
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Assessment of Geant4 Maintainability with respect to software
engineering references
To cite this article: Elisabetta Ronchieri et al 2017 J. Phys.: Conf. Ser. 898 072042

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.5.251 on 18/03/2018 at 22:43

https://doi.org/10.1088/1742-6596/898/7/072042

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

Assessment of Geant4 Maintainability with respect

to software engineering references

Elisabetta Ronchieri1, Maria Grazia Pia2, Marco Canaparo1

1 INFN CNAF, Bologna 40126, Italy
2 INFN, Sezione di Genova, Genoa 16146, Italy

E-mail: elisabetta.ronchieri@cnaf.infn.it, mariagrazia.pia@ge.infn.it,

marco.canaparo@cnaf.infn.it

Abstract. Over time computer scientists have been provided metrics to measure software
maintainability. In existing literature, a large number of references can be found about this topic;
nevertheless, a lack of quantitative assessment of maintainability metrics has been observed. In
this paper, we summarize the challenges of adopting code measurements in the context of physics
software system. In this pilot study, we have used Geant4 - a twenty-year-old software system
- to conduct this research and set the grounds for further discussion.

1. Introduction
Maintaining software is a widely acknowledged issue according to software manufactures.
Existing literature provides information about tools and processes that can facilitate the
production of maintainable code (see e.g. the IEEE International Conference on Software
Maintenance, ICSM). In our study, we have observed that there are many proposals that
contribute to the challenge of measuring maintainability; however, to the best of our
understanding, a universal agreement of its measurement is ongoing.

In literature, computer scientists use the term maintainability in two ways: the former is
descriptive, the latter derives from source code measurements. Amongst the various definitions
we choose the one of IEEE Standard Glossary [1] according to which: ”maintainability
is the ease with which a software system or component can be modified to correct false,
improve performance or rather attributes, or adapt to a changed environment.” Such definition
lacks details about its estimation and measurement. Many researchers have tried to define
maintainability through different types of metrics [2] (such as Maintainability Index [3] and
Halstead source code [4]), whose measures are often validated by using expert judgements and
empirical considerations. Therefore, it is a bit of a challenge to use these metrics in order to
make suitable decisions on the base of their measurements.

Maintainability is a software characteristic that is going to be assessed in various contexts
including scientific applications. In this pilot study, we use Geant4 [5, 6] - a twenty-year-old
software system - to conduct this research and set the grounds for further discussion. Geant4 is
an ideal playground to assess maintainability of large scale high energy physics software systems
over the range of decades. Due to the amount of data, this paper provides a sample of results
whose discussion is going to be published in a journal.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

The remainder of this paper is structured as follows. Section 2 details the challenges that
we have identified to fulfil this research. Section 3 explains the methodology we have used to
realize this study, whilst Section 4 shows a sample of results. Finally, Section 5 concludes.

2. Challenges
In the software development life cycle, maintainability is the most expensive factor that consumes
more than 40 to 70 percent of time and resources [7, 8]. Existing literature suggests that the
control of software maintenance begins at the earliest point of the life cycle [9,10]; however, it is
uneasy to perform this activity over the development phase [11]. For example, as the complexity
level of a piece of software increases over its life cycle, the code becomes difficult to understand
and, therefore, uneasy to comprehend and more likely to contain errors, making its maintenance
non-trivial [12].

Software metrics, when correctly defined, implemented and used, have been shown to be
valuable indicators of quantitative evaluation of software complexity [13–15]: on one hand, they
can identify improper integration of functional enhancements; on the other hand, they can
predict the error-prone parta of software. In order to use metrics successfully, we have to face
challenges that are explained in the following sections.

2.1. Employment of metric analysis techniques
By exploiting statistics we can identify different analysis techniques that employ metric values
to highlight error-prone code. In the following we list a subset of these techniques.

Basic statistics concepts, such as means and standard deviation, contribute to getting a global
picture of the code status.

Threshold analysis classifies metric values setting ranges on them according to the level of
worrying caused by the metric. This activity entails a deep metric knowledge and adequate
range interpretation.

Prediction equation determines which parts of the software may need attention by using a
substantial amount of error data and code.

Trend analysis identifies patterns in a series of data to predict a trend analysing past events
in the code.

Inequality analysis, such as Gini index [16], may determine the gap between good and bad
code.

Their employment in the development life cycle requires: learning and choosing the proper
technique; having available a large amount of measures; having a deep knowledge of the language
and code context.

2.2. Usage of automated tools for metric collection and analysis
During the development life cycle, it is recommended using a tool that supports the following
three activities: parsing the source code, generation of the metric values and assistance of the
interpretation of results.

Nowadays, several commercial and free tools (such as Imagix 4D [17] and CLOC [18]) are
able to fulfil the first two activities. However, existing tools often implement a different subset
of metrics, leading scientists to use more then one tool or to choose a commercial version.
Furthermore, metrics can be not unequivocally defined, favouring different interpretations and
consequently different implementations, which lead to non-comparable values from distinct tools.

The last activity is the most difficult to include in the development life cycle, since existing
tools (such as WebMetric [19]) - to the best of our knowledge - may help in the interpretation
of the metric values, but they may not support the chosen analysis technique.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

2.3. Selection of the right set of metrics
In order to properly assess code, it is important to select the right set of metrics. Typically,
they include the most popular metric known as Line Of Code (LOC) that measures the size of
software products [20,21]. In addition to that, the chosen set of metrics envelops object oriented
metrics to obtain size, coupling, cohesion and inheritance information [21–23]; moreover, there
is also the Cyclomatic Complexity metric that evaluates the difficulties in maintaining a given
code and the likelihood in producing errors [24]. Table 1 shows the most popular metrics to
measure maintainability.

Table 1. The most popular metrics to measure software maintainability
Metrics Source

Chidamber & Kemerer’s Metrics: Coupling Between Object (CBO), Depth of Inheritance
Tree (DIT), Lack of Cohesion in Method (LCOM), Number of Children (NOC), Response
for a Class (RFC), Weighted Method Count (WMC)

[22,25,26]

Data Abstraction Coupling (DAC), Message Passing Coupling (MPC), Number of Local
Methods (NOM), Number of Attributes and Methods (NAM), Length of Class Names (LCN)

[21,26,27]

Locality of Data (LD), Improvement of LCOM (ILCOM) [28]

Halstead’s Metrics: Program Vocabulary, Program Length and Program Volume; Tight Class
Cohesion (TCC); Number of errors detected by code inspection; Number of code changes
required; Information Flow Metric; Cyclomatic Complexity; Number of Catch block per
Class (NCBC); Exception Handling Factor (EHF); Lines of Code (LOC)

[29–31]

Metric MOOD: Method Hiding Factor (MHF), Active Hiding Factor (AHF), Method
Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism Factor (PF)
and Coupling Factor (CF); Martin Agile Suite metrics: Number of Classes (NC), Afferent
coupling (Ca), Efferent Coupling (Ce), Instability (I) and Distance (D)

[22]

Selecting the right set of metrics is a challenging task due to the high number of possibilities
that can address a given issue. Furthermore, the employed tool may not include or interpret
them properly. On the other hand, the analysis technique has to consider possible correlation
between each pair of metrics in order to avoid bias.

2.4. Usage of historical data
Metric analysis technique have to be developed and refined by using historical data code. For
example, prediction equation may rely on error data, whose collection may be particularly
challenging. Generally speaking, recording this information during the development process
is relatively cheap and produces large benefits: this activity is part of guidelines for good
programming that can be recommended at managerial level but they cannot be imposed to
developers.

The quality of data is essential. They can make the metric analysis techniques robust as
much as data are accurate and detailed. For this reason, it is extremely important to validate
both data provided by the selected tool and by the developers over time.

2.5. Interpretation of metric values
As shown in Table 1, metrics deal with software complexity. This may help developers in ranking
and addressing error-prone software, while it is developed.

Accepting a metric value may be dangerous if done without a rationale. In fact, to judge a
certain metric value, we have to understand what the metric attempts to measure at least in
general terms; otherwise, we risk to make a wrong assessment.

Drawing conclusions from the value of a single metric maybe considered a mistake. In fact,
a metric may exceed its limits without being regarded as a problem, and to assess software
maintenance we should use multiple merics in order to determine where to put effort.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

3. Methodology
To perform this maintainability assessment, we have defined a methodology, which is designed
to integrate maintainability into software as it is being developed. The methodology aims at
developing a maintainable system by highlighting the most complex code that needs deeper
attention. In the following, we describe the rectangles in Figure 1 that summarize our
methodology:

Figure 1. Research methodology right arrow

• collection of the source code of all Geant4 [5, 6] versions from 0 to the current one 10.2;

• loading of the Geant4 source code into Imagix 4D version 8.0.4 to measure a large number
of metrics in order to obtain code information with respect to size, complexity, coupling,
inheritance, cohesion, complexity, control-flow structuredness (see Tables 2, 3 and 4);

• saving all the collected data at different levels of software granularity, such as file, function,
class, directory, variable and namespace;

• application of statistical techniques for the analysis of metric values [32];

• identification of quality (goodness ranges of) references with respect to size, complexity,
coupling, inheritance, cohesion, complexity, control-flow structuredness that derive from
relevant peer-reviewed papers, conference proceedings and technical reports [33] (see Table
5).

During this study, we have considered 32 Geant4 versions: this means looking at ∼150
packages, ∼3000 classes, ∼6000 files and ∼30000 functions.

Tables 2, 3 and 4 show some metrics that we have measured by using Imagix 4D tool that
is able to provide various metrics at different levels of software granularity: 24 metrics at class
level, 22 metrics at file level, 21 metrics at directory level, 21 metrics at function level, 4 metrics
at variable level. Due to the amount of metrics, in these Tables, we have summarized a subset
of these metrics with respect to size, complexity and object orientation categories.

Size metrics [34] are typically a direct count of selected characteristics to describe the volume
of a software, estimating software productivity and quality.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

Complexity metrics, such as McCabe [35], Halstead [4] and Welker [36] metrics, measure the
simplicity of the system design.

Object-oriented metrics [22] measure complexity, maintenance and clarity; they estimate to
which extent the system adheres to the object orientation.

Table 2. Size Category
Level of
granularity

Metric Source

File

Comment Ratio [34]
Declarations in File [34]
File Size [34]
Functions in File [34]
Lines in File [34]
Lines of Source Code [34]
Lines of Comments [34]
Number of Statements [34]
Variables in File [34]

Function
Lines in Function [34]
Lines of Source Code [34]
Variables in Function [34]

Table 3. Complexity Category
Level of
granularity

Metric Source

File, Halstead Intelligent Content [4]
Function, Halstead Mental Effort [4]
Class Halstead Program Volume [4]

Halstead Program Difficulty [4]

File, McCabe Average Complexity [35]
Class McCabe Maximum Complexity [35]

McCabe Total Complexity [35]

File Maintainability Index [36]

Function

McCabe Cyclomatic Complexity [35]
McCabe Decision Density [35]
McCabe Essential Complexity [35]
McCabe Essential Density [35]

Table 4. Object-Oriented Category
Level of granularity Metric Source

Class

Class Cohesion (LCOM) [22]
Class Coupling (CBO) [22]
Depth of Inheritance (DIT) [22]
Number of Children (NOC) [22]
Response for Class (RFC) [22]
Weighted Methods (WMC) [22]

Table 5. A Sample of Quality References
Acronym Reference Source

Comment Ratio 0.08 [37]
SLOC (Source Lines Of Code) 60 at file level [37]

1500 at function level [37]
[100,8000] at file level [38]

HPV > 800 too many things at file level [38]
(Halstead Programme Volume) [20, 1000] at function level [38]

> 1000 too many things at function level [38]

MI <65 poor maintainability [39]
(Maintainability Index) [65, 84] fair maintainability [39]

≥85 excellent maintainability [39]

[1, 10] low cyclomatic complexity [40]
[11, 15] medium cyclomatic complexity [40]
[16,30] high cyclomatic complexity [40]

MCMCC >31 very high cyclomatic complexity [40]
(McCabes Maximum Cyclomatic Complexity) [1, 10] low cyclomatic complexity [37]

[11, 20] medium cyclomatic complexity [37]
[21. 50] high cyclomatic complexity [37]
>51 very high cyclomatic complexity [37]

Once validated all measurements, we have passed them to statistical tools in order to perform
a correct interpretation. Concerning the analysis techniques, we are employing those described
in Section 2. We are also started considering economic and ecology indexes to obtain information
on the concentration of errors in the code [32]. Table 5 shows a sample of quality references
whose selection is detailed in [33].

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

4. A sample of plots and results
In the course of this work, we have sifted through ∼6000 files of Geant4 in order to get potential
issues in the code. Due to the complicated problems implemented in Geant4, it is not a trivial
task to determine code that is really complex to maintain. Furthermore, according to our
understanding, an approach based only on one metric may be considered not completely correct.
It will be necessary to analyse the results of a combination of more than one metrics in order
to get a more precise figure of the code’s status. For this reason, we currently apply trend and
inequality techniques to assess software quality metrics. As regards inequality measures, we
invite readers to check a dedicated paper [32].

Figure 2. Maximum McCabe Cyclomatic Complexity at class level.

Figure 3. WMC and NMM at class level.

In this Section, we present the trend results for a small set of Geant4 packages and metrics.
Such technique contributes to identifying how software characteristics have evolved over time.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

Figure 2 shows the trend of McCabe Maximum Cyclomatic Complexity at class level for the
processes optical package and the processes transportation package. Figure 3 shows the trend
of WMC and NMM metrics at class level for one of the processes package and the geometry
package.

5. Conclusion
The use of metrics can contribute to monitoring the internal quality of software. Further
investigation is in progress to identify appropriate ranges of metric values for the Geant4 packages
by using statistical methods. More extensive results will be discussed in a forthcoming full paper.

Acknowledgment
The authors thank Francesco Giacomini for interesting discussions and INFN CCR for partly
funding this work. We also thank the Imagix Corporation that provided an extended free full
license of Imagix 4D for performing this work and CERN library for providing papers and books.

References
[1] IEEE, report IEEE Std 610.12-1990, IEEE, 1990.
[2] Coleman D, Ash D, Lowther B and Oman P, IEEE Computer, vol 27, issue 8, 1994.
[3] SEI Software Technology Review, http://www.sei.cmu.edu/
[4] Halstead M H, Elsevier Science, 1977.
[5] S. Agostinelli et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol 506, n 3, pp 250–303, 2003.
[6] Allison J et al., IEEE Transactions on Nuclear Science, vol 53, n 1, pp 270–278, 2006.
[7] Soi I, Microelectronic Reliability, vol 51, n 2, pp 223–228, 1985.
[8] Jabri M, Jerbi H and Braiek N B, International Review on Modeling and Simulations, vol 3, n 1, pp 38–47,

2010.
[9] Yau S S and Chang P S, IEEE Conference on Software Maintenance, pp 374–381, 1988.

[10] Dubey S and Rana A, ACM SIGSOFT Software Engineering Notes, vol 36, n 5, pp 1–7, 2011.
[11] Munson J B, IEEE Computer Software and Applications Conference, vol 51, n 2, pp 223–228, 1985.
[12] Belady L A and Lehman M, IBM System’s Journal, n 3, pp 225–252, 1976.
[13] Conte S D, Dunsmore H E and Shen V Y, The Benjamin/Cummings Publishing Company, Inc., 1986.
[14] Kafura D and Reddy R R, IEEE Transactions on Software Engineering, vol SE-13, n 3, pp 335–343, 1987.
[15] Wake S and Henry S, IEEE Conference on Software Maintenance, pp 382–387, 1988.
[16] Gini C, Tipografia di Paolo Cuppini, Bologna, 1912.
[17] Imagix, Online. Available: https://www.imagix.com/products/source-code-analysis.html

[18] CLOC, Online. Available: https://github.com/AlDanial/cloc

[19] Scotto M, Sillitti A, Succi G and Vernazza T, Studia Informatica Universalis, pp 90–99, 1996.
[20] Melo W and Abreu B, Proceedings of the 3rd International Symposium on Software Metrics, pp 90–99, 1996.
[21] Elish M, Yafei A A and Al-Mulhem M, Advances in Engineering Software, vol 42, pp 852–859, 2011.
[22] Chidamber S R and Kemerer C F, IEEE Transaction on Software Engineering, vol 20, pp 476–493, 1994.
[23] Barkmann H, Lincke R and Lowe W, International Conference on Advanced Information Networking and

Applications Workshops, pp 1067-1072, 2009.
[24] Sastry B and Saradhi M, International Journal of Engineering Science and Technology, vol 2, n 2, pp 67–76,

2010.
[25] Stol K, Babar M, Avgeriou P and Fitzgerald B, Information and Software Technology, vol 53, pp 1319–1336,

2011.
[26] Dalal J and Briand L, Simula Technical Report (2009-1), version 2, n 1, 2009.
[27] Chen Z, Zhou Y and Xu B, Proceedings of the Internal Conference on Software Maintenance, pp 377–384,

2002.
[28] Li W and Henry S, Journal of System Software, vol 23, pp 111–112, 1993.
[29] Weyuker E, IEEE Transactions on Software Engineering, vol 14, n 9, pp 1357–1365, 1988.
[30] Sharma A, Kumar R and Grover P, Proceedings of the 6th WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems, Corfu Island, Greece, pp 24–29, 2007.
[31] Hitz M and Montazeri B, Proceedings of International Applied Cooperate Computing (ISAAC’95), 1995.
[32] Pia M G and Ronchieri E, Proceedings of IEEE NSS 2016, 2016.
[33] Ronchieri E and Canaparo M, Proceedings of ICSOFT-EA 2016, pp 232–240, 2016.

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072042 doi :10.1088/1742-6596/898/7/072042

[34] Lorenz M and Kidd J, Prentice-Hall, 1994.
[35] McCabe T J, IEEE Transaction on Software Engineering, vol SE-2, n 4, pp 308–320, 1976.
[36] Welker K D, The Journal of Defence Software Engineering, CrossTalk, pp 18–21, 2001.
[37] McCabe Software, Online. http://www.mccabe.com/pdf/McCabe\%20IQ\%20Metrics.pdf.
[38] Verifysoft Technology, Online. Available: http://www.verifysoft.com/en_halstead_metrics.html

[39] Coleman D, Lowther B and Oman P, Journal of Systems and Software, vol 29, n 1, pp 3–16, 1995.
[40] CppDepend, Online. Available: http://www.cppdepend.com/.

