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Abstract. The Symmetron model is a scalar field model for dark energy in which the scalar
field is coupled to matter and is invariant under a reflection symmetry φ → −φ. The coupling
of the symmetron to matter is such that the symmetry is exact in high density environments
and spontaneously broken when the density drops below a critical value. We study the non-
linear evolution of density perturbations using the spherical collapse model. We calculate the
extrapolated linear density contrast δc which is a fundamental quantity to obtain the halo-mass
function for this model.

1. Introduction
In recent years, there has been much interest in exploring the possibility that the cosmic
acceleration of the universe could be caused by a scalar field rather than by a cosmological
constant. In the first class of models (called quintessence models), the scalar fields generally
mediate a long range force of gravitational strength, which would induce dramatic violations of
the equivalence principle, strongly constrained by local tests of gravity. Over the last decade,
however, it has been realized that these scalar fields can mediate a long range force (∼ Mpc)
while satisfying local tests of gravity by imposing a screening mechanism, such as the Chameleon
Mechanism [1], the Vainshtein Mechanism [2] and the Symmetron Mechanism, that we will
discuss below.

2. The Symmetron model
Scalar-tensor theories are characterized by a conformal factor and by their interaction potential.
In such a context, the symmetron model was proposed in [3, 4, 5] and is described by this action:

S =

∫
d4x
√
−g
{
M2
Pl

2
R− 1

2
(∂φ)2 − V (φ)

}
+

∫
d4x
√
−g̃ Lm (ψi, g̃µν) (1)

where g is the determinant of the metric gµν , R is the Ricci scalar, ψi are the different matter
fields and MPl ≡ 1√

8πG
where G is Newton’s constant. Matter fields are minimally coupled to

the Jordan frame metric g̃µν , conformally related to the Einstein frame metric gµν by:

g̃µν ≡ A2 (φ) gµν (2)
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Varying the action with respect to the scalar field φ, we obtain the field equations for φ in the
Einstein frame 1

2φ =
∂V (φ)

∂φ
+ ρ

∂A (φ)

∂φ
(3)

So the field evolves according to an effective potential

Veff (φ) = V (φ) + ρA (φ) (4)

For the symmetron model of interest, we choose:

V (φ) = V̄ + V0e
− φ2

2M2 (5)

and

A (φ) = e
λφ2

2M2 (6)

in which V̄ is the cosmological constant energy density, V0 is a small energy density fixed by the
phase transition, λ is one dimensionless coupling constant and M is the mass scale. So we have:

Veff (φ) = V̄ + V0e
− φ2

2M2 + ρe
λφ2

2M2 (7)

Since φ2 � M2, we can expand Veff (φ) in Taylor series so we obtain the effective potential
described in [5]. With the above choice for the signs (we will assume λ > 0), there is a density-
dependent phase transition. Indeed, looking at the second derivative of the potential in φ = 0,

M2 d
2Veff
dφ2

|φ=0 = −V0 + λρ (8)

we see that it changes sign at

ρ (zt) = ρ0 (1 + zt)
3 =

V0
λ

(9)

where zt is the redshift in which the phase transition occurs.
As long as ρ is high enough (z ≥ zt), the minimum of Veff exhibits the Z2 symmetry and the
vacuum expectation value (VEV) goes to zero (φV EV = 0). In low density regions (z ≤ zt),
instead, the potential breaks the reflection symmetry spontaneously and the scalar acquires a
VEV:

φV EV = φ0 (z) = ±M

√
6

λ+ 1
log

(
1 + zt
1 + z

)
(10)

where we have chosen the minimum with the “ + ” sign. Fluctuations δφ around a local
background value φV EV , as would be detected by local experiments, couple as ≈ λ

M2φV EV δφρ,
that is, the coupling is proportional to the local VEV.

2.1. Scalar coupling
We define the coupling of the scalar field to matter β (φ) as in [6]:

β (φ = φ0) = β0 (z) = MPl
d logA (φ)

dφ
|φ=φ0= MPl

λφ0 (z)

M2
(11)

1 where ρ = A3ρ̃ is the matter density, which is conserved in the Einstein frame and ρ̃ is the 00 component of
the energy-momentum tensor T̃µν = −

(
2/
√
−g̃
)
δLm/δg̃µν in the Jordan frame, which is covariantly conserved:

∇̃µT̃µν = 0.
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where φ0 = 0 before the phase transition, and φ0 6= 0 after the phase transition.
We take β0 (z = 0) as a parameter of our model:

β0 (z = 0) =
λMPl

M

√
6

λ+ 1
log (1 + zt) ∼=

λMPl

M

√
6 log (1 + zt) (12)

because λ � 1. We have fixed β0 ∼= 0.75 from the value of the error on the parameter σ8
2

which is about 5% and the phase transition zt = 1 near today.

2.2. Spherical solutions
To study the implication for tests of gravity, we follow the same steps of [5, 6]. In analogy with
the Chameleon Mechanism (see [1]), we define a dimensionless parameter γ:

γ ≡ λ

M2
(ρ− ρ̄)R2 = 6

M2
Pl

M2
Φ (13)

Physically, this ratio measures the surface Newtonian potential Φ relative to M/MPl.
We define screened objects the case in which the scalar force is confined only within a thin-shell
beneath the surface and unscreened objects the case in which the scalar force is non zero inside
the object. To satisfy experimental constraints we want the Milky Way to be screened so we
set:

M

MPl
= µ ∼= 10−3 (14)

following [5].

3. Spherical collapse
A popular tool to study the non-linear growth in cold dark matter is the spherical collapse
[7, 8]. This non-linear approximation was first used in the standard cold dark matter scenario,
but later also in the cold dark matter model with a cosmological constant (ΛCDM) [9].

3.1. Application to Symmetron model
Now we study how to apply the spherical collapse to symmetron model.
At the beginning, the initial density contrast of the bubble is very small (δm,i = 0.0003) so we
start by γ � 1: initially the sphere is in the thick-shell regime and the scalar field has this value
both inside and outside the sphere. Then, the transition from thick-shell to thin-shell regime
depends on the initial radius of the bubble (Ri). For small values of the initial radius, the sphere
remains in the thick-shell regime for all the time that it takes to collapse and we have that the
scalar field is inside the bubble and in the background; in this case, the γ parameter is always
less than one. For large initial radii, the sphere is initially in the thick-shell regime; at some
point, the γ parameter becomes larger than one and we turn off the scalar field inside the sphere.
In this case we observe the transition from thick to thin-shell regime. We denote by φ the scalar
field inside the bubble and by φ̄ the scalar field in the background.
The flat background Universe is described by Friedmann equations:(

ä

a

)
= − 1

6M2
Pl

(
ρ̄mA

(
φ̄
)

+ ρ̄φ + 3p̄φ
)

(15)

where:

ρ̄φ =
1

2
˙̄φ2 + V

(
φ̄
)

(16)

2 where σ8 parameter is defined as: σ2
8 (r = 8Mpc/h) =

∫
d3k/ (2π)3 |W̃ (kr) |2PL (k).
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p̄φ =
1

2
˙̄φ2 − V

(
φ̄
)

(17)

are respectively the density and the pressure of the scalar field and

H̄2 ≡
(
ȧ

a

)2

=
1

3M2
Pl

(
ρ̄mA

(
φ̄
)

+ ρ̄φ
)

(18)

We can derive the evolution equation for the bubble radius R by following the same steps of
[10]. So we have:(

R̈

R

)
= −β (φ) ˙̄φ

(
H̄ − Ṙ

R

)
+

(
ä

a

)
− 1

6M2
Pl

ρ̄mδm

(
1 + 2β (φ)2

)
(19)

Since the scalar field is rolling slowly along the minimum, we can neglect all terms proportional

to ˙̄φ. In the thick-shell regime the scalar field is inside the sphere and in the background:
φ = φ̄ = φ0. So we use equations 15-19 in which we put φ = φ0.
In the transition regime from thick to thin-shell, at the beginning we use the equations of the
previous case. When γ parameter becomes bigger than one, we put φ0 = 0. The equations are
the same for the background, while the evolution equations for the radius R become:(

R̈

R

)
=

(
ä

a

)
− 1

6M2
Pl

ρ̄mδm (20)

when we turn-off the scalar field inside the sphere. The important thing is that the dynamics
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Figure 1. Evolution of radius R
Ri

vs (z + 1) for δm,i = 0.0003. The blue curve represents ΛCDM model,
the red curve represents the transition regime from thick to thin-shell obtained by fixing RiH0 = 0.45
and the yellow curve represents the thick-shell regime, obtained by fixing RiH0 = 0.1.

of collapse and the type of regime depends on the initial radius of the sphere (Ri). For small
initial radius (RiH0 ≤ 0.1 means Ri ≤ 300 Mpc), we have that γ < 1 for all the time. If we
integrate numerically equations 15-19 from zi ∼ 7000 to zf = 0, with an initial density contrast
δm,i = 0.0003, we observe that the radius collapses at z ∼= 0.2, as we can see from figure 1. For
large initial radius (0.1 < RiH0 ≤ 0.45 means Ri between about 300 and 1400 Mpc) we have the
transition regime: we start by integrating numerically the same equations of the previous case
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from zi ∼ 7000 to the moment in which γ ≥ 1 (z ∼ 0.7). Then we use equation 20 for radius
evolution when we pass to thin-shell regime until the end zf = 0. In this case, the scalar force
is confined only within a thin-shell beneath the surface so the sphere collapses later respect to
the case in which the object is unscreened.

3.2. Determination of δc
We follow the same steps of [10] to obtain the linear evolution of density contrast:

δ̈m,L =
(
β ˙̄φ− 2H̄

)
δ̇m,L +

1

a2
∇2Φeff (21)

where Φeff is the effective gravitational potential given by

Φeff ≡ Φ + βδφ (22)

which follows the modified Poisson equation

∇2Φeff = − a2

2M2
Pl

ρ̄mδm
(
1 + 2β2

)
(23)

If we assume the adiabatic approximation, we can neglect all terms proportional to ˙̄φ so equation
21 becomes:

δ̈m,L ∼= −2H̄δ̇m,L +
1

a2
∇2Φeff (24)

where H̄ is defined in equation 18. We numerically solve equation 24 from z ∼ 7000 to z = 0
and we calculate the value of δ at redshift of collapse zc by varying the value of δm,i. From figure
2, the two models (thick-shell regime and transition from thick to thin-shell regime) approach
ΛCDM at high redshift after the phase transition. At z = 0, the difference in δc with respect
to ΛCDM is about 2% for thin-shell regime, while is about 4% for thick-shell regime.

1.5 2.0 2.5 3.0
zc + 1
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Figure 2. Extrapolated linear density contrast at collapse δc vs. zc + 1 for Einstein de-Sitter EdS
(green curve), ΛCDM (blue curve), transition from thick to thin-shell regime (red curve) and thick-shell
regime (yellow curve) cases.

4. Halo-mass function
We use a model of halo-mass function based on spherical collapse and on the Sheth-Tormen
(ST) prescription, by following the procedure of [11]. We calculate the halo-mass function by
fixing the value of δc at z = 0, as we can see from figure 3.
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Figure 3. Left panel: Halo mass function as a function of the virialization mass Mv for thick-shell
regime (red dashed line) by fixing δc (z = 0) ' 1.64 and β0 = 0.75, for the transition regime (blue dot-
dashed line) by fixing δc (z = 0) ' 1.70 and β0 = 0.75. The green band shows the region between the
two values of δc. The solid black line corresponds to the ΛCDM case, i.e. β0 = 0. Right panel: Relative
deviations of the halo mass function from ΛCDM model in function of Mv.

5. Conclusions
Dark matter haloes are the building blocks of cosmological observables associated with structures
in the universe. In this model, the scalar coupling which occurs after the phase transition leads
to an enhanced abundance of massive halos with respect to the Standard Model of Cosmology.
In figure 3 (right panel) we observe that the number of haloes increases significantly, especially
at the high mass end, by up to 50-100% for cluster-sized haloes. The transition regime (blue
curve) suppresses the abundance of haloes in the high mass end, as expected. A similar behavior
was found in [11] for f (R) models.
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