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1. INTRODUCTION 

The first efforts to describe the nucleon-nucleon 
interaction in terms of a meson field theory were 
directed toward obtaining a two-nucleon potential 
to be substituted into a Schrodinger equation. The 
work of L e v y 1 } using a Tamm-Dancoff method 
started a consistent way of approaching this problem 
with further developments using the Bethe-Salpeter 
equation as the basic dynamical equation. In this 
way both a "potent ia l" and a dynamical equation 
are obtained from meson field theory. However, 
the approximations made cannot be easily justified 
and the difficulties encountered are very large. 

It is now recognized that the very concept of a 
potential cannot be unambiguously defined for 
strongly interacting particles. The whole approach 
is therefore clearly insufficient and probably inad­
equate. 

There has been, in the last few years, a change of 
attitude in the discussion of this problem. The object 
of the new approach is the determination of the scat­
tering parameters based on some general properties 
of field theory which are presumably valid independent­
ly of a perturbation expansion and which avoid 
entirely the idea of a potential. 

In such a program one is led naturally to the dis­
persion relation approach. The one-dimensional 
dispersion relations which use the energy as a variable 
evidently cannot give a complete description of the 
scattering because they do not contain any information 
about the dependence on the momentum transfer. 

An investigation of the two-nucleon problem, based 
on dispersion relations for fixed momentum transfer, 
was initiated by Goldberger, Nambu and Oehme 2 ) . 
They have developed the kinematical formalism which 
is complicated by the presence of the spins. They 

also give a detailed discussion of the contribution 
of the deuteron bound state. However, as we re­
marked above, their relations are necessarily in­
complete from the dynamical point of view. 

Two years ago, at the Geneva conference on high 
energy physics, Mandelstam 3 ) proposed a generaliza­
tion of the dispersion relations, embodied in a two-
dimensional representation of the scattering amplitude. 
This representation exhibits the analytic properties 
of the scattering amplitude as a function of both 
variables, the energy and the momentum transfer 
in the whole complex two-dimensional manifold. 
He then showed that this representation, supplemen­
ted by unitarity (in the two particle approximation), 
provides us with a dynamical system of equations 
for the scattering, depending on a few parameters 
that may be identified as coupling constants. The 
correctness of the Mandelstam representation to 
all orders in perturbation theory has been brilliantly 
established by Eden 4 ) . 

I want to report here on the result of preliminary 
work done in Princeton and Berkeley on the nucleon-
nucleon problem on the basis of this double dispersion 
representation by Goldberger, Grisaru, Wong and 
myself. Work on similar lines has been carried out 
by the CERN group : Amati, Leader and Vitale. 

2. KINEMATICAL SPECIFICATION OF THE 
PROBLEM 

Let us consider the diagram of Fig. 1, which repre­
sents nucleon-nucleon scattering. It is clear that if 
we invert the arrows of particle 2 this diagram will 
represent nucleon-antinucleon scattering. Therefore 
the three processes 
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are essentially described by the same Green's function 
which is represented by the black box taken in different 
regions of the variables involved, according to the 
orientation of the external lines. There are two 
independent scalars in this problem, but in connection 
with the Mandelstam representation it is convenient 
to use three variables 

Fig. 1 Diagram representing N-N scattering. 

which are related by : s+t+t = 4m 2 ; s is the square 
of the energy in the center of mass system and —t, 
—~t are the squares of the momentum transfer for the 
pairs (1, 1') and (1, 2'). 

Throughout this talk Is hall assume charge independ­
ence, thereby neglecting Coulomb effects. 

It is well known that for either state of isotopic 
spin, two-nucleon scattering is described by five 
independent amplitudes. The same number, of 
course, is needed to describe nucleon-antinucleon 
scattering. 

The first step in our procedure is to select a set of 
five invariant amplitudes which are free from kine-
matical singularities; that is, the only singularities are : 

(i) simple poles corresponding to one-particle 
states, and 

(ii) branch points at the thresholds for any allowed 
channel, in the energy variable for reactions (I), 
(II), (III). Such amplitudes will then have a 
Mandelstam representation. 

A second criterion for the choice is that they have 
simple symmetry properties by virtue of the Pauli 
principle, that is, under the transformation 

A third criterion is that the three processes be 
related by simple crossing. We could not entirely 
reconcile the last two requirements. We preferred 
to emphasize the second and obtained a non-trivial 
matrix transformation for crossing. The set of 
amplitudes chosen by GNO were obtained by different 
criteria. No attention was paid to the first two require­
ments; however, their amplitudes have simple 
properties under crossing. 

One finds that a good set of covariant amplitudes 
to start with is obtained by writing the Feynman 
amplitude for process I in the form 

where the F's are functions of the scalars s, t, 1. 
Q0 and Qt are the isotopic spin projection operators 
for singlet and triplet states, and 

S, V, etc. are obtained by interchanging u(P2) and 
w(i\), that i s : 

We write the amplitudes for processes (II) and (III) 
in exactly the same way in terms of invariant functions 

jpf and Ft. We shall now argue that the amplitudes 
F? are free from kinematical singularities; that is, 
they do indeed possess a Mandelstam representation. 
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where 0 . are the matrices 1 ( 1 ) , 1 ( 2 ) , y£2 ) etc. and 
A(P) is the projection operator for positive energy 
spinor states. According to the Hall-Wightman 
theorem 5 ) the xi9 being Lorentz invariant combina­
tions of the elements of the t-matrix, are functions 
of the scalar products of the momenta, analytic 
in the domain corresponding to the forward tube in 
momentum space. Since these combinations are 
formed with constant matrices Ov it follows by a 
straightforward generalization of Eden's analysis that 
the Mandelstam representation is valid for them to 
all orders of perturbation theory. But 

is a matrix in isospin space and T is the negative 
transpose of the Fierz matrix for the amplitudes 

3. PARTIAL WAVE ANALYSIS OF THE 
SCATTERING MATRIX 

One must be careful when writing down the Man­
delstam representation for the various covariant 
amplitudes to ensure that the integrals are convergent. 
Some subtractions are necessary to fulfill the require­
ments of unitarity and even more subtractions may be 
necessary because of the strong nature of the inter­
action. The outcome of this is that one has to treat 
the low angular momentum amplitudes separately 
from the rest of the two-variable problem. 

We have then to make a partial wave analysis of 
the scattering amplitude in the center of mass system. 
We found that a decomposition in terms of helicity 
amplitudes 6 ) is the most convenient for this problem. 
We then chose the following set of partial amplitudes 
for each isotopic spin state: 

Singlet: /J = 

Trinlet. (J = /4-1V 

The Pauli principle requires that transitions occur 
only in states for which ( — 1 ) , + S + I = — 1 . These 

Let us consider the invariant functions 

and det D = (sit)3, so that the only possible additional 
singularities in the F9s are poles at s = 0. t = 0, 
t = 0. Later, when we discuss the amplitudes in the 
center of mass system, we show that the F9s are 
finite in the forward (t = 0) and backward (t = 0) 
directions. 

The argument relies on the fact that certain am­
plitudes in which the component of the total spin 
along the direction of motion in the incoming and 
outgoing beams are different must vanish in the 
forward (or backward) direction, because otherwise 
conservation of angular momentum would be violated. 

A similar argument applied to nucleon-anti-
nucleon scattering shows that the P 9 s are regular 
at s — 0 as well. 

The transformation properties associated with the 
Pauli principle require that under the interchange 
of all the coordinates of the final particles the full 
amplitude must change sign. Now P 0 changes sign, 
and s<-+s etc., as well as t*+u Therefore the statement 
of the Pauli nrinninle k * 

Finally, we deduce the crossing symmetry relations 
for the three processes. Following standard methods 
one obtains for (I) and (II ) : 
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It is from these relationships and the definitions of 
the / ' s that one obtains the result mentioned earlier 
of the regularity of the f$ for t = 0 and 1 = 0. 

4. ANALYTICITY OF PARTIAL WAVE 
AMPLITUDES 

The deduction of partial wave dispersion relations 
from the Mandelstam representation has been de­
scribed in many papers for a variety of processes. 
The procedure is always the s a m e 7 ) and consists 
in locating the singularities of the partial amplitudes 
which occur whenever one of the denominators 
which appear in the Mandelstam representation 
vanishes. The variables t and ~t (for our particular 
problem) are given by : 

and z is allowed to vary in the interval (—1, 1) since 
the partial waves are obtained by integrating over the 
variable z in this interval. The Born term which 
comes from the one meson exchange gives rise to 
a cut which extends from s = 4m2—p2 to s = — o o . 

The denominator s'—s gives rise to a physical cut 
from 4m2 to + o o . The denominators t'—t and 
? —I give rise to a cut from s = 4m2 ~4p2 tos = - c o . 
The branch point corresponds to the exchange of 
two mesons. 

If we multiply the partial amplitudes by factors 
(E/p) or (m/p) to avoid kinematical singularities, one 
can write the following representation for these 
functions (neglecting subtractions): 

On the positive cut one has not to worry about 
Im hJ

a(s') since it is given by unitarity; it will be discussed 
later. 

On the negative cut one can relate Im [hJ

a{s')-~ 
~Kb(s)\ t ° the absorptive amplitude for process (II). 
The result is very similar to the usual crossing except 
for a tricky point of taking the real part of the absorp­
tive amplitudes when they become complex. It is 
exactly when this happens that the Legendre poly­
nomial expansion does not converge. 

One obtains: 

where CJJf are numerical coefficients which occur in 
the projection of the partial waves by means of 
Legendre polynomials. The factor 2 comes from 
the contribution of processes (II) and (III), which 
are exactly equal. 

It is a simple matter to determine the boundary of 
the region where the Legendre expansion converges. 
It comes from second order perturbation theory. 
I only mention that the expansion is valid throughout 
the region where t and t are less than 4 m 2 . However, 
this region, which corresponds to nucleon-anti-
nucleon annihilation into mesons is unphysical. 
For all practical purposes, however, only the two-pion 
intermediate state can be taken into account. For­
tunately it is just for these unphysical regions of the 
energy that solutions of the nucleon-antinucleon 
annihilation into two pions are most reliable. The 
two-pion contribution can be taken into account in 
second order perturbation theory from which the 
lower angular momenta, say s and p waves, have 
been subtracted. We then add explicitly the con­
tributions of these angular momenta, using for 

partial waves may be projected out of five amplitudes 
fl9...9f5 by means of Legendre polynomials. For 
instance: 

The / ' s are in turn related to the covariant amplitudes 
by a matrix a(p2, z) whose entries are linear functions 
of p2 and z = cos 9. For instance : 



308 Session S 2 

instance the results obtained for them by Frazer and 
F u l c o 8 ) , improved by a normalization procedure 
due to Wong 9 ) . 

5. THE INTEGRAL EQUATIONS; 
METHODS OF SOLUTION 

Suppose that one has some means of evaluating 
Im hJ

a(s) along the negative cut. Then the dispersion 
relation for this partial wave becomes actually an 
integral equation since on the positive cut Im hJ

a(s) 
is given by unitarity. A method to solve this equation 
was developed by Chew and Mandelstam. Let us 
consider the singlet amplitudes and write : 

where N(y) is analytic except for the negative cut and 
D(v) is analytic except for the positive cut. One 
must also specify the behavior of these two functions 
at infinity. This question is rather hard to settle and 
leads as is well known to the Castillejo-Dalitz-Dyson 
ambigu i t i e s 1 0 ) . Since h(v) goes to a constant at 
infinity, one must allow for at least one subtraction in 
the representations for N and D. If one makes 
more than one subtraction it is found that the new 
arbitrary parameters thus introduced can not be deter­
mined, even in principle. Since we believe that the 
physical solution has no undetermined parameters 
besides the coupling constant and masses, we disregard 
those other possibilities. 

Following the usual procedure one converts the 
singular equation into a Fredholm equation for D : 

and writes h(v) = N^Div)'1 and everything that 
was written before applies here, but now N and D 
are matrices and we must only be careful to preserve 
the correct order of products. 

In the states of angular momentum / = 1 and 
isospin 1 = 0, the triplet amplitudes have a pole 
corresponding to the deuteron bound state. This 
pole might have been introduced explicitly as a 
singularity of N but we prefer to think that it will 
appear as a singularity of D _ 1 , that is, as a zero of 
det D after the D equations are solved. Exploiting 
the symmetric character of the kernel K(v, v'), we 
have obtained a variational solution of the integral 
equation which applies to the single channel as well 
as to the many channel case. For £-waves we have 
a variational principle for the derivative of the am­
plitude. For partial waves other than s-waves we 
have a stronger variational principle for the ampli­
tudes themselves due to the fact that we know they 
vanish at the origin. 

6. RANGE OF VALIDITY OF THIS PROGRAM 

Summing up the results of this investigation, one 
can say the following : one cannot expect to obtain 
in practice the ^-wave scattering lengths and therefore 

where 

and 

Here v = —p1. 

The s-wave scattering length which is related to 
h(0) can in principle be determined because at E2 = 0 
the following identity must be satisfied : 

which can be put in terms of partial waves. In 
practice, however, this is hard to obtain. 

We have tried to find a solution which is satisfactory 
in the low energy physical region. We have com­
pletely neglected singularities around E2 = 0. There­
fore our solution is not expected to be valid near 
that point. This practical difficulty in determining 
the scattering length reflects the fact that short range 
forces probably contribute appreciably to the scat­
tering lengths and we are unable to take them into 
account. 

This method can be extended to the triplet ampli­
tudes. Following Bjorken, one defines a matrix : 
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the binding energy of the deuteron, which is essentially 
given by the triplet scattering length, but we hope 
to be able to calculate with reasonable accuracy the 
deuteron residue, hence to determine the d- to es ta te 
ratio and the effective ranges. The energy dependence 
of the phase shifts can be studied. One can estimate 
the range of energies within which the one-pion and 
two-pion exchanges are dominant. This will happen 
for energies such that the momentum transfer does 
not greatly exceed 3/i, the threshold energy for the 
channel N+N—371. Allowing for a maximum mo­
mentum transfer of 4/J, we would get a range of 
validity for the low angular momenta up to 170 MeV 
in the lab system. For high angular momentum 
one expects that these approximations will still be 
valid for much higher energies. 

7. NUCLEON-ANTINUCLEON SCATTERING 

Finally, I want to make some short comments 
on the NN problem. 

First, some questions of principle. Here one 
probably has to include the contribution of the 
deuteron bound state from the beginning since it 
gives rise to a cut in the partial wave amplitudes. 
On the other hand, one might expect, by analogy 
with the appearance of the deuteron in the NN 
problem, that the one pion state should appear as 
a pole in the J = 0, 1=1 amplitude and not be 
included at the outset. Such a possibility has meaning 
only if there is some other source of NN and NN 
forces, for example a four-fermion interaction, or 
some other boson field. The way in which the one-
pion exchange cut appears has been discussed by 
Blankenbecler in an earlier talk at this Conference U ) . 

In practice, the nucleon-antinucleon problem offers 
enormous difficulties. The right hand cut extends 
into an unphysical region down to .5* = 4fi2. To 
obtain a solution valid in the physical region s>4m2 

one should take into account the contributions of 
many-pion intermediate states. The prospects for 
a solution of the nucleon-antinucleon problem along 
these lines are therefore not very promising. 
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