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Massless ð2þ 1ÞD Dirac fermions arise in a variety of systems from graphene to the surfaces of
topological insulators, where generating a mass is typically associated with breaking a symmetry. However,
with strong interactions, a symmetric gapped phase can arise for multiples of eight Dirac fermions.
A continuous quantum phase transition from the massless Dirac phase to this massive phase, which we term
symmetric mass generation, is necessarily beyond the Landau paradigm and is hard to describe even at the
conceptual level. Nevertheless, such transition has been consistently observed in several numerical studies
recently. Here, we propose a theory for the symmetric mass generation transition which is reminiscent of
deconfined criticality and involves emergent non-Abelian gauge fields coupled both to Dirac fermions and
to critical Higgs bosons. We motivate the theory using an explicit parton construction and discuss
predictions for numerics. Additionally, we show that the fermion Green’s function is expected to undergo a
zero-to-pole transition across the critical point.

DOI: 10.1103/PhysRevX.8.011026 Subject Areas: Condensed Matter Physics,
Strongly Correlated Materials,
Topological Insulators

I. INTRODUCTION

Recently, much attention has been lavished on band
structures with symmetry protected nodal points (Dirac and
Weyl semimetals) [1–7] in both two [8–10] and three
spatial dimensions [11–15]. The paradigmatic example is
graphene, where the band touching points are protected by
symmetry, and the low-energy dispersion around these
points is captured by the massless 2D Dirac equation [16].
Similarly, massless Dirac fermions also appear on the
surface of free-fermion topological phases [17]. A key
question pertains to the stability of the Dirac nodes in the
presence of interactions. This controls whether the material
remains a semimetal or develops a gap leading to a
semiconductor. Typically, this has been discussed in terms
of interaction-induced symmetry lowering, where inter-
actions lead to a spontaneous symmetry breaking. The
resulting lowering of symmetry allows for an energy gap.
The physics in these settings can be modeled by a mean-
field “mass” term that is spontaneously generated on
lowering the symmetry, and gaps out the Dirac fermions.
This is the standard mass generation in the Gross-Neveu
[18] and the Yukawa-Higgs models. The main challenge

then is identifying the appropriate channel of symmetry
breaking, following which one can utilize the Landau
paradigm of order parameters to describe the mass
generation.
In this work, we discuss an altogether different mecha-

nism of mass generation for Dirac fermions, which breaks
no symmetries and cannot be modeled by a single-particle
mass term at the free-fermion level. The possibility of such
a scenario is informed by recent developments in the theory
of interacting fermionic symmetry protected topological
(SPT) phases [19–32], relating to the stability of free-
fermion topological insulators or superconductors to inter-
actions. The paradigmatic example given by Fidkowski
and Kitaev [19,20] is the ð1þ 1ÞD Majorana chain with
an appropriately defined time reversal that protects edge
Majorana modes regardless of their multiplicity. However,
interactions lead to an energy gap to these modes when they
are multiples of eight, leading to a reduction of the free-
fermion classification Z → Z8. More relevant to our
purposes is the interaction reduction of ð2þ 1ÞD surface
states of ð3þ 1ÞD topological phases, which contain
Majorana or Dirac fermions. Indeed, here with the standard
time reversal for electrons (class DIII) [24,25,33], there is
an interaction reduced classification Z → Z16 of topologi-
cal superconductors, implying that 16 surface Majorana
fermions or equivalently eight Dirac fermions are unstable
towards a massive (gapped) phase in the presence of strong
interactions without breaking any symmetry.
These considerations prompt us to look for a model of an

electronic semimetal with eight Dirac nodes in 2D. A single
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layer of graphene with its twofold valley and twofold spin
degeneracy leads to four Dirac nodes; hence, we need to
consider two layers [34] of graphene to obtain eight Dirac
cones in all (by combining the valley, spin, and layer
degeneracies). There is a simple way to see that at half
filling it is possible to realize a symmetric insulating phase
if interactions are included. Let us consider an antiferro-
magnetic Heisenberg spin interaction Hint ¼ J

P
iSi1 · Si2

between the vertically displaced sites across the two layers
[35]. Since on average we have one electron per site and
each electron carries spin-1=2, the two electrons across the
layer will pair into singlets and acquire an energy gap as
long as the interlayer Heisenberg interaction is strong
enough. This leads to a fully gapped and nondegenerated
ground state, which can be described as a direct product
state of interlayer singlets. The state neither breaks any
symmetry nor does it develop topological order. Therefore,
it is a featureless gapped phase in ð2þ 1ÞD [36–38]. The
strong-coupling interaction mass (the many-body gap) that
the electrons acquire in this phase is called the symmetric
mass [39], and the continuous phase transition (if it exists)
between the Dirac semimetal and the featureless insulator
will be called symmetric mass generation (SMG) [40–42].
Note that one can also discuss the transition for a system
with fewer Dirac fermions. For the surface of a fermionic
SPT phase (e.g., in class DIII or AIII), the gapped phases
necessarily involve topological order [24,25,33] and con-
stitute a rather different problem. For the intrinsically 2D
system of graphene with an even number of sites in the unit
cell, it is believed there is no intrinsic obstruction to
realizing a trivial gapped phase (e.g., as shown for spinful
single layer graphene in Ref. [38]). However, writing a
Hamiltonian that realizes these gapped phases is itself a
nontrivial task. Therefore, we focus on the case of eight
Dirac nodes in ð2þ 1ÞD systems where the gapped phases
are readily accessible and the numerical evidence for a
single continuous transition is encouraging.
What are the possible scenarios for the transition from

the Dirac semimetal to the featureless gapped phase? At
least for small J, it is known that short-ranged interactions
are perturbatively irrelevant for 2D Dirac fermions; thus,
the transition can occur only at finite interaction strengths.
Unlike the lower-dimensional cases, where the instability
of ð1þ 1ÞD gapless fermions is manifest perturbatively
and/or can be studied with powerful tools such as boso-
nization, the situation for the ð2þ 1ÞD problem is more
challenging. On general grounds, there could be several
scenarios as we step out of the Dirac semimetal phase.
First, there could simply be a direct first-order transition to
the featureless gapped phase, where the symmetric mass
gap opens up discontinuously. Next, an intervening sym-
metry breaking phase may occur, leading to an energy
gap to the fermions. Subsequently, the symmetry could be
restored, accomplishing the phase change in a two-step
process, as illustrated in Fig. 1(a). A different two-step

evolution involves the existence of an exotic critical phase
that can be stable over a range of parameters, dubbed as the
Bose semimetal phase [43–46] in Fig. 1(c). It is a gapless
quantum liquid of bosons and can be described as a
generalized Gutzwiller projected Dirac semimetal. The
most interesting possibility is shown in Fig. 1(b), where
the SMG occurs as a single continuous transition without
any intermediate phases. Remarkably, numerical simula-
tions of the problem in different models with various
microscopic symmetries using different numerical methods
[35,40–42,47–49] seem to uniformly point towards a single
continuous SMG transition. All these models share one key
common property that the weakly interacting semimetal
phase should have exactly eight massless Dirac fermions.
Even at the conceptual level it is unclear how to write down
a theory for this putative transition. This is the problem
addressed in this work.
Since the SMG transition lies outside the Landau

symmetry breaking paradigm, it would necessarily be
exotic and require new ideas. The strategy we adopt is
to consider a form of fractionalization, where the symmetry
quantum number of the electron is peeled off from their
Dirac dispersion and carried away by a set of bosonic
partons, while the Dirac cone structure is still maintained
by a set of symmetry neutral fermionic partons. The process
of fractionalization leads to an emergent gauge interaction

Dirac SM SSB featureless
V/t

Wilson-FisherGross-Neveu

(a)

Dirac SM featurelessSMG
V/t

(b)

Dirac SM Bose SM featureless
V/t

Higgs

(c)

FIG. 1. Possible scenarios of transitions from the Dirac semi-
metal (Dirac SM) to featureless gapped phase. (a) Landau
paradigm: an intermediate spontaneous symmetry breaking
(SSB) phase sandwiched between the Gross-Neveu and the
Wilson-Fisher transitions. (b) A direct continuous transition:
the symmetric mass generation (SMG) as a deconfined quantum
critical point, with emergent gauge field and fractionalized
partons. (c) More exotic (and less likely) scenario: an inter-
mediate Bose semimetal (Bose SM) critical phase between the
Higgs and confinement transitions.
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between the bosonic and fermionic partons. In this frame-
work, the semimetal phase corresponds to the condensed
(Higgs) phase of the bosons. The featureless gapped phase
corresponds to the symmetric gapped phase of the bosons,
which triggers gauge confinement of the remaining degrees
of freedoms. This theory of SMG therefore falls in the
category of deconfined quantum critical points [50–52] that
contains a non-Abelian (Yang-Mills) gauge field coupled to
both the massless scalar (Higgs) fields and eight flavors of
massless Dirac fermions.
In the following, we first introduce a minimal model for

the SMG in 2D with SU(4) symmetry. We develop an
intuitive picture of the gapped phase as a paired super-
conductor in which fluctuations restore symmetry but leave
the gap intact. This motivates our parton construction and
lead to a field theory description for SMG. Finally, we
discuss the implication of our theory for the fermion
Green’s function which can be tested in numerics.

II. MODEL

Consider the honeycomb lattice with four flavors of
fermions at half filling on each site. This is a model of two
layers of graphene (each with two component spinful
fermions). Previously we discussed how an interlayer spin
interaction could lead to singlets, but it will be useful to
enhance the symmetry and consider the fermions to be fully
symmetric under the SU(4) rotation of the four flavors. A
minimal model that captures this is given by

H ¼ H0 þHI;

H0 ¼ −t
X
hiji

X4
a¼1

ðc†iacja þ H:c:Þ; ð1Þ

where cia is the fermion operator on site i and of flavor
a ¼ 1, 2, 3, 4. Now consider the interaction term which
preserves SU(4) symmetry:

HI ¼ −V
X
i

ðc†i1c†i2c†i3c†i4 þ H:c:Þ: ð2Þ

Note, however, the V term does not preserve the charge
conservation of the fermions. The charge U(1) symmetry is
explicitly broken at the Hamiltonian level and excluded
from our symmetry consideration. This may be interpreted
as a proximity-induced charge-4e superconductivity (SC)
[53–58]. If the regular (charge-2e) superconductivity was
brought in proximity to graphene, the fermions would
immediately be gapped. In contrast, the presence of weak
four fermion terms V ≪ t does not destabilize the Dirac
cone and a finite interaction strength is needed for a
transition to occur. On the other hand, in the strong-
coupling limit V ≫ t, the ground state is a simple product
state of on-site fluctuating charge-4e quartets:

jΨci ¼
Y
i

ð1þ c†i1c
†
i2c

†
i3c

†
i4Þj0ci; ð3Þ

where j0ci denotes the fermion vacuum state. Therefore, a
transition is expected between the gapless Dirac semi-
metal and the gapped charge-4e superconductor, as we
tune the interaction strength. Numerical simulations of the
SU(4) symmetric model [40–42,47–49] point to a single
continuous transition, i.e., the SMG transition. In the
following, we build a theory for it. One can also think that
the charge-4e interaction HI is related to an interlayer
spin-spin interaction as motivated in the Introduction by a
suitable particle-hole transformation of two of the four
fermion components. The only modification is that we
need to consider only the XY components of the interlayer
spin interaction. There are several other choices of
interactions [19,20,35,59] that also drive the SMG tran-
sition, but for this work, we focus on only the charge-4e
interaction HI described in Eq. (2).

III. SYMMETRIES

Symmetries of the model include not only the SU(4)
internal symmetry but also the lattice symmetry and the
particle-hole symmetry which fixes half filling. The lattice
symmetry Glatt includes translation, rotation, and reflection
symmetries of the honeycomb lattice. The particle-hole
symmetry ZS

2 acts as S∶ci → ð−Þic†i followed by complex
conjugation, such that S2 ¼ þ1, which is also known as the
chiral symmetry or theCT symmetry [60–62]. The combined
symmetry Glatt × SUð4Þ⋊ZS

2 protects the Dirac semimetal
from all fermion bilinear masses and the chemical potential
shift. This can be seen from the field theory description for
the Dirac semimetalL ¼ P

Q¼K;K0 c̄Qγμi∂μcQ, where cQ is a
SU(4) fundamental spinor at each valley (Q ¼ K, K0). The
SU(4) symmetric bilinear mass terms must take the form of
c̄QMQQ0cQ0 with a Hermitian 2 × 2 matrix M in the valley
sector. The space of M is spanned by four Pauli matrices
(including σ0) basis, which correspond respectively to the
Chern insulator gap, the charge density wave gap, and two
Kekulé dimerization gaps. The first two break the particle-
hole and the reflection symmetries and the last two break the
translation symmetry, so none of them are allowed by the full
symmetry. So the remaining option to generate fermion
masses without breaking any symmetry is to invoke fermion
interactions, such as the charge-4e interaction HI .

IV. FEATURELESS GAPPED PHASE

To understand the SMG transition, we need to first
understand both sides of the transition. The Dirac semi-
metal phase is relatively simple. As the interaction is weak
and irrelevant, the semimetal phase is well described by the
fermion band theory. The featureless gapped phase (the
charge-4e superconductor) is more exotic. As the gap is of
the many-body nature, it cannot be described by the simple
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band theory picture. Nevertheless, much understanding of
the charge-4e superconductor was obtained by disordering
the charge-2e superconductor in previous studies [53–56].
We take the same approach here. Let us consider fermion
mass generation in two steps: we first gap the fermion by
introducing the charge-2e pairing at the price of breaking
the symmetry, and then we restore the symmetry by
disordering the pairing field. The discussion leads to a
parton construction for the featureless gapped phase, based
on which we can further explore the possibility to merge the
two steps of the mass generation into one single transition
without the intermediate symmetry breaking phase.
Let us start from the semimetal side and consider the

SU(4) sextet pairing on each site (which has six compo-
nents labeled by m ¼ 1;…; 6) [59,63],

Δm
i ¼ 1

2

X
a;b

ciaβmabcib; ð4Þ

where βm are antisymmetric 4 × 4 matrices given by
β ¼ ðσ12; σ20; σ32; iσ21; iσ02; iσ23Þ, where σμν ¼ σμ ⊗ σν

denotes the direct product of Pauli matrices σμ and σν.
The paring operatorΔi rotates like an O(6) vector under the
SUð4Þ ≅ Spinð6Þ symmetry, and it transforms under the
chiral symmetry as S∶Δi → −Δ†

i . Introducing such a flavor
sextet pairing to the Hamiltonian

HM ¼ −
X
i

M · ðΔi þ Δ†
i Þ ð5Þ

will break the SU(4) symmetry [down to its Spð2Þ ≅
Spinð5Þ subgroup] as well as the chiral symmetry ZS

2 ,
and at the same time gap out all the Dirac fermions. In the
limit that the paring gap jMj → ∞, the fermion correlation
length shrinks to zero, and the ground state wave function
(of HM) reads

jΨc;Mi ¼
Y
i

ð1þ M̂ · Δ†
i þ c†i1c

†
i2c

†
i3c

†
i4Þj0ci; ð6Þ

where M̂ ¼ M=jMj is the unit vector that points out the
“direction” of the sextet pairing. Comparing jΨc;Mi with
the wave function jΨci for the featureless gapped phase in
Eq. (3), we can see that the most essential difference lies in
the additional fermion bilinear term M̂ · Δ†

i in jΨc;Mi,
which breaks the SU(4) symmetry.
To restore the SU(4) symmetry, we need to remove the

fermion bilinear term from the wave function. This amounts
to symmetrizing thewave function jΨc;Mi over all directions
ofM, or in other words, projecting thewave function jΨc;Mi
to the SU(4) symmetric subspace. Loosely speaking, we
propose the following projective construction:

jΨci ∼
Z
S5
dMjΨc;Mi: ð7Þ

This construction will be made precise using the parton
formalism shortly. But the lesson we learn is that the fermion
bilinear massM serves as a convenient scaffold to construct
the featureless gapped state, which can be removed by the
symmetrization in the end.

V. PARTON CONSTRUCTION

The idea of carrying out the symmetrization on every site
invites us to think about “gauging” the SU(4) symmetry as
follows. Consider decomposing the physical fermion cia into
bosonic Biab and fermionic fib partons (a, b ¼ 1, 2, 3, 4),

cia ¼
X4
b¼1

Biabfib; ð8Þ

with the “orthogonal constraint” [64] on the bosonic parton
Hilbert space ∀ a ≠ b∶

P
cB

†
icaBicb ¼

P
cBiacB

†
ibc ¼ 0.

An SU(4) gauge freedom emerges from the fractionalization
[65]. On each site, the gauge transformation Ui ∈ SUð4Þ is
implemented as

Biab →
X4
c¼1

BiacU�
ibc; fia →

X4
b¼1

Uiabfib: ð9Þ

Both the bosonic and the fermionic partons carry the SU(4)
gauge charge. Besides the gauge charge, the SU(4) sym-
metry charge is carried solely by the bosonic parton. The
chiral symmetry ZS

2 acts projectively on the partons as
S∶Bi → −iB†

i ; fi → ið−Þif†i , where the factor�i should be
understood as the gauge transform in the Z4 center of the
SU(4) gauge group. So we have S2 ¼ −1 for both bosonic
and fermionic partons, in contrast to S2 ¼ þ1 for the
physical fermion. As we show later, such a projective ZS

2

action is required by the nontrivial projective symmetry
group (PSG) of the parton mean-field theory.

VI. WAVE FUNCTION FROM PARTONS

Motivated by the previous projective construction, we
put the fermionic parton in an SU(4) gauge sextet super-
conducting state [66] in analogy to Eq. (6),

jΨfi ¼
Y
i

ð1þ M̂ · Δ†
i ½f� þ f†i1f

†
i2f

†
i3f

†
i4Þj0fi; ð10Þ

where j0fi denotes the fermionic parton vacuum state and
Δi½f� ¼ 1

2

P
a;bfiaβabfib is the gauge sextet paring operator

of the fermionic parton fia, which is similar to the flavor
sextet pairing of the physical fermion in Eq. (4). With this
gauge sextet pairing, the SUð4Þ ≅ Spinð6Þ gauge group is
broken down to its Spð2Þ ≅ Spinð5Þ subgroup. However,
the SU(4) symmetry remains untouched, because the
symmetry charge is now carried by the bosonic parton.
More importantly, the parton state jΨfi is also symmetric

YOU, HE, XU, and VISHWANATH PHYS. REV. X 8, 011026 (2018)

011026-4



under the chiral symmetry ZS
2 in the PSG sense [67], which

is in contrast to the physical fermion state jΨc;Mi in Eq. (6)
where ZS

2 is broken. Using the previously proposed PSG
transformation S∶fi → ið−Þif†i , it can be shown that the
parton pairing operator transforms as S∶Δi½f� ↔ Δ†

i ½f�.
Hence, the gauge sextet pairing termM · ðΔi½f� þ Δ†

i ½f�Þ is
ZS

2 symmetric, and the resulting mean-field state in Eq. (10)
is also symmetric. To construct an SU(4) symmetric state,
we consider putting the bosonic parton in a short-range
correlated SU(4) singlet state. In the extreme limit of zero
correlation length, an SU(4) symmetric many-body state
takes the following form:

jΨBi ¼
Y
i

�
1þ 1

4!
ϵabcdB

†
ia1B

†
ib2B

†
ic3B

†
id4

�
j0Bi; ð11Þ

where j0Bi denotes the bosonic parton vacuum state. ϵabcd
is the antisymmetric (Levi-Civita) tensor of four indices,
such that the flavor indices are antisymmetrized to form the
SU(4) singlet.
Now we take both the bosonic and the fermionic parton

wave functions and project them to the physical fermion
Hilbert space,

jΨci ¼ PjΨBΨfi; ð12Þ

where the projection operator maps each parton Fock state
to the corresponding Fock state of physical fermions:

P ¼
Y
i;a

�
j0cih0f0Bj þ c†iaj0cih0f0Bj

X4
b¼1

Biabfib

�
: ð13Þ

The resulting state jΨci in Eq. (12) is precisely the
featureless gapped state in Eq. (3). This parton construction
provides us with one plausible picture of the featureless
gapped phase: the fermionic parton is in a gauge sextet
paired state, while the bosonic parton is in an SU(4)
symmetric gapped state, and the remaining gauge degrees
of freedom are confined. On the other hand, the Dirac
semimetal phase also admits a simple picture in the parton
formalism: if we put the fermionic parton in the same Dirac
band structure as the physical fermion and condense the
bosonic parton to the state hBiabi ¼ Zδab (with Z acting
like the quasiparticle weight), then the physical fermion
will be identified to the fermionic parton cia ¼ Zfia and
retrieve the Dirac band structure. We implement these
insights in a field theory below.

VII. FIELD THEORY

What we learned from the parton construction is that the
Dirac semimetal and the symmetric massive phase corre-
spond, respectively, to the Higgs and the confined phases of
an SU(4) gauge theory. Thus, if there is a direct continuous

transition between them, it is conceivable that the transition
should be a deconfined critical point [50–52]; i.e., the
gauge theory will be deconfined at and only at the transition
point. Therefore, we propose the following field theory
description for the symmetric mass generation:

L ¼ Lf þ LB;

Lf ¼
X

Q¼K;K0
f̄Qγμði∂μ − amμ τmÞfQ þ Lint;

LB ¼ −TrBði∂μ − amμ τmÞ2B† þ rTrBB†

þ u1ðTrBB†Þ2 þ u2TrðBB†Þ2
þ u3ðdetBþ H:c:Þ þ � � � ; ð14Þ

which contains the matter fields of bosonic partons B
and fermionic partons fQ as well as the SU(4) gauge field
amμ τm. The matrices τm (m ¼ 1;…; 15) are SU(4) gener-
ators (as 4 × 4 Hermitian traceless matrices), and
ðγ0; γ1; γ2Þ ¼ ðσ2; σ1; σ3Þ. Lint contains short-range inter-
actions of the fermionic parton which we specify later in
Eq. (15). This interaction term is treated perturbatively, but
it will play an important role to deform the fermionic sector
from a pure quantum chromodynamics (QCD) theory,
giving rise to possible instabilities of spontaneous mass
generation for the fermionic parton in the symmetric
gapped phase (as to be analyzed soon). Furthermore, the
emergent U(1) symmetry corresponding to rotating the
overall phase of the fermionic parton (fQ → eiθfQ) will
also be broken by the interaction Lint.
To reformulate the fractionalization scheme Eq. (8) at the

field theory level, we start with the low-energy physical
fermions cQ (Q ¼ K, K0) around K and K0 points of the
Brillouin zone. Both of them transform under the SU(4)
symmetry as fundamental representations. We can frac-
tionalize the physical fermion field to the parton fields as
cQ ¼ B · fQ, where fQ is a four component fermion field
[transforming as a SU(4) gauge fundamental] for each
valleyQ, and B is a 4 × 4matrix field that transforms under
both the SU(4) symmetry (from left) and the SU(4) gauge
symmetry (from right). Based on the fractionalization
scheme of Eq. (8), we expect the matrix field B to be
unitary (up to normalization constant Z) on the lattice scale.
The constraint may be imposed by a Lagrangian multiplier
λTrðBB† − Z2Þ2, which, under renormalization, leads to an
effective potential for B in the field theory, whose leading
terms (r and u1;2 terms of LB) are given in Eq. (14). The u3
term is another SU(4) symmetric four-boson interaction,
which explicitly breaks the U(1) symmetry of B and can be
viewed as a descendant of the charge-4e superconducting
interaction HI in Eq. (2).

VIII. SYMMETRIC GAPPED PHASE

In the field theory Eq. (14), the SMG transition is driven
by r. When r > 0, the bosonic parton is gapped, leaving the
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fermionic parton coupled to the SU(4) gauge field below
the scale of the bosonic parton gap ΔB, described by the
Nf ¼ 2 SU(4) QCD theory. We assume that this SU(4)
QCD theory is confining [68]. The resulting confined phase
will depend on additional details. For example, if we
considered a pure SU(4) QCD, with no additional four-
fermion interactions, a U(1) symmetry of fQ → eiθfQ (the
baryon number conservation) will be present, and will not
be broken in the confined phase, by the Vafa-Witten
theorem [69]. Instead, chiral symmetry breaking is likely
to occur, breaking the SU(2) valley symmetry. However, for
our purposes it is crucial to include the following four-
fermion interaction term in the form of the pair-pair
interaction of the gauge sextet pairing Δ½f� ¼ f⊺Kiγ

0βfK0 :

Lint ¼
g
2
ðΔ½f� · Δ½f� þ H:c:Þ: ð15Þ

This interaction can be written as f1f2f3f4 þ H:c: equiv-
alently [which is SU(4) gauge neutral the same as Δ · Δ],
reminiscent of the charge-4e interaction V between elec-
trons in Eq. (2) that drives the transition. Now, the U(1)
baryon number is no longer a global symmetry of the
theory and Vafa-Witten does not forbid mass generation in
the U(1) breaking (gauge sextet pairing) channel.
If the SU(4) gauge fluctuation were absent, the short-

range interaction Lint would be perturbatively irrelevant,
given the negative engineering dimension ½g� ¼ −1 < 0 of
the coupling g. As the SU(4) gauge fluctuation is included
in the QCD theory, the scaling dimension [g] can receive
anomalous dimension corrections. By a controlled
renormalization group (RG) analysis based on the 1=Nf

expansion, detailed in Appendix A, we compute the
scaling dimension ½g� ¼ −1þ 80=ðπ2NfÞ to the 1=Nf

order, implying that the interaction Lint could become
relevant (i.e., ½g� > 0) as we push Nf to Nf ¼ 2. As the
interaction flows strong under RG, it will drive the
condensation of the gauge sextet pairing and lead to a
mass termM · ðΔ½f� þ H:c:Þ, which will gap the fermionic
partons, at the scale of Δf ∼ jMj, and break the gauge
group down to Sp(2). In the absence of matter field
fluctuations below the energy scale Δf, the non-Abelian
Sp(2) gauge field will confine itself (at a confinement
scale Δa). However, the SU(4) symmetry remains unbro-
ken, since the bosonic parton is gapped and disordered.
The particle-hole symmetry S also remains unbroken
because it is realized on the fermionic partons projec-
tively, S∶fQ → if†Q, where the Z4 gauge transformation is
crucial to undo the sign change of M originally caused by
the particle-hole transformation. Thus, the system is in the
featureless gapped phase that preserves all symmetries.

IX. MASSLESS DIRAC PHASE

When r < 0, the bosonic parton condenses hBi ≠ 0. A
positive u2 > 0 term would favor the condensate

configuration hBi to be a unitary matrix (up to an overall
factor Z). Thus, we can always choose hBabi ¼ Zδab by
SU(4) gauge transformations. This will identify the SU(4)
symmetry with the SU(4) gauge group and Higgs out all
gauge fluctuations. The system is then in the Dirac
semimetal phase, described by L ¼ P

Q¼K;K0 c̄Qγμi∂μcQ,
where cQ ¼ ZfQ and Z may be interpreted as the quasi-
particle weight. Any short-range interaction Lint among the
fermionic parton in Eq. (14) will become perturbatively
irrelevant once the SU(4) gauge fluctuation is Higgs out by
the condensation of the bosonic parton, and the corre-
sponding interaction-driven instability (such as the gauge
sextet pairing instability) will cease to exist. In this way, the
RG relevance of the fermionic parton interaction Lint (and
the fermionic parton mass generation) is controlled by the
mass r of the bosonic parton, so the SMG does not need
fine-tuning (other than the only driving parameter r).

X. CRITICAL POINT

At r ¼ 0, both fermionic (fQ) and bosonic (B) partons
are gapless. Together, they screen the SU(4) gauge field
more efficiently, hence reducing the tendency to confine-
ment. This opens up the possibility of a stable deconfined
SU(4) QCD-Higgs theory, which could describe the SMG
critical point. We note that the similar behavior, namely,
the gauge confinement being irrelevant [52] at the critical
point due to the gapless bosons, was also discussed in the
deconfined phase transition [50,51] between the Néel and
the valence bond solid phases. On moving away from the
critical point into the phase where the Higgs fields are
gapped, confinement takes over.
Based on the above understanding, the energy scales ΔB,

Δf, and Δa should catch up one after another as we enter
the featureless gapped phase, as illustrated in Fig. 2(a). This
implies a hierarchy of length scales ξB;f;a ∼ Δ−1

B;f;a near the
SMG transition from the side of the featureless gapped
phase as shown in Fig. 2(b). For example, the SU(4)
multiplet fluctuation will be gapped with the bosonic parton
at the length scale of ξB. However, the SU(4) singlet
fluctuation can persist to a longer length scale ξa until the
Sp(2) gluon gets confined.

(a) (b)

P

C

FIG. 2. (a) Catching-up energy scales of the bosonic parton gap
ΔB, the fermionic parton gap Δf , and the gauge gluon gap Δa on
the confinement side of the SMG. (b) Hierarchical length scales
of ξB, ξf , and ξa near the SMG transition.

YOU, HE, XU, and VISHWANATH PHYS. REV. X 8, 011026 (2018)

011026-6



The above field theory description is in parallel with the
parton construction as discussed previously. But the field
theory also provides other possible scenarios for the
transition(s) between the Dirac semimetal and the sym-
metric gapped phase, when the gapsΔB,Δf,Δa fail to open
up together as the interaction V=t increases. For example,
by tuning the short-range interactions of the fermionic
parton fQ in Eq. (14), it is possible that the fermionic
parton may develop the bilinear mass before the bosonic
parton is gapped, an intermediate SU(4) symmetry break-
ing charge-2e superconducting phase will set in, with the
condensation of the SU(4) sextet Cooper pairs of the
physical fermion, as shown in Fig. 1(a). Such a charge-
2e superconducting phase was also observed in numerical
simulations if the lattice model in Eqs. (1) and (2) is
deformed by the attractive Hubbard interaction [70–72] or
by doping the chemical potential away from the Dirac
point [58].
A more exotic scenario occurs if an extended deconfined

phase is present, leading to an intermediate gapless
quantum liquid, that is, if the fermion parton mass gen-
eration and the gauge confinement happens after the
gapping of the bosonic parton, as shown in Fig. 1(c). In
this phase, the physical fermions are gapped, and the low-
energy bosonic fluctuations are described by a wave
function obtained from the gauge projection of the fer-
mionic parton semimetal state. Therefore, we may call it a
Bose semimetal (BSM) phase [43–46]. The gapless bosonic
fluctuation should be SU(4) singlets and transform only
under the lattice symmetry. A possible candidate is the
valence bond solid order fluctuation. Dynamically, which
of these scenarios are more favorable should depend on the
details of parton interactions and gauge dynamics.
Numerical evidence from the lattice model seems to
support a direct continuous transition without either of
the intermediate phases, as shown in Fig. 1(b).

XI. FERMION GREEN’S FUNCTION

One smoking-gun “feature” of the featureless gapped
phase is the existence of zeros in the fermion Green’s
function at zero frequency [73]. To be precise, let us
define the Green’s function of the physical fermion to be
GabðxÞ ¼ −hcaðxÞc̄bð0Þi, where x ¼ ðt; xÞ is the spacetime
coordinate. Fourier transforming to the momentum-
frequency space, we have GðkÞ ¼ R

d3xGðxÞeikμxμ , with
k ¼ ðω; kÞ. In the Dirac semimetal phase, poles of the
Green’s function appear along the band dispersion.
In particular, at the K and K0 points of the Brillouin zone
where the fermion becomes gapless, the pole is pushed to
zero frequency, and, hence, GðkÞ ∼ ω−1. However, in the
symmetric gapped phase, as proven in Ref. [73], the poles
will be replaced by zeros:GðkÞ ∼ ω as ω → 0 at k ¼ K;K0.
In fact, the Green’s function zeros are symmetry protected
in the featureless gapped phase, which was proved in
Ref. [73]. Let us focus in the vicinity of the K and K0 points

and redefine k to be the momentum deviation from them.
The SMG transition is also a zero-pole transition in the
fermion Green’s function at k → 0. Let us see how this is
reproduced by the parton theory.
Using the parton construction outlined in Eq. (7), we can

calculate the fermionGreen’s function deep in the featureless
gapped phase. The result is (see Appendix B for details)

GabðkÞ ¼
γμkμ

kμkμ þM2
δab; ð16Þ

where jMj corresponds to the sextet pairing gap of the
fermionic parton. In the featureless gapped phase (where jMj
is finite), GðkÞ approaches zero analytically at k → 0 as
expected; see Fig. 3(a). This lends confidence to our parton
construction of the featureless gappedphase. The fact that the
quasiparticleweight approaches unity deep in the featureless
gappedphase is also consistentwith expectation.Because the
charge-4e superconducting ground state is a fully gapped
symmetric short-range entangled state (similar to a vacuum
state), a physical fermion c doped into the system will just
propagate as a quasiparticle above its spectral gap set by the
mass scale jMj without any fractionalization [which is also
consistent with the picture that the SU(4) gauge theory is
confining in the featureless gapped phase].
The Green’s function GðkÞ in Eq. (16) also provides a

plausible scenario for the zero-pole transition. As the gap jMj
decreases, two branches of poles are brought down from
high energy, as shown in Fig. 3(b). They approach the line of
zero asymptotically and eventually annihilate with the zero
at the SMG transition where jMj → 0. Then only a line of
pole is left in theDirac semimetal phase in Fig. 3(c).A similar
mechanism for the zero-pole transition was proposed in
Ref. [74]. However, we also note that the Green’s function
GðkÞ in Eq. (16) cannot describe the fermion correlation
close to the SMGcritical point, where the bosonic parton and
the gauge fluctuation also become important, such that one
needs to go beyond the variational approach to describe the
vanishing quasiparticle weight and the continuum spectral
function as a result of the fermion fractionalization.

XII. CONCLUSION AND DISCUSSION

The SMG is an exotic quantum phase transition between
the Dirac semimetal phase and a symmetric gapped phase,

(a)

Z Z
P

PP

(b) (c)

FIG. 3. The zero-pole transition of the fermion Green’s
function. Take the one of the GðkÞ eigenvalues ðω − jkjÞ=ðω2−
jkj2 − jMj2Þ, for example.
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which cannot be understood within conventional theories
of Dirac mass generation such as the Gross-Neveau
mechanism. However, it has been numerically observed
in different models with different interaction and sym-
metries. We propose a theoretical framework for SMG
broadly as a deconfined quantum critical point, where the
physical fermion is fractionalized into bosonic and fer-
mionic partons with emergent gauge interaction. The Dirac
semimetal phase corresponds to the Higgs phase, and the
featureless gapped phase corresponds to the confined
phase. The gauge group, the parton flavor number, and
the symmetry assignment are flexible components of the
theoretical framework that can be adapted to the model
details, including the interaction parameters and the model
symmetries. More work is required to understand what
determines these parameters.
In this work, we propose that SMG in (2þ 1ÞD with

SU(4) global symmetry can be described by an SU(4)
QCD3-Higgs theory. Analyzing the nonperturbative
dynamics of such a strongly coupled critical point is
currently beyond our analytical capabilities, but a few
statements can be made based on the basic structure of the
theory following the approach used in U(1) deconfined
quantum criticality [75,76]. At the critical point we expect
an emergent SU(2) symmetry in the valley space, relating a
pair of valence bond solid orders and staggered A/B
sublattice order on the honeycomb lattice. Potentially, there
is an additional charge U(1) symmetry that could emerge at
the critical point if either the u3Re detðBÞ in the bosonic
parton sector or Lint of the fermionic partons is irrelevant at
the transition. However, this appears unlikely since the term
that drives the transition, the four-electron charge-4e
superconductor term, itself breaks this symmetry. It will
be interesting to test the enlarged symmetry of the SMG
critical point in numerics. Another prediction is that the
anomalous dimension of the electrons is large at criticality
since it decays into a pair of partons. Similarly, the SU(4)
symmetry order parameters which are bilinears in the B
field should also have large anomalous dimension. For
example, the quantum Monte Carlo simulation in Ref. [40]
obtained the anomalous dimension ηSMG ¼ 0.7� 0.1 for
the O(6) order parameter, much larger than ηWF ¼ 0.035 at
the O(6) Wilson-Fisher fixed point.
The theoretical framework proposed in this work may

be applied to the SMG with other symmetry groups and in
other dimensions. For example, in an upcoming work
[77], we will study SMG in a model with lower symmetry,
SUð2Þ × SUð2Þ × SUð2Þ, which will be described by a
SU(2) QCD3-Higgs theory. The advantage of the lower
symmetry model is that it will give us access to more
phases, and we can check if our critical theory can be
perturbed to obtain the larger phase diagram. The largest
symmetry group for ð2þ 1ÞD SMG is SO(7), where we
can still consider a honeycomb lattice model with eight
Majorana fermions on each site, transforming like a SO(7)

spinor. The SO(7) SMG can be driven by applying the
SO(7) symmetric Fidkowski-Kitaev interaction [19,20] to
each site. All the lower symmetry SMGs in 2D can be
considered as descendants of the SO(7) SMG by partially
breaking the SO(7) symmetry down to its subgroup. An
interesting direction is to consider SMG in various
dimensions. In ð3þ 1ÞD, once again it is readily shown
that eight Dirac fermions (or 16 Weyl fermions) can be
gapped to produce a featureless state [39,59,78–81].
Whether this can proceed through a single continuous
transition remains to be seen: numerics on one micro-
scopic model appear to give an intervening symmetry
breaking phase [49]. One may also discuss SMG in
ð1þ 1ÞD, where we need four Dirac fermions. In fact,
this is closely related to the interaction reduction of
topological phases in ð1þ 1ÞD described by Fidkowski-
Kitaev [19], where they show that edge states with eight
Majorana modes are unstable despite the presence of time-
reversal symmetry that forbids a quadratic gapping term.
Therefore, the transition between the trivial phase and a
phase with eight Majorana (or four Dirac) edge zero
modes can be circumvented by interactions, which
is related to symmetric mass generation for four Dirac
fermions in ð1þ 1ÞD. In Appendix C, we review and
reinterpret the Fidkowski-Kitaev transition in ð1þ 1ÞD
within an SO(7) SMG [19] in the parton language. In
Appendix C, we provide an alternative formulation of the
problem by a set of partons similar to our previous
construction, and also informed by the SO(8) triality,
within which the transition is simply described. Could
such a change of variable or duality transformation be
constructed to describe SMG in higher dimensions? These
are questions for future work.
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APPENDIX A: RENORMALIZATION
GROUP ANALYSIS

In this appendix, we present the renormalization group
(RG) analysis of the Nf ¼ 2 SU(4) QCD theory with short-
range fermion interaction. The theory arises from the SMG
field theory Eq. (14) after gapping out the bosonic fieldB. To
control the RG calculation, we can generalize the theory to
the large-Nf limit. The Lagrangian in consideration reads
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Lf ¼
XNf

a¼1

X
i;j

X
α;β

f̄aαiγ
μ
αβði∂μ − amμ τmijÞfaβj þ Lint: ðA1Þ

The fermionic parton field faαi is labeled by the flavor index
a ¼ 1;…; Nf, the Dirac index α ¼ 1, 2, and the color index
i ¼ 1, 2, 3, 4. The flavor indices are transformed under the
flavor symmetry group SpðNf=2Þ and the color indices
are transformed under the gauge group SU(4). The case of
Nf ¼ 2 is relevant to our discussion in the main text. amμ is
the SU(4) gauge field that couples to the fermion via the
SU(4) generators τm acting in the color subspace. The SU(2)
rotation in the Dirac subspace corresponds to the spacetime
rotation. The γμ matrices are chosen as ðγ0; γ1; γ2Þ ¼
ðσ2; σ1; σ3Þ and f̄aαi ¼ f†aβiγ

0
βα.

Lint denotes the short-range four-fermion interaction.
The charge-4e superconducting interaction for the physical
fermion will naturally induce a similar interaction for the
fermionic parton with the same symmetry properties. It can
be verified that the following interaction is the only four-
fermion interaction that is invariant under the spacetime
rotation, the SpðNf=2Þ symmetry, and the SU(4) gauge
transformations, but breaks the U(1) symmetry in the same
manner as the physical fermion interaction.

Lint ¼ gðVabcd
αβγδ ϵijklfaαifbβjfcγkfdδl þ H:c:Þ;

Vabcd
αβγδ ¼ JabJcdϵαβϵγδ þ JacJbdϵαγϵβδ

þ JadJbcϵαδϵβγ; ðA2Þ

where ϵijkl is the totally antisymmetric tensor in the color
subspace, ϵαβ is the antisymmetric matrix in the Dirac
subspace, and Jab is the symplectic form of the SpðNf=2Þ
group in the flavor subspace [such that the generator A of
SpðNf=2Þ preserves JAþ A⊺J ¼ 0].
Figure 4 concludes the diagrams that contribute to the

linear order (in g) of the RG equation at the 1=Nf order.
Following Refs. [82,83], the RG flow equation is given by

dg
dl

¼ −
�
1 −

80

π2Nf

�
g: ðA3Þ

So the interaction strength g has the scaling dimension
½g� ¼ −1þ 80=ðπ2NfÞ þOðN−2

f Þ. At Nf ¼ 2, we have

½g� ≈ 3.05 > 0, implying that the short-range interaction g
is relevant. To analyze the instabilities due to this interaction,
we recall the β ¼ ðσ12; σ20; σ32; iσ21; iσ02; iσ23Þ matrices
defined in the main text, then the antisymmetric tensor
ϵijkl can be decomposed as ϵijkl ¼ 1

2

P
mβ

m
ijβ

m
kl. Thus, at

Nf ¼ 2, the interaction in Eq. (A2) becomes

Lint ¼
g
2
½ðf⊺Kiγ0βfK0 Þ2 þ H:c:�: ðA4Þ

So the strong charge-4e interaction could drive the sponta-
neous generation of the gauge sextet pairingΔ ¼ f⊺Kiγ

0βfK0

regardless of the sign of g. The sign of g only determines
whether the instability is in the ReΔ channel (g < 0) or in
the ImΔ channel (g > 0). But either case will lead to the
fermionic parton mass generation and the gauge confine-
ment, so the sign of g is not important.

APPENDIX B: DERIVATION OF THE
GREEN’S FUNCTION

As we show in Eq. (7), in the extreme limit of zero
correlation length, the featureless gapped state jΨci in
Eq. (3) can be obtained exactly by projecting the mean-field
state jΨc;Mi to the SU(4) symmetric sector. In this appen-
dix, we generalize this construction to the case of finite
correlation length. Although the projective construction
will not be exact as we go away from the zero correlation
length limit, it still provides us a useful variational wave
function which has a controlled asymptotically exact limit,
based on which we can evaluate the fermion Green’s
function.
The idea to increase the fermion correlation in the wave

function jΨci is to allow the fermion to move around on
the lattice. So we turn on the fermion hopping term in the
mean-field Hamiltonian:

HMF ¼ H0 þHM ¼ −t
X
hiji

c†i cj −
X
i

M · Δi þ H:c:

ðB1Þ

Let us still denote the mean-field ground state as jΨc;Mi.
Switching to the momentum-frequency space and using the
Nambu spinor basis ck ¼ ðcKþk; c

†
K0þkÞ⊺, the fermion

correlation on the mean-field state is given by

GMðkÞ ¼ −hΨc;Mjckc̄kjΨc;Mi

≃
�

γμkμ −iM · β

iM · β −γμkμ

�−1

¼ 1

kμkμ þM2

�
γμkμ −iM · β

iM · β −γμkμ

�
ðB2Þ

at low energy. We propose an SU(4) symmetric wave
function jΨci by symmetrizing jΨc;Mi following Eq. (7), as

FIG. 4. Diagrams that contributes the correction of the inter-
action vertex. Wavy lines are the gauge boson propagators
DðqÞmn

μν ¼ 16q−1ðδμν − ξqμqν=q2Þδmn at the large-Nf fixed point.
The arrowed lines are the fermion propagator GðkÞ ¼ 1=ðkμγμÞ.
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jΨci ¼
R
S5 dMjΨc;Mi [assuming the measure is SO(6)

symmetric and is properly normalized], where S5 denotes
a sphere of radius jMj. Then the Green’s function on the
symmetric state can be obtained by symmetrizing the
mean-field Green’s function. To see this, we start with

GðkÞ ¼ −hΨcjckc̄kjΨci

¼ −
Z

dMdM0hΨc;Mjckc̄kjΨc;M0 i: ðB3Þ

The overlap hΨc;Mjckc̄kjΨc;M0 i vanishes if M ≠ M0, due to
the orthogonality catastrophe of fermion many-body states.
Therefore, we have

GðkÞ ¼ −
Z

dMhΨc;Mjckc̄kjΨc;Mi

¼
Z

dMGMðkÞ: ðB4Þ

The symmetrization will remove the M · β terms in the
numerator but leave the M2 term in the denominator
untouched. Switching back from the Nambu basis, we
arrive at the Green’s function in Eq. (16).

APPENDIX C: FIDKOWSKI-KITAEV SO(7)
SYMMETRIC MASS GENERATION

In this appendix, we review the ð1þ 1ÞD Fidkowski-
Kitaev SO(7) symmetric mass generation [19,20] from the
perspective of the parton construction. The model is
defined on a 1D lattice. On each site, there are eight
Majorana fermion modes χia (a ¼ 1;…; 8) forming the
eight-dimensional real spinor representation of an SO(7)
group. The Hamiltonian reads H ¼ H0 þHI , with

H0 ¼
X
i

X8
a¼1

iχi;aχiþ1;a;

HI ¼ −
V
4!

X
i

X7
m¼1

Δm
i Δm

i ; ðC1Þ

where Δm
i ¼ χiaΓm

abχib are the seven components of the
SO(7) vector. The Gamma matrices can be chosen as
Γ ¼ ðσ123; σ203; σ323; σ211; σ021; σ231; σ002Þ, which form a
set of purely imaginary, antisymmetric, and anticommuting
matrices. The HamiltonianH is manifestly SO(7) invariant.
Besides the internal SO(7) symmetry, the model also
possesses the translation symmetry T∶χi → χiþ1 and the
chiral symmetry S∶χi → ð−Þiχi; i → −i. One can see
S2 ¼ þ1 and T−1STS ¼ −1 acting on the fermions.
In the noninteracting limit (V → 0), H0 simply describes

eight decoupled and gapless Majorana chains, whose field
theory description is

L0 ¼
1

2

X8
a¼1

χ̄aγ
μi∂μχa; ðC2Þ

where χa ¼ ðχLa; χRaÞ⊺ and χ̄a ¼ χ⊺aγ0 contain both left-
and right-moving Majorana modes with the gamma matri-
ces ðγ0; γ1Þ ¼ ðiσ2; σ1Þ. Since the Majorana coupling along
the chain is purely imaginary, the Fermi points are located
at momentum k ¼ 0, π, so χL;R fields are related to the real-
space fermion χi by

χLa ¼
X
i

χia; χRa ¼
X
i

ð−Þiχia: ðC3Þ

Both χL and χR transform as SO(7) spinors. The translation
and the chiral symmetry act as

T∶ χRa → −χRa; S∶ χLa ↔ χRa: ðC4Þ

All fermion bilinear mass terms (such as imχ̄χ) are forbidden
by these symmetries. In fact, the translation symmetry is the
most important protecting symmetry which is sufficient to
rule out all bilinear masses (i.e., all backscattering terms
between χL and χR). So the Majorana chain cannot be
symmetrically gapped on the free-fermion level.
However, it is possible to symmetrically gap out eight

Majorana chains by fermion interactions. One possible
interaction proposed by Fidkowski and Kitaev [19,20] is
the SO(7) symmetric interaction V in Eq. (C1) (abbreviated
as the FK interaction hereafter). In the strong interaction
limit (V → þ∞), the Hamiltonian is dominated by HI,
which decouples to each single site. Diagonalizing the on-
site Hamiltonian, one finds a unique ground state separated
from the excited states by a finite gap Δ ¼ 14V. If we pair
up the on-site Majorana fermions into Dirac fermions as
cia ¼ χi;2a−1 þ iχi;2a (a ¼ 1;…; 4), the ground state wave
function can be expressed as

jΨci ¼
Y
i

ð1þ c†i1c
†
i2c

†
i3c

†
i4Þj0ci; ðC5Þ

which is the 1D version of the charge-4e superconducting
state in Eq. (3). It can be verified that jΨci preserves the
full SO(7), translation, and chiral symmetries, and hence
a featureless gapped state. The only difference with the
ð2þ 1ÞD case is that in ð1þ 1ÞD the interaction V is
marginal at the free-fermion fixed point. Depending on the
sign of V, it is marginally relevant if V > 0 and marginally
irrelevant if V < 0. So as long as we turn on an infini-
tesimal but positive V, the system undergoes a 1D version
of the symmetric mass generation to the featureless gapped
phase.
A better understanding of this 1D SMG physics would

greatly help us to understand the SMG transitions in all
higher dimensions. In the following, we present a parton
construction following Ref. [19] using the SO(8) triality.
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The SO(8) triality is a property that the SO(8) vector 8,
left-spinor 8þ, and right-spinor 8− representations can
fuse to the trivial representation under the trilinear map
t∶ V8 × V8þ × V8− → R. The trality map t can also be
written as a three-leg tensor tmab, where the tensor indicesm,
a, b label the basis of 8, 8þ, and 8−, respectively. Without
interactions, H0 has the full SO(8) symmetry that rotates
the eight Majorana flavors. The interaction HI breaks the
SO(8) symmetry down to its SO(7) subgroup and at the
same time fixes χa to be one of the spinor representations
8�, say 8þ. Using the triality tensor tmab, we can construct
the physical fermion χa (as 8þ spinor) by fusing the bosonic
parton ϕb (as 8− spinor) and the fermionic parton ψm (as 8
vector) on the field theory level:

χQa ¼
X
b;m

tmabϕQbψQm; ðC6Þ

which applies to both the left- and right-moving modes
Q ¼ L, R. One way to make sense of Eq. (C6) on the
microscopic level is to consider the bosonic parton ϕQb as a
Kondo impurity resting on the boundary of the fermion
chain [84], which is treated as a dynamical variable without
spacial dependence. There are two types of Kondo impu-
rities: ϕLb and ϕRb. The ϕQb impurity couples only to the
χQa fermion and scatters it to the ψQm fermion and vice
versa. In this fractionalization scheme, both partons carry
the SOð7Þ ⊂ SOð8Þ symmetry charge, unlike the fraction-
alization scheme in the main text where only the bosonic
parton carries the SU(4) symmetry charge. The translation
and the chiral symmetry act on the parton fields as follows:

T∶ ϕRb → −ϕRb; S∶ ψLm ↔ ψRm; ðC7Þ
such that the symmetry action on the physical fermion field
in Eq. (C4) can be retrieved.
Now let us consider putting the fermionic parton ψm ¼

ðψLm;ψRmÞ⊺ in the same band structure as the physical
fermion χa ¼ ðχLa; χRaÞ⊺, described by

Lψ
0 ¼ 1

2

X8
m¼1

ψ̄mγ
μi∂μψm; ðC8Þ

similar to Eq. (C2). As long as the fermionic parton is
gapless, the physical fermion is also gapless, which
corresponds to the free-fermion fixed point. As the FK
interaction is turned on, the following interaction for the
fermionic parton will be induced:

Lψ
I ¼ −A

�X7
m¼1

ψ̄mψm

�
2

− B

�X7
m¼1

ψ̄mψm

�
ψ̄8ψ8; ðC9Þ

which contains two types of short-range interactions (A and
B terms). The general form of the parton interaction in
Eq. (C9) can be argued on symmetry basis.

According to the fractionalization scheme Eq. (C6), the
fermionic parton ψm was assigned to the vector represen-
tation of SO(8). So the SO(7) symmetry group [as a
subgroup of SO(8)] will rotate only seven components
of ψm and leave one remaining component invariant.
Without loss of generality, we assume ψ8 to be the
SO(7) invariant component, then the SO(7) vector can
be written as (m ¼ 1;…; 7)

Δm ¼ iðψLmψL8 þ ψRmψR8Þ; ðC10Þ

in terms of the fermionic parton bilinear form. As shown in
Eq. (C1), the FK interaction HI ∼ −Δ · Δ is just a dot
product of SO(7) vectors, so we expect it to induce the same
type of interaction for the fermionic partons

−B
X7
m¼1

ΔmΔm ¼ −
B
2

�X7
m¼1

ψ̄mψm

�
ψ̄8ψ8: ðC11Þ

This gives rise to the B-type of interaction in Eq. (C9). As
shown in Ref. [19], under the RG flow, an A-type of
interaction will be generated with A > 0 and become
relevant. The A-type interaction drives a spontaneous mass
generation hP7

m¼1 iψ̄mψmi ¼ M for the first seven ψm
fermions, which in turn gives rise to the mass iBMψ̄8ψ8 for
the ψ8 fermion via the B-type interaction. Hence, all the
fermionic partons are gapped out via the mass generation.
The parton massM is evidently SO(7) symmetric. It is also
invariant under the translation and the chiral symmetries
as seen from Eq. (C7). So in the presence of the FK
interaction, the system will enter the featureless gapped
phase via spontaneous mass generation for the fermionic
partons.
In conclusion, the key point that we learn from this

ð1þ 1ÞD SMG is that the nature of the “symmetric mass”
for the physical fermion is actually a bilinear mass for the
fermionic parton. The fact that the parton bilinear mass
does not break the symmetry is either because the fermionic
parton is in a different symmetry representation from the
physical fermion [e.g., the SO(7) symmetry] or because the
symmetry charge is carried away by the bosonic parton
(e.g., the translation symmetry). These are the key obser-
vations that motivate us to propose the ð2þ 1ÞD SMG
theory in the main text.
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