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Abstract: We show that a certain superfield formalism can be used to find an off-shell

supersymmetric description for some supersymmetric field theories where conventional su-

perfield formalism does not work. This ”new” formalism contains auxiliary variables λα

in addition to conventional super-coordinates θα. The idea of this construction is similar

to the pure spinor formalism developed by N.Berkovits. It is demonstrated that using

this formalism it is possible to prove that the certain Chern-Simons-like (Witten’s OSFT-

like) theory can be considered as an off-shell version for some on-shell supersymmetric

field theories. We use the simplest non-trivial model found in [2] to illustrate the power

of this pure spinor superfield formalism. Then we redo all the calculations for the case

of 10-dimensional Super-Yang-Mills theory. The construction of off-shell description for

this theory is more subtle in comparison with the model of [2] and requires additional Z2

projection. We discover experimentally (through a direct explicit calculation) a non-trivial

Z2 duality at the level of Feynman diagrams. The nature of this duality requires a better

investigation.
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1. Introduction

The importance of the off-shell formulation of supersymmetric field theories is well known.

The off-shell SUSY-invariant actions can be found only in limited number of cases for

small number of supercharges and in certain space-time dimensions. These formulations

are usually based on the superfield formalism. The main advantage of off-shell formulation

is the possibility to prove non-renormalization theorems and derive Ward identities on

correlation functions. However, in contrast to on-shell formulation, there are auxiliary

fields in addition to physical degrees of freedom. The number of these fields may be very

large and even infinite.
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In the recent paper [2] it was demonstrated that the classical actions for different

quantum field theories can be obtained as effective actions from the single fundamental

BF-like theory

SFund =

∫
Tr

(
< P, QBA > + g < P, A

2 >
)

(1.1)

Close constructions was originally suggested in [3] and [5]. The difference is that in that

approaches Chern-Simons-like action instead of BF-like action was used. We believe, how-

ever, that Chern-Simons-like formulation, though inspired by the Open String Field Theory,

has some problems with the consistent derivation of effective action(see discussion below).

That is why in the present series of papers we use BF-like formulation (1.1). We will

demonstrate that all effective theories of (1.1) are in fact invariant under the global SUSY

transformation at least on-shell. The main new results of the present consideration are

that action (1.1) is an off-shell version of all these effective theories and that pure spinor

formalism can be considered as a convenient superfield formalism which allows to write the

off-shell action in terms of component fields. The definition of the fields, operator QB and

canonical pairing < , > can be found in the section 4, see also the introduction to [2]. In [2]

we argued that integrating out some fields from the action (1.1) one can obtain physically

interesting effective action. In the present paper we show that all these fields which are

integrated out are nothing but auxiliary fields needed to restore the off-shell invariance of

the on-shell supersymmetric effective action. This view on this procedure is very much in

the spirit of [6].

The subject of the present paper is the descent of off-shell supersymmetry of the

action (1.1) down to its effective action. To control the SUSY properties of these actions

and discuss the descent of symmetry it is convenient to introduce an auxiliary action SSUSY

(interacting with superghosts) defined as

SSUSY =

∫
Tr

(
< P, QBA >+g < P,A2 >+< P, εQs

A >+< P, ηµ∂µA >−η∗µ(εγµε)
)

(1.2)

The first two terms in this action are exactly those of SFund. The third and the fourth terms

give the algebra of symmetry (SUSY + translations) and the last term is determined by

the structure constants of the SUSY algebra {Qs
α, Qs

β} = 2γµ
αβ∂µ. Here εα and ηµ are the

ghosts for the global symmetry of SFund (εα - for supersymmetry, ηµ - for translations).

Hence they do not depend on space-time coordinates. Introduction of these auxiliary

fields and addition of the last tree terms into the action (1.2) is needed to guarantee that

action (1.2) satisfies classical Batalin-Vilkovisky (BV) Master Equation over all the fields

including ghosts ε and η. This fact is equivalent to the condition that SFund (the first two

terms in SSUSY) is invariant under the algebra of symmetry generated by Qs and ∂µ and

to the condition that this algebra is closed off-shell. As it was mentioned in the section 2

of [2] (for rigorous proof see [4]), integration of BV action over a lagrangian submanifold

preserves BV invariance of the effective action. This invariance is what is left from the

off-shell invariance of the fundamental action. In particular it leads to the statement that

the ghost independent part of the effective action is invariant under the on-shell SUSY

transformation.
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Thus, the standard ideology of Batalin-Vilkovisky formalism allows us to control how

the off-shell symmetry of initial action is inherited in the effective action. Usually BV for-

malism is used to control gauge symmetries [1]. In this paper we apply the same technique

to study the descent of global supersymmetry (this technique is a particular example of a

more general formalism [18]).

Why do we start from the BF-like theory (1.1) and not from the Chern-Simons-like

theory, originally suggested in [3] (see also [5])? To the best of our knowledge the consistent

derivation of 10-dim SYM (as well as 11-dim SUGRA) action from the Chern-Simons-like

action of [3] has not been realized by the present moment. The reason of this is that the

BV structure, which naturally exists on the space of Q-cohomologies, does not exist on

the space of auxiliary fields (the orthogonal complement to the space of cohomologies).

Technical reason for this is that the scalar product (5.5), defining BV structure, is highly

degenerate. Hence for quite large number of auxiliary fields there are no BV antifields,

hence the program with the calculation of effective action can not be realized. Instead, in

our approach, we double the number of the fields at the level of initial action (1.1) and

use the canonical pairing instead of the scalar product (5.5). Canonical pairing is non-

degenerate. This allows to realize the procedure of calculation of effective action, starting

from BV action and ending with BV action again. This calculation is an example of a

consistent derivation rather than an a posteriori check. After the calculation of effective

action we obtain what we call pre-theory, which has still twice larger number of fields.

In order to get the theory itself we need to apply the Z2 projection at the level of effective

action. An interesting observation is that this projection works and in the end we obtain the

BV action with correct supersymmetry structures. Concluding this paragraph we would

like to emphasize that the procedure suggested in the present paper and [2] is a consistent

way of derivation of effective action in the framework of quantum field theory.

In the paper [2] it was suggested a procedure which allows to find the spectrum of

all cohomologies of operator Q (5.2) from the given system of quadrics fµ(λ). Having

this instrument we were trying to find the simplest non-trivial realization of Berkovits

construction with the smallest number of degrees of freedom and in the smallest space-

time dimension. By non-trivial realization we mean that there should be at least one term

in the action, having kinetic term of second order in derivatives. It was demonstrated in [2]

that the simplest model satisfying this condition is given by 5 quadrics built out of 4 even

variables λα. This model is considerably simpler than 10-dim SYM or 11-dim SUGRA and

inherits several properties of these models. Namely the procedure for extraction of effective

actions for all these three models is done in the same way. The only difference is that in

contrast to SYM and SUGRA for 2-dimensional model with 5 quadrics there is no need to

make a Z2 projection identifying the component fields of A and P (see section 4 for details).

That is why we think that it is of interest to study this model at least as a toy example of

the whole construction. Using the suggested procedure for the calculation of cohomologies

it is possible to invent quite a large class of different models having the status similar to

that of the model with 5 quadrics. To the best of our understanding among this plethora

of models only 10-dim SYM and 11-dim SUGRA allow to implement the Z2 projection.

Whether or not there are some other models beyond these two possessing this property is

– 3 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
4

an interesting open problem.

In the sections 2 and 3 we discuss the realizations of standard notions in supersymmetry

using BV language. In the section 4 we illustrate the ideas discussed above in the model

with 5 quadrics found in [2]. Then in section 5 we apply the same technique to the more

interesting model — 10-dimensional Super Yang-Mills. Application of this procedure to

SYM is more subtle because after evaluation of effective action on the cohomologies of

Q-operator one should make a Z2 projection identifying the fields A and P (representatives

of cohomologies in A and P). Remarkably, this projection also preserves BV invariance of

the action. At the level of our present understanding this fact seems to be accidental. This

observation allows us to find a non-trivial Z2 duality at the level of explicit calculation of

Feynman diagrams. This duality states that there are certain identities between different

Feynman diagrams like

Aµ c̃

εQs εQs

= c∗ Ã∗
µ

εQs εQs

(1.3)

(εγµε)Aµc̃ =

(
3

10
+

9

40
+

1

4
+

1

10
+

3

32
− 3

160

+
13

320
− 1

64
+

1

20
− 1

40

)
(εγµε)Ã∗

µc∗

after the identification c̃ = c∗ and Ã∗
µ = Aµ. The calculation of the diagram in the

l.h.s. is almost automatic. The calculation of the diagram in the r.h.s. is rather involved.

It contains a lot of contributions. Each contribution requires a lot of γ-matrix algebra

including Fiertz identities and different spinor expansions. However, all this contributions

collapse in the end to unity which coincides with the l.h.s. and is an example of the Z2

duality. This duality has been checked experimentally for all the diagrams arising in the

calculation of effective action. The fundamental nature of this duality is not clear for us.

However, what can be said is that the action of SYM with all the SUSY structures satisfies

BV equation over all the fields as a consequence of this observed Z2 duality of Feynman

diagrams.

Summarizing the introduction we would like to list our main results obtained in the

present paper.

• It is demonstrated that the Pure Spinor Formalism can be considered as a Superfield

Formalism for a large class of interesting quantum field theories - pre-theories (see

section 5 for definition).

• It is shown that action (1.1) can be considered as an off-shell supersymmetric version

of these effective pre-theories. The action and degrees of freedom of an effective

action are dictated by the choice of the system of quadrics fµ(λ).

• All effective theories obtained after evaluation of effective action of (1.1) above the

cohomologies of Q-operator are at least on-shell supersymmetric.
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• To obtain the BV version of effective action with the SUSY structures in case of

10-dimensional SYM one should make a Z2 projection on the space of fields after the

calculation of effective action for (1.1) (see section 5 for details). For the present mo-

ment we do not know whether this Z2 symmetry of effective action can be considered

as coming from the Z2 symmetry of the fundamental action. Would that be possible,

we construct the off-shell description of 10 dimensional SYM.

• A non-trivial Z2 duality at the level of Feynman diagrams is discovered for the case

of SO(10) quadrics fµ(λ) = λγµλ. Evaluation of the diagrams on the one side of

this duality is almost automatic. The corresponding calculation on the other side is

rather complicated.

Another result is that the on-shell supersymmetric BV action for 10-dimensional SYM is

given by

Seff =

∫
Tr

(
− 1

1440
F 2

µν − 1

320
ψγµDµψ − A∗

ρDρc + gc∗cc + g[ψ∗, ψ]c (1.4)

−3

2
(εγµψ)A∗

µ +
1

3
(εγµνψ∗)Fµν + ηµ

[
c∗∂µc − A∗

ν∂µAν + (ψ∗∂µψ)
]
− η∗µ(εγµε)

−40(εγµε)(ψ∗γµψ∗) + 80(εψ∗)2 − c∗(εγµε)Aµ

)

The most interesting here are the first two terms written in the last line. They are quadratic

in antifields and describe how the SUSY algebra closes on-shell (see section 2). This

expression becomes especially important in the context of recently discovered Materialized

Ghost Technique [19].

Through the whole paper we use the notation γµ
αβ to define the system of quadrics as

fµ(λ) = λαγµ
αβλβ. We would like to stress that we do not restrict ourselves to consider

γµ
αβ as conventional Dirac γ-matrices. We treat them as a set of constant matrices, sym-

metric w.r.t. α and β. As it was shown in [2] this ”extension” of the standard Berkovits’

construction allows to obtain a zoo of non-trivial effective theories for (1.1). Only for the

case of 10-d SYM γµ
αβ are conventional SO(10) γ-matrices.

1.1 From off-shell to on-shell theory through BV construction

First of all we would like to clarify the difference between off-shell and on-shell supersym-

metric descriptions of a theory.

Off-shell description. Suppose there is an action Scl and a closed algebra generated by

Qα and ∂µ, defined by {Qα, Qβ} = 2γµ
αβ∂µ. By off-shell description we mean the following.

Action Scl should be invariant under the transformation

δs
ǫS

cl = ǫαQαScl = 0, δs
ζS

cl = ζµ∂µScl = 0

and that the commutator of two SUSY transformations with parameters ǫ1 and ǫ2, being

applied to arbitrary field A from the action Scl should satisfy

[δǫ1 , δǫ2 ]A = 2(ǫ1γ
µǫ2)∂µA

In these formulas ζµ is parameter for translations.

– 5 –
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On-shell description. By on-shell description we mean that action Scl is invariant under

the transformation δScl = 0. However, the commutator of transformations, being applied

to a component field A contains corrections proportional to a gauge transformation and to

the equations of motion (e.o.m.)for some fields

[δǫ1 , δǫ2 ] = 2(ǫ1γ
µǫ2)∂µ + δgauge + R(ǫ1, ǫ2)(e.o.m.) (1.5)

Commutator in the l.h.s. should be applied to component fields. See section 2 and 3 for

details.

BV description. A convenient tool to treat an action and symmetries on the same

footing is to use BV formalism. The idea is to add to the classical action Scl(ϕ) (here ϕ

denotes all the fields) its symmetries Vα(ϕ) with ghosts εα (with opposite parity to ǫα) to

form BV action.

SBV = Scl + εαVα(ϕ)ϕ∗ + ηµ∂µϕϕ∗ + (εγµε)η∗µ. (1.6)

The fact that SBV satisfies BV equation is equivalent to the condition that Scl is off-shell

symmetric.

The idea is to integrate the action (1.6) over auxiliary fields. This integration preserve

BV invariance. Effective action after integration can be written as

Seff = Scl + εαVα(ϕ)ϕ∗ + ηµ∂µϕϕ∗ + (εγµε)η∗µ + (1.7)

+(terms quadratic in antifields) + (terms responsible for gauge fixing)

Here the set of fields ϕ in the equation (1.7) is different from the set of fields ϕ in the

equation (1.6). The same is true for the transformations Vα(ϕ). Thus action Seff also

satisfies BV equation. This BV action provides on-shell description of initial theory. From

the terms written in the second line of (1.7) one can straightforwardly extract corrections

arising in the commutator (1.5).

Thus our general philosophy can be summarized in the form of the figure 1.

First of all we unite an action and its symmetries in the form of BV action (SSUSY), i.e.

coupled to superghosts. Then we integrate over lagrangian submanifold to find effective

action, having non-standard coupling to ghosts. Finally we extract information about

on-shell theory from this effective BV action.

2. Quantum mechanics

We start from the simplest example - supersymmetric quantum mechanics. One can write

the off-shell SUSY-invariant action (2.2) by introducing auxiliary field D. Integrating out

this field one can obtain the action which contains only physical degrees of freedom, but is

no longer off-shell invariant. This means that the algebra of SUSY-transformation can be

closed only on-shell.

The algebra of supersymmetry is given by

{Q, Q̄} = 2i∂t (2.1)

Q2 = Q̄2 = 0

– 6 –
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Figure 1: General philosophy.

its representation in superspace is

Q = ∂θ + iθ̄∂t

Q̄ = ∂θ̄ + iθ∂t

and the general superfield is given by

Φ = x + θψ̄ + θ̄ψ + θθ̄D

The question which we discuss in the present section is: How can the on-shell SUSY

invariance be described using BV language?

The off-shell SUSY invariant action for quantum mechanics can be written as:

SQM =

∫
dt

(
1

2
(∂tx)2 − iψ̄∂tψ +

1

2
D2 − W (x)′D − W (x)′′ψψ

)
(2.2)

Here W (Φ) stands for the superpotential. The transformations of the component fields

δΦ = (εQ + εQ)Φ are

δx = ǫψ̄ + ǭψ

δψ = −ǫ(i∂tx + D) (2.3)

δψ̄ = ǭ(−i∂tx + D)

δD = iǭ∂tψ − iǫ∂tψ̄

Using these expressions it is straightforward to calculate the commutator of two supersym-

metry transformations

[δ1, δ2]ψ = 2i(ǭ1ǫ2 − ǭ2ǫ1)∂tψ (2.4)

This result is consistent with the algebra (2.1), which states that anticommutator of SUSY-

charges is proportional to the shift transformation. Now we integrate upon the auxiliary

– 7 –
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field D, substituting D = W
′

(x). Conducting similar computations for the commutator

one can find

[δ1, δ2]ψ = 2i(ǭ1ǫ2 − ǭ2ǫ1)∂tψ − (ǭ1ǫ2 − ǭ2ǫ1)(i∂tψ − W ′′ψ) + 2ǫ1ǫ2(i∂tψ̄ + W ′′ψ̄) (2.5)

The terms in the second line are proportional to the equations of motion for the fermions.

From this result it is clear that the SUSY algebra (2.1) is satisfied only on-shell. In

a moment we will explain how it is possible to derive these additional terms using BV

language. In the section 4 we will show that similar terms arise after integrating out

auxiliary fields in the action (1.1).

Let us add BV antifields and ghosts to the classical action for SUSY QM

SBV =

∫
1

2
(∂tx)2 +

1

2
D2 − iψ̄∂tψ − (W ′D + W ′′ψψ) (2.6)

+(εψ̄ + ε̄ψ)x∗ − ε(i∂tx + D)ψ∗ + ε̄(−i∂tx + D)ψ̄∗ + (iε̄∂tψ − iε∂tψ̄)D∗

+η∂txx∗ + η∂tψψ∗ + η∂tψ̄ψ̄∗ + η∂tDD∗ + 2iεε̄η∗

The first line of this expression is the classical action for SUSY QM, the second one is

BV structure of SUSY transformation (see (2.3) for the transformations of the component

fields), the last line contains BV structure for translations in time (this is necessary to close

the algebra of symmetry) and the term with the structure constants for the symmetry al-

gebra (the last term). We would like to emphasize the difference between parameter ǫα of

SUSY transformation (see for example (2.5) ) and the ghost εα for SUSY transformation

used in (2.6). The first one is odd variable, the second one is even. There is complete

analogy with gauge theories here: parameter of gauge transformation is even, while pa-

rameter of BRST transformation (Faddeev-Popov ghost) is odd. The parity of the ghost

for the transformation is always opposite to the parity of the parameter. The ghost field

for translations is denoted by η (odd variable), the BV anti-ghost for translations is η∗

(even variable).

Action (2.6) satisfies classical BV equation:
∫

δLS

δχ

BV δRS

δχ∗

BV

=

∫
δLS

δx

BV δRS

δx∗

BV

+
δLS

δψ

BV δRS

δψ∗

BV

+
δLS

δψ̄

BV δRS

δψ̄∗

BV

+
δLS

δD

BV δRS

δD∗

BV

+
δLS

δη

BV δRS

δη∗

BV

= 0 (2.7)

Here χ stands for all the fields. There are no terms arising from the variation over ε and

ε because the action SBV is independent of the antifields ε∗ and ε∗. Integrating BV action

over a lagrangian submanifold results into effective action which again satisfies BV equation

(the simplistic explanation of this fact is given in the section 2 of [2], for the rigorous proof

see [4]). Let us integrate over the auxiliary field D on the lagrangian submanifold D∗ = 0

(this is a lagrangian submanifold in the space of auxiliary fields D and D∗). The result for

the effective action is:

Seff =

∫
1

2
(∂tx)2 − iψ̄∂tψ − 1

2
W ′2 − W ′′ψψ̄

+(εψ̄ + ε̄ψ)x∗ − iε∂txψ∗ − iε̄∂txψ̄∗ − W ′(εψ∗ − ε̄ψ̄∗)

+η∂txx∗ + η∂tψψ∗ + η∂tψ̄ψ̄∗ + 2iεε̄η∗ − 1

2
(εψ∗ − ε̄ψ̄∗)2 (2.8)

– 8 –
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Similarly to (2.6) in the first line we have classical action, in the second one - SUSY

transformations of the remaining fields, the third line contains BV structure for translations

and the structure constants term.

The most interesting term appears in the last line. It is quadratic in the antifields and

quadratic in the ghosts ε and ε̄. Let us decompose the effective action Seff into two parts

Seff = S
S

+ Sadd, where Sadd = −1
2(εψ∗ − ε̄ψ̄∗)2. Subscript ”S” in S

S
denotes the action

with standard (linear in antifields) coupling to ghosts. Since (2.8) is obtained from the

integration of BV action over the lagrangian submanifold in the space of auxiliary fields,

Seff satisfies classical BV equation, which can be written as

0 =

∫
δLS

δχn

effδRS

δχ∗
n

eff

=

∫
δLS

S

δχn

δRS
S

δχ∗
n

+
δLS

S

δψ

δRS

δψ∗

add

+
δLS

S

δψ̄

δRS

δψ̄∗

add

(2.9)

Taking into account explicit expressions for Sadd and S
S

one can rewrite this result as

0 =

∫
δLS

δχn

effδRS

δχ∗
n

eff

=

∫
δLS

S

δχn

δRS
S

δχ∗
n

+
δLS

δψ

QM(
εε̄ψ̄∗−ε2ψ∗

)
+

δLS

δψ̄

QM(
εε̄ψ∗−ε̄2ψ̄∗

)
(2.10)

where SQM is the classical action for quantum mechanics (2.2). One can see that the

last two terms vanish on the equations of motion for the fields ψ and ψ̄. Reducing equa-

tion (2.10) to the solutions of the classical equations of motion one can obtain

∫
δLS

S

δχn

δRS
S

δχ∗
n

∣∣∣∣∣
on the e.o.m.

= 0

which is the condition of SUSY invariance. This condition however is valid only on-shell.

What is important for us from this calculation is that appearance of ε2(χ∗)2 terms

in the effective action signals the descent of off-shell invariance of the fundamental action

down to on-shell invariance of the effective action.

2.1 General case

Though this effect was illustrated using the simplest possible example — supersymmetric

QM interpretation of these terms (quadratic in antifields and in the ghosts for SUSY) is

universal and does not depend on the particular theory. To demonstrate this one can write

the general structure of effective action as

Seff = Scl + cαV n
α χ∗

n − 1

2
fγ

αβcαcβc∗γ + Sadd, (2.11)

where we used the notation V n
α = Qαχn in the term describing the transformation of the

component fields. The algebra of symmetry is given by [Qα, Qβ ] = fγ
αβQγ and cα are ghosts

for this algebra. One can straightforwardly plug this action into the classical BV equation

and collect the terms linear in antifields. The result is given by

cαV k
α cβ

δV n
β

δχk
χ∗

n − 1

2
V n

α χ∗
nfα

βγcβcγ +
δScl

δχk

δSadd

δχ∗
k

= 0. (2.12)
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Varying this expression w.r.t. cα, cβ and χ∗
n one can find

V k
α

δV n
β

δχk
+ V k

β

δV n
α

δχk
− fγ

αβV n
γ +

δScl

δχk

δ(4)Sadd

δcαδcβδχ∗
kδχ∗

n

= 0, (2.13)

which is equivalent to

[Qα, Qβ]χn = fγ
αβQγχn − δScl

δχk

δ(4)Sadd

δcαδcβδχ∗
kδχ∗

n

= 0, (2.14)

and coincides with (2.5): the commutator of δ1 and δ2 is connected with the commutator

of Q.

Thus the non-standard terms (quadratic in antifields) in BV action are in one-to-one

correspondence with the corrections proportional to the equations of motion (2.5). This

result is not new. For the non-complete list of references on the subject see [7].

3. Wess-Zumino gauge

In this section we realize the gauge fixing procedure using the BV language in the simple

and well known example: Wess-Zumino gauge in N = 1 four dimensional super-Maxwell

theory. We find non-standard terms in the solution of BV Master Equation responsible

for the fact that the Wess-Zumino gauge is not supersymmetric (the SUSY transformation

of the vector multiplet in the Wess-Zumino gauge gives the fields which are absent in

this gauge; to restore the Wess-Zumino gauge one should make an appropriate gauge

transformation). In the next section we will demonstrate that exactly these terms appear

in the effective action for (1.1) after evaluation on the cohomologies of Q operator. This

observation will lead to the conclusion that the action (1.1) contains the full multiplet of

auxiliary fields needed to restore the SUSY invariance, while in the effective action these

fields are integrated out.

3.1 Gauge-fixing procedure in BV description

In this subsection we will show that restriction of the Master Action of BV formalism to

the certain lagrangian submanifold gives Faddeev-Popov action in the fixed gauge. As an

example consider the BV action for the gauge invariant action Scl which depends only on

the gauge field (no matter fields):

SBV = Scl +

∫
Dac

µ cc(Aa
µ)∗ − 1

2
fa

bcc
bcc(ca)

∗ (3.1)

We are going to restrict this action to the certain lagrangian submanifold Lf . The definition

of Lf is given by: 



(ca)∗ = 0

fa(A) = 0

(Aa
µ)∗ = − ∂fb

∂Aa
µ
cb

ca−is not restricted

(3.2)
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Thus coordinates on this submanifold are ca, ca and Aa
µ restricted by the constraint fa(A) =

0 . The first coordinate ca is not restricted, while there is the constraint fa(A) = 0,

imposed on the field Aa
µ. The additional degree of freedom appearing in the field (Aa

µ)∗ is

parameterized by cb. As we will show in a moment this coordinate cb on the submanifold

is nothing but Faddeev-Popov antighost field. It is straightforward to check that (3.2) is

indeed a lagrangian submanifold:

δχ∗
n ∧ δχn = δc∗ ∧ δc + δ(Aa

µ)∗ ∧ δAa
µ

= δAa
µ ∧ δ

(−∂f b

∂Aa
µ

cb

)

= −δAa
µ ∧ ∂2f b

∂Ac
ν∂Aa

µ

cbδAc
ν − δAa

µ ∧ δcb ∂f b

∂Aa
µ

=
∂2f b

∂Ac
ν∂Aa

µ

cbδAa
µ ∧ δAc

ν − δfb ∧ δcb

= 0 (3.3)

We start with BV symplectic form written for all the fields and antifields of the theory. In

the second equality we used (ca)∗ = 0 and plugged (Aa
µ)∗ from (3.2). In the next equality

we apply operator δ to ∂fb

∂Aa
µ

and to cb. The first term in the last equality vanishes because

∂2fb

∂Ac
ν∂Aa

µ
is symmetric under interchange Aa

µ ↔ Ac
ν while δAa

µ ∧ δAc
ν is antisymmetric. The

second term is equal to zero because of the constraint f b = 0 in (3.2).

Restricting the action (3.1) to the lagrangian submanifold (3.2) one can obtain

SBV

∣∣∣∣
Lf

== Scl +

∫
Dac

µ cc(Aa
µ)∗ − 1

2
gfa

bcc
bcc(ca)∗

∣∣∣∣
Lf

= Scl − Dac
µ cc ∂fb

∂Aa
µ

cb

∣∣∣∣
fb(A)=0

which is Faddeev-Popov action in the fixed gauge and the coordinate on the lagrangian

submanifold c̄b is Faddeev-Popov antighost field.

Summarizing this calculation one can see that to fix the certain gauge one should plug

the gauge restriction on the fields into the action, integrate over the corresponding antifield,

introducing the coordinate on the lagrangian submanifold according to (3.2), and put the

BV antifield for the ghost equal to zero, integrating over the ghost.

3.2 Gauge-fixing of the Wess-Zumino gauge

We start from a set of definitions for the SUSY multiplets. We use the standard 2-d

notations for the superfields (see for example [9]). In these notations the chiral multiplet

is given by

Λ = (a + ib)(y) + θψ(y) − θθF (y) (3.4)

= (a + ib) + θψ + iθσµθ̄∂µ(a + ib) − θθF − i

2
θθ∂µψσµθ̄ − 1

4
θθθθ∂2(a + ib)
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the contraction of indices is given by θθ = θαθα, while θθ = θ̄α̇θ̄α̇ and yµ = xµ+iθσµθ̄. The

SUSY variation of component fields can be found by direct application of SUSY charges:

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ (3.5)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσµ

βα̇∂µ

(here ∂µ denotes the derivative w.r.t. xµ) according to the rule

δΛ = (ǫQ + ǫQ)Λ

Performing simple calculations one can find:

δa =
1

2
(ǫψ + ǫψ)

δb =
i

2
(ǫψ − ǫψ) (3.6)

δψ = −2ǫF − 2i∂µ(a + ib)ǭσ̄µ

δF = −iǭσ̄µ∂µψ

Similar computation for the vector multiplet

V (x, θ, θ̄) = C + iθχ − iθχ + θσµθ̄Aµ +
i

2
Mθθ − i

2
Mθθ + (3.7)

+iθθ

(
θλ +

i

2
θ̄σ̄µ∂µχ

)
− iθθ

(
θλ +

i

2
θσµ∂µχ̄

)
+

1

2
θθθθ

(
D − 1

2
∂2C

)

gives the following component transformations:

δC = iǫχ − iǫχ

δχ = ǫM − ∂µC ǭσ̄µ + iAµǭσ̄µ

δAµ = −(ǫ∂µχ) + i(ǫσµλ̄) − ǫ∂µχ + iǭσ̄µλ (3.8)

δλ = iǫD − 1

2
ǫ(σν σ̄µ − σµσ̄ν)∂µAν

δD = −ǫσµ∂µλ̄ + ǭσ̄µ∂µλ

δM = 2ǫλ + 2i(ǭσ̄µ∂µχ)

It is well known that the gauge transformation for the vector multiplet is given by:

V −→ V +
1

2
(Λ + Λ̄)

which in component fields gives:

δC = a

δχ = − i

2
ψ

δχ̄ =
i

2
ψ̄ (3.9)
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δAµ = −∂µb

δM = −F̄ ,

δM̄ = −F

δλ = δλ̄ = δD = 0

Now we are going to demonstrate how it is possible to fix the Wess-Zumino gauge in the

abelian super Maxwell theory using BV formalism. We will show that after the gauge

fixing some non-standard terms appear in the BV action. These terms are responsible

for the fact that the Wess-Zumino gauge is not supersymmetric - commutator of two

SUSY transformations, should be accompanied by the appropriate gauge transformation

to return into the Wess-Zumino gauge. As before we introduce the ghosts for the SUSY

transformations: ε and ε̄ and the ghosts for translations ηµ. The full Master Action of BV

formalism can be schematically written as:

SBV =

∫
−1

4
F 2

µν − iλσµ∂µλ̄ +
1

2
D2 +

1

2
(Λ + Λ̄)V ∗ (3.10)

+(εQ + εQ + ηµ∂µ)VV ∗ + (εQ + εQ + ηµ∂µ)ΛΛ∗ − 2iη∗µ(εσµε̄)

In the first line of this expression the classical abelian gauge invariant action is written.

The second line contains the gauge and SUSY transformation of all the fields as well as

the structure constant term resulting from the anticommutator of the SUSY charges (

{Qα, Q̄α̇} = 2iσµ
αα̇∂µ ). To write explicit expressions in the component fields one should

take the component transformations from (3.6), (3.8), (3.9) and multiply them by the

appropriate antifield. For example one of the terms resulting from 1
2(Λ + Λ̄)V ∗ gives

−∂µb(Aµ)∗ (see the fourth line of (3.9) ).

Warning. The fields of chiral multiplet are ghosts for the gauge transformation. Hence

their parities are opposite to the standard parities of the component fields in the chiral

multiplet. The fields a, b, F , F̄ are odd, while ψ and ψ̄ are even.

Now we are going to fix the Wess-Zumino gauge C = 0, χ = 0, M = 0 using the

procedure discussed in the subsection 3.1. To do this one should put the fields: C, χ, χ̄, M ,

M̄ equal to zero as well as antighosts: a∗, ψ∗, ψ̄∗, F ∗, F̄ ∗ and integrate over the antifields

C∗, χ∗, χ̄∗, M∗, M̄∗ as well as over the ghosts a, ψ, ψ̄, F , F̄ . Direct computation taking

into account the parities of all the fields gives1

Seff =

∫ [
− 1

4
F 2

µν − iλσµ∂µλ̄ +
1

2
D2 − ∂µb(Aµ)∗

+i(εσµλ̄ + λσµε̄)A∗
µ −

(
εσµ∂µλ̄ − ∂µλσµε̄

)
D∗

+

(
iεD − 1

2
ε(σµσ̄ν − σν σ̄µ)∂µAν

)
λ∗ +

(
− iε̄D − 1

2
(σ̄νσµ − σ̄µσν)ε̄∂µAν

)
λ̄∗

+
(
ηµ∂µAνA∗

ν + ηµ∂µDD∗ + ηµ∂µλλ∗ + ηµ∂µλ̄λ̄∗ + ηµ∂µbb∗
)
− 2i(εσµ ε̄)η∗µ

−2i(εσµε̄)Aµb∗
]

(3.11)

1Here we denote the gauge ghost by b to avoid confusion with the first component C of the vector

multiplet.
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The aim of this calculation was to demonstrate the appearance of the last term 2iεσµε̄Aµb∗.

Following the logic mentioned in the end of the previous section one can check that these

terms are responsible for the fact that the gauge which is fixed is not consistent with the

supersymmetry. The algebra of SUSY is closed only up to the gauge transformation with

parameter (εσµε̄)Aµ. In the next two sections we will show, that the terms discussed in

the sections 2 and 3 are exactly those which arise when one integrates out auxiliary fields

in the action (1.1) to obtain effective action. This will be shown for the model found in [2]

and for Berkovits’ 10-dimensional SYM theory.

4. Superfield formulation of gauge model of [2]

In [2] we introduced the model that is believed to be the simplest example in the class of

physically interesting models. Despite of its own interest this model can be considered as a

toy model which inherits almost all the phenomena related to the descent of supersymmetry

in case of 10-dimensional SYM, which is the main subject of the present paper. In [2] it was

demonstrated that the classical part of effective BV action calculated for the theory (1.1)

in case the system of quadratic constraints fµ(λ) is given by:

f1 = λ1λ2

f2 = λ2λ3

f3 = λ3λ4 (4.1)

f4 = λ2
1

f5 = λ2
4

can be written as:

Scl =

∫
d2x Tr

(
ΦF+− + D+φ1D−φ1 + D−φ2D+φ2

− g√
2
φ1{ψ+, ψ−} + i

g√
2
φ2{ψ+, ψ−} + β+D−γ+ (4.2)

+β−D+γ− + ψ−D+ψ− + ψ+D−ψ+ + χ−D+χ−

+χ+D−χ+ + 2gχ−[γ−, ψ+] + 2gχ+[γ+, ψ−]

)

The aim of this section is to explain that this action is invariant under the global super-

symmetry transformation on-shell in the same sense that N = 1 Yang-Mills action in the

Wess-Zumino gauge is invariant under the supersymmetry transformation (the action is

invariant and the SUSY algebra is closed up to an appropriate gauge transformation). An-

other point is that action (1.1) is the off-shell version of the theory (4.2) without elimination

of auxiliary fields like C, ψ, M in the Wess-Zumino gauge.

4.1 Initial BV action

Firstly we notice that there is an odd supersymmetry generator, built using the quadrics

fµ(λ), which anticommutes with the Berkovits operator

QB = Q + Φ = λα
∂

∂θα
+ θα

∂fµ

∂λα
∂µ (4.3)
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This SUSY generator is given by:

QSUSY

α =
∂

∂θα
− 1

2
θβ

∂2fµ

∂λβ∂λα
∂µ (4.4)

By straightforward calculation one can see that

{QB , QSUSY

α } =
∂fµ

∂λα
∂µ − 1

2
λβ

∂2fµ

∂λβ∂λα
∂µ = 0

This is true, because the functions fµ(λ) are quadratic in λα. Substituting explicit ex-

pressions for quadrics fµ(λ) one can find the following expressions for the supersymmetry

generators(we omit the superscripts SUSY):

Q1 =
∂

∂θ1
− 2θ1∂+ Q2 =

∂

∂θ2

Q4 =
∂

∂θ4
− 2θ4∂− Q3 =

∂

∂θ3
(4.5)

We remind that following [2] we consider the reduction from 5-dimensional space to 2-

dimensions, putting ∂1 = ∂2 = ∂3 = 0 and ∂4 = ∂+, ∂5 = ∂−. We are going to concentrate

our consideration on the first non-trivial generator Q1 which forms the closed algebra with

the generator ∂+. The commutation relations are:

{Q1, Q1} = −4∂+

[Q1, ∂+] = 0

[∂+, ∂+] = 0 (4.6)

The idea is to add the sources ε and η for the generators Q1 and ∂+ to the fundamental

action (1.1) to form the BV action:

SSUSY =

∫
Tr

(
< P, QBA > +g < P,A2 > +ε < P, Q1A > +η < P, ∂+A > −2ε2η∗

)

(4.7)

We remind that the field A is a generic superfield build out of λα, θα and component

fields. P is a generic element of the space dual to the space of superfields (dual superfield).

The component fields of A and P are different. Canonical pairing < , > is defined as

< ea, eb >= δa
b . Here ea is a basis in the space of λ and θ and ea is dual basis in the dual

space.

By direct substitution one can check that this action satisfies classical BV equation

∫
Tr

(
δLS

δA

SUSYδRS

δP

SUSY

+
δLS

δε

SUSYδRS

δε∗

SUSY

+
δLS

δη

SUSYδRS

δη∗

SUSY
)

= 0

The action does not depend on ε∗, hence the second term in the Master Equation is

automatically zero. Action (4.7) satisfies this equation under the following conditions:

1. Operator QB is nilpotent Q2
B = 0.

– 15 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
4

2. Generators Q1 and ∂+ satisfy the commutation relations (4.6).

3. Operator QB commutes with the generators as: {QB , Q1} = 0 and [QB, ∂+] = 0.

4. Operators QB, Q1 and ∂+ differentiate multiplication of superfields A, i.e. satisfy

Leibnitz identity.

5. The field ε is even, the field η is odd, A and P are odd and even superfields respec-

tively.

6. The fields ε and η (as well as ε∗ and η∗) are ghosts for the global symmetry, hence

do not depend on space-time coordinates.

We are going to integrate out all the fields in the action (4.7) from the complement to the

space of cohomologies H(Q). Here operator Q = λα
∂

∂θα
is the first term in (4.3). These

cohomologies were calculated in the paper [2] using the tower of fundamental relations,

see also [10] for the same calculation via localization technique. Thus we are going to

decompose the fields

A = A + a

P = P + p

onto the superfield A of cohomologies of H(Q) and the superfield a on the complement

to H(Q). The same decomposition on P and p is done in the dual space. The idea is to

integrate over a and p to obtain effective action on the component fields of A and P.

The sources ε and η for the supersymmetry and translations will allow to control

the supersymmetric properties of the effective action. The next subsection contains the

calculation of effective action using the Feynman diagram technique established in [2].

4.2 Calculation of effective action

For the calculations in this section we use the notations of section 6 of [2]. The physical

degrees of freedom — representatives of cohomologies of operator Q, are presented in the

table. The first column gives polarizations for the component fields, the second one -

notations for the component fields of A, the last one - notations for the component fields

of P. To compute effective action one has to sum up all connected tree diagrams with

the external legs being the component fields of A (input lines in the diagram) and P (the

output line). As it was explained in [2] each diagram can have only one output line.

Conducting this calculation one has to remember that the diagrams having the prop-

agator (wavy line), like the diagrams 4,5,6,7 in the figure 2, should be added with the

relative minus sign to the diagrams without propagator, like the diagrams 1,2,3 in the

figure 2. The simplest argument for this can be given in Minkowski space. Each operator

insertion, like Φ, εQ1 or η∂+, contributes a factor of i (complex unity), coming from the

exponent, the propagator (wavy line) also contributes a factor of i. Hence the diagrams

1,2,3 are proportional to i, while the diagrams 4,5,6,7 are proportional to −i (there are two

operators and one propagator). That is why to find the result for the effective action one
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Polarization Field Antifield

1 c c̃

λ1θ2 + λ2θ1 γ+ γ̃+

λ2θ3 + λ3θ2 ϕ ϕ̃

λ3θ4 + λ4θ3 γ− γ̃−
λ1θ1 A+ Ã+

λ4θ4 A− Ã−

λ1θ1θ2 ψ+ ψ̃+

λ4θ4θ3 ψ− ψ̃−

λ2θ3θ1 χ+ χ̃+

λ3θ2θ4 χ− χ̃−

λ1λ4θ1θ4 ϕ1 ϕ̃1

λ1λ4θ4θ2 + λ2λ4θ4θ1 ϕ2 ϕ̃2

λ1λ3θ1θ4 + λ1λ4θ1θ3 ϕ3 ϕ̃3

λ1λ4θ1θ4θ3 ϕ4 ϕ̃4

λ1λ4θ1θ2θ4 ϕ5 ϕ̃5

λ1λ3θ1θ2θ4 + λ1λ4θ1θ2θ3 ϕ6 ϕ̃6

λ2λ4θ1θ4θ3 + λ1λ4θ2θ4θ3 ϕ7 ϕ̃7

λ1λ4θ1θ2θ3θ4 ϕ8 ϕ̃8

Table 1: Complete spectrum of cohomologies

Figure 2: Linear level.

has to sum all the diagrams without propagator and subtract all the diagrams with one

propagator. It is straightforward to demonstrate that it is impossible to draw the diagrams

with more than one propagator by calculating the degree in λ and θ in the final expression

before taking the projection onto cohomologies.

4.2.1 Linear level

Firstly, consider the linear problem (gauge coupling constant g = 0). The list of the

diagrams giving nonzero result is presented in the figure 2.

A lot of diagrams are absent in this figure. To prove this fact one has to count the

degrees of lambda and theta. For example, the diagrams with three insertions of operator

Φ are absent. This is true because each insertion of operator Φ gives multiplication by θλ,

and these diagrams should have at least 2 propagators, each carrying degree θ/λ. Thus

these diagrams should change the degree in λ and θ by: ( θ
λ
)2(λθ)2 = θ4. However, there
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Figure 3: Forbidden subdiagrams.

are no two representatives of cohomologies, having equal number of λ and difference 4 in

the degree of θ.

Another example of vanishing sub-diagrams is presented in the figure 3. In the first

fragment propagator is applied to cohomology, this diagram is equal to zero. Really,

propagator gives non-zero result only if it is applied to Q-exact expression (see section

3 of [2] for details). The same is true for the second fragment because the image of the

propagator has zero projection onto cohomologies. In the last fragment we meet square

of propagator which is equal to zero. Returning to the diagrams in the figure 2 we recall

that the first and the last diagrams in the first line does not contain ghosts for SUSY or

translations, hence they have been already calculated in [2]. Below we give a schematic

illustration of the procedure for calculation of other diagrams.

1. The simplest one is with the insertion of η∂+ operator(the third diagram in the

figure 2). Each of 18 fields contributes to this diagram in a trivial way: if input line

is the certain field then output line exactly projected to its antifield.

η(c̃∂+c + . . . + ϕ̃8∂+ϕ8) (4.8)

2. Consider the diagrams with the insertion of operator Q1 (the second diagram in the

figure 2). Among all 18 fields of the theory only 8 give contribution to this diagram.

They are: γ+, χ+, ψ+, ϕ, ϕ2, ϕ5, ϕ7, ϕ8. Consider for instance γ+ as an input line:

γ+ : εQ1(λ1θ2 + λ2θ1)γ+ = ε(λ2γ+ − 2λ1θ1θ2 ∂+γ+)
Projection−−−−−−−→ −2ε ψ̃+∂+γ+.

To project the result written on the l.h.s of the arrow one should look at the 7th line

of the table with the polarizations (cohomologies). Conducting the same procedure,

one can obtain the contributions of all 8 fields to the effective action. The result is

given by:

∆S
(Q1)
Lin =

∫
Tr

(
− 2εψ̃+∂+γ+ + 2εϕ̃8∂+ϕ7 + 2εϕ̃5∂+ϕ2 (4.9)

+
1

2
εγ̃+ψ+ − 1

2
εϕ̃χ+ − 1

2
εϕ̃2ϕ5 −

1

2
εϕ̃7ϕ8

)

A little bit more difficult is to calculate the diagrams with the propagator. The prop-

agator K is defined in the section 3 of [2]. Roughly speaking it acts as follows: K,

acting on representatives of cohomologies gives zero; being applied to exact expres-

sions propagator gives the pre-image (K(Qω) = ω) of operator Q; propagator, being

applied to certain non-closed expressions gives zero (see [2] for details).
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3. The diagrams containing Φ and Q1 (the 5th and 6th diagrams in the figure 2). In

case ΦQ1-diagrams ( Q1 acts first), input lines are γ+, ϕ2, ϕ7. Consider for example

γ+:

ΦKεQ1(λ1θ2 + λ2θ1)γ+ = εΦK(λ2γ+ − 2λ1θ1θ2 ∂+γ+)

= εΦK
(
Q(θ2γ+) − 2λ1θ1θ2 ∂+γ+

)
,

the second term in the r.h.s. is proportional to the cohomology and propagator acts

on it as zero.

εΦK
(
Q(θ2γ+) − 2λ1θ1θ2 ∂+γ+

)
= εΦθ2γ+

= 2ελ1θ1θ2∂+γ+ + 2ελ4θ4θ2∂−γ+ (4.10)

In this simple example one can see the key feature of this calculation. The first term

in the r.h.s. has the polarization of ψ̃+ (see line 7 in the table) hence one can project

this term to 2ε ψ̃+∂+γ+. The second term is nonclosed, but it was mentioned before

each expression has a chance to sum up with similar term from another diagram

to form a closed result. This closed result can have a non-trivial projection onto

cohomologies. The result for the remaining two input lines and γ+ is the following

∆S
(ΦQ1)
Lin =

∫
Tr

(
2εϕ̃8∂+ϕ7 − 2εψ̃+∂+γ+ + 2εϕ̃5∂+ϕ2

)
. (4.11)

Finally, in case Q1Φ (Φ acts first) there are no proper input fields resulting in the

closed expression.

4. Diagrams containing Q1Q1. These diagrams are the most interesting in the sense,

that they give terms proportional to ε2. From the section 2 we know how to interpret

this terms. Possible input lines for this diagram are: A+, ϕ1, ϕ3, ϕ4, ϕ6. The resulting

contribution to the effective action is

∆S
(Q1Q1)
Lin =

∫
Tr

(
− ε2c̃A+ − ε2Ã−ϕ1 − ε2γ̃−ϕ3 − ε2ψ̃−ϕ4 − 2ε2χ̃−ϕ6

)
.

5. After all one should examine all nonclosed results coming from all the diagrams.

There are six such terms. Corresponding in-lines are γ+, γ−, A+, A−, ϕ. Among

these six terms only the field ϕ is summed up into a non-zero contribution into

effective action. One nonclosed part comes from Q1Φ diagram, another part comes

from nonpropagating diagram with Q1 inserted.

εQ1ϕ = −2ε(λ2θ1θ3 + λ3θ1θ2)∂+ϕ

εQ1KΦ ϕ = 2ελ1θ2θ3∂+ϕ

ε(Q1 − Q1KΦ)ϕ = −2ε(λ2θ1θ3 + λ1θ2θ3 + λ3θ1θ2)∂+ϕ

= 2ε
(
2λ2θ3θ1 − Q(θ1θ2θ3)

)
Proj.−−−→ 4εχ̃+∂+ϕ, (4.12)

since projection to cohomologies annihilates exact expressions.
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Figure 4: Nonlinear diagrams.

Now we are ready to write down the whole linear effective action with the sources ε

and η.

Seff
lin =

∫
Tr

(
ϕ̃1

(
2(∂+A− − ∂−A+)

)
+ϕ̃2

(
2∂−γ+ − 1

2
εϕ5

)
+ ϕ̃3

(
2∂+γ−

)
(4.13)

+ϕ̃4

(
2∂+ψ−

)
+ ϕ̃5

(
2∂−ψ++4ε ∂+ϕ2

)
+ϕ̃6

(
∂+χ−

)
+ ϕ̃7

(
∂−χ+− 1

2
εϕ8

)

+ϕ̃8

(
+8∂+∂−ϕ+4ε ∂+ϕ7

)
+ γ̃+

(1

2
εψ+

)
+γ̃−

(
−ε2ϕ3

)
+ϕ̃

(
− 1

2
εχ+

)

+Ã+

(
2∂+c

)
+ Ã−

(
−ε2ϕ1+2∂−c

)
+ ψ̃+

(
−4ε ∂+γ+

)
+ψ̃−

(
− ε2ϕ4

)

+χ̃+

(
4ε ∂+ϕ

)
+χ̃−

(
− 2ε2ϕ6

)
+c̃

(
−ε2A+

)
+ η

(
c̃ ∂+c+. . .+ϕ̃8∂+ϕ8

)
−2η∗ ε2

)

4.2.2 Nonlinear level

Fortunately there is quite small number of additional diagrams arising after switching on

the interaction. They are depicted in figure 4. All calculations are completely analogous

to linear case.

One can straightforwardly check that only ≪ εg ≫ order survives. As in the previous

case two pairs of nonclosed constructions find each other and result into

∆S1
Nonlin =

∫
Tr

(
2εgχ̃+[A+, ϕ] − 4εgχ̃−[γ+, γ−]

)
(4.14)

other terms are “purely” projected, i.e. each diagram gives closed result and can be pro-

jected separately without summing up with another diagram.

∆S2
Nonlin =

∫
Tr

(
− 2εg ψ̃+[A+, γ+] − 2εg ϕ̃5[ϕ1, γ+] − 2εg ϕ̃6[ϕ3, γ+] + 2εg ϕ̃8[ϕ4, γ+]

−2εg ϕ̃5[ϕ2, A+] − 2εg ϕ̃8[ϕ7, A+] +
1

2
εg ϕ̃8{ϕ1, χ+} −

1

2
εgϕ̃7[ϕ,ϕ1]

)
(4.15)

Finally we collect together the results of the work [2] and additional terms with sources for

SUSY. Effective lagrangian is given by

Leff =

[
ΦF+− + ϕ8{D+,D−}ϕ − gϕ8{ψ+, ψ−} + 2gχ̄−[γ−, ψ+] + 2gχ̄+[γ+, ψ−]

+β+D−γ+ + β−D+γ− + ψ̄−D+ψ− + ψ̄+D−ψ+ + χ̄−D+χ− + χ̄+D−χ+

]

+

[
2A∗

+∂+c + 2A∗
−∂−c + g

(
c∗cc + . . . + ϕ∗

8{ϕ8, c}
)]

+ η
[
c∗ ∂+c + . . . + ϕ∗

8∂+ϕ8

]

– 20 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
4

+ε

[
2χ∗

+D+ϕ − ϕ8D+χ̄∗
+ − 2ψ∗

+D+γ+ − 2ψ̄−D+β∗
+ +

1

2
β+ψ̄∗

+ + χ+ϕ∗
8 +

1

2
γ∗
+ψ+

−1

2
ϕ∗χ+ − g

(
χ̄+[ϕ,Φ∗] − 2ψ̄+[Φ∗, γ+] − 4χ̄−[β∗

−, γ+] +
1

2
ϕ8{Φ∗, χ+} − 2ϕ8[γ+, ψ̄∗

−]

+4ψ∗
+[γ+, γ−]

)]
− 2η∗ε2 + ε2

[
γ∗
−β∗

− + A∗
−Φ∗ + ψ∗

−ψ̄∗
− + χ∗

−χ̄∗
− − c∗A+

]
. (4.16)

Here we turn to the physical notations as it was in [2]. Namely,

D+ = 2∂+ + g[A+, ·],
D− = 2∂− + g[A−.·],

F+− = 2(∂−A+ − ∂+A−) + g[A+, A−] (4.17)

and fields

c,A±, . . . , χ± → c,A±, . . . , χ± (4.18)

c̃, Ã±, . . . , χ̃± → c∗, A∗
±, . . . , χ∗

±

ϕ̃1, ϕ̃2, . . . , ϕ̃7, ϕ̃8 → Φ, β+, β−, ψ̄−, ψ̄+, 2χ̄−, 2χ̄+, ϕ8

ϕ1, ϕ2, . . . , ϕ7, ϕ8 → −Φ∗,−β∗
+,−β∗

−,−ψ̄∗
−,−ψ̄∗

+,−1

2
χ̄∗
−,−1

2
χ̄∗

+,−ϕ∗
8

One can see that the terms discussed in sections 2 and 3 appear in the last brackets.

According to the discussions above, these terms are responsible for the descent of the

off-shell SUSY invariance of (1.1) down to on-shell SUSY invariance of (4.16).

5. Berkovits’ 10-d super Yang-Mills

In this section we apply the ideas developed earlier in this paper to the 10-d Super Yang-

Mills theory [3, 15]. This theory is more interesting from the physical point of view than

the model considered in the previous section. However, the off-shell description2 of this

model is more complicated because of the necessity to make Z2 projection on the space of

fields.

According to the ideology from the previous sections one should calculate effective

action for the theory

SSUSY =

∫
Tr

(
< P, QBA >+g < P,A2 >+< P, εαQs

αA >+< P, ηµP s
µA >−η∗µ(εγµε)

)

(5.1)

on the cohomologies of operator Q. Here we use the following notations

Q = λα ∂

∂θα
, QB = Q +

1

2
θα ∂fµ

∂λα
∂µ, εαQs

α = εα ∂

∂θα
− (εγµθ)

∂

∂xµ
, P s

µ =
∂

∂xµ
(5.2)

This calculation is done through the summation of all possible Feynman diagrams accord-

ing to the standard rules discussed in section 4 (see also [2]). The degrees of freedom

2The problem of off-shell formulation in the context of harmonic superspace was studied in [16].
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(representatives of Q-cohomologies) for this model are given by

Polarization A Dual polarization P

1 c 1 c̃

(λγµθ) Aµ (λγµθ) Ãµ

(λγµθ)(θγµ)α ψα (λγµθ)(θγµ)α ψ̃α

−16(λγµθ)(λγνθ)(θγµν)α ψ∗
α −16(λγµθ)(λγνθ)(θγµν)α ψ̃∗

α

10(λγµθ)(λγνθ)(θγµνρθ) A∗
ρ 10(λγµθ)(λγνθ)(θγµνρθ) Ã∗

ρ

(λγµθ)(λγνθ)(λγρθ)(θγµνρθ) c∗ (λγµθ)(λγνθ)(λγρθ)(θγµνρθ) c̃∗

(5.3)

The first and the third columns contain the polarizations (representatives of cohomologies)

for the fields and antifields respectively, the second column gives the component fields of the

superfield A and the fourth one the component fields of the superfield P. The component

fields in the fourth column are BV antifields to the component fields in the second column.

For example c̃ is BV antifield to c. The same is true for other fields. Let {eB} denote the

basis in the space of functions of λ and θ. Let {eA} denote the dual basis in the dual space.

There is a canonical pairing among them, that we denote as < , >: < eA, eB >= δA
B . For

example

< 1, 1 >= 1, < 1, (λγµθ) >= 0

5.1 Doubling

From the table (5.3) we see that the number of fields and anti-fields in the theory is twice

the number of the fields we expect to have in SYM. The second column contains all the

fields needed for BV version of SYM (this is true if one can think about the fields with the

star-sign as antifields for the corresponding fields). In addition to them there are their BV

antifields marked by tilde-sign (the content of the fourth column). At the present moment

BV bracket is simply the canonical pairing, between P and A.

We will call this theory, effective for (5.1), the pre-SYM. This funny name is due to

the fact that the pre-theory and the theory (SYM) are related by the simple transformation

which will be discussed in section 5.4 below. Roughly speaking, in order to get SYM itself

one should identify some fields and antifields of the effective pre-theory as it is shown in

the table (5.14).

5.2 Technical subtleties in the calculation of pre-SYM action

In the calculation we follow the standard technique. However it is technically complicated

to project on cohomologies of Q. Instead we implement the following procedure [11].

Consider the space of functions of the 3-rd power in λ and the 5-th power in θ. Consider

the subspace of this space V1 generated by two elements

(λγµθ)(λγνθ)(λγρθ)(θγabcθ) (λγµνρθ)(λγpθ)(λγqθ)(θγabcθ) (5.4)

This space V1 can be decomposed into the sum of irreducible representations. The only

cohomology in this space is h3,5 = (λγµθ)(λγνθ)(λγρθ)(θγµνρθ), which is a scalar. Con-

sider linear functional ≪≫ on the space V1 such that it maps cohomology h3,5 to 1 and
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non-trivial representations to zero. Namely [11]

≪(λγµθ)(λγνθ)(λγρθ)(θγabcθ)≫ =
1

120
δµνρ
abc (5.5)

≪(λγµνρθ)(λγpθ)(λγqθ)(θγabcθ)≫ =
1

70
δ
[µ
[p ηq][aδ

ν
b δ

ρ]
c]

The coefficient is restored from the condition that the cohomology h3,5 is mapped to unity.

In the computations that we perform we replace projection to cohomologies by the

following procedure. For each representative ha from the table (5.3) define a complementary

representative db such that3

≪ha · db≫ = δab (5.6)

Here the product is induced by the multiplication of functions of λ and θ. To project some

expression Ω onto the representative h one should instead calculate the product with the

complementary representative d

Ω
∣∣
ha

= (−1)#da+1 ≪da · Ω≫ (5.7)

Here #da denotes the parity of the representative da. It happens that with our choice of

representatives and K the result before projection is always in the space V1 for all the

Feynman diagrams.

Using this prescription one can calculate the effective action for the theory (5.1). The

result is given by

Leff
pre = − 1

360
Ã∗

µDνFµν +
1

160
ψγµDµψ̃∗ +

g

160
Ã∗

µ(ψγµψ) + ÃµDµc + A∗
µDµc̃∗ (5.8)

−gA∗
µ[Ã∗

µ, c] + g
(
c̃cc + c̃∗[c∗, c] + [ψ̃∗, ψ∗]c + [ψ̃, ψ]c + c̃∗[ψ∗, ψ]

)
+

3

2
(εγµψ)Ãµ

+
3

2
(εγµψ̃∗)A∗

µ +
2

3
(εγµν ψ̃)DµAν +

2

3
(εγµνψ∗)DµÃ∗

ν − g

3
(εγµν ψ̃)[Aµ, Aν ]

+ηµ
[
c̃∂µc − c∗∂µc̃∗ + Ãν∂µAν − A∗

ν∂µÃ∗
ν + (ψ̃∂µψ) − (ψ∗∂µψ̃∗)

]
− η∗µ(εγµε)

−80(εγµε)(ψ̃γµψ∗) + 160(εψ̃)(εψ∗) − c∗(εγµε)Ã∗
µ − c̃(εγµε)Aµ

The details of this calculation can be found in the appendix B.

Here Dµ = ∂µ + g[Aµ, ·], Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ].

We would like to emphasize that construction [11] with the bracket ≪ ≫ is nothing

but only a technical simplification in the way to project onto cohomologies.

5.3 Z2 Duality of Feynman diagrams

The correspondence between the representatives (5.6) defines the Z2 symmetry on coho-

mologies (the Z2 symmetric representative is the one which completes the given one to

non-vanishing value of the bracket ≪ ≫). Though this Z2 symmetry on representatives

is explicit (as is obvious from the table 5.3 and was discussed in [14]) it is unclear why it

3Since the bracket ≪ ≫ maps all functions having the degree in λ and θ different from 3 and 5 to zero,

such complementary representative is unique and completes the degree in λ and θ to 3, 5.
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Figure 5: An example of Z2 duality. Explicit calculations are presented in the appendix B.

A1

A2

An

B̃
=

B∗

A1

An−1

Ã∗
n

= . . . =

A2

A3

B∗

Ã∗
1

Figure 6: The Z2 duality rule.

should be inherited by diagrams calculations. As a kind of experimental evidence of this

fact below (figure 5) we present the results for several diagrams arising in the calculation

of effective action at the quadratic level. From this figure it is clear that the vertices of the

effective theory are symmetric w.r.t. the discussed Z2 duality.

One comment is in order here. Since we are interested in the action of SYM (not

pre-SYM) we will finally identify the component fields of A and P according to (5.14).

Mnemonic rule is the following: tilde and star is the same and tilde annihilates star. To un-

derstand the equalities in the figure 5 correctly one should make these identifications (5.14).

The same is true for figure 6.

Note that these equalities express a non trivial statement, because incoming and the

out-coming lines of the diagrams are completely different. All the operators are acting on

the incoming lines and the result is projected on the out-coming line. Moreover, among

these operators there are derivatives w.r.t θ (in εαQs
α). This duality states that there is, in

a sense, a symmetry between the incoming and out-coming arrows. This symmetry results

in the symmetry of the vertices of the effective action after the identification (5.14).

Duality rule. For generic subset of diagrams having certain external legs one can

exchange the out-coming line with any of the in-lines simultaneously changing the star and

tilde signs and shifting external legs in the cyclic way as it is shown in the figure 6. The

result does not change. It is important to remember that before application of this duality

one should sum up all the diagrams having certain external legs (like in case of the last

diagrams in the figure 5).
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Sometimes this duality looks highly non-trivial at the diagram level and requires a lot

of γ-matrix algebra to convince that the two contribution are indeed equal. This fact is

completely obvious from the calculations presented in appendix B.

5.4 The Z2 projection

After evaluation of effective action (pre-theory) it can be written in the following compact

form

Seff
pre = PaV

a(A) (5.9)

Here Pa denote the components of superfield P and V a(A) is a vector field of the components

Aa of the superfield A, ghosts for SUSY and translations, and space-time derivatives. Since

the action (5.9) is obtained via the integration over a lagrangian submanifold of BV action,

it should satisfy classical BV equation, which can be written as4

PbV
a∂aV

b = 0 (5.10)

In the previous section we discussed the Z2 symmetry of the effective vertices, which was

discovered experimentally at the level of Feynman diagrams calculation. Such symmetry

in this compact notations can be written as

∂bV
a(A)ηac = ∂cV

a(A)ηab (5.11)

where ηab is non-degenerate pairing on cohomologies identifying the components of A and

P via Pa = ηabA
b (see 5.14). This condition states that the vertices in the effective theory

are symmetric w.r.t. the interchange of the fields of A and P at the external legs consistent

with the Z2 symmetry of representatives.

Relation (5.11) implies that V a can be written as a gradient

V a(A) = ηac∂cF (5.12)

Substituting this solution into BV equation (5.10)

∂d

(
ηac∂aF∂cF

)
= 0

In our calculations the constant of integration can be chosen to be zero and we come to

the conclusion that function F satisfies classical BV equation on the space of A, namely

ηab∂aF∂bF = 0.

The BV form in this equation coincides with the pairing ηab dictated by the Z2 duality on

representatives. This function F will play the role of BV action, which now depends only on

4Solutions of this equation determine the so-called ∞-structure. In the context of quantum field theories

on simplicial complexes these structures were recently studied in [8].
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the component fields of superfield A. Calculation of the function F for the pre-action (5.8)

gives exactly SYM theory coupled to SUSY ghosts.

Seff =

∫
Tr

(
− 1

1440
F 2

µν − 1

320
ψγµDµψ − A∗

ρDρc + gc∗cc + g[ψ∗, ψ]c (5.13)

−3

2
(εγµψ)A∗

µ +
1

3
(εγµνψ∗)Fµν + ηµ

[
c∗∂µc − A∗

ν∂µAν + (ψ∗∂µψ)
]

−η∗µ(εγµε) − 40(εγµε)(ψ∗γµψ∗) + 80(εψ∗)2 − c∗(εγµε)Aµ

)

It is straightforward to check that (5.13) satisfy BV equation. It should be mentioned that

at the linear level (coupling constant g = 0), polynomial V a(A) have a certain degree

of homogeneity (linear in the fields Aa). Hence, the integration (5.12) needed to extract

action F from V a(A) results simply in the factor 1
2 . Thus at the linear level to obtain

the action of the theory from the action of the pre-theory one should simply identify the

component fields of A and P according to the following rule.

Polarization A P

1 c c̃

(λγµθ) Aµ Ãµ(−)

(λγµθ)(θγµ)α ψα ψ̃α

−16(λγµθ)(λγνθ)(θγµν)α ψ∗
α ψ̃∗

α(−)

10(λγµθ)(λγνθ)(θγµνρθ) A∗
ρ Ã∗

ρ

(λγµθ)(λγνθ)(λγρθ)(θγµνρθ) c∗ c̃∗(−)

c̃ = c∗

Ãµ = −A∗
µ

⇒ ψ̃α = ψα∗

ψ̃∗
α = −ψα

Ã∗
ρ = Aρ

c̃∗ = −c

(5.14)

This rule determines the pairing ηab.

5.4.1 Naive Z2 projection

Naively, one could expect that just inverting the lines in the diagrams using the pairing ηab

would be enough to produce the BV action of SYM. This naive procedure corresponds to

SNaive = ηabA
aV b(A)

This however does not solve BV equation. In particular this will result in the fact that

kinetic term for a gauge field would differ from Tr F 2
µν . This can be checked by explicit

calculation of the diagrams (see (B.29), (B.30) and (B.31) in appendix B). The final result

for them after the identification (5.14) can be written as

L = − 1

360
AµDνFµν (5.15)

= − 1

1440

(
2 · (∂µAν − ∂νAµ)2 + 3 · 2g(∂µAν − ∂νAµ)[Aµ, Aν ] + 4 · g2[Aµ, Aν ]2

)

This expression clarifies that to obtain correct result Tr F 2
µν one should put the coefficients

1
2 , 1

3 and 1
4 in front of the quadratic, cubic and quartic terms respectively. Remarkably that
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exactly these coefficients are dictated by the procedure (5.12). Note that this result can

not be achieved by rescaling of the coupling constant g → 2/3g.

One of the main message of this last section is that the descent of a symmetry (for

instance SUSY) from the action (1.1) down to (5.13) can be realized through the two steps:

1. One should calculate the path integral in the background of the cohomologies of Q

and find the pre-action. It is important that the action (1.1) is the off-shell super-

symmetric version of pre-action. This descent was discussed in details in the previous

section on the example of the 2-d gauge model.

2. One should implement the procedure (5.12) to pass from the pre-action to an action.

For the moment this step can not be done through the path integral. However, what

can be said is that after the application of the second step the result satisfy classical

BV equation over all the fields including ghosts for SUSY. Hence, some information

about the off-shell description of SUSY in inherited in the action (5.13).
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A. Some properties of SO(10) γ-matrices

In this appendix we summarize some properties of SO(10) γ-matrices, which are important

for our calculations. Another list of useful identities can be found in the appendix of [11].

Through the whole paper we do not distinguish between upper and lower SO(10) vector

indices and use the convention, that γµ1...µn = 1
n!γ

[µ1 . . . γµn].

Ten dimensional γ - matrices can have two upper spinor indices (γµ)αβ or two lower

indices (γµ)αβ . Both these two matrices are symmetric in α and β.
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Using this convention it is straightforward to check the symmetry properties of the

following representations

Symmetric Antisymmetric

(γµ)αβ (γµ1...µ4)α
β (γµ1...µ5)αβ (γµν)α

β (γµνρ)αβ

(γµ1...µ8)α
β (γµ1...µ9)αβ (γµ1...µ6)α

β (γµ1...µ7)αβ (γµ1...µ10)α
β

(A.1)

For the representations with even number of γ-matrices (which hence have one upper and

one lower spinor index) by symmetry properties we mean Aα
β = ±Aβ

α

Due to duality properties of γ-matrices

γµ1...µn = ± 1

(10 − n)!
εµ1...µ10 γµn+1...µ10 (A.2)

the basis in the space of all matrices is given by

δα
β, (γµ)αβ , (γµ)αβ , (γµν)α

β ,

(γµνρ)αβ, (γµνρ)αβ , (γµ1...µ4)α
β, (γµ1...µ5)αβ, (γµ1...µ5)αβ . (A.3)

The system (A.3) is complete. This fact allows to prove certain Fiertz identities. To

illustrate the procedure consider the following identity

(γµ)αβ(γµ)δσ = −1

2
(γa)αδ(γa)βσ − 1

24
(γabc)αδ(γabc)βσ. (A.4)

Expanding the l.h.s. in the complete set (A.3) with respect to the indices α and δ one can

write

(γµ)αβ(γµ)δσ = C1(γ
a)αδ(γa)βσ + C3(γ

abc)αδ(γabc)βσ + C5(γ
abcde)αδ(γabcde)βσ (A.5)

we can use only combinations with odd number of γ - matrices because all spinor indices

are lower. Multiplying both sides of relation (A.5) separately by (γν)βδ, (γν1ν2ν3)βδ and

(γν1...ν5)βδ and using the identities like

γaγνγa = −8γν , (A.6)

γaγµνργa = −4γµνρ, (A.7)

γabcγµγabc = 288γµ, (A.8)

γabcγµνργabc = −48γµνρ, (A.9)

γabcγµ1...µ5γabc = 0, (A.10)

γa1...a5γµγa1...a5 = γa1...a5γµνργa1...a5 = γa1...a5γµ1...µ5γa1...a5 = 0 (A.11)

one can straightforwardly fix the coefficients C1, C3 and C5 in (A.5). In this calculation

it is important to remember the symmetry properties mentioned in the table (A.1). Re-

lations (A.6) can be derived using the definition of γ-matrices: {γµ, γν} = 2gµν . We

acknowledge inestimable help of Ulf Gran’s GAMMA package [12] in doing these compu-

tations.
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Similar technique allows to obtain other Fiertz identities, for example

(γµνρ)αβ(γµνρ)δσ = −18(γa)αδ(γa)βσ +
1

2
(γabc)αδ(γabc)βσ (A.12)

Independent check that expressions (A.4) and (A.12) are consistent can be done by double

expansion of l.h.s of (A.4): firstly in the indices α, δ, secondly in the indices α, β. Making

this double expansion one should come in the end to the initial expression (γµ)αβ(γµ)δσ .

Applying the same machinery it is straightforward to prove another useful identity

(γµ1...µ4)α
β(γµ1...µ4)σ

δ = 315 δα
δδσ

β +
21

2
(γab)α

δ(γab)σ
β +

1

8
(γa1...a4)α

δ(γa1...a4)σ
β (A.13)

Application of relation (A.4) allows to prove useful identity

(λγµψ)(λγµξ) = 0, ∀ψα, ξα, (A.14)

mentioned in the appendix to [11]. Indeed, applying (A.4) one can find

(λγµψ)(λγµξ) = −1

2
(λγµλ)(ψγµξ) − 1

24
(λγabcλ)(ψγabcξ) = 0.

The first term is equal to zero due to pure spinor constrains (λγµλ) = 0, the second one is

equal to zero because (γabc)αβ is antisymmetric in α, β (see table A.1) while combination

λαλβ is symmetric.

Sometimes it is useful to have the representation for antisymmetric bi-spinor

θαθβ =
1

96
(θγabcθ)(γabc)

αβ (A.15)

These relations can be derived in a similar way: for generic bi-spinor one can write an

expansion

ξαψβ =
1

16
(ξγµψ)(γµ)αβ +

1

96
(ξγabcψ)(γabc)

αβ +
1

3840
(ξγµ1...µ5ψ)(γµ1...µ5)

αβ . (A.16)

The coefficients in this expression can be determined by contracting both hand sides

with (γµ)αβ , (γµνρ)αβ and (γµ1...µ5)αβ . In case of antisymmetric bi-spinor θγµθ = 0 and

θγµ1...µ5θ = 0 because these expressions are symmetric in spinor indices. The representa-

tion for symmetric pure bi-spinor gives5

λαλβ =
1

3840
(λγµ1...µ5λ)(γµ1...µ5)

αβ (A.17)

due to constrains (λγµλ) = 0.

In our calculations we will also need a representation [11]

(λγµθ)(λγνθ) =
1

2
(λγaµνθ)(λγaθ), (A.18)

which can be proven by applying formula (A.4) and commutation relations {γµ, γν} = 2gµν

in the r.h.s.

5We are indebted to Carlos Mafra for the correction of the coefficient in this expression.
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One more useful formula [13] is

(γµν)α
δ(γµν)β

σ = −8δα
σδβ

δ + 4(γµ)αβ(γµ)δσ − 2δα
δδβ

σ (A.19)

In our calculations we also use scalar6 product [11]

≪(λγµθ)(λγνθ)(λγρθ)(θγabcθ)≫ =
1

120
δµνρ
abc (A.20)

≪(λγµνρθ)(λγpθ)(λγqθ)(θγabcθ)≫ =
1

70
δ
[µ
[p ηq][aδ

ν
b δ

ρ]
c] (A.21)

B. Calculation of effective action for the D = 10 SYM

In this appendix we present the calculation of effective action [2] for the theory

SSUSY =

∫
Tr

(
< P, QBA >+g < P,A2 >+< P, εαQs

αA >+< P, ηµP s
µA > −η∗µ(εγµε)

)

(B.1)

along the way described in section 5, namely using the scalar product ≪ ≫, defined

in (A.20) and (A.21). Operators QB , Ps and Qs are defined as

QB = Q+Φ = λα ∂

∂θα
+

1

2
θα ∂fµ

∂λα
∂µ, εαQs

α = εα ∂

∂θα
−(εγµθ)

∂

∂xµ
, P s

µ =
∂

∂xµ
(B.2)

Polarizations of component fields are given by (B.3) (see (5.3))

Polarization A P

1 c c̃

(λγµθ) Aµ Ãµ

(λγµθ)(θγµ)α ψα ψ̃α

−16(λγµθ)(λγνθ)(θγµν)α ψ∗
α ψ̃∗

α

10(λγµθ)(λγνθ)(θγµνρθ) A∗
ρ Ã∗

ρ

(λγµθ)(λγνθ)(λγρθ)(θγµνρθ) c∗ c̃∗

(B.3)

We start from the quadratic terms in the action and then derive interaction terms.

Quadratic level. First of all we evaluate the diagrams which do not depend on the

ghosts εα and ηµ. These diagrams contribute into the classical part of effective action.

Below we list the nontrivial diagrams, intermediate and final expressions for them. The

first diagram is

c Ãµ

Φ

We emphasize that one should first act by all the operators and propagators onto the

incoming field and then project the result onto cohomologies according the procedure dis-

cussed in section 5. Namely, to project the result R onto a representative h corresponding

6δ
µνρ
abc = 1

3!
δ
[µ
a δν

b δ
ρ]
c
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to a certain component field B one should calculate ≪ ≫ with the complementary repre-

sentative d, definition is given in (5.6). The contribution into the action will be given by

(−1)#
eB ≪dB̃ · R≫. Here #B̃ denotes the parity of the component field B̃. The relative

sign (−1)#
eB will be taken into account only in the final result (B.32).

The contribution of the first diagram is given by

D =≪10(λγµθ)(λγνθ)(θγµνρθ)Ãρ · (λγaθ)∂ac≫= −Ãρ
10

120
δµνa
µνρ∂ac = −Ãρ∂ρc. (B.4)

Here we used the parities of component fields and the definition (A.20).

Dual diagram is

A∗
µ c̃∗

Φ

D = ≪c̃∗ · (λγaθ)∂a · 10(λγµθ)(λγνθ)(θγµνρθ)A∗
ρ≫

= − 10

120
c̃∗δµνa

µνρ∂aA
∗
ρ

= −A∗
ρ∂ρc̃

∗. (B.5)

ψ ψ̃∗

Φ

D = ≪(λγaθ)(θγaψ̃
∗)(λγνθ)(λγµθ)(θγµ∂νψ)≫

= − 1

96
≪(λγaθ)(λγνθ)(λγµθ)(θγbcdθ)≫ ψ̃∗γaγbcdγ

µ∂νψ

= − 1

96 · 120 ψ̃∗γaγaνµγµ∂νψ

= − 72

96 · 120 ψ̃∗γν∂νψ

= − 1

160
ψ̃∗γν∂νψ. (B.6)

Here we used (A.15) and the definition of γ - matrices. This diagrams give kinetic term

for the fermion.

Aµ Ã∗
µ

Φ Φ

This diagram is responsible for the kinetic term for the gauge field. First of all we calculate

the action of operator Φ

Φ(λγµθ)Aµ = (λγµθ)(λγνθ)∂µAν =
1

2
(λγaµνθ)(λγaθ)∂µAν .

In the last transformation we used (A.18). This should be done to prepare the result for

application of the propagator (it is impossible to do it directly on (λγµθ)(λγνθ) because

(γµ)αβ is symmetric w.r.t. α and β). The pre-mage is given by

Π =
1

4
(θγaµνθ)(λγaθ)∂µAν . (B.7)
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Indeed, Q · Π = λ ∂
∂θ

Π = 1
2(λγaµνθ)(λγaθ)∂µAν due to pure spinor constraints (λγaλ) = 0.

The whole contribution of the diagram is given by

D = ≪1

4
(λγρθ)Ã∗

ρ(λγεθ)(θγaµνθ)(λγaθ)≫ ∂ε∂µAν

=
1

4 · 120δρεa
aµνÃ∗

ρ∂ε∂µAν

= − 1

360
(Ã∗

µ∂2Aµ − Ã∗
µ∂µ∂νAν). (B.8)

If one identifies Ã∗
µ = Aµ it is possible recognize in this result abelian part of 1

720F 2
µν .

Now we switch to the calculation of diagrams proportional to the ghost for the SUSY.

The first diagram is

Aµ ψ̃

εQs

It is enough to use only the second part of Qs, proportional to space-time derivative7

εQs(λγµθ)Aµ = −(εγνθ)(λγµθ)∂νAµ.

The contribution of the diagram is

D = 16 ≪(λγaθ)(λγbθ)(θγabψ̃)(εγνθ)(λγµθ)≫ ∂νAµ

=
1

6
≪(λγaθ)(λγbθ)(λγµθ)(θγmnkθ)≫ (εγνγmnkγbaψ̃)∂νAµ

= − 1

6 · 120(εγνγabµγabψ̃)∂νAµ

=
1

10
(εγνγµψ̃)∂νAµ. (B.9)

The Z2 dual diagram is

ψ∗
Ã∗

µ

εQs

Application of supercharge to ψ∗ gives

εQs[−16(λγµθ)(λγνθ)(θγµνψ∗)] = 16(εγρθ)(λγµθ)(λγνθ)(θγµν∂ρψ
∗)

The contribution of the diagram is

D = 16 ≪(λγρθ)Ã∗
ρ(εγ

λθ)(λγµθ)(λγνθ)(θγµν∂λψ∗)≫= − 1

10
(εγµγν∂µψ∗)Ã∗

ν . (B.10)

In contrast to previous pair of diagrams in this case it is enough to use only the first

term 7 in Qs acting as derivative ∂
∂θ

εQs[(λγµθ)(θγµψ)] = (λγµε)(θγµψ) − (λγµθ)(εγµψ).

7The other term of Qs does not contribute to the final result of the diagram due to the degree in λ and

θ.
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ψ Ãµ

εQs

Figure 7: Diagram

A∗
µ ψ̃∗

εQs

Figure 8: Diagram

Using the formula (A.4) one can expand the contribution of the first term and obtain

D = 10 ≪(λγaθ)(λγbθ)(θγabρθ)Ãρ(λγµε)(θγµψ)≫
− 10 ≪(λγaθ)(λγbθ)(θγabρθ)Ãρ(λγµθ)≫ (εγµψ) (B.11)

= −10

2
≪(λγaθ)(λγbθ)(θγabρθ)(λγµθ)≫ (εγµψ)Ãρ

−10

24
≪(λγaθ)(λγbθ)(θγabρθ)(λγµνcθ)≫ (εγµνcψ)Ãρ

−10 ≪(λγaθ)(λγbθ)(θγabρθ)(λγµθ)≫ (εγµψ)Ãρ

= − 10

2 · 120δabµ
abρ (εγµψ)Ãρ

− 10

120
δabµ
abρ (εγµψ)Ãρ −

10

24 · 70δ
[µ
[aηb][aδ

ν
b δ

c]
ρ](εγµνcψ)Ãρ

= −3

2
(εγρψ)Ãρ.

The last term with the coefficient 10
24·70 is equal to zero due to symmetry properties.

Calculation of dual diagram is more tricky. Again operator Qs acts as derivative 7 ∂
∂θ

εQs[10(λγµθ)(λγνθ)(θγµνρθ)A∗
ρ] = 20(λγµε)(λγνθ)(θγµνρθ)A∗

ρ

+20(λγµθ)(λγνθ)(εγµνρθ)A∗
ρ. (B.12)

Evaluating the contribution of the first term one can find

≪(λγaθ)(θγaψ̃∗)(λγµε)(λγνθ)(θγµγνγρθ)≫
= −1

2
≪(λγaθ)(θγaψ̃∗)(λγνθ)(λγbθ)(εγbγνγρθ)≫

− 1

24
≪(λγaθ)(θγaψ̃∗)(λγνθ)(λγmnpθ)(εγmnpγ

νγρθ)≫

= − 1

2 · 96 · 120(εγbγνγργaνbγ
aψ̃∗) − 1

24 · 96 · 70δ
[m
[a ηε][pδ

n
q δ

k]
c] (εγmnkγεγργpqcγaψ̃∗)

=
(
− 432

2 · 96 · 120 − 1008

24 · 96 · 70
)
(εγρψ̃∗)

= − 1

40
(εγρψ̃∗).
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Here we used that θγµνρθ = θγµγνγρθ (This is due to θγµθ = 0) , identity (A.4) and scalar

products (A.20), (A.21). The second term in (B.12) gives

≪(λγaθ)(θγaψ̃∗)(λγµθ)(λγνθ)(εγµνρθ)≫=
1

96 · 120(ψ̃∗γaγaµνγµνρε) = − 1

20
(εγρψ̃∗)

Collecting together

D = −20 · 1

40
(εγρψ̃∗)A∗

ρ − 20 · 1

20
(εγρψ̃∗)A∗

ρ = −3

2
(εγρψ̃∗)A∗

ρ. (B.13)

Even from this calculation it is clear that the Z2 duality discussed in section 5 looks highly

non-trivial at the level of Feynman diagrams. Calculation of the diagram in figure 7 is

considerably simpler than that in the figure 8. However, the final result after the identifi-

cation (5.14) is the same. In the next set of diagrams we will see more dramatic realization

of this duality. Calculation from the one side of this duality looks very simple, calculation

from the other side requires a lot of γ-matrix algebra.

Aµ ψ̃

εQs Φ

Application of sypersymmetry operator 7 gives Q-exact expression

εQs[(λγµθ)Aµ] = (λγµε)Aµ.

The pre-image is (θγµε)Aµ. The whole contribution gives

D = −16 ≪(λγaθ)(λγbθ)(θγabψ̃)(λγνθ)(θγµε)≫ ∂νAµ

= − 16

96 · 120(ψ̃γabγabνγµε)∂νAµ

=
1

10
(εγµγνψ̃)∂νAµ (B.14)

ψ∗
Ã∗

µ

εQs Φ

εQs[−16(λγµθ)(λγνθ)(θγµνψ∗)]=−2 · 16(λγµε)(λγνθ)(θγµνψ∗)−16(λγµθ)(λγνθ)(εγµνψ∗)

The second term is proportional to that one which appeared in the calculation of kinetic

term for the gauge field, and according to (B.7)

Π2 = −4(θγaµνθ)(λγaθ)(εγµνψ∗) (B.15)

To write the first term in the convenient form one should expand γµν = gµν − γνγµ and

use (A.14)

Π1 = 32(θγµε)(λγνθ)(θγνγµψ∗) (B.16)

Φ(Π1 + Π2) = 32(λγρθ)(θγµε)(λγνθ)(θγνγµ∂ρψ
∗) − 4(λγρθ)(θγaµνθ)(λγaθ)(εγµν∂ρψ

∗)
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D = 32 ≪(λγdθ)Ã∗
d(λγρθ)(θγµε)(λγνθ)(θγνγµ∂ρψ

∗)≫
−4 ≪(λγdθ)Ã∗

d(λγρθ)(θγaµνθ)(λγaθ)≫ (εγµν∂ρψ
∗) (B.17)

= − 32

96 · 120(εγµγdρνγ
νγµ∂ρψ

∗)Ã∗
d −

4

120
Ã∗

dδ
aµν
dρa (εγµν∂ρψ

∗)

= −2

9
(εγνµψ∗)∂νÃ∗

µ (B.18)

Aµ ψ̃

Φ εQs

The first part of the diagram is analogous to the one responsible for the kinetic term

in the gauge field (B.7) Π = 1
4(θγaµνθ)(λγaθ)∂µAν . Applying operator εQs one can come

to following contribution

D = −16

2
≪(λγbθ)(λγcθ)(θγbcψ̃)(εγaνµθ)(λγaθ)≫ ∂νAµ

−16

4
≪(λγbθ)(λγcθ)(θγbcψ̃)(θγaνµθ)(λγaε)≫ ∂νAµ (B.19)

Contribution of the first and second terms respectively

D1 =
16

2 · 96 · 120(εγaνµγbcaγ
bcψ̃)∂νAµ

=
576 · 16

2 · 96 · 120(εγµν ψ̃)∂νAµ

=
2

5
(εγµν ψ̃)∂νAµ

D2 =
16

4 · 2 · 96 · 120(ψ̃γbcγbcaγ
µνγaε)∂νAµ

− 16

4 · 24 · 96 · 70δ
[a
[b ηc][kδ

q
l δ

r]
p](ψ̃γbcγklpγ

µνγaqrε)∂νAµ

=
1

15
(εγµν ψ̃)∂νAµ (B.20)

Finally

D =
7

15
(εγµν ψ̃)∂νAµ (B.21)

ψ∗ Ã∗
µ

Φ εQs

Applying operator Φ and taking the pre-image one obtains

Π = 4(θγaρνθ)(λγaθ)(λγµθ)(θγµγν∂ρψ
∗)

Application of εQs gives 4 terms, corresponding contributions are

D1 = 8Ã∗
b ≪(λγbθ)(εγaρνθ)(λγaθ)(λγµθ)(θγµγν∂ρψ

∗)≫

=
2

5
(ε∂ρψ

∗)Ã∗
ρ −

4

15
(εγbρ∂ρψ

∗)Ã∗
b
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D2 = 4Ã∗
b ≪(λγbθ)(θγaρνθ)(λγaε)(λγµθ)(θγµγν∂ρψ

∗)≫

=
1

10
(ε∂ρψ

∗)Ã∗
ρ −

1

30
(εγbρ∂ρψ

∗)Ã∗
b

D3 = −4Ã∗
b ≪(λγbθ)(θγaρνθ)(λγaθ)(λγµε)(θγµγν∂ρψ

∗)≫

= −1

5
(ε∂ρψ

∗)Ã∗
ρ

D4 = 4Ã∗
b ≪(λγbθ)(θγaρνθ)(λγaθ)(λγµθ)(εγµγν∂ρψ

∗)≫

= −2

5
(ε∂ρψ

∗)Ã∗
ρ −

2

45
(εγbρ∂ρψ

∗)Ã∗
b (B.22)

The total contribution is

D = − 1

10
(ε∂ρψ

∗)Ã∗
ρ −

31

90
(εγµνψ∗)∂µÃ∗

ν (B.23)

Again we emphasize that the Z2 duality after the identification (5.14) implies the diagram

identity

Aµ ψ̃

Φ εQs

ψ∗ Ã∗
µ

εQs Φ

+ = +

Aµ ψ̃

εQs Φ

ψ∗ Ã∗
µ

Φ εQs

Which is rather non-trivial!

ψ∗ ψ̃

εQs εQs

The calculation of the first part of this diagram is analogous to (B.15), (B.16). Application

of the second operator εQs(Π1 + Π2) gives 5 terms.

D1 = −2 · 162 ≪(λγdθ)(λγkθ)(θγdkψ̃)(εγµε)(λγνθ)(θγνγµψ∗)≫
= 32(εγµε)(ψ̃γµψ∗)

D2 = 2 · 162 ≪(λγdθ)(λγkθ)(θγdkψ̃(θγµε)(λγνε)(θγνγµψ∗)≫
= −8

5
(ψ̃γaγµε)(εγaγµψ∗) + +

1

45
(ψ̃γabcµε)(εγabcµψ∗) +

8

15
(ψ̃gbcε)(εγbcψ∗)

D3 = −2 · 162 ≪(λγdθ)(λγkθ)(θγdkψ̃)(θγµε)(λγνθ)(εγνγµψ∗)≫
= −16

5
(ψ̃γaγµε)(εγaγµψ∗)

D4 =
1

2
· 162 ≪(λγdθ)(λγkθ)(θγdkψ̃)(εγaµνθ)(λγaθ)(εγµνψ∗)≫

= −32

5
(ψ̃γbcε)(εγbcψ∗)

D5 =
1

4
· 162 ≪(λγdθ)(λγkθ)(θγdkψ̃)(θγaµνθ)(λγaε)(εγ

µνψ∗)≫

= −16

15
(ψ̃γbcε)(εγbcψ∗) (B.24)
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Summing up all the contributions and using the identities (A.13) and (A.19) one can come

to

D = 80(εγµε)(ψ̃γµψ∗) − 160(εψ̃)(εψ∗) (B.25)

Aµ c̃

εQs εQs

Applying εQs one obtains an exact expression.

εQs[(λγµθ)Aµ] = (λγµε)Aµ, =⇒ Π = (θγµε)Aµ.

The whole contribution is

D = c̃ ≪(λγµθ)(λγνθ)(λγρθ)(θγµνρθ)(εγaε)Aa≫= c̃(εγµε)Aµ (B.26)

c∗ Ã∗

εQs εQs

The calculation of dual diagram is much more tricky. Operator Qs acts as ε ∂
∂θ

and gives 2

terms

ε
∂

∂θ
[(λγµθ)(λγνθ)(λγρθ)(θγµνρθ)c∗] = 3(λγµε)(λγνθ)(λγρθ)(θγµνρθ)c∗

−2(λγµθ)(λγνθ)(λγρθ)(εγµνρθ)c∗, (B.27)

next step

Π1 = 3(θγµε)(λγνθ)(λγρθ)(θγµνρθ)c∗

Π2 = −1

2
(θγµνσθ)(λγσθ)(λγρθ)(εγµγνγρθ)c∗,

After applying second εQs there arise seven terms

εQs(Π1 + Π2) = 3(εγµε)(λγνθ)(λγρθ)(θγµνρθ)− 6(θγµε)(λγνε)(λγρθ)(θγµνρθ)

−6(θγµε)(λγνθ)(λγρθ)(εγµνρθ) − (εγµνσθ)(λγσθ)(λγρθ)(εγµγνγρθ)

−1

2
(θγµνσθ)(λγσε)(λγρθ)(εγµγνγρθ)

+
1

2
(θγµνσθ)(λγσθ)(λγρε)(εγµγνγρθ)

−1

2
(θγµνσθ)(λγσθ)(λγρθ)(εγµγνγρε)

Some calculus gives us the following results

≪3(εγµε)(λγνθ)(λγρθ)(θγµνρθ)(λγaθ)≫ =
3

10
(εγaε),

−6 ≪(θγµε)(λγνθ)(λγρθ)(εγµνρθ)(λγaθ)≫ =
9

40
(εγaε),

− ≪(εγµνσθ)(λγσθ)(λγρθ)(εγµγνγρθ)(λγaθ)≫ =
1

4
(εγaε),
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−1

2
≪(θγµνσθ)(λγσθ)(λγρθ)(εγµγνγρε)(λγaθ)≫ =

1

10
(εγaε),

−6 ≪(θγµε)(λγνε)(λγρθ)(θγµνρθ)(λγaθ)≫ =

(
3

32
− 3

160

)
(εγaε),

−1

2
≪(θγµνσθ)(λγσε)(λγρθ)(εγµγνγρθ)(λγaθ)≫ =

(
13

320
− 1

64

)
(εγaε),

1

2
≪(θγµνσθ)(λγσθ)(λγρε)(εγµγνγρθ)(λγaθ)≫ =

(
1

20
− 1

40

)
(εγaε).

Finally we obtain the same result as in (B.26)

D = c∗(εγµε)Ã∗
µ (B.28)

c c̃

ηµ∂µ

+ c∗ c̃∗

ηµ∂µ

D = c̃ηµ∂µc D = c∗ηµ∂µc̃∗

Aµ Ãµ

ηµ∂µ

+ A∗
µ Ã∗

µ

ηµ∂µ

D = Ãµην∂νAµ D = A∗
µην∂νÃ∗

µ

ψ ψ̃

ηµ∂µ

+ ψ∗
ψ̃∗

ηµ∂µ

D = ηµ(ψ̃∂µψ) D = ηµ(ψ∗∂µψ̃∗)

Interaction terms. The next step is to calculate the contributions proportional to the

gauge coupling constant g. In contrast to the model discussed in section 4, the only effect

of this interaction is the replacement of operator insertion Φ = (λγµθ)∂µ by the gauge field

(λγµθ)Aµ. In this calculation it is important to remember that all possible permutations

of external legs must be considered to obtain the correct gauge invariant result for the

effective action. For example, consider the diagram

Aµ Ã∗
µ

Φ Φ

one should add five diagrams

Aµ

Aµ

Ã∗
µ

Φ
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D = g
1

360
Ã∗

µ∂ν [Aµ, Aν ] (B.29)

Aµ

Aµ

Ã∗
µΦ

Aµ

Ã∗
µ

Aµ
Φ

D = g
1

360
[Ã∗

µAν ](∂µAν − ∂νAµ) (B.30)

Aµ Ã∗
µ

AµAµ

Aµ Aµ

Ã∗
µAµ

D = g2 1

360
[Ã∗

µAν ][Aµ, Aν ] (B.31)

which are different due to the clockwise rule (see section 5 of [2]).

There is also a subset of trivial diagrams with ghosts. These diagrams are depicted

below.

φ∗

φ

c̃∗

c

φ

φ̃

c

φ∗

φ̃∗

Here φ stand for arbitrary field (c,Aµ, ψ). It is important to remember that all the per-

mutations of external legs should be taken into account according to the clockwise rule.

Collecting together the results for all the diagrams one can come to the following result

for the effective lagrangian.

Leff
pre = − 1

360
Ã∗

µDνFµν +
1

160
ψγµDµψ̃∗ +

g

160
Ã∗

µ(ψγµψ) + ÃµDµc + A∗
µDµc̃∗

−gA∗
µ[Ã∗

µ, c] + g
(
c̃cc + c̃∗[c∗, c] + [ψ̃∗, ψ∗]c + [ψ̃, ψ]c + c̃∗[ψ∗, ψ]

)
+

3

2
(εγµψ)Ãµ

+
3

2
(εγµψ̃∗)A∗

µ +
2

3
(εγµν ψ̃)DµAν +

2

3
(εγµνψ∗)DµÃ∗

ν − g

3
(εγµν ψ̃)[Aµ, Aν ]

+ηµ
[
c̃∂µc − c∗∂µc̃∗ + Ãν∂µAν − A∗

ν∂µÃ∗
ν + (ψ̃∂µψ) − (ψ∗∂µψ̃∗)

]
− η∗µ(εγµε)

−80(εγµε)(ψ̃γµψ∗) + 160(εψ̃)(εψ∗) − c∗(εγµε)Ã∗
µ − c̃(εγµε)Aµ (B.32)

Here Dµ = ∂µ + g[Aµ, ·], Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ].
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