ASPECTS OF MATRIX MODELS

by
Subrata Bal

A THESIS IN PHYSICS

Submitted to
UNIVERSITY OF MADRAS
CHENNATI 600 005

in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy (Ph.D.)

The Institute of Mathematical Sciences
C. I. T. Campus, Tharamani
Chennai - 600 113, INDIA

April 1, 2002




THE INSTITUTE OF MATHEMATICAL SCIENCES
CIT CAMPUS, TARAMANI, CHENNAT 600 113, INDIA

Fhone: (044)254 1856, (0447254 0588
Fax: [044)254 1586; Gramng: MATSCIENCE
Tales: 041 8860 PCO LN PP WDT 20

BALACHA NDEAN 54 THIAPALA N E-mail: balaiiimsc_ernat.in

CERTIFICATE

I certify that the Ph. D. thesis titled “Aspects of Matrix Models® sub-
mitted for the Degree of Doctor of Philosophy by Mr. Subrata Bal is the record of
bonafide research work carried out by him during the period from February 1998
to December 2001 under my supervision, and that this work has not formed the
basis for the award of any degree, diploma. associateship, fellowship or other titles
in this University or any other University or Institution of Higher Learning. Tt is
further certified that the thesis represents independent work by the candidate and
collaboration was necessitated by the nature and scope of the problems dealt with,

/?A/M <

April 1, 2002 Balachandran Sathiapalan
Thesis Supervisor
Professor, Theoretical Physics
Institute of Mathematical Sciences
Madras 600-113




Abstract

The Matrix Model has proven to be an impressive candidate for M-theory (non-
perturbative string theory). In N — oo (V is the matrix size) limit the matrix model
should give the string theory results. There are mainly two types of matrix models,
Type ITA and Type 1IB corresponding to 1A and IIB string theories respectively.
The TTA matrix model is the (0+1) dimensional reduced model of 10 D SYM theory.
In this theory the diagonal elements of the matrices are interpreted as the positions
of the DO branes and the off diagonal elements as the interactions between two such
DO branes. This system is described by the effective action for N DO-branes which
is a particular N @ N matrix quantum mechanics, to be taken in the ¥ — o limit.
Type IIB matrix model is (04+0) D reduced model of 10 D SYM theory., It has A
= 2 Supersymmetry. The diagonal elements of the matrices in this matrix model is
interpreted as the space time points and the off elements as the interactions between
two such space time points. As the matrices in general do not commute under the
multiplication, the noncommutative geometry of space time arises automatically.
Non-commutative Yang Mills theory in flat back ground can be obtained from this
recluced model.

In this thesis, we have nvestigated the following two important aspects
of the physies of Matrix Model,
o Finite Temperature Matrix Model

The number density of the states in a relativistic string grows expo-
nentially with energy i.e. with temperature. So, the canonical partition function
diverges beyond a limiting temperature, Hagedorn Temperature (T%). Tt is not
clear whether the Hagedorn Temperature is really a limiting temperature. There
were attempts to show it to be a phase transition temperature. In matrix model a
string is obtained when DO branes are arranged to form a membrane, which is then
wrapped around a compact direction. At high temperatures the DO branes prefer to
cluster at point, thus the strings disappear. To get a clear answer to this puzzle we
need to know the exact potential between the DO branes. Thus the nonperturbative
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formulation of string theory like the matrix model is essential. An attractive po-
tential between two DO branes (perturbatively up to one loop) is observed for high
temperature al large NV An attractive potential also been observed in a one loop
calcution at low temperature.

With this motivation, we have attempted to study the hizh temperature
behavior of a simple but non-trivial system - the system of two D-0-branes. This
is essentially the BFSS matrix model with N=2. N is not big enough to describe
M-theory. The D-0-brane action that we are interested in, is a quantum mechanical
one (i.e. 0+1 dimensional). However after compactifying the Euclideanised time, it
reduces to a 04-0 dimensional model, which has the similar structure to that of the
IKKT matrix model.

We have derived the partition function for a system of two D0 brane
(D-particle) kept at very high temperature, up to the leading order in 8 (inverse
temperature) and ezact in coupling constant g. We have calenlated the leading
non-trivial term of the partition function in short distance anc large distance limit.
From a scaling arpument we have also determined the & and g dependence of the
leading term for any N. Up to leading order the effective potential between two
D-0 branes is proportional to — log! and log! for small and large I respectively (I -
distance between two DO branes). We can see that the potential increases at both [
ends, though we can not clearly see the nature of the potential in the intermediate
region but we can conclude that the potential is a confining patential and binds the
D-0 branes. We find that (I?) o \/'J:_jE (true for any V), the finiteness of which also
shows that there must be a potential between D-0 branes that binds them.

As a natural extension of our work on the 'High Temperature N = 2
matrix model’, we have been trying to calculate the partition function for N = 3
matrix model (IIB). We have found out that this is a non-trivial exercise, so we would
like to try a perturbative method of doing it, where the 5 parameters of SU(3) /STU(2)
are considered to be small. This system will give us the SU(3) partition function as
a perturbation from SU(2) partition function.

e Fuzzy Sphere and The Matrix model:-

It is not yet clear how to study D-branes in a general curved background in the
matrix model. It is important to address this issue. In the matrix model we are Vet
to understand the correspondence of the some of the symmetries of the strin g theory
like the conformal symmetry, modular invariance, gauge symmetry and dualities, It
is essential to look for a natural generalization of the matrix model to solve all such
1s8ues of matrix model,



Our recent work on the ‘Interaction between two Fuzzy Spheres’ is an
attempt in this direction. We would like to understand the generalization of the
matrix model to study D-branes in fuzzy sphere background, while it is not the
most, general curved background it is a nontrivial one.

Recently it has been discovered that the fuzzy sphere in finite matrix
model (ITA) correspond to the spherical D2-brane wrapping on an S* in string the-
ory which can be deseribed by the SU(2) WZW model. This gives us an interesting
probe to study the D-branes in curved back ground in the string theory from the
matrix model frame work. Earlier, D-branes in flat backgrounds have been explored
within the framework of matrix models. Recently other non-commutative back-
grounds, for e.g. the fuzzy sphere have also been studied. Non-commutative gauge
theories on fuzzy spheres were obtained considering the supersymmetrie three di-
mensional Type IIB matrix model action with a Chern Simons term. The fuzzy
sphere in Type IIB matrix models may correspond to a spherical Euclidean D-brane
in the string theory with a background linear B-field in S*,

We have considered a general supersymmetric fuzzy sphere model in three
dimensions, which allows a multi fuzzy sphere system with discretely arbitrary radii
and arbitrary location in R*. We have added a Chern Simous term to the reduced
model of 3D SYM. In the original model the space points and objects (e.g. fuzzy
spheres) are not separately distinguishable. We have artificially partitioned the
matrices into multiple block diagonal form. In such case, the classical solution
represents a system of space points and fuzzy spheres (branes). Classically these
fuzzy spheres and space points are non-interacting. We have tried to caleulate the
interaction as the one loop quantum effect. We have calculated interaction of fuzzy
spheres and space points. One loop interaction of fuzzy spheres in bosonic and
supersymmetric case are siudied. In particular, we have caleulated the interaction
between two fuzzy spheres with radii (p; ~ any, ps ~ ama) (n, and ns is arbitrary)
at distance (r = ac). We have determined the one loop effective action for such
system for both bosonic case and supersymmetric case for two fuzzy spheres for
small (¢ << 1) and large distance (¢ >> 1) case. There is a partial cancellation
between bosonic and fermionic part. In supersymmetric case, in 3 dimensions, there
1s an attractive force between {wo fuzzy sphere surfaces for both large and small
distance case. This three dimensional fuzzy sphere model is a simple toy model
in the context of string theory, also has relevance in other thearies, such as the
nonperturbative regularization of Quantum Field Theory using fuzzy space time

and in studying quantum hall fluids of finite extent using finite matrix model. We



have also studied an extension for such system in 10 dimensions. in the context of
string theory. We have tried to include the other degrees of freedom. The fuzzy
spheres we have considered, are separated in 1,2,3 directions and are on top of each
other in other directions. We have got a repulsive force between two fuzzy spheres
in short distance case and an attractive force in large distance case, Even though
this model has & A" = 2 supersymmelry, the one loop contribution for the concentric
case is non-zero for nearly equal ny and n,. This is because of the fact the one loop

approximation is not good approximation in this case.
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Chapter 1

Introduction

String theory has attracted a lot on interest in the past decade as a promising candi-
date for unified theory of all interactions in nature. In string theory the fundamental
objects are one dimensional strings of length of the order 107" centimeter, instead
of zero dimensional point particles. Interactions in string theory have a geometri-
cal interpretation in terms of smooth Riemann surfaces. This way it is possible to
get rid of the short distance divergences in aravity, Quantum Field Theory (QFT)
gives a precise description of the natural interactions at our usual obiservable energy
regime. Though QFT is essentially a theory of point particles, the standard methods
of renormalization can handle the short distance or high energy divergences in in-
teractions other than gravity. Gravity can be shown to be non-renormalisable using
the usual renormalization methods. Se, it is essential to search for an alternative
quantum theory of gravity. In string theory the massless excited vibrational modes
of strings, in principle, should give the elementary particle spectrum known in the
standard model. String theory, in principle, also deseribes the abelian and non-
abelian gauge interactions of the standard model. String theory contains a massless
spin-2 state (graviton) whose low energy effective deseription is general relativity.
This suggests string theory can be a natural and promising candidate {or unified
theory of all the forces including gravity.

Consistency of string theory requires supersymmetry, a symmetry be-
tween bosonic and fermionic degrees of freedom. According to string theory SUPHET-
symmetry is a symmetry of nature at very high energy. At low energy this symimetry
is spontaneously broken. Superstring theory is a ten dimensional theory, with six
compact dimensions, Compactifications to lower dimensions give rise to a rich strue-
ture of Kaluza Klein fields. There are 5 known fully consistent string theory in ten

dimensions. They are known as type IIA, type 1IB, Type 1, Ey % Ey heterotic and
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50(32) heterotic string theories. These theories are all related by duality transfor-
mations. Witten conjectured that the five string theories are in fact manifestations
of one eleven-dimensional theory, namely M-theory. The existence of M-theory is
not yet proven, but substantial evidence hias been collected in the last several years.
The two most important aspects of M-theory are :-
1} M-theory in the low energy limit gives eleven dimensional N = 1 supergravity.
2) M-theory compactified on a circle is dual to type ITA string theory, As the radius
of this circle goes to infinity, the type IIA coupling also goes to infinity.

M-theory has many possible interpretations for the letter "M Matrix

theory (model) is ane proposal of M-theory, In the section 1.1, we will hriefly
introduce this model.

1.1 Matrix Model

The Matrix Model has proven to be an impressive candidate for M-theory. In
N — oo (N is the matrix size) limit, the matrix model should give the string
theory results. There are mainly two types of matrix models, Type [TA and Type

IIB corresponding to [TA and 1IB string theories respectively.

1.1.1 BFSS Matrix Model

‘The IIA (BFSS) matrix model is proposed by Banks, Fischler, Shenker, Susskind [4].
They conjectured that M-theory in the infinite momentum frame (IMF) is a theory
in which the only dynamical degrees of freedom are DO-branes each of which carties a
minimal quantum of py; = 1/R. In this theory the diagonal elements of the matrices
are interpreted as the positions of the DD branes and the off diagonal elements as the
interactions between two such DO branes. This system is deseribed bv the effective
action for N DO-branes which is a particular N x N matrix quantum mechanics.
to be taken in the N — oo limit, The action of this model can be obtained by
dimensionally reducing the ten dimensional SU(N) Super Yang Mills theory to one

(time, 0+1) dimension and is of the form
) (L1)

where ¢ = 1/(2ra) and Ty = 1/\/a = 1/l,, Dy is the time derivative. The indices i, 7

run from 1 to 9 over the nine transverse directions, the 1 are the sixteen component

S =T, f diTr (i (Du_ﬁ:‘)2 — 0" Dyt + i ( e, xf])” + e TTHX,

real spinors. The X" and 4 are all in the adjoint representation of the gauge group
U(N), so they are hermitian N x N matrices,
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The Hamiltonian can be obtained by fixing the gauge X = 0,
71 Lol et e Borerons .
H =17y (iﬁ‘ﬁ" — -&[A‘,AJ];J& X = 5@51[‘ |X I.]) (1.2)

where the indices , j run from 1 to 9 and the P' are the canonical momenta for the
X1,

This model, at low energies, correctly reproduces the full Fock space of
an arbitrary number of supergravitons (supergravity multiplet of 256 states) and
also the (local) supergraviton interaction of supergravity.

The scattering in the IMF should be described by a nonrelativistic looking
time-independent potential at vanishing p,,-transfer. This potential up to one loop
calculation can be found out as

15¢t b
Veeslr) = ———+ 0 [ = (1.3)
eff } 16 57 r 11 "I
This potential exactly matches with the corresponding result in eleven dimensional
supergravity, Two loop calenlation also maintain this matching.
The matrix model contains (super) membranes, and in the large N limit
the matrix model dynamics goes over to the dynamics of the corresponding (su-

perjmembranes, The tension of these matrix model membranes agrees with the
tension of the M-theory membranes.

1.1.2 TKKT Matrix Model

The IIB (TKKT) matrix model, conjectured by Ishibashi, Kawai, Kitazawa and
Tsuchiya [5] is a large N 040 dimensional reduced model of ten dimensional A = 1
maximally supersymmetric SU(N) Yang-Mills theory.

1, (1 P
§ = -t (E[Ap, AJ[A%, A+ SO, ?,a.u]) : (1.4)

Ay, 1y are N x N traceless Hermitian matrices. A, is a 10-dimensional vector and
i is 10-dimensional 16 component Majorana-Weyl spinor fields respectively.

This model can be related to the Green-Schwarz action for the superstring
theory in the Schild gauge

S{_;S = fﬂlzﬂf [\/En: (li{:r”,;r:"}?gﬂ — %1,5]‘“{3:“, '-'.Iu':f’}pg) o Iﬁ\.,.-"{_t_'_lf] [] 5]

where & are the two dimensional world sheet coordinates, g = det{g,) is the de-

terminant of the world sheet metric, and o, § are parameters and can be sealed
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out. The z* are target space coordinates. This theory can be regularised following
method of Goldstone and Hoppe. In this, a function y on the world sheet is replaced
by an NV x N traceless hermitian matrix ¥ and correspondingly

[ d?o /Gy > TrY (1.6)
and

{z,y} & ~i[X,Y]. (1.7)

Under this regularisation, equation 1.5 reduces to

1 p
S.S'c.l'u'hf =—alTr (E[Hf“ ‘4_,_,.][_*1“,;'1“] + Ei,f:'[‘“[."h” rn'f"]) t ﬁ"n"'r {1SJ

The N = 2 supersymmetry is manifest in Seopie, which sets translated
into the IIB matrix model, I1B matrix model has A" = 2 space time Supersvimetry,
1) i
sty = 5[‘4“_“.-_1“]1"-##5

oA, = ielPy
and
5‘2}1}' = &
d4, = o
Taking the linear combination of 61 and &2 as,

o s 5
5 = (50— ),
we can get the A = 2 supersymmetry algebra,
(5089 ~ 595 p = o
(695¢ — 8080 A, = 2ieDeesy

As the maximal space time supersymmetry indicates the existence of gravitons and
this theory contains massless particle in the spectrum, it votes for II B matrix mode)
being a constructive definition of II B string theory. This is one reason [or which
the the eigenvalues of 4, mairices in this model are interpreted as the space time

points. In this model the space time consists of N discrete points. The offdiagonal

elements denote interactions between two such space time points.
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This model has no free parameter. The coupling constant g can be
absorbed by the field redefinition, in a similar way as coupling constant can be
absorbed in string theory to the dilaton vacuum expectation value.

As matrices in general do not commute under multiplication, noncon-
mutative geometry arises automatically in matrix model. In [3], it was shown that
Non-commutative Yang Mills theory with infinitely extended D-brane background
an be obtained from large NV twisted reduced model and provides a precise defini-
tion of noncommutative Yang-Mill theory. They have also studied the D-instanton
mteractions and have shown that these interactions when overlap, matches with the
gauge theory deseription and for non-overlapping case satisfies the 1TB supergravity
description. A four dimensional gauge theory with D-brane backsround can also be
obtained. It was also shown that the Maldachena conjecture [10] follows from TIB
matrix model conjecture [5]. In [9] the effective string scale for noncommutative
Yang Mills is identified with the noncommutative scale using its dual supergrav-
ity description. In [8] a bilocal representation of noncommutative field theory is
proposed, which provides a simplified description for high momentum degrees of
freedom. The bilocal fields can be identified to the zero modes of open strings and
can be interpreted as the 'momentum’ and 'winding'modes, Noncommutative Yang
Mills can be associated with the von Neumann lattice by the bi-local representation
and it is argued to be superstring theory on von Neumann lattice. Newton's force
law may be obtained from 4 dimensional noncommutative Yan g Mills theory with

maximal supersymmetry. It suggests a nonperturbative compactification mechanism
of IIB matrix model.

1.2 Thesis Plan

In this thesis, we have investigated the following two important aspects of the physics
of matrix models namely :-

1) Finite Temperature Matriz Model,
2) Matriz Model and Fuzzy Sphere,
The thesis is organized in the following way,
In section 1.1, we have briefly introduced the matrix model. We will
discuss about two types of Matrix Models,
1) Type IIA or BFSS matrix model and
2) Type 1IB or IKKT matrix model.

In section 1.3 and 1.4, we will try to briefly introduce the motivation and
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nature of these two issues. In section 1.3, we will briefly review the finite temperature
string theory and its importance and limitation. We will try to understand the
motivation of studying finite temperature matrix model and the present background
in this field. In 1.4, we will discuss about the importance of the fuzzy splere in
matrix model in studying the D-branes in string theory and introduce the present
problem.

In chapter 2, we have considered a system of two DO-branes at high
temperature. Such a system is deseribed by N = 2 matrix model, time compactified
on a circle of circumference 3. We have caleulated the partition function of such
system nonperturbatively (exact in g) as a power series in g (inverse temperature).
The leading term in the high temperature expression of the partition function and
effective potential is calculated ezactly, Physical quantities like the mean sqnare
separation can also be exactly determined in the high temperature limit.

In chapter 3, we have described the Chern-Simons-IKKT matrix model.
Fuzzy sphere and Points are classical solutions of this action. We can describe a
multi-fuzzy spheres system in same set up. We have caleulated also calenlated that
two block and three blocks interactions. We have studied point-point interaction
and point-fuzzy sphere interaction in detail.

In chapter 4, We have calculated interactions between two fuzzy spheres
in 3 dimension. It depends on the distance r between the spheres and the radii gy,
pa. There is no force between the spheres when they are far from each other (long
distance case). We have also studied the interaction for = 0 case. We find that an
attractive lorce exists between two fuzzy sphere surfaces. We have also studied the
extension of such system in 10 dimension.

1.3 High Temperature Limit of the N = 2 Matrix
Model

In this subsection, we will briefly discuss albout the finite temperature aspect of
string theory and the problems related to it. We will also discuss the motivation for
studying the finite temperature the matrix model.

1.3.1 Finite temperature String Theory

The study of string theory at finite temperature is a long standing lield of interest.
There are several reasons for this, String theory in and above the Plank scale regime

15 an issue of fundamental interests. In this resime we expect the stringy behavior
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to become more evident and might give new insights into its fundamental degrees of
freedom and the structure of space time, thus providing a framework of unification of
space time and matter. It is very poorly understood what is the correct configuration
space and which states dominate the dynamics of string theory at that scale. One
way to probe this region would be to study a very hot ensemble of strings.

Another motivation of studying such system is within the context of
cosmology. The evolution of the early universe may be qualitatively altered by the
effects due to fundamental strings or due to cosmic strings which have m any of the
same properties as fundamental strings.

It is well known that any string model has spectrum whose degeneracy
grows exponentially as a function of the mass [10]. The number of states with mass
between mass m and m + dm is

plmydm = Am™® Exp(Bym)dm {1.9)

where A, B are constants and values depends on the particular string theory. As a
result, the thermodynamical partition functions will diverge bevond the temperature
Ty = ﬁ due to the competition between the entropy and the Boltzmann factor
Exp(—fm). indicating a existence of a limiting maximum temperature for a system
in thermal equilibrium. This temperature is called Hagedorn Temperate (Ty) [11].
The consequences in the early universe due to such limiting temperature coming from
the dual string model were studied by Huang and Weinberg [12], What happens
when we try to increase the temperature past this point is, despite much effort.
merely a speculation.

In QCD, there are two phases: helow the critical temperature 7., the
theory is in the confining phase where the spectrum is similar that of the string
theory while beyond T, the theory is in the deconfining phase. Drawing an analogy
between string theory and QCD, it has been argued that the Hagedorn temperature
15 not really a limiting temperature, rather a phase transition temperature [13].
There are various interpretations for a weakly interacting ensemble of strings near
the Hagedorn Temperature, It has been argued in [13], Ty is a first order transition
temperature in which the structure of the string world sheet may break down. It
has been shown that at Hagedorn temperature a certain "winding’ mode becomes
massless, resulting in phase transition[14]. As the microcanonical specific heat is
negative for high energies, in [15], it has been speculated that for high energies the
string ensemble may be unphysical and the stability may set in above the Hagedorn

Temperature [16] and all the energy will be taken away by a single energetic string
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[17]. Tt is also argued that at intermediate energy density the energy may be shared
by more than one very energetic strings [18]. In [17, 19], it was shown that the
string ensemble makes sense all the way up to a canonical temperature equal to
the Hagedorn temperature. It was also shown that if additional energy is added
to the ensemble beyond this temperature in trying to raise the temperature, the
extra energy leads Lo the formation of a long string; and analogy was drawn to an
infinite latent heat [19, 20, 17]. In [21], a mixed phase structure was argued, which
is characteristic of a system undergoing a phase transition, However, the system
can never completely go into the "high temperature’ phase as it needs an infinite
amount of energy. No instability is encountered in this scenario. This scenario may
differ for interacting strings.

According to the string uncertainly principle [22], when one increases
collision energy, the energy becomes large enough to excite the oscillation modes of
the the string and beyond this increased collision energy leads to poorer resolution.
This may tend to indicate that distances shorter than the string scale and the
corresponding high-frequency degrees of freedom do not exist. This can drastically
change the fundamental degrees of freedom at high energy and this scenario of lon g
string may also be changed.

So, we can see that it 1s not yet clear whether the Hagedorn Temperature
15 really a limiting temperature or a phase transition temperature. The string e
havior near Hagedorn Temperature is not understood in perturbative string theory.
Thus, a non-perturbative formulation like matrix models may be Lelpful in resolving
these long standing issues.

1.3.2 Finite Temperature Matrix Model

Lt 1s clear that recent developments in non-perturbative string theory or M-theory [4,
5. 6, 7, 7] have some bearing on our understanding of the high temperature behavior
of strings. Furthermore, study of high temperature behavior of a system is often
a useful probe for the system and many calculations simplify at high temperature.
We can thus hope to learn something about M-theory from its high temperature
behavior.

In [23], there is an attempt to elucidate the nature of the Hagedorn
temperature using the matrix model formalism. It was shown that this temperature
is not a limiting temperature, rather a phase transition temperature, Hagedorn
transition is shown to be similar with the deconfinement transition in gange theories.

The phase below the Hagedorn temperature corresponds to one where the DO-branes
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are arranged to form a membrane which can be wrapped around compact direction
to give a string. By a one loop computation it was shown that at high temperatures
the DO-branes have an attractive force between them and prefer to cluster as one
point causing the string to disappear, This was also investigated in a subsequent
paper using the AdS/CFT correspondence [24].

In [25], Ambjorn, Makeenko, Semenoff have studied a svstem of DO-
branes with open strings between them in type ITA superstring theory using the
matrices. They have computed the one loop effective potential between static DO-
branes in the matrix theory at finite temperature and have shown that the result
matches with string theory in the low temperature limit at leading order. The
effective static potential between DO-branes is logarithmic and atiractive in nature
at short distances.

With this back ground, in chapter 2 of this thesis, we attempt to study
the high temperature behavior of a simple but non-trivial system - the system of two
D-0-branes. This is essentially the BI'SS matrix model [4] with N=2, This N is not
large enough to describe M-theory. In particular it would not include for instances
processes involving pair-production of D-0 brane - anti-D-0 brane. Nevertheless
it 15 already complicated enough. In particular the nature of the threshold and
other bound states that have been studied [27, 28, 8, 30] are not fully understood.
Furthermore we should keep in mind that while the matrix model reproduces strin g
theory at short distances, the fact that it also does so at long distances seems to
be eutirely due to the super-symmetric non-renormalisation theorems. At finite
temperature supersymmetry is broken and perhaps we should not expect this. For
all these reasons the study of matrix models at high temperature is worthwhile,

A related model of D-instantons, the IKKT matrix model [5], which is
0+0 dimensional has been solved exactly for N=2 [26]. The partition function in
such case was shown to be finite without any divergences.

The D-0-brane action that we are interested in, is a quantum mechanical
one (i.e. 041 dimensional). However after compactifying the Euclideanised time, if
one takes the high temperature limit, it reduces to a 040 dimensional model and
have similar structure as that of IKKT matrix model. There is thus a hope of solving
this model order by order in 8 but to all orders in g using the same techniques as [26].
One can then calenlate physical quantities such as the mean square separation of the
D-0-branes - a measure of the size of the bound states. This is what is attempted
in this chapter. We obtain the leading behavior in 8. We can also estimate, the

corrections to the leading result. The noteworthy feature being that each term is




Chapter 1. Introduction 10

exact in its dependence on the string coupling constant .

1.4 Matrix Model and Fuzzy Sphere

Fuzzy Physics is a field of long standing interests. Quantisation of the underlying
space time (a [uzzy space time ) is a well known method of introducing a short
distance cut off. Attempt of nonperturbative regularisation of quantum field the-
ory using such fuzzy space time have some important advantages over the lattice
quantum held theory. Noncommutative matrix model description for fuzzy fields
18 successful in preserving the symmetries, topological features and overcomin g the
fermion doubling problem appears in lattice QFT,

Study of fuzzy physics and noncommutative geometry have drawn re-
newed attention, in recent days, for its relevance in better understanding of string
theory. Specially the presence of the extended objects like D-branes in string theory
makes it essential to think of noncommutativity of the space time, and demands
better understanding of the fuzzy physics. Study of fuzzy sphere also have relevance
in Quantum Hall Effect. Finite Chern - Simons matrix model on the plane is used
as an effective description of fractional quantum Hall fluids of finite extent. Here,
we will try to explore some unanswered cuestions related to the dynamics of the
fuzzy sphere in the framework of Chern-Simons-IKKT matrix model. Our work is
motivated from string theory. Though this model is a toy model from string theory
point of view, it can be extended to higher dimensions to understand specific phys-
ical system in string theory. Before going into the details of the subject let us give
a brief introduction about the fuzzy sphere,

1.4.1 Fuzzy Sphere

An ordinary sphere, as we know, is defined by the equation

T} + 25+ 25 = p° (1.10)

where, ;1,72 and r3 are real numbers. # is a constant, The coordinates x,, T, and
ry commute each other and the p can take any value from a continuous R
The translational operator on such S? is not momentum, rather an ang-
lar momentum L, of three dimensional space. These angular momentum operators
satisfy the SU(2) algebra.
[Liy Xo] = i€ X,

[Lp.t Lu] =, 'IE.IJ.!-'.'\LA
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The casimir L? = L} + L3 + L has eigenvalue I(I + 1), where | takes only integral
or half integral positive values.

To get the fuzzy version of the ordinary sphere. we identify the coordinate
to translational operator on 5*. X, = oL, « is a dimensionfull parameter. Hence,
the coordinates are, now, noncommutating operators. They satisfy the SU(2) alge-
bra

[X,_l, Xl = T00E 0 Xy (1,11)

Because of noncommutativity, all the Ay's cannot be diagonalised simultaneously
and eigenvalues are discretised. As a result the space time is no longer continuous
and smooth, rather it is non-commutative and consist of discrete points.

In this present space time the equation 1.10,

Xit X4 X2 =%

does not represent a smooth surface like earlier. Now, the surface is discretised and
fuzzy. So, we call it a fuzzy sphere. We should also note here that the eigenvalues
of X7+ X3+ X§ = p% are not continuous. The radius of the sphere can only take
discrete values [{I + 1) and depends on the representation chosen, where [ is integer
or half integer. For a fixed value { 2.e. for radius of the sphere is f?;' =I{l+1). we
can choose a representation of X, as 21 + 1 = N dimensional irreducible hermitian
matrices,

We will not go into the details of the properties of the fuzzy space time,

but let us give a table describing the analogy between fuzzy sphere and fuzzy plane{or
torus)

i Lorus sphere
translation angular
momentum p,
operator momentum [,
@Jrrrlr] = iﬂﬁpu [E;.n J"y] = if;m.\x,";
ordinarily [pasps] =10 [ fo] = teusdy
. [z, 2] =0 [Zp, 2] =0
J! identify by Do = B T, = ol
[P;n '-1:1)] = ?:"-'J-p:-' [Iprr Iw] — 'Elf;w);-'r}.
fuzzy [P o] = =0} [ s (Y
I-T-';u 5[::-'] = "jﬂ,m: [:rfh :L‘;..] . iﬂﬁpyﬁri
coordinates , o
dlgebre Heisenberg S5U(2)

Table : Analogy between fuzzy sphere and fuzzy plane(or torns)
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As these fuzzy spheres are found to have correlation with the physical
objects in string theory, we would like to study the dynamics of these fuzzy spheres.
To study the dynamics of fuzzy sphere system, we look for an action such that the
classical equations of motions is the algebra of coordinates:

[:{I“ X“E rms | 'Ej(lﬁyr,lz‘{;.'

It may give a model for dynamies of fuzzy spheres,

1.4.2  DMatrix Model and Fuzzy Sphere

String theory in its present form, includes various types of extended objects like
D-branes other than the fundamental string. The presence of D-branes brings the
non-commutativity of space time. In fact we can derive non-commutative gange
theory on world volume of D-branes in string theory and this non-commutative
gauge theory leads us to find the corresponding matrix model.

We have seen, in [1B matrix model the non-commutativity of space time
and the interactions are deseribed by the matrices. The non-commutative Yang-
Mills theory in a flat back ground can be obtained by expanding the matrix model
around a flat non-commutative background [2]. Such non-commutative gange theory
i5 obtained in string theory by introducing background constant B-field [3]. The
non-commutative background is a D-brane-like background which is a solution of
the equation of motion. So, we can study the D-branes in flat background within
the framework of matrix model. We need to formulate a matrix model which as well
gives us a scope to study the D-brane in curved background.

Recently other different non-commutative backgrounds, for e.g. a non-
commutative sphere, or a fuzzy sphere, have also been studied [4, 5]. In [4]. non-
commutative gauge theories on fuzzy sphere were obtained expanding the supersym-
metric three dimensional matrix model action with a Chern Simons term, around a
classical solution. Although an ordinary matrix model has only a flat background
as a classical solution, this matrix model can describe a curved background owing
to this Chern Simons term.

Fuzzy sphere may correspond to spherical D2-brane in string theory with
a background linear B-field in S% [6, 7, 8, 9, 10]. Specially, the 0 radius one cor-
respond fo the DO-brane. It is interesting to note that, in Matrix model, such
objects correspond to the D2 or DO brane in string theory, Similarly, BPS objects
correspond to BPS D branes.
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We have considered a supersymmetric mzzy sphere model in three di-
mensions as in [4]. We get this model by adding a Chern Simons term to the three
dimensional reduced model [1]. We try to provide a framework which allows us to
study a multi fuzzy sphere system. We shall study the two fuzzy spheres system in
detail and investigate the interaction between them.

We have also studied an extension of this toy model to 10 dimensions,
m order to make contact with the string theory. We will try to include the other
degrees of freedom. We will study a two fuzzy sphere configuration in the IIB matrix
model with an added CS term, with an the action very similar to that of [12].

We have presented the model for the multi fuzzy sphere in backeround
space, We have studied interaction of fuzzy spheres and space. We have also con-
sidered the dynamics of the fuzzy spheres. We have expanded the action around
a classical background and studied the one loop interaction between fuzzy spheres
for the bosonic and supersymmetric cases. In particular, we have calenlated the
mteraction between two fuzzy spheres. We have caleulated the potential for snch
system for both large and small distance cases. This potential is attractive for the
supersymmetric case which vanishes for infinite distance, In section 4.2, we have
studied an extension of this 3 dimensional model to 10 dimensions, Such a system
may have corelation with D-brane in string theory and help in understanding of
dynamics of D-branes in string theory from 1IB matrix model aspect. In a recent

work [31], there was an attempt to understand the dynamics of two fuzzy spheres
in ITA matrix model aspect.

1.4.3 Space-time and brane from Matrix Model view point

In general, in matrix model, we deal with arbitrary Hermitian matrices. We can
artificially partition these matrices into multiple blocks such that each diagonal block
represents a part of space time. We call it a space time object or & brane. And the
off diagonal blocks represent the interactions between such branes. The size of such
brane depends on the size of the matrix-block representing the brane. For example,
block of size 1, describes a space time point.

Though the overall matrix is traceless, the individual blocks need not be
traceless and the values of traces of these blocks give the space time co-ordinates of
the centers of the blocks (objects). In this paper we assume that the trace lies in
TRA0

We shall assume the 'dynamical compactification’ of 10 dimensional space
time to M7 @ RY(S™), [11].
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It is known that there are non-commutative solutions for classical eOua-
tions of motion and non-commutative gauge theories on such space time objects
(both plane and sphere case). Iso et al [4] and others have shown that a non-
commutative gauge theory can be realized on a fuzzy sphere. For the flat case the
gauge interaction can be explained as the open strings which ends on the object
(brane). The force between two such branes at long distance can be understood as
close strings exchange between them. It is interesting to understand whether this
feature is valid for M7 ®@R3(S5?) configuration of space time. However, here we treat

the interaction of two fuzzy spheres in R® only from matrix model point of view.
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Chapter 2

High Temperature Limit of the
N = 2 Matrix Model

In this chapter, we study the high temperature behavior of a simple but non-trivial
system - the system of two D-0-branes. This is essentially the BFSS matrix model [4]
with N=2. The D-0-brane action that we are interested in, 18 a quantum mechanical
one (i.e. 0+1 dimensional). However after compactifving the Euclideanised time, if
one takes the high temperature limit, it reduces to a 040 dimensional model. There
is thus a hope of solving this model order by order in 3 but fo all orders in g using
the same techniques as [3]. One can then caleulate physical quantities such as the
mean square separation of the D-0-branes - a measure of the size of the bound states.
This is what is attempted in this chapter. We obtain the leading behavior in 8. We
also estimate, the corrections to the leading result. The noteworthy feature being

that each term is exact in its dependence on the string coupling constant .

2.1 The action

The (0 + 1) dimensional BFSS Lagrangian is

o 1 ; it S8 1 - 2 2 - " i !" U TR IR :
L = EL]’ .}k Jﬂ. + E?Hﬁ e I_}—E:':‘[_}LF,A ] — Eﬂ"}lulg: _-1‘1“]— .I'_EIA 5 1‘;‘; __-J'L {21]

where i =1,...,9;4=0,...,9 ; X* and 0 are N x IV hermitian matrices. X* is 10 a
dimensional vector and @ is 16 component Majorana-Wyel spinor in 10 dimensional
super-Yang Mills theory. For N = 2. we can re-write X* and # as (3]

3

XH=%" %a“.‘fr‘: (2.

a=1*

T
{ tie)

18
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and
8% ép’“ﬁu (2.3)

where, o are the hermitian Pauli matrices and XB 8, are real fields in terms of
which , the Lagrangian (2.1) is

1 3
L = =4 % XX —I—EzZH i, — 2 . Z 0oy X e
—léﬂ's ab=1 iy f’ il
uf.u: 1 4 1 9
G NN ag 3 XEXUXEXY - 5 30 XEXPXERY) (2)
o bh=1 e

Now, we compactify the time on a cirele of circumference of 3. So, the action
becomes

i l=1 5 abe=1

! - £y F & s 2% & 2 itk
e _lgll' f it { Z }L‘ }L'r )‘g ﬂu’:rq]f}ﬂ iy _E_? Z ﬂnﬂ:f.ﬂn.fljmﬂh-k-é 3

1 3
LRI T R rlbc i PR et e U R TR
. m 2: XXXk 2#4 §: XEXEXUXY — 2 3 .1_,1}%..&1,_.&&}

o be=1 & mbh=] " oab=1

As we are compactifying the time f on a cirele of eircumference 3, the fields will
satisfy the following boundary conditions,

1) X* will be periodic in time with periodicity 4 .
X*(0) = X*(p)

2) # will be anti-periodic in time with anti-periodicity 3
f(0) = —6(5)

Considering these boundary conditions, we can expand the fields X*. 0 in terms the
maodes as

Xbt) = ) X e'F (2.5)

n=—nng

and .
bult) = 3 Oupe (2.6)

r=—00
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where, n is an integer and r is a half-inteser. We fix a convention that we will use
: nym, L p will be used as as the indices for the modes of the vector fields Xf . and
they are integers. The half-integers r, s will be used as the indices for the modes of

the spinor fields 8, ;. In terms of these modes, the Lagrangian reduces to

4 oo A _2
g = SO XE X

! ]
4l o= W a
- 2mi
4 4 Z ngu_.rr:fuﬁn,d
I RE=—og gpr=i] !
21 =

B J—_-’ z ﬂa,rﬁm’}'pﬁh,s Xfl[fabr

5 riel=—ms+r4i=0

i . )
o273 0 i c1 _abe g
- E E 2T1”'I'I:i“|:l.11}“i!:|,:'|‘1' er€ -‘I":|1
& nebm=0,1#0
1 o0
o LE b H i
+ 212 Z )La,nxb,m':{uri o
A ngmdip=—oondmblp=0
1 =)
- — frs [ I E 5 =
a2 Z Xu.n}!"b,rn‘ h,I}‘alp [I-J:J

& 1|,ru,f.p:—m._!l-’.-Tr|-|-[-+p:{.|

Now, we Eucledeanise the time, effectively the 3 here. Under this the action takes
the form,

i3 = dy?n?
g xXe x4
4g£5 Z a,n"a. 1

3
fi==oc;nEl 'g

= 2n
+ 2 z __'?:Sﬂﬂlr":r'nﬁa‘_,
ra=—ooEtr=0 3

" s _nbe
Z IEP1:1..r"3"L?I f",uﬂb,xh-ﬂ‘,!{

o l=—ooatr+i=0

o I
= buul iy

T PR oy ~1 _nhe
- E Z Eﬂ-?f“‘u,ﬂ‘ b,m}"r:,.l'f 5‘
F mebmti=0,0#0

1 Da

+ ﬁ Z ‘X:;u"}g'-;m‘X:,f‘X!:‘.p
& momd p=—co 0+t p=0
l e i
A e R 7
~ 5@ %, Xb o XXl XY, (2.8)
A

mgmd p=— s 4 m-H4p =i

Here, X7, 8 have the dimension of length (L) and # has the dimension Li. W

e
=4 , .
scale X', 3 with a factor of &, and 8 with a factor [ to make them dimensionless,
i L]

which is equivalent to replacing all the I, in the action by 1.
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The first and the second terms in the action give the masses of the modes of the
vector and the spinor fields respectively, namely, ¥ and 22,

2.2  The Partition Function and the effective Po-
tential.

In this section we will try to caleulate this partition function. The partition funciion
with this action is

o= ff_i‘g (2.9)
2.2.1 Pfaffian

In this subsection we will caleulate the pfaffian for the above action, following the
same method as in [3]. However, here we will consider the higher fermionic modes
and due to which the supersymmetry is broken, unlike [3], where there were no
higher modes and supersymmetry is preserved. So, though the method here will be
same as [3], the details of the caleulation will be different. The fermionic terms in
the action are of the form (E'ﬂ.r"m*;r#ﬂm_ﬂ:“],,+,+_¢___D and t, .0, .. In 8 — 0 limit,
the first term in the action (?7?) is dominant and (X8, Jnzq is of the order /3 !, So,
in large temperature limit the first term contributes to the partition function in the

leading order of 3 only for n = 0 (Ba,ryoTubh,—r X25). In this limit the action takes
the form

8 o | drr 4 : L abe
B = 2 b {?T&u,,aa__, s % On,—+00,5 — 210 10O XL5€™ — 208, _ o7 00n XLy

Now, we will try to find out the pfaffian

i
T ]

3
Zp = / [T IT 4", ,d'0, _ e~ (2.10)

v og=]

for this action

= e 16 —f 2T b ven Lt
Zf = Hf]_]d Hu.rd‘ Ha.—r“xIJ E E'Iu,r (JT{E . 'E-""L:I{IEMEJTHFI'ﬂ Ejf.‘-,—r
n=1]

o

=

i

LStrictly speaking it is of the order “—- As our aim is to see mainly the 4 dependence, we take

itas /F ,iethecasée n=1. . And for n > L, 1‘—| dependence makes the argument for neglecting
the higher order modes stronger.
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|

O, (fia"hrw abe m-#) ﬂ,,#H (2.11)
IES

Following [3], we rotate X%, by a Lorentz transformation so that only X2y, X1y and

X?Z, are nonzero. We take the representation of the Gamma matrices, in which

To =102 @ L, T =03 @ 1, Yo=—0,® 1g (2.12)

With this choice of representation we can write

g2 27
Sf = % Z {ﬂa.f (—Bszub + ﬂ'a'rhr (}LFEI]._; + }fﬁ.:r'l + P ﬂ'g)) = lgﬂh —r} {szj
r=—ng

So, the pfaffian will be
’ 8
SO Bl (277 jenbe (7 '
ZLyi= f H daff, .dfi, __exp Oy r T j He (,‘1(”12 + X ey X2 gcrg) &y _,
b=1 i

where ¢, and 0 _ are the spinors in three dimension, and has two components,
After doing the grassmann integral over ¢, we can write

'5 2‘—31 —1 {/Yqu - XE{'{I] +X-:-fﬂ":|_} ] I:T{n _.YLIETJ_ —+ }LIEG'H}
Zr=det [— 'F.|::-?+_5{31f-|'1+}!:;fl_’73} % —?{Tiﬂ+)k;{l'] ; K]:rjg]l
—i (X3 + Xg01 + X2o3) i (X0 + Xloy + Xias) 2
Caleulate this determinant, to get
3 16,48 gy ,3, . B2, o
éf = T H 16r° + }‘ E*u[: D ({/Ti:ﬂ‘ #,0:'2 ™ '”‘Xf?ﬂ‘}lﬁﬂjka:,u}":.ﬂ:]
g rx=0 gl
3 -
- 2 3 ! [0 d = 5
_4|:*¥£,I})LEDX;.U h,u)) + 'rT (Ern’.'c ‘r};-; l'.l“*h n}‘ ) ) I:zll]

We can see that the above expression has 50(3) symmetry in spinor indices, a, b, ¢
and SO(2,1) symmetry in the vector indices, p.v,v. The 16r¢ term gives the free
fermionic contribution. Note that it is temperature independent as the Hamiltonian
is identically zero for free fermions in 0+ 1 dimensions.

2.2.2 Tree Bosonic sector

After doing the fermionic integral, the partition function is
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3 y 916,24 3'_-: 3 15
r i g - i
£ = H[d EL“ L H(l."‘ g N “‘M"}LJ-! ‘Lbnjk:rl-l__\l-rl \Li”
a=1 .{.ill F
-8 = n? - nethe : :
" i - - = e "y
LXp [T {_ Z .j- ‘J":: n 1‘*I.—n = 24 Z ‘}"u:f‘ !Ia,m}*::,rt
g i=—po 2k fi+i+p=0
1 i 1 ol
+ 5 z "K:I,n b'r.l'l 1"; \l.'rl:p = :j L 1\::" r[:)__m‘}" J\!L:FI {E'J"U}
nym i p=—na, nl p=—og
n+lrl-:Hp:U n+m+nt+p=ﬂ

In infinite temperature limit 2.e. 3 — 0, the first term dominates. To see the
comparative § dependence of the other terms:

1) we set (X¥ )uzo — fl“

2) keep the terms contributing to the leading order of the partition funetion in g=0
limit (this is justified in Appendix A2).

3) transform back BXE, — (XE )nxo

an

and we can write the partition function up to a numerical factor

Z = -fﬂ‘q"s' X exp 1.4 i Iirznz{’f o)
Yhosan  — “g,—1 ! -l_l_f,f i ,32 o *ta—n

=

3 1 .
fcb‘iuﬂa'ﬂ exp li { (Xao - Xao)(Xpo-Xnp) — ;( a0 N0 XT3N }1

Thus Zyoson = [ €7 = Zpr0nZy where the first part of the partition function Z Iree
15 just the free bosonic particle partition function (per unit volume), which is

ri i o 4.«2 = ; nt Eam i
Zf”f_HHHfd}‘uu J\Lﬂ—rie}:p % - Z _:rﬁgi(‘}{ -}Lu—:z} = H (u)

o=l i=| s s T
n=0
iﬂg{Zfrw} = b4 Z lU‘T (1||| _r;‘l)
fi
= 7% log (g—) — 5=lz]0gn
n ?L_ T

We know Reinmann Zeta function is defined as

§) =Y n"*

Hener,
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San~f =a S n* =al(s)

putting s = 0, as {(0) = 1, we can write

Ya=al()=al=a

Thus,
ET;ng (if) = 2T lag (";') (2.17)
é (n_”] =—n 'logn
50,

il
[E[:{S]] -~ = — Zﬂ: logn
and therefore,

1
—543 logn = 54¢'(0) = 5-1{--5 log 2r) = =27 log 2r

(6(0) = 1,€'(0) = ~ log(2n)

lug{z_frec:] b= ETEIDI_'; (g) — 54 Z lﬂgﬂ.

= 2Tlog (g;é) — 27 log 27

= 2Tlog (% )

?ﬂg)—ﬂ?
Lfree = (2.18)
! ( By

The free fermionic contribution contribution was discussed in the previous section.
Zo 15 caleulated below.

-
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L

2.2.3 Leading and Non-leading Interaction Terms.

Now we try to study the effect of the interactions.
As argued earlier the leading 7 dependence is given by the zero modes, so in the first

approximation we drop the terms in the action involving the higher modes. Thus
we get,

it it =i -y R T} i
{"T{a,ﬂlb,uhu,ﬂxbrﬂ - ‘}{u.l}'xb,ﬂ" El,u‘-!"L n,t]}

i
8y
= i {{11 0)*(X20)? + (X20)2(X30)? + (Xug) (X1 )

87 ; ; ) (Xap 0) X,
= (X10-X20)" = (Xop-Xap)* — (Xa0.X10)°}  (2.19)

We would like to first calculate the leading order contribution to Z that is

Zo= [ dxtioeis (2.20)
The original action with all the modes is not Lorentz invariant as the terms X0, 4 o
and X}, X[ | in the original action are not Lorentz invariant. However, these terms
do not contribute to the partition function in leading order . The action (2.19) with
only the zero modes has Loreniz invariance. Hence, as long as we are interested

i leading order contribution only, we can work with (2.19) and assume Lorentz
invariance,

Now, using Lorentz invariance, consider the parametrisation

Ao = (71,71, Xop = (z2. 75}, XNap = (1,0) (2.21)

Under this parametrisation, the action (2.19) takes the form

=

22 .. 3 A e i 2.2 ¢
2 {rfr.j Sin® o+ e7rs + riz; + ralt 4+ 22 — 22, @orirs cos m} (2.22)
4

The partition function is

J-J-'D = /H.'lnXfru{fmhriodl“X;{_"nﬁ_"‘;” {223}

At this stage, we can find the temperature dependence of the partition function and
the mean square separation of two D-0 branes from a simple scaling argument. This
scaling argument in fact applies to SU (V) also. To see this we note that the leading

order i.e. the zero mode bosonic contribution of the partition function comes from
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the [A", X*]* term in the Lagrangian (2.1), (which for the SU(2) case is given in
(2.19)). And this term is Lorentz invariant and hence just as in SU(2) case can use
Lorentz invariance while calculating the leading order contribution to the partition

function from this term. Therefore in SU(N) case also we can use a parametrisation
similar to 2.21

Xop=(2:,7%), 1<i<N?-—2 Xys a0 = (1,0) (2.24)

Under the above parametrisation o [ X, AV will be homogeneous in
Lrix, 0 < 4 < N* — 2 and of order 4. So, in general for any N , we need
to scale these variables by 3 %g7 to scale out the & from the Expmmnt. And the
temperature dependence of (I*) will be 373 g3 in the leading arder. Under the above
scaling the measure in 7, will pick up a 8-7 g'Tn factor for SU(2) , which comes
from (3 x 10) X} . In general for SU(N) in D dimension there will be D(N? - 1)
Xgn 10 the measure. So, the partition function Z; has temperature dependence
B L ”y““a = - Zyree will be proportional to (Fg) P18 -1}
Now we evaluate the partition funetion for this action.

7y = fa!a,'a'ﬂmi“fd;rldzgfdr]drgdﬂ[ }cfﬂ{ 'dar® S8 sin’ ae ™™

Il

g 3 "
fdﬂrfﬂ“”qfrihdhdﬂmhdﬂt?ldarlr‘e sin Erm:p[ 8{ {?‘ rasin” o +ril? 4+ Fr[—-:—}:|
¥

a -
[drldﬂ:z BXp [ {L r‘Z + ?"19:3 2o Tt T COS Et}-| (2.25)
8y
We know
4™ = sin aydiry sin oadeg sin agdog....... SIN Q- gy ik gy 510 £y __g,d{r[n_g]cfuh,_”
S0,
w ) w ' -r 2w
[riﬂ[”:' = f sin aq dey f sin Ct"zﬂ!f_}:gf sin ﬂgdfl‘a,,,.,.,,f 81N oy dev, —oy doviy,
il 0 1] o
Now, using [ sin ayde; = — cos 7 + cos0 = 2, we can write
So,

fdﬂ[”] = 2(n=2) o7 — pln=T)y (2.26)
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with this, the bosonic part reduces
2 o G
gy = 2 ITraf el rfﬁ{f-r-,;dur]ﬁ'r% sin’ n
i} 9
exp [_5 { frd sin® a + 722 + Pry }]
- oY
< -ﬂ @ v Il -
f_m dxydzyexp l—@ {.’:!:f'r2 o = 2 ?zﬁu0u~.f1}-| (2.27)
Now, we integrate over zy, x»
= d d 3 'ﬁ e 2 9 s e
. Tyfily OXT —% {£1T2+T]$2 e _3:1.1.2|'1T2LU.‘3!’J:}
s .'ﬁ Bfaa o
= f_wdx:l axp [_E ]r:, l f dirs exp [—% { Ty — 201,297 T msa}}
o a .
- f_% dxy exp [_E {:.:?r%[l — cos” r}:}}}

_[ : { ) ’ {{ }2}
—d(rixs — @7y cOS @) exp Fyig — T COS O
1 142 ajc E-fj 12 1732

oo Ty

_f [!Jl{\[h[ B {.T Tgﬁulz cr}] ?l (Si_fr)ﬁ
1

1 1
B Bgm * 1 (8gm\?
N Arisinfa) r \ B

Sgm
= 2.2
Aryresin )
With this integral,
Pgpt roo o h
zZ = 2 f i f drydrydarir sin
0T L]
exp |— i { rirasin® o + 30 + Pr +}
S_r,r g
4
_r;r TT F () B i
- ] m'*f dryrT {*xp[ ég {1 rf}l
f devsin® o {{ri? + %) sin’ a + I? cos® n}_'l (2.29)
i

From Gradshteyn & Ryzhik (Fifth Edn., Page- 422, Problem no, 3.642.3), we get

Zn

dr _ (2n—1)IIx
[“ cos? +:'J sin® z il T onglahlzntl)

(2.30)
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here, we get

j“' sin' rda
o {Pcos?z+ (r] + [2)sin” 2}
Stlar
PR RN HE
lom
8.60(r + [2)7/2
15w .
~ 48I(r? + 1) (1)

With this we can write the partition function as

23rij w t]_‘{4} tom
. s - L | —
3 ] il 4 dnrlexp {3 } 481(r7 + [2)7/2

23"1'15 g r? iy r At
S 7o b 2.32
g JB {r?+5“)*f‘~‘e"“[ (‘39) l )

& K ¥
If we scale ry and [ by a factor S‘i_c_.m, the integral reduces to

215 gjz_svrt' 2 g o deen? #\ _
= —-— ] ——— e ey i 2.3

The integral over ry can be done to give

B e M— f dit® esp (1*/3) {a 'r( {r*;s:u) — 32T (_T uva))
+3l'a "‘I‘( Al ;3}) 1 5[‘( (11/8) )} (2.34)

where ['{a, x} is the incomplete Gamma function and a = ?ﬁ

In large [ regime using the asymptotic expression for the incomplete Gamma function
[9] *

*For large x from Gradshteyn & Ryzhik (Fifth Edn., Page- 949, Problem no, 8.355.1),

?ll'l

[, x) =gle-Bp—= z :;:F[Et}l_—un;_ m) + O (|2~ ]l‘| (2.38)

=1l

where,

I 3
[|;| =+ 00, — o <argz < T'M = 1,'3,---]
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we can write this expression as

_é
e

"5 g q i .
Zy = P
5= ﬁf f dit* 1 (2.36)
where
_(QJ M1 : |
IU} = @ \" [Z {_l}mSQ?HJE{—Em—-Jj
mi=4
Fi+m) .TE+m) .TE+m) Tr@E+ m])
=3 i + O (|8 M
i i g ) rouwer)
In large { approximation I({) boils down to
I(1) = (24576017% — 2752512071 4 ...) (2.37)

-and in the small [ regime the I(!) function becomes [9] 3

! .
I{l) = V8t exp (g) [ﬁ{l ~ 241 4 25615 + 5—132ﬂs1-‘}

= 1}"‘,,r {(2+21) 8
{lqugﬂ ([471.2 — 8n — 5)(4n? — 8n + 3]) H (2.39)

and { —+ 0 limit gives

[uﬁf i Er—:Ef (\E . %ﬁ) 4 ] (2.40)

dryr?

The integrand {® [ GEVEE F’{pl: (; J rf] has [77 dependence for large | and |
dependence for small I, Hence, it converges for both large and small { and the
integral is non-singular and independent of 3. So, Z, has a temperature dependence
of T%,

We have already seen that the leading order fermionic contribution comes
from the free fermionie terms. Here we will try to estimate the § dependence of the
non-leading fermionic contributions.

YFor small ¢

0

_qynplatn)
[Ma,r) =T (a) - Z e (2.38)

[
=t nlio +n)
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In terms of the parametrisation in eqns. (2.21),

16524 s 28 G20, , e
Z_,r z'; H (-lr”' -+ 7'1_—37‘]-1‘21’ sin o + ;,_J (-rl‘ + ng 2 I[:r-;]‘ = o If:r;g]2 T f"))
(2.41)
which, in # — 0 can be written as
Z; = 7] (r:*f?[ﬁ”y”]l +0O(82g7) + rO(Big%) 4 )
= g7 (0(1) + O(Big%) + O(B%¢%) +rO(B %) + oo ) (242)

where the first term is the leading order fermionic partition function we have dis-
cussed in subsection (3.2),

So we can see that in the partition function at high temperature the contribution of
the zero modes (bosonic) is dominant. We have earlier argued that the higher modes
of the bosonic fields will also contribute in non-leading terms. The 4 dependence of

these nonleading term is worked out is the Appendix (A2.8) (for each component of
AY) and gives

Zaosen = g% B (O(1) + O(8Y) + O(8%) + ... ) (2.43)

Combining the free, fermionic and the bosonic parts, we can write the 3
dependence as

z= 5% (001)+0(3) + 0(8%) + 0(8%) + 0(8%) +rO(5%) + ) (244)

2.2.4 Effective Potential & Mean-square Separation of the
D-0 branes.

For high temperature we have evaluated the partition function both for large and
small [ (eqn.(2.37),(2.40)). Up to leading order in 3 the effective potential hetween
two D-0 branes is proportional to — log! and log{ for small and large [ respectively.
We can see that the potential inereases at both | ends, though we can not clearly
see the nature of the potential in the intermediate region but we can conclude that
the potential is a confining potential and binds the D-0 branes.

As we are working in Euclidean metric and since for zero mode caleulation
we have Lorentz symmetry, we can identify { as one of the spatial components and
hence as the separation between two D-0 branes.
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Now, we try to see the temperature dependence of the expectation value of /2

:Iql!'..TI

(= I—Z-_-— (2.45)

i.e.

S AU [ b exp [~ () 7]
Jl—m.-_su d“ﬂ. .IU %:3‘; exp [— (%) yﬂ

) = (Bigi)™ (2.46)

As [ is the separation of two D-0 branes, we get the mean square separation of two

D-0 branes from this, by putting n = 1 and doing the integral numerically, and
restoring [, we get

L

<(i) > = 6.385 ( 2 ) _ (2.47)
Iy als

If we assume high temperature expression has a finite radins of CONVergence, we

h'l

can conclude that the mean square separation is finite for finite temperature. This
implies that there is a confining potential that binds the D-0 branes. As argued
earlier the scaling argument that gives the @ and g dependence in 2.47 is valid for
all N'. 50 we can conclude that (/%) == \/% for all NV,

2.3 Conclusion

In this chapter, we have attempted to solve the N = 2 matrix model in the high
temperature limit . The leading nontrivial term of the partition function has been
calculated exactly (eqn. 2.34). The non-leading terms can also be systematically
calculated although we haven't attempted to work them out here. From a scaling
argument we have also determined the  and g dependence of the leading term for
any N. This complements the work of [2], where the one loop partition function was
calculated with the entire § dependence. We find that (I*) o \/;}E (eqn. 2.47) (true
for any V), the finiteness of which shows that there must be a potential between D-0
branes that binds them. In [1, 2] also a logarithmic and attractive potential were
found. The present calculation being exact in ¢ is valid at all distances. Thus unlike
in [1, 2], the (finite temperature) logarithmic potential found here is attractive at
long distances and repulsive at short distances so it has a mitimum at non-zero In
[1] it was found that at high temperatures, the configuration with all the D-0-branes

clustered at the origin 2.e. with the zero separation, had lower free energy than the
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one where they were spread out. However, that was a large N calculation and also
restricted to one loop. It is therefore possible that more exact caleulation will resolve
this issue.

As mentioned in the introduction, describing completely the dynamics
of two D-0 branes in M-theory would require the infinite N model, Whether some

high temperature expansion of that model within the j.{— approximation scheme can
be attempted is an open question.

A2 Appendix : Comparative  dependence of the
terms in action

‘We are interested in investigating the comparative 3 dependence of the terms in
the bosonic part of the action in eqn. (?7). For convenience, in this part we will
suppress the isospin and vector indices. The action takes the form

=S8 Brx.e T Bxaam-e 3 s,

g i=—0 I+m+n=0 'J

Ll Lps e

n+r-I4-p=0
(A2.1)
where a,, ¢ and f, are constants and are given by a, = 7¢n? | ¢ = Loand f, =17
Now, when we expand the sum over n, m, | and p in last two terms, we will got
terms with all of these indices being 0, with two of the indices being 0 and with one
of them being 0, so the action can be written in the form (taking one of each type,
as the terms of the same type have same A dependence).

| - . o -
8§ = — Y anﬁ:ﬂ);_,,—ﬂx' & P ¢ £ P Zfﬂ};u\_nfx,l
ﬁ{? = — o A 1) n#Ed
n;lEDI i
1 — o s e - off =L
e Z‘ an!}‘-mﬂxﬂ TS Z U:'l X!)‘l Ry Z J?I'.‘Tr/-rli'-1':l[‘4'-K1'2)'-~:}1'1;I
9 t+i+rn=0 9 il B, g nm g,
mH-p=l retmlfp=0

We can crudely write this as

1 L] Cq -'1'3 0 - ]. - ..‘3 i
8= — 0, X~ XA E XX, T X XS fn}{" s )L-[,:r-?_l,x: (A2.3)
Ay g g g g
where X%, X%, X, denote peneral quadratic, cubic and the quatic terms in (A2.2).

Now, we set
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L
- 1
{/Yn:lu'?élb — \/;.3-’1-"; -'YI:] o (%] .-51’[;
!

Under this transformation, the action reduces to

5 = - f:z"l.rg - Iful'-:':Jlliﬂ:z o E-'?; '\.r'f.a—'\:nz-x-g + ﬁ : EJT‘}‘ fr: -ji-ﬂ“':n! o+ J'j :Egé frl -‘]{’n 5 - cnﬁ% I} :: };ri :;—XU = ‘-T.:j.{j'f:

S0, the partition function for this action will be

Z=gigi f ~ dX e / T A f (X, b)ean X (A2.5)
¥ 4]

where, f(X,,b) includes the @ dependent terms with X,. The _cﬁ.ﬁ‘% comes {rom
the measure due to scaling of X, The scaling of X, also give a overall 3 dependence
out. We have taken that into consideration while caleulating Zy,... hence we are
not considering it here,

(X, b) = exp(Ab* — BY® + Ct° — DV — Eb'?)

and b= 85, A = fugd Xo X2, B = JGX,2X2,C = fur/GX?, D = gReXoX, P E =
CE-XTI ! '

First, we try to evaluate the X, integral, For convenience, we start with

t oy
f dX o f (X0, b)e=on K (A2.6)
[i]

and evaluate it, take the limit { — oo, The Eb* term makes the integral convergent

(Note that for any X,,, we have one term (X, X_,)2, which is positive definite.}, so
Fx ; . e

s b — 0, we can use Taylor expansion and write f (X, B)efndn® 43

; oo ; 3 [
F( X, e Xn® = pmoaXa (1+.-1;3%‘ FGAT-B+O)BE + ) (A2.7)

Now, putting the above series in (A2.6), as the series is uniformly convergent we
can integrate term by term, take the limit # — 0 and sum. As the each integral has

o o i . . . : x4
an e %" term | all the integrals in the series will converge individually. Some of
the terms in the series will cancel from symmetry while doing X, and X, integrals,

And the 3 dependence in the final bosonic partition function can be written as

|

Z=yi873 (0() + 0(B%) + O(B3) + ... (A2.8)
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As we have suppressed the vector indices here in the appendix, this result
is for one component of the X, For original Zi.. there will be a a product over
the vector indices and will reduce to eqn (2.43) . Now, we can see that in the

limit 5 — 0, the above function can be approximated by the leading term which is
equivalent to writing the partition function in eqn. (A2.5) as.

2'=de[| exp{—-c'l—g)fg} ]:[jtan exp(—a, X3)
g

n £l

and hence, the action becomes

o

Y XE_paxs (A2.9)

n=—oonEd

)

4

g=

which is also eqn.(2.19),
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Chapter 3

Matrix Model and Fuzzy Spheres

In this chapter of this thesis, we will consider a supersymmetric fuzzy sphere model
in three dimensions as in [4]. We get this model by adding a Chern Simons term
to the three dimensional reduced model [1]. We try to provide a framework which
allows us to study a multi fuzzy sphere system. We shall study the two luzzy
spheres system in detail and investigate the interaction between them. This three
dimensional fuzzy sphere model is just a simple toy model in the context of string
theory, and has relevance in other theories, like the nonperturbative regularization
of Quantum Field Theory using fuzzy space time and in studying quantum hall flnid
of finite extent nsing finite matrix model.

We have presented the model for the multi fuzzy sphere in background
space. We have calculated interaction of fuzzy spheres and space and considered
the dynamics of the fuzzy spheres. We have expanded the action around a classical
back ground and studied the one loop interaction between fuzzy spheres in bosonic
and supersymmetric case. In particular, we have calculated the one loop effective
action for two and three blocks. We have studied the interaction between two points
and the interaction between a point and a fuzzy sphere in this section. We have alsa
studied the interaction between two fuzzy spheres in next section.

3.1 Fuzzy Sphere Model

We start with A" = 2 SUSY Yang-Mills-Chern-Simons reduced model

5__1

1 2 =
= FTI( —~ EIAJ“ ..':1.;,”.‘1“_. fl”] + E'EIETEHVA."{“J{HJ{'\ e 5 ""_'I-"'".T”[-"I;u U:‘!) {il}

2

This is obtained by reducing the space-time volume of Yang-Mills-Chern-Simons

a6
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theory to a single point [4] (c.f. Eguchi-Kawai and IKKT model [1]). The Chern-
Simons term is added to the reduced model to have fuzzy sphere solutions as classical
equations of motion. A,, ¢, are N x N traceless Hermitian matrices. A, isa 3
dimensional vector and 1 is the two component Majorana spinor. ol = 1,2,3)
denote Pauli matrices. p, v = 1 ~ 3, @, 8 = 1,2, This action is also obtained as low
energy effective action for spherical D2-brane in % using SU/(2) WZW model as
string theory in 5% [6].

3.1.1 Symimetries

The action (3.1) has SO(3) global symmetry, 4, — A,-r, 1, translational svmmetry
and gauge symmetry A, — UA U, @ — UU!, where U is an unitary matrix.
This action are also has A" = 2 supersymmetry

8 A, = izo,1

5g = 3([ A 4] — fagundy)ote (3.2)
and @ g
AV =
2, 3.3
5'{"7' '|'||_'.J = f 3 { }
Let us check that these two transformations satisfies the AN = 2 super-

symmetry algebra. The algebra is also modified due to the modification of super-
symmetry. We have the following relations:

ﬁ%@—ﬁ@ﬁw=fmﬂ+%%y
{JH}&HJ i 51:'}]55}})"4# - "1‘:[‘411“.' ;l"] + Epu.hﬁw;lm [:3‘1]

where A = 2i(&0,6,)A4, and 6, = 2ice(€s0,61). The second term in the right hand
side is & new term corresponding to SO(3) rotation, Other commutation relations
are caleulated as follows,

(808 — a6y = o,
{551}5£z}_522]5£1}]f1# = —igo.f, (3.5)

and

Mizld‘{zl [2}5{ ]}ul )
mmﬁﬂ a“imph = 0, (3.6)

If we take a linear combination of 'Y and §/® as

O = sy s
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6 = (st — @, (3.7)

we can obtain the following commutation relations up to a gauge symmetry and
SO(3) symmetry,

B3 - = o,

(55‘15}’}—52_1?@_‘1}.&1;, —  _dio, L,

(G - 55y = o,

(BP5 ~ 55 A, = -2ito,e

e ¢ —0¢ O JAp = =20,

(&Y — 55y = 0,

(8057 — 88 A = 0. (3.8)

We find that these commutation relations indeed satisfy the A" = 2 supersymimnetry

algebra, A new feature is the appearance of SO(3) rotational symmetry.

3.1.2  Solution of Equation of Motion

The equations of motion corresponding to the action are

. 1
[-4::7 [-"1;:1 -4-4.1] = 'ﬂﬂ’fuu}.-’l}.} = 5 {T.'i'.‘jr wa} {gﬂﬂ]:jmﬂ
{"'.*'I"'L:.- '1:1] {G’uﬂ';. }J:r.!:l’ = U1 oy = E-JE- ESQ]I

When ¢ = 0, we can rewrite the equation of motion as

[Ay, [Au, AL]] = —daenAda (3.10)

The simplest solution of this equation of motion can be realized by commuting
diagonal matrices

Ay = diag(r(), 7P, rD o 200 (3.11)

another, typical solution for A, is, 4, = Ay, where

(X, Xo) = foeua(Xy = Ry), [Xu R =0 (3.12)

represents an algebra of the fuzzy sphere configuration with N x N matrices R,
The commuting solution X, = diag(r{V, v +® ... .. -,ri¥)) is a special case of
(3.12) in the o — 0 limit, and represents commuting coordinates of the space points
in 3 dimensional space.

r = psinfcosg
rp = psinfsingd

Ty = pCoso
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where, p is the radius of the sphere. The noncommutative coordinates of (3.12) can

be constructed from the generators of the N dimensional irreducible representation
of SU(2).

(K —Ry) =0l (3.13)
where

[ L] =g (3.14)

As the quadratic Casimir of SU(2) in N dimensional irreducible representation is

given by ‘"'r':'L, a and g are related by the relation

7 (3.15)
The Planck’s constant, which represents the area occupied by an unit quantum of

the fuzzy sphere, is given by

drp?  N?P-1
N =N e (3.16)

The commuting limit is realized by

p=fixed, N — coa —0) (3.17)

In this model, the fuzzy sphere preserves half of the N = 2 supersymme-
tries since (3.2) vanishes for the fuzzy sphere while (3.3) does not, and this selution
corresponds to a 1/2 BPS background. Looking at the algebra (3.4), the remaining
supersyminetry on the fuzzy sphere generates SO(3) rotation instead of a constant
shiflt of A;. It is natural since translation on a sphere is generated by S ()(3) rotation.
On the other hand, commuting matrices break all the supersymmetry.

3.1.3  DMultiple Fuzzy Sphere

Remarkably, these equations of motion have solutions which represent arbitrary
number of points or/and fuzzy spheres with various radii and centers. To see this,
choose solution X, as a block diagonal type,
(1)
i (2] U
X ;
X, = XM (3.18)

an
X
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where the mth block Xf:”}' IS & Ty X 11y irreducible representation of SU(2) ( iy T =
N) and obeys

(X0 XU = daeed (X1 — RE™) (3.19)
where RE\M 1s proportional to identity matrix Lmseng. Though TT{XF} =0, }k“[:rt]

need not to be traceless. These relation are valid even when we assume the relation,

a4
PIE U - T 5 (3.20)
A=1

where p?, = o ﬁfl. Because of equation (3.19, 3.20), we can think of this con-
figuration as multi fuzzy spheres. Now r™ = LTp(X[m) = LTr(RI™) gives
the co-ordinates of mth block (centers of mth fuzzy sphere or point) where p,, is
the radius, At this point, we assume the elements of the matrix A, and the trace

?‘Lmj can be assumed to take any value from R. Under this assumption the space
configuration is R?*.

Example 1. One Fuzzy Sphere Model

‘To construct a one fuzzy sphere model using this formalism, we assume
Ay to be of the form

8 5 (3.21)
p(N=m+1)
here, sy = 1, 7> € R and
(X5, X0 = dae M (X[ - R(Y). (3.22)

This configuration represents a fuzzy sphere with center at i/ = L7+ XY and
B Y 8p i Ty i
N — ;) points at co-ordinates ™1 ag back-pround.
Il L‘.\

Example 2. Two Fuzzy Sphere Model

We can construct a multi-fuzzy sphere picture out of this model. To

construct a k fuzzy sphere case, we consider the same configuration as equation(3.18)

with & irreducible blocks and N—Zfﬁl:l Nm points. For example, for two fuzzy sphere
case we consider

X\
I .][;EE}I U
vy (3.23)

(M =ny—na+2)
'rl“
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here, fpeu =1, T'L’”ﬂ* € R and
[X;[;U: A‘E}] ze if_tfﬂuh{_xil} _ RE}L {XEZJTXLE}] - iat_#u}.{x—iﬁ] » RE?}} (3.24)

This configuration represents two fuzzy spheres with centers at 7'5}’ = iT:r{X :El}) =

STr(RY), ri? = 2 Tr(XP) = =T (R) and (N —ny —ny) points at co-ordinates
rL’“}EJ as back-ground.

3.2 One Loop Calculations for Blocks

We assume one loop correction is a good approximation for the interaction between
fuzzy spheres.

To see the effect of the Auctuation for this model, we expand the original
matrices around these back ground

B =X+ f_i,i_. Yo = Xa + Pa, and choose y, =0 (3.25)

where N x N matrices A and @ are quantum fluctuation.
1-loop correction of effective action TV is caleulated as

W= <tn f dAdpe™ (3.26)

where Sy arises out of the quadratic terms of fluctuations in action (3.1) and can be
written as

1 L~ r 1 " 1A, A d 1 { -
S = (5l X! = 51X XA A = 51X, A4, X,)
S [
+2'IIE;_[HLX#-"11.H'.1J\ + ;';;JG-#[‘KJ“ [I!E]) :

As, our original action has gauge symmetry, we add the gauge fixing term and the
ghost term

1

Fd T 1 T
Sgp = —Q—fT?‘[ﬁm AL, Sp= “EgTT[-"w Bl[X,, C]

‘The whole expression can be simplified and re-written as the sum of three pieces.

1
Sg]g = —ET?"

- (—5{_4#,/&,,;2_[,1,,,A,;{Aﬁ,f1,,}+2ge,mxﬁ.4w4ji) (3.27a)

I o om v
ng_‘;:' = @fﬁ"[wﬂ”{_}u}“gﬂ” EE,ET]}}

1
_E:?'T'T[-Xgn B“XF" C]

where, S) g, S, F and Sa,¢ are the bosonie, fermionic and the ghost parts of Ss.
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3.2.1  One Loop Calculation for Two Blocks

To study the interaction between two blocks we re-write the A, in equation (3.18),

s
yiv o S0 ;

where, Y[ and Y% are N} ® N and N; ® N, blocks respectively (N; + N, = N).
We consider the fluctnations of the from

B AN B i Y BY D o B
A,II - ( "EF; “.15:?) ) T ( ,'.I_th IEJL;} 1 B = ﬁf E{g] 1 C: ET é(:‘]

m terms of the above components, we can re-write the bosonie, fermionic and shost
parts of action (up to the second order of the fluctuations) as

Seg = lﬂ Tr { _%[‘;ILP}'? yjp}]z _ [VFKPL }i’tn)][‘_ﬁii{p}, fitn_ﬂ] + 2Hex€ }xp(p] *‘isf’}-’:liﬂ}
4 pata
| 1 = - . =
|[ +E(BL}H[{‘HJ}E’W = 2[M, H) + Em'fpm?'f}.}]ﬁu{ﬂﬂ}j-f {3'29}
1 - . L s ; .
SaF = b Zz TT@{F}U“[KP’}H{J‘M]} s E-E(?ls‘lt}” (o (Myisra] (W) (3.30)
p=1, .
Sc = lﬂ TT{Y;EI’], gtphnyjph fjfrl‘l]
q =12
1 e _ - .
+E {{Df}ﬁ{?ﬁ?}iﬂ.}(E}jJ = [ET}H{HEJHH{DJJ'J} (3.31)

where
Mo =My e1y -1, (Y
Li=1:--N,I,J=1---N; and "*" denote complex conjugate.
From this, we can get one-loop effective action for one fuzzy sphere or
multi-fuzzy sphere system by considering one block (irreducible) or multi-block di-

agonal (reducible) form for Y. In equation (3.29-3.31) the first terms represent self

interactions of blocks of equation (3.28) and the second terms represent interactions
between two blocks.

i,l_i:'::_i:ample : One Fuzzy Sphere case

For example, if we replace Y1 by X and Y® by the remaining diag-
onal blocks as in equation (3.21), we get the one loop effective action for one fuzzy

sphere case. We can see, in such a case the first term of individual equations gives




Chapter 3. Matrix Model and Fuzzy Spheres 43

the self-interaction terms; p = 1 term is fuzzy sphere self interaction and p = 2 term
gives the self interaction between the space points. The second part of the equations

are the interactions between the fuzzy sphere and the space points,

If we take one fuzzy sphere at origin ie RL’] = 0, the self interaction term
for ome fuzzy sphere is

1 - o
SE?‘;‘:I} s _ETT[*’!-U:I 'i_rI:ll:I]._

R
i 1 o - =
SéIFIﬁ == E‘ETrm{t]Up[}aE]}“":fljj
g
1 A1) B £
Séif__-m _ Q—ETT[}',EHTBM][YP]‘Cm]

we get similar expressions for self-interaction for the model in [4].
Similarly, if we replace Y by a block diagonal form with two irreducible

blocks (as equation (3.23) ), we get the one loop effective action for two fuzzy sphere
case. We will discuss this in detail in the following section.

3.2.2  One Loop Calculation for Three Blocks

To study the interaction between three blocks, we start with the Fuzzy Sphere model

described in the earlier section. We start with the X and R to be block diagonal
type with three blocks.

X0 0
X, = X (3.32)
0 A"F{;‘i}

We assume the corresponding fluctuations to be of the form

ImLl} bI[J].z} LILI,H] IP{].} {F{E.E} ilﬂ[l,:!.}
A= | ) a9 | = | (A g e ) ey
(L) (@) af (p0)! () o
B dlth2l o gl1a) 1) pll2)  L013)
B=| (a")F  p® g3 |.oo=| (e @ g2m |, (3.34)
(A L L L) (ell-A)F (el230)t 3

Putting this in 3.27, we get the following equations

] 1 ; % : . .
Sztfé, = FI r {—i[ﬂ'.ﬂ’],J’(ff"*‘]2 = [if},hi"]][uf’],ufj] + Eicrf#mﬁi”]uip}uip]}
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55{’5” - F{bhp.q}}1jfi[{g{?1q}}25r _9 [H{p e tﬂ] + Qicvep HPY I_”{bff'q}}j
1 X
Sg’}? = _2_2{ Z Tr[‘g{n]ﬂn[;& f.p}r‘:i’{pj]}'
4 \p=122
1
S = @) ()] (27
Sg’é = = { Z Tr[X), o) X () c{”]]}
: 1
Sé?éﬂ _ 1._? (dPahyt (H P2 Y {E}J_{E{F'?J} {H[“"ﬂ}qu{d}ﬂ}
where
(HPM)500 = (XP) @ Ly — 14y @ (X"

S® and S are the self terms corresponding to the pth block and the interaction
terms of pth and gth blocks respectively.

3.3 Interactions

Now in this section, we will try to calculate the one loop interaction corresponding
to different interactions. For this we consider X" and X in equation (3.33) as two

fuzzy spheres and the X'™ a 2 ® 2 diagonal matrix representing two space points
So XM and X satisfies

[XLF}‘ X7 j] (p=12) = T (" A R{p})

We also assume the X' with the corresponding fluctuations of the following forms

g . Ay F s g
B 1 £ =
Xy = ( 0y ) A = ( b, ag?} ) & =00, Sa= ( >

r.f 52

= MU d . g R 0
- Y (1) _ . (3) _ Ao

3.3.1 Interaction between two points

To study the interaction between two points, we consider a system of only two points
To describe such a system of only two points, we assume that only Xy in equation
(3.33) is non-vanishining and both XM X[ are zero. For this configuration S, in
equation 3.35 takes the following form,
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2
[ = -
& = 7 B(HP25,, — Ziae,undf™] b,

2
sgP = S (eH) i,

]

2
a® - o
s — 7 {d (e — & (rbwyid)
where i i

}.'ILP;F} = a{yill} s yff] ) and EEF-PJ‘ = E{RLH} _ REF)-)
r:rEf"F} is the distance vector hetween two points.
The bosonic, fermionic and the ghost contributions to the one loop effective inter-
action for the system of two points can be written as,

W = _in [ dbdpteth TP —Ricues]b
= ~In 'dgt—%-([,tﬁpm]e 9. c)]i’-
. i {op}
W — _infdidife " [our?]

= —Inldeti o er]g

W = —in [ dddd' dedete= ' (P Perel (1007
= —In [det(HP)?]
where,
(w2 _gieled)  gjclpn)
(HPPY2 _ e . olpr) - i) (HEry2 9P

—2icf™ 9iPP (g2
and

det [[Hlirm]]‘-’ — Dy E{mﬂ] 2 {H[pp}]? [{H{mﬁ}jﬂi _ 4{ﬂtpp})2]

where, ¢lPP) = \/ (P2 4 (P2 4 (ci"1)2 is the distance between two points.
Summing up all these contributions, the total one loop effective action can be written

Tier) — %m [ﬂet (([H{Fﬂijz — e C{FP]))] ~ }.m [(((H{Pﬂ})4 _ 4{ch;:}):) )]

(Hpp)E (o . Hoo))? 2 (H@))2( Hpp))2

Hpa) = é{_yff}l =g J=ng

0, with this, the one loop effective action for a two point system reduces to,

1 4
E

1
el g, =
W = Ein. )

(3.35)
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We plot this effective potential as a function of the distance between two points (in
figure 3.1).

w (Effective Polential)

o L 1 I a 1 I | i L L | L L I
0 2 dq 5] g
¢ (distance in scale of o)

Figure 3.1: The eflective potential bétween two points.

There is a repulsive force between two points when they are very close, and an
attractive force when they are far. At ¢/ = 2, the argument of the log in equation
(3.35) is zero, so W) has a minimum of —co. This suggests the existence of

a minimum scale in space. In section 3.4, we consider the possibility of a lattice
structure consisting of these points.

3.3.2  Interaction between a point and a Fuzzy sphere

To evaluate the interaction between a point and a fuzzy sphere, we consider a SYS5-
tem consisting of a point and a fuzzy sphere. Such a configuration can be obtained
by putting X\* = 0 and ¢ = 0 in equation (3.33) and for such system, S, corre-
sponding to the interaction between them can be obtained from equation (3.35) as
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follows,
S[M}' = %(bi{.m]} [[Hff.r-r}} R [H{Im} H’{fP}] + 2icte HEIP} :.”{baf.p}]”
s — Him{;p;. [f, (HI)i50,] (949);,
gU::J _ g {(&U.p}} (HUME (3),, — (@) s{H”‘p]]fju(d}j.!}
where
(I$P) = (X) - 4"
and

[Hifﬁ?HEf.P}] = ey, (Hifm} + yil} az RE'IJ)

We assume that R&” and O™ are of the form,
BRY =1, oM = (R _ 01y = P

With these, the bosonic, fermionic and the ghost contribution to the one loop effec-
tive action is as follows:-

R {dgr%([mm} ,_g.gﬁ_c)]z

WP = —in [detbo - HUP:']
Wriii‘:fp} —~in [deﬁ (HUr))? ]

where,

{ Hfm }2 _94 CU' ] E.é! 7

det [{!—If-’r’”]'}l2 — 2ie - c[m] =det | 2" (Hi)y? 2:-::5”1}

'—E.E.GUP} zic‘iﬁ?‘} (H[fj:})'z
Each of the blocks in the right hand side matrix is of size n; % n; matrices. To
calculate the determinant, we use the SO(3) symmetry to choose cif? = (0,0, ¢/#)),

without any loss of generality, With this choice we can easily caleulate the above

determinant and the using that we get the one loop effective potential as

i — lfn det ({H':fﬂ'.l:]? - *ZCUP}) ((H’{Iﬂ}}i 4 Ecup;.]
2 (HUPY2 (o H D)

(3.36)

A detailed calculation (similar to appendix A4) gives,

H.rt.r 7 —

fn |H1UF:'|
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where, w}f Pl — wy” J{r;:ffif’:'}w;",-"r P)(—clf9)) is the determinant of jth block and

Wil oy = (A g D] [(e720)2 +2e9(G + 1) + (5 +1)]
j (et + 5) [(cV#)2 + 2¢U0Ph5 4 (5 + 1)]
i ot fply2 el g 1%
[(ctP }. +2¢ .E.+1}+_TU1+1}]. (3.38)
22 (U2 4 eI (20 1) £ + 1)

where

(2}' 4 1:} =n,, i — \/{r_lfp}' 9 +[ UPJ}? +|: UF}}

Though for ¢ = cq, the potential vanishes, for ¢ = 0 there is a non vanishing effective
potential

{Hr{hﬂ}::

41
n — 1‘

When the point is far from the fuzzy sphere (¢ >> 1), we can approximate the
effective potential as the following power series,

1
D:glug

ol W 3 I‘ =
(Wi D) ooy = —dm/e? - g (49 +1503) /' + O (1/) (3.39)
In the small distance limit (¢ — 0), we can approximate this effective potential by

(].]ffflli?]) = 1 lo

el o

ny + 1‘ 48?11 B 4
3.40
m—1 nf- ( ) a-40)

To see the behavior of this one loop potential, let us consider two specific

examples. Let us plot the the one loop effective potential WU in the above equation
as a function of distance ¢ for j =

1 (le. ny = 2,p = 43a) and j = 10 (ie
= 21, p = 10.488a) as shown in figure (3.2) and in figure (3.3).

We can clearly see, in the plot, that there exists an attractive force for
large distance and a repulsive force at small distance,

3.4 One Dimensional Lattice of Points

Gunmder a one dimensional lattice structure consisting of points of spacing d with

the nearest neighbor. We have seen that the potential between any two points can
be written as,

4
1_.__

e — ] 5 log

“lon)
e exists an attractive force for ¢y, > 2 and a repulsive force for Ciop) < 2
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Figure 3.2: The effective potential between a point and a fuzzy sphere (j=
Now, when we have only two points,
o2 e

naturally the points will adjust themselves such that the distance between them Cipp)
15 equal to 2. Now if we add a third point on the same line, the first point tries to
pull it so that the distance from it is 2, but the second point will resist it coming
inwards hecause of the repulsive potential for d < 2,

Now, consider a case of an infinite lattice structure such that the distance between
two adjacent points is d. In the following part we shall try to find out the value of
d for which the system has minimum potential energy.

The total potential energy of such system is given by,

v=s T ¥y ZZ

tj,?#_]l =0 j=1

Z log |[—*
=0

sin &7
d]2
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Figure 3.3: The effective potential between a point and a fuzzy sphere (j=10)

The sum over ¢ runs over all the points. So for this infinite lattice the potential
energy per point is (excluding the self energy) is

e 4
8in .

ey (3.41)
ri

vy = log

sinnm for integer n is zero, so this potential is —oo value for the distances given by,
2

=T = di=%/n

where n is positive integer. For n = 1, te. for lattice separation d = 2, there
is a stable lattice structure, where eVery point is trapped in an infinite potential
well at distance 2a from its neighbor as shown in figure (3.1). There can be stable
solutions for n = 2,3, ... also. The potential energy per point as a function of lattice
‘separation in figure (3.4) also suggests a possibility of an infinite lattice structure
Aor these solutions. We can see, for d = 2, there is a stable one dimensional lattice
structure. There may be lattice for shorter lattice separation either, for example
d = 1. The value of this potential is infinite at d — 0, so there may be a lattice

structure with very small but discrete lattice separation (when n is very large), but
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¥ [Potential/point)

A0 i s i s ] | L y I L L ' M | i ’ ¥ i | 1 i \ ]
a 1 2 3 4 5
d {latlice seperation in o)

Figure 3.4: The potential / point as function of lattice separation

d can never be zero which will result in a collapse of all the points at one point.
‘Even though there is a repulsive potential between the points (3.1) for small d, they
are finite except at zero distance. The contribution due to the point in the potential
trap i.e. (d = 2) dominates over the finite positive value, resulting in other minimum
at various values of d < 2. However for d = (), the potential is positive infinity, thus
there is no stable solution for this case.

n this chapter, we have presented a general fuzzy sphere model in three dimensions,
which allows a multi fuzzy sphere system with discretely arbitrary radii and arbitrary
ocations in R®. We have added a Chern Simons term to the reduced model of 3D

YM. In original model the space and objects e.g. fuzzy spheres are not separately
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distinguishable. We have artificially partitioned the matrices into multiple block-
diagonal form. In such case, the classical solution represents a syvstem of space and
fuzzy spheres (branes). Classically these fuzzy spheres and space are non-interacting.
We have tried to calculate the interaction as the one loop gquantum effect. We have
studied the one loop interaction between two and three blocks. In particular, we
have caleulated the interaction between two points and the interaction between a
point and a fuzzy sphere. We have seen that in both the cases there is an attractive
force for large separation and a repulsive force in small distance case, We have
cousidered a one dimensional infinite lattice of points and found out that there are
some stable one dimensional lattice configurations of points, This also sugzests the

existence of stable triangular lattice structure in two and stable tetrahedral structure
in three dimensions.
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Chapter 4

Interaction between two Fuzzy
Spheres

In this chapter, We have calculated one loop interaction between two fuzzy spheres in
bosonic and supersymmetric case in 3 dimension, We have calculated the potential
for such system for both large and small distance case. It depends on the distance
r between the spleres and the radii py, p». There is no foree between the spheres
when they are far from cach other (long distance case). We have also studied the
interaction for r = 0 case. We find that an attractive force exists between two | UZzy

sphere surfaces. We have also studied the extension of such system in 10 dimension.

4.1 One Loop Effective Action for Two Fuzzy Sphere
system

As we have seen in earlier section, we can calculate the one loop effective action from
equations(3.29-3,31). For this we consider the same configuration as equation(3.28),
consider V(! as block-diagonal with two blocks (same as eqn. 3.23) , each block
representing one fuzzy sphere. For two fuzzy sphere configuration, we assume the
following form for the back-ground and fluctuation matrices.

X ; alll g gtth ¢
v — ( b . Al — [ :2¢ @m = t¥5.. §. = re o
r 1 1 [ oy I T 2
i 0 _}l;{* | [ E;L G.L ) th an :I

i bUJ i - CU} £ R{IJ (1
1) e (n _ ]

where, in these matrices, the first diagonal block is 1y % n; matrix and the second

I8 ny % ny. For caleulational simplicity, we further assume YA = R = p,

cn
n
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(e=12) _ (i) (1) n (2), Eil o " 5 REuE
R =7 agwnis T = e t= —iem e are the centers of two [uzzy

spheres and ry, is the distance vector between them,

. o 5 Joly] & Bll} = it
D__'(IJ{?])’E:(Etﬂ)’ﬂﬂ‘:(ﬁil} Vo=l
where, in these matrices, the upper block is ny x (N — ny — n7) matrix and the

second is 7y X (N — 1y — ny).

Putting these in equation (3.29 - 3.31), the total bilinear terms can be written as
the sum of following 9 terms.

Sé‘jg” = — L Tr{——{a "i'f,ﬂlz+2'.§Epv,xRiﬂaEf]uL”} (4.2a)
9 r1‘2
lfsp.!_f']- = tl (i) H A
Sl = 5 z.zi.: Tr {sWa*([L8), 5]} (4.2b)
!
sgEn - %{ZTT[LH}TbﬁJ][LEJ1ﬁtfn]} (4.2c)
. =12
2
St = ;%Z{Bw*m (L ©1)%6, - 2icuac1] (BO),  (424)
=12
L CE (ol
S{b = 242 L U 1k, [%'[L J}kHJ] U Jioa (4.2¢)
-"l =12
C Ctﬂ 1 1
e = g—z_z {(DN1 (L9 @ 1)2 15 (Es — (B (1O @ 12,1, (D)4 42f)
2
o
S‘{gll}j{zj = ﬂ_[bT }k;.l.] [{H?}ﬁpu_ py.ﬁ.cl@'l]hhk I 'b :]hf:.' {42#:.]
2
S{]HE) = J f}-lzkt [U.H{H }-h ﬂ:ziz]( :]ILI:r [4.2!1]
2
o "
'5".[3.](1};2} = e {{"i -‘-‘25@1 [H }kllszz(ﬂjh!; (]-'-'zh[Hz}klhkziu(d}hfz'} {4'211
where

(Hudktirsts = (L), ® Lppty — Lyt @ (L3 Yoty
L kihi=1-n, LI =1+ (N —ny —ny), LB = 2X0, ¢, =1,
‘We can see each of bosonic, fermionic and ghost has three parts describing self-
interaction (denoted hy .5:'[Sﬁ H :'] interaction between two fuzzy spheres (denoted by
_S;E""m} and the extra piece coming from the interaction of cach fuzzy sphere with
the back ground (denoted by S, teck) index i, for i-th one). We can as well say these

extra piece as part of the self energy of the fuzzy spheres because they exist even
for one fuzzy sphere case (section 3.2).
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4.1.1 Interaction Between Two Fuzzy Spheres

We assume one loop correction is good approximation for the interaction between
fuzzy spheres '. 1-loop correction of effective action W is calculated as

W=l f dads db de e

(4.3)
As the the total action S decouples into each sector, we can write
sel faok s a2
W = v {[\H+J:::!+f‘b + IV{{B+£~J o+ Wy A2 + W Rl }+ H (132 (4.4)

where indices correspond to those of equations(4.2-4.2),

We are now interested in following parts those are from interactions between two
fuzzy spheres.

H":{BIHZ} —tn [ dbteth e —2ie e b
= —In [dr:t‘% (H? — 2ie - c}]2
WENE = iy Jdt dete=lon il
= —In [detto - H]"
Iyél}{ﬁ = —~In [ dd dd' de dete—d H2e+e! B2

= —i7 [d&tH?]E

where squares of determinants come from two off- diagonal blocks of matrices .md
in Ty ) s beeause of Majorana spinor.

4.1.1.1 Bosonic Sector

Without loss of generality, two fuzzy splieres are assumed to be separated by r in
drd direction

¢, = (0,0,¢), r=ac

Then diagonalise the operator in bosonic part

H* —“2ic 0 H? — 2¢

0 0
H* —%e-e=| 2ic H* g |~ () H 4+ 2 0
i n  H? 0 0 H2

S0, we can write the bosonic contribution to the effective action (including the ghost
part) as,

W {[jfg} 21 [d " ([HE_‘ZE}L[;HE—]—E:‘:})] (4.5)

'This is not a good approximation for twoe intersecting fuzzy spheres, for eg, 7y = ne,c =0
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We define J, = H, +¢, and K, = J, + ! w Where S, = 2. Both J, and K,
follow SU/(2) algebra. j, maximum eigen value of J, varies from jum = |M5™| to
Jmer = (M52 —Nand k= j+ L H H*+cor H +g) are block diagonal, each
block representing a particular value of J. So, we can write

=tmin

J . 1 Jdmaoz
I"P({;J-ﬁj - EEH [ H [wg]}] (4.6)
K
where, (wpg); is the determinant of jth block and can be caleulated to be

2 . B
e e xa =0 S IL @4 oelit )+ jGD? (@

ol
i=—3

(wp); =

:‘_—*'.:_'?,‘pr ¢ << 1, when the fuzzy spheres are concentrie, there is a non-zero interaction

o 1)(2) e

e, — E (27 + L)lnli(j + 1)]
I=Imin
2 1 24 1 24 Sl
2 ] B 1 . 1 E2r0(A).
3 ”1_,_,12( +,ll i Rz) 'n-l—ﬂg( +n1 —le) > ] o (r:)

I=3min

For ¢ >> 1 ie when the fuzzy spheres are far apart,

" %4 1 1
H*'{{;Té, = g loge® + Elni—n"{ni + ng — JB}-C-.E + 0 (;:_’) . (4.8)
41.1.2 Supersymmetric Case
f;;,___ ming up all these contributions,
W < L |qey (2= 20) (H7 +2¢) (4.9)
2 H(g-H)

_ 1 Jmar
H_r'[”m:' — E'{ﬂ' ];' H -{UJ-] {*llﬂ}
=Jmin

Where, w; = w;(c)uij(—c) is the determinant of jth block and

diy(e) = 1€+ 2T+ D) + 30 + 1] [ +2¢(7 + 1) +5(j +1)]
7 (e +4)% [+ 2c5 + 5(j + 1)]
] [€® + 2e(i + 1) + j(7 + 1)]
I sy sy S
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Wwr—r

w (Effective Potentlal)

o 5 10

15 20
¢ {distance in scale of a)

Figure 4.1: The effective potential between two fuzzy spheres (n; = 10,n,; = 5).

When ¢ = o0, ie the fuzzy spheres are at infinite distance from each
other, W)@ = 0, thus the two fuzzy spheres do not interact with each otlier. This

Ieature is different from bosonic case. This is because of some cancellation between
bosonic and the fermionic contributions.

| Expanding W around ¢ = 0 and ¢ = oo, we can get the potential

between two fuzzy sphere for small and large distances respectively,
for small c.

Ty + Mg g

2 4
S{m + )%y — m}zﬂ o (E ) ‘ ey

We see an attractive force (—(8W @) /(Aac)) between the fuzzy sphere surfaces
mlsive between the centers), when the centers are close to each other. This ean
be seen from the figure(d.1 for the region of e very close to zero.

1.1;'713{2]

ccec1 =10

T — N4
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For large ¢,

o 1
”',E;j-},i} — ——1'??-1?12;1'.'2 +0 (_i) . {4'13}
s

50, there also exists an attractive force between the fuzzy spheres when
they are at large distances. This result is consistent with the earlier observation that
D2(D0)-branes form a bigger D2-brane in string theory |12, 8]. We can compare this
to equation (4.8) and find some cancellation between bosonic and fermionic part,
that is because of part of supersymmetry. We can see from figure (4.1), that there
are some stable confined states corresponding to the minimum values of the effective
potentials shown in the figure.

Spherical BPS D2-brane from string theory in 5% does not interact when
they are "parallel” (¢ = 0) to each other. However from our approach in matrix
model the first term of equation (4.12) exists even for ¢ = 0. Tt may be explained
as the guadratic part of action §* (eqn. 4.2-4.2) itself is not supersymmetric under
the susy transformations in eqn( 77). But for large distance case (¢ — 00) this 5%
recovers A = 1 supersymmetry and in such case W) vanishes. Moreover in such
case, we can not use only quadratic part of off-diagonal part in equation (4.1) when

the size of ny and ns is not so different. that corresponds to overlapping of surface
of two spheres,

4.2 Higher Dimensional Extension

So far, we have dealt with a three dimensional fuzzy sphere model. This model can
be extended to higher dimensional matrix models like [KKT-type, where the fuzzy
sphere may correspond to a D-hrane in string theory,

As an example, we study one such particular extension in the context of

IIB matrix model. We take the original 10 dimensional 1IB matrix model with a 3
dimensional Chern-Simons term.

§= lzr"r(— A AR, A7) + Ziceg, A0 A1 1° 4+ Lare(a ¥) (1.14)
Q’? 4-,111-1-- 14 3 abe<t S 9" Sl Y o

where i, v, A are from 1 to 10 and a0, care from 1 to 3, The fermionic matrices are
now 10 dimensional Majorana-Wyle spinors. The addition of the three dimensional
Chern-Simons term breaks the global § O(10) symmetry of the action into SO(3) ®
S0(7). In this present matrix model the matrices do not depend on any parameter

-

like time, rather time is represented by one such Matrix . The degrees of freedom
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of space-time and brane are unified in matrices and we do not distinguish them in
action.

This model has a typical classical solution
[Xas Xi] = ioeae(Xe — R, Xi=0, [X.R)=0 =0, (4.15)

which describes a system of two fuzzy spheres, separated only in 1, 2, 3 directions
and at same point in other directions. In string theory picture, this system may
correspond to a svstem with two D-branes lving in 1,2.3 directions.

Classically, these fuzzy spheres do not interact with each other. We can
calculate the one loop interaction following the similar method as in three dimen-
sion. However, in this case there will be some additional contribution from 4-10 th
dimensions as quantum fluctuation. The calculation of the quantum correction of
the potential is straight forward. There is no divergence again because of the cancel-
lation between bosonic and fermionic contributions, For large separation (¢ >> 1),
the effective potential does not change with the dimension D (D = 3 or 10).

(i'i-’};‘l]{"z}) = —dmna/fe* + 0 (é) (4.16)
e>>1 ¢
But, the situation changes for small distance case (¢ << 1), where we see an at-

tractive force between the fuzzy spheres in three dimension (D = 3) but a repulsive
foree in ten dimension (D = 10).

ny + no L6(D — 6)nyng

H;flﬂz}
( ¥ ) (m1 +12)%(ny — ny)

= (D - 2)log

[l |

+0 () (417)

1y — Tia
4.3 Conclusion

In this chapter, we have calculated the interaction between two fuzzy spheres as the
one loop quantum effect n bosonic and supersvminetric case. In particular, we have
calculated the interaction between two fuzzy spheres with radii (p, ~ any, g ~ iy )
(n and ny is arbitrary) at distance (r = ac). We have determined the one loop
effective action for such system for both bosonic case and supersymmetric case for
iwo fuzzy spheres for small (¢ << 1) and large distance (¢ >> 1) case. There is
A cancellation between bosonic and fermionie part. In supersymmetric case, in 3

ensions, there is an attractive force between two fuzzy sphere surfaces for both
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1,23 directions and at same point in other directions. We have got an repulsive
force between two fuzzy spheres in short distance case and an attractive force in
large distance case. Even this model has a NV = 2 supersymmetry, the one loop

contribution for concentric case is non-zero for nearly equal n; and ny. This is
probably because of the fact the one loop approximation is not gond approximation

in such case. It will be interesting to compare equations (4.12, 4.13) with those from
spherical D2-brane interactions in SU/(2) WZW model.

A4  Appendix : Derivation of equation 4.10
In this appendix, we will caleulate det(H? + a) and det(o.H)?, where I is given as

(Hkstibaty = (LM, @ Lty — 1y, @ Ga )

kili=1on, I,J =1+ (N —ny —ny), L_}f}' = J—rk'f?, €y = 17, We assume

oy Hy+C,, and ff,, = J“-!-SH

with this assumption, we can write

Jp = H,+¢,
= (LMel1-10(IL¥) +c,
L+ e1 16 (LR - c®)
JNe1-10J3
S50,
7 0 == Ty

3=t —Jals oo, (h + J2)y 205 +1=m;

The commutating operators are K2, K., J2, (JM)2, (J@)2 52 and the correspond-
ing eigenvalues are

1
Kf=h(k+1)=k=j+ E,j—%

K. =m=my ko= my=my +
JE = j[j + l} = jfﬂlﬂ = |_'.I'1_ - ..'.ll-‘2|1jm|1:l: = j] +J2
(T = 510G+ 1), (P9 =y + 1)

For, a fixed j; and j,, we can either choose |k, ) basis or |m;, m,) basis to describe
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We can write,

i

by
(Jo)=i* =1~ T (Ho)y=K*— -2

R
1 8
and

2 g -

Hi=dr40 +20uk

Consider an operator A, which can be written as

A= DK% K,)+0(J.,S.)

:wbere D(K*, K.) is diagonal in |k, m) basis and O(J., 5.) is diagonal in |m;, m,)
basis.

(kml|Alk'm'); = (km| DK, K)|Km'); + (km|O(K?, K )k'm'); (Ad.1)

Let us try to find out the {(km|D(K?, K,)|k'm'};, As D(K?, K.) is diagonal in |km)
basis, we can write
(k| D(IK*, K. k'm');
h ({Ei = 3)m_ | DK, KL)|(G - Dmb), 0
0 (3 + Dmy [ DIE® K\ + S)ml); )

e, 1 5 ;
G+ DS KNG+ m); = a6+ D)6+ 2ma) b

&+

%5
(G = 5Im-|D(K?, K)\(j — %}m'_}j = d (U = %}U t %Lm—) Ot

; g SR 1
I Ememy K4, —j4+o<mom <j-——
5 STy =g S S 3

¥, we try to caleulate (O(J2, 5%, K2, K.)). (O(J7, 5% K*, K.)) is not diagonal in
‘basis. So, we use

j+ms+ 1 11 j—my 41 1 1
Iy e Ao (d-Whdg, 1
2+l Mgt TSR Lt

JAm_o+1 11 j4m_+1 11
g M5 e g, —2)
7+ 1 A 2741 20 2




Chapter 4. Interaction between two Fuzzy Spheres G4

Using these relations, we get the following expressions.

(km|O|Fm')
{j+1 _..'I"'i | ) |J+ 1 “j-l-} 0 0 )

B 0 (s 2lOLjy, ) 0 (IO ')
0 0 (s 31014, ) 0
0 (-, mlOLjy, ') 0 (s n|Olj_, )

where j; =+ 3,7 =j -
and

bs =

o1 s
{7+ §=?11+|O (KE,I{:) |7 +§,m’+}
'ﬁm.‘.,m*_.'_

2 o e~ - (1)

s il R
(i + E.m+|f} (I{Q,I{,,) [y — E,m’_:}

{Hm+ ,'I'J'J.r_ ]'.

= \/(j e %}[j = %} [—& ((m_-, -3 %) +0 ((m + %), —%)]

4 1 2 1 1 !
(71— E,m,_|{] (f‘f Jﬂ) |7+ a,m+>

’ ‘/{j —mo 4 )G +m+3) fo((m_+ 1), ~3)+=o(tm=5.2)]

2

1
o (K% K.) i - 5o
T 1 .11 y wow  § T N |
[L.l m_ + 2]0 ([m_ 2}* —2) +(F4+m. + §}ﬂ ({m_ + 5}. 2)]
\Combining these together, we can write
(km| Al m!
{j‘F'T '_j+|'4|j+! _j+} 0 . [ (1
. U {j+1 n|""1ij+:' ﬂ';} . 4 {j+$ H|U|jl_, ”‘i}
0 0 GaddAlinid 0
0 (J=sn|Ojp, n') 0 {d= nj4|j.,n')

(det(km]A|k'm')
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e Gl =3 7ol Al iy det [ G661 (e IOl )
"(.?+-. j'-|IA|.?+, ,?+}{J+1J+I*1ij+1.?+>d{'t({j_jnlOIj_Hnr} {j.u,ﬂi."”j_,ﬂ-'l}

Fa=
= {jTIT _'j"l- I'4'|j+| _j+}{j+1 j+|‘£1|j+.' .?+} H [{j+: ﬂ'|Alj+1 ﬂ'}{j—i ﬂ'[“”j—! ”F} = ((j-!-i :I"!|U|_,

n=—j_
2 iy Lyes 3y 1 ek
—[d(f'f —(.H'EJ{J kghm=—j E)HI(J;— 35 = 2)]
2 _ ey Ly 3 1) - _5]
=3 . 1 3 1 1 1
S J o 28 Wy 1 W = 1 — =1 — - = —
H=E+1 Hd(ﬁf —{j+2]{1+2},m n)+{j+n+2}a(.fz ) 2*53 2)
1 1
+(J—ﬂ'-l“—‘JO(Jz:H-l-E,Sz_—E)}

{d(KE {J——}U"‘ j m—n)—i—{j+n.+1]a(.f:=”— %:Sz=1)

2
+(i—n+= }a(i —n—|—1 8. = —1)}

2 2
=-n+PlF+n+1) 1 1 1 1
sy (o (f=n-58 =g)+o(l=ntgs=-3))
Calculating (km|(H.o)%|k'm');
9
(Ho)= K2 - J° - “—1 ~ %o,
so, we can assume, [ = K2 — J? — “—::-_, 0 = —2¢o.. Using the above formula we

can easily see,

det (km|((H.o)|k'm");

j_zja' g 8 - - 1
e i = . —2ne _ 2ne Ifj-n+3)i+n+1
=(j+e)i—¢) n_lL K:Jr 2j+1) (—j 1+2,;‘+1) - I

T 3

Simplifying this expression, we can write

det{km|((H.o)|k'mn'),
[ =1+ L—_TH'I"—!!]
= I:QC‘]{C-i-j] (C_ F{ §—1+E‘JC+.€CE+32]

i}

=(e+ie-3) J[ (-€-2c-iGi+1)

1
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Calculating (km|H?|k'm');

H? =+ C? 4 20,J,

assuming D = J* 4+ C? and O = 2¢,.J,, we can caleulate

det {km|H2|k'm')

=(PHi+F—2f) (P +j+ 2+ %)

' i 2 deng % o Aden(j+ 1) 47 —nd)F +n+ 1)
ﬁJLJ%”+”+J+Ww+u}F“+”+g+ S S Al

Simplifying this equation, we can write,

{e—7P+j : *
det{km]Hz[Hm’} == 4{1+2j}r:{2+.13-;|1_‘[( e +?_] :—1) ]
T[]

2c

- fI (¢ + 2ie+ (5 + 1))
i=~j

2

k]
det{bm|H* £ 2clk'm') = [T (¢+2e(i£1)+3( + 1))

==7

culating IW;
w;mmhining all this we can write

B[220+ DG+ D) [~ 2+ )+ + )]

E c+ =3P

Il [+ 2c(i + 1) + 5 + D + 2e(i — 1) + (5 + 1)

=y (e 1)+ G+ DI+ =1 +5G + DI@ + 26 + 3G + 1)
L[+ ) 5G4 0] [ -2+ 0+ 1)

N (c+ 1720 — o2
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€8+ 2e(5 + 1) + 5 (7 + 1)]*[¢* - 2e(j+ 1)+ (7 + 1)]?

[€® +2c5 + 45 + D]le* = 2¢5 + 5(5 + 1)]
I [+ 26+ 1)+ 55 + DP[e? = 2ei4 1) + j(5 + 1)}
oy [EF BT )G e =it 1) +3(j +1)]

So, we can write w; = w;(e)wi(—e), where

() = Lt I U+ 2 +1) +5(G + P

H [+ 2e(i + 1) + 5(7 + 1))?

(c+ 4) [+ 2¢7 + j(j + 1)]

iz [+ e(2i 4 1)+ 4(5 + 1))

(A4.2)




Chapter 5

Conclusion and Scope

In this thesis, we have studied the following issues in detail.

e High Temperature Matrix Mode]--

It is not clear from the perturbative approach to string theory whether the Hagedorn
Temperature is a limiting temperature or a phase transition temperature. Henee, a
non-perturbative formulation is essential to understand this issue, We have studied
the high temperature SU(2) matrix model (a system of two DO-branes). In BFSS
matrix model (0+1 d) we have calculated the partition function for this system.
The leading nontrivial term of the partition function has been calculated exactly
(eqn. 2.34). The non-leading terms can also be systematically calculated although
we have not attempted to work them out here. From a scaling argument we have
also determined the 4 and g dependence of the leading term for any N, We have
calculated the temperature dependence of the mean square separation between two
DO-branes, We find that (I?) o \/g (eqn. 2.47) (true for any N}, the finiteness of
which shows that there must be a potential between D-0 branes that binds them. In
[1, 2] also a logarithmic and attractive potential was found. The present calculation
being exact in g is valid for all distances. Thus unlike in [1, 2], the (finite temper-
ature) logarithmic potential found here is attractive at long distances and repulsive
at short distances thus implying that it has a minimum at non-zero distance.

e Fuzzy Sphere and The Matrix model:--

Recently it has been shown that the fuzzy sphere in finite matrix model ( ITA) corre-
sponds to the spherical D2-brane wrapping on S% in string theory using the SU7(2)
WZW model [3]. This gives us an interesting way to study the D-branes in string
theory from the matrix model frame work. Earlier. D-branes in flat backerounds
‘have been explored within the this framework of Matrix Model. Recently other

non-commutative backgrounds, for e.g. the fuzzy sphere have also been studied.

65
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Non-commutative gauge theories on fuzzy spheres were obtained considering the
supersymmetric three dimensional Type [TB matrix model action with a Chern Si.
mons term [?]. The fuzzy sphere in Type IIB matrix models may correspond to the
spherical D2-brane in the string theory with a background linear B-field in 5* It is
interesting to find out, in Type IIB matrix maodels, the object corresponding to the
D2 or D0 brane in the string theory.

We have studied a general fuzay sphere model in three dimensions, which
allows a multi fuzzy sphere system with arbitrary discrete radii and arbitrary loca-
tion in R®, [5], We have studied the interaction as the one loop quantum effect.
We have determined the one loop interaction between two and three blocks. We
have calculated the potential between two points and the potential between a point
and a fuzzy sphere. We have seen that for both the cases there is an attractive
force for large separation and a repulsive force for small separation. We have con-
sidered & one dimensional infinite lattice of points and found out that there are
stable one dimensional lattice configurations of points. A two fuzzy sphere system
i also considered and the one loop potential for this system has been calculated,
The potential is attractive for supersymmetric cases for small and large distance,

and vanishes for infinite distances. We have also tried to see a 10 dimensional, more
physical extension of this three dimensional model,

5.1 Scope for further work

~» Matrix Model Partition function & Finite Temperature Matrix Model

As a natural extension of our work on the 'High Temperature N = 2
-matrix model’, it is interesting to calculate the partition function for N = 3 matrix
~model (IIB). Tt is found to be a non-trivial exercise, 50 a perturbative method may
be easier, where the 5 parameters of SU(3)/SU/(2) are considered to be small. This
- system will give the SU(3) partition function as a perturbation from SU(2) partition
function.

It is quite non-trivial to ealeulate the partition function for SU(N) matrix
model when N > 2 in the usual method. Moore et al [7] have rewritten the 1B
matrix model action in the language of the Cohomological field theory and performed
the path integral to get the partition function Z for a general N exactly. Similar
method can be used to answer questions about the physical quantities related to the

ij,étrtitimn funetion of the SU({N) matrix model for large N and the finite temperature
SU(N) matrix model.
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o [Fuzzy Sphere and Matrix Model

The unresolved issues in our recent work on the ‘Interaction between two Fuzzy
Spheres and points’ like the SUSY and the BPS D%-branes can be addressed. In
our model, one of the 2 SUSY transformations has a quadratic form. As a result
the usual way of caleulating the one Ioop correction is not supersymmetric, How
Lo study the BPS D2-branes of string theory is not clear in our model. We would
like to clarify this issue in the immediate future, Further generalization of this
System to a more physical system in 10 dimensions may also be thought of. The
issues of the stability and the effect of non-zero fermionie solutions and the addition
of mass term in action in such case are also important. As an extension of our
work the study the D-brane solutions in other non-trivial backgrounds for e.g. the
SU(3) fuzzy sphere and other curved back grounds such as the Kahler manifold may
describe more physical situations from the point of string theory. In string theory,
the SU(3) model describes the dynamics of the Di-brane (as no. of casimir is 2)
and the DO-brane in 8 dimension. In addition to these D-branes T-branes also can
be studied in this model. This is a non-trivial difference from the SI7 (2) case, where
only the D2-brane and DO-brane can be studied. We would like to find out the
corresponding extension in the matrix model,

It is not yet clear how to study D-branes in a general curved background
in the matrix model. It is important to address this issue. In the matrix madlel
we are yet to understand the correspondence of the some of the symmetries of the
string theory like the conformal symmetry, modular invariance, gauge symretry
and dualities. It is essential to look for a natural generalization of the matrix model
to solve all such issues of matrix model.

The old type matrix model has a close relation to the non-critical string
theory and the conformal field theory, We can expect the matrix model to relate
also to some kind of conformal field theory. May be we are close to the unification
of the old type matrix model and the present matrix model which may give a hint
to natural generalization of the matrix model,

There is some hope for a background independent way of studyimg the

matrix model following topological field theory and the K-theory. Tt will be inter-
esting to address these issues some time in the future.
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