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In this paper, we study Renyi and von Neumann entanglement entropy of excited states created
by local operators in large-N (or large-central-charge) conformal field theories (CFTs). First we
point out that a naive large-N expansion can break down for the von Neumann entanglement
entropy, while it does not for the Renyi entanglement entropy. This happens even for the excited
states in free Yang–Mills theories. Next, we analyze strongly coupled large-N CFTs from both
the field-theoretic and holographic viewpoints. We find that the Renyi entanglement entropy of
the excited state, produced by a local operator, grows logarithmically under its time evolution
and its coefficient is proportional to the conformal dimension of the local operator.
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1. Introduction

The entanglement entropy (EE) and its generalization, called the Renyi entanglement entropy (REE),
have been actively studied recently as a useful tool to understand quantum many-body systems and
quantum field theories, as well as gravitational theories. In quantum systems, they play a role of
good quantum order parameters that characterize the degrees of freedom hidden in various ground
states. In particular, they also reveal essential properties in conformal field theories (CFTs) [1,2]
and topological field theories [3,4]. One main advantage of considering entanglement entropy is that
it offers us a geometrical interpretation of many basic properties of quantum systems. Indeed, this
becomes manifest in the holographic entanglement entropy (HEE) [5–9] when we apply the AdS/CFT
correspondence [10] or, more generally, the holographic principle [11–13].

To define the entanglement entropy, we divide the total space into two subregions A and B so that
the total Hilbert space is factorized H = HA ⊗ HB . We define the reduced density matrix ρA with
respect to subsystem A from the original density matrix ρ by tracing out HB such that ρA = TrHBρ.
The nth Renyi entanglement entropy (REE) for subsystem A is defined by

S(n)A = log Tr[(ρA)
n]

1 − n
. (1)

The (von Neumann) entanglement entropy (EE) is defined as the n → 1 limit:

S(1)A = −Tr[ρA log ρA]. (2)
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So far, most works on entanglement entropy have focused on Renyi entanglement entropies for
ground states. The main purpose of this paper is to offer a general picture of entanglement entropy
for a simple class of excited states that are obtained by acting local operators on the vacua in CFTs.
The studies for such local operator excitations were initiated in a slightly different setup in Ref. [14]
and then Ref. [15]. We will pursue the latter approach in this paper. We are interested in the difference
of S(n)A between the excited state and the ground state, denoted by �S(n)A . We choose subsystem A
to be half of the total space. Recently, analytical calculations of �S(n)A have been performed for
massless free scalar fields in Refs. [15,16] and rational 2D CFTs [17]. In the latter paper, it was
proven that�S(n)A coincides with the quantity called quantum dimension of the primary operator. The
present paper will start with a brief review of these previous results so that readers can understand
the whole picture.

However, these previous results were obtained in CFTs that do not have tractable holographic duals
via AdS/CFT. Therefore, the main purpose of this work is to consider large-N gauge theories or
large-c CFTs as they can possibly have holographic duals. We will perform both field-theoretic and
holographic analyses and explain how they are consistent with each other. In particular, we would like
to understand how the large-N limit affects the calculations of entanglement entropy. We will find
that the behavior of von Neumann entanglement entropy (n = 1) is rather different from that of Renyi
entanglement entropy (n > 1) with respect to the large-N scaling in our examples. Note that such
a difference does not usually occur for ground states of CFTs, where both von Neumann and Renyi
entropies scale as c ∼ N 2. Furthermore, in strongly coupled and large-N CFTs, our holographic and
field-theoretic calculations suggest that more complicated subtlety appears in the n → 1 limit. At
the same time we will find a new behavior of the time evolution of Renyi entanglement entropy that
is peculiar to strongly coupled large-N CFTs.

To motivate our work further, note that a universal relation similar to the first law of thermodynam-
ics, called the first-law-like relation [18–26], has been identified for an excited state produced by a
small perturbation.1 However, we cannot apply this to our problem as we choose subsystem A to be
half of the total space and thus its size is much larger than the length scale of the excitation.

We would also like to mention that there are other classes of excited states that have been studied
well, called quantum quenches [34,35]. Refer to, e.g., Refs. [36–48] for their holographic dual cal-
culations. Since quantum quenches are triggered by sudden changes of Hamiltonian, they generate
infinitely many operators acting on the vacua. Therefore, we can say that our local operator excita-
tions are milder and more elementary, though some computation techniques are common to both.
One more interesting class will be excited states with energy fluxes. These are holographically dual
to plane wave geometries and have been studied in Refs. [49–51].

This paper is organized as follows: In Sect 2 we will review the calculations of (Renyi) entangle-
ment entropy of local operator excited states with a few pedagogical examples. In addition, we will
present a brief analysis of the energy density of our excited states. In Sect. 3, we will study (Renyi)
entanglement entropy of local operator excited states in a large-N free Yang–Mills theory. In Sect. 4,
we will study the same entanglement entropy in 2D CFTs with a large central charge. In addition, we
will give a review of previous results in rational 2D CFTs. In Sect. 5, we will perform a holographic
computation of the Renyi entanglement entropy of the local operator excited states. In Sect. 6, we

1 Refer also to Refs. [27–33] for recent studies on the connections between the Einstein equation and
fundamental constraints satisfied by the entanglement entropy (such as the first-law-like relation or its
generalizations).

2/36



PTEP 2014, 093B06 P. Caputa et al.

briefly mention a holographic result of von Neumann entanglement entropy for these excited states.
In Sect. 7 we will summarize our results. In Appendix A, we present the details of calculations of
2n-point functions in large-c 2D CFTs. In Appendix B, we give some details of geodesic calcula-
tions, used for the holographic analysis of Renyi entropy. In Appendix C, we present details of the
direct computation of Renyi entropy of excited states in the free Yang–Mills theory.

2. Renyi entanglement entropy of local operator excited states

Here we give a brief review of replica method calculations of the (Renyi) entanglement entropy
of local operator excited states following Refs. [15,16] (see also Refs. [17,52,53]). For a basic
construction of the replica method in quantum field theories refer to e.g. Ref. [2].

Consider a QFT in d-dimensional flat spacetime R1,d−1, whose time and d − 1-dimensional space
are denoted by t and xi (i = 1, 2, . . . , d − 1). We focus on an excited state |�O〉 defined by acting
a local operator O(τ, xi ) on the vacuum state |0〉 at a point xi and time t = 0 in a given QFT:
|�O〉 = O(0, xi )|0〉. Its time evolution under the Hamiltonian H is described by

|�O(t)〉 =
√
N · e−i Ht e−εH O(0, xi )|0〉, (3)

where N is a normalization and an infinitesimal parameter ε is the regularization of the ultraviolet
behavior of the local operator, which, as we will see later in Sect. 2.3, makes the energy of this excited
state finite.

Now we choose the location of insertion of the local operator O to be

x1 = −l(< 0), (x2, x3, . . . , xd−1) = x, (4)

at the time t = 0. The final result does not depend on the choice of the vector x owing to the
translational invariance.

We would like to compute the (Renyi) entanglement entropy S(n)A defined by (1) in the replica
method (see e.g. Ref. [2]), performing the Euclidean continuation τ = i t . To define the (Renyi)
entanglement entropy, we choose subsystem A to be the half space x1 > 0. It is useful to introduce
a complex coordinate as follows:

w = x1 + iτ, w̄ = x1 − iτ. (5)

The density matrix at real time t for the locally excited states (3) is written as

ρ(t) = N · e−i Ht e−εH O(0, xi )|0〉〈0|O†(0, xi )e−εH ei Ht

= N · O(w2, w̄2, x)|0〉〈0|O†(w1, w̄1, x), (6)

where the normalization factor N is determined by the condition Trρ(t) = 1. Here we also defined

w1 = i(ε − i t)− l, w2 = −i(ε + i t)− l, (7)

w̄1 = −i(ε − i t)− l, w̄2 = i(ε + i t)− l. (8)

Throughout the computation we treat ε ± i t as purely real numbers until the end of the calculations
as in Refs. [16,34,44].

Now, if we define�S(n)A by subtracting the ground state result from S(n)A , then�S(n)A is computed as

�S(n)A = 1

1 − n
log

(
Trρn

A

Tr(ρ(0)A )n

)
, (9)

where ρ(0)A is the ground state reduced density matrix.
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Fig. 1. The n-sheeted geometry �n , constructed by gluing subsystem A on a sheet to another subsystem A on
other sheet.

By thinking of the path-integral description, as usual in the replica method,�S(n)A can be expressed
in terms of the correlation functions of an operator that excites the state [15,16]:

�S(n)A = 1

1 − n

(
log

Zn

Z (0)n

− n log
Z1

Z (0)1

)

= 1

1 − n

(
log

〈
O†(w1, w̄1, x)O(w2, w̄2, x) · · · O(w2n, w̄2n, x)

〉
�n

)

− n

1 − n

(
log

〈
O†(w1, w̄1, x)O(w2, w̄2, x)

〉
�1

)
, (10)

where Zn and Z (0)n corresponds to the partition functions on �n such that Trρn
A = Zn

(Z1)
n and

Tr(ρ(0)A )n = Z (0)n

(Z (0)1 )n
. The n-sheeted d-dimensional space �n is given by Fig. 1, where 2n operators

O and O† are located periodically as

w2k+1 = e2π ik · w1, w2k+2 = e2π ik · w2. (11)

The geometry of�n is obtained by pasting n copies of the flat space Rd(= �1) such that the angle at
the origin w = w̄ = 0 is extended from 2π to 2πn. In other words, the metric of �n is simply given
by introducing the polar coordinate as w = ρeiθ :

ds2 = dρ2 + ρ2dθ2 +
d−1∑
i=2

(dxi )
2, (12)

with 0 ≤ θ ≤ 2πn and 0 ≤ ρ < ∞.

2.1. Free massless scalar field in four dimensions

As an example, consider a free massless scalar field φ in four dimensions [15,16]. We would like to
briefly review the real time evolution of the Renyi entropy for the states excited by acting φ on the

4/36



PTEP 2014, 093B06 P. Caputa et al.

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. The plots of �S(2)A (green) and �S(3)A (blue) as functions of the time t in the ε → 0 limit (we chose
l = 10). The red horizontal corresponds to the late time value log 2.

ground state (see Ref. [16] for more details). The density matrix for such a state is defined by

ρ(t) = N · φ(w2, w̄2, x) |0〉 〈0|φ(w1, w̄1, x). (13)

We need to compute a 2n-point function of φ on�n and its two-point function on the flat plane as in
the formula (10). The propagator on �n [15,16] is given by

Gn(r, s, θ, θ ′, x, x′) = 1

4nπ2rs(a − a−1)

a
1
n − a− 1

n

a
1
n + a− 1

n − 2 cos θ−θ ′
n

, (14)

where a is defined by
a

1 + a2 = rs

|x − x′|2 + r2 + s2
. (15)

Then we perform an analytic continuation (7) and (8) to study the real time evolution.
As shown in Ref. [16], only specific propagators on�n can contribute to the 2n-point function of φ

on �n in the ε → 0 limit. More precisely, only two disconnected Feynman diagrams can contribute
to the the 2n-point function of φ on �n in this limit (refer to Fig. 3 for the two diagrams). The
propagator on �1 is simply given by

〈φ(w1, w̄1, x)φ(w2, w̄2, x)〉�1
= 1

16π2ε2 . (16)

In this way, we can evaluate the Renyi entanglement entropy for the locally excited states (13) by
the replica method. Below we would like to show the final results for n = 2 and n = 3:

�S(2)A =

⎧⎪⎨
⎪⎩

0 0 < t < l,

log 2 − log

[
1 + l2

t2

]
t ≥ l,

(17)

and

�S(3)A =

⎧⎪⎨
⎪⎩

0 0 < t < l,

−1

2
log

[
1

4
+ 3l2

4t2

]
t ≥ l.

(18)

The time evolution of these Renyi entropies is plotted in Fig. 2.
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In the ε → 0 limit and at late time, the final value of the second and third Renyi entanglement
entropies is given by

�S(2)A → log 2, �S(3)A → log 2. (19)

Moreover, we can prove the same result �S(n)A for any n [16]. This entropy log 2 coincides with
that of an Einstein-Podolsky-Rosen (EPR) state (maximally entangled state of two spins). Indeed,
we can explain this in terms of an entangled pair. We decompose φ to the left-moving mode and the
right-moving mode,

φ = φL + φR. (20)

After taking into account the normalization, the locally excited state is expressed by

∣∣�φ 〉 = 1√
2
φL |0〉L ⊗ |0〉R + 1√

2
|0〉L ⊗ φR |0〉R . (21)

Thus this expression (21) manifestly shows that the excited state at late time becomes an EPR state
[15,16]. This is because the division of the total space into two halves A and B implies that, in the late
time limit t → ∞, two parts of the entangled pair propagate in opposite (left and right) directions.

More generally, if we consider an excited state obtained by acting φk on the ground state, it can be
written as ∣∣�φk

〉 = 1

2
k
2

k∑
m=0

√
kCm |m〉A ⊗ |k − m〉B , (22)

where kCm = k!
m!(k−m)! . From this expression, it is straightforward to evaluate the finite value of

�S(n)A at late time. In Ref. [16], it was proved that this evaluation precisely matches that obtained
from the replica calculation (10).

2.2. 2D CFTs and free scalar example

As another simple example, let us consider 2D CFTs and study the replica calculations in explicit
examples. We focus on an excited state that is defined by acting a primary operator O on the vacuum
|0〉 in a given 2D CFT. The (chiral) conformal dimension of this operator is defined as �O . We
employ the Euclidean formulation and introduce the complex coordinate

(w, w̄) = (x + iτ, x − iτ) (23)

on R2 such that τ and x are the Euclidean time and the space, respectively. We insert the primary
operator O at x = −l < 0 and consider its real time evolution from time 0 to t under the Hamiltonian
H . This process is described by the following density matrix:

ρ(t) = N · e−i Ht e−εH O(−l)|0〉〈0|O†(−l)e−εH ei Ht

= N · O(w2, w̄2)|0〉〈0|O†(w1, w̄1), (24)

where the normalization factor N is again determined by the normalization condition Trρ(t) = 1.
Note that (24) is simply the 2D version of (6) and we defined w1 and w2 as in (7) and (8). An
infinitesimal positive parameter ε is again an ultraviolet regularization and we treat ε ± i t as purely
real numbers until the end of the calculations as in Refs. [16,34,44].

To calculate�S(n)A , we employ the replica method in the path-integral formalism that we explained
in the previous subsection. We choose subsystem A to be an interval 0 ≤ x ≤ L at τ = 0. The
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replica method calculation involves the partition function on a n-sheeted Riemann surface �n with
2n operators O and its conjugate. In the end, we find that �S(n)A can be computed as

�S(n)A = 1

1 − n

[
log

〈
O†

a (wl, w̄1)O(w2, w̄2) · · · O(w2n, w̄2n)
〉
�n

− n log
〈
O†(wl, w̄1)O(w2, w̄2)

〉
�1

]
(25)

where (w2k+1, w2k+2) for k = 1, 2, . . . , n − 1 are n − 1 replicas of (w1, w2) in the kth sheet of �n .
The first term in the second line is given by a 2n-point correlation function on �n . The second term
is a two-point function on �1 = R2 and we normalized this such that

〈O†(w1, w̄1)O(w2, w̄2)〉�1 = |w12|−4�O = (2ε)−4�O , (26)

which is equal to N−1.
Now we would like to focus on the second Renyi entropy�S(2)A . Please refer to Ref. [17] for more

details. Let us apply the conformal transformation:

w/(w − L) = zn, (27)

which maps �n into �1. By employing (7) and (8) with n = 2, we find that (zi , z̄i ) are given by

z1 = −z3 =
√
(l − t − iε)/(l + L − t − iε),

z2 = −z4 =
√
(l − t + iε)/(l + L − t + iε). (28)

Moreover, the cross-ratios are z = z12z34/(z13z24), z̄ = z̄12 z̄34/(z̄13 z̄24), where zi j = zi − z j . Con-
sider now the behavior of (z, z̄) in the limit ε → 0. When 0 < t < l or t > L + l, one can show that
(z, z̄) → (0, 0) as

z 
 L2ε2

4(l − t)2(L + l − t)2
, z̄ 
 L2ε2

4(l + t)2(L + l + t)2
. (29)

In the other case l < t < L + l, we find that (z, z̄) → (1, 0):

z 
 1 − L2ε2

4(l − t)2(L + l − t)2
, z̄ 
 L2ε2

4(l + t)2(L + l + t)2
. (30)

Though the limit (z, z̄) → (1, 0) does not satisfy the complex conjugation, it inevitably arises due to
the analytical continuation of t .

Owing to the conformal symmetry, the four-point function on �1 can be written as

〈O†(z1, z̄1)O(z2, z̄2)O
†(z3, z̄3)O(z4, z̄4)〉�1

= |z13z24|−4�O · G(z, z̄). (31)

Applying the conformal map (27), we obtain the four-point function on �2:

〈O†(w1, w̄1)O(w2, w̄2)O
†(w3, w̄3)O(w4, w̄4)〉�n

=
4∏

i=1

|dwi/dzi |−2�O 〈O†(z1, z̄1)O(z2, z̄2)O
†(z3, z̄3)O(z4, z̄4)〉�1

= (4L)−8�O

∣∣∣(z2
1 − 1)(z2

2 − 1)/(z1z2)

∣∣∣8�O · G(z, z̄). (32)

7/36



PTEP 2014, 093B06 P. Caputa et al.

Using this and (26), the relevant ratio that we need to compute �S(2)A is expressed as

〈O†(w1, w̄1)O(w2, w̄2)O†(w3, w̄3)O(w4, w̄4)〉�n(〈O†(w1, w̄1)O(w2, w̄2)〉�1

)2

= |z|4�O |1 − z|4�O · G(z, z̄). (33)

For example, consider a c = 1 CFT defined by a massless free scalar φ. Let us choose operators

O1 = e
i
2φ, O2 = (e

i
2φ + e− i

2φ)/
√

2, (34)

which have a common conformal dimension �1 = �2 = 1
8 . The functions G(z, z̄) for O1 and O2

can be computed as follows:

G1(z, z̄) = 1/
√

|z| |1 − z|,
G2(z, z̄) = (|z| + 1 + |1 − z|) · G1(z, z̄)/2, (35)

respectively. It is obvious that for the operator O1 the Renyi entropy vanishes at all times�S(2)A = 0.
For O2, taking into account the two periods (29) and (30), we get

�S(2)A =
{

0 (0 < t < l, or t > l + L) ,

log 2 (l < t < l + L) .
(36)

Now let us give a heuristic interpretation of these results in the c = 1 CFT. First of all, it is clear that
we will always get the trivial result �S(n)A for the time 0 < t < l and t > l + L [17] (we will review
this proof in Sect. 4.1). This is because the local operator creates an entangled pair(s) at x = −l and
each half of the pairs propagates in the opposite direction at the speed of light. However, for the times
0 < t < l and t > l + L , all of them are inside subsystem B. Therefore they do not contribute to the
quantum entanglement between A and B.

On the other hand, during the time l < t < t + L , �S(n)A can be non-trivial because half of the
entangled pairs are situated in A and the other half are in B. The ones in A (and B) consist of the
right-moving (and left-moving) mode, respectively.

Now we obtain the trivial result for O1 even during the time l < t < t + L . This is because the
excited state e

i
2φ|0〉 can be regarded as a direct product state

e
i
2φL |0〉L ⊗ e

i
2φR |0〉R, (37)

in the left-moving (L: chiral) and right-moving (R: anti-chiral) sector [44]. This is, of course, not an
entangled state. In contrast, O2 creates a maximally entangled state (or equally EPR state):

1√
2

(
e

i
2φL |0〉L ⊗ e

i
2φR |0〉R + e− i

2φL |0〉L ⊗ e− i
2φR |0〉R

)
, (38)

which produces the Renyi entanglement entropy log 2 for any n. This explains the behavior (36).
We will continue the analysis of �S(n)A in general cases including large-central-charge CFTs in

Sect. 4.

2.3. Analysis of energy density

Before we go on, we would like to briefly comment on the behavior of energy density Ttt . For sim-
plicity, consider a 2D CFT on the 2D Euclidean flat space R2 = �1 and employ the coordinate

8/36



PTEP 2014, 093B06 P. Caputa et al.

(w, w̄) = (x + iτ, x − iτ) defined in the previous subsection. We create an excited state by inserting
a primary operator O at x = −l < 0 so that the time evolution of the density matrix looks like (24).

In this setup, the energy density of this excited state at (z, z̄) = (x, x) after the time t can be
found as

〈Ttt 〉 = 〈O†(w2, w̄2)Ttt (x, x)O(w1, w̄1)〉
〈O†(w2, w̄2)O(w1, w̄1)〉

= �Oε
2

[
1(

(x + l − t)2 + ε2
)2 + 1(

(x + l + t)2 + ε2
)2

]
, (39)

where (wi , w̄i ) have already been defined in (7) and (8).
Note that this formula is true for any primary operator O as the three-point function including an

energy stress tensor is universal in 2D CFTs. This result (39) manifestly shows that the energy density
is localized at the two points x = −l ± t , which is simply explained by a relativistic propagation of
energy. Since we are interested in the dynamics in subsystem A after the excitation t > 0, only the
point x = −l + t is relevant.

Thus the excitation is included in subsystem A when l − L/2 < t < l + L/2. During this time,
the total energy increase �E A can be estimated as follows:

�E A =
∫

x∈A
dxTtt (x) ∼ �O

ε
, (40)

up to an overall factor. This gets divergent in the point-like limit ε → 0.
One may think that it will be useful if we can find any direct relation between the excitation energy

and the entanglement entropy growth. In particular cases, such a relation is known and is called the
first-law-like relation. Here the first law means a linear relation between the change of entanglement
entropy �S(1)A and that of energy �E A = ∫

x∈A dxd Ttt (x) or energy density �Ttt in subsystem A.
The first-law-like relation was first found in Ref. [18] by using the holographic entanglement entropy
[5–9] for any choice of subsystem A, assuming translational invariance. This relation is expressed
as follows:

�E A 
 TA ·�S(1)A , (41)

where the “effective temperature” TA scales like TA = CA
L using the linear size L of subsystem A.

The coefficient CA depends on the shape of A. We can apply this formula only for small excitations
such that Ld+1Ttt � 1. Refer also to Refs. [21–26] for more holographic calculations.

Remarkably, this was extended to general inhomogeneous cases in Refs. [19,20] by employing the
analysis of conformal transformation [54]. When subsystem A is given by a round ball |x | ≤ L/2
with the radius L/2, the relation

�S(1)A 

∫

|x |≤L/2
dxd

(
L2/4 − |x |2

L

)
Ttt (x) (42)

was shown for small excitations in any d + 1-dimensional CFT, even without assuming holography.
Therefore, one might think that we may compute �S(1)A from the energy increase by using this

first-law-like relation. However, this is not the case, as we explain below. Indeed, when l − L/2 <
t < l + L/2, the right-hand side of (42) can be estimated as follows:∫

|x |≤L/2
dx

(
L2/4 − |x |2

L

)
Ttt (x) ∼ �O(L2/4 − (t − l)2)

Lε
. (43)

up to an overall factor.
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If we naively apply the first law (42), we will be in trouble because �S(1)A gets divergent in the
ε → 0 limit. This contradicts the fact that, in 2D rational CFTs [17], �S(1)A should be equal to the
log of the quantum dimension that is finite. Indeed, we can easily see why the first law (42) breaks
down, because the energy �E A gets divergent as in (40) and thus should not be regarded as a small
excitation2. Nevertheless, we would like to mention that, if we keep ε large, then we can apply the
first law because the energy density gets very small, although we are not interested in such a situation
in this paper.

3. Excited states in large-N free Yang–Mills

Here we would like to compute the nth Renyi entanglement entropy in free U (N ) gauge theory
in four dimensions. We are interested in excited states that are obtained by acting the following
gauge-invariant local operators:

TrZ J = Tr(φ1 + iφ2)
J , (44)

on the vacuum. Here φ1 and φ2 represent two real massless scalar fields in R1,3, which belongs to
the adjoint representation. In this work we assume that J ∼ O(1), but it will be an interesting future
problem to repeat our analysis for operators with large J (of the order of some powers of N ).

3.1. Replica method calculations

It is rather complicated to directly compute the nth Renyi entanglement entropy for this state by using
the replica method formula (10). However, if we take ε → 0 and the large-N limit (N → ∞), the
computation gets drastically simplified.

In the large-N limit, the leading contributions come from only disconnected planar diagrams. Then
the two-point function on �n is approximated by3〈

TrZ J (w, w̄, x)TrZ̄ J (w′, w̄′, x′)
〉
= JNJ (Gn)

J + (1/N corrections), (45)

where the Green function Gn is defined by (14) in Sect. 2.
In the large-N limit, the 2n-point function in the replica formula (10) is at most O(N Jn). Various

disconnected diagrams of planar diagrams can contribute to the 2n-point function of T rZ J . How-
ever, we can show that only two disconnected diagrams, which are depicted in Fig. 3 (for an n = 4
example), can contribute to �S(n)A in the limit ε → 0, as pointed out in Ref. [16].

One of them corresponds to the product of the propagators between two points on the same sheet
(remember Fig. 1). Another one is the product of the propagators between w2k and w2k+1, where k
runs from 1 to n.

In this way, the leading term of �S(n)A is computed as

�S(n)A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t < l,

log

[
J n N n J

(
l+t

32π2 tε2

)n J +J n N n J
(

−l+t
32π2 tε2

)n J

J n N n J
(

1
16π2ε2

)n J

]

1 − n
= −

log

[
2−Jn

((
1 − l

t

)Jn +
(

l+t
t

)Jn
)]

−1 + n
t ≥ l.

(46)

Moreover, if we take the late time limit t → ∞, the final value of Renyi entropy is given by

�S(n)A = (Jn − 1) log 2

n − 1
. (47)

2 See Ref. [71] for a similar conclusion in a time-independent setup.
3 Here we ignore the difference between SU (N ) and U (N ) gauge theory, as we take the large-N limit.
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Fig. 3. The two dominant diagrams for the 4th Renyi entanglement entropy �S(4)A in the large-N and ε → 0
limits.

20 40 60 80 100
0

1

2

3

4

Fig. 4. Plot of �S(2)A (blue) as a function of t in the ε → 0 limit. Here we chose l = 10, n = 2, and J = 3.
The red line corresponds to the late time value 5 log 2.

The time evolution of�S(2)A for J = 3 is plotted in Fig. 4. We immediately notice that�S(n) diverges
in the von Neumann entropy limit n = 1. As we explain later by using a different method, this problem
occurs because we ignore the higher-order terms in the large-N expansion, which becomes important
only in the n = 1 limit. We can find from this observation that we can trust the leading-order result
(46) iff n > 1.

3.2. Left–right decomposition and entangled pair interpretation

There is another method to compute the late time limit of �S(n)A by using the structures of excited
states [15,16]. We can regard an excited state produced by a local operator in a CFT as a combination
of creation operators acting on the left-moving vacuum |0〉L and the right-moving one |0〉R in the
product Hilbert space HL ⊗ HR . Thus, when we insert the local operator, this creates an entangled
pair and each half of the pair will propagate in the left or right direction. At late time, one of them
will be in subsystem A and the other in subsystem B. Thus the excited state will have a non-trivial
quantum entanglement at late time. Therefore, we can compute the Renyi entropy �S(n)A directly
from the reduced density matrix obtained by tracing out the left-moving (or right-moving) part.

In this section, we apply this analysis to our trace operators (44) built out of matrices in 4D CFTs
with the U (N ) gauge group. By decomposing the U (N ) scalar field φ into the left- and right-moving

11/36



PTEP 2014, 093B06 P. Caputa et al.

modes as in (20), we can express our excited states as follows:

∣∣�Tr[φ J ]
〉 ≡ Tr

[
(φL + φR)

J
]
|0L〉 |0R〉 , (48)

where we take φL/R to be N × N matrices with the Wick contraction rule

〈(φA)
α
β (φB)

μ
ν 〉 = δAB δ

α
ν δ
μ
β , A, B ∈ {L , R}. (49)

The corresponding density matrix in HL ⊗ HR space is

ρL∪R = ∣∣�Tr[φ J ]
〉 〈
�Tr[φ J ]

∣∣ . (50)

We can then trace over HL and, using the replica method, evaluate the Renyi entropy of ρR =
TrL (ρL∪R) as

�S(n)R = 1

1 − n
log Trρn

R . (51)

As a warm up, consider the J = 1 case in which the excited state is simply∣∣�Tr[φ]
〉 ∝ (|Tr(φL)〉 |0R〉 + |0L〉 |Tr(φR)〉) . (52)

The orthonormal basis in HL (also HR) has two normalized states, the vacuum and a state obtained
by acting with a single trace, {

|0L〉 , 1√
N

|Tr(φL)〉
}
, (53)

where the normalization of the single trace state can be deduced from (49). Tracing over HL gives
the reduced density matrix in HR

ρR = 1

2
|0〉 〈0| + 1

2N
|Tr(φR)〉 〈Tr(φR)| , (54)

which after normalization to Tr(ρ) = 1 becomes ρR = diag
(1

2 ,
1
2

)
. Finally, the nth Renyi entangle-

ment entropy for the state excited by Tr(φ) is given by

�S(n)R = 1

1 − n
log

(
21−n

)
= log(2). (55)

It is easy to see that
∣∣�Tr[φ]

〉
in HL ⊗ HR is equivalent to the EPR state; therefore, all the Renyi

entropies are equal to log 2, which is the entropy of the maximally entangled state. Note that this
result is the same as the N = 1 case reviewed in Sect. 2.1. This is simply because we can treat Tr[φ]
as a single real scalar field by diagonalizing the Hamiltonian of the system.

The situation becomes more interesting once we consider the traces of products of matrices. For
J = 2, the excited state is given by

∣∣�Tr[φ2]
〉 ∝ ∣∣∣Trφ2

L

〉
|0R〉 + |0L〉

∣∣∣Trφ2
R

〉
+ 2

N∑
α,β=1

∣∣∣(φL)
α
β

〉 ∣∣(φR)
β
α

〉
, (56)

where in the third term we explicitly wrote the indices in Tr(φLφR) |0L〉 |0R〉.
The Hilbert space HL consists of the vacuum, the state obtained by the action of Tr(φ2

L), and the

N 2 states
∣∣∣(φL)

α
β

〉
, all with appropriate normalizations. Tracing out HL and normalizing gives the
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reduced density matrix in HR:

ρR = diag

(
1

4
,

1

4
,

�1
2N 2

)
, (57)

where �1 is the N 2-dimensional unit vector. Using the replica trick, we again obtain the nth Renyi
entropies

�S(n)R = 1

1 − n
log

(
21−2n + 1

2n N 2(n−1)

)
. (58)

Notice now the striking difference between Renyi entropies with n ≥ 2 and the von Neumann
entropy for n = 1. For n ≥ 2 and large N , we can simply neglect the 1/N corrections and the leading
result is

�S(n≥2)
R 
 2n − 1

n − 1
· log 2. (59)

This perfectly matches with (47) obtained in the large-N limit using free-field Wick contractions.
However, in the limit n = 1, the von Neumann entropy is equal to

�S(1)R = log
(

2
√

2N
)
, (60)

where we took into account the subleading term. The reason why the subleading term in the large-N
expansion becomes important is because precisely when n → 1 it overwhelms the originally leading
term. In other words, taking the large-N limit first assuming n > 1 and after that evaluating the
entanglement entropy for excited states leads to an incorrect result. This way, we find an interesting
breakdown of the naive large-N limit4 that occurs for the von Neumann entropy and enhances it by
a factor O(log N ).

The analysis becomes more cumbersome for higher J ∼ O(1) (see Appendix C) but assuming
n ≥ 2 we can verify that at large N

Trρn
R = 21−Jn + (J − 1)J n

2Jn N 2(n−1)
+ O(1/N 4(n−1)) (61)

and the Renyi entropies5

�S(n)R ∼ J n − 1

n − 1
log 2 (62)

perfectly match the leading order of the replica calculation (47). It is also interesting to point that the
min-entropy (n → ∞) shows a universal behavior

�S(∞)
R ∼ J log 2. (63)

For the von Neumann entropy, we cannot neglect the 1/N corrections and we need to take into
account other terms that can contribute as n → 1. Nevertherless, we can again estimate it as

�S(1)R ∼ J log N , (64)

up to a certain O(1) constant.

4 Note that this breakdown occurs because we neglect connected planar diagrams. A similar breakdown of
perturbation theory has been observed in a wide range of examples of calculating von Neumann entanglement
entropy under relevant operator perturbations. This was pointed out in a specific example in Ref. [55] (see
Eqs. (2.43) and (2.44) in that paper), which typically leads to logarithmic contributions. For recent progress of
analysis of entanglement entropy in the presence of operator perturbations, refer to e.g. Refs. [56–66].

5 Even though we assumed J ∼ O(1), it is interesting to note that the second term becomes important once
J ∼ N 2 n−1

n+1 .
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It is intriguing that we observe the log N entropy only for the von Neumann entropy. The scalar
field is N × N matrix-valued and its almost maximally entangled state can produce the log N entropy.
Furthermore, since there are J scalar operators in Tr[φ J ], then we can easily understand (64). How-
ever, a lesson we learned here is that this naive argument cannot be applied to the Renyi entropies. If
we roughly regard n as the inverse temperature, we might say that the result of von Neumann entropy
n = 1 looks “deconfined”, while those for Renyi entropies n = 2, 3, . . . looks “confined” as the for-
mer corresponds to a higher temperature than the latter. We hope to understand this “transition”-like
behavior better in our future work.

4. 2D CFT at large c

Now we turn to 2D CFTs (2D CFTs) having in mind the AdS3/CFT2 correspondence. We will follow
the formulation explained in Sect. 2.2. In order to have the possibility of a classical gravity dual, we
are interested in taking the large-c limit, where c is the central charge of a CFT.

4.1. General arguments

The function G(z, z̄) defined in (31) is the essential part of the four-point function. Owing to the
holomorphic/anti-holomorphic factorization, this function can be written as a sum of conformal
blocks [67]:

G(z, z̄) =
∑

b

(Cb
O O†)

2 FO(b|z)F̄O(b|z̄). (65)

The index b corresponds to each φb of all Virasoro primary fields; note that they are decomposed into
left-moving (chiral) and right-moving (anti-chiral) primary fields. Thus we can write b as (bL , bR),
corresponding to φb(z, z̄) = φbL (z)φbR (z̄). We assume that the summation over b is a discrete sum,
as is true in typical AdS/CFT examples.

How to take this summation of b = (bL , bR) depends on the spectrum of 2D CFT that we consider.
One simple class of CFTs, such as rational CFTs, is defined by the diagonal sum bL = bR(≡ a),
where the total Hilbert space is given by

H = ⊕a

(
H(a)

L ⊗ H(a)
R

)
. (66)

However, in general, this is not the case because there are generators other than the Virasoro opera-
tors. For example, if we consider the current algebra or equally the WZW model, (66 ) is correct only
if we regard the index a as that for all primary fields of current algebra instead of Virasoro algebra.

The conformal block FO(b|z) is normalized such that in the z → 0 limit we have

FO(b|z) → z�b−2�O , (67)

where�b is the conformal dimension of the primary operator labeled b (called φb). The factor Cb
O O†

is the coefficient of the normalized three-point function 〈O O†φb〉.
First we consider the time 0 < t < l or t > l + L , where localized excitations that are generated

at x = −l and propagate in opposite directions at the speed of light are outside of subsystem A. This
means that the entangled pairs are both in region B. Therefore we expect that there is no entangle-
ment generation between A and B, as we already mentioned in Sect. 2.2. Indeed, we can obtain from
(29) that in the ε → 0 limit we have (z, z̄) → (0, 0) and G(z, z̄) 
 |z|−4�O , as the dominant contri-
bution arises when φb coincides with the identity operator φ0 = I . Thus (33) leads to �S(2)A = 0, as
expected.
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The more interesting time l < t < l + L , during which half of the entangled pairs are in region A
and the others are in B, requires some knowledge of the behavior of the conformal block FO(b|z) in
the limit z → 1, as we will discuss below.

4.2. Rational 2D CFTs

Before we start the large-c analysis, we would like to briefly review the results in rational CFTs
obtained in Ref. [17]. This is useful because they provide an instructive example where we can com-
pute �S(n)A both analytically and exactly. In rational CFTs the summation over b is a finite sum and
we can choose the Hilbert space structure given by (66).

In rational CFTs, we can employ the properties of the fusion transformation, which exchanges z2

with z4 (or equally z with 1 − z) given by

FO(b|1 − z) =
∑

d

Fbd [O] · FO(d|z), (68)

where the coefficients Fbd [O] are constants, which are called fusion matrices [68–70]. Thus by using
(67 ), in the limit (z, z̄) → (1, 0), the conformal block is reduced to the contribution from the vacuum
sector:

G(z, z̄) 
 F00[O] · (1 − z)−2�O z̄−2�O , (69)

where we employed the fact that C0
O O = 1.

Therefore we find the following expression from (33):

�S(2)A = − log F00[O] = log dO , (70)

where dO = 1/F00[O] is called the quantum dimension [68–70] and is related to the S-matrix of the
modular transformation by

dO = S0O/S00. (71)

4.3. Large-c limit

Now we move on to the large-c limit of 2D CFTs. We are interested in the time period l < t < L + l,
where we expect non-trivial results, corresponding to the limit (z, z̄) → (1, 0) as explained in (30).
We will keep only the leading order of �O

c (� 1) expansion. We will discuss subleading corrections
in Sect. 4.5 later.

Since we are motivated by the AdS/CFT, we are interested in those CFTs with gravity duals. There-
fore we would like to assume the existence of a gap in the spectrum such that the density of states
d(�) behaves like d(�) ∼ O(1) for� < O(c). This corresponds to the threshold where AdS black
holes appear. Moreover, in the summation of conformal blocks (65 ) we can ignore the contributions
from intermediate states with large conformal dimension �b ∼ O(c), as their conformal blocks are
exponentially suppressed in the large-c limit [72,73].

These arguments are parallel with Ref. [73], where the ground state entanglement entropy in the
large-c limit was analyzed. However, note that, in that paper, the large-c limit was taken with �O

c kept
finite because the correlation functions of twist operators were computed. In our case, the operator
O expresses the excitation above the vacuum and we do not need any twist operators as we employed
the conformal map to describe the replicated Riemann surface �2.
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In our large-c limit �O
c ,

�b
c � 1, we have the following simple and universal expression of the

vacuum conformal block [72,76]:

FO(b|z) 
 z�b−2�O · 2 F1(�b,�b, 2�b, z), (72)

where 2 F1(a, b, c, z) is the hypergeometric function. This shows that for any �b � c the con-
formal block FO(b|z) can only possess at most a logarithmic singularity ∼ log(1 − z) in the
limit z → 1.

However, to perform a complete analysis of the large-c limit, we need to know the structure of
Hilbert space to deal with the summation over b in (65 ). Since this is in general too complicated, we
would like to approximate it only by the contribution from the vacuum conformal block:

G(z, z̄) 
 FO(0|z)F̄O(0|z̄). (73)

This argument is clearly justified for the diagonal Hilbert space structure (66 ) in the limit (z, z̄) →
(1, 0), though in general AdS/CFT examples we cannot expect this. This is because in this limit we
have F̄O(0|z̄) 
 z̄�b−2�O , which gives the dominant contribution if �b = 0.

Moreover, we would like to argue that this approximation can be applied to examples with
gravity duals.6 This is because we can set bR = 0 in the limit z̄ → 0 and because the summa-
tion over bL just multiplies some factor that is not exponentially large with respect to the central
charge.

In the language of AdS/CFT correspondence, this approximation (73) corresponds to ignoring
backreactions of local excitations to supergravity fields in the bulk AdS. We will confirm this
explicitly in the next section.

Under this approximation (73), we can simply evaluate G(z, z̄) as follows:

lim
(z,z̄)→(1,0)

G(z, z̄) 
 z̄−2�O . (74)

By using (33) and (30), this leads to the following second Renyi entropy when l < t < L + l:

�S(2)A = − log(1 − z)2�O ,

= 4�O · log

[
2(t − l)(L + l − t)

Lε

]
. (75)

In the limit l � t � L we obtain

�S(2)A 
 4�O · log
2t

ε
= 2�̂O · log

2t

ε
. (76)

Remember that �O is the chiral conformal dimension and it is related to the usual conformal
dimension �̂O (common in the definition in higher dimensions) via �̂O = 2�O .

6 Note that we cannot apply this argument to theory without gravity duals. For example, consider the
free CFT defined by c free massless scalar fields φ1, φ2, . . . , φc. Let us focus on the operator O = eipφ1

for any p. This clearly has the vanishing entropy �S(2)A = 0 and this does not agree with our later results,
e.g. (76 ). In such free CFTs there is no gap in the spectrum and we need to sum up so many conformal
blocks.
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However, we have to be careful with the large-c approximation (72) that we employed. Note that
the bootstrap equation

G(z, z̄) = G(1 − z, 1 − z̄), (77)

which should be obeyed by any 2D CFTs, requires that, in the z → 1 limit, FO(b|z) should generally
behave like

FO(b|z) 
 1

Db
O

· (1 − z)−2�O + · · · , (z → 1), (78)

where Db
O is a certain constant. The relation (77) requires

∑
bL ,bR

(Cb
O O†)

2

DbL
O · DbR

O

= 1. (79)

These are indeed true in the fusion relation (68) in rational CFTs and, in this case, D0
O coincides

with the quantum dimension dO . Since this term is missing in the large-c approximation (72) and
also in perturbative corrections, which will be discussed in Sect. 4.5, we can speculate that it should
come from non-perturbative corrections like 1

Db
O

∼ exp(−ca) (a is a certain positive constant) and

thus Db
O are expected to be very large Db

O → ∞ in the limit c → ∞.7 In other words, the large-c

approximation (72) will break down if z is very close to 1 such as z ∼ (Db
O)

− 1
2�O .

If we take into account (78), we find the following behavior of �S(2)A (we took the limit L → ∞):

�S(2)A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4�O · log 2(t−l)
ε

(
ε � t − l � (D0

O)
1

4�O ε

)
,

log D0
O

(
t − l � (D0

O)
1

4�O ε

)
.

. (80)

In this way we found a logarithmic time evolution in an intermediate process. Note that this is typical
only for the large-c limit. Indeed, if we look at the previous examples of rational CFTs or free CFTs,
we find D0

O ∼ O(1) and thus the logarithmic period disappears. In the next section, we will reproduce
the same logarithmic behavior from the gravity side of AdS/CFT and will show that similar results
can be obtained even in higher dimensions. It will be a very intriguing future problem to evaluate
D0

O in some concrete models of 2D CFTs with gravity duals.

4.4. Equivalence to free-field Wick contractions

To generalize the previous analysis of the logarithmic behavior to�S(n)A for any n, it is useful to note
that our large-c approximation is equivalent to the computations of 2n-point functions on �n using
“(free-field) Wick contractions”. For simplicity let us take the entangling region in this section to be
the half line (L → ∞ in previous sections), and use the map from �1 to �n:

w(z) = zn. (81)

7 If we focus on the modes b corresponding to the large conformal dimension�b � c, we can apply Cardy’s
formula [74,75] to estimate the number of primaries in the large-c limit. This is because we can ignore the
difference between the numbers of primaries and those with their descendants in the large-c limit. This leads
to the approximation of the density of states: d(�) ∼ e2p

√
c�, where p > 0 is a certain O(1) constant. If we

naively assume that the normalized three-point functions are all O(1), then the bootstrap constraint (79) leads
to the estimation that Db

O � ep
√

c�b for�b � c. Therefore, for the state φb with a small conformal dimension
�b � c, we expect Db

O � ep′c with another O(1) constant p′(> 0). This is indeed exponentially large in the
large-c limit.
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We can find the two-point function of operators O(wi , w̄i ) on �n:

〈O†(w1, w̄1)O(w2, w̄2)〉�n = n−4�O |w1w2|
2�O (1−n)

n |w1/n
1 − w

1/n
2 |−4�O . (82)

Moreover, it can be shown (see (129)) that the ratio of the two-point function on �n to the two-point
function on �1 at late time is given by

〈O†(w1, w̄1)O(w2, w̄2)〉�n

〈O†(w1, w̄1)O(w2, w̄2)〉�1



(

ε

n sin
(
π
n

)
t

)2�O

. (83)

Using the fact that leading divergent contribution to the correlation function comes from two types
of Wick contractions as in the arguments in Sect. 3.1, we get at late time

〈O†(w1, w̄1)O(w2, w̄2) · · · O†(w2n−1, w̄2n−1)O(w2n, w̄2n)〉�n(〈O†(w1, w̄1)O(w2, w̄2)〉�1

)n 
 2

(
ε

n sin
(
π
n

)
t

)2n�O

. (84)

That leads to the nth Renyi entropy

�S(n)A 
 1

1 − n
log

⎡
⎣2

(
ε

n sin
(
π
n

)
t

)2n�O
⎤
⎦ = 2n�O

n − 1
log

(
n sin

(
π
n

)
t

ε

)
− 1

n − 1
log 2. (85)

Setting n = 2, we recover the logarithmic behavior at large c (76).
However, the same caution should be offered as previously. If we take ε → 0 strictly, our large-

c approximation breaks down. In other words, if t gets very large such that t � (D0
O)

1
4�O , the

logarithmic growth will be terminated and �S(n)A approaches some constant of order log D0
O as

in (80).
A related observation is that we cannot trust the results in the limit n → 1 since not only

n sinπ/n → 0 but the constant term blows up when n → 1. We believe that this problem occurs
because our large-c approximation breaks down in the n → 1 limit. A similar situation occurs in
local operator excited states in free Yang–Mills, as we studied in Sect. 3, where the large-N expansion
breaks down in the limit n → 1. We will comment more on this later by comparing with holographic
results.

Before we proceed, it is useful to rewrite the ratio of the two-point functions on�n and�1 in terms
of coordinates w = eφ+iτ/R . We will later compare it with the same ratio obtained holographically
using geodesics in a topological black hole. In {τ, φ} coordinates we have

|w1w2| n−1
n = eφ1+φ2− φ1+φ2

n

|w1/n
1 − w

1/n
2 |2 = e

φ1+φ2
n 2

(
cosh

(
�φ

n

)
− cos

(
�τ

n R

))
. (86)

Therefore, we can simplify the ratio to

〈O†(w1, w̄1)O(w2, w̄2)〉�n

〈O†(w1, w̄1)O(w2, w̄2)〉�1

=
⎛
⎝ cosh (�φ)− cos

(
�τ
R

)
n2
(

cosh
(
�φ
n

)
− cos

(
�τ
n R

))
⎞
⎠

2�O

. (87)

4.5. �/c corrections

In the previous subsections we assumed the factorization of the four-point function in the strict large-c
limit that is equivalent to Wick contractions. Here we will elaborate further on this limit and consider
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the subleading correction to large c by including only the Virasoro conformal block from the identity
operator as in (73 ). See the details in Appendix A and Ref. [77] for a pedagogical review of the
direct approach to Virasoro blocks.

Let us start with n = 2 Renyi entropy and later we will generalize this analysis for higher n. Using
the replica method, in order to evaluate �S(2)A for operator O with (chiral) conformal dimension
�O , we need to compute the 4-point correlator of O on�2. Using the conformal map w(z) from the
complex plane to �n we have

〈O†(w1, w̄1) · · · O(w4, w̄4)〉�2 =
(

4∏
i=1

∣∣∣∣dwi

dzi

∣∣∣∣
−2�O

)
〈O†(z1, z̄1) · · · O(z4, z̄4)〉�1 . (88)

Focus now on the four-point function on �1 and evaluate it using the Virasoro decomposition of the
conformal block. More precisely, we can rewrite it in terms of the three-point functions by inserting,
after the second operator, the identity that is a sum over projectors to all states corresponding to the
operators of the theory and their descendants. Performing the computation this way requires specific
details of the CFT and is very complicated. However, in the limit that we are interested in, the large
central charge but finite �2

O/c, the contribution to the four-point function of the primaries in a 2D
CFT8 from the identity is given by [77]

〈O†(z1, z̄1) · · · O(z4, z̄4)〉�1 
 〈O†(z1, z̄1)O(z2, z̄2)〉�1〈O†(z3, z̄3)O(z4, z̄4)〉�1V0(z)V̄0(z̄),
(89)

where the vacuum conformal blocks V0(z) and V̄0(z̄) at large c are the following functions of the
conformal cross-ratios:

V0(z) = exp

(
2�2

O

c
z2

2 F1(2, 2; 4; z)

)
, V̄0(z̄) = exp

(
2�2

O

c
z̄2

2 F1(2, 2; 4; z̄)

)
. (90)

This result is sufficient to obtain�O/c corrections to our late time limit (z, z̄) → (1, 0) of the Renyi
entropies. Namely, plugging back to (88), we can write the correction to the large-c factorization of
the four-point correlator as

〈O†(w1, w̄1) · · · O(w4, w̄4)〉�2

= 〈O†(z1, z̄1)O(z2, z̄2)〉�2〈O†(z3, z̄3)O(z4, z̄4)〉�2V0(z)V̄0(z̄)+ · · · , (91)

where the ellipsis stand for contributions from operators with higher conformal dimensions.
Recall that, at late time (z, z̄) → (1, 0) and l � t (� L), we find from (30) that

1 − z 

( ε

2t

)2
. (92)

After writing the hypergeometric functions in terms of the logarithm

2�2
O

c
z2

2 F1(2, 2; 4; z) = −24�2
O

c
− 12�2

O

c

2 − z

z
log(1 − z) (93)

one can check that at late time the contribution from the V̄0(0) is just 1. Finally inserting (92) gives
us the scaling of �S(2)A at late time

�S(2)A = 4�O

(
1 − 6�O

c

)
log

(
2t

ε

)
+ 24�2

O

c
+ · · · . (94)

8 We assume that we can take the large-c limit.
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As we can see, the correction from the vacuum conformal block only changes the coefficient of the
logarithmic growth for the late time second Renyi entropy.

The above analysis can be generalized to a 2n-point functions at large c (see Appendix A). The
correlator can be written as

〈O†(w1, w̄1) · · · O(w2n, w̄2n)〉�2 =
(

n∏
i=1

〈O†(w2i−1, w̄2i−1)O
†(w2i , w̄2i )〉�2

)
V0(Z2n)V̄0(Z̄2n),

(95)
where the conformal blocks are again given by (90) but the cross-ratios are in {z1, z2, z2n−1, z2n}:

Z2n = (z1 − z2)(z2n−1 − z2n)

(z1 − z2n−1)(z2 − z2n)
, Z̄2n = (z̄1 − z̄2)(z̄2n−1 − z̄2n)

(z̄1 − z̄2n−1)(z̄2 − z̄2n)
. (96)

Using the late time scaling of z’s derived in Ref. [17] we can show that at late time

1 − Z2n 

(

ε

n sin
(
π
n

)
t

)2

, Z̄2n → 0, (97)

and combining all together we have the corrected nth Renyi entropy

�S(n)A = 2n�O

n − 1

(
1 − 12�O

n c

)
log

(
n sin

(
π
n

)
t

ε

)
+ 24�2

O

c(n − 1)
+ · · · . (98)

This clearly shows that the logarithmic behavior at late time persists for all the Renyi entropies n ≥ 2
once we include the contribution from the identity.

Note that again the n → 1 limit is singular and is not reliable. This suggests that, at large c, the
problem of taking the von Neumann entropy limit n → 1 is not resolved by perturbative corrections
with respect to �O/c and thus we need to take into account non-perturbative corrections.

5. Holographic analysis of Renyi entanglement entropy

The AdS/CFT duality allows us to compute observables in conformal field theory from dual string
theory. In the classical gravity regime of strings, which usually corresponds to a particular corner
of the CFT parameter space, observables like correlation functions of primary operators can be com-
puted by evaluating the supergravity action on the classical solution for the field dual to the operator
under consideration [78,79].

In our CFT analysis of (Renyi) entanglement entropies, we tried to be as general as possible and
considered a large class of field theories in two dimensions at large c or higher dimensions at large
N . In two dimensions, our main object in the replica construction of the nth Renyi entropy was the
2n-point function of operators O(wi , w̄i ) on the n copies of the complex plane (�n). In principle,
if we knew the holographic dictionary for all the 2D CFTs on �n , we could compute the 2n-point
function holographically using, e.g., Witten diagrams. This is of course far from reality and we will
be able to perform only a modest step in this direction. Namely, we will approximate the 2n-point
function on �n by a product of two-point functions computed using the geodesic approximation in
a Euclidean AdS topological black hole by employing the coordinate transformation found in Ref.
[54]. This corresponds to the leading term in the large-N limit. As we learned from the field-theoretic
analysis, there are subtle problems with the leading-term large-N approximation in the late time limit
and n → 1. In this section, we will ignore these issues and address them again in the final section.

The topological black hole, as we will review below, has an asymptotic boundary given by S1 ×
Hd−1 where Hd−1 is a d − 1-hyperbolic plane (Euclidean AdSd−1). We can identify it with �n up
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to a conformal factor [54]. Then, similarly to Ref. [80], we assume that the two-point functions of
the bulk fields �� dual to operators O(x) with (sufficiently large) dimension � can be computed
semi-classically:

〈��(x)��(x ′)〉 ∼ e−�
R L(γ ), (99)

where γ is the geodesic between the operator’s insertion points that we schematically denoted x and
x ′. Our approximation should be valid for a general class of CFTs at large central charge c. We further
refer to Ref. [81] for a discussion on the validity and subtleties of (99) .

In the formulas below we will no longer use the �� since they do not play any role in our general
derivations. Instead, we identify the holographic result for the two-point function on �n with the
exponent of the geodesic length as

〈O†(x)O(x ′)〉hol ∼ e− 2�O
R L(n) . (100)

Let us now review a few basic facts about topological black holes and proceed with the computation
of the geodesic lengths.

5.1. Topological black holes in AdS

The Euclidean topological black hole in AdSd+1 is given by the metric [82]

ds2 = f (r)dτ 2 + dr2

f (r)
+ r2 dζ 2 + dxi dxi

ζ 2 (101)

where

f (r) = −1 − μ

rd−2 + r2

R2 . (102)

It will be convenient to redefine the hyperbolic coordinate φ = log ζ so that the metric becomes

ds2 = f (r)dτ 2 + dr2

f (r)
+ r2dφ2 + r2e−2φdx2

i . (103)

This is an example of an asymptotically AdS black hole with a negatively curved horizon. The name
“topological” comes from the fact that in four dimensions one can use the isometry of the hyperbolic
plane H2 and obtain a black hole with a horizon of an arbitrary topology. Similar properties of these
solutions can be demonstrated in higher dimensions but we will not need or use them here.

Topological black holes have a temperature that depends on d and the horizon radius r+,

β−1 = TH = d r2+ − (d − 2)R2

4πR2r+
, (104)

and is related to the period of the τ coordinate of the dual CFT. In our setup, we will take the period
of τ to be 2πn R with integer n such that

β = 2πn R (105)

and, as a result, the boundary will consist of CFTd on�n . From this condition, we can also find μ as
a function of n and d. It is given by

|μ(d, n)| = Rd−2

(
1

d n
+
√

1 − 2

d
+ 1

d2 n2

)d−2
⎛
⎝1 −

(
1

d n
+
√

1 − 2

d
+ 1

d2 n2

)2
⎞
⎠ , (106)
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and, since we will set xi to constant in (103), it will be our main parameter capturing the dependence
on the dimensions and periodicity n. For the clarity of our formulas, we define more compactly

|μ(d, n)| ≡ Rd−2 F(d,n). (107)

It is important to notice that, for n = 1, μ(d, 1) vanishes. The opposite limit of n → ∞ corresponds
to the extremal black hole with a degenerate horizon.

Last but not least, in order to keep contact with the CFT results and conventions of Ref. [15],
we recall that, for μ = 0 and xi = const, metric (103) can be mapped into AdSd+1 in Poincaré
coordinates,

ds2 = R2 dT 2 + dY 2 + dx2
i + d Z2

Z2 , (108)

by setting

Y − iT =
√

1 − R2

r2 eφ−iτ/R,

Y + iT =
√

1 − R2

r2 eφ+iτ/R,

Z = R

r
eφ. (109)

By taking the asymptotic limit of this map we can find the relation to the polar coordinates on the
plane w = r eiθ :

r = eφ, θ = τ

R
. (110)

It is clear from this map that the space (T, Y, x) precisely describe the n-sheeted space �n as the
periodicity of τ is 2πn R.

This brief summary of the topological black hole should suffice for our further analysis and we
will proceed directly with computation of the geodesic length in the background (103). More details
and further references can be found in Ref. [82].

5.2. Geodesic length

Let us start with the general metric (103) and set all the xi = const. As a result, the dependence on d
and the periodicity n is fully captured by |μ(d, n)|. We will compute the length of the geodesic

(τ (r), φ(r)) between the end-points (τi , φi ) and (τ f , φ f ) located at the boundary r = r�. The
geodesic extends into the bulk and has a turning point at r = r∗. This way, the length is twice the
length from the boundary to the turning point and it is given by

L

2
=
∫ r�

r∗

√
f (r)τ ′2 + 1

f (r)
+ r2φ′2 dr ≡

∫ r�

r∗
L dr. (111)

The functional depends neither on τ nor φ so the equations of motion are just the two conservation
laws

f (r)τ ′

L = C1
r2φ′

L = C2 (112)
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where C1 and C2 are arbitrary constants. These two ordinary differential equations can be
simplified to

dτ

dr
= C1r

f (r)
√

f (r)(r2 − C2
2)− r2C2

1

(113)

dφ

dr
= C2

r
√

f (r)(r2 − C2
2)− r2C2

1

. (114)

We can further relate C1 to C2 and r∗. Namely, at the turning point, both derivatives τ ′ and φ′ diverge
so the denominator on the right-hand side of (114) must vanish at r = r∗. That leads to the relation

C2
1 = f (r∗)(r2∗ − C2

2)

r2∗
. (115)

Finally, we can insert this into (114) and, since both τ and φ should be finite, we incorporate the
boundary conditions at ∞ in the usual manner. The procedure yields our main integrals,

�τ ≡ τ f − τi = 2
∫ ∞

r∗

r
√

f (r∗)(r2∗ − C2
2) dr

f (r)
√

f (r)r2∗(r2 − C2
2)− f (r∗)r2(r2∗ − C2

2)

(116)

�φ ≡ φ f − φi = 2
∫ ∞

r∗

C2r∗ dr

r
√

f (r)r2∗(r2 − C2
2)− f (r∗)r2(r2∗ − C2

2)

, (117)

as well as the the length,

L

2
=
∫ r�

r∗

r∗ r dr√
f (r)r2∗(r2 − C2

2)− f (r∗)r2(r2∗ − C2
2)

. (118)

From this point we have to proceed with specific values of d and n.

5.3. Analysis in AdS3/CFT2

We will begin with the simplest case that can be solved analytically, the d = 2 that corresponds to
the AdS3/CFT2 setup. Strictly speaking, there are no topological black holes in d = 2 but we can
always consider metric (103) with d = 2 and identify integer n of the periodicity with the number of
copies of the dual CFT. For d = 2 we have

μ = 1

n2 − 1, r+ = R

n
. (119)

Integrals (117) can be performed analytically and are equal to

�τ

R
= 2n arctan

(
R

nr∗

√
r2∗ − C2

2

r2∗ − r2+

)

�φ = 2n arctanh

(
RC2

n r2∗

)
. (120)

Similarly, for large cut-off r�, the length is given by

L

2R
=
∫ r�

r∗

r dr√
(r2 − r2∗)

(
r2 − r2+C2

2
r2∗

) 
 log

⎛
⎜⎜⎝ 2r�√

r2∗ − R2C2
2

n2r2∗

⎞
⎟⎟⎠ . (121)
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We can easily invert (120) and find C2 and r∗ as functions of �φ and �τ . Inserting them into the
length gives

L

2R
= log

(
nr�

R

√
2 cosh

(
�φ

n

)
− 2 cos

(
�τ

n R

))
. (122)

Now we will use the standard semi-classical prescription for computing the propagator in a CFT
using holography. Namely, the two-point function of operators with (large) dimension � is equal to
the exponent of the action of a massive particle with mass m ∼ � evaluated on the particle’s geodesic
with boundary conditions determined by the insertion points of operators in the CFT. Assuming that
such an approximation holds for our setup as well, the two-point function of operators with dimension
� = 2�O in n copies of CFT2 (�n) can be approximated by the exponent of the geodesic length in
the topological black hole:

e− 2�O
R L(n) =

⎛
⎜⎝ 1

2n2 r2
�

R2

(
cosh

(
�φ
n

)
− cos

(
�τ
n R

))
⎞
⎟⎠

2�O

. (123)

By construction, when computing �S(n)A at late time, we are mostly interested in the ratio of the
two-point function on �n to the two-point function on �1. The relevant object will then be

e− 2�O
R

(
L(n)−L(1)

)
=
⎛
⎝ cosh (�φ)− cos

(
�τ
R

)
n2
(

cosh
(
�φ
n

)
− cos

(
�τ
n R

))
⎞
⎠

2�O

. (124)

One can verify that this ratio perfectly matches the CFT2 result (87) computed using a conformal map.
Our goal is to determine the late time behavior of the ratio of the 2n-point function on �n to

the nth power of the two-point function on �1. We approximate the correlator on �n with “free-
field Wick contractions” using geodesics in the topological black hole. The geodesics are stretched
between the insertion points of the operators at the boundary that are [15] wi = exp(φi + iτi/R),
(i = 1, . . . , 2n), and points wi are given in (7) and (8). It is then a simple exercise to show that

cos

(
τ1 − τ2

R

)
= l2 − ε2 − t2√

(l2 − t2 + ε2)2 + 4ε2t2

cosh (φ1 − φ2) = l2 + ε2 − t2√
(l2 − t2 + ε2)2 + 4ε2t2

(125)

and in the late time limit (t � l � ε) we have

cos
�τ

R
= −1 + O(t−4) (126)

cosh�φ = −1 + 2ε2

t2 + O(t−4). (127)

In terms of τ and φ, that corresponds to

�τ

R
= π + O(t−2), �φ = i

(
π − 2ε

t

)
+ O(t−2). (128)

In our solutions (120), the late time limit can be extracted by first analytically continuing C2 → i |C2|
and then taking r∗ very large while keeping β = R|C2|

r2∗
fixed but also large. Since all the transverse

directions in (103) are fixed to constant, we take this as the universal late time limit in any
dimensions d.
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In the late time limit the ratio (124) becomes

e− 2�O
R

(
L(n)−L(1)

)
=
(

ε

n sin
(
π
n

)
t

)2�O

. (129)

Then, the leading contribution (the shortest length) to the 2n-point correlator comes from two possi-
ble Wick contractions (remember Fig. 3): namely, the first, in which we contract the pairs of operators
on the same sheet, and the second, when the operator on the i th sheet is contracted with the operator
on sheet i + 1 (the operator on the nth sheet is contracted with the operator on sheet i = 1). As a
result, using the holographic ratio (129), we obtain the late time limit of the Renyi entropy:

�S(n)A 
 1

1 − n
log

⎡
⎣2

(
ε

n sin
(
π
n

)
t

)2n�O
⎤
⎦ . (130)

More explicitly, e.g. for n = 2 in d = 2, we have

�S(2)A = 4�O log

(
2t

ε

)
− log 2. (131)

Our holographic results (130) perfectly agree with our 2D CFT results (85) in the large-c limit.
This confirms that our large-c approximation, studied in Sect. 4, corresponds to the dual gravity
calculation with the geodesic approximation, which ignores all backreactions of the massive particle
in the AdS.

The geodesic approximation regards the 2n-point function as n disconnected two-point functions.
As usual, this can be naively justified in the large-N limit. However, our previous CFT arguments
suggests that this approximation breaks down when t is very large (t → ∞) as in (80) or when we
take the von Neumann entropy n → 1 limit. In both cases, it is expected that we need to take into
account non-perturbative corrections about the large-N limit.

5.4. Analysis in higher dimensions

For higher d the integrals become more complicated and the analytical answer seems very hard to
obtain (inverting C2 and r∗). However, we can still extract the late time answer (t � l but still smaller
than ∞) for �S(n)A . Here we briefly describe the procedure and state the main results; more details
can be found in Appendix B.

Analyzing the geodesic lengths in d ≥ 2 (see Appendix B for details), one can check that at late
time �S(n)A has the same divergent behavior,

�S(n)A 
 4n�

d(n − 1)
log

(
F(d,n) t

2 ε

)
+ C(n,d) − 1

n − 1
log 2, (132)

where C(n,d) is some non-universal constant and F(d,n) was defined in (107). Note that higher Renyi
entropies all behave similarly and, e.g., in the extremal limit we get the min-entropy

�S(∞)
A 
 4�

d
log

(
t

ε

)
. (133)

Again, we expect that our geodesic approximation may break down when t is very large as in the
2D CFT case. It is also clear that, for any d, in the limit of n → 1 we cannot trust the holographic
computation. In both cases, we expect that non-perturbative corrections about the large-N limit will
become important.
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6. Holographic analysis of von Neumann entanglement entropy

In the previous section, we holographically evaluated the Renyi entanglement entropy in the replica
method by employing the heavy particle geodesic approximation of two-point functions in AdS/CFT.
However, this approximation, which keeps only the leading term in the large-N expansion, is valid
for n > 1 and we cannot obtain any reliable result for the von Neumann entanglement entropy
n = 1. Obviously, one way to deal with this problem is to take into account the backreactions in
our topological black hole analysis by computing directly the Witten diagrams for the holographic
2n-point functions as in Refs. [78,79]. Unfortunately this requires rather complicated analysis and
we do not want to pursue it here. Moreover, our previous large-c analysis in 2D CFT suggests that
we may need to incorporate non-perturbative corrections of quantum gravity to get sensible results
in this limit.

Therefore, we would like to consider some other holographic calculations for n = 1. Indeed,
the holographic entanglement entropy [5–9] offers another method to compute von Neumann
entanglement entropy without referring to the Renyi entropy. In this calculation, we prepare a (time-
dependent) gravity background dual to the excited state defined by a local operator in CFT and
compute the extremal surface area.

Actually we would like to point out that the holographic entanglement entropy for the excited
state by a local operator coincides with the calculation done in the previous paper [44]. In Ref. [44],
the gravity dual is obtained by a heavy falling particle (with mass m) in AdS and the holographic
entanglement entropy has been computed by taking into account gravity backreactions analytically.
Thus this backreacted geometry offers the gravity dual of the excited state by a local operator with
conformal dimension � 
 m R. Indeed, we can confirm that the holographic stress energy tensor in
this gravity background precisely reproduces (39) for the AdS3/CFT2 setup. For a large mass m such
that� ∼ O(N 2) = O(c), we will be able to regard it as a version of local quench as it causes a very
large excitation, as argued in Ref. [44]. We are interested in the opposite case � � c.

Let us focus on the AdS3/CFT2 case so that we get analytical results. In the construction of Ref.
[44], the regularization parameter9 ε appears as a parameter of the trajectory of the falling massive

particle: z = √
t2 + ε2 in the Poincaré AdS3 space ds2 = R2

(
dz2−dt2+dx2

z2

)
. Then, when subsystem

A is given by a half line x > 0 and we insert the local operator at (t, x) = (0,−l), the final result of
time evolution of holographic entanglement entropy looks as follows [44]:

�S(1)A = 0 (t < l),

�S(1)A 
 c

6
log

t

ε
+ c

6
log

�

c
(t � l) . (134)

Firstly we note that the slope of the logarithmic time evolution is given by a constant of the CFT, i.e.,
the central charge c. However, if we take the � → 0 limit, we get �S(1)A = 0 for any time because
the logarithmic region is pushed into the infinite late time and disappears, as expected.

Even though the logarithmic behavior also occurs in our previous holographic analysis of Renyi
entanglement entropy in terms of 2n-point functions, the coefficient of the logarithmic term log t/ε
is given by 2n�

n−1 (130). This gets divergent in the von Neumann limit n → 1, where the approximation
by the large-N limit breaks down, as we mentioned. It is possible to speculate that the regularization
of this divergence comes from summing over non-perturbative corrections of the large-N expansion

9 Please note that in Ref. [44] this parameter ε is written as α.
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and that this gives the finite gradient proportional to the central charge c, as we will discuss in the
next section. It will be a very important future problem to study this issue closely.

7. Summary and discussions

In this paper we studied the Renyi and von Neumann entanglement entropy of excited states pro-
duced by local operators in large-N (or equally large-c) CFTs with holographic duals. The Renyi
entanglement entropy growth �S(n)A can be computed from a 2n-point correlation function. We did
both field-theoretic and holographic analyses in various dimensions. We mainly chose subsystem A
to be simply the half space.

Firstly, we studied these quantities in free CFTs. In particular, we analyzed the scalar operator in a
free U (N ) Yang–Mills theory in four dimensions. We found that the Renyi and von Neumann entan-
glement entropies both grow monotonically in time and eventually approach finite constants �S(n)A .
We computed them analytically and exactly. We also found that the Renyi entanglement entropy
n > 1 always scales like �S(n)A 
 Jn−1

n−1 log 2 as in (47), where J is the number of scalar fields in
the local operator or equally its conformal dimension. However, in the von Neumann entropy limit
n → 1, we immediately find that this gets divergent. This is because the large-N expansion breaks
down and we have to sum over many terms, where we cannot ignore the connected diagrams even
for the dominant contributions. In other words, some of the subleading terms scale as some powers
of N 1−n , which can be ignored only when n > 1. By taking these contributions into account, we
find that the von Neumann entanglement entropy scales like �S(1)A ∼ J log N , which has the loga-
rithmic enhancement. This result is consistent with the intuitive argument that, since the scalar field
is an N × N matrix, each scalar field should produce ∼ log N 2 entanglement entropy. Our analysis
reveals an intriguing phenomenon where the Renyi and von Neumann entanglement entropies behave
differently. As a consequence, we have to be very careful when we take the von Neumann entropy
limit n → 1 for excited states.

Next, as another main result of this paper, we analyzed these entropies in strongly coupled and
large-N CFTs so that they have classical gravity duals via the AdS/CFT. We did this analysis for 2D
CFTs in the large-c limit. Then, we pursued two holographic computations: one was the geodesic
approximation of correlation functions in the replica calculations of Renyi entanglement entropy. The
other was the analysis of von Neumann entanglement entropy using the holographic entanglement
entropy, which is essentially the same as the earlier work [44]. Below we would like to summarize
the main part of our results schematically.

Generally within our analysis, being weakly coupled or strongly coupled, the growth of entangle-
ment entropy �S(n)A behaves as follows (assuming the limit t � l � ε, where we can suppress l
dependence):

�S(n)A = − 1

n − 1
log

〈O†O· · ·O†O〉�n(〈O†O〉�1

)n


 − 1

n − 1
log

[
1

Dn
+ μn ·

(ε
t

)νn
]
. (135)

Here, Dn(> 0), νn(> 0) and μn are n-dependent constants. Since the 2n-point function is reduced
to the two-point function at n = 1, we obtain the relation

1

D1
+ μ1 ·

(ε
t

)ν1 = 1. (136)
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In our free-field theory example of the 4D U (N ) scalar field, for the Renyi entanglement entropy
n ≥ 2, we found

Dn = 2Jn−1 + O(N−2), (137)

while μn = O(2−Jn) and νn = O(1). If we take the von Neumann limit n → 1 we cannot ignore
the subleading terms of large-N expansion in (137) as we mentioned. However, once we take this
into account, the late time limit t → ∞ is smoothly taken and we obtain a finite entropy. A similar
behavior is true for the rational CFTs in two dimensions, where Dn is given by the quantum dimension
dO of the primary operator O as Dn = (dO)

n−1 [17] and therefore�S(n)A approaches the same value
log dO for any n in the late time limit t → ∞. It is also helpful to note that, in these examples, there is
no time range where the second term in (135), which is time-dependent, becomes dominant over the
first term 1/Dn . In other words, we cannot find logarithmic increases of�S(n)A in the above examples.

On the other hand, our holographic analysis of strongly coupled large-N CFTs in d dimensions
lead to the following behavior for an operator with the conformal dimension �:

νn 
 4n�

d
+ O

(
�2

c

)
, (138)

where c ∼ N 2 is the central charge of each CFT. We reproduced the same result for d = 2 from field-
theoretic calculations. The fact that the constant part, i.e. the 1/Dn term, is missing in the perturbative
large-N expansions suggests that it behaves like

Dn ∼ ebn ·N an
, (139)

where an and bn are positive constants. This of course corresponds to a non-perturbative contribution
in the large-N expansion. In our holographic and field-theoretic arguments, it was very difficult to
compute this non-perturbative term Dn . However, since we expect that it is very large, we find that
there is a long time period where �S(n)A grows logarithmically with time as

�S(n)A 
 νn

n − 1
log

t

ε
, (140)

as in (80). It is intriguing to note that this logarithmic growth is peculiar to strongly coupled large-N
CFTs. At late time limit t → ∞, �S(n)A approaches10 a constant 1

n−1 log Dn .
The von Neumann limit n → 1 is subtler in strongly coupled large-N CFTs than that in free-field

CFTs. The leading-order results (138) and (140) already tell us that�S(n)A gets divergent at n = 1 and
thus this says that the large-N expansion will break down again. On the other hand, our holographic
result (134) based on the holographic entanglement entropy [44] implies the following behavior:

νn = (n − 1) · ν + O
(
(n − 1)2

)
, (141)

10 However, notice that from our computations in this paper we cannot completely deny the possibility that
Dn is infinitely large such that 1

Dn
= 0 precisely, though physically this may look unusual. If this happens, even

in the late time limit t → ∞, the Renyi entanglement entropy grows logarithmically and does not approach
a constant. On the other hand, our previous rough argument in footnote 5, and its generalization to any n
following [17], give the estimation Dn � epn(n−1)c, where pn is a positive O(1) constant. If this is true, both
Renyi and von Neumann entanglement entropies approach finite constants�S(n)A � O(c) in the late time limit
t → ∞. It is a very important future problem to examine this issue more closely.
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where ν should satisfy

μ1ν = c

6
. (142)

Moreover, the relation (136) leads to

1

D1
+ μ1 = 1. (143)

These suggest that ν ∼ O(c) and this is possible only if we assume non-perturbative terms
in (138).

This von Neumann entanglement entropy grows logarithmically �S(1)A 
 c
6 log t

ε
even in the late

time limit. This looks similar to the local quantum quenches [35]. However, notice the difference
that in our setup we consider a single local operator excitation and that it is much simpler than the
one for local quenches, which are triggered by a sudden change of Hamiltonian at a particular point
and which produce infinitely many operators. In this way, the results for the strongly coupled large-N
CFTs look different from those for free CFTs. Therefore, it is an important future problem to confirm
our prediction for strongly coupled CFTs and understand both the n → 1 limit and the late time limit
t → ∞ in more detail.
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Appendix A. 2n-point correlators at large c

In this appendix we briefly summarize the analysis of Ref. [77] on direct computation of the vacuum
Virasoro conformal blocks at large central charge. We also generalize the large-c results to 2n-point
functions and outline the derivation of formula (95) from the main text.

Let us start with the four-point correlator of primary operators in a 2D CFT at large central charge.
We can insert into the correlator the identity, i.e., a sum over projectors on states corresponding to
all the operators of the theory and their descendants. Schematically we have

〈O†(z1, z̄1) · · · O(z4, z̄4)〉�1 =
∑
αh ,ᾱh̄

〈O†(z1, z̄1)O(z2, z̄2)
∣∣αh, ᾱh̄

〉 〈
ᾱh̄, αh

∣∣ O†(z3, z̄3)O(z4, z̄4)〉�1,

(A1)
where αh ( ᾱh̄ ) stands for all operators of dimension h (h̄) and their descendants.

In Ref. [77] the authors derived the contribution from the identity operator (and its descendants)
|α0〉 in the limit of non-vanishing �2

O/c. A convenient basis for such computations consists of
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k-graviton states11

|α0〉 =
Lk1−m1

· · · L
kp
−m p

|0〉√N{mi ,ki }
(A2)

where k1 + · · · + kp = k, m1 > · · · > m p, and the creation operators L−m , with m ≥ 2, are the
generators of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δm,−n. (A3)

First, one can easily check that k-graviton states are orthogonal only at large c; the overlap between
states with different numbers of L−m can be neglected at large c. Moreover, applying (A3), one can
also show that the leading large-c contribution to the norm of the state with k-gravitons is given by

N{mi ,ki } ∼
( c

12

)k
p∏

i=1

ki !m
ki
i (m

2
i − 1)ki . (A4)

As shown in Ref. [77], using (A3) as well as the commutation relation for generators L−m with
primary operators

[L±m, O(zi , z̄i )] =
(
�O(1 ± m)z±m

i + z1±m
i ∂zi

)
O(zi , z̄i ) (A5)

after summing over all k-graviton contributions we get the large-c part of the four-point function that
comes from the identity operator

〈O†(z1, z̄1) · · · O(z4, z̄4)〉�1 ∼ 〈O†(z1, z̄1)O(z2, z̄2)〉�1〈O†(z3, z̄3)O(z4, z̄4)〉�1V0(z)V̄0(z̄),
(A6)

where the vacuum conformal blocks at large c are given by exponentials of the single graviton
contribution (see Ref. [77] for the detailed derivation)

V0(z) = exp

(
2�2

O

c
z2

2 F1(2, 2; 4; z)

)
, V̄0(z̄) = exp

(
2�2

O

c
z̄2

2 F1(2, 2; 4; z̄)

)
, (A7)

where z and z̄ are the conformal cross-ratios constructed from {z1, z2, z3, z4}.
Their analysis can be extended for our purposes to the 2n-point correlator of the primary fields

satisfying (A5). Let us first look at the contribution from a single graviton L−m (holomorphic part).
To keep our formulas compact we label the operators by their position Oi ≡ O(zi , z̄i ). We insert the
n − 1 projection operators after each pair of operators:

G(k=1)
2n ≡

∞∑
{m}=2

N{m}〈O1O2L−m1〉〈Lm1 O3O4L−m2〉 · · ·

〈Lmn−2 O2n−3O2n−2L−mn−1〉〈Lmn−1 O2n−1O2n〉, (A8)

where the norm is given by

N{m} =
(

12

c

)n−1 n−1∏
k=1

1

mk(m2
k − 1)

. (A9)

11 Projection operators are tensor products of the holomorphic and anti-holomorphic parts so we treat explic-
itly only the holomorphic contribution and simply multiply the answer by the anti-holomorphic counterpart.
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The building blocks in (A8) can again be computed at large c using (A3) and (A5). The three-point
functions are

〈Oi O j L−m〉 = �O

(
(m − 1)(z−m

i + z−m
j )+ 2

zi j
(z1−m

i − z1−m
j )

)
〈Oi O j 〉

〈Lm Oi O j 〉 = �O

(
(m + 1)(zm

i + zm
j )− 2

zi j
(z1+m

i − z1+m
j )

)
〈Oi O j 〉 (A10)

and the four-point functions with Ln , n ≥ 2 and L−m , m ≥ 2 are explicitly given by

〈Ln Oi O j L−m〉 = 〈[Ln, Oi ]O j L−m〉 + 〈Oi [Ln, O j ]L−m〉 + 〈Oi O j [Ln, L−m]〉
=

∑
k={i, j}

(
�O(1 + n)zn

k + z1+n
k ∂zk

)
〈Oi O j L−m〉

+ 〈Oi O j [Ln, L−m]〉. (A11)

Notice that the last term is equal to

〈Oi O j [Ln, L−m]〉 = (n + m)〈Oi O j Ln−m〉 + c

12
n(n2 − 1)δn,m〈Oi O j 〉. (A12)

It is then clear that at large c

〈Ln Oi O j L−m〉 ∼ c

12
n(n2 − 1)δn,m〈Oi O j 〉. (A13)

Inserting this into G(k=1)
2n yields

G(k=1)
2n ∼

n−1∏
i=2

〈O2i−1O2i 〉
∞∑

{m}=2

N{m}

(
n−2∏
l=1

c

12
ml(m

2
l − 1)δml ,ml+1

)
〈O1O2L−m1〉〈Lmn−1 O2n−1O2n〉

=
(

n−1∏
i=2

〈O2i−1O2i 〉
)

12

c

∞∑
m1=2

1

m1(m2
1 − 1)

〈O1O2L−m1〉〈Lm1 O2n−1O2n〉

=
(

n∏
i=1

〈O2i−1O2i 〉
)
V(k=1)

0 (Z2n) (A14)

where the conformal block is

V(k=1)
0 (Z2n) = 2�2

O

c
Z2

2n 2 F1(2, 2; 4; Z2n) (A15)

and Z2n is the conformal cross-ratio constructed from {z1, z2, z2n−1, z2n}. Notice that the contribu-
tion from all the four-point functions is such that it precisely cancels the (n − 2) norms and at the
end we only have a single factor of�2

O/c. All the other contributions would be suppressed by higher
powers of 1/c.

Taking into account also the anti-holomorphic part, we have the contribution from a single graviton:

G(k=1)
2n =

(
n∏

i=1

〈O2i−1O2i 〉
)
V(k=1)

0 (Z2n)V̄(k=1)
0 (Z̄2n)+ · · · . (A16)

Now, the leading c contribution from k-graviton states must be the one that cancels the “maximal”
number of the norms with powers of ck . This is precisely the contribution with the same structure
of L on both sides of the four-point functions and is proportional to the product of δm,n . Finally,
summing up all the k-graviton contributions and noticing that the contribution of each of the k-
gravitons commutes with each other [77] we get the exponentiation of the single graviton answer
(95) at large c.
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Appendix B. Geodesic length in d > 2

For d > 2 the integrals (117) become much more complicated and even though for d = 3, 4 one can
still integrate them to known elliptic functions, inverting them to find C2 and r∗ becomes a formidable
task. Nevertheless, in order to extract the geodesic length at late time, we can just expand the integrals
for large r∗ and find the answer to an arbitrary order of precision. Let us carefully go through the
analysis in d = 3. The relevant denominator that appears in the integrals (117) is given by

Den3(x) = r6∗(x − 1)pol3(x)

R2 x
(B1)

where

pol3(x) = x4 + x3 + x2
( |C2|2 R2

r4∗
− |μ|R2

r3∗
− |μ||C2|2 R2

r5∗

)

+ x

( |C2|2 R2

r4∗
− |μ||C2|2 R2

r5∗

)
− |μ||C2|2 R2

r5∗
. (B2)

We have performed an analytic continuation C2 → iC2 (C2
2 → −|C2

2 |) because we want �φ to be
purely imaginary at late time (recall the discussion from the main text). Now we define

β = R|C2|
r2∗

, (B3)

expand the integrals

|�φ| = 2β
∫ ∞

1

dx√
x(x − 1)pol3(x)

(B4)

�τ

R
= 2β

∫ ∞

1

√
1 + R2

β2r2∗

√
1 − R2

r2∗
+ |μ|R2

r3∗
x5/2dx(

x3 − R2

r2∗
x + |μ|R2

r3∗

)√
(x − 1)pol3(x)

(B5)

to order r−3∗ , and integrate. The answer reads

π − 2ε

t
= |�φ| = π − 2

β
+ 2

3β3 + 2|μ|
r∗

− 2|μ|
r∗β

+ 15π − 16

16

|μ|2
r2∗

− 3|μ|
2r∗β2 − 2|μ|2

βr2∗
+
(

61

12
− 15π

16

) |μ|3
r3∗

+ O(ε4) (B6)

π = �τ

R
= π − 2

β
+ 2

3β3 + 2|μ|
r∗

− 2|μ|
r∗β

+ 15π − 16

16

|μ|2
r2∗

− 3|μ|
2r∗β2 + R2

r2∗β
− 2|μ|2

r2∗β
+ R2|μ|

3r3∗
+
(

61

12
− 15π

16

) |μ|3
r3∗

+ O(ε4), (B7)

where we denote ε = |μ|/r∗. Once we subtract the two equations we get a relation between the
parameters:

2ε

t
= R2

r2∗β
+ R2|μ|

3r3∗
. (B8)

This algorithm can be repeated for any d and we have verified that in d dimensions the relation
becomes

2ε

t
∼ R2

r2∗β
+ λd

R2|μ|
rd∗

, (B9)

where λd is some O(1) number that depends on d.
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Now comes the crucial observation: in order for the terms on the right-hand side of this equation
to be of the same order (as we assume in our expansion) we must have

β ∼ αd
rd−2∗
|μ| (B10)

where αd is some O(1) number. Then

2ε

t
∼ R2|μ|

rd∗

(
1

αd
+ λd

)
≡ cd

R2|μ|
rd∗

(B11)

where in d dimensions we have dim(|μ|) = d − 2.
Finally, from (118), we get the length of the geodesic to the leading order in β:

L(n)12

2R
∼ log

(
2r�
r∗β

)
= log

(
2r�|μ(n)|
αd rd−1∗

)
, (B12)

which after using (B11) gives the late time propagator in d dimensions:

e− 2�O
R L(n)12 ∼

(
αd R

d−2
d

2r�
R |μ| 1

d

(
2ε

cdt

) 1
d −1

)4�O

. (B13)

This leads to the leading-order contribution to �S(n)A (132).

Appendix C. Higher J operators

In this appendix we present some details of the direct computation of�S(n)R . We have carried them out
up to length 5 but already for J = 3 one can see the subtleties and understand the general procedure
behind the computation. For J = 3 we expand the operator Tr(φ3) into left- and right-moving parts:

|ψ3〉 =
∣∣∣Trφ3

L

〉
|0R〉 + |0L〉

∣∣∣Trφ3
R

〉
+ 3

N∑
α,β=1

∣∣∣∣(φ2
L

)α
β

〉 ∣∣(φR)
β
α

〉+ 3
N∑

α,β=1

∣∣∣(φL)
α
β

〉 ∣∣∣∣(φ2
R

)β
α

〉
, (C1)

where we again write explicitly the summation over indices in traces that contain both φL and φR .
The orthonormal basis should be given by

{
|0L〉 , 1√

3N (N 2 + 1)

∣∣∣Tr(φ3
L)
〉
,

∣∣∣(φL)
α
β

〉
,Nα,β

∣∣∣∣(φ2
L

)α
β

〉}
. (C2)

However, note that the scalar product for two of the last states with different indices is

〈(
φ2

L

)a

b

∣∣∣ (φ2
L

)c

d

〉
= N δa

dδ
c
b + δa

bδ
c
d (C3)

so these states are orthogonal only at large N . Let us then focus on n ≥ 2 and proceed assuming
large N (for finite N we should probably work with Schur polynomials instead of traces; see Refs.
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[83–88] for the appropriate technology for U (N ) and other classical gauge groups) with basis{
|0L〉 , 1√

3N 3

∣∣∣Tr(φ3
L)
〉
,

∣∣∣(φL)
α
β

〉
,

1√
N

∣∣∣∣(φ2
L

)α
β

〉}
. (C4)

After normalization the reduced density matrix becomes

ρR = diag

(
1

8
,

1

8
,

9 × �1
24N 2 ,

9 × �1
24N 2

)
(C5)

and

Tr(ρn
R) = 2

8n
+ 2 · 9n N 2

(24)n N 2n
= 21−3n + 2 3n

23n N 2(n−1)
. (C6)

This way the large-N Renyi entropy for J = 3 becomes

�S(n)R = 3n − 1

n − 1
log 2; (C7)

hence, we get a perfect agreement with (47). Note again that 1/N corrections contain powers of
n − 1 and hence they will contribute to von Neumann entropy at n = 1.
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