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1 Introduction

Our universe consists of various particles with different spins and masses. The graviton,
the spin-2 particle mediating the gravitational force, is of special interest since gravity is
the least understood among fundamental forces in nature. Assuming Lorentz invariance,
Weinberg’s theorem in 1964 [1] and its extensions [2, 3] exclude more than one interacting
massless gravitons in four-dimensional Minkowski spacetime. Those theorems, however, do
not exclude massive graviton(s) interacting with a massless graviton.

In the present paper we consider a bimetric theory of gravity, i.e. a physical setup
involving two dynamical metrics interacting with each other. In this setup, after diagonalizing
the mass matrix for metric perturbations around Minkowski background, we end up with
a massive graviton and a massless graviton, in accord with the above mentioned general
theorems. Bimetric theory thus propagates seven physical degrees of freedom in Minkowski
background: five from the massive graviton and two from the massless graviton. Until
recently, however, it was thought that nonlinear extension of massive gravity inevitably would
have involved a sixth degree of freedom (eighth degree of freedom in nonlinear bimetric theory,
e.g. [4]), which would have been a ghost [5]. This ghost degree of freedom, called Boulware-
Deser (BD) ghost, was recently excised in the construction of a massive gravity theory by de
Rham, Gabadadze and Tolley (dRGT) [6, 7] at fully nonlinear level [8, 9]. A simple extension
of the dRGT massive gravity allows the construction of a fully nonlinear bimetric theory of
gravity without the (would-be) BD ghost [10]. It is thus this formulation that the studies of
bimetric theory in the present paper are based on.
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Having a promising candidate for theoretically consistent bimetric theory, it is important
to investigate whether it can accommodate viable cosmology. Before starting the study of
cosmology in bimetric theory, however, let us briefly review the current status of cosmology
in dRGT massive gravity and its extensions.

In the covariant formulation of dRGT massive gravity, the basic quantities in the grav-
ity sector are a metric field and four scalar fields called Stückelberg fields. The original
dRGT theory respects the Poincaré symmetry in the space of Stückelberg fields so that the
Stückelberg fields enter the action only through the so-called fiducial metric, which is the
pullback of Minkowski metric in the field space to the spacetime. It turned out that the
dRGT theory with the internal Poincaré symmetry does not allow for any non-trivial flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) solutions [11]. The same no-go result holds
for closed FLRW solutions as well. One can nonetheless find non-trivial and self-accelerating
open FLRW solutions in this theory [12]. Slightly extending the theory by replacing the
Minkowski fiducial metric with de Sitter or FLRW one, it also becomes possible to find
not only open but also flat and closed FLRW solutions with [13] or without [14–16] self-
acceleration. Unfortunately, all those FLRW solutions in dRGT theory turned out to be
unstable due to either linear instability called Higuchi ghost [17] or a recently found nonlin-
ear instability [18, 19].

The origin of the new nonlinear instability found in [18] is the fact that kinetic terms of
three among five degrees of freedom in FLRW backgrounds are exactly proportional to the
equation of motion for the temporal Stückelberg field and thus vanish on shell [13]. Those
kinetic terms vanish at the quadratic level in the action, but do appear at the nonlinear level
and can become either positive or negative, depending on the nature of perturbations.

One can in principle evade the instability of cosmological solutions in dRGT massive
gravity by relaxing the FLRW symmetry, i.e. either homogeneity [11] (see also [20–25] for
related solutions) or isotropy [19, 26]. Another possibility is to extend the theory by intro-
ducing an extra scalar field in the gravity sector [27–29]. In both cases, the above mentioned
exact proportionality between the kinetic terms and the background equation of motion is
detuned and thus the nonlinear instability can in principle be avoided.

The nonlinear bimetric theory of gravity can be considered as yet another extension of
dRGT massive gravity, due to an extra spin-2 field. Hence, the above mentioned no-go result
for stable FLRW cosmological solution does not directly apply to the nonlinear bimetric
theory. Unfortunately, in nonlinear bimetric theory the analogue of the self-accelerating
branch still suffers from nonlinear instability. We thus study the stability of FLRW solutions
in the other branch in the bimetric theory originally proposed in the context of the graviton
oscillations and gravitational wave observations [30], which we call the healthy branch.1 In
this study, we take into account two matter fields each of which couples to either the first or
second metric.

The rest of the present paper is organized as follows. In section 2 we describe the
model of our interest. We briefly review the background cosmology assuming the spatial
homogeneity and isotropy in section 3, where we also introduce the notion of two different
branches. Then, we discuss linear perturbations around this cosmological background in
section 4. Starting with the pure gravity case, we discuss the tensor, vector and scalar-type
perturbations one by one. We identify the conditions for the absence of ghost and gradient
instability. Section 5 is devoted to summary and discussion.

1Similar cosmological background solutions in bimetric theory with a single matter source have been
considered in [31, 32], while ref. [33] studied backgrounds with two fluids.

– 2 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
7

2 Model

The covariant action for the gravity sector is constructed out of two four-dimensional metrics
gµν and fµν . It is the sum of the two Einstein-Hilbert actions IEH,g and IEH,f for the metrics
gµν and fµν , respectively, and the non-derivative mixing term Imix which is built by requiring
that the Boulware-Deser ghost is absent at all orders [8]. Including the matter, the total
action we consider is

I = IEH,g + IEH,f + Imix + Imatter , (2.1)

where

IEH,g =
M2

g

2

∫

d4x
√−gR[g] , (2.2)

IEH,f =
M2

f

2

∫

d4x
√

−fR[f ] , (2.3)

Imix = m2M2
g

∫

d4x
√−g

4
∑

i=0

αiLi . (2.4)

Each term in Imix is constructed as

L0 = 1 , L1 = [K] , L2 =
1

2

(

[K]2 − [K2]
)

, L3 =
1

6

(

[K]3 − 3[K][K2] + 2[K3]
)

,

L4 =
1

24

(

[K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]
)

, (2.5)

where the square brackets denote trace operation and

Kµ
ν = δµν −

(

√

g−1f
)µ

ν
. (2.6)

The square root in this expression represents the matrix that satisfies

(

√

g−1f
)µ

ρ
(
√

g−1f
)ρ

ν
= gµρfρν , (2.7)

and whose eigenvalues are all positive. Notice that the cosmological constant term for fµν
can be expressed as a linear combination of Li (i = 0, . . . , 4), while that for gµν is L0. Besides
the three mass scales Mg, Mf and

√

Maxi|αi|m, we thus have four dimensionless parameters
(four among αi (i = 0, . . . , 4)). This means that, for each choice of the set of mass scales
Mg, Mf and

√

Maxi|αi|m, we have freedom to tune four additional quantities, e.g. ξc, J(ξc),
J ′(ξc) and Λ/m2 defined in the next section.

As for the matter sector, we consider scalar fields φg and φf minimally coupled to gµν
and fµν , respectively. Because of their equivalence to irrotational barotropic perfect fluids
(see e.g. [34–37]), we restrict our consideration to k-essence fields,2 with the action

Imatter =

∫

d4x
√−gPg(Xg) +

∫

d4x
√

−fPf (Xf ) , (2.8)

with

Xg ≡ −gµν∂µφg∂νφg , Xf ≡ −fµν∂µφf∂νφf . (2.9)

2The effect of rotational perturbations are briefly discussed in the appendix.

– 3 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
7

When we simply write Pa, with a = g, f , it denotes the background value of Pa(Xa) and
corresponds to the background pressure in the perfect fluid picture. We also introduce the
energy density and sound speed of the effective fluid as

ρa ≡ 2P ′
a(Xa)Xa − Pa(Xa) , c2a ≡ P ′

a(Xa)

2P ′′
a (Xa)Xa + P ′

a(Xa)
, (2.10)

where prime denotes derivative with respect to the argument.

3 Background equations and solution branches

In this section, we derive the equations of motion for the background FLRW universe, and
also discuss the branches of the background solutions. We denote the two metrics gµν and
fµν as

gµνdx
µdxν = −N2dt2 + a2γijdx

idxj ,

fµνdx
µdxν = −n2dt2 + α2γijdx

idxj , (3.1)

with

γij ≡ δij +
Kδilδjmx

lxm

1−Kδlmxlxm
, (3.2)

where N = N(t) and n = n(t) are the background lapse functions, and a = a(t) and α = α(t)
are background scale factors. Notice that the two background metrics are both homogeneous
and isotropic, having common isometries. The background equations are given by

3

(

H2 +
K

a2

)

= m2 ρ̂m,g +
ρg
M2

g

, (3.3)

3

(

H2
f +

K

α2

)

=
m2

κ
ρ̂m,f +

ρf
κM2

g

, (3.4)

2

(

Ḣ

N
− K

a2

)

= m2ξJ(c̃− 1)− ρg + Pg

M2
g

, (3.5)

2

(

Ḣf

n
− K

α2

)

= − m2

κ ξ3c̃
J(c̃− 1)− ρf + Pf

κM2
g

, (3.6)

[

1

c2g

1

N

d

dt

(

φ̇g,0
N

)

+
3Hφ̇g,0
N

]

(ρg + Pg) = 0 , (3.7)

[

1

c2f

1

n

d

dt

(

φ̇f,0
n

)

+
3Hf φ̇f,0

n

]

(ρf + Pf ) = 0 , (3.8)

where we have defined H ≡ ȧ/(Na), Hf ≡ α̇/(nα), κ ≡ M2
f /M

2
g and an overdot represents

derivative with respect to t. Here, we have also introduced

ρ̂m,g ≡ U(ξ)− ξ

4
U ′(ξ) , ρ̂m,f ≡ 1

4ξ3
U ′(ξ) ,

J(ξ) ≡ 1

3

[

U(ξ)− ξ

4
U ′(ξ)

]′

, (3.9)
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where ξ and c̃ are, respectively, the ratios of the background scale factors and lapse functions
defined as

ξ ≡ α

a
, c̃ ≡ na

Nα
, (3.10)

and
U(ξ) ≡ −α0 + 4(ξ − 1)α1 − 6(ξ − 1)2α2 + 4(ξ − 1)3α3 − (ξ − 1)4α4 . (3.11)

For later convenience, we define

Γ(ξ) ≡ ξJ(ξ) +
(c̃− 1)ξ2

2
J ′(ξ) , (3.12)

m2
eff(ξ) ≡ 1 + κξ2

κξ2
m2Γ(ξ) . (3.13)

In the next section we shall see that meff is the effective graviton mass.3

Combining eqs. (3.3), (3.5) and (3.7), or equivalently, eqs. (3.4), (3.6) and (3.8), we
obtain a constraint,

J(H − ξHf ) = 0 . (3.14)

This constraint indicates that there are two branches of solutions: one is specified by the
condition J = 0 and the other by H = ξHf .

Before starting the analysis of the healthy branch, we briefly mention the other branch
with J = 0. Since the condition J = 0 implies that ξ = α/a is constant, the quantities ρ̂m,g

and ρ̂m,f are also constant. In this case the quadratic order of perturbation of the mixing
term of the action, Imix, is equivalent to the cosmological constant terms on both metrics.
(See eq. (4.5) below with J being set to 0.) Thus, the Hamiltonian structure for linear
perturbations is the same as that in two copies of general relativity. As a result, instead of
the 7 degrees of freedom we expect from a healthy bimetric theory, we end up with 4 degrees
of freedom that are dynamical at linear order [39, 40]. This branch is an analogue of the self-
accelerating branch in massive gravity [12], which is known to possess incurable problems,
such as a less-than-expected number of the degrees of freedom at quadratic level [13] and
appearance of a non-perturbative ghost [18]. Thus, we consider only the healthy branch
specified by H = ξHf in the rest of this paper.

First, we derive two algebraic relations, i.e. constraints that hold in the H = ξHf

branch. Combining eqs. (3.3) and (3.4) under the assumption H = ξHf , we have

m2ρ̂m(ξ) = − ρg
M2

g

+
ξ2ρf
κM2

g

, (3.15)

where we have introduced a function of ξ defined by

ρ̂m(ξ) ≡ ρ̂m,g(ξ)−
ξ2

κ
ρ̂m,f (ξ) = U(ξ)− 1

4

(

ξ +
1

κξ

)

U ′(ξ) . (3.16)

3We remark that when the light cones of the two metrics coincide, i.e. c̃ = 1, the effective graviton mass
reduces to the Fierz-Pauli mass given in [38], with the following correspondence between the two notations:

α0 → −β0 − 4β1 − 6β2 − 4β3 − β4 , α1 → β1 + 3β2 + 3β3 + β4 ,

α2 → −β2 − 2β3 − β4 , α3 → β3 + β4 , α4 → −β4 ,

Mg →
√
2mg , Mf →

√
2mf , m → m2/mg .

– 5 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
7

Equation (3.15) should be interpreted as the equation that determines the value of ξ. The
other constraint is derived from d(H−ξHf )/dt = 0. Using eqs. (3.5) and (3.6), this constraint
can be rewritten as

2(c̃− 1)W =
ρg + Pg

M2
g

− c̃ξ2(ρf + Pf )

κM2
g

, (3.17)

where we have defined

W ≡ m2(1 + κξ2)J

2κξ
−H2 − K

a2
. (3.18)

This constraint is to be interpreted as the equation that determines the difference between
the light cones of two metrics, c̃ − 1. Hence, barring special tuning of model parameters,
vanishing of (ρg + Pg) − ξ2(ρf + Pf )/κ means the crossing of c̃ = 1 and W keeps a definite
sign along the trajectory of the time evolution. The regime c̃ > 1 is preferred as a viable
model when the ordinary matter fields are coupled to the g metric. This is because, when
c̃ < 1, the electro-magnetic wave travels faster than the propagation speed of the f -metric
perturbations and hence a UHECR traveling with a speed very close the speed of light may
emit the f -gravi-Cherenkov radiation, which is severely constrained by observations [41, 42].

In ref. [30] a healthy background cosmology was proposed. We generalize the analysis
in [30] to the case with two matter fields, removing also the restriction to the low energy
regime. In this solution at low energies,

ρg
m2M2

g

≪ 1 ,
ξ2ρf

κm2M2
g

≪ 1 , (3.19)

ξ converges to a constant ξc (assumed to be ξc = O(1)) that solves

ρ̂m(ξc) = 0 . (3.20)

The mass scale of the coupling termm is assumed to be parametrically large, but the effective
graviton mass meff(ξc) is kept small, by tuning the model parameters.

The other constraint (3.17) implies c̃→ 1 at low energies. Namely, the difference of the
light cone between two metrics vanishes in the low energy limit. We expand ρ̂m(ξ) around
ξ = ξc as

ρ̂m(ξ) ≃ dρ̂m(ξ)

dξ

∣

∣

∣

∣

ξ=ξc

(ξ − ξc) =

[

3(1 + κξ2c )Jc
κξ2c

− 2Λ

ξcm2

]

(ξ − ξc) , (3.21)

where we defined

Jc ≡ J(ξc) , Λ ≡ m2ρ̂m,g(ξc) . (3.22)

Hence, eq. (3.15) implies that

m2

[

3(1 + κξ2c )Jc
κξ2c

− 2Λ

ξcm2

]

(ξ − ξc) ≃ − ρg
M2

g

+
ξ2cρf
κM2

g

. (3.23)

Using this, we find that the Friedmann equation (3.3) can be approximated as

3

(

H2 +
K

a2

)

=
ρg
M2

g

+m2ρ̂m,g(ξ) ≃
ρg
M2

g

+m2ρ̂m,g(ξc) + 3m2Jc(ξ − ξc) ≃
ρg + κ̃−1ρf

M̃2
g

+ Λ ,

(3.24)
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where we defined

M̃2
g ≡

[

1 +
3κξ2cm

2Jc
3m2Jc − 2κξcΛ

]

M2
g , κ̃ ≡ 1

ξ4c
− 2κΛ

3ξ3cm
2Jc

. (3.25)

Eq. (3.24) can be interpreted as the Friedmann equation for two matter fields ρg and κ̃−1ρf
with the effective gravitational constant M̃2

g and the effective cosmological constant Λ. We
did not assume smallness of |Λ/m2| so far. The pure gravity case can be easily obtained by
taking the limit of ρa = 0 and Pa = 0. In this case both metrics are de Sitter and we have
ξ = ξc and c̃ = 1.

If we tune the effective cosmological constant Λ so that

∣

∣

∣

∣

κξcΛ

m2Jc

∣

∣

∣

∣

≪ 1 , (3.26)

then

M̃2
g ≃M2

+ ≡ (1 + κξ2c )M
2
g , κ̃ ≃ 1

ξ4c
. (3.27)

Hereafter, we assume eq. (3.26) as well as eq. (3.19) to hold when we take the low energy limit.
We remark that we do not intend to solve the cosmological constant problem in the present
paper and that the condition (3.26) can be realized by simply tuning the α0 parameter.

In the low energy limit or in the pure gravity case, W in eq. (3.17) with K = 0 is
reduced to m2

eff/2−H2, where meff is the effective graviton mass defined in eq. (3.13). This
quantity must be positive for the absence of Higuchi ghost [17]. As mentioned above, the
sign of W does not change in general. Therefore, we choose the branch in which

W > 0 (3.28)

is satisfied. In this case, the condition to avoid the Cherenkov radiation, c̃ > 1, is reduced to

ρg + Pg >
c̃ ξ2

κ
(ρf + Pf ) . (3.29)

The positivity of W also indicates that J = 0 is not realized except in the limit where H2 +
K/a2 and W simultaneously vanish, provided that |K|/a2 < H2 in accord with observation.
However, in this low energy limit, the value of ξ converges to ξc, which is different from the
zeros of J(ξ) in general. In other words, J(ξc) 6= 0 unless fine-tuned. Hence, we find that the
healthy branch does not cross the J = 0 branch.

The positivity of W may break down only when the sequence of solution disappears as
we increase the energy scale. From the constraint (3.17), we find that c̃ − 1 diverges when
W crosses 0. Notice that we can also express c̃− 1 as

c̃− 1 =
ξ̇

NHξ
.

Hence, when c̃ − 1 diverges, ξ̇ also diverges. This indicates that the system would exit the
regime of validity of the effective field theory there. By contrast, when the right hand side of
eq. (3.17) vanishes, it just means c̃− 1 crosses zero in general. Therefore, this does not mean
the flip of the sign of W . Hence, we conclude that, in the regime of validity of the effective
field theory, the condition W > 0 is maintained.

– 7 –
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The above phenomena can be understood more intuitively when there is no matter field
coupled to the f -metric. Notice that W is related to dρ̂m/d ln ξ as

dρ̂m
d ln ξ

= 3

(

ξ +
1

κξ

)

J − 2ξ2ρ̂m,f

κ
=

6W

m2
+

2ξ2ρf
κm2M2

g

. (3.30)

Hence, when there is no matter coupled to the f -metric,W > 0 is identical to dρ̂m/d ln ξ > 0,
which is the condition for the absence of Higuchi ghost discussed in ref. [43]. The meaning
of this condition is clear: as we increase the matter energy density ρg, the constraint (3.15)
with ρf = 0 implies that ρ̂m should decrease. When the minimum of the function ρ̂m(ξ)
is reached, we cannot extend the background solution beyond that critical energy density
of ρg. Conversely, as long as the healthy branch solution continues to exist, the condition
dρ̂m/d ln ξ > 0 is maintained.

4 Perturbations around FLRW backgrounds

4.1 Pure gravity case

We expand the two metrics perturbed around FLRW backgrounds as

gµνdx
µdxν = −N2(1 + 2Φ) dt2 + 2NaVi dt dx

i + a2(γij +Hij)dx
idxj ,

fµνdx
µdxν = −n2(1 + 2ϕ) dt2 + 2nαvi dt dx

i + α2(γij + hij)dx
idxj , (4.1)

where (Φ, Vi, Hij) and (ϕ, vi, hij) represent perturbations. For the present discussion, it is
convenient to decompose Hij and hij further into their trace parts and traceless parts as

Hij =
1

3
γij TrH +HT

ij , hij =
1

3
γij Trh+ hTij , (4.2)

where TrH ≡ γijHij , H
T
ij ≡ Hij − 1

3γij TrH, Trh ≡ γijhij , and h
T
ij ≡ hij − 1

3γij Trh.

The Einstein-Hilbert action for gµν is expanded as

IEH,g =
M2

g

2

∫

d4xNa3
√
γ
(

L
(0)
EH,g + L

(1)
EH,g + L

(2)
EH,g + · · ·

)

, (4.3)

and the quadratic part is given by

L
(2)
EH,g =

1

4N2
(γikγjl− γijγkl)ḢijḢkl +

2H

N
ΦTr Ḣ

+
1

Na
γijViD

kḢT
jk +

2

3Na
Tr ḢDkVk −

4H

a
ΦDkVk

+
2

3a2
DiΦDiTrH +

1

18a2
DiTrHDiTrH − 1

a2
DiΦDjHT

ij

− 1

6a2
DiTrHDjHT

ij +
1

2a2
γijDkHT

ikD
lHT

jl −
1

4a2
γjlγkmDiHT

jkDiH
T
lm

+
1

4a2
γikγjlFijFkl +

(

− 9H2 − 3K

a2

)

Φ2 +

(

3H2 +
K

a2

)

(ΦTrH + γijViVj)

+

(

1

4
H2 +

1

6

Ḣ

N
− K

12a2

)

(TrH)2 +

(

− 3

2
H2 − Ḣ

N
− K

a2

)

γikγjlHT
ijH

T
kl , (4.4)
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where Fij ≡ ∂iVj−∂jVi,Di is the covariant differentiation with respect to γij , andD
i ≡ γijDj .

A similar expansion applies to the Einstein-Hilbert action for the f -metric.

Up to second order, the mixing term (2.4) is expanded as

Imix

m2M2
g

=

∫

d4x

[

−√−g ρ̂m,g −
√

−f ρ̂m,f +
1

2
Na3

√
γ ξJ∆

]

+
1

8

∫

d4xNa3
√
γ Γ(γijγkl− γikγjl)(Hij − hij)(Hkl − hkl) , (4.5)

with
√−g
Na3

√
γ

= 1+

(

Φ+
1

2
TrH

)

+

[

− 1

2
Φ2+

1

2
γijViVj+

1

8
(γijγkl− 2γikγjl)HijHkl+

1

2
ΦTrH

]

,

√−f
nα3√γ = 1+

(

φ+
1

2
Trh

)

+

[

− 1

2
ϕ2+

1

2
γijvivj+

1

8
(γijγkl− 2γikγjl)hijhkl+

1

2
ϕTrh

]

,

∆ = −(c̃− 1)(TrH − Trh) + (Φ− c̃ϕ)(TrH − Trh) +
1

c̃+ 1
γij(V − c̃v)i(V − c̃v)j

− c̃− 1

4
(γijγkl− 2γikγjl)(H + h)ij(H − h)kl . (4.6)

In the pure gravity limit, the quadratic action can then be diagonalized by introducing
new perturbation variables

Φ− ≡ Φ− ϕ , V −
i ≡ Vi − vi , H−

ij ≡ Hij − hij ,

Φ+ ≡ Φ+ κξ2ϕ

1 + κξ2
, V +

i ≡ Vi + κξ2vi
1 + κξ2

, H+
ij ≡ Hij + κξ2hij

1 + κξ2
. (4.7)

Using the relations for the background, we can rewrite the quadratic action for perturbation as

I(2) =
1

2

∫

d4xNa3
√
γL(2), (4.8)

with

L(2)=M2
+L

(2)
EH[Φ

+, V +
i , H

+
ij ; Λ]+M

2
−

(

L
(2)
EH[Φ

−, V −
i , H

−
ij ; Λ]+m

2
effL

(2)
FP[Φ

−, V −
i , H

−
ij ]

)

, (4.9)

where

L
(2)
EH[Φ, Vi, Hij ; Λ] =

1

4N2
(γikγjl− γijγkl)ḢijḢkl +

2H

N
ΦTr Ḣ +

1

Na
γijViD

kḢT
jk

+
2

3Na
Tr ḢDkVk −

4H

a
ΦDkVk +

2

3a2
DiΦDiTrH − 1

a2
DiΦDjHT

ij

+
1

18a2
DiTrHDiTrH − 1

6a2
DiTrHDjHT

ij +
1

2a2
γijDkHT

ikD
lHT

jl

− 1

4a2
γjlγkmDiHT

jkDiH
T
lm +

1

4a2
γikγjlFijFkl − 2ΛΦ2

+
K

a2

[

6Φ2 − 2(ΦTrH + γijViVj)−
1

6
(TrH)2 − 1

2
γikγjlHT

ijH
T
kl

]

,

L
(2)
FP[Φ

−, V −
i , H

−
ij ] = Φ−TrH− +

1

2
γijV −

i V
−
j +

1

4
(γijγkl− γikγjl)H−

ijH
−
kl . (4.10)
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The effective gravitational coupling for the “+” fields, M2
+, the effective cosmological con-

stant, Λ, and the effective graviton mass for the “−” fields, meff , have been already defined
in eqs. (3.27), (3.22)4 and (3.13), while the effective gravitational coupling for the “−” fields
is given by

M2
− ≡ κξ2

1 + κξ2
M2

g . (4.11)

In the absence of matter, we find that the linear combination of metric perturbations de-
scribed by “+” fields is just the linearized general relativity on a de Sitter background, while
the other linear combination described by “−” fields forms a decoupled massive spin-2 field
with mass meff around the same background.

4.2 Inclusion of matter

Having finished the analysis on the pure gravity case, we study the quadratic action taking
the matter sector into account. Then, in the subsequent subsections we study the tensor,
vector and scalar sectors in turn, and argue the stability conditions for each of them.

We introduce the perturbation of the matter fields as

φg = φg,0 + δφg , φf = φf,0 + δφf . (4.12)

We expand the action for the matter fields (2.9) up to second order as

Imatter,g =

∫

d4xNa3
√
γ
(

L
(0)
matter,g + L

(1)
matter,g + L

(2)
matter,g

)

, (4.13)

and the second order term is given by

L
(2)
matter,g = Pg

(

− Φ2

2
+

1

2
V iVi +

1

8

(

(TrH)2 − 2HijH
ij
)

+
1

2
TrHΦ

)

+
ρg+Pg

2

δφ̇2g

φ̇2g,0
+

1−c2g
2c2g

(ρg+Pg)

(

δφ̇g

φ̇g,0
− Φ

)2

+
ρg+Pg

2

(

Φ− δφ̇g

φ̇g,0

)

(2Φ−TrH)

−N
2(ρg+Pg)

2a2φ̇2g,0

(

Diδφg +
aφ̇g,0
N

Vi

)(

Diδφg +
aφ̇g,0
N

V i

)

. (4.14)

The action for the φf field can be obtained similarly.

4.3 Tensor sector

We start with our analysis on the tensor sector. We restrict the perturbation of the three
metrics to the transverse-traceless perturbations as

Hij = HTT
ij , hij = hTT

ij . (4.15)

To keep the notation simple, we suppress the superscript TT below. Combining all terms
(two Einstein Hilbert terms, matter terms and the interaction terms), the action quadratic
in tensor modes reduces to

I
(2)
tensor =

M2
g

8

∫

d4xNa3
√
γ

[

Ḣ ijḢij

N2
+
H ij

a2
(△−2K)Hij + κ c̃ ξ4

(

ḣij ḣij
n2

+
hij

α2
(△−2K)hij

)

−m2Γ(H ij − hij)(Hij − hij)

]

. (4.16)

4Nevertheless, |Λ/m2| does not have to be small in this section. The background equation is given by (3.24)
with ρg = ρf = 0.
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We stress that up to now, we did not assume any branch and only used the background
equations (3.5) and (3.6). In this most general setup, Hij and hij fields have a generically
time-dependent coupling. Taking the low energy limit where ξ ≃ ξc and c̃ ≃ 1, the tensor
action can be put into the diagonal form

I
(2)
tensor =

1

8

∫

d4xNa3
√
γ

[

M2
+

(

Ḣ ij
+ Ḣ

+
ij

N2
+
H ij

+

a2
(△−2K)H+

ij

)

+M2
−

(

Ḣ ij
− Ḣ

−
ij

N2
+
H ij

−

a2
(△−2K)H−

ij −m2
effH

ij
−H

−
ij

)]

, (4.17)

where H±
ij are defined as in eqs. (4.7). This action is essentially the same as the tensor part

of eq. (4.9) for the pure gravity case. H+
ij is the massless graviton mode, and H−

ij is the
massive graviton mode with mass meff given by eq. (3.13).

4.4 Vector sector

We introduce vector perturbations to the metric through

Vi = Bi , Hij =
1

2
(DiEj +DjEi) ,

vi = bi , hij =
1

2
(DiSj +DjSi) , (4.18)

where Bi, bi, Ei and Si are transverse with respect to the covariant differentiation associated
with γij metric. Using the background equations (3.3)–(3.6), the total quadratic action of
the vector perturbations becomes

I
(2)
vector =

M2
g

8

∫

d4xNa3
√
γ

[

− 1

2

(

Ėi

N
− 2Bi

a

)

(△+2K)

(

Ėi

N
− 2Bi

a

)

− κξ4c̃

2

(

Ṡi

n
− 2bi

α

)

(△+2K)

(

Ṡi
n

− 2bi
α

)

+
m2Γ

2
(Ei − Si)(△+2K)(Ei − Si)

+
4m2ξJ

c̃+ 1
(Bi − c̃bi)(Bi − c̃bi)

]

. (4.19)

In the above form, the action is manifestly gauge invariant, since
(

Ėi

N − 2Bi

a

)

,
(

Ṡi

n − 2bi
α

)

,
(Ei − Si), (Bi − c̃bi) are gauge invariant.5

Next, we vary the action with respect to the non-dynamical degrees Bi and bi, to obtain

− 4

a2
(△+2K)Bi +

2

aN
(△+2K)Ėi +

8m2ξJ

c̃+ 1
(Bi − c̃ bi) = 0 ,

− 4

α2
(△+2K)bi +

2

αn
(△+2K)Ṡi −

8m2J

κξ3(c̃+ 1)
(Bi − c̃ bi) = 0 . (4.20)

At this stage, it is convenient to expand the modes in vector harmonics. The solutions to
the above equations then read

Bi = a

[

Ėi

2N
− A

2N
(Ėi − Ṡi)

]

, bi = a

[

Ṡi
2Nc̃

+
A

2κNξ2
(Ėi − Ṡi)

]

, (4.21)

5There are actually three independent gauge invariant variables. One can check that the invariance of the
first three above implies the invariance of the fourth combination.
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where we defined

A ≡
[

(k2 − 2K)(c̃+ 1)

2a2m2ξJ
+
c̃+ κξ2

κξ2

]−1

, (4.22)

and k2 is the eigenvalue of −∆.
Substituting the solution for the auxiliary modes (4.21) into the action (4.19), we obtain

I
(2)
vector =

M2
−

8

∫

dt d3k Na3A

{ Ė iĖ⋆
i

N2
−
[

(k2 − 2K)

a2
c2V +

c̃+ κξ2

1 + κξ2
m2

eff

]

E iE⋆
i

}

, (4.23)

where we defined the gauge invariant combination

Ei ≡ (Ei − Si)

√

1 + κξ2

κξ2
(k2 − 2K) , (4.24)

and the squared propagation speed of the vector mode

c2V ≡ (c̃+ 1)Γ

2ξJ
. (4.25)

One can immediately verify that A = 0 on the J = 0 branch and thus the vector modes
are non-dynamical at linear order. For the healthy branch, A should be positive at k → ∞
to avoid the ghost instability, and this condition is satisfied if J > 0. This latter condition is
automatically satisfied since we have chosen the branch that satisfies (3.28).

If we take the low energy limit, the squared propagation speed of perturbation, c2V , is
reduced to

c2V − 1 ≃ c̃− 1

2

(

d ln J

d ln ξ
+ 1

)

. (4.26)

As discussed in ref. [30], d ln J/d ln ξ is necessarily large for the Vainshtein mechanism to
efficiently work in this model. However, c̃−1 is suppressed at low energies. In fact, when Γ is
dominated by the first term of the right hand side of (3.12), i.e., when Γ ≈ ξJ , the absolute
value of the right hand side of the above equation is always less than unity and c2V is thus
guaranteed to be positive. On the other hand, if we consider the case with |d ln J/d ln ξ| > 1,
i.e., if the right hand side of (3.12) is dominated by the second term, then the right hand
side of the above expression is O(m2

eff/m
2ξJ), which can be larger than O(1). If this is the

case, the model parameters are constrained to satisfy d ln J/d ln ξ > 0 to avoid the gradient
instability.

In the main text, we did not take into account the rotational modes of fluids. In
appendix, the case with the matter coupled to the g-metric only is discussed taking into
account the rotational modes.

4.5 Scalar sector

4.5.1 Reduction of the quadratic action

The scalar perturbations are introduced through

Φ , Vi = DiB , Hij = 2γijψ +

(

DiDj −
γij
3
△
)

E ,

ϕ , vi = Dib , hij = 2γijΣ+

(

DiDj −
γij
3
△
)

S , (4.27)
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in the metrics, and

φg = φg,0 + δφg , φf = φf,0 + δφf , (4.28)

in the matter sector. We integrate out the non-dynamical modes B, b, Φ and ϕ, ending up
with an action depending on six variables, ψ, Σ, E, S, δφg and δφf . As we have not fixed
the gauge yet, there are two pure gauge degrees in this action. Furthermore, we also expect
that the would-be Boulware-Deser mode should be non-dynamical. Hence three of the six
variables are to be eliminated.

Under the coordinate transformation

xµ → xµ + ξµg , (4.29)

where ξµg = (ξ0g ,∇iξg), the six variables transform as

ψ → ψ +NHξ0g +
1

3
△ξg , E → E + 2ξg , δφg → δφg +N

√

Xg,0ξ
0
g ,

Σ → Σ+ nHfξ
0
g +

1

3
△ξg , S → S + 2ξg , δφf → δφf + n

√

Xf,0ξ
0
g , (4.30)

where

Xg,0 ≡ φ̇2g,0/N
2 , Xf,0 ≡ φ̇2f,0/n

2 . (4.31)

The three physical degrees of freedom can be made manifest by choosing the following gauge
invariant variables:

Y1 = δφg +

√

Xg,0

H

(△
6
E − ψ

)

,

Y2 = δφf +

√

Xf,0

Hf

(△
6
S − Σ

)

,

Y3 = S − E . (4.32)

If we adopt the so-called flat gauge conditions E = ψ = 0, which fix the gauge completely as
seen from eq. (4.30), Y1 and Y3 coincide with the modes δφg and S, respectively. In this gauge,
after expressing δφf in terms of Y2, the Boulware-Deser mode is manifestly non-dynamical
in the action and can be integrated out. The resulting action after expanding the fields into
harmonics is

I =
M2

g

2

∫

dt d3k Na3
(

Ẏ †

N
K Ẏ

N
+
Ẏ †

N
NY − Y †N Ẏ

N
− Y †MY

)

, (4.33)

where Y = (Y1, Y2, Y3)
T is the field array, while KT = K, N T = −N and MT = M are 3× 3

real matrices.6

6In this paper we do not discuss the effective Newton potential, partly because linear analysis is not
sufficient to study the metric perturbation within the Vainshtein radius. Here we quote the result for the
Newton potential within the quasi-static analysis in the linear perturbation, when the matter is coupled only
to the g-metric. The resulting Newton potential δΦ is given by

δΦ = − δρg
2M2

+(k
2/a2)

[

6W + (3 + 4κξ2)(k2/a2)

6W + 3(k2/a2)

]

. (4.34)
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4.5.2 No-ghost conditions

We first discuss the conditions for avoiding ghost. The kinetic matrix can be diagonalized,
by applying the rotation

R =









0 1 K13K22−K12K23

K2
12−K11K22

1 −K12
K22

K11K23−K12K13

K2
12−K11K22

0 0 1









, (4.35)

as

Kdiag = RTKR =







K22 0 0

0
K11K22−K2

12
K22

0

0 0 det(K)
K11K22−K2

12






. (4.36)

Then, we find that the ghost is absent if the following inequalities are satisfied

NG1 = K22 > 0 , NG2 =
K11K22 −K2

12

K22
> 0 , NG3 =

det(K)

K11K22 −K2
12

> 0 , (4.37)

whose explicit expressions are

NG1 =
2m2κH2ξJD

c̃Xf,0

[

2m2κM2
gH

2JDc2f
ξ(ρf+Pf )

+

(

2K

a2
+m2(c̃− 1)ξJ

)(

2K

a2
− m2 (c̃− 1)J

κξc̃

)

+
3K

k2−3K

{(

2K

a2
−m2(1+κξ2)J

κξ

)2

−AB
}

+
9m4M2

g J
2c2g

κc̃

(

A− c̃k2

k2−3K
B
)2

C
Xg,0NG2

(ρg+Pg)

]−1

,

NG2 =
2(ρg+Pg)

M2
gXg,0

(

2c2g +
(ρg+Pg)m

2ξJ

M2
gH

2

D
C

)−1

, NG3=
3Bm2ξJk2(k2−3K)

2C , (4.38)

where

A ≡ m2J(c̃+ κξ2)

κξ
− 2(c̃+ 1)

K

a2
, B ≡ 1

M2
g (c̃− 1)

(

ρg + Pg −
ξ2

κ
(ρf+Pf )

)

,

C ≡ 2k2

a2

{

2(k2−3K)

a2
+ 3(c̃+ 1)B

}

+9AB , D ≡ 2(c̃− 1)k2

a2
+ 3A+

−3k2B + K
m2ξJ

C
k2 − 3K

.

(4.39)

To avoid the catastrophic ghost instability, these conditions must be satisfied, at least, in the
k → ∞ limit. In this limit conditions (4.37) reduce to

NG1 →
ξ2(ρf+Pf )

M2
g c̃c

2
fXf,0

> 0 , NG2 →
ρg+Pg

M2
g c

2
gXg,0

> 0 , NG3 →
3

8
m2a4ξJB > 0 . (4.40)

These conditions are satisfied if

ρg + Pg > 0 , ρf + Pf > 0 , B > 0 . (4.41)

The first two conditions are just the null energy conditions for the matter fields, which are
requested for the sound waves of fluids to be stable.
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Let us now focus on the last condition, B > 0. We can easily verify that B can be
rewritten as

B = 2W +
ξ2

κM2
g

(ρf + Pf ) . (4.42)

Therefore, as long as the branch with W > 0 is concerned, the positivity of B is guaranteed.
In the low energy limit or in the pure gravity case, we find

B ≃ m2
eff − 2

(

H2 +
K

a2

)

, (4.43)

where meff is the effective graviton mass defined in eq. (3.13). Thus, one can see that the
condition B > 0 is the extension of the Higuchi bound for the absence of ghost modes.

4.5.3 Sound speeds

We now study the speeds of propagation of the scalar modes, in the high frequency limit.
The equation of motion is obtained from the action (4.33) as

K 1

N

d

dt

(

Ẏ

N

)

+

( K̇
N

+ 3HK + 2N
)

Ẏ

N
+

(Ṅ
N

+ 3HN +M
)

Y = 0 . (4.44)

Assuming monochromatic time-dependence of perturbation Y ∝ e−i
∫
ωNdt and the adiabatic-

ity of the background ω̇/N ≪ ω2, we obtain the dispersion relation

det

[

− ω2K − iω

( K̇
N

+ 3HK + 2N
)

+

(Ṅ
N

+ 3HN +M
)]

= 0 . (4.45)

The eigenfrequencies can be found by solving this equation. Expanding the eigenfrequencies
around k → ∞ as ω2 ∼ c2sk

2/a2, we can read the coefficients c2s, the squared propagation
speeds of perturbation in the high frequency limit, as

c2s =
m2

3B

(

1 +
1

κξ2

)

[

4Γ− ξJ(c̃+ 1)
]

+
1

3

(

c̃− 4
(

H2 + K
a2

)

Γ

ξJB

)

,

c2s II = c2g ,

c2s III = c̃2c2f . (4.46)

These must be positive to avoid a fatal instability. The positivity of the first one is not
obvious. It would be instructive to rewrite it as

c2s − 1 =
2(c̃− 1)

3

d ln J

d ln ξ
− 2ξ2(ρf+Pf )

3κM2
gB

+
c̃− 1

3B

[

2

(

H2 +
K

a2

)(

d ln J

d ln ξ
− 1

)

− ξ2

κM2
g

(ρf+Pf )

(

2
d lnJ

d ln ξ
− 1

)]

. (4.47)

This expression proves that c2s = 1 in the pure gravity case. In the low energy limit, the
leading order terms come from the first line on the right hand side of the above equation and
they reduce to

c2s − 1 =
2(c̃− 1)

3

d ln J

d ln ξ
− 2ξ2(ρf + Pf )

3κM2
gm

2
eff

+O(m−4) . (4.48)

Then, the positivity of c2s gives a constraint on the model parameters in a similar sense to c2V .
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Before ending this section, we compare our result with the solutions discussed in [39, 40].
In this case, ρ̂m is dominated by the term proportional to 1/ξ, so here (and only here) we
assume ξ ≪ 1. As a result, we have J ∼ −κξρ̂m = constant, hence d ln J/d ln ξ ≈ 0. If we
assume that there is no matter field coupled to the f -metric,

c2s ≈ −
(

1 + 2
Pg

ρg

)

, (4.49)

and hence the gradient instability is inevitable. This instability occurs in the regime of
validity of the low energy effective field theory and thus is physical for m≪ H ≪ Λ9 (≪ Λ3),
where Λn = (Mgm

n−1)1/n.7

If a matter sector which couples to the f -metric is present and is the dominant contri-
bution of the right hand side in eq. (3.15), a similar calculation yields

c2s ≈ −

(

1 + 4
Pf

ρf

)

3
(

Pf

ρf

)2 . (4.50)

Again, for both non-relativistic and radiation fluids, the scalar sector suffers from gradient
instability.

5 Summary and discussion

We have presented a linear analysis of cosmological perturbations in bimetric theory, in which
two metrics are coupled through non-derivative coupling so that it does not yield Boulware-
Deser ghost as prescribed in [10]. We consider perturbations around the background of two
dynamical FLRW metrics sharing spatial isometries, each of which is minimally coupled to a
different k-essence field. The contracted Bianchi identity of either metric yields a constraint
which defines two branches. The J = 0 branch, in which the ratio of the scale factors of two
metrics is fixed to a constant value determined by the condition J = 0, contains only four
dynamical degrees of freedom at linear order [39, 40], while at non-linear order, is known to
suffer from instabilities [18]. In this work, we focused on the other, at least, seemingly healthy
branch, and studied the stability of the cosmological background against perturbations.

In the absence of matter fields, the linearized action is found to be a combination of two
decoupled spin-2 fields: one of which is linearized GR, while the other is a linearized spin-2
theory with a mass term. In the setup where two matter fields are minimally coupled to
respective metrics, we considered a specific scenario where the mass scale of the interaction
term between two metrics is large. When we choose this mass scale to be small of the order
of the expansion rate H, refs. [32, 39, 40] concluded that either crossing a singularity or
encountering an instability is inevitable. We adopted the basic idea proposed in [30], where
the singularity and the instability are expected to be outside the reach of the low energy
effective theory since the mass parameter is chosen to be large enough. Even in such a
setup, the extra forces can still be screened under certain conditions, owing to the Vainshtein
mechanism. In this paper we showed that we can actually avoid the singularity and the
instability, at least, at the level of linear perturbation around FLRW background.

7To see this, notice that ξ ≃ m2J

3κH2 and that Hf = H/ξ ∼ H3/m2 ≪ Λ3 for H ≪ Λ9, provided that
κ/J = O(1). The cutoff scale of the low energy effective field theory is Λ3, provided that κ = O(1).
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For the general setup, we identified the necessary conditions for avoiding ghost instabili-
ties. We also derived the expression for the propagation speed of each perturbation mode and
the condition for the avoidance of gradient instabilities. We found that the matter pertur-
bations have positive kinetic energies as long as the background matter fields do not violate
the null energy condition, and that they propagate at the ordinary sound speeds of the corre-
sponding fluids. From the positivity of the kinetic term of the gravitational degree of freedom
in the scalar sector, we obtained the extension of the Higuchi bound [17] (see also [44]), which
turns out to be automatically satisfied as far as the healthy branch is concerned. We also
found that the squared propagation speeds of gravitational degrees of freedom in the scalar
and vector sectors can be negative, which leads to the so-called gradient instability. In order
to avoid this instability, the model parameters are weakly constrained.

The way how matter couples to gravity is always an issue in alternative gravity theories.
In the present paper we have considered two matter fields and supposed that each of them
minimally couples to one of the two metrics. This seems a particularly safe choice: in the
massless limit m → 0, the system is decomposed into totally decoupled two subsystems,
each of which consists of a massless graviton interacting with a matter field. This is trivially
consistent with Weinberg’s theorem in 1964 [1] and its extensions [2, 3] that exclude more
than one interacting massless gravitons, since the two subsystems are completely decoupled
from each other in the massless limit. While other possibilities for matter coupling remain
unexplored, any theoretically consistent schemes of matter coupling should be in accord with
the above mentioned general theorems. For example, ref. [45] proposes that a matter field
can couple to both metrics. In the massless limit of this prescription it appears that the two
massless gravitons can interact with each other through the matter field. It is interesting to
see whether and how this can be reconciled with the general theorems.

Finally, the present study should help generalizing the predictions of the bimetric theory
on future experiments (see e.g. [48]).

Note added. Shortly after this work was completed, ref. [49] appeared on the arXiv, where
solutions with effective mass of the order of the present-day Hubble rate are considered (see
also [50–53]). We remark that our analysis does not exclude healthy backgrounds other than
the ones considered in the present work.
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A Vector modes

In this appendix we discuss more in detail the contribution of the physical perfect fluid to
the vector modes. Here, we will only consider the simple case with K = 0 in the absence of
the hidden matter field φf . Instead, we replace the scalar fluid φg with a standard perfect
fluid. In order to achieve this last step we follow the procedure by Schutz outlined in [46, 47].
On setting the gauge Ei = 0, the physical metric perturbation variables are δg0i = NaVi. As
for the second metric, instead, δf0i = nαvi, and δfij =

1
2 ã

2(Si,j +Sj,i), and we introduce the

gauge invariant variable Ṽi = −Nα2

2an (Ṡi/n− 2vi/α). Finally, the perfect fluid has the velocity
perturbation δui. All these variables satisfy the usual transverse condition.

On using the Schutz’ Lagrangian for the perfect fluids,8 we find that the action can be
written as

I =

∫

Ndtd3x

{

aM2
g

4
(∂jVi)(∂jVi)−

1

2
(ρ+ p)aδuiδui + (ρ+ p)a2δui(aḞi/N + Vi)

+
aM2

f ξ
2r3

4
(∂j Ṽi)(∂j Ṽi) +

m2M2
g Jξa

3

2(c̃+ 1)
ViVi +

r4a3m2M2
g Jξ

2(c̃+ 1)
ṼiṼi

− Vi

[

a4JξM2
gm

2

2N(c̃+ 1)
Ṡi +

a3Jξm2M2
g r

2

c̃+ 1
Ṽi

]

+
a4JξM2

gm
2r2

2N(c̃+ 1)
ṼiṠi +

a5Jξm2M2
g

8N2(c̃+ 1)
ṠiṠi

+
a3

4

[

M2
f ξ

2(c̃− 1)H2 +
M2

f ξ
2

2

ρ+ p

M2
g

− 1

8
JξM2

gm
2

[

2 + (c̃− 1)

(

4 +
d ln J

d ln ξ
+ 4

M2
f

M2
g

ξ2
)]

]

(∂jSi)(∂jSi)

}

.

(A.1)

As for the perfect fluid, we can find that the equation of motion for Fi leads to

(ρ+ p)a3δui = constant . (A.2)

The first line of eq. (A.1) corresponds to the General Relativity result. Anything else comes
from the bimetric theory. By removing the auxiliary fields δui, Vi, and Ṽi (by using Fourier
decomposition) we find the reduced action for four independent modes (equivalent two by
two) as

I =

∫

Ndtd3x
[

A11ḞiḞi +A22ṠiṠi + 2A12ḞiṠi − E22SiSi
]

. (A.3)

For high k’s the no-ghost conditions read

A22 ≈
m2M2

g Jξa
5

8N2(c̃+ 1)
> 0 , A11A22 −A2

12 ≈
a10m2JξM2

g (ρ+ p)

16N4(c̃+ 1)
> 0 . (A.4)

8We model here uα = µ−1(∂αℓ + A1∂αB1 + A2∂αB2) for a perfect fluid with equations of state p = wρ,
and µ = µ0(n/n0)

w. We can then define the gauge invariant combination Fi ≡ Ei

2
− b1i

~b1·~b1
δB1− b2i

~b2·~b2
δB2, with

~b1 ·~b2 = 0, ~b1 · ~k = 0 = ~b2 · ~k, and, on the background A1 = 0 = A2, together with B1,i = b1i, B2,i = b2i.
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On the chosen background these conditions imply J > 0. This condition is automatically
satisfied by the healthy branch background solution.

We find two different speeds of propagation. Namely, one is c2V in eq. (4.25) and the
other is

c2V,2 = 0 . (A.5)

The second mode corresponds to the degree of freedom in the matter sector.
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