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ABSTRACT 

A comprehensive topological classification of vortices and their 

endpoint Dirac monopoles is formulated in gauge theories with an 

arbitrary compact Lie group. By way of homotopy theory, a simple 

analysis is presented for the global groups U (1)) O(3), SU(2) then 

SU(N)/ZN and SU(N). Finite vortices are achieved through the 

complementarity of Dirac strings and the nodal lines of the Higgs 

fields. In general, the varieties of topologically distinct vortices or 

monopoles are determined solely by the connectivity of the global 

group, specified by a discrete Abelian fundamental group. The close 

connection between our work and the Wu-Yang global formulation of 

gauge fields is pointed out. 
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1. PRELUDE 

The existence of solitons in certain nonlinear field theories’ points to a 
h 

highly attractive mechanism through which strongly interacting objects emerge 

as collective excitations of weakly interacting fields, A most striking stability 
* 

feature of solitons is an associated topological charge, a consequence solely of 

the continuity of the fields. This charge or kink number takes on a discrete set 

of values which remain invariant under any continuous deformations, particularly 

in the course of time evolution. Thus obeying homotopic conservation laws, 

these kinks2 arise not from any symmetries of the Lagrangian but rather from 

the global topology of the field manifold, a structure specified by appropriate 

boundary conditions. 

At present, essentially two types of kinks are known in (3+1) dimensional 

gauge theories. They are the monopoles of %Hooft3 and Polyakov4 and the 

vortices of Nielsen and Olesen. 5 The remarkable topology of such non-Abelian 

vortices and its implications for a magnetic confinement scheme for quarks have 

been studied in specific models by Polyakov’ in the instance of closed vortices 

and by Mandelstam7 and ourselves* in the case of finite vortices terminating at 

Dirac monopoles. 9,lO As they are endowed with a topological “triality, I’ the 

latter vortices could well provide the requisite “valence bonds” upon which a 

dual theory of mesons and baryons will be built. l1 

While general topological arguments for the existence of 9Hooft monopoles 

have been given in gauge theories with any compact group, 
12 

a corresponding 

comprehensive analysis for the vortices and their endpoint Dirac monopoles has 

yet to be performed. It is timely to bridge this gap. Our work takes up the 

general problem of topological classification of vortices and their Dirac mono- 

poles in non-Abelian gauge theories with any compact Lie group G. Making 
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minimal use of the topology of Lie groups, we show the topologically distinct 

types of vortices and monopoles allowed in a theory with a global group G to be -cI 

solely determined by the connectedness of G. By topologically distinct, we 

mean that vortices of different types cannot be continuously gauge transformed 
- 

into one another. These “gauge type,+ 10 are in a simple one to one correspond- 

ence to the elements of a finite discrete Abelian group, the fundamental group 

7rI (G) associated with G. 

In our analysis, we only require that axially symmetric static solutions 

have finite energy per unit length, the condition being the Meissner mechanism 

of flux confinement. 
7 

Since homotopy groups are not part of every physicist’s 

tool set, we shall clearly illustrate our arguments. We proceed in a pedestrian 

manner from the simple specific examples of G= U(l), O(3), SU(2), then 

SU(N)/ZN and SU(N) to the general instance of any compact Lie group. Due to 

. the global character of our problem, a key distinction must be made between the 

local versus global invariance groups of any gauge theory. Consider the case of 

SU(N) versus SU(N)/ZN. While locally isomorphic, they differ in their global 

structures, one group is simple connected, the other N-fold connected. In this 

fact lies the essential difference reflected in the allowed topologies of vortices 

and monopoles in theories with these global groups. Because of continuity the 

global group G must always be one which acts effectively on the vectors of the 

physically realized representations. Alternatively, these representations must 

be faithful under G. Thus in a generalized Nielsen-Olesen model with a local 

invariance group SU(N) , G = SU(N)/ZN if the Higgs fields +i(x) belong to an adjoint 

representation of SU(N) or of any of its tensor products. In this “(N2-1) fold way” 

there exists N topologically distinct types of vortices mirroring the N-fold con- 

nectedness of G. One of these corresponds to the trivial vacuum sector of no 
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vortex at all. Equivalently, seen from the universal covering group SU(N), 

these-(N-1) nontrivial gauge types of vortices are in a one to one correspondence 

with the (N-l) nontrivial elements of the center ZN of SU(N). The details of the 

necessary symmetry breakdown are irrelevant to their classification provided 
_ 

the vortices exist. Each vortex carries a kink number which through the gauge 

field potential can be interpreted as a magnetic flux,albeit one defined only by 

modulo N. The latter qualification makes the definition of flux a gauge invariant 

one. 

On the other hand, if the %i(x) are chosen in the fundamental representation 

of SU(N) or any of its faithful representations, then G = SU(N) itself. Due to the 

simple connectedness of SU(N), there is only one type of vortex, namely the 

trivial sector of no vortex. 

Finite vortices of any shapes with endpoint colorless Dirac monopoles are 

constructed by way of the complementarily of the Dirac strings and the nodal 

lines of the Higgs fields. In general, we find there exists a strikingly simple 

isomorphism between the n gauge types of vortices and their monopoles, their 

law of flux combination on the one hand and the elements of a discrete, Abelian 

fundamental group of order n, rl(G), and their law of combination on the other. 

n is the connectedness of the global group G of the gauge model. The magnetic 

fluxes carried by the vortices, the strengths of the endpoint Dirac monopoles 

are defined modulo n, the dimension of nI(G). For specific models, the existence 

and topological peculiarities of these monopoles were first discussed by Lubkin, 13 

then rediscovered recently by Mandelstam, 7 Wu and Yang. 10 Indeed our paper 

is close in spirit and is seen as complementary to that of Wu and Yang. The 

connection is one between London’s flux quantization and Dirac’s monopole 

quantization, but in a non-Abelian setting. 
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Our work emerges as an application exercise in the topology of Lie groups. 

Our presentation will be compact yet self-contained. By restricting ourselves 

to a few essential topological notions and by starting from standard examples in 

an Abelian gauge frame, we appeal mainly to the logic of the reader’s visual 
_ 

imagination. Our emphasis will be on physical concepts. To the sophisticated 

a companion paper 
14 offers a more rigorous formal analysis by way of the 

topology of fibre bundles. 

Our paper is organized as follows: In Section II we give an intuitive review 

of some necessary concepts in the topology of groups. In Section III we apply 

these notions to the classification of infinitely long (or closed) Nielsen-Olesen 

vortices in specific illustrative examples. In Section IV, with the.use of Dirac 

strings, we construct finite, open vortices and deduce the topology of their 

endpoint Dirac monopoles. Finally in Section V, we generalize our conclusions 

. - to the instance of a gauge theory with an arbitrary compact Lie group. We 

provide the connection between our work and that of Wu and Yang. We then 

comment on the relevance of these vortices and monopoles to theories of mag- 

netic confinement in particular. 
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11. TOPOLOGY OF GROUPS 
- 

&the usual perturbative approaches to field theories, focus has been on 

the local, infinitesimal structures of gauge groups such as their Lie algebras. 

Not till the recent-excitement over extended solutions in field theories does one 

realize the possibly deep relevance of the global structure of invariance groups. 1,12 

Since almost no previous knowledge is assumed here about the topology of Lie 

groups, it will be helpful to define some necessary concepts. ” We shall make 

use of the global notions of compactness, connectivity, fundamental group and 

_1 the universal covering group. 

A topological space G is compact if any infinite subset of G contains a 

sequence converging to an element of G. A topological group is compact if it is 

compact as a topological space. For a Lie group, this notion is intuitive, it is 

compact if its total group volume is finite. The familiar examples are O(3) 

. - which is compact and SL (2C) which is not. From the work of Yang, l6 the 

compactness of a 

zation. For that 

the following. 

In our work, 

gauge group is shown as necessary for charge and flux quanti- 

very reason we shall restrict ourselves to compact groups in 

the connectivity of a topological space G is central to the whole 

classification of vortices and Dirac monopoles, which will be seen as its possible 

physical manifestations. To define connectivity, consider a point p in G and two 

closed paths Li(t), L2(t) both beginning and ending at p (Fig. 1). Let L1, L2 be 

continuous functions of a parameter t, Olt~ 1 such that Li(0)=Li(l)=p, i=l,2. 

Then the curves Li(l-t), the same curves going in the reverse sense, are the 

inverses of Li(t). LI and L2 are called homotopic if there exists a function 

L(s, t), 0~ s 5 1, 05 t 5 1, jointly continuous both in s and t such that L(0, t) =LI(t) 

and L(l, t) =L2(t), i. e., L1 can be continuously deformed into L2 with L(s, t) 
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describing the intervening curves as s=O- 1. L(s) t) is known as a homotopy . 

If all cJosed curves based from any point p in G can be so deformed to zero, the 

null curve, G is simply connected. If there are n closed curves which cannot be 

so deformed into one another, G is n-fold connected. 

It is easy to verify that homotopy is an equivalence relation denoted by 

L1-L2. All curves based at p are distributed into classes Ci, i=l, 2 . . . n, the 

homotopy classes such that all those curves homotopic to each other belong to 

the same class. A “multiplication” of two curves LoLp= Ly is defined by 

identifying the end point of Lo with the starting point of L 
P 

. Then L 
Y’ 

a con- 

netted path based at p, belongs to one class Cy uniquely given by Co and C 
P’ 

since 

LQ -La!” LpNLp, tip ---L L-Lo,L 
P’ (2-l) 

and 

L L -La e> L 
aP P 

-Lo-O, (2.2) 

L L-l 
ccf P 

-LOG> La! -L 
P 

. (2.3) 

(2.4) 

(Lo is the null path 0.) All the homotopy classes form thereby a group, the 

fundamental group of G, denoted by rl(G) also known as the first homotopy group 

or Poincare group. By the foregoing definition of connectivity, 7rl of a simply 

connected space, consists only of the unit element I. KI of a n-ply connected 

space has n-elements. Explicit examples will be given in the next section. 

Three theorems are also worth quoting: 15 

(I) Two locally isomorphic Lie groups are also isomorphic globally 

if their fundamental groups are isomorphic. 
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. 

This underscores the importance of the fundamental groups; once the Lie groups 

are clzssified with respect to their local properties, rI(G) is the only invariant 

needed to complete the classification. 

(II) The fundamental group of a group space is always Abelian. 

For an arbitrary topological space, 8I, 7r 1 (S2) is discrete, but in general a non- 

commutative group . 

(III) All connected compact Lie groups can be gotten from connected 

compact simple groups. Let Gi be a sequence of connected 

simple compact groups. Define their direct products 

G = G1 C3 G2 C3 . . . Gn 

and 

G(p) = G @ Tp 

When Tp is a p-parameter compact Abelian group, i. e. , a p- 

dimensional toroid, then the groups G (P) as well as the factor 

groups G W /A with A being a discrete subgroup of the center Z 

of G(‘). 

We also need the concept of the universal covering group. It can be proved 

that for any multiply connected Lie group G, there exists a unique simply con- 

nected group G such that G is a homomorphic to G, the universal covering group 

of G. All Lie groups with the same Lie algebra as 6 and hence locally isomorphic 

to G, are of the form 

and A = ‘ir+G) , (2.5) 

A is a subgroup of the center Z of G. The covering group d literally l’covers” 

all other locally isomorphic groups G and determines both their properties and 
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their representations. Finally we gather some definitions concerning the action 

of a g?up G on a space M. 
- 

- A group G acts transitively on a space M if for every pair of point 

p and q E. M, there is a group operation g E G such that p Eq=gp. 
- 

- G acts effectively on M if the identity is the only group operation 

which leaves every p E M fixed: gp= p for all p E M => g.=I. 

- The orbit of the point p E M under G is the set of all q E M reach- 

able by the application of some g E G to p. 

Next we apply the above concepts and theorems to the classification problem at 

hand. 
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III. TOPOLOGY OF VORTICES 

1%superfluids and superconductors, the vortex states are well known 

coherent phenomena. 17,18,19 In He II , vortex lines are spontaneously gener- 

ated by cooling the liquid in a bucket rotating at.an angular velocity a > Qc, the 

critical velocity for vortex creation. Similarly in a superconductor vortices 

are made by the application of a magnetic field H > Hc, the critical field strength. 

A vortex line consists of a central core domain where there is a depletion of the 

condensate. The radial extension of the core is the healing or coherence length 

f . Vortices are physical objects exhibiting homotopic conservation laws, the 

vorticity quantization in Helium II and the flux quantization in type II supercon- 

ductors respectively. They are thus topologically stable. Dynamical stability 

is achieved through the circulating supercurrents of particles. In Helium the 

current pattern of flow outside the vortex dies away with the radial distance r as 

l/r, while in a superconductor, the coupling of the charged current with the 

magnetic field results in a exp (-r/p) behavior for large r. The latter phenomenon 

made possible by a minimal gauge coupling is the Meissner effect. p is the 

penetration width, the other length in the vortex structure. 

Recent works7 in classical gauge theories concern vortex-like solutions to 

relativistic field theories. In the following, the topology of vortices and their 

Dirac monopoles is studied. It will be shown to mirror perfectly the global 

topology of the gauge group in a given model. Though our arguments depend only 

on the continuity of the Higgs fields and the connectivity of the group manifold of 

the global gauge group G, we will work with an explicit model with a Hermitian 

Lagrangian density 

k 
g(x) = -z lT ~Lv - ypy - c ID&(x) I2 

i=l 
- u(@y... ibk) . (3.1) 
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Equation (3.1) is a generalized Nielsen-Olesen model5 made up of one Yang- 

Mills field F 
PV 

and k Higgs fields +i. k, the number of +i needed to have a well 

defined vortex solution, is of no importance to our topological analysis. Via 

their self-couplings, the Gi provide an expedient mean of implementing spon- 
- 

taneous symmetry breakdown. The invariance group of (3.1) is taken to be a 

compact m parameter simple Lie group G. Extension to a semi-simple group 

is straightforward. The difference will be the existence of r independent coupling 

constants, one for each simple group Gi which compose G = Gl@ G2 @ G3 . . . 8 G,. 

U(+i) is the usual renormalizable effective G invariant potential. We first define 

our notations. 20 

Let the group generators Ti of G obey the Lie algebra 

[ 1 Ti,Tj =iC.. T ljk k ’ i,j,k=l,2 . . . m, 

where the structure constants C ijk are real numbers. The Higgs fields trans- 

form according to 

@)i tx) - yx) = e-i~‘axJ pi ~ ‘(W) pi (3.3) 

where Gi is a p-component column vector and the Li form a pxp matrix repre- 

sentation of the Ti. al(x) are the parameters of the local transformation. 

The covariant derivative is 

where the gauge-potentials xP assume values in the Lie algebra of G. 

and 

(3.4) 

(3.5) 

(3.6) 
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The system (3.1) without the gauge field is seen as the non-Abelian rela- 

tivistic- analog of the Ginzburg-Pitaevski theory of superfluids. Yet the corre- 

sponding pure Higgs vortices are shown not to be extrema of the field theory. 496 

They have infinite. energy per unit length since there exists no stabilizing rota- 
- 

tion of the ground state which is the infinitely extended vacuum. This divergence 

can also be seen as an infrared effect of the Goldstone bosons begotten from 

spontaneous symmetry breakdown. In magnetic confinement schemes, ’ (3.1) 

is seen as the analog of the Landau-Ginzburg theory of superconductivity. The 

vacuum is then likened to a type II superconductor perforated by Abrikosov’s 

flux lines. 18 They arise as the gauge field strength could locally restore gauge 

invariance along the vortex cores, which are nodal lines of the Higgs fields. 

These are the Nielsen-Olesen vortices which exemplify vacuum excitations. 

They can be identified in the strong coupling limit with the Nambu strings of dual 

resonance models. 5,21 The energy per unit length of these vortices is finite 

thanks to local gauge invariance which allows for the Higgs mechanism, the 

analog of the Meissner effect. 

Since the continuous process of time evolution is a homotopy,2 it suffices in 

our considerations to deal with static vortices. We first classify pure vortices 

without monopoles. So they are either infinitely long or closed. Spontaneous 

breaking at the tree level is achieved by assuming that the absolute minimum of 

the effective potential U is reached at some nonzero constant values of the fields 

ai = @oi # 0. The +p and the AZ= 0 specify the translational invariant classical 

vacuum. The relevant objects for our purely topological analysis, the static 

vortex boundary conditions are determined by the following requirement 6,7 

AgiCC, d2x_(D,mi)* (DPGi) - 0 , i=l, 2, . . . k ; 
y- 

(3.7) 
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namely the kinetic energy contribution of each + field to the energy density must 

vanish-at asymptotic distances 1~ I =r = o--- x +y from the vortex core located at 

z= (0,O). The vortex is oriented along the z direction. (3.7) is a possible state- 

ment of the Higgs mechanism as the asymptotic cancellation between the gauge 

potentials and the spacetime dependent gradients of the phases of the Higgs fields 

viz., 

DcP. -0 i=l, 2, . . , k . 
p l 1x1-- 

(3.8) 

Geometrically, (3.8) means that the 4jpi are covariant constants at infinity. * The 

Higgs fields simply get parallel transported at large distances from the vortex 

core and reflect the fact that the broken components of the connection xP become 

flat, i. e. , the corresponding F”l vanish. 
IJV 

For an isolated, infinitely long; 

static vortex lying along the z direction and having as $I the azimuthal angle, the 

axial symmetry reduces the problem to a two dimensional one.. The finite energy 

density condition (3.8) becomes 

Expressed in an integrated form (3.8) gives 

(3.9) 

(3.10) 

where 
Y \ 

sQ(y, x) = T exp -ie 
i \ x 

A&z) hp 

is the nonintegrable phase factor. T is the ordering operator for the matrices 

/AP(z) =x. xP along the path 1 at spatial infinity, beginning at the point x and 

ending at y. The motions of this phase factor Sp(y,x) in the group space G, will 

constitute the very kernel of our analysis. 
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Having set up the proper framework, we proceed to extract the topological 

implic$ions of (3.9). We start with the Abelian U(1) model of Nielsen and 

Olesen. 5 The symmetry is completely broken with one complex @ field. At 

r-+oo, Abrikosov’s vortex boundary conditions 18 _ are 

_A(r) = 2 ,V Qn S(G) (3.11) 

@ ($) = S(4) Go (0) (3.12) 

where @O(O) is a fixed vector minimizing the potential U( I +12). V_ denotes the 

3-space gradient operator. The above compact forms for h and + follow readily 

from the polar coordinate representation in (3.9) and the “abnormal” vortex 

boundary condition cP(+) = e 
t-it@ 0 

+ (0). +iQ+ The phase factor S($) = e is a finite 

group element of U(1). It is single-valued since by continuity of the wave function 

one must satisfy @ (2~) = G(0). Yet the multivaluedness of the phase Q$ signals 

the existence of a topological quantum number or kink associated with ‘P(x). By 

the continuity of CI, (x) , the asymptotic form (3.12) implies a nodal line of G, 

Cp (0, 0, z) = 0 along the vortex core with Q as the vorticity number. 19 Due to the 

presence of the gauge field, Q has the meaning of units of magnetic flux carried 

by the vortex. c denotes a circle at r-w . The London flux 

quantization is e g =Q/2. 

The topological meaning of the mapping (3.12) can be visualized in the 

following way. As the field Q, is carried once around a large circle @ = 0 -2~ 

centered at the vortex in physical space, the phase factor S(q) describes a 

closed circuit S(0) = S(27r) = 1 in the U(1) group space. Since U(1) is isomorphic 

to SO(2), it has the topology of a circle. The closed path winds around Q complete 

turns in SO(2). Let p be any point in SO(2), then a closed curve based at p going 

j times around the circle cannot be continuously deformed into one going k times 
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around (k#j), the difference being a path winding (j-k) times around SO(2) and so 

.not hqmotopic to zero. Consequently, the homotopy classes of all closed paths 

are infinite in number. They form the fundamental group of the circle 

K~(SO~) N .rrl(U(l)}, the infinite cyclic group made up of the identity and the inte- 
- 

gral powers of the class of path winding once around SO(2). As it is isomorphic 

to zw, the additive group of integers, we write this symbolically as a,(U(l)) N Zco. 

By (3.12), there is a one to one correspondence between S(4) and a($). Hence 

the vortices are also classified by the fundamental group n,(U(l)) N Zoo. Each 

vortex is labelled by a homotopic invariant an integer Q E Z co’ No continuous 

U(1) gauge transformation. can bring a vortex with Q units of flux into one with 

m (Q#m) units of flux. There exists an infinite variety of topologically distinct 

vortices mirroring perfectly the w-connectedness of the global group U(1). 

Next, we turn to the non-Abelian context, a model (3.1) with a local SU(2) 

group. 5 To obtain a vortex solution, Nielsen and Olesen needed two Higgs fields 

+ 1 and a2 in the adjoint representation of SU(2). The symmetry is completely 

broken. As will become clear a judicious choice of representation for the +i is 

of essential importance. This is so because for a representation to give a 

complete description of the group, it must be a faithful representation. Equiva- 

lently the group G acts effectively on the Gi. This point has been particularly 

stressed by Wu and Yang. 10 Applied to the Nielsen-Olesen choice of represen- 

tation, the above observation implies that the global group of their model is in 

fact the adjoint group’ SU(2)/Z2 = O(3). 

Let +(I, +i be the two fixed isovectors which minimize U(+,, G2) and a! their 

relative fixed angle in the O(3) field space. The vortex boundary conditions’ take 

their simplest forms in the “Abelian gauge”. At 151 - 00 

$=b2=0 (3.13a) 
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lJ3t3 = At3 = ; ,v Qn S($) , (3.13b) - 

h bitt) = ‘to) into) ) i=l,2 . (3.14) 

where 

ih; = y(o) ; 4?; = gio!) . - 

In this gauge, the vortex is oriented along the x3 axis in isospace and the vectors 

@ 1 and @2 lies in the (xl -x 2 ) plane with a relative angle 01 and wind around x 3 as 

c#1=0- 2n (Fig. 2). 

Due to continuity of the wave functions, +i(@) are single-valued and we 

obtain 

S(e) = exp b$t3] E O(3) = SU(Z)/Z, (3.15) 

if the representation is the adjoint one, while 

S(G) = exp 2ie$ 73 E SU(2) [ 1 (3.16) 

if the representation is the fundamental one. The operators t3 in (3.15) and 73 

in (3.16) are a 3x3 matrix and a 2x2 matrix, respectively. They are represen- 

tations of the generator X3 of the Lie algebra of SU(2) such that Xi,X. [ 1 ’ 3 = ‘kxk’ 
First let us consider the case where the global group is O(3) = SU(2)/Z2. 

As in the U(1) case, the presence of kinks in Gi is signaled by the multiple 

valued phase ie$ of S(G). The “Abelian gauge” might lead one to expect an 

infinity of distinct vortices. 5 That this is a gauge illusion follows from an 

analysis of the global meaning of (3.14). 

As illustrated in Fig. 3a, the O(3) group space is most suitably parametrized 

as a sphere of radius r. All rotations D($, n) = exp (i$z & are points inside or 

on this sphere. Any radial vector T= $/r 1; has the direction of the rotation G; 

the rotation angle is $. The unit element I sits at the origin (r=O). Since a 
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rotation by +=n and one by @=+r are the same, diametrically opposite points on 

the surface of the sphere should be identified. Due to these schizophrenic sur- SI 

face points, all closed curves in O(3) are partitioned into two homotopy classes 

making up the fundamental group 7~~(0(3)) N Z2, the group of integers modulo 2. 
* 

This simply reflects the two-fold connectivity of O(3) = SU(2)/Z2. These curves 

are the ones crossing the surface of the sphere an even and an odd number of 

times respectively. The first types of curves are homotopic to zero, the second 

types are homotopic to an O2 axis of rotation (Figs. 3b, c). 

. The consequence for the vortices of this two-fold connectedness of O(3) is 

immediate. As the Gi($) are transported in physical space around a large circle 

centered at the vortex, (3.15) implies that the factor S(G), $=O -27r, traces out 

a closed curve in the O(3) group space, the above described sphere. To be 

exact, S($) being a one parameter subgroup of O(3) traces out a “geodesic” DD’ 

(see Fig. 3b). Since S(6) starts and ends at the unit element S(0) = S(27r) = I as 

S(C$) E O(3), it winds n complete turns, n complete diameters in O(3). However, 

unlike the closed paths in the U(1) circle, the n-even curves are homotopic to 

zero while the n-odd curves are homotopic to a single rotation. 

From the standpoint of the Gi($), there correspond two topologically distinct 

classes of boundary conditions on the vortices. To use the Wu-Yang terminology, 10 

there exist two gauge types of vortices. The first labelled by even Q can be con- 

tinuously gauged into the pure vacuum @p and xP=O by a transformation 

U($, t) E O(3), 01 t ( 8, t being another continuous group parameter. US($)U-l=I, 

U($, t) is an example of a homotopy. For an explicit example, the reader is 

referred to the letter of Mandelstam. 7 The second class of vortices are labelled 

by odd Q. They are homotopic to a vortex having one Dirac unit of flux g=1/2e. 

We have taken 4ng = C.6 A3.dx-= # &.dx, as a definition of magnetic flux, the 
C C 
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quantization condition is Dirac’s eg=Q/2. As it stands, this condition is not yet 

a magfestly gauge invariant statement. This defect can be readily amended. 

Since the vortices are in a one to one correspondence with the elements (I, -1) of 

Z2, the group of integer modulo 2, a gauge invariant definition is 
- 

eg= i mod. 2 . (3.17) 

Namely the magnetic flux is defined only by modulo 2. 

Alternatively, the same conclusion is reached by taking S($) in (3.15) as 

an element of SU(2), the universal covering group of O(3). O(3) is to SU(2) what 

a cut plane is to a two sheeted Riemann surface. Therefore the SU(2) group space 

can be represented by two unit spheres with as their centers, I and -I respectively. 

Here diametrically opposite points located on different spheres must be identified. 

From Fig. 4 it follows that all closed paths in SU(2) are homotopic to zero; SU(2) 

is simply connected. 

As @=O- 27r, the S(4) E SU(2) with Q even traces out a closed curve, a 

“geodesic” in SU(2) since S(0) = S(27r) =I. This winding of Q=even turns is homo- 

topic to zero. The S(e) with Q odd trace out open paths beginning at S(O)=1 but 

ending at another focal point S(27r) = -1 hence the curves cannot be deformed into 

a null path. Of course I and -1 are but the elements of Z2, which reflects the 

2 to 1 homomorphism between SU(2) and O(3). Hence from the viewpoint of the 

universal covering group, the vortices are classified as they should be by the 

very same fundamental group Z2. 

If we now choose the (Pi in the fundamental representation or any other 

faithful representation of SU(2), the global group is identified as SU(2) itself. 

In the case of one isodoublet Q, breaking the symmetry completely (3.1) gives 

the model of Dashen, Hasslacher and Neveu (DHN). 23 While they seek a 
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spherically symmetric solution, which turns out to be unstable, 24 we are after 

a vortp solution of the type (3.13) - (3.14). The vortex boundary conditions at 

12 I -03 are (3.13) and (3.14) but with (3.16) and one Qj field. 

The seeming existence of an infinite variety-of vortices is again a mirage 

due to the Abelian gauge. Indeed as 9 is carried around a great circle in 

physical space, S(4) for all integer Q describes a closed circuit in the SU(2) - 

group space and such a path is always homotopic to zero (Fig. 4). This means 

that there exists suitable SU(2) continuous gauge transformations which can 

bring all the cp ($) and A’ in (3.13) and (3.14) with (3.16) into the vacuum fields 

a0 3 A’= 0. So there exists only one gauge type of vortices in SU(2), namely the 

trivial type of no vortex at all. This fact is solely tied to the simply connected- 

ness of SU(2). Thus there are no Nielsen-Olesen vortices in the DHN model. 

At this juncture, conclusions may already be ventured regarding an arbitrary 

. - compact Lie group. We shall only do so in Section IV after the construction of 

finite vortices. Motivated by their potential physical relevance we proceed to 

higher dimensional unitary groups, to the analysis of model (3.1) with a local 

SU(N) group. For our purpose, it suffices to assume a completely broken 

SU(N). The general case of a residual unbroken symmetry is discussed 

elsewhere, 738 

If the Higgs fields +i are chosen in the fundamental representation of SU(N) 

(or any of its faithful representations thereof), the global group is SU(N). As 

in the SU(2) case, the vortex boundary conditions in the Abelian gauge are 

hi= 0 i=l,2,... N2-1 

AN2-l A E/Q= ; ,v Qn St+) ; 

‘j(Q) = ‘t$) a~(a,) 9 j=l,2,... k. (3.19) 

(3.18) 
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The phase factor S(G) is given by 

SI S(e) = exp (iQ$NA) E SU(N) (3.20) 

with 

hr i Diag (1, 1, . . . 1-N) , (3.21) 

the NxN matrix representative of the last element of the (N2-1) generators of the 

Lie algebra of SU(N), II 1 hi, hj = fijk$. 7y ’ 

The vortex is pointed along the (N2-1)th direction in group space, the 

important reason for this specific choice of orientation in unitary space will be 

given subsequently. The k needed Gi fields are selected such that +y are vectors 

minimizing the effective potential U(a2) with relative fixed angles ai and they 

define some two dimensional hyperplane orthogonal to the (N2-1)th axis. 

Effectively they form a single vector rotating around that axis with an angle NQ$. 

We observe that the phase factor S(4) generates a one parameter subgroup 

of SU(N). While no visual intuition is now available, that SU(N) is simply con- 

nected and S(0) = S(27r) = I imply that all the closed curves traced out by S(#) as 

Cp = 0 -27r for any integer Q can be continuously deformed or gauged into the unit 

element I by suitable SU(N) transformations. Namely, the x and Gi($) in 

(3.18 - 3.19) can be continuously brought into the vacuum fields A’= 0, GT. So 

there are no vortex solutions if G=SU(N). - 

On the other hand if the Higgs fields are chosen in the adjoint representation 

(or any other faithful representations of SU(N)/ZN), the global group is then the 

factor group G=SU(N)/ZN. ZN denotes the center of SU(N), the aggregate of all 

those SU(N) elements which commute with all elements of SU(N). In the funda- 

mental representation the discrete Abelian invariant subgroup ZN has the form 

ZN = (IN,‘+’ m2$J,. . . w N-lIN) . (3.22) 
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w = exp (2ri/N) is the Nth primitive root of unity and I 
N the NxN unit matrix. 

Cleariy the center is, so to say, the Abelian part of the group SU(N). We note 

further that the residues in (3.22), 0, 1,2, . . . (N-l) with respect to the modules 

N then make up a.cyclic group of order N. The-law of composition is addition 
- 

followed by reduction to the least negative residue relative to N. So ZN is 

isomorphic to the additive group of integers modulo N, it is the fundamental 

group mirroring the n-fold connectedness of G, 7rl(G) N ZN. In the Abelian 

gauge, the vortex boundary conditions are given by (3.18) and (3.19) with the 

difference that the phase factor S(q) = exp (iQ$$ E SU(N)/ZN. i is the 

(N2-l)x(N2-1) matrix representative of the last of the (N2-1) generators of the 

Lie algebra of SU(N). Continuity of the wavefunctions is obeyed, +i (0) = cPi(27r). 

Topologically, as the ai winds around in asymptotic physical space, 

S(q) generates a closed curve beginning and ending at S(0) = S(27r) =I, a path made 

up of Q complete turns in G = SU(N)/ZN. We know from Section II that 

n,tsu@)/zN) = ‘N’ namely, there exists N homotopy classes of closed curves 

in a N-fold connected manifold such as the SU(N)/Z, group space. In a way 

entirely analogous to our discussion of the SU(2)/Z2 case, the vortices are 

classified by the center Z N of SU(N). To the (N-l) nontrivial elements of ZN 

correspond (N-l) nontrivial gauge types of vortices. Any two vortices belonging 

to the same gauge type can be continuously gauged into one another; they are 

hence physically indistinguishable. The quantization condition can be stated in 

a gauge invariant way; as 

eg =i mod N ; (3.23) 

The flux is defined mod N. Alternatively, as in the O(3) case, we can work in 

the universal covering group and take S(@) = exp (iQ$h) E SU(N), 

A ~4 Diag (1, 1, . . . t-N)). Then the (3.18) remains the same while (3.19) takes 
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takes the matrix form 

‘it+) = ‘TV) pi ‘-l(~) . (3.24) 

Qi E GiL is now a matrix, the Li form a NxN matrix representation of the SU(N) 

generators. * 

In consequence of S(O)=1 and Qi(2.rr) = Gi(0), we deduce 

k(2r), q] = 0 . (3.25) 

Provided the gauge symmetry is entirely broken, any combination of the gener- 

ators of SU(N) do not commute with all the @J:, i=l, 2, . . . k, it follows that 

s(27d E zN’ the group center. 

As the Higgs fields wind around the vortex in real space, S($) generates a 

path in the SU(N) group space, beginning at the unit element but ending at one of 

the N elements of ZN. When S(27r)=I, the path is closed and hence contractible 

to zero, SU(N) being simply connected. These S(+) are labelled by Q=Nm, m is 

an integer, since exp (i27rmNh) =I.’ The corresponding boundary conditions 

(3.24) - (3.25) can be continuously gauged into the vacuum a:, xp=O and stand 

for the zero vortex sector of the model. Otherwise the paths are open curves 

linking the point I with any one of ~~1, Q=l, 2, . . . N-l. Any two such mappings 

S(q) and S($) are not homotopic to zero and are mutually homotopic if and only 

if S(27r) = S’(2n). Hence there exists (N-l) such relative homotopy classes of 

open paths, relative because their end points are kept fixed during the deforma- 

tion. With the trivial class of closed paths S(O)=s(27~), they form the relative 

fundamental group 7rl Rel(SU(N)) = Z N which in turn classifies the corresponding 

boundary conditions (3.18) - (3.24) and the vortices. The corresponding mag- 

netic flux is defined modulo N. We recover the quantization law (3.23). 
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The two equivalent viewpoints only reflect the N to 1 homomorphism 

SU(N)z> SU(N),‘ZN. In this uncovering transformation all the elements of the 

center are mapped into the unit matrix. As an illustration we consider the 

topology of SU(3). Here the center Z3 is given in the fundamental representa- 

tion D(3)(l, 0) by the three matrices I, ~1, w21 with W= exp (2ti/3). 
‘i I - So Z3 is 

say generated by WI. The generator is exp (2ni/3 (hl-A2)) for any irreducible 

representation DN(hl, h2) which are split naturally into three classes isomorphic 

to z3. They are the triality zero class where Al=A2(mod 3) and the triality 

&l classes where hl= AZ*1 (mod 3). Hence only the triality zero representations 

of SU(3) are also representations of the factor group SU(3)/Z3. We then see how 

the global structure of the group is tied in with that of the representations. 

We close this section by clarifying the specific choice of the (N2-1) axis 

. - 

of SU(N), e.g., the h8 axis for SU(3) to orient the vortex. Unlike the R3 space 

of the SU(2) adjoint representation, the R N2-1 space of the SU(N) adjoint repre- 

sentation is not isotropic under the action of the group SU(N). This is due to 

the existence of families of orbits of special directions. Take the example of 

SU(3), in the octet representation, a vector originally pointing in the h8 direc- 

tion can be obtained by infinitesimal rotations of the group components along the 

h4, h5, h6, h7 axes but not along the h 1 2 3 ,h ,A axes. Since we seek vortices con- 

nected to the topology of the group SU(N) (mod ZN) and not those related to any 

of its possible subgroups, the desired vortices must be oriented along the 

(N2-1)th axis in group’ space. In any other gauge, this direction lies along the 

orbit S(x) A S(x)-1 of h, S(x) E SU(N). Indeed of all the matrix representatives of 

the generators of SU(N), only A is such that its Abelian subgroup generated by 

S($) = exp (iJ!@h) has as its own discrete invariant subgroup, the center ZN of 



- 24 - 

SU(N). It can be easily verified that exp (Zdh) = $1. In other words, only the 

curves+ spanned by S(x) S($) S(X)-’ probe the whole global structure of SU(N)/ZN 

or SU(N).8 

. - 
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IV. GENERAL VORTICES AND DIRAC MONOPOLES 

We now construct finite, open vortices and classify their endpoint mono- - 

poles. An infinitely long vortex can be viewed as a magnetic dipole chain 

bridging a monopole-antimonopole pair located at antipodal infinities. From 

this standpoint, the topology of these endpoint monopoles is readily inferred. 

By the continuity of the flux and gauge invariance, the strength g for the mono- 

pole and -g for its antimonopole must be the same as the flux through g = $ 

mod N if the global group is G = y. This deduction fulfills the expected 

26 equivalence between London’s flux quantization and Dirac monopole quantiza- 

tion, 9 albeit in a non-Abelian gauge theory, 

. - 

In the following we shall discuss briefly an alternative and more profitable 

way of reaching the foregoing conclusion., Thus far, the topological classifica- 

tion only requires the use of static, axially symmetric boundary conditions. 

The question then arises as to whether simple equivalent boundary conditions 

may exist, ones which also allow for space-time varying, finite, open vortices 

with monopoles at their ends, The answer is affirmative., Our method consists 

in a judicious introduction of Dirac strings along the cores of the vortices. For 

completenessq sake, we shall limit ourselves to the essential aspects of this 

method. The reader is referred to two other works 8,21 on Abelian and non- 

Abelian vortices for a detailed illustration of this method. To be specific we 

consiter again the system (3,l) with a local group SU(N). As we have empha- 

sized in Section III, the global group of the system must be SU(N)/ZN for the 

vortices to exist. The Higgs fields are taken in the adjoint representation. We 

also choose to work in the covering group SU(N) so that the boundary conditions 

are of the forms (3.18) and (3.24) with S(G) = exp (i-Q@) E SU(N). By perform- 

ing on these static vortex solutions the singular gauge transformation 
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ii(@) = exp (-in$h) (4.1) - 

they ar; brought into the pure vacuum +I = +p and g = 0, However a price 

must be paid for these simpler forms of the fields at infinity. As the sole sig- 

nature of the existence and the nature of the vortex solution, .the multiple- - 

valuedness of the phase n$ in S($) is not lost in the process but only transferred 

to the new potential g at finite distances from the vortex, Since 

the component Tr [A%] of Av acquires a l/r-type singularity of strength t at 

the position of the vortex core0 The other components & are finite but non- 

analytic as a result of the induced +dependence.7 By way of (4,2) the field 

F 
PV 

acquires a s tringlike singularity 

G+ ij = ;(aiaj - ajai)+ (40 3) 
. - 

in its (N2-1)th component, GG has the meaning of a fictitious gauge line having 

only support along the vortex core., It gives the desired boundary conditions 

along the vortex core equivalent to the forms (3.18) - (3.24) specified at spatial 

infinity. 

The major advantage of this string boundary condition is twofold. On the 

one hand, (4.3) readily admits a space-time dependent generalization. It is 

recognized 21 as the static, axially symmetric form of the tensor distribution 

G+ 
PV = gym!p / dadr S4(x-Z)[ Zo, Zp] 

where 

(4.4) 

WQ Zp) 
IZ,,,Z~I f ato TJ , P,V,Q,P = (0,1,2,3) o 

, 
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That g =& (mod N) will be clear subsequently. A celebrated object in mono- - 

pole theory with a single potential A , G+(x) parametrizes a Dirac string as it 
* P P 

sweeps out a world sheet (a, T) in space-time. Since 9 
- gN 

2 
-1 dx, = 0 (mod 

C 
N) for an infinite circle c centered at the vortex, such a Dirac string must 

* 
carry the same but opposite flux as its associated vortex. Any continuous 

SU(N) Transformation S(x) cannot remove the string but can modify its space- 

time position as well as its orientation in group space within the orbit of L. 

More importantly, such S(x) cannot change the homotopy class of S($) in (4,l). 

It follows that, by construction, there must be (N-l) nontrivial gauge types of 

Dirac strings in a biunique correspondence to the (N-l) gauge types of Nielsen- 

Olesen vortices. The return flux flowing through the string is therefore 

g =&(mod N). Just as in Dirac’s U(1) theory, the flux carried by the vortex in 

this singular gauge is to be computed through + 
A,N2-l N 0 g where E is now 

i 
an infinitesimal circle around the string. The quantization condition (3.23) can 

similarly be seen as a consequence of the unphysicalness of the string. 879 

Moreover, the identification (4,4) with (4.3) affords an easy way of gener- 

ating space-time dependent finite closed as well as open vortices, For closed 

moving vortices of any shapes, we can construct an equivalent system8 having 

the same Lagrangian (3.1) but with the crucial difference of a modified expres- 

sion for its F 
PV 

F =aA 
PV PV 

- avAP - ie[AP,Av ] -AC+ 
PV 

, 

G;,, (xl = 8 pvap $ gird& 64(x-Z;)[Z;,Z;] o 

i-l 

The subtracted term hG+ 
PV 

is the singular gauge fixing term needed to imple- 

ment the boundary conditions for the existences of r vortices with the respective 
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n. 
fluxes gi = $ mod N. The chosen gauge is one with the Dirac strings all 

pointicg along the (N-1)th axis in SU(N) space. Any other gauge choice can be 

reached by way of a regular gauge transformation S(x) such that hG+ 
PJJ 

in (40 5) 

becomes CG+ is in the orbit of h. 
PV 

where C = ShS-l So, without loss of gener- 

ality, we shall work in the Abelian gauge. 

To obtain finite closed vortices of any shapes, the prescription is then to 

solve for the fields equations in (4.1) with F 
PV 

given by (4.5) and the vacuum 

boundary conditions 

. - 

The solutions obtained have the vortices carrying along their cores their own 

fictitious Dirac strings, the custodian of their respective topological quantum 

number, the flux giO 

To complete our circle of arguments, we now prove that we can indeed 

gauge away these Dirac strings from the solution of the system (4.1) with (4,5) 

with as resulting system nothing but (4,l) with the suitable space-time depen- 

dent generalizations of (3.18) - (3.24). For simplicity we consider the case of 

a single vortex. The needed singular gauge transformation is then 
h 

S(x) = e ih (x)1 

such that 

@/.A 
- ava,p@) = e$,(x) 

The transformed boundary conditions are 

V(x) = is Q(x) i--l 

(408) 

(4.9) 

(4.10) 

(4.11) 

For a static, infinitely long vortex along the z-direction, the example of (4.8) is 

already given in (4.1). Generally, as we are concerned with closed or infinitely 
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long vortex, there are no magnetic pole sources, 8 G - P PV 
tion 4r 

X 

with 

a,py) = e/-d4yqA@-y1)av Giv 

0 and A has the solu- 

(4.12) 

(4.13) 

and A@-y’) is the Green function in q 2A(y) = ~3~01)~~~ The path dependence of 

A(x) only reflects its multiple-valuedness. While infinitely long or closed vor- 

tices are describable either by the system (4.1) with (4.10) and (4* 11) or by 

(4,l) with (4.5) and $ = p, rP = 0, this is no longer the case for finite open 

vortices ending at monopoles. The latter are obtained by simply “cutting” the 

Dirac strings in (4,4), Since the string carries magnetic flux, at the severed 

points will appear classical point sources, the Dirac monopoles with strength 
. - 

gi=zmodN. As 

(4.14) 

for a finite, open Dirac string, a trivially conserved magnetic monopole cur- 

rent j(m) 
V 

appears in the hth component of D F+ 
P PV 

= VPFiv-ie A ,Ff .8 II 1 I-1 PV 
This additional current reflects the fact that A’ is no .onger inte- 

grable and must be singular in the presence of the Dirac monopoles. 9 In con- 

trast to the case of closed Dirac strings, we now show that these monopoles 

must always be accompanied by their Dirac strings, i.e., that the latter cannot 

be gauged away by any gauge transformation. 

It suffices to consider a static, axially symmetric, finite, open vortex with 

its Dirac string and monopoles positioned as shown in Fig. 5a. At far enough 

distances from the vortex, the fields take their vacuum values (4.7). Under the 
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action of any singular gauge transformation S($, r ,z) which might get rid of the 

Dirac string the fields become 4r 

cPq(hr,z) = S$S1,A;(@,r,z) = k aPQn S 

in the asymptotic region, By a complete rotation around the’vortex symmetry 

axis, we end up with the phase factor 

“S(ZT,r,z) = T e 
-ie Q - 

dx,&J$,r,z) 

If this loop is taken at z = 0 and B >> r >> m -1 
v ’ e being the length and rn;’ the 

penetration width of the vortex, the field configuration should be the same as 

one for the infinitely long vortex. Hence 

&(27r,r,z) = wmIN E ZN 

with wm # 1 since the vortex exists. As we slide this loop continuously by 
A 

changing z and r, S(2n,r,z) should also change continuously due to the continu- 

ity of the wave function @I. As we reach I z I>>P and r - 0, the loop shrinks to 

zero outside the vortex region and S(2r, r ,z) should become IN if there were no 

singularities in A’ 0 
P 

Since S cannot be discontinuous, A;1 must have Dirac 

string singularities ending at the monopoles We have shown that no gauge 

transformation can remove the Dirac strings completely: If they do remove the 

one terminating at the monopoles in Fig, 5a they create instead two separate 

other strings (Fig. 5b), Equivalently, (3.1) has no solutions (4 ,, 5) - (4, ‘7) for 

finite length, open Dirac strings. 

Here readers might recall that a similar argument was made by ‘t Hooft to 

show that his monopole exists without a Dirac string. For completeness we 

make a short comment. A detailed analysis is given in our recent paper, 14 

The ‘t Hooft monopole does not obey the topological triality. I Therefore, even 

if w m = 1, there is a monopole solution for m # 0. Then the above analysis 
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shows that the Dirac string is gauged away if m = 0 (mod N). Namely, a mono- 

pole with m-Dirac unit, m = 0 (mod N) can exist without the Dirac string in 

SU(N)/ZN theory when the monopole does not obey triality. The It Hooft model 

is just an example with N = 2. Thus, our arguments about the necessity of the 

strings are consistent with the one given in ‘t Hooft’s paper. 3 - 

In consequence, there cannot be open vortex solutions in the system (3.1) 

with (3.6). To generate these vortices their monopoles must be introduced ex- - 

plicitly by hand at the start with their associated strings as in (4.5) where 

apGpv # 0. Furthermore, since the non-Abelian gauge fields are themselves 

electrically charged, the (Abelian) duality symmetry between electric and mag- 

netic fields is lost. This is reflected in a more intricate resulting-mathematical 

structure of the monopole theory. 738 

Our Dirac monopoles are to be contrasted with those of t’Hooft and Polya- 

kov which need not be accompanied by such strings. 14 Hence if a gauge theory 

is to admit both closed and open vortices of the Nielsen-Olesen type and if a 

single potential AV is assumed valid for the whole of space-time, then working 

in a singular gauge is no longer a choice but a necessity. Having thus com- 

pleted a rather detailed analysis of vortices and their monopoles in some in- 

structive examples, we will take up next the problem of extension to a general 

compact Lie group. 
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V. EXTENSION AND RELEVANCE 

Thus far our analysis has been focused on specific examples. However the 

generality of the method and the simplicity of the results afford a straightfor- 

ward extension to, any compact Lie group. The necessary condition for the 

existence of Nielsen-Olesen vortices and Dirac monopoles is remarkably simple: 

the gauge group G must be multiply connected. In other words, its fundamental 

group must be nontrivial, 7rl(G) & 0. In the following we shall expand on this 

conclusion. 

Some time ago, Yang 16 showed the existence of an intimated logical rela- 

tionship between the quantization of electric charges and of magnetic fluxes in 

superconductors on the one hand and the global concept of compactness of the 

gauge group on the other. Here we have shown the existence of yet another 

logical link, a biunique correspondence between the n allowed gauge types of 

vortices and monopoles and another key global notion, the n-fold connectivity of 

G. In this light, vortices and monopoles are seen as possible physical phe- 

nomena correlated with the structure “in the large’* of the group G; they are 

truly global signatures of gauge invariance. 

In more precise terms, we have shown the fundamental group or first 

homotopy group al(G) to be an ideal expression of this global connection. Given 

a compact n-ply connected Lie group G, rl(G) is a finite, discrete Abelian group 

of order n. In the same manner as in our illustrative examples of Sections III 

and IV, the possible vortex solutions AP, (Pi 
I I 

and/or Dirac monopole solutions 

I 1 
AP are partitioned into n equivalence classes, in a one to one correspondence 

to the n elements of rl(G). It is also appropriate to name these homotopy 

classes “gauge classes” since any two solutions, members of the same class, 

can be continuously gauged into each other by suitable transformations S(x) E G. 
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As such they must be only different “gauge images’JJ of one and the same physical 

object. There are thus n topologically distinct gauge types of vortices and mono- 
SI 

poles classifiable according to the n elements of r 1(G). In particular, to the 

identity element of 7r1, the class of closed loops in G which are homotopic to 
- 

zero, corresponds the vacuum sector of no vortex nor monopole. It can be 

shown6 that no minima exist for solutions of this gauge type; by suitable con- 

tinuous gauge transformations they energies can be decreased to zero continu- 

ously. Corresponding to the other elements of al(G) there are the (n-l) non- 

trivial gauge types of vortices and monopoles. 

From Section II, we recall that all connected Lie groups G can be obtained 

from 6 their universal covering group as factor groups 

G-g, A = 7rl(G) . (5 * 1) 

The kernel A of such a covering map is a subgroup of the center Z(G) of G;, and 

with G is a connected group. A has as its order the connectivity of G. In this 

paper, we have explicitly verified the conjecture of Lubkin l3 that the global 

homotopic conservation law of magnetic flux (defined modulo n) is intimately 

related to the n-ply connectedness of G. As a consequence our general classi- 

fication problem for vortices and monopoles reduces to one of the topological 

classification of compact Lie groups, a topic well known to mathematicians. 28 

For completeness and possible future use in physics we summarize the relevant 

results. At this point a further simplifying restriction is made. .As all con- 

netted compact Lie groups can be obtained from compact simple Lie groups, by 

way of the general theorem III quoted in Section II, there is no loss of generality 

in considering only the latter. The different classes of locally isomorphic 

compact simple Lie groups are denoted symbolically as Ar (rLl), Br (rL2), 

Cr (r>3), Dr (r>4) for the classical structures and G2, F4, Es, E7, E8 the - 
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exceptional structures. The corresponding dimensions of these groups are 
- 

respectively r (r+2), r (Brtl), r (2r+l), r (2r-l), 14, 52, 78, 133, 248. r denotes 
- 

the rank. 

For Ar, Br9. Cr, their universal coverings are 

SU(r+l) , Spin (2r+ 1) , Wr) (5 * 2) 

whose centers are cyclic of order r+l, 2, 2. We write this as Z(SU(r+l)) N Zr+l, 

Z(spin(2r+l)) N Z(spin(r)) N Z2 respectively. The quotients or factor groups of 

the full centers are then PU(r+l), J$-@JJ , SO(2r+l), P sp(r) of the projective 
r-t1 

transformations induced in the r-dimensional, real 2r dimensional and 

quaternionic (r-l) dimensional projective space respectively. 

For D.r, the simply connected group is Spin (Br), its center is of order, 4, 

cyclic if r is odd, noncyclic otherwise; the quotient of order 4 is the projective 

orthogonal group PSO (2r). For r odd, SO(2r) is the only one.quotient of order 2; 

for r even besides SO(2r) there are two l’semi-spinor groups” which are mutually 

homomorphic for all r and isomorphic for r=4 to SO(8). 

Finally the simply connected universal coverings of G2, F4, E6, E7, E8 

have respectively cyclic centers of order 1, 1, 3, 2, 1. 2g This completes the 

topological classification of compact simple Lie groups and thereby the topo- 

logical classification of the vortices and monopoles in gauge theories with such 

n-ply connected groups G. We close this topic by some further illustrations of 

the above groups as regards their vortex and monopole structures. In Section 

III, instead of SU(N)/ZN, we could have chosen any Gr = SU(N)/Z, 

Zr = (&WI, . . . ~~~~1) with w = e i27r/r and N/r = integer. Such cyclic Abelian 

groups of order r are all the discrete invariant subgroups of SU(N) and the 

corresponding Gr give all the Lie groups locally isomorphic to SU(N). Gr being 

r-ply connected, there exist r gauge types of vortices and monopoles. With 
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al(SO(n)) N Z2 for n23, there are two gauge types for SO(n), one of which is the 

trivial vacuum sector. SI Since nl(Sp(n)) = 0, there is no nontrivial gauge type for 

these simplistic groups. The same is true with SU(N), G2, F4 and Es. As for 

other examples, e.g., for semi-simple compact Lie groups, we leave them to 

the interested reader. 36 

For the compact simple Lie groups G enumerated above, the centers Z(G) 

of the universal covering groups G are cyclic Abelian groups. Since G- G/A 

with AC Z(e) and A- 7rl(G), the corresponding fundamental groups 7rl(G) are 

therefore cyclic Abelian of order n, n being the connectivity of G. Now all 

cyclic groups of the same order n are Abelian and isomorphic, particularly to 

the group of the residues 0, 1, 2, . . . n-l, if the law of composition is addition 

followed by reduction to the least non-negative residue to m. Equivalently 7rl(G) 

is isomorphic to Zn, the additive group of real integers modulo n. Hence to 

each gauge type of vortices and monopoles, we can associate a homotopic invari- 

ant or kink number, a magnetic flux or charge labelled by an element of Zn. 

Namely the magnetic flux or charge is only defined by modulo n. The general 

law of quantization then reads, eg = 2 kQ mod n, where e is the group “electric” 

charge, Q=-~0, . , . -2, -1, 0, 1, 2 . . . +m and k some integer characteristic of the 

group G in question. 

We observe that the quantization of g mirrors the discreteness of nl(G). 

The Abelian character of 7rl(G) and hence the additive combination law for the 

elements of Zn is reflected in the additive law of combination of the magnetic 

charges and fluxes defined only by modulo n. Finally for the non-Abelian G, 

rl(G) is of finite order. It will be seen that this finiteness or modulo n (n finite) 

property has striking implications for quark confinement schemes. 
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Recently Wu and Yang 10 considered, among other aspects of pure Yang- 

Mills fields, the topology of Dirac monopoles where the global groups are U(l), 
4\ 

O(3), and SU(2). Our classifications concurs with theirs in these revealing 

cases. By also dealing with the vortices ending at these Dirac monopoles, our 
- 

study offers a complementary viewpoint in a two-fold way. First, the connec- 

tion between the work of Wu and Yang and ours is one between Dirac’s monopole 

quantization’ and London’s flux quantization, 26 albeit for some non-Abelian 

super conductor. By way of the method of Dirac strings, we give a unified 

treatment of the topology of vortices and monopoles through finite, open vortices. 

Secondly, we take up the general classification problem for any compact Lie 

group using only simple concepts in the topology of Lie groups. 

To facilitate a comparison between the two works we have adopted the Wu- 

Yang terminology of gauge type for homotopy class of solutions and their notation 

S($) for the phase factor which forms the kernel of both analyses. 

In our language, the Wu-Yang global approach to Dirac monopoles in non- 

Abelian gauge theories can be generalized and summarized as follows. To have 

Dirac monopoles in gauge theories, the field manifold for the potential All must 

have a nontrivial topology. There must be more than one overlapping coordinate 

patches for the Acl covering all of space time. Defined in their respective 

patches, the AP only have the physical singularities associated with electric and 

magnetic charges. A necessary phase factor S(q) plays the role of a seaming 

matrix relating two Ab in the overlap region. The varieties of topologically 

distinct AP are determined uniquely by the connectivity of the global group G. 

Given a n-ply connected G, there exist only n topologically distinct ways of 

partitioning the AP in the “normal form $1 of the two overlapping hemispheres 

centered at a Dirac monopole. The field manifold M for the AP is split into 
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n disconnected components Mi in a biunique correspondence with the gauge 

classe-s or homotopic closed curves generated by all possible S(x) S($) S-‘(x) 

where S(x) E G is continuous. These classes form the fundamental group rl(G) 

of order n. Thus to each Mi spanned by all AP of the same gauge type is 

associated a homotopic invariant, a magnetic charge g for the monopole such 

thateg=iamodn. 

- 

Stated as above, the situation with respect to the vortices is the same 

topologically. The confinement condition DPGi r~- 0 (3.8) which allows for 

the existence of vortices, also implies that the topologies of the field manifolds 

for the Higgs fields +i(x) and the AP(x) are the same. We showed that the 

possible vortex boundary conditions are classified according to the 

homotopy classes of the loops generated by the phase factor S(x) S(q) S-l(x) with 

S(x) E G regular as @=O- 2 . These classes form the group rl(G). Hence given 

a n-ply connected G, n coordinate patches are necessary to cover the entire 

field manifold of the ai or the A’ . 
P 

For a more compact treatment of the same 

problem in terms of fibre bundles, we refer the reader to a companion paper. 14 

A point of importance emphasized by Wu and Yang concerns the empirical 

determination of the global group G. As in the instance of global symmetries, 15 

the starting point should not be the abstract group G itself but rather the physi- 

cally realized representations, the particle multiplets occurring in nature. The 

global group is then one where these representations transform faithfully. This 

is so because only then are all the properties of the group G, its global proper- 

ties in particular, also possessed by the representations. In Sections II and IV, 

we have seen this global correlation between the representation content of the 

Lagrangian of the system and its global invariance group. This connection is a 

stringent consequence of the continuity of the fields2 which results in the possible 
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existence of kinks such as our vortices and monopoles. We only mention one 

_ amus@g consequence of this global correlation. 

We recall that the quark confinement hypothesis traces back partly to the 

triality puzzle, to the impossibility of locally distinguishing between SU(3) and * 

SU(3)/Z3, the Eightfold way. Suppose we have a Lagrangian field theory with 

quark fields in a faithful representation of SU(3). It follows that the global group 

is the simply connected SU(3) and there cannot be any Dirac monopoles of flavor. 

On the other hand, if the system has the global invariance SU(3)/Z3 it has only 

fields in the triality zero representations of SU(3), the theory then allows for 

three gauge types of Dirac monopoles of flavor. Hence flavored quarks and 

flavored Dirac monopoles are mutually exclusive (and both are equally elusive 

experimentally). Of course, exactly the same arguments can be repeated for 

flavored vortices. This deduction has all the earmarks of a superselection rule, 

a possible topological quark confinement mechanism. It needs further scrutiny. 

In dealing with Dirac monopoles terminating at Nielsen-Olesen vortices, we 

made use of Dirac strings which provide a gauge dependent alternative to the 

more global approach of coordinate patches of Wu and Yang. As in the Abelian 

9 case, Dirac monopoles are explicitly introduced via Dirac strings which are 

fictitious singular gauge lines. While they may be considered unesthetic in a 

pure gauge theory, these strings were shown to be a great practical usefulness 

in theories of non-Abelian type II superconductivity. By working in a gauge 

where the strings arei made coincidental with the physical lines of Higgs zeroes, 

i.e., the vortex cores ending at monopoles, we showed the Dirac strings to turn 

into physical Nambu strings. 21,8 The latter are just the geometric idealizations 

of the vortex cores in the strong coupling, London limit of an infinitely small 

coherence length. For example, in this limit, 8 a gauge field theory with the 
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global group G= [SW)]flavor @ ~U(3)/Z~broken color9 with the quarks seen 

as colorless Dirac monopoles, turn into a more tractable effective system 
-W, 

made up of fJtriality” Nambu strings terminating at quark-monopoles. The 

resulting finite, closed and open vortices self and mutually interact via their 
_ 

enveloping flux tubes of massive gluonic clouds. Figures 6a, b, and c illustrate 

the possible configurations of a mesonic, a diquark-quark and a Y-shaped 

baryonic strings respectively. More details on this type of semi-classical 

models of magnetic quark confinement are available in Refs. 7, 8 and 21. 

In this work we have formulate in a simple language the necessary condition 

for the existence of finite, open and closed vortices. These objects exemplify 

classically indestructible kinks. 2 The classification theorem and the generalized 

Dirac-London quantization condition are exact statements about these nondissi- 

pative, finite energy solutions to gauge field theories. These results can be 

deduced because only questions of topology are involved. Simple consid- 

erations of continuity show an isomorphism between the topology of the vortices 

and that of the Lie group in question. The problem then reduces to one of 

homotopic calculations without any recourse to knowledge of dynamics. On the 

other hand the sufficient condition requires one to solve for the equations of 

motions, the resulting solutions being in general nonanalytical. Moreover 

classical solutions are of importance only if the couplings are weak so that a 

soliton expansion makes sense. 1 As for the possible connection with dual 

resonance models and through the latter with theories of hadrons, the problem 

is much more difficult. One must face up to the inescapable challenge of strong 

coupling quantum field theories in four dimensions. The first concrete steps in 

this direction has been taken for instance by Drell, Weinstein, and Yankielowicz. 32 
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As witnessed by the abundant literature, 
33 monopoles have often been 

appealed to as possible ways out of a host of physical puzzles. Foremost among 
c, 

these have been those of triality and quark confinement. We have only men- 

tioned two applications of relevance to current ideas of hadronic structure. Yet 

it is apparent that as highly nontrivial solutions to gauge theories, the vortices 

and their monopoles studied here are of great intrinsic interest as we learn 

ever more about the structure of non-Abelian extension of electromagnetism. 

At the completion of this work, we learned of Coleman’s beautiful 1975 

Erice Lectures. 34 While focusing primarily on the topology of VHooft mono- 

poles, he also discussed very briefly non-Abelian vortices and Dirac monopoies. 

We thank Poul Olesen for drawing our attention to these lectures notes. 

Acknowledgements 

We take pleasure in thanking Holger Nielsen and Jeffrey Goldstone for 

helpful suggestions at the early phase of this work. One of us (HCT) wishes to 

thank his colleagues at the SLAC Theory Group for many discussions. He is 

especially indebted to Marvin Weinstein for clarifying lectures on the topology 

of fibre bundles as it relates to the work of Wu and Yang. 



-4l- 

REFERENCES 

1. _^see for example, L. D. Faddeev, Quantization of Solitons, Institute for 

Advanced Studies Preprint (1975); R. Rajaraman, Phys. Reports C 20 - 

(1975); R. J-a&w, Coherent Phenomena in Quantum Field Theory, MIT _ 

Preprint No. 490, to be published in Acta Physica Polonica, B. 

2. D. Finkelstein, J. Math. Phys. 2, 1218 (1961). D. Finkelstein and 

C. W. Misner, Ann. Phys. 5, 230 (1959). 

3. G. ItHooft, Nucl. Phys. B 2, 276 (1974); B. Julia and A. Zee, Phys. Rev. 

D 2, 2277 (1975). 

4. A. M. Polyakov, JETP Lett. 2, 194 (1974). 

5. H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973); - 

Y. Nambu, Phys. Rev. Dg, 4262 (1974). 

6. A. M. Polyakov, Isomeric States of Quantum Fields, Landau Institute 

Preprint (November 1974). 

7. S. Mandelstam, Phys. Letters B 53, 476 (1975). - 

8. Z. F. Ezawa and H. C. Tze, Nucl. Phys. B 100, 1 (1975). 

9. P.A.M. Dirac, Proc. Roy. Sot. Ax, 60 (1931); Phys. Rev. 74, 817 

(1948). 

10. Tai Tsun Wu and Chen Ning Yang, Phys. Rev. D 12, 3845 (1975) and 

Stony Brook Preprint ITP-SB-76-5. 

11. Y. Nambu, talk presented at the Tokyo Symposium on High Energy Physics, 

July 1973. J. Goldstone, unpublished. P. A. Collins, J. F. L. Hopkinson, 

and R. W. Tucker, Classical Solutions for the Relativistic String Baryon 

Problem, Daresbury Preprint DL/P240 (1975). 

12. Yu. S. Tyupkin, V. A. Fateev and A. S. Shvarts, JETP Letters 21, 42 - 

(1975); M. I. Monastyrsky and A. M. Perelomov, JETP Letters 21, 43 - 



- 42 - 

13. E. Lubkin, Ann. Phys. 23, 233 (1963). 

14. Z . F . Ezawa and H. C. Tze, Monopoles, Vortices and the Geometry of the 

15. 

16. 

17. 

. - 18. 

19. 

20. 

21. 

22. 

(1975); see also J. Arafune, P. G.O. Freund and C. J. Goebel, J. Math. 

p,hys. 16, 433 (1975). 

-. 

Yang-Mills Bundles, Orsay Preprint LPTHE 76/3. 

See for instance, D. Speiser in Group Theoretical Concepts and Methods in 

Elementary Particle Physics, F. Gursey (Ed.) (Gordon and Breach, New 

York, 1964); pp. 201-276. R. Gilmore, Lie Groups, Lie Algebras and 

Some of Their Applications (Wiley Interscience Publications, New York, 

1974). L. S. Pontrjagin, Topological Groups (Princeton University Press, 

1956). 

C. N. Yang, Phys. Rev. D 1, 2360 (1970). 

V. L. Ginzburg and L. D. Landau, Zh. Eksp. i. Teor. Fiz. 20, 1064 (1950). 

A. A. Abrikosov, Soviet Phys. JETP 2, 1175 (1957); R D. Parks, editor 

Superconductivity, Vol. II (Dekker, New York, 1969), Chapters 6 and 14. 

L. P. Pitaevski, Soviet Phys. JETP 2, 451 (1961). D. D. Tilley and 

J. Tilley, Superfluidity and Superconductivity (Van Nostrand Reinhold Co. 

Ltd. , New York, 1974). 

E. S. Abers and B. W. Lee, Phys. Reports C 2 (1973); Ling Fong Li, 

Phys. Rev. Dg, 1723 (1974). 

H. C. Tze and Z. F. Ezawa, Phys. Letters B 55, 63 (1975); Z. F. Ezawa 

and H. C. Tze, &cl. Phys. B 96, 264 (1975). - 

It is amusing that pointlike singularities, the analogs of the ‘tHooft-Polyakov 

hedgehogs can also exist in superfluid 3He and liquid crystals. See 

S. Blaha, Syracuse University Preprint SU-4208-65 (December 1975), and 

Refs. 4 and 6. 



- 43 - 

23. R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. DlJ 4138 

($74). 

24. S. Mandelstam, unpublished report (1975). 

25. L. Michel and L. A. Radicati, Ann. Inst. Hem-i Poincare 43, 185 (1973). - - 
26. F. London, Superfluids, Vol. 1 (Wiley, New York, 1954). 

27. L. O’Raifeartaigh, in Group Theory and Its Applications (Academic Press, 

New York, 1968), E. M. Loebl (Ed,); pp. 469-539. 

28. A. Borel, Bull. Amer. Math. Sot. 2, 397 (1955). 

29. E. Cartan, Annali di Matematica 4, 209 (1927). 

30. M. Gourdin, Unitary Symmetries (North-Holland Co. Amsterdam, The 

Netherlands, 1967), Chapter XIV. 

31. N. E. Steenrod, The Topology of Fibre Bundles (Princeton University 

Press, 195 1). 

. - 32. S. Drell, M. Weinstein and S. Yankielowicz, Variational Approach to 

Strong Coupling Theory I: $4-Theory, SLAC-PUB-1719 (1976). 

33. D. M. Stevens, Magnetic Monopoles: An Updated Bibliography, VPI-EPP- 

73-5. Magnetic Monopoles, a Bibliography of Recent Research, SLAC 

Library Compilation (October 1975). 

34. S. Coleman, Classical Lumps and Their Quantum Numbers, Erice 

Lectures 1975, Harvard Preprint (December 1975). 



- 44 - 

FIGURE CAPTIONS 

1. Homotopy and homotopic curves. -c, 

2. Isospace view of the vortex in the Abelian gauge. 

3. (a) Parametrization of the O(3) group space. 

(b) Two homotopic curves, one a geodesic, in O(3) which are not 

contractible to zero. 

(c) Example of two homotopic curves in O(3) which are contractible to 

zero. 

4. SU(2) group space and example of an always contractible closed path and 

an open path from I to -1. 

5. (a)-(b) The unavoidability of strings accompanying Dirac monopoles. 

6. (a), (b), (c) Mesonic and baryonic vortices. 
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