was thought, like cap-
ture, to be a multichannel mode of decay, and fission widths, like radiation 
widths, were expected to be nearly constant. 

Of course the fission of heavy nuclei was understood crudely in terms 
of the liquid drop model. A simple classical analogy shows that as one 
progressively deforms such a charged spherical drop towards a prolate 
shape, work must be done initially against the surface tension forces . 
However the charge then tends to migrate to the ends of the drop, and 
eventually the deformation continues spontaneously, due to electrostatic 
repulsion and the weakening of the surface tension force, and the drop 
f l ies apart. A simple calculation shows that such a spherical charged 
drop will split spontaneously in two if the ratio of its electrostatic energy 
to surface energy exceeds a critical value, i. e. , if Z2/A exceeds a 
critical value. These simple considerations show that only the heaviest 
nuclei are unstable against spontaneous fission. F igure 44 shows the 
general nature of the potential ba r r i e r against fission, i. e. the energy 
which must be used to deform it to the 'saddle point' at which fission will 
occur. Fo r nuclei of charge 92 and greater, the height of this ba r r i e r 
becomes comparable with the binding energy of a neutron, so that if a slow 
neutron is added, for example to 2 3 5U, there is a finite probability that 
all of the excitation energy in the 236 и will be concentrated in deforming 
the compound nucleus, and fission will result. The potential ba r r i e r is 
a quantum mechanical one however, so there is no sharp energy at which 
fission suddenly occurs, rather there is an increase in the probability 
of f ission as the ba r r i e r is approached, and this probability, expressed 
as a mean fission width, is given in the well-known penetration formula of 
Hill and Wheeler [96] 

2тг<ГР> 
D 

1 + EXP {2тг (E f - E ) / f i y ] 
(4. 25) 
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w h e r e D , a s u s u a l , i s t h e l e v e l d e n s i t y i n t h e c o m p o u n d n u c l e u s , 1С i s t h e 

e x c i t a t i o n e n e r g y , E F i s t h e h e i g h t o f t h e f i s s i o n b a r r i e r a n d Г i s a m e a s u r e 

o f t h e b a r r i e r t h i c k n e s s , "Rio ¿ 1 M e V . W e s e e a t o n c e i n r e s o n a n c e f i s s i o n , 

w h e r e t h e m e a s u r e m e n t s e x t e n d a t m o s t o v e r a f e w h u n d r e d s o f e V , t h a t 

< ^ F p У / D i s e x p e c t e d t o b e e s s e n t i a l l y c o n s t a n t , w i t h a v a l u e o f \ Г р w h i c h 

d e p e n d s o n t h e v a l u e o f E F a s c o m p a r e d w i t h t h e n e u t r o n s e p a r a t i o n e n e r g y . 

A m o r e d e t a i l e d s t u d y o f t h e c o n d i t i o n s a t t h e f i s s i o n s a d d l e p o i n t 6 [ 9 7 , 9 8 ] 

s h o w s t h a t t h e d i s t o r t e d n u c l e u s a t t h a t p o i n t h a s a g r o u n d s t a t e a n d a s e r i e s 

o f e x c i t e d s t a t e s i n t h e s a m e w a y a s a n y o t h e r [ F i g . 4 4 ) e a c h w i t h d e f i n i t e 

v a l u e s o f a n g u l a r m o m e n t u m a n d p a r i t y , a n d e a c h c o r r e s p o n d i n g t o a d e f i n i t e 

v a l u e o f E f . A m o r e c o r r e c t e x p r e s s i o n f o r t h e m e a n f i s s i o n w i d t h i s 

t h e r e f o r e g i v e n b y 

( 4 . 2 6 ) 

д 1 + e x p { 2 T T ( E F * - E ) / f i u } 

w h e r e t h e s u m i s o v e r a l l s a d d l e p o i n t s t a t e s ц o f t h e a p p r o p r i a t e s p i n a n d 

p a r i t y . E a c h s u c h s a d d l e p o i n t s t a t e r e p r e s e n t s a f i s s i o n c h a n n e l , a n d o n 

t h i s c h a n n e l t h e o r y o f f i s s i o n i t i s c l e a r t h a t c a n b e c o n s i d e r a b l y 

l a r g e r t h a n D/2w i f s e v e r a l c h a n n e l s a r e o p e n , i . e . i f s e v e r a l o f t h e 
JIT 

E f ( l l i e c l o s e t o o r b e l o w t h e n e u t r o n s e p a r a t i o n e n e r g y f o r t h e c o m p o u n d 

n u c l e u s . 

COMPOUND SADDLE POINT 
N U C L E U S STATES 

2 * < Г г > V 

T A R G E T 
(RESIDUAL.) 

N U C L E U S 
+ NEUTRON 

DEFORMATION OC 

FIG. 44. Energy diagram for fission (Ref. [109], p. 182) 

N o w f o r s l o w n e u t r o n i n d u c e d f i s s i o n , w e k n o w t h a t t h e d i f f e r e n c e 

b e t w e e n E F a n d t h e n e u t r o n b i n d i n g e n e r g y i s s m a l l , h e n c e o n l y a f e w 

c h a n n e l s a t m o s t c a n b e o p e n , a n d i t i s t h i s c o n c e p t w h i c h g i v e s r i s e t o 

t h e i d e a o f t h e r e b e i n g o n l y a f e w d e f i n i t e q u a n t u m m e c h a n i c a l c h a n n e l s 

f o r d e c a y o f t h e c o m p o u n d n u c l e u s b y f i s s i o n , a n d h e n c e t o t h e f l u c t u a t i o n s 

i n t h e f i s s i o n w i d t h , t h e i n t e r f e r e n c e e f f e c t s i n f i s s i o n c r o s s - s e c t i o n s , a n d 

v a r i a t i o n i n m e a n f i s s i o n w d i t h a n d i n f i s s i o n m a s s d i s t r i b u t i o n s w i t h t h e 

fi The term 'saddle point* arises from a plot of the potential energy surface as a function of a2 and 
a 3 , the coefficients of P2 and P3 in a crude description of the shape of the fissioning nucleus. 
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s p i n o f t h e r e s o n a n t s t a t e i n v o l v e d . N o w t h e a v e r a g e f i s s i o n c r o s s - s e c t i o n 

i s g i v e n a p p r o x i m a t e l y b y < C T n F > = < a C N > < F f / ( Г р + Г п + Г у > w h e r e o C N 

i s t h e c o m p o u n d n u c l e u s f o r m a t i o n c r o s s - s e c t i o n . H e n c e f o r t h o s e c o m -

p o u n d n u c l e i - f o r w h i c h t h e f i s s i o n b a r r i e r e n e r g i e s e x c e e d t h e n e u t r o n 

s e p a r a t i o n e n e r g y , a n d i n d e e d c o r r e s p o n d t o a n e u t r o n b o m b a r d i n g e n e r g y 

f o r w h i c h k R ^ , l (•— 2 5 0 k e V f o r a h e a v y n u c l e u s ) w e e x p e c t t o s e e a 

s e r i e s o f r i s i n g s t e p s i n t h e f i s s i o n c r o s s - s e c t i o n a s c h a n n e l s o p e n a n d 

< ^ r F У i n c r e a s e s s t e p w i s e , a c c o m p a n i e d b y a s e r i e s o f d r o p s a s i n e l a s t i c 

n e u t r o n c h a n n e l s o p e n a n d \ Г П У i n c r e a s e s s u d d e n l y . A t h i g h e r e n e r g i e s , 

t h e f i s s i o n c r o s s - s e c t i o n i s d e t e r m i n e d b y t h e r e l a t i v e n u m b e r o f f i s s i o n 

a n d n e u t r o n c h a n n e l s w h i c h a r e o p e n , i . e . b y t h e l e v e l d e n s i t i e s i n t h e 

c o m p o u n d n u c l e u s a t t h e s a d d l e p o i n t , a n d i n t h e t a r g e t n u c l e u s . 

О 2 4 6 8 10 
NEUTRON ENERGY 

FIG. 45. Compilation of fission cross-section curves for 11 nuclei (Ref. [109] ,p. 192) 
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into a fission width and allows a rise in the cross-section. Similar steps 
are observed at higher energies as fission can follow the emission of 2, 3 
or more neutrons. These then are the main features of the fission c ros s -
section. A s we noted earl ier, the appearance of interference effects in 
the resonance fission cross-sections of the odd-N nuclei, and the fluctu-
ations in fission widths obtained, were evidence for the Bohr channel 
theory. Fo r the even-even target nuclei which showed threshold behaviour, 
the channel theory predicted that the compound nuclei, at the saddle point, 
would once again be in states of very low intrinsic excitation which would 
correspond, because of their large prolate distortions, to a rotational band 
i f low К where К is the projection of the total angular momentum on the 
symmetry axis. Examination of the angular distribution of the fragments 
for neutron bombardment of even-even targets at threshold showed the 
expected forward-backward peaking, typical of К = i close to threshold, 
thereby again confirming the channel theory of fission [100]. 

Returning to the resonance cross-sections of the thermally f issi le 
nuclei, it is possible to find the position of the fission thresholds for these 
nuclei, even though they occur at negative neutron energies by means of the 
(d, pF) reaction. F rom such measurements Northrop et al. [101] showed 
that for 233U, 235и a n d 239pUj these thresholds lie between 1 and 2 MeV 
below the neutron binding energy. The positions of these thresholds 
suggest values of 27Г<^Гр of 1 or 2 (see Eq. (4. 26)). Observed values, 
however, lie considerably lower, the value for 235U, for example, being 
0. 22±0. 04 (Lynn's tabulation). Such discrepancies have caused con-
siderable theoretical interest in the fission cross-sections (see Lynn's 
lectures) to be added to the already strong practical interest from the 
point of view of reactor technology. 

The measurement of fission cross-sections also raises some technical 
problems. Scattering cross-sections, you will remember, could easily 
be made relative to some standard, like lead or carbon, where the c ros s -
section was almost entirely due to scattering, was independent of E up to 
several keV at least, and so could be easily determined absolutely in an 
accurate transmission experiment. In the case of capture, normalization 
was a little more difficult, since in the nature of the capture process, no 
such convenient constant cross-section exists. A few light nuclei, however, 
like 10B, show (n, <*) cross-sections which vary essentially as and 
since 10B also emits a 480 keV 7 - r a y , and the (п,<*7) cross-section also 
varies as 1 /N/е"up to 100 keV, this reaction can be used to determine the 
shape of the neutron spectrum (N(E)dE) and only the ratio of efficiencies 
of the detectors for capture events in the sample, and in 10B, need be 
determined. This is done with the use of convenient low energy resonances 
where Г , so that with multiple scattering in a thick sample (ncr0»l ) , 
all the neutrons in the beam are captured at resonance, and the required 
absolute calibration of the system is achieved. 

For fission, however, there is no cross-section which may be ob-
tained by transmission, neither are there any resonances for which Г 
so that all the resonance neutrons would produce fission. We are therefore 
forced, in the case of fission, to that most undesirable of experiments, the 
absolute measurement of a cross-section. This means essentially the 
absolute measurement of a neutron flux, and the calculation of the absolute 
efficiency of the fission detector. 
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The absolute measurement of neutron fluxes has been the subject of 
much study, both for thermal neutrons and for fast neutrons produced by 
Van de Graaf f accelerators. In the case of thermal neutrons, or rather 
mono-kinetic neutrons in the thermal energy range, the flux can be ob-
tained with high accuracy by the measurement of the activation of foils of 
materials with large thermal capture cross-sections, such as gold, where 
the capture cross-sect ion can be determined accurately f rom a transmission 
measurement (ti , ,^ a n X ),. and where the decay scheme is well known. 
Alternatively 10B ion chambers with accurately known performance can be 
used. This involves an accurate knowledge of the quantity of 10B in the 
chamber, and of the corrections for lost counts due to absorption in the 
foil and wall effects. A similar problem presents itself for determining 
the absolute efficiency of the fission chamber, usually an ion chamber in 
the case of thermal f ission. Even so, with.very accurate work, such 
measurements can be made to an accuracy approaching 1% [102]. 

A novel scheme for the absolute measurement of the thermal fission 
cross-sect ion of 235U was that adopted by Sapakoglu [103]. This involved 
a measurement of the neutron flux with a 10B chamber whose efficiency was 
determined by a coincidence measurement in which the a -pa r t i c l e was 
detected in the chamber and the associated 7 - r a y was detected in a sodium 
iodide detector. The efficiency of the fission detector was likewise de -
termined absolutely by another coincidence measurement with a liquid 
scintillator detector for the fast neutrons. In this way the efficiency of 
the fast neutron detector for f ission events was also determined. The ion 
chamber was then replaced by a 235U foil whose mass was obtainable by 
weighing (it is done by a -par t ic le counting for the very thin ion chamber 
foi ls ) , and in principle the apparatus could then measure CTnF for 23^и 
to 1%. Unfortunately the authors did not take account of the spatial c o r r e -
lation between the direction of emission of the fission fragments and the 
fission neutrons, due to the fact that the neutrons are emitted f rom the 
moving fragments. This effect introduced a bias into the measurement of 
the efficiency of the fast neutron detector, since the ion chamber efficiency 
for fragments emitted close to the plane of the foil was low. Hence there 
was a systematic e r ro r in the measurement of several percent which was 
not explained until several years later when careful measurements of the 
same nature by Maslin [104] at Aldermaston, with a variety of detector 
geometries, revealed the effect. Another method of obtaining an accurate 
measurement of the thermal neutron fission cross-sections, is to deter -
mine the ratio a of capture to fission by a mass spectrometer analysis of 
a sample both before and after a long irradiation in the thermal flux of 
a reactor. Since the fission cross-sect ion is the dominant one, and since 
the total absorption cross-sect ion is available to high accuracy f rom 
transmission measurements, a measurement of ce to, say, 5%, is enough 
to yield ffnF to an accuracy close to 1%. 

The absolute determination of fast neutron fission cross-sect ions is 
more difficult. The problem of determining the efficiency of the 
chamber is here made more difficult by correlations between the fragment 
emission direction and that of the incident neutron, and the neutron flux 
measurement represents a formidable problem involving the thermalization 
of the fast neutrons and their detection then with high efficiency. We shall 
not pursue this subject, but note that in the past the discrepancies between 
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measurements have far exceeded their claimed accuracies which were of 
the order of 3%. 

To return to measurements in the resonance region, we must first 
consider the choice of detector. The fission fragment detector should 
have a sensitive thickness of the order of the range of the fragments so 
as to maximize the discrimination against the a-part ic les which are in-
evitably emitted by the fission foil. Several types of detector have been 
used successfully for this purpose including ion chambers, gas scintil-
lation detectors, surface barrier semiconductor detectors and spark 
chambers. The ion chambers, although the easiest to use, have rather 
a slow response which makes them unsuitable for use with extremely 
active foils. The spark chambers at the other extreme, are claimed to 
be incapable of being triggered at all by a -part ic les . 

Having measured a fission yield curve as a function of neutron energy, 
the technique for obtaining the cross-section is to remove the effect of 
the neutron spectrum and then to normalize the curve at thermal energy, 
where, as we have said, the cross-sections are known to ~1% for the 
common fissile nuclides. Figure 46 shows the fission cross-section of 
241Pu [105] across the resonance region. As in the case of the capture 
cross-section of In, the 1/N/Ë variation of the average cross-section 
is clear, indicating that Гп <Гу +Гр over the energy range studied. 

FIG. 46. M 1Pu fission cross-section from 0. 01 eV to 3 keV [105] 

Because of the great interest in the cross-sections of the fissile nuclei, 
both for their technological importance and for their intrinsic significance 
in connection with the channel theory of fission, it is very desirable to 
make these measurements with the highest possible resolution in order 
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to have an accurate record of the shape of the cross -sect ion curves over 
the widest possible energy range. In transmission measurements on 
f iss i le targets it is relatively easy to achieve nominal resolutions of better 
than 1 nsec/m. In fission cross-sect ion measurements with fragment 
detection, however, particularly if the material is very active and only 
small amounts can be used, it is difficult if not impossible to approach 
this resolution. Because of the great intensity of neutrons available 
f rom a nuclear explosion, it is in principle quite possible to achieve very 
high resolution with this technique [106] (and various measurements have 
recently been made in this way), but for work with accelerators, the 
obvious way to improve the resolution on fission cross-section measure -
ments is to abondon fragment detection and detect the fission events 
through the fast f ission neutrons. In this way the a -par t ic les f rom the 
foil are no longer troublesome and the foil need no longer be extremely 
thin to allow the escape of the fragments, so that la rger samples can be 
used. Such measurements have now been made on the Harwel l linac [107] 
using a flight path of 100 m, which with a 100-nsec pulse gives a nominal 
resolution —1 nsec/m. 

When real ly thick samples are used in an experiment of this sort 
(пст» 1) and are combined with a transmission measurement carr ied out 
under identical conditions of resolution, the result is that a quantity is 
measured which is proportional to r) = ~vonf/стпА. If the transmission is 
real ly zero, and if we ignore for the moment the loss of energy on scat-
tering, it is c lear that all the incident neutrons are absorbed in the sample, 
and must either be captured or produce fission events. If our detector 
utilizes a liquid scintillator with pulse shape discrimination, it is sensitive 
to the fission neutrons, but not to the capture 7 - r a y s , and so it is c lear 
that it records a quantity proportional to yan F /сгпА , or 77 . In a real case, 
corrections are made for the finite transmission of the sample, for energy 
loss of the neutrons on scattering, and for the probability of, their escape 
f rom the foil, and r¡ is obtained, for those energy regions where the sample 
has ncr » 1. This is done then for a range of sample thicknesses: where 
no < 1, стпр is obtained, where na » 1, r¡ is obtained, and of course f rom 
the transmission part pf the experiment стпт is obtained. F rom all these 
data one can extract both anF and an (always assuming v (E) to be 
constant), provided стПп can be calculated or measured. In fact the 
scattering has a negligible effect on the resonances being only important 
in regions of low cross-sect ion. стПу is therefore not obtained with any 
accuracy in regions of low cross-section. Figure 47 shows a measure -
ment of CTnF for 239Pu [108] obtained by this method. We note that this 
method also produces a determination of an y , at least at low neutron 
energies. 

Much more could be said about the subject of neutron induced fission 
in the resonance region, such as the anomalously low values of the fission 
widths for many nuclei showing threshold fission at relatively low neutron 
energies [109] and the relationship of this to the channel theory, and the 
study of f ission mass distributions as a function of J and тг [110]. Un -
fortunately time does not permit this, but these topics may be covered by 
M r . L y n n in his theoretical course (not published). Fo r a general review 
of fission physics, the reader is re fe r red to Physics and Chemistry of 
Fission, published by the IAEA (1965). 
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5. INTERMEDIATE ENERGY NEUTRON SPECTROSCOPY 

On the basis that neutron spectroscopy is the study of sharp nuclear 
states through neutron energy and intensity measurements, this brief 
section does not consider measurements of neutron cross-sections at 
higher energies, where we are dealing with a continuum. Rather, we 
shall look at the study of the energy and intensity distributions of fast 
neutrons emitted in nuclear reactions where these distributions involve 
sharp groups corresponding to quantum mechanical states in the compound 
or residual nucleus. 

% 
$ 

30 

ENERGY (eV) 

FIG. 47. Fission cross-section of Pu. The dotted lines indicate regions where the cross-section is 
too low to be measured [108] 

In this category are the photoneutron production cross-sections which 
have been studied most effectively by time-of-flight techniques [111]. Here 
the principal object of study is the photonuclear giant dipole resonance. 
The simple liquid drop model which predicted easily the simplest basic 
facts about the fission process is also able to predict the existence of a 
photonuclear dipole resonance in which the protons in the nucleus are set 
vibrating relative to the neutrons. Such a model predicts the existence of 
a resonance in the photon absorption cross-section at an energy of about 
20 MeV for nuclei in the calcium region, dropping off in energy with mass 
number as the size of the resonator increases. This observation is in 
qualitative agreement with experiment. The simple hydromechanical 

57* 
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model can also account qualitatively for such effects as the increased width 
of the giant resonance for very highly deformed nuclei in the rare earth 
region. The observation, however, of fine structure in the photonuclear 
cross -sect ions of light nuclei, and the fai lure in these cases of the simple 
relationship between the resonance energy and the nuclear radius, require 
the introduction of a more sophisticated model. In this case the e lectro-
magnetic waves interact with the nucléons rather than with the nucleus as 
a whole, and the interaction is rather of the nature of raising individual 
neutrons and protons to higher energy states. Such a description, in terms 
of shell model states, and taking into account the residual particle-hole 
interaction, is capable of explaining rather well the general behaviour of 
the photonuclear cross-sections in light nuclei, particularly if these have 
a rather simple structure like the doubly closed shell nucleus 1 60. In this 
case, for example, the theory predicts four main peaks in the cross-sect ion 
curve corresponding to definite nucleón transitions. This means that if 
the nucleus is irradiated with a white spectrum of photons covering the 
energy region of the giant resonance, a ser ies of peaks is seen in the 
spectrum of particles emitted (neutrons or protons are energetically pos -
sible). The neutrons, of course, are much easier to observe than the 
protons, since they escape easily f rom the target, and their energy and 
intensity distribution can be examined by the t ime-of - f l ight technique. 

The experimental arrangement for these studies is to produce a 
bremsstrahlung pulse of a few nanoseconds' duration using an electron 
linac. This means causing the electron beam to strike a thin heavy 
(tantalum or tungsten) target, removing the transmitted electrons with a 
magnetic field or light absorber , and allowing the transmitted b r e m s -
strahlung beam to irradiate the target to be studied. The photoneutrons 
produced are allowed to fly down a long flight path set preferably at a 
backward angle to minimize 7 - r a y scattering effects, and the time 
spectrum of the neutrons is measured in the usual way with a multi-channel 
analyser. In the Harwel l system the pulse length is 10 nsec and the flight 
path length 100 m giving a nominal resolution of 0. 1 nsec/m. By adjusting 
the energy of the electron beam, and so the energy of the tip of the b r e m s -
strahlung beam, it is possible to infer which of the neutron groups observed 
leave the daughter nucleus in its ground state. The energy of these 
neutrons is then uniquely related to the energy of the photon causing the 
reaction, and the yield curve can be plotted as a function of photon energy. 
Be fore looking at the experimental results, let us consider for a moment, 
the energy resolution available in such an experiment with a nominal 
resolution of 0. 1 nsec/m. In the case of 1 6 0 for example, as target, the 
binding energy of a neutron is about 16 MeV, and the giant resonance 
extends at least to 26 or 27 MeV. Hence the neutrons emitted cover an 
energy range up to the order of 10 MeV. Now the detector used in such 
an experiment is of the proton recoil type, a plastic scintillator, of thick-
ness, say, 3-5 cm, to achieve good efficiency. L ikewise the water photo-
nuclear target used has a thickness of ~3 cm. Hence there is a length 
uncertainty of say 5 cm altogether in the flight path, and so the energy 
resolution (AE/E ) , given by Eq . (3 . 6) is 2X5/104 for low-energy neutrons 
(vAt < Д £ ) going to 2v At/i where vAt » A i . This latter reduces to a 
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numerical value of E* /360 where E is the energy in MeV. Hence the 
resolution width ЛЕ for a range of neutron energies is as tabulated below 

E (keV ) 10 10 10J 10 

ДЕ(keV) 0. 01 0. 13 2. 9 88 

These figures can be compared with the curves in Fig. 20, and we observe 
that they are more pessimistic at the lower energy end in that they take 
into account the dimensions of source and target. They are probably over -
pessimistic in that at these lower energies, the rise in the hydrogen cross -
section reduces the effective thickness of the detector. In any case they 
indicate clearly that over the energy range studied the resolution is always 
better than 100 keV, and that in the range below 1 MeV it is extremely 
good, bearing in mind that this technique is used to study light elements 
where the level spacing is wide. 

Let us then return to the experimental data, and look at the neutron 
energy spectra observed when a light element is irradiated with a b rems -
strahlung beam. Two such curves, corresponding to different b rems -
strahlung end points, are shown in Fig. 48 for an oxygen (water) target [112]. 

NON GROUND 
STATE 

E 32 MeV ушах 

'E 26 MeV 
ymax 

17 18 19 20 21 22 23 24 25 

EXCITATION ENERGY IN 1 6 O (MeV) 

26 29 

FIG. 48. The observed relative yield of photoneutrons from the reaction 16 О (у , о ) в О assuming ground 
state transitions only. The bremsstrahlung energies are 26 and 32 MeV. No corrections have been made 
for background effects. The time-of-flight resolution is 0. 5 nsec • m"1 [112]. (Courtesy of North-
Holland Publishing Co. ) 

The structure, corresponding to the 'giant dipole resonance1 in oxygen 
is clearly seen. An interesting feature is that the shell model calculations 
with particle-hole interactions predict 4 main peaks, all of which are 
observed in the experiment. The experiment data, however, contain much 
more structure, showing more than 10 states. These are presumably due 
to coupling with the shell model states of more complicated states due 
possibly to collective motions of the highly excited and therefore no longer 
spherical nucleus. Similar studies of other light nuclei show much more 
complex structure. 
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Another application of the fast neutron t ime-of - f l ight technique is 
the study of neutron inelastic scattering [113]. This is very useful in in -
vestigating low-lying levels particularly in heavy nuclei, where charged 
particles of very high energy would be required to excite the same states 
on account of the Coulomb ba r r i e r . This use of pulsed neutron sources 
has been made attractive by the development of very intense pulsed Van de 
Graa f f accelerators, utilizing post acceleration bunching. Such acclerators 
give proton pulses with duration < 1 risec and pulse currents in excess of 
10 mA . Another factor in the development of the work is the improvement 
in proton recoil detectors due to the use of photo-tubes in coincidence to 
reduce the noise, and so to lower the neutron threshold for their use, and 
the reduction of y - r a y sensitivity by the use of pulse-shape discrimination. 

The technique here is to produce a pr imary pulse of highly mono-
energetic neutrons by means of a suitable reaction, and then to look at the 
inelastically scattered neutrons by t ime-of - f l ight, in 'bright- l ine ' geometry 
over a short flight path of a metre or two. The geometry of such an ex -
periment is shown schematically in F ig . 49 which illustrates the Ibis 3 MeV 
pulsed Van de Graaf f accelerator at Harwel l . The post acceleration bunching 
magnet is shown, and the neutron source, scattering target and detector 
are all mounted high above the f loor to avoid back scattering. The heavy 
shielding which protects the detector against neutrons coming f rom sources 
other than the scattering sample, is c lear ly seen. The nominal resolution 
here is —0.5 nsec/m and the low energy limit of ДЕ/Е is ~2%. Hence 
over the energy range 10 keV to 1 MeV, the resolution width goes f rom 
0.2 keV to about 25 keV. 

FIG.49. Ibis neutron time-of-flight facility [113]. (Courtesy of North-Holland Publishing Co. ) 

Figure 50 shows the yield curve of neutrons scattered from a target 
of 2 3 8U. The large elastic scattering peak has been drawn on a smal ler 
scale, but many peaks are seen due to inelastically scattered neutrons 
which leave the 238U in states other than the ground state. F igure 51 
shows the interpretation of the experiment in terms of a level scheme for 
2 3 8 U. This is compared with a s imi lar ' scheme obtained by Coulomb 
excitation using charged particles with energies of the order of 12 MeV. 
It will be observed that states of very high angular momentum are more 
easily excited by Coulomb excitation as might be expected, but on the 
other hand several states of higher energy (which are presumably not of 
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a collective nature) are excited by the neutrons but not by the charged 
particles. 

Our final topic is the use of fast neutron time-of-flight spectroscopy 
to study the neutrons emitted from nuclear reactions initiated by charged 
particles [114]. Here the use of a time-of-flight spectrometer for the 
neutrons is the analogue of a magnetic spectrometer for charged reaction 
products, only a simple neutron time-of-flight system is much less 
expensive than its charged particle counterpart. The main use of such a 
system is in the study of direct reactions of the type (p, n), (d, n), (3He, n), 
etc. The (p, n) reaction is of course the simplest reaction in which isospin 
analogue states were first studied (see chapter 3). Typically in the 

CHANNEL NUMBER 

FIG. 50. Time-of-flight spectrum of scattered neutrons. Incident energy, 1305 keV [113]. (Courtesy 
of North-Holland Publishing Co. ) 

THIS EXPERIMENT COULOMB EXCITATION A. B. SMITH 

1147 llll Ю93 
Ю23 
967 953 926 

I f 
1167 X Vib 1127 (Î Vib 
Ю98 I062 ï Vib I039/Í Vit» 994 ¡i V i Ь 

lOSO 
ЮОО 
930 

632 

7 3 0 
680 

I О' 787 
724 Oct 

Vib 
72 О 

6ЭО 

ЗОО 6+ 309 

145 4'> 140 4 * ISO 

4 5 2* 45 2* 4 5 
О о* О О* О 

FIG.51. Energy level diagram for uranium-238 [113]. (Courtesy of North-Holland Publishing Co. ) 
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FIG. 52. Pulse-height spectrum for the reaction 26 Mgfd.nJ^Al. Of particular interest is the strength 
of the transition to the 6. 76 MeV level (Ref. [114], p. 47). (Courtesy of North-Holland Publishing Co. ) 

spectrum of emitted neutrons one sees high energy groups going to 
the low-lying states in the daughter nucleus, and then, at much 
lower neutron energy, a further ser ies of prominent states which 
are the analogues of states in the target nucleus, and which are states in 
the daughter nucleus having the same T assignments as the ground state 
and f irst few states in the target nucleus [115]. The study of (p, n) r e -
actions must, of course, be undertaken with energetic protons since the 
Q values are always negative and may be large. Hence to be able to excite 
many states in the final nucleus, a tandem Van de Graaff accelerator is 
required. Where more modest energy is available, the positive Q reactions 
involving heavier projecti les are used and the (d, n) reaction has also been 
used extensively in a search for isobaric analogue states in light nuclei. 
Our final F igure 52 shows the neutron spectrum from the reaction 
2 6Mg(d, n)2 7Al obtained with deuterons of only 3 MeV energy, displaying 
a large number of excited states in 27A1 up to 7 MeV. Of interest is the 
very strongly excited state at 6.7 6 MeV (note yield is divided by 10) which 
is the isobaric analogue of the ground state of 2 7Mg. These few i l lustra -
tive examples should serve to indicate the great power of neutron spectro-
scopy when applied at intermediate energies to the study of nuclear 
structure. 
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