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We consider the longitudinal instabilities of a bunched beam subject to a non-harmonic rf potential.
Assuming the unperturbed bunch to be described by a Maxwell-Boltzmann distribution, our treatment
is based upon the linearized Vlasov equation. The formalism developed is exact, and in particular,
correctly describes the effect of the dependence on amplitude of the synchrotron oscillation frequency.
We discuss the fast blowup limit, and extend Wang and Pellegrini's treatment of the microwave
instability to include the case of a non-Gaussian bunch. Next, within the short-bunch approximation,
we determine the Landau damping of coupled-bunch oscillations that results from the use of a
higher-harmonic (Landau) cavity.

I. INTRODUCTION

We consider a beam bunched by a non-harmonic rf potential and discuss the
longitudinal coherent instabilities1,2 resulting from the interaction of the beam
with the impedance of the storage ring. Assuming the unperturbed bunch to be
described by a Maxwell-Boltzmann distribution,3 we base our calculations upon
the linearized Vlasov equation. The amplitude dependence of the synchrotron­
oscillation frequency is taken into account by the use of action-angle variables,4
and we derive an infinite set of linear homogeneous equations describing the
coherent oscillations. These equations are used to extend Wang and Pellegrini's5
treatment of the microwave instability to include non-Gaussian bunches. The
Boussard criterion6 for stability is derived, having ·the form of a coasting-beam
stability condition, except that the average current of the coasting beam is
replaced by the peak current of the bunch.

In general, the equations describing the coherent oscillations cannot be solved
analytically, but these equations do become tractable in certain asymptotic limits.
In the treatment of the microwave instability, we consider modes whose growth
times are short compared with the synchrotron-oscillation period (fast blowup).
The wavelengths of the perturbing electromagnetic fields are assumed to be short
compared to the bunch length and the high frequency impedance is supposed to
have a bandwidth large compared with the inverse bunch length. Eigenmodes are
found that correspond to line-charge density modulations taking place within a
small portion of the bunch, having dimension much shorter than the bunch length.
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The growth rate of an eigenmode is proportional to the line-charge density of the
bunch at the location where the coherent oscillation corresponding to the mode is
centered. Thus, the fastest-growing modes have growth rates proportional to the
peak current of the bunch.

In contrast to the case just discussed, a resonant impedance having narrow
bandwidth can result in coupled-bunch instabilities with growth rates proportional
to the average current in the ring. As a soluble example, we consider the idealized
case of a multibunch mode driven by the impedance Zn, only for n == no. In this
case, the dispersion relation describing the coherent oscillations is determined
from a single diagonal matrix element, corresponding to the revolution mode no,
rather than from an infinite determinant. Analytic results are obtainable yielding
insight into the behavior of instabilities due to more general resonant impedances.

Assuming the impedance Zn to be negligible for n > 1/L, where L is the bunch
length in radians, a perturbation expansion7 can be developed in the limit when
the bunch length is short compared with the wavelength of the perturbing
electromagnetic fields. Keeping terms only up to a given order in the small
parameter, bunch length divided by wavelength, the infinite set of linear equations
describing the coherent oscillations becomes of finite rank. Therefore, the infinite
set can be replaced by a finite set of linear equations and the dispersion relation is
derived from the vanishing of a determinant of finite dimensions. An interesting
application of this short-bunch approximation is the derivation of the dispersion
relation describing the Landau damping of coupled-bunch instabilities resulting
from the use of a higher-harmonic (Landau) cavity.8

Our paper is organized as follows: In Section II, we discuss the nonlinear
synchrotron oscillations resulting from a non-harmonic rf potential in the absence
of the ring impedance. Then, in Section III, we take the impedance into account
by using the linearized Vlasov equation, and we derive Eqs. (3.25)-(3.27) which
describe the coherent oscillations. In the remainder of the paper, these equations
are studied in special limits amenable to analytic approximation.

In Section IV, we show how our equations simplify in the fast-blowup limit
when the growth rate is faster than the synchrotron-oscillation frequency and in
Section V, we discuss the microwave instability. At the end of this section, we
comment on the work of Messerschmid and Month.9 The idealized case for which
Zn is negligible except for n == ± no is considered in Section VI, and in Section VII
we derive the short-bunch expansion and discuss its relation to the synchrotron
mode expansion.

In the final two sections, we illustrate the general formalism by studying two
concrete examples. In Section VIII, we present an overview of the longitudinal
instabilities of Gaussian bunches subject to a harmonic rf potential. Our emphasis
is on the behavior of long bunches having lengths greater than the wavelengths of
the perturbing electromagnetic fields. We exhibit the crossover between the
dominance of the synchrotron modes and the coasting-beam-like distortions of
the bunch distribution, which occurs as the real or imaginary part of the coherent
oscillation frequency becomes large compared with the synchrotron-oscillation
frequency.

In Section IX, we consider a potential comprised of the sum of a harmonic and
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a quartic term. Our discussion allows us to determine the Landau damping
resulting from the use of a Landau cavity.

II. EQUATIONS OF MOTION FOR SYNCHROTRON OSCILLATIONS

Consider a storage ring having a circumference 21TR. To simplify our notation, we
shall assume that the energy of a circulating particle is large compared with its rest
mass, so its velocity is very close to the speed of light c. A particle is called
synchronous if the energy it gains at the rf cavity is equal to the energy it loses
during one revolution. We denote the energy of a synchronous particle by Eo and
its angular velocity by Wo = c/R. The azimuthal angular position of a circulating
particle relative to a stationary observer is denoted (J, where iJ is the instantaneous
value of the angular velocity. In writing the equations of motion, we measure the
azimuthal position 4> and energy £ relative to a synchronous particle, i.e.

and
4> = (J - wot

£ =E-Eo·

The equations of motion describing the synchrotron oscillations are

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where e is the electric charge of the particle, €X is the momentum compaction,
V rf(4» is the rf potential and ~ (4), t) is the induced potential resulting from the
impedance of the storage ring.

The induced potential is due to a collective effect involving all the circulating
particles. In order to describe mathematically the induced potential, we introduce
the distribution function .p(<b, 4>, t), normalized by

Jd1> d<f)l/J(1>, cP, t) = Ne,

where N is the total number of particles in the storage ring. The line charge
density A(cP, t) is related to .p by

>..(cP, t) = Jd1> I{I(1), cP, t). (2.6)

Of particular interest to us is the determination of the conditions under which
there exists a coherent oscillation with frequency fl. To be specific, we shall study
the conditions under which the line-charge density has the form

(2.7a)

giving rise to an induced potential

(2.7b)
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Introducing the Fourier transform of p(</» via

we express ~(</» in terms of the impedance Zn(w) of the storage ring,

Vi(</» = -wo L PnZn(nwo+n)eincf>.
n

(2.8)

(2.9)

By defining the Fourier transform PO,n of Po(</» in a manner analogous to Eq.
(2.8), the time-independent piece of the induced potential is

(2.10)

(2.11)

n

From Eq. (2.4), it is clear that Vo(</» corresponds to a distortion of the rf
potential Vrf (</» , and consequently, gives rise to a change in the equilibrium
bunch shape. In this paper we shall ignore Vo(</» , and we shall suppose the
equilibrium bunch shape to be that given by the rf potential. Our attention shall
be focused on the coherent instabilities which can arise as a result of the induced
potential ~(</» exp (-int). Upon ignoring Vo(</», the equations of motion given
in Eqs. (2.3) and (2.4) can be combined to yield

4> = - ~o ~:: (Vrf(cf» + ~(cf»e-iOt).

Neglecting the effect of Vo(</» results in an over-estimate of the real frequency
shift.

It is useful to consider this equation of motion as being derived from a
Hamiltonian

where p is the dynamical variable conjugate to </>. Since,

. aH
cf> = ap = p,

. aH au
p = - a</> = - a</> '

and

we see that,

with

u: ( ) = awo ewo Jcf> V
o cf> Eo 2'lT rf

(2.12)

(2.13a)

(2.13b)

(2.13c)

(2.14a)

(2. 14b)
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and

awoewoJ<f>
Ui(cf» = Eo 211" ~.

For a harmonic rf potential, Vrf(c/J) = V c/J, hence

Uo(c/J) = !W;c/J2,

with the harmonic synchrotron frequency W s given by

113

(2.14c)

(2.15)

(2.16)2_ awo ewo V
W s - Eo 21T .

Note that if the harmonic potential is to be thought of as an approximation to the
sinusoidal potential, V sin (hc/J + c/Js), then in Eq. (2.16), we have V=hVcosc/Js,
where c/Js is the synchronous phase.

Before treating the full Hamiltonian of Eq. (2.12), let us consider the Hamilto­
nian H o describing the synchrotron oscillations in the absence of the impedance,

(2.17)

Consider a Hamilton-Jacobi transformation from c/J, p to the new canonical
variables Q, P. The generating function W(c/J, P) is determined by

and

1(0""\22 a-;f;) + Uo(cf» = P,

p =aw= (2(P- U
O
(cf»))1/2

a</>

aw Jet> dc/J'
Q = ap = (2(P - Uo(cf>'))) 1/2 •

(2.18)

(2.19)

(2.20)

The time dependence of the new variables Q, P result from the transformed
Hamiltonian Ho = P, hence

and

. aHoP=--=Oao ' (2.20a)

6=aHo =1ap , O=t+Oo· (2.20b)

Let us suppose the rf potential is such that the synchrotron motion is periodic
with period Ts(P), and angular frequency

ws(P) = 21T/Ts(P). (2.21)

In this case of periodic motion, it is often useful to introduce the action-angle
variables10 0, J. We define

(2.22)
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(2.23)
dJ 1
dP = ws(P) .

where the integral is over one period of the motion. Using Eqs. (2.19) and (2.13a)
in (2.22), ''Ie see that

In terms of the action-angle variables the transformed Hamiltonian is fIo = P(J),
and

(2.24a)

(2.24b)

From Eq. (2.24b), it follows that the change of (J in one period is 21T, independent
of J. This is in contrast to the behavior of the variable Q, which changes by Ts (P)
in one period. Because the increment in (J in one period is independent of J,
action-angle variables offer a significant advantage over the conjugate pair Q, P.

The solution of the equations of motion of the synchrotron oscillations,
corresponding to the Hamiltonian H o of Eq. (2.17), can be written

cP = </>o(J, (J), (2.25)

where cPo(J, (J + 21T) = </>o(J, (J). Equation (2.25) will be of great use to us in the
following sections of this paper, when we study the effect of the induced potential.

Let us include here for later reference, some results valid for a symmetric
potential, Uo(</» = Uo(-</». Denote the amplitude of the synchrotron oscillation
by

r = </>max, (2.26)

so H o = Uo(r). Then,

(2.27)

and

21T IT d</>
Ts(J) = ws(J) =4 0 (2(Uo(r)- Uo(</>)))112

The function </>0 of Eq. (2.25) is implicitly determined by

J
et> d</>'

(J = ws(J) (2(Uo(r) _ Uo(</>,)))1/2

where r = r(J) is found as a function of J from Eq. (2.27).

(2.28)

(2.29)

III. VLASOV EQUATION

The Vlasov equation for the distribution tf/(p, </>, t) can be written as

atf/-+ (tf/, H) = 0,at (3.1)
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where the Poisson-Bracket is defined by
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(3.2a)

(3.2b)

( H) = at/! aH_ at/! aH
tfJ, iJ</> iJp iJp iJ</>

at/!aH at/!aH-----
ao aJ aJ ao .

The equality between the expressions of (3.2a) and (3.2b) follows because the
Poisson-Bracket is invariant under canonical transformations. Moreover, since </>
and p are conjugate variables, their Poisson-Bracket is unity, so

1= ( ) = a</> ap_ a</> ap
</>, p ao aJ aJ ao .

The right-hand side of Eq. (3.3) is the Jacobian a(</>, p)/a(O, J); therefore

dcP dp = dO dI.

(3.3)

(3.4)

We shall first consider a single bunch, but at the end of this section we shall
show how the results carryover to the case of M equally spaced bunches all
having the same number of particles. Using action-angle variables, the full
Hamiltonian given in Eq. (2.12) can be written,

H = Ho(J) + Ui(</>o(J, O))e-i0t, (3.5)

where cPo(J, 6), defined in Eq. (2.25), describes the unperturbed motion existing in
the absence of the induced potential. We look for a solution of the Vlasov
equation (3.1) having the form

(3.6)

Here, t/!o(J) is the equilibrium bunch distribution, and t/Ji(J, 0) exp (-iilt) corres­
ponds to a coherent oscillation with frequency il.

As discussed in Section II, following Eq. (2.10), we have neglected the
potential-well distortion which would modify the time-independent part of the
distribution. The work in later sections of this paper will be based upon the
assumption that the equilibrium distribution has the Maxwell-Boltzmann2 form

t/Jo(J) = Ae-Ho(J)/a
2

• (3.7)

In terms of the variables </> and p, this distribution can be written as

(3.8)

(3.9)

From Eq. (3.8) it is evident that (T represents one standard deviation of the
distribution in p = <b, i.e. (T is the spread in revolution frequency among particles
in the bunch. Since from Eq. (2.3), <b = -awos/Eo, it is evident that (T is related to
the energy spread (Te by

The constant A is determined from the normalization condition of Eq. (2.5),

Aa-v'2;Jd</>e-Uo(<!»/u
2

= Ne. (3.10)
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To proceed with our study of the coherent instabilities induced by the beam
interacting with the impedance of the storage ring, we insert Eqs. (3.5) and (3.6)
into the Vlasov equation (3.1), and linearize the result by dropping terms of
second order in t{li. In this manner, we derive the linearized Vlasov equation

- inll,. + w (J) at{li - III'(J) aUi(4)o(J, 6)) = 0
o/t s a6 0/0 a6 '

where we have defined

t{I~(J) = dt{lo/dI.

Using the definition of ~ given in Eq. (2.14b), we obtain

a~(4)o(J, 6)) = d~ a4>o = awo ewo V.( (1 6)) a<po .
ao d<l>o ao Eo 21T ,<1>0' ao

Now expressing ~ in terms of the impedance via Eq. (2.9), and defining

it follows that

aUi(4)o(J,6)) 2 a4>o~ z ( +1"'\) in.-l..(J8)
a6 = - 7TK a6 ~ Pn n nwo 11~ e '+'0 ' •

n

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

By using Eq. (3.15), we can rewrite the linearized Vlasov equation of Eq. (3.11)
as

where X(6) = X(6 + 27T) is defined by

X(O) = -21TKt{!b(J) a<l>o;;, 0) LPnz",(nwo+O)ein<l>o(J,II).
n

(3.16)

(3.17)

The first-order differential equation of Eq. (3.16) has the periodic solution

where

iQ(J)8 18e , -iQ(J)8' ,
t{!i(J, 0) = w

s
(J)(l- e2mO(J)) 11-2'71" dO e X(O ),

Q(J) = n/ws(J).

(3.18)

(3.19)

Note that Q(J) defined here is different from the quantity Q used in Section III.
Inserting the defining expression (3.17) for X(6) into (3.18) and making a change
of integration variable, we obtain

111.(1 6) = -27TK t{I~(J) ~ Z J0 d6' a4>o(J, 8 + 8') incf>0(J,6+8') -iQ(J)8' (3 20)
o/t , (J) 1- 27TiQ(J) ~ Pn n a8 e e .

W s e n -2~
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where we use the shorthand notation,
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(3.21)

Equation (3.20) has the important property that it expresses the perturbed
distribution t{Ji(J,O) in terms of the Fourier coefficients Pn of the perturbed
line-charge density. On the other hand, p(</» is determined from the distribution
t{Ji by

p(<f» = Jdp o/i (p, <f», (3.22)

(3.23)

as seen from Eqs. (2.6), (2.7a) and (3.6). The Fourier components are given by

-Jde/> -in<1> Jd .11 ( A...)Pn - 21T e P o/i p, 0/ ,

which can be rewritten as an integral over action-angle variables using Eq. (3.4)

1 10 100

Pn=- dO dJt{Ji(J,O)e-in<1>o(J,B). (3.24)
21T -2'1T 0

Equation (3.24) expresses Pn as a functional of t{Ji(J, 0), hence using (3.24) and
(3.20), we can derive an infinite matrix equation determining the Fourier compo-
nen~ 00

Pm = ~ TmnPn, (3.25)
n=-OO

where

(3.26)

and

F -1°Od] t{J~(J) 10
dolo dO' -iQ(J)B'

mn - (J) (1 _ 27riQ(J») eo ~ e ~'1T ~'1T

* ei(n<1>o(J,O+O')-m<1>o(J,O» a</>o(J, 0 + 8') .
a8

(3.27)

After solving Eq. (3.25) for the Fourier coefficients Pn' we can determine the
distribution t{Ji(J, 8) from Eq. (3.20).

Equations (3.25)-(3.27) provide the basis for the discussions presented in the
rest of this paper. The coherent frequency n is fixed by the dispersion relation

(3.28)

where 8mn represents the unit matrix. In general, analytic results cannot be found,
and one would have to proceed numerically. However, in the following sections,
we shall consider some special limiting cases for which analytic solutions are
obtainable.

Before going on to consider solutions of the equations, we first want to
conclude the present discussion by briefly noting how the results thus far obtained
carryover to the case of M equally spaced bunches each containing the same
number of particles. Let us label the bunches by 1= 0,1, 2, ... ,M-1, and specify
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</> to be the phase relative to the center of the I = 0 bunch. Denoting the
symmetric multibunch modes by s = 0,1,2, ... ,M-1, the distribution function
for the 1th bunch in the sth mode is

t/JIS(cb, <f>, t) = t/Jo(<f> - Z;l, cb) + e2-nisIlMt/Ji(<f> - ~l, cb)e-int
•

The full distribution,
M-l

'l's = L t/lls,
1=0

(3.29)

(3.30)

(3.31)

is normalized by Eq. (2.5) to the total number of particles in the ring. Therefore,
the distribution t/lo in Eq. (3.29) is normalized to the number of particles in one
bunch. The linearized Vlasov equation for the I = 0 bunch in the sth mode is

-in,/l~+;" at/l~ _ U'(A-..) a~~ _awo ewo MV~(A-..) a~o = o.
\f't 0/ a</> 0 0/ a</> Eo 21T to/a</>

where we have suppressed the superscript "0" referring to the zeroth bunch. The
induced potential MV~ is defined by

M-l (2 k)MVf(</>) = L e27risllMv </> -~ ,
k=O M

where
00

V ( A-..) - W ~ PnZnein<f>.0/ -- 0 i.J
n=-oo

Together, Eqs. (3.32) and (3.33) show that
00

V~(</»=-wo L PnZnein<f> (n=Mj+s)
j=-oo

(3.32)

(3.33)

(3.34)

The linearized Vlasov equation of Eq. (3.31) is seen to be the same as that for a
single bunch, except the sum in Eq. (3.34) relating V~ to the impedance is
restricted to n = Mj + s (j = -00, ... ,(0), and there appears a multiplicative factor
M in the last term in Eq. (3.31). Since t/lo is normalized to the number of particles
in one bunch, the last term in Eq. (3.31), the impedance term, is proportional to
the total number of particles in all bunches.

In conclusion, all results derived earlier in this section for a single bunch carry
over to the case of M equally spaced bunches each containing N/M particles. One
merely normalizes the equilibrium distribution t/lo appearing in Eq. (3.27) to the
total number of particles in the ring, N, and restricts the values of the indices
m, n = Mj + s (j = -00, ... ,00), for fixed mode number s = 0, 1, 2, ... , M -1.

IV. FAST-BLOWUP LIMIT

When the growth rate 1m n of the coherent oscillation is large compared with the
synchrotron oscillation frequency, a useful asymptotic expression for the matrix
element Fmn (Eq. (3.27)) can be obtained. Taking the limit 1m Q(J)~ +00 in the
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(4.1)

(4.3a)

integrand of Eq. (3.27), and performing a partial integration with respect to the
variable 6, we find

F ~ m100

dJtflb(J) 10
dOe-bn4>o(J,6) acf>o(J, 0)

mn n 0 ws(J) -2'7T ao

*10

dO' e-iQ(J)6'e inq,o(J,6 +6') .

-2'7T

Now since 1m Q(J) is very large, we can Taylor expand <Po(J, 0 + 0') about 0' = 0
in the last integral of Eq. (4.1), then keeping only up to second order in 0',

F ~ m100

dJ tflb(J) J0 dOe- imq,o(J,6) acf>o(J, 0)
mn n 0 ws(J) -2'7T ao

*t: dO'e-iQ
(J)6' exp [in(cf>o(J, 0) +aa~o 0'+~ a::~ 0'2) ] (4.2)

It is helpful to rewrite Eq. (4.2) by introducing the time derivatives of <Po:

;.. (1 0) = a</>o(J, 0) (J)
0/0 , ao W s

and

Also, from Eq. (3.7), we note that

o/b(1) = - \ 6)8(1)0/0(1).
u

(4.3b)

(4.4)

Now changing the integration variable in Eq. (4.2) from 0' to ~=O'/ws(J), we
obtain

F
mn

= - \ m100

dJ 0/0(1) JO dOe i(n-m)4>o(J,6)cbo(J, 0)
uno -2'7T

*t: dge-iru;e in.j,o(J,6)€e in4>o(J,6 )€2/2 • (4.5)

Further simplification of the expression for Fmn results upon changing the
integration variables J, 0 to e/>, <b. This is accomplished by using Eq. (3.4), which
states that dJ dO = deb d<p, and the result is

1 m 10 J..' .Fmn ~ - 2 - A d~e-in~ <p de/>e -<1>2/20-
2e in<1>~

U n -00

(4.6)

In Eq. (4.6), we have used the expression of Eq. (3.8) for t/Jo(<b, </», and we have
replaced 4>o(J, 0) by

C;;o(J, 0) = -dUo/de/> == - Ub(e/». (4.7)
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The Gaussian integral over cb in Eq. (4.6) can be performed and we obtain the
desired form of the asymptotic expression for the matrix element Fmn :

Fmn '= -imcr.J27r-At: ~ d~e-i~e-n20"2i;',2/2

(4.8)

(4.9)

(4.10)

im 21TU2 e-(m2+n2)L2/2121T •. 2
F =---A . dO SIn OelQOemnL cosO

mn w; W s 1- e21TlQ 0 '

Joo 6 d6eiQIJemnL2 =-~ emnL2
o 0 2

'

where the normalization constant A is explicitly given in Eq. (3.10).
In the special case of a harmonic potential, Uo= u/;4>2/2, the integral over 4> in

Eq. (4.8) can be performed, yielding for Imn~+oo and mn>O,

-21Timu
2 10

F
mn

= e-(n-m)2L 2/2A ~ d~e-ini;e-mn(T2i;2/2,

Ws -00

where the bunch length L in radians is related to the spread U In rotation
frequency by

When mn < 0, Eq. (4.8) is only good enough to give the leading behavior for
1m 0» .Jlmnl u,

Fmn '= -27rimcr
2
e-(n-m)2L2/2A~2. (4.11)

W s ~£

This matrix element is seen to be very small when nand m are large in
magnitude, but of opposite sign. A more detailed discussion of the harmonic
potential is given in Section VIII.

The asymptotic analysis presented above leading from Eq. (4.8) to Eqs. (4.9)
and (4.11) is not sufficient to estimate the magnitude of neglected terms. How­
ever, that the obtained results are correct for the harmonic potential can be seen
from the matrix element Tmn derived in Section VIII and given in Eqs. (8.16) and
(8.17). Recalling the definition of Fmn in Eq. (3.26), the results of Section VIII
show that

where A is given below in Eq. (4.12), Q=O/ws and u=wsL. In the fast-blowup
limit, 1m 0 ~ +00, so exp (21TiO) vanishes and the integral in the above
expression for Fmn is seen to be dominated by the region near 0 = 0, since
Icos 61 ::51. For mn > 0, the integral can be approximated by

so defining ~ = 6/ws, we obtain the asymptotic expression for Fmn given in Eq.
(4.9). When mn < 0, the leading behavior of the integral in the expression for Fmn

is given by

which yields the result given in Eq. (4.11).



NON-HARMONIC RF POTENTIAL 121

Recall that the matrix Tmn of Eqs. (3.25) and (3.26) is related to F mn by
Tmn = -KZnFmn, with K defined in Eq. (3.14). From Eq. (3.10), we see that for the
harmonic potential,

(4.12)

(4.13)

where N is the total number of electrons in the ring. It now follows from Eq. (4.9)
that

T = -iaw5e1oz" e-(n-m)2L2/2h(~)
mn 27TEou 2 n a-.Jmn

with 10 = Newo/27T being the average current in the ring and the function h(x)
defined by

h(x) = 1'"~ ~eix€e-€2/2
= e-x2

/
4 D_2(-ix),

(4.14a)

(4.14b)

(4.15)

where D-2(~) is a parabolic cylinder function discussed in Gradshteyn and
Ryzhik. 11 Equation (4.13) has been found previously in Ref. 5.

The function h(x) defined in Eq. (4.14) can be expressed as a dispersion
integral. Suppose 1m x> 0, and insert the Fourier integral representation of the
Gaussian function

-1;,2/2 -100

~ -izl;, -z2/2e - 0 ~e e ,

into (4.14a). After changing the order of integration and performing the integral
over ~, we find h(x) is equal to the dispersion integral

J
oo dz e-z2/ 2

h(x)=- -00 ~(z-xf' (4.16)

which is well known from the study of the instabilities of coasting beams.
Let us close this discussion of the function h(x) by noting that it is easily seen

from Eq. (4.14a) that for 1m X 2::0,

Ih(x)\ :51,

with the equality only holding for x = 0, and again for 1m x 2:: 0,

-1
h(x)~- for Ixl~oo.

x 2

V. MICROWAVE INSTABILITY

(4.17)

(4.18)

We shall now discuss the microwave instability of a single bunch. This case may
be described as high-frequency fast blowup. In addition to the condition that the
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growth rate be fast compared with the synchrotron frequency, we also require the
wavelength of the perturbing electromagnetic field to be short compared with the
bunch length. The expression for Pmn derived in Eq. (4.8), valid in the fast­
blowup limit, simplifies further when we also consider

\nIL~oo,

where L is the bunch length in radians.
Let us rewrite Eq. (4.8) using the new integration variable x= \n\ (T~,

. m J27T JO °0 /1 I 2/2Pmn :::::::::-Z2-- A x dxe- t x n O"e-x

n (T -00

(5.1)

(5.3)

(5.5)

The factor exp (-x 2 /2) in the integrand of Eq. (5.2) restricts Ix\~ 1, and
exp(-Uo(e/»/a2

) restricts e/>~L, where L is the bunch length in radians. Assum­
ing Uo(e/» is smooth enough so that its derivative, Ub(e/» , is not very large for
e/> ~L, it follows that in the limit Inl~ 00, we can make the approximation

(
i X

2
)exp -2 Ub(e/» na2 = 1.

If Uo(L)---LP--- a 2 and Ub(L)---LP-\ then Ub(L)/na2 ---1/nL, and Eq. (5.3) is
seen to hold for nL» 1.

When the approximation of Eq. (5.3) is made in the integrand of Eq. (5.2), the
double integral is seen to factor into the product of two single integrals. Evaluat­
ing the constant A using the normalization condition (3.10), we find that for mL
and nL large, (mn > 0)

i Ne ( 0 )
Fmn =-;; (I2 h Inl (I (3(m - n), (5.4)

where the function hex) was defined in Eq. (4.14) and (3(m - n) is the normalized
Fourier transform of the bunch distribution function exp (- Uo(e/> )/a2

),

t~ dq,e-i(m~n)</>e~Uo(</»!<T2

(3(m-n)= Joo .
-00 dq,e-

u
O<</»!u

2

In writing Eq. (5.4), we have made the approximation m/n2 = l/n, since (3(m - n)
is a sharply peaked function about m == n, whose width is 1/L. The matrix
Tmn = -KZnFmn of Eqs. (3.25) and (3.26) is now given by (mn > 0)

- iaw~eIo Zn ( 0 )
Tmn = 27TE

o
(I2 --; h Inl (I (3(m - n), (5.6)

where 10 = Newo/27T is the average current, and recall that Zn = Z(nwo +0).
Let us consider the case of a wake field (Fourier transform of the impedance)

whose range is short compared with the bunch length L. To be more specific, we
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(5.8)

Zn~Z"o for In-nol:::;a, (5.7)

where a is of the order of the inverse range of the wake field, so a» IlL. We shall
now look for a coherent frequency near w == nowo +n ~ nowo, where no» a. For
no-a<m, n<no+a, we can approximate Eq. (5.6) by

T ~ - ielo Z"o h(~)(3(m- n)
mn 27TEoa(O"eIEo)2 no InolO" '

where Eq. (3.9) has been used to express (F in terms of the energy spread (Fe.

The discussion leading to Eq. (3.25) showed that the condition for the existence
of a coherent oscillation is 00

Pm == L TmnPn,
n=-oo

(5.9)

where Pn is the Fourier coefficient of the perturbed line-charge density. There can
be no solution of Eq. (5.9) as long as the maximum eigenvalue of Tmn is less than
unity, and this condition determines a threshold current for the instability.

To proceed, let us find the approximate solutions of Eq. (5.9) for which Pm is
negligibly small when 1m - nol > a. In this case we can restrict our attention to the
finite set of equations

"o+a

Pm == L TmnPm,
n=no~a

(5.11)

Since (3(m - n) is sharply peaked about m == n, the peak width being of order
IIL «a, we expect that the largest eigenvalues do not depend strongly on the
cutoff value a. Therefore, they should be closely approximated by the eigenvalues
of the easier problem

00
Aoov: == L (3(m - n)v~

n=-oo
(5.12)

which results upon letting the cutoff approach infinity. The eigenfunctions of
(5.12) are

v~(') == e-i'n,

and the corresponding eigenvalues are
00

A00(') == L {3(n)e i'n,
n=-oo

(5.13)

(5.14)

where , (0:::;' < 27T) parametrizes the different eigensolutions. Substituting the
defining expression (Eq. (5.5)) for (3(n) into Eq. (5.14), and using the Poisson
summation formula, we rewrite Eq. (5.14) in the form

00
27T I e-Uo(,+27m)/u2

(5.15)
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For a Gaussian bunch l3(n) = exp (-n 2L 2/2). Since this expression is always
positive, it follows from Eq. (5.14) that the largest eigenvalue corresponds to,= O. When L = 271", l3(n) falls off sufficiently rapidly so that only one term in Eq.
(5.14) needs to be retained, and

(5.16)

(5.17)

On the other hand, when L« 1, Eq. (5.15) provides the rapidly convergent
representation of the eigenvalue and in this case

271"

(5.18)

The Fourier transform of the bunch density, l3(n), is no longer positive definite
for a general non-harmonic potential Uo(</». Therefore, we cannot argue directly
from Eq. (5.14) that the maximum eigenvalue always corresponds to ,= O.
However, from Eq. (5.15), it can be seen that for sufficiently small (J", the
maximum eigenvalue will indeed correspond to ,= 0, since the minimum of the
potential Uo(</» is located at </>=0. Taking Uo(O) =0, it is found that Eq. (5.17)
holds also for the non-harmonic potential.

It is important to now note that the value of "-:ax given in Eq. (5.17) is equal to
the ratio of the peak current to the average current. To see this, recall that the
unperturbed bunch distribution is

l/Jo(p, </» = Ae-p2f20"2e-Uo(<f»f0"2.

The line-charge density is given by

P(<f>) = Jdpl{Jo(p, <f»,

hence its average is

Pay = 2~ Jd<f>p(<f» = 2~ Jdpe-
p2

/
2u2Jd<f>e-Uo

(4))lCT
2

•

The peak value of the line-charge density is

Ppeak = p(O) = A Jdpe-p2
/
2u2

•

Therefore
Ppeak _ 21T

Pay Jd<f>e-Uo(4))/CT2 •

Equations (5.17) and (5.23) establish that for small u,

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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FIGURE 1 The ratio of the largest eigenvalues corresponding to finite bandwidth a and infinite
bandwidth, plotted against La, where L is the bunch length in radians.

Let us now return to the eigenvalue problem of Eq. (5.11) and study the
validity of the approximation just discussed, in which we let the cutoff go to
infinity. To illustrate the rate of convergence, we have solved numerically for the
eigenvalues of

no+~

A~vm == L e-(n-m)2L 2/2 vn, (5.25)
n=no-~

(5.26)

corresponding to a harmonic potential. In Fig. 1 we plot A~ax/A:ax, as a function
of La. It is seen that the error is less than 10% when La> 3.

To gain some insight into the nature of the perturbed line-charge density, let us
take as an approximation to the eigenvectors of Eq. (5.25)

Pn == v;:(C) for In - nol::;a
==0 for In-nol>a

where v;:(C) is defined in Eq. (5.13). The perturbation to the line charge density is

(5.27)
n

and substituting (5.26) into Eq. (5.27), we obtain
no+A

p(<f» == L e in(4)-J;) == eino(4)-J;)f~(<f> - C),
n=no-~

(5.28)



126 S. KRINSKY AND J. M. WANG

L
FIGURE 2 Sketch of a localized eigenmode having peak width of order ·1/~, in a bunch of length L
radians.

where

f ( - ) - sin «d + 1/2)(</J - ,))
a <I> ,- sin «<I> - ')/2) ·

(5.29)

The perturbation p(</J) of the line-charge density is a plane wave modulated by
the function fb.(</J - ,). For large d, fb.(</J - ,) is sharply peaked about </J =" and
the peak width is of order lid, see Fig. 2. The detailed structure within the peak
will depend upon the details of the short-distance behavior of the wake field,
which has been ignored in making the approximation of Eq. (5.7), and hence is
outside the scope of our discussion.

The growth rate of the mode corresponding to the maximum eigenvalue A:ax of
Eq. (5.12) is determined by the dispersion relation

(5.30)

We shall now define a threshold current I th by

From the definition of h(x) in Eq. (4.14), it is seen that

Ih(x)I:51 for 1m x ~O.

Therefore there will exist no coherent frequency with 1m n > 0 as long as

(5.31)

(5.32)

(5.33)
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(5.34)

When the inequality (5.33) holds there is no microwave fast blowup. If
IoA:ax(u) = I th , then there is a solution of (5.30) only for

ImO ~O+.
nou

From Eq. (5.16), we see that if u is large, then

A:ax(U) = 1. (5.35)

(5.36)

In this case, corresponding to a bunch length comparable to the ring circumfer­
ence, the threshold condition of Eq. (5.33) says simply that the average current
10 < I th• On the other hand, when the bunch length is short compared with the ring
circumference, corresponding to small u, Eq. (5.24) shows that

Amax(U) = Ipeak/lo,

so the condition for the absence of microwave fast blowup becomes

elpeak IZ (nowo) I
------"'----2 ::s 1.
27TBoa(us /Bo) no

This condition was conjectured by Boussard6 on the basis of an intuitive physical
argument. He noted that when the perturbing electromagnetic fields have
wavelengths short compared with the bunch length, the bunch looks like a
coasting beam having a current equal to the peak current of the bunch.

In order to emphasize the correspondence between our results and those known
for coasting beams, let us consider the dispersion relation (5.30) far above
threshold, so that 101» Inol u. From its definition in Eq. (4.13), we see that when
Imx~O,

h(x) = -x-2 for Ixl» 1,

hence far above threshold, the dispersion relation becomes

(5.37)

(5.38)2 . eaw6 00n = l27TE
o

noZnioAmax(o-),

which is the well-known dispersion relation for a coasting beam with current
IoA:ax(u).

Let us conclude this section by commenting on the attempt made by Mes­
serschmid and Month9 to describe the microwave instability. Their approach was
based upon the ansatz, p(</»=exp(ino</»po(</», where Po(</» is the unperturbed
bunch density. This has the form of a plane wave modulated by a shape function;
however, the shape function is always taken to be Po(</» independent of the
bandwidth a of the impedance. Our discussion leading to Eq. (5.28) shows that
this is incorrect, and that the shape function should have a peak width of the
order of l/a, the range of the wake field. This local behavior is closely related to
the peak current dependence of the coherent frequency for a» I/L. Whereas the
ansatz of Messerschmid and Month is inconsistent with their results for the case of
a broad-band impedance, it is more appropriate to the case of a narrow-band
resonant impedance with a« 1/L. Then, as discussed in the following section, the



128 S. KRINSKY AND J. M. WANG

coherent frequency depends on the average current instead of the peak current
(Eq. (6.8)) and the perturbed density is approximately as given in Eq. (6.9).

VI. FAST BLOWUP DUE TO A HIGH-Q FtESONANCE

We suppose the storage ring contains M equally spaced bunches, each having
N/M particles, interacting with a resonant element whose impedance is so sharply
peaked that to a good approximation12

(6.1)

Here 8n ,no is the Kronecker delta vanishing when n 1= no and having value unity
when n = no. Let us assume no = Mio + s, where io is an integer and the multibunch
mode number S is not zero. We now write the condition (Eq. (3.25)) for the
existence of a coherent oscillation as

00

Pm = L TmnPn,
j=-oo

(6.2)

where the indices m and n take only the values Mi + s. Recalling from Eq. (3.26)
that Tmn = -KZnFmn, it follows that when the impedance is given by Eq. (6.1),
then Eq. (6.2) becomes simply

(6.3)

There is no contribution from the n = - no term of the impedance, since it
corresponds to a different multibunch mode number. It is clear that in order for
Eq. (6.3) to be satisfied, it is necessary that

(6.4)

In the fast blowup regime, Fmn is given by Eq. (4.7). Now let us suppose that

Imo'»lnolu, (6.5)

then the expression for Fmn simplifies to

-imNe
Fmn = {i2 (3(m - n), (6.6)

where the normalized Fourier transform (3 of the bunch distribution was defined
in Eq. (5.5). Therefore, when the inequality (6.5) holds,

(6.7)

where 10 = Newo/27T is the average current in the ring. The dispersion relation
(6.4) giving the growth rate of the coherent oscillation is

(6.8)
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(6.9)

which is the coasting~beam dispersion relation found earlier in Eq. (5.38). In
addition, the perturbed line-charge density can be determined from Eqs. (6.3) and
(6.7), and up to a multiplicative constant

a ..,1,.

p(<t» = a<t> (emo"'po( <t>»,

where poecP) is the unperturbed line charge density

Po(cP) ex: e-Uo(q,)/u
2

• (6.10)

As in the case of the microwave instability, we can derive an inequality assuring
the absence of fast blowup. From the expression for Fmn given in Eq. (4.8), we see
that

(6.11)

Performing the Gaussian integral, and using the normalization condition of Eq.
(3.10) for A, Eq. (6.11) becomes

(6.12)

(6.13)

There can be no solution of Eq. (6.3) if ITnonol < 1, and using Eq. (3.26) for Tmn,

we find there will be no solution of Eq. (6.3) as long as

elo 2 12nol< 1.
27TEoa(ue /Eo) no

This is the usual Landau damping condition known from the study of coasting
beams and differs from the Boussard criterion of Eq. (5.20) only in that the
average current 10 appears in Eq. (6.13) rather than the peak current.

VII. SHORT-BUNCH APPROXIMATION

When the bunch length is short compared to the wavelengths of the perturbing
electromagnetic fields, Eqs. (3.25)-(3.27) describing coherent oscillations become
amenable to solution by a perturbation expansion.? The function cPo(J, 8), defined
in Eq. (2.25), is in general of the form <Po(J, 8) = r80 (r, 8), where 80 (r, 8) goes to a
finite limit as the amplitude r approaches zero. As a consequence, when the bunch
length is short, it is useful to expand (3.27) in a power series in cPo. If we truncate
the series, then the resulting infinite-dimensional matrix Tmn becomes one of
finite rank.

Assuming n4>0 and m4>0 to be small, we expand the exponential,
exp (incPo(J, 8 + 8') - imcPo(J, 8)), appearing in Eq. (3.27) in a Taylor series. Let us
define the functions FJ.L (n, J) and <I>~)(J) by

00

e inq,o(J,8) = L FJ.L (n, J)e i Jl.8

f.L =-00

(7.1)
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00

(<Po(J, 6))j = L <I>~)(J)eiJL6.
JL=-OO

(7.2)

(7.5)

(7.3)

(7.4)

From Eqs. (7.1) and (7.2), we see that

F (n J) = f (in)i <I>(j)(J)
JL' j =0 i! JL .

The matrix Tmn as given by (3.26) and (3.27) now becomes

T
mn

= -27TiK Zn f ILl 00dJI/Jb(J) F,..(n, J)~(m, J)
n JL=-OO 0 !l-ILWs(J)

. Zn 00 00 (in)j (-i.m)k100

, <I>~)(J)<I>~~(J)
=-27TlK- L L IL-.-,--,- dJt/Jo(J)~-__--:"--

n j,k=l JL=-OO J. k. 0 n ILWs(J)

where in going to (7.5) from (7.4), we used the fact that IL<I>~)(J)<I>~~(J)= °if i = °
or k = 0.

From (7.2) and the fact that <Po -.; r as r -.; 0, we have <I>~)(J) -.; r j in the same
limit. For a short bunch, if we truncate the summation in i and k in (7.5) at
i = k = imIDD on the ground that t/Jh(J) is neglible unless r is small, then Tmn as
given by (7.5) becomes a matrix of rank:5 imax, and the infinite dimensional
secular equation (3.25) reduces to one of dimension imax

det (8kj - M kj ) = 0,

where M kj is a imax-dimensional matrix
jrnax

Mkj(!l) = -27TiK L (Zeff)kZDlj(!l) (k, i = 1, ... , imax).
Z=l

(7.6)

(7.7a)

(7.7b)

The matrix M is seen to be proportional to the matrix product of an effective
impedance matrix13

( ). _ f Zn (in)k(-in)l
Zeff kl - n~oo n k! 1! '

and a matrix of dispersion integrals

00 100

, <I>~)(J)<I>~~(J)
Dlj(o.) = ,..~oo IL ° dJI/Jo(J) o.-ILWs(J) · (7.7c)

In the lowest-order approximation, imax = 1, Eqs. (7.6) and (7.7) become

• 00 21 00

, W S (J) 1<I>~)(J)12
1 = -47TZKZeff L IL dJI/Jo(J) 0.2- 2 2(J) , (7.8a)

JL=-OO 0 IL Ws

where
Zeff= L nZn·

Using Eq. (4.4), we see that Eq. (7.8) is equivalent to

47TiK 100

2 00 IL 2I<1>~)(J)12
1 = -2 Zeff dJI/JO(J)Ws(J) L 0.2- 2 2(J)'

U 0 JL=-OO IL Ws

(7.8b)

(7.9)
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(7.10)

When there are M equally spaced bunches, each containing N/M particles, t/Jo is
normalized to N by Eq. (3.10) and the sum L nZn in the definition of Zeft in Eq.
(7.8b) is taken only over the values n == Mj + s (j == -00, ... ,00). Within the same
approximation, Tmn is given by

41TiK 1<XJ <XJ #L 2 W ;(J) 1cI>~)(J)12
Tmn ==-2 mZn dJI{1o(J) L {}2_ 2 2(1) •

U 0 f..L=1 #L W s

From (7.10) and (3.25), we have Pm == im up to a multiplication constant, so we
see that p(<p) is proportional to the derivative of a periodic delta function. This
corresponds, of course, to the rigid oscillation of a point bunch.

We can make contact with the results of Section VI, by considering the fast
blowup limit 1mn~ +00. When 1mn is greater than all the relevant synchrotron
oscillation frequency spreads, lws (J), Eq. (7.3) becomes

___ 41TiK ~ f<XJ ( ) 2( ) f 21 (1)( )12
Tmn~ (T2 mZn{}2Jo dJ%Jw s J ,,:'::111- <1>,... J . (7.11)

From the definition of cI>~)(J) in Eq. (7.2), it is clear that Eq. (7.11) can be written
as

1 f<XJ f21T
Tmn = iKmZn (T2{}2 J

o
dJ%(J)J

o
doci>MJ, 0). (7.12)

Applying Eq. (3.4), let us change the integration variables from J, 8 to 4>, <p. Then
using the representation of t/Jo given in Eq. (3.8), we obtain

T == iKAmZ _1_ fdA,.A,.2e -4>2/2a2 fdA,.e- Uo(<b)/u2 (7.13)
mn n U2{}2 J 0/0/ J 0/ •

Now we perform the integration over 4>, use the normalization condition of Eq.
(3.10) to evaluate A, and invoke the definition of K given in Eq. (3.14) to finally
get

(7.14)

(7.15)

where 10 == Newo/21T is the average current in the ring.
The dispersion relation is now

. 2 L
{}2 == zawoe 0 Z

21TEo eft·

It is noteworthy that in the long-wavelength limit (short-bunch limit), the disper­
sion relation (7.15) is just the linear superposition of the coasting-beam results for
the different values of n. For a short-wavelength case, this is no longer true.

VIII. HARMONIC POTENTIAL: Uo(e/» == w;e/>2/2

It is worthwhile to discuss in some detail the special case of a harmonic potential.
A distinguishing feature of harmonic motion is that the oscillation frequency is
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independent of amplitude. From Eqs. (2.27) and (2.29), it follows that for a
harmonic potential

<Po(I, 0) == r cos 0,

where the oscillation amplitude r is related to the action variable I by

r == (2I/ws )1/2.

Using Eq. (8.1), we see that
00

ein<l>o(J,6) == L iv..Iv.. (nr) eiv..6,
v.. =-00

(8.1)

(8.2)

(8.3)

showing that the synchrotron-mode coefficients Fv.. (n, I) defined in Eq. (7.1) are in
this case expressed as Bessel functions

Fv.. (n, I) == iv..Iv.. (nr). (8.4)

The unperturbed distribution t{Jo(I) , as defined in Eq. (3.7), is given by

%(I) == Ae-wsJ/<T\ (8.5)
with

(8.6)

(8.7)

Employing Eq. (8.4) and recalling that the synchrotron frequency is independent
of I, we can write the synchrotron-mode expansion of Eq. (7.4) as

Tmn = -27TiK Zn f n I.t 1'"dJl/Jb(J)JIL (nr)JIL (mr).
n v..=-oo - /-LWs 0

The integral over I in Eq. (8.7) can be performed using Eq. (8.2) and

t'" r dre-r2/2L2JIL (nr)JIL (mr) = L2e-(m
2
+n

2)L2/2IIL (mnL2),

where Iv.. is the Bessel function of imaginary argument. We derive

- iaw5eIo Zn -(m2+n2)L2/2 f /-LIv.. (mnL 2)
Tmn 2 2- e ~ .

21TEows L n v.. =-00 /-L - Q

In the above equation, 10 == Newo/21T is the average current,

Q = {},/ws,

(8.8)

(8.9)

(8.10)

and Eqs. (3.14) and (8.6) have been employed to evaluate K and A, respectively.
The bunch length L in radians is related to the spread in revolution frequency u
via

u == Lws • (8.11)

In the case of the slow blowup of a synchrotron mode /-L == /-Lo, we have Q:;:::::; /-Lo,
so the sum in Eq. (8.9) is dominated by a single pole. For a short bunch (long
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wavelength), nL and mL are small, therefore,

I ( L2)=~ (mnL
2

)J.Lo
J.Lo mn '2'

~o·

and

133

(8.12)
iaw~elo Zn L 2J.Lo-2 m J.Lon J.Lo

21TEows n 2J.Lo(~o-1)! 0- ~OWs •

Since this matrix is of rank one, the dispersion relation is given by Ln Tnn = 1.
Therefore, when the impedance Zn is negligible for n ~ 1/L, we obtain

(8.13)

in agreement with the result of Wang.14 Recall that in the case of M equally
spaced bunches each containing N/M particles, the sum in Eq. (8.13) is only over
n=Mj + s (j = -00, ... , (0) for fixed s=O, 1,2, ... , M -1).

When there is fast blowup, 1mn »ws' the synchrotron-mode expansion of Eq.
(8.9) is not a very useful representation for Tmn, because many terms in the sum
over l contribute. This is in fact also true for the slow blowup of a long bunch due
to a high-frequency impedance Zn, with nL» 1. To study these cases, we shall
replace the synchrotron-mode expansion by an equivalent integral representation.
Upon differentiating the generating function for the IJ.L Bessel function,

ex:>
e Z cos8= L IJ.L(z)e i J.L8,

J.L=-ex:>

with respect to 6, it is easily verified that the identity holds

IL~OO :I:<;J = e1zIH(z, Q),

with
Z 12'7T .H(z Q) = . d6 sin 6elQ8e-lzl+z cos 8

, 1- e2 '7T1Q 0

(8.14)

(8.15)

(8.16)

(8.17)

Using this identity in the synchrotron-mode expansion of Eq. (8.9), we derive the
integral representation

T = -iaw~elo Zn -<lml-\n\)2L2/2H( L 2 0)
mn 2 E 2L2 e mn , .

7T OW s n

In the fast blowup limit, 1m 0 ~ +00, an asymptotic analysis of the integral in
Eq. (8.16) shows that

and

H(z, Q) = h(~), z>O (8.18)

zH(z Q)= -- e-2 \z\, 0 2 , z<O, 1m 0 »JfZ1. (8.19)
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From Eq. (8.17), these imply that for 1m Q ~ +00,

T = - iaw'6elo Zn -(m-n)2L2/2h(~) > 0
mn e ,--- mn ,

27TEow;L2 n vmnL
(8.20)

and

. 2 1
T = zawoe 0 ( Z) -(m-n)2L2/2

mn 27TE
o
fl2 m n e , mn<O, 1m Q »v'\mn\L. (8.21)

(8.23)z>O

The function hex) was introduced earlier in Eq. (4.14), and Eqs. (8.20) and (8.21)
are seen to agree with the results of Eqs. (4.11) and (4.13).

We can obtain additional insight by studying the behavior of the integral in Eq.
(8.16) in a new asymptotic limit, relevant to the instability of a long bunch due to
a high-frequency impedance Zn, n» l/L. The growth rate is only restricted by
1m Q« nL, so both slow blowup and fast blowup are included. To be specific, let

Izl~oo,\QI«lzl, ImQ«~, (8.22)

then one can show that the asymptotic behavior of H(z, Q) is given by

H(z, Q) = h(Q)-~ (i +cot 7TQ) Q e-Q2
/
2Z

,

~ 2 ~
and

H(z,Q)=~ ~.-9..-e-Q2/2IZI, z<O. (8.24)
sin 7TQ'V 2 M

The matrix Tmn of Eq. (8.17) is determined by using Eqs. (8.23) and (8.24) with
z == mnL2

•

The poles at Q == integer in the function cot 7TQ, in Eq. (8.23) correspond to the
synchrotron-oscillation modes, which are dominant for slow blowup. When
1m Q »1 or Re Q »JZ, the second term in Eq. (8.23) becomes negligible, due to
the factors (i +cot 7TQ) and exp (-Q2/2z), respectively. Then we are left with the
coasting beam type of behavior described by the function h(Q/v'z).

In the case of a coasting beam, different revolution modes m and n are not
coupled. On the other hand, these modes are coupled for a bunched beam by the
matrix Tmn. However, when nL and mL are large in magnitude, and the growth
rate is fast (1m Q » 1), then Eqs. (8.24) and (8.21) show that the coupling between
modes with mn < 0 becomes negligible. That is, there is no coupling between the
slow and fast waves. We also see from Eq. (8.24) that when nL and mL are large
in magnitude and Re Q » .Jfm~L, then the slow and fast wave decouple, even if
the growth rate is slow.

IX. QUARTIC POTENTIAL: Uo(</»==w;o</>2/2+b</>4/4

When a quartic term is added to the harmonic potential discussed in the last
section, the equations of motion become nonlinear. Consequently, the
synchrotron-oscillation frequency now varies with amplitude r. From Eq. (2.28),
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the amplitude dependence of the frequency is

7T
W (r) == - (W 2 + br2)1/2

s 2K sO ,
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(9.1)

where K == K(k) is an elliptic integral of the first kind, with the modulus k given
by

(9.2)

(9.3)

The action variable 1 can be related to the amplitude r using Eq. (2.27), and it
follows that

J = 3:b (w;o+ br2
) 1/2( (w;o+~ r2 )K(k)-w;oE(k)),

where B(k) is an elliptic integral of the second kind. From Eq. (2.29), we see that
the synchrotron motion is given in terms of the Jacobi elliptic function cn (u; k),
and

</>0(1, 8) = r en e:8; k)'
The Fourier expansion of 4>0 is

00

4>0(1, 6) == L <l>JL (r)e iJL8
,

JL=-oo

(9.4)

(9.5)

where the Fourier coefficient vanishes for IL even, and is given for IL odd by

7Tr qJL/2

<l>1L (r) = kK 1 +qlL ' (9.6)

with
q == exp (-7TK'/K) (9.7)

where K' == K(k') == K(.J1- k 2
). A useful expansion for calculating q when k is

small is
k

2
(k

2
)2 (k

2
)3q==16+ 8 16 +84 16 +.... (9.8)

The results discussed in Section VIII for the harmonic potential are recovered
in the limit k~O, or r~O. In this limit, K=7T/2,K'=ln(4/k),K-B=7Tk 2 /4,
and cn(x,k)=cos(x).

A second limiting case, which will be of particular interest to us, corresponds to
WsO == o. This condition is achieved in a storage ring by using a Landau cavity.8 A
Landau cavity operates at an integral multiple of the fundamental rf frequency
with its voltage and phase chosen such that for small-amplitude oscillations the rf
"potential energy" becomes Uo(4>) == b4> 4/4, with b > o. The use of such a cavity
results in a non-Gaussian bunch density, Po(4)) ex: exp (-UO(4»/u2

), and an in­
crease of the rms bunch length. Hence, the use of the Landau cavity reduces the
peak current and allows the threshold (expressed in terms of the average current)
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of the microwave instability to be increased. In addition, because of the nonlinear
restoring force, the Landau cavity produces a large spread of synchrotron­
oscillation frequencies within the bunch. This provides stability via Landau
damping against coupled-bunch instabilities. When WsO = 0,

k2 = 1/2, K = K' = 1, r 2 (1/4) = 1.85,
4V7T

ws(r) = 2~ .Jbr,

J= 2K .Jbr3

31T '

(9.9a)

(9.9b)

(9.9c)

(9.9d)

(9.11)

(9.12)

1Tr
<l>JL(r) = (f.L odd).

J2K cosh (f.L -1/2)1T

Recall that Eq. (9.2) determines k as a function of r, and it implies that as long
as b ~ 0, the modulus is bounded by k 2 :51/2. Since q is an increasing function of
k, it follows that q is always small, and is bounded by its value at k 2 = 1/2, i.e.
q :5exp (-1T) = 0.043. This shows that to a good approximation, <l>l(r) = r/2 and
<l>JL(r), f.L > 1, can be neglected. Hence, we can replace Eq. (9.4) by

cPo(J, 6) == r cos 6, (9.10)

where r is related to J via Eq. (9.3). Within this approximation, the synchrotron­
mode coefficients FJL(n, J) of Eq. (7.1) are expressed in terms of Bessel functions
as in Eq. (8.4). Hence the synchrotron-mode expansion is approximately

T ==27TiK Zn f Jood U'() () JJL (nr)JJL (mr)
mn 2 ~ f.L r 0 r tfio r n ().

u n JL=-OO 0 -ILWs r

In wrItIng this equation, we have used Eq. (4.4) to express tfib(J) =

-u-2 ws (J)tfio(J), and we have transformed the integration variable from J to r
using the derivative

dJ dJ dHo ,
dr = dH

o
~= Uo(r)/ws(r).

The approximate expression for the matrix Tmn appropriate for a short bunch
was discussed in Section VII, and the dispersion relation was given in Eq. (7.9).
Neglecting all terms in the summation with IILI > 1, we find for the particular case
under consideration

(9.13)

where Zeff was defined in Eq. (7.8b) to be

(9.14)
n
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For equally spaced bunches, each having N/M particles, the sum in Eq. (9.14) is
over n = Mj + s (j = -00, ... ,00) for fixed s = 0,1,2, ... ,M-1. Upon making the
further approximation, <l>1(r) = r/2, Eq. (9.13) would follow from keeping only the
~ = ±1 terms in Eq. (9.11), and using the small-argument approximation for the
Bessel function', J1(x)~x/2.

Let us now write the dispersion relation (9.13) for the special case

wso= 0, Uo(4J) = b4J4/4. (9.15)

In this case the unperturbed bunch distribution is

%(r) = A exp (-r4 /r6),
where

'0 = (4a-2/b )1/4,

and the normalization constant A is determined from Eq. (3.10) to be

(9.16)

(9.17)

(9.18)A = Ne.J2f;
a-rof(l/4) .

The dependence of oscillation frequency on the amplitude ws(r) is given in Eq.
(9.9b). It is convenient to introduce a measure liws of the synchrotron-oscillation
frequency spread in the bunch by

7T
liw == w (r ) = - (4ba-2)1/4

s s 0 2K . (9.19)

Employing (9.15)-(9.19) and the definition of K given in Eq. (3.14), the dispersion
relation (9.13) becomes

(9.21)

(9.20)

with the constant

. 2 1 Z 100
6 -x

4

1 = -zawoe 0 eft C d X e
27TEo(liws )2 4 0 X 2 !l2'

X - (IiW
s
)2

_167T.J2"; 2 ___

C4 - Kf(1/4) cI>1(l) =4.30.

In the fast blowup limit, Im!l» liws, the dispersion relation of Eq. (9.20)
simplifies to

1 - iaw5eIOZeft C rood 6 -x4

- 2'1TE
o
!l2 4 J

o
XX e . (9.22)

Upon noting that

t=dxx 6 e-x4 = 1/4f(7/4) == 0.99/C4 ,

we see that Eq. (9.22) is very close to the exact result of Eq. (7.14), i.e.

1 = iaw5eIOZeft
27TEo!l2 .

(9.23)

(9.24)
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Thus dropping the terms in Eq. (7.9) with IILI > 1 has resulted in only a 1% error
in the fast blowup limit.

Let us define the dispersion integral G(q) by

i (00 x6 e-x4

G(q)=JodXx2_q2' (9.25)

In Fig. 3, we plot 1m G(Q) against the Re G(q) at threshold, 1m q:=: 0+, and
above, 1m q :=: 0.1. It is convenient to define

(8!lof= aw~eIOZeff (9.26)
27TEo

then the dispersion relation of Eq. (9.20) can be written as

(9.27)

1m G

5

4

3

2

-I

-2

-3

-4

-5

-6

FIGURE 3 Stability boundaries.



NON-HARMONIC RF POTENTIAL 139

A stability condition, in the sense of Keil and Schnell, corresponds to the
minimum of IGI along the threshold curve. From Fig. 3 we find min IGI = 1.7, so
we have stability for

(9.28)

There have been discussions by F. Sacherer4 and by Y. Chins on the problem of
longitudinal instabilities subject to a purely quartic rf potential, Uo(4)) = b4>4J4.
They attempted to solve the problem by ignoring the coupling between the
different synchrotron modes, IL = 0, ±1, ±2, .... This, in our opinion, is inade­
quate. For a purely quartic potential, the harmonics, ILws(r), of the synchrotron
frequency vanish at r = 0 for all IL'S. This causes the different synchrotron modes
to couple, no matter how small IoZefI is, and the mode number IL ceases to be an
appropriate parameter to classify the eigensolutions. In other words, these authors
are using a nondegenerate perturbation method for a highly degenerate case.

Let us illustrate our point by considering the case of a very short bunch in a
quartic potential. This case is simple because the contribution of the higher
modes, IILI> 1, is negligible. However, as is clear from Eq. (9.20), we can not
ignore the coupling between the modes IL = 1 and -1 even in such a simple limit.
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