?F Fermi National Accelerator Laboratory

FERMILAB-Conf-00/018-E
DO

Use of ROOT in the DO Online Event M onitoring System
Joel M. Snow et al.

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, I1linois 60510

February 2000

To appear in the Published Proceedings of the International Conference on Computing in High Energy
Physics, Padova, Italy, February, 2000

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under con-
tract No. DE-AC02-7T6CH03000 with the U.S. Department of Energy. The United States
Government and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



Use of ROQOT in the D@ Online Event Monitoring System

J. Snow, P. Canat, J. KowalkowskKi, J. Y&

L Langston University, Langston, Oklahoma 73050, USA
2 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

Abstract

The D@ experiment is one of the two High-Energy proton anti-proton collider experi-
ments at Fermilab, USA. Since the detector serves multiple physics purposes, it consists of
many different sub-detector systems together with supporting control systems. Therefore, on-
line event monitoring plays a crucial role in ensuring detector performance and data quality
by parasitically sampling events during the data taking. ROOT, a physics analysis package
developed at CERN, is used in the D@ online monitoring as the main analysis tool, provid-
ing a graphical user interface that interacts remotely with an analysis executable and tools to
monitor informative histograms as they get updated in shared memory throughout the data
taking. In this paper, we present the basic structure of the D@ online monitoring system and
the use of ROQOT in the system.

Keywords: chep, DG, DO, DZero, D-Zero, ROOT, online

1 Introduction

In D@ the online event monitoring system is comprised of multiple event monitor programs at-
tached to the DAQ system, requesting events with desired trigger types. The programs are built
under a fully asynchronous interactive framework [1] written in C++. The details of the D@ Data
Acquisition (DAQ) system are described in Ref. [2]. The availability of physics analysis tools,
shared memory, a browser, network sockets, and Graphical User Interface (GUI) classes, makes
ROOT [3] an attractive choice for online monitoring applications. Therefore, ROOT is used as the
main analysis tool for the monitoring programs in the D@ experiment. The results (mostly his-
tograms) from the monitoring programs are stored in shared memory in ROOT object format. The
main mode of accessing the results is to browse the objects in shared memory with a ROOT GUI
via socket connections. In the next sections the D@ online event monitoring system is described
in more detail.

2 D@ Online Event Monitoring System

The D@ online monitoring system consists of three major components:

e Data Acquisition System (DAQ)
e Monitoring Executables (Examine)
e Graphical User Interface (GUI)

These three components can be further subdivided into smaller components. These smaller
components run on one of the three operating systems - Windows NT, Linux, and OSF1 - due to
hardware specifications. Therefore the D@ online monitoring system requires portability of soft-
ware across the operating systems and platforms. The DAQ consists of front-end electronics, two



Detector '

Triggerand Readout

Readout Crate L1,L2 TCC

Data Cable

)

L3 VRC

Data Cable L3 Supervisor
Control RromPcs
L3 Fiter

Ehernet

WhNT Leve | 3

ROOT Clie nt v

‘ Collector/Router I

/

Data Distributor

-

/ EXAMINE

ROOT Client y Express Line

T

WHNT/ Linux Tru64 UNX Srvers Linux Pcs

i

Figure 1: D@ Run Il Online Event Monitoring Architecture

levels of hardware triggers, a software trigger, and data transfer systems. A detailed description of
the DAQ system for the D@ experiment [4] can be found in Ref. [2]. Figure 1 shows the logical
data flow of the D@ online event monitoring system architecture. The system is designed to be
fully expandable depending on the bandwidth needs the system will encounter.

A collector/router (C/R) can handle the data being output from multiple level 3 (L3) soft-
ware trigger nodes. The C/R distributes data to Data Loggers (DL's) that records the data into files
based on the trigger condition a particular event satisfied. This path is tightly controlled to ensure
proper normalization and weighting of each event across all the L3 nodes. In other words, if any of
the DLs has a problem in writing out an event to a file, all other DL's must stop and the deliberate
clogging of the data path must be propagated to all L3 nodes. The C/R also sends all events it
receives to the Data Distributor (DD) [2] that assigns event buffers and passes the events based on
the selection conditions transferred to it by the connected monitoring processes. The data flow in
this path is uncontrolled, because it is desired to continue taking data even if a monitoring process
is in a stalled state. It is in this path where the event monitoring occurs.

Therefore, the entire monitoring system involves, starting from L3, four separate software
processes, excluding the GUI, running on three different operating systems and platforms. The
executables of the D@ online monitoring run on a farm of personal computers (PC’s) that run
under the Linux operating system while the GUI may run under Windows NT or Linux.



2.1 The Executable - Examine

The executable portion of the D@ online monitoring system is called Examifgamine exe-
cutables are built under the D@ fully asynchronous interactive program framework [1]. Examine
executables unpack raw data, reconstruct each event to the level required by individual programs,
define and fill necessary histograms, and provide event displays.

Multiple Examines for various purposes run on the Linux PC farm. The Examines can be,
however, categorized into two large groups. The first is detector performance monitoring which is
geared toward physical quantities that provide information for detector hardware diagnostics. The
second is a global monitoring Examine. This Examine performs full reconstruction of the events
to provide information concerning physics objects reconstructed based on specific algorithms. In
other words, this Examine provides the user the information on how many electrons, muons, or
jets have been produced during the run. Therefore, this Examine allows users to obtain an overall
quality of the data being taken. The global Examine also provides an online real-time event display
function for more instructive information in an event-by-event basis.

An Examine makes an event selection request via a Run Control Parameter (RCP) file [5]
editable by the user. It transfers the selection conditions - any combination of the trigger names,
data stream numbers or names - to the DD, where it makes a connection to the DD via a client-
server package based on an ACE protocol [6]. This request causes the DD to assign an event
buffer whose characters are controllable in an RCP file, and at the same time the Examine starts
up three independent threads for event transfer communication between the DD and itself. When
this procedure finishes, the Examine starts another buffer, whose queue depth is RCP controllable,
to store events transferred from the DD to ensure a guaranteed event presence in the buffer for
the processing, independent of the whole analysis process. The Examine also starts up a separate
thread for histogram display, interacting with the GUI to allow uninterrupted access of histograms
by the user. It also puts histograms in a shared memory for updated accessibility of the histograms
while they get filled during the computation.

While ROOT provides a global framework not only for physics analysis tools (PAT) but also
for 1/0, data packing, Monte Carlo, and GUI, the D@ online monitoring system only uses the PAT,
GUI, and socket communication portion of the ROOT framewaork. The diagnostic histograms are
booked and filled in Examine in ROOT format and stored in memory as ROOT TFile objects [3].
Communications between the Examine and a GUI uses the socket classes of ROOT. Employing
the TServerSocket class enables multiple GUI's to attach to a single Examine from potentially
diverse remote locations.

2.2 The Graphical User Interface - GUI

The GUI allows the user to interact with an Examine process. The user may obtain information
(e.g.histograms, statugtc) from the Examine process and may control the Examine as &gl (
start/stop, set parameteetc). Figure 2 shows a prototype GUI window built entirely from the
GUI classes provided by ROOT on an IRIX platform. The top portion of the GUI acts as Examine
process control, while the bottom portion of the GUI acts as histogram control.

When a GUI starts up, it does not have any associated processes. Thus the GUI first inquires
for existing Examine processes to the process registry, a name server, to allow users to attach to
a pre-existing process that the user is interested in. This allows for a maximally efficient use of
computational power and more effective sharing of event statistics. The GUI also provides an
ability of starting up a new Examine process on a least used node among the Linux server nodes.
The Examine processes are registered to a process registry by the version numbers of a governing

1The name inherited from the monitoring programs of the previous run.



* Examine Control Panel

File Edit Examine Help |
Frocessing
Stop Pausze
Status Dump Display
Category: eles0-1000evt Ayvailable Histograms
Cell Energy iphi ws ista, layer 3
muUS0-1000evt [
pial-1000ewt
fth-1002v
Cell Energy iphi vg ieta,
Cell Energy iphi w5 ieta, layer 3
Cell Energy iphi ws ieta, layer 10
Cell Energy iphi wg iata, layer 11 :'
Histagrams
Display Step I Update |
| Created server. Start runl A‘f:

Figure 2: A Prototype of the D& Examine GUI

RCP file. It is this scheme that allows users to parasitically attach to existing Examine processes
to access the histograms from shared memory.

While many GUI's may attach to an Examine, only one, the creator is allowed to control the
Examine. The creator GUI may Start/Stop, Pause/Resume, Abort, obtain Status information from,
Dump an event from, and initiate an Event Display from the Examine process. For a non-creator
GUI (observer) the control functions are inactive. On the other hand, both the creator and the
observer GUI's have histogram control which allows various monitoring tools for more effective
use of given information accessible in histograms. Users can access individual histograms one at
a time, viewing a snap shot of the histogram in the shared memory. Users can select and cycle
through one or more histograms continuously, updating the histograms every time histograms are
displayed. The users may also enable a continuous updating of the selected set of histograms with
a chosen update frequency. Users may initiate comparisons of the given histograms to a reference
set, distinguished by the names of the histograms rather than traditional histogram ID numbers.
In addition complex histogram operations between the current and the reference set are possible
because these are generic functions of ROOT as a physics analysis tool. The control GUI may
also Reset the Examine histograms, Save histograms to a file in ROOT format on a disk local to
the GUI, and Print the displayed set of histograms.

The communication protocol used for the messaging between the GUI and the Examine
executable is ROOT based socket communication. Presently the control and histogram portions
of the GUI communicate synchronously with the Examine. ROOT socket classes allow complex
objects such as histograms to be transferred as easily as string messages.

Significant events from the DAQ and Examine, whether expected such as End of Run condi-
tion, or unexpected such as error conditions must be communicated to the GUI user. These events
may occur at any time, hence there is a need for asynchronous communications from the Examine
to the GUI. This is accomplished using a TServerSocket which is active during the system idle
loop. The idle loop is accessed by inheriting from the ROOT TApplication class.



3 Conclusions

The D@ online event monitoring system (DZEMS) utilizes a fully asynchronous interactive frame-
work to reconstruct events, calculate relevant physical quantities, and fill histograms. The user
interacts with the framework through a GUI which provides information and control functions.
Features of the ROOT framework have been successfully integrated into the DAEMS. While the
proton-antiproton collider data taking is about a year away, the D@ experiment is currently in the
process of commissioning individual detector components. The DBEMS described in this paper
is being used for verifying the detector component performances. The responses from the users
will provide direction for improving the system. In the near future web based access of the event
monitoring system information will be available to remote collaborators.

References

1

w

J. Yu and J. Kowalkowski, “D@ Run Il Online Examine Framework Design and Require-
ments,” D@ Note #3578, Unpublished (1999); J. Kowalkoskial, “D@ Offline Recon-
struction and Analysis Control Framework,” in these proceedings, talk presented by V.
White.

S. Fuess, “D@ Run Il Online Computing,” D@ Internal Note # 2935, Unpublished (1996);
S. Fuess and J. Yet. al, “D@ Run Il Data Distributor Requirements,” D@ Internal Note #
3540, Unpublished (1998)

Rene Brun, Fons Rademaker, and M. Gdiotp://root.cern.ch/

S. Abachiet. al, D@ collaboration,“The D@ detector,” Nucl. Instr. Meth338, 185 (1994);
http://www-d0.fnal.gov

M. Paterno, “RunControl Parameters at DAt'tp://cdspecialproj.fnal.gov/d0/
rcp/DOLocalGuide .html, (1999)

D.C. Schmidet. al, ACE Team, “The ADAPTIVE Communication Environmenkttp:
//www.cs.wustl.edu/"schmidt/ACE.html



