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I - Introduction

Coherent states (c.s.) introduced by Schrddinger [1] have been
shown [2] to play an important role in Quantum Optics [3 - 5] . They have
$0 many nice properties [6 - 7] that many attempts have been made to gene-
ralize them. The most attractive attempt is probably that of Perelomov [8]
who, emphasizing the role played by the nilpotent Weyl group (also known as
the Heisenberg group), defined a way of constructing systems of generalized
coherent states (g.c.s.) associated with (almost) any irreducible unitary
representation of any Lie group. The property of the ordinary c.s. which has
been emphasized by this author in his generalization is the transitive action
of the Weyl group on the set of c.s.. The definition of Perelomov will be
discussed below.

Another attempt was made a few months earlier by Barut and Girar-
dello [9] where the accent was on the fact that usual c.s. are eigenstates of
an unbounded operator, namely the annihilation operator. Their g.c.s. are
eigenstates of a nilpotent generator of a given semi-simple (non compact)

Lie group. As already stressed by Perelomov [8] their method cannot be
extended to all Lie groups, especially to compact ones.

Other systems of g.c.s. have been defined by various authors [10—15}

for specific ﬁhysica] problems . The remarkable fact is that all these sets

involve Lie groups and appear as special cases of the Perelomov definition.
Apart the Weyl and oscillator [16] groups which underly the usual c.s. and
the ones of the Landau electron [13} » the Lie groups which have been involved
are SU(2) , SO(4,2) and SU(n,1) : (a) An SU(2) system of g.c.s. has been
introduced by Radcliffe [ld} in 1971 under the name of spin coherent states ;

this system has already been investigated in many works [4, 10, 11, 17—21] .
The angular momentum c.s. invented by Atkins and Dobson [1ﬂ in relation

with the Schwinger [22] - Bargmann [23] approach of the roation group are
closely related with the Radcliffe ones ; (b) Giirsey and Orfanidis {12]

have used the conformal group te define four vector coherent states associated
with four vector position and energy momentum operators ; (c)} SU(n,1) sets of
g.c.s. have been investigated [14,15] in the special case n =3 for a
covariant description of the relativistic harmonic oscillator.
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In the present paper, we intend to describe the relationship
between the geometric properties of different types of g.c.s. After a brief
review of the Perelomov definition of g.c.s. we will show how it allows
the introduction of the Radcliffe spin c.s. The connection between harmonic
oscillator c.s. (h.o.c.s.) and Radcliffe's ones is investigated. The Pere-
lomov definition is criticized and restricted in order to get a richer
structure.

I1 - Perelomov's definition of a system of g.c.s. [8]

Definition : Let G be a Lie group and 2L  the Hilbert space of an
irreducible unitary continuous representation of G . Let ’fﬁl be the
projective space associated with o€ ( 5% is the set of rays of 2€ ,
i.e. the set of one dimensional subspaces of of referred to as the set
of states). Let CP be an arbitrary state, the set of all g ;; where

g € G is called by Perelomov a system of generalized c.s.

Such systems have the following properties
i) Let H be the stabilizer of <P , that is the subgroup of G such
that H\?/ :q« . Any element g of G can be written as a product
g=xh where h &€ H and x¢& G/H . One readily sees that g.c.s. can
be parametrized by the elements of the coset space G/H .

ii) The group G acts transitively on g.c.s. This means that given two
g.c.s. xg CP and x2~? , there exists a group. transformation mapping
X oon X, (one also says that the g.c.s. form a homogeneous space of G).

ii1) Suppose there exists on G/H an invariant measure dx . If ix >

denotes a normalized vector lying on the ray x:% » the operator

.’B-ﬁgux><x\dx (1)
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provided it exists, is a multiple of the unit operator : B = NI
It follows that any element 14> of & can be written in the form

H’>z-';— fo{X:X><x|+>

It follows, from (1) that the system of g.c.s. is complete

jii) From (1) , any wave function on G/H can be written as follows

T = <giy> = p fole y o) Kis0)

where K(y,x) = <y\lx> 1is a reproducing kernel.

One easily recognizes some important properties of the ordinary
c.s. when G is the nilpotent Weyl group. In fact, if we use the Perelomov
definition for the Weyl group, we get an infinite number of systems of

g.c.s. in which the usual system appears as a very special case. In fact,
according to a famous theorem of Von Neumann [24] , the Weyl group only

has one kind of continucus irreducible faithful representations. In this
representation, any state :; can be shifted in a non trivial way by
transformations generated by X and =\ gi( . In other words, any state
Ties on a two-dimensional system of g.c.s. in the Perelomov sense. The usua
¢.s. are the ones which lie on the orbit of the ground state of a harmonic
oscillator. It follows that the Perelomov definition of g.c.s. does not
contain one of the characteristic properties of Schrddinger c.s., namely

the closeness of c.s. to the classical states, a property which comes from
*®

the minimalization of the Heisenberg uncertainty relations A K‘-zlp‘~ =3
Unfortunately, such a property is not easily generalizable to arbitrary

Lie groups.
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111 - Radcliffe's c.s. from Perelomov definition

Accordintho Perelomov's ideas, given a couple (G ,2¢) , we
have to decompose € into a union of orbits [?5] (homogeneous spaces)
of G , each of them corresponding to a set of g.c.s. When G is the
ordinary rotation group, such a decomposition has been made in [26] .
Thé results have a simple geometrical description we are going to recall
here : first, let us define the concept of constellation.

Constellation of order n : Let Al’ A2,..., Ak be k points of a manifold,
with weights o, oy, .- Lo respectively, The a 's are strictly
positive integers and satisfy the relation e +d + .. + o =m .

First Example : Any complex polynomial in one variable of degree n is
associated with a constellation of order n 1in the complex plane (its roots)
and vice-versa (if the polynomials are defined up to a non-zero factor).

Second Example : Any complex polynomial in one variable of degree £ n s
associated with a constellation of order n on a two dimensional sphere
(Proof : if the degree of the polynomial is m , we say that n-m roots
are infinite ; then, the extended complex line is mapped on the Riemann
sphere through a stereographic projection). The set of constellations of
order n on the Riemann sphere will be referred to as the gth sky S(n) .
. A
Theorem [2@ . The projective space 28 associated with an (n+1)-dimensional

Hilbert space D€ can be identified with the nt" sky s{M .

As a consequence, finding a finite projective representation of G
is equivalent to finding how G acts on the corresponding sky ** . The
answer is quite simple for SU(2) : "JUST ROTATE THE SKY" . Therefore, spin J

A

* The corresponding decomposition of Al (instead of 3£ ) into a
union of orbits has been made by Mickelsson and Niederle If7 .

** About the action of SL(2,C) on the sky 5(23) associated with the
representation Djo s see reference [23] . I am grateful to Dr. R. Shaw
for having pointed out this reference to me.
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states are constellations of order 2j and two constellations are on
the same orbit if and only if they can be brought into superposition by
rotation. Two such constellations will be said to have the same shape.
The classification of orbits which are present in a representation of
SU(2) has been given in [26] . Let us note that many descriptions are
possible * but the following one is quite simple : the state +jm X s
represented by a constellation of order 2j with one point at the North
pole with multiplicity 2m and one point at the South pole with multipli-
city 2j - 2m . The operators Js act in a very elementary way on such
states. It is clear in this scheme that the states |jm» and 1 j - m>
lie on the same orbit.

According to Perelomov's definition, any system of g.c.s. is
given by an orbit and thus characterized by a shape of constellation.
The system which has been introduced by Radcliffe [10] is the one of
"collapsed” constellations that is the one which contains the state 1jj» .
Therefore any Radcliffe c.s. can be labelled by spherical coordinates
JL= (8 %) orby acomplex number z . It follows that a spin c.s.
can take the value z = «0 in contradistinction with the h.o.c.s.
The orbit of Radcliffe c.s. is sometimes referred to as the Bloch sphere [4].

The main properties of spin c.s. have been established in
[10, 17, 20] . Let us mention some of them

leg> = (1 s122)7d ¥ EEETIN (2)
caliey o [ Gx 3R }3 o
[ [(u-\z'b‘)(lww‘)

In the (B.,y) notation, one gets % = ""Mg e f 5 it follows
that

* Due to the transitive action of U(n) on S(n-lf' any state can be
represented by a given constellation.
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<o'v) B> =(on :@Z‘)‘Z‘J (4)

where () is the angle between the two corresponding radii on the Bloch
sphere S (two orthogonal states are opposite on S ) . The completeness
relation reads

(e vu><l = Y] (5)

where d JLis the usual rotationnally invariant measure.

Remarks : i) The complex parametrization of the Radcliffe c.s. is intimately
related to the Riemann sphere used by Vilenkin [2?] in his construction of
the SU(2) representations.

ii) SU(2) 1is generally used in physical problems involving two’lgve1
systems. In the case of the polarization space of the electron, € is

a sphere which can be readily embedded in the ordinary space because the
rotation group acts in an obvious way on it with an obvious interpretation.

In the case of the polarization space of the phcton, é§1 is the Poincaré
sphere but rotations of this sphere are not related with the physical rota-
tions of the photon states. Isospin and quasi-spin states also correspond
to abstract spheres.

ii1) According to the work of reference [26] , the sky representation can
be used for any finite~dimensional Hilbert space. The Bloch sphere [4]
corresponds to symmetrized states of N identical coherent two-level atoms.

A generalization of the Bloch sphere for the description of non coherent
identical systems appears to be possible with the aid of the constellation
concept.

IV - Connection between spin c.s. and h.o.c.s.

Radcliffe [10] has described a relationship between his spin c.s.
and the c.s. of the harmonic oscillator in one dimension. It has been shown
in [}7] that this relationship is better understood with the aid of a group
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contraction [30 s 31] . Moreover, it follows from the work by Atkins and
Dobson [11] » that another relationship can be found between Radcliffe
c.s. and the c.s. of the two-dimensional h.o. This is closely related to
the Schwinger [2?]- Bargmann [23] way of studying the SU(2) group.

We intend to show here how this approach can be given a physical interpre-
tation with the Poincaré sphere of elliptic polarizations of an electroma-
gnetic plane wave.

1) The Poincaré sphere and the angular momentum c.s.

Poincaré [32] has shown that every elliptic polarization of
an electromagnetic plane wave {(propagating in a given direction) is
represented by a point on a sphere * . A modern group theoretical approach
of the Poincaré sphere geometry would be as follows. Let

2
Pe +}o}+x"45"
A e S g = T

H= 2 (6)

be the (classical) Hamiltonian of the two-dimensional h.o. It can also be
written

H=2 2 + 22 (7)
where

2, =5 [eeop et ipy)) ®)

Since it is a two degrees of freedom problem, a complete set of constants

of the motion must contain four classical observables. If we discard the
phase and energy, the complex number 2z = z+/ z_ uniquely define a solu-
tion, a polarization. It is clear that z belongs to the extended complex
line. With the aid of a stereographic projection, we are led to the Poincaré
sphere.

Now, it is clear from Eq(7) that H is invariant under SU(2) .
Therefore SU(2) must act on the Poincaré sphere. The SU(2) generators

* North (resp.South) hemisphere corresponds to right (rssp2 1ef§) polariza-
tions ; the Tatitude angle 2I is such that cos I = (A“-B%)/(A% + B“) where
A and B are the half axes Tengths of the ellipse ; the longitude angle
is 2 where is the angle of the main axis with a given direction
in the polarization plane.
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are

J3=~é—({y5-y'¢‘)
2 I 2 2
J,:’«'T(T'L bk %y ) Jz:ai(xgﬂa,gy)s) (9)

which are constants of the motion sinc«{th] = 0 . We readily note that

Y 2 . % H2 and that 3. defines exactly one point on the Poincaré sphere
of radius H/2 with the very meaning indicated in the last footnote.

In other words, the knowledge of 37H determines uniquely the shape and
the orientation of the ellipse.

The quantum mechanical approach is quite analogous : we define
the annihilation operators as in (8)

@, = £y £ Ctpa-py)]

(10)
and the corresponding (Hermitian conjugate) creation operators d;
He get
H=&1 0\4_“"0\3: o (11)
Tag, afd=J. (12)

. ¥
Then, the J operators expressed in terms of a and a+ are exactly

the ones Schwinger [22] introduced in his study of the SU(2) group.
If z4 are the eigenvalues of ay , ve see how we go from h.o.c.s.

Z,, Z_ to the spin c¢.s. Jz%» just by defining equivalence classes

+’

VR, e s kR, AR (13)

each equivalence class defining a spin c.s. In the Poincaré interpretation,
two harmonic oscillator motions are equivalent if they correspond to the
same polarization (that is if their corresponding ellipses have same eccen-
tricity and orientation)”.

* Another interesting property is the following one : the operator a:
(resp. at) can be interpreted as the creator of a point at North (resp. South)
pole of the Poincaré sphere. Therefore J, = at a_ raises a point from South to

¢ _ronc R TN S
North pole and J_ = al a. does the opposite (see [26] ).
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1
Résumé
Two-dimensional h.o.c.s. - spin c.s.
Bargmann-Schwinger study of SU(2) «  __ Vilenkin study of SU(2)
Electromagnetic plane wave e elliptic polarization

2) Group contraction of the rotation group into the oscillator group

A set of Lie algebras G(et ,f ) of dimension 4 which has

been extensively investigated by Miller [3ﬂ are intimately related with
special functions. These Lie algebras have the following commutation brackets
s
(935 94] =19,
[y ] = -id

3* 72 1
{ ; ks (14)

[Jl, 2] iads + ipE :

UZE 7]

These real Lie algebras are the ones of SO(3) x TR for &> 0 ,
$0(2,1) x R for o< 0, E(2) x TR for e =/p4=0 and 0Osc(l) for
&£=0,pPp#0 . Here E(2) denotes the Euclidean group in the two dimensional
space, Osc(l) 1s the oscillator group Dﬁ] and TR. is the one dimensional
translation group. Miller [33] has shown that these Lie algebras are related

]

0

through contraction processes [30 , 31] in the following way :

s0(3) x® e
el — == B xR
S0(2,1) x®

each arrow denoting a contraction.

Arecchi et al. [17] have stated that the contraction from $0(3) x T
to Osc(l) transform the spin c.s. into the h.o.c.s. This statement is true
but the proof presented by these authers is incomplete. Our purpose is to give
an exact derivation of the contraction by using unitary representations of
the real groups under consideration, i.e. SO(3) x IR and Osc(l) .
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-
We start from the Lie algebra of S0(3) x TR with generators J and E
satisfying (14) with o =1 and F== 0 . We perform the following
change of basis

i} 11
H = J3 + (c + 7" Te } E
1
ML e 1, (15)

The commutation rules read :

[h,A)=2A,
11

[A,» Ad= < H - (14ge =) F (16)

(F,Hl =0

For ¢ = %,’ the change of basis is the identity one. When we make ¢
going to infinity, we get the Osc(l) Lie algebra as a contracted Lie
algebra. Obviously, it would be possible to perform this contraction
by use of a simpler parametrization than (15) . However the one we
chose is convenient for the study of c.s.

So far, we have investigated the contraction on the Lie algebra.
Let us now see what we get for the representation. We start from the Vilenki
description [29] by polynomial of degree £ 2j

i

oy
(3= 254 -1
g, = - 28 24252 (17)

+ bZ

q

_ 3
o= 337

\E'—‘l

Let us renormalize by setting

7 =%y JESM (18)
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This corresponds to a redefinition of Radcliffe's states (Eq.2)

Ths _|' $/vE
) e

! .
P ST WeE> o a9

With this change of normalization, Eqs.(15) and (17) give us

(H- S& ~J+rc v 7~ %
A = ~ ! 3‘" 2 <+ U.j: S
Jt vye T © (20)

k=‘L%g%

If we now make ¢ = j and then make j going to infinity,

we readily obtain the usual h.o.c.s. of the group Osc(l) , namely
2 4 A= A=2 =
- 2 _ 4 ~ F = )

H %5 s (21)

Let us now give a more rigorous description of what we have just
arrived at. et @ be a Bargmann space [7] and tet Pj be the projector
on the subspace of polynomials of degree less than or equal to 2j . Each
set of the following operators

(WD . (s T 5 -H)7

(3) & (- 1 w2 P.

A , -+

) (3 5N (22)
J Lo p.

Ao 2 p

(3) .

L =%

defines an irreducible representation of the Lie algebra generated by H(J),
A(J) and F(J) . When j goes to infinity, we get the Bargmann represen-
tation of the group O0sc(l).
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Remarks : i) The change (18) from z to 3 corresponds to giving to
the thh sky a radius U2j .

ii) The question arises how to define a Radcliffe c.s. as a function of 4
instead of the ket defined in (19) . The answer follows from the identity
.--\| 'L

2y
£ (I+L‘J3 J (23)

In fact, since 1 is the function associated with the state t j -j A,
one readily sees that the Radcliffe c.s. (in the ¥ variable)
corresponds to the function

2

>)

P (24)

~2
llJ
\

W) Gl
= ?\3_, (%) = (\+ , )+ 5

which, when J goes to infinity provide wus with the usual c.s. functions
too) 18yt =y

R _ - ¥ 8
g1 =2 e (25)

iii) A set of fundamental invariants of the algebra (16) is given by F and

HE =
Q.= ==~ (1+ : )HF (AA+A A ) (26)

ZJI
We readily see that Q o is the invariant of the group 0sc(1) *

Summary

b

In F1 » the Bargmann spaces of entire functions of 35 , one
can define a sequence of representations Dj of the SU(2) xJR Lie algebra
on an increasing sequence of subspaces PJ.F1 (representations given by
Eqs.(15) and (22) with ¢ =3 ). When j tends to infinity, this Lie algebra
contracts into that of 0Osc(l) . The operators (22) which are bounded for

* The Casimir operator of SU(2) , the eigenvalues of which are j(j+l1) is
'l | I 4 : 1 1 2 2
given by QJ = 2] QJ +(J+ 5 —ZT) F.



262

j finite tend to the unbounded operators (21) in the following sense :
if f belongs to H domain, Lim He()s - HeiY= 0 . Moreover the Rad-

: N
cliffe c.s. R(J%?,( 2)  of JJEq.(24) tends to the usual c.s. (25) ,
i.e.

Lim RUD) - ()} < g
joe 5! N

V - Completeness of subsets of g.c.s.

Any system of g.c.s. being complete, it is natural to Took for
some complete subset. Such a question has already been answered for the
usual c.s. by Von Neumann [25] , by Bargmann et al [34] and Perelomov [35].
In this special case an interesting complete set of c.s. which has been
investigated, is generated by a discrete subgroup of the Weyl group, namely
the group of discrete translations of a lattice in phase space

eimbx oinap (27)

where x and p are position and momentum operators, m and n are
integers and a and b are related by the condition ab = 277

It is therefore natural to look, following Perelomov [8] ,» for
complete subsets of g.c.s. which are orbits of some subgroup of the group
under consideration. In the case of g.c.s. associated with the Weyl group,
a necessary and sufficient condition has been given in [36] for a state
to generate a complete set under the lattice group (27).

For the case of spin c¢.s. , it can be readily seen that any
subset of 2j+1 spin c.s. of spin j is complete, i.e. form a (nonorthogonal)
basis of the representation space. The proof is as follows : a spin c.s.
|2, has components of the form [26} :
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\
d,&,
L
dl*;
u
eLq 2
Consider 2j+1 such states : | z7> 5 {z5% 5 ... \22j+f:> . For these c.s.
to be independent, it is necessary that the determinant
1 1 R 1
hZ o 9% 723 127541
o 2 2 2
221 T% %3 *2%25+1
o 2] o 2] o 2] oL 2]
2i&1 23%2 2373 252j+1

does not vanish. It is readily seen that this determinant is different
from zero if and only if all the z;'s are distinct. This proves the
statement.

VI - Concliusion

The PereJomov definition of g.c.s. is only based on the transitivity
property and no physical justification has been given for that. Moreover,
according to this definition, any state is coherent. This is not very satis-
factory and it is desirable not only to justify the need of an orbit but
also to restrict the definition by using some physical argument. The most
physical argument which is used for usual c.s. is probably the closeness of
h.o.c.s. to classical states, a property which is expressed by the minima-
lization of the Heisenberg inequality. Unfortunately, we do not know how
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to generalize the Heisenberg uncertainty principle to all Lie groups but
it is clear that if we were able to express the closeness of g.c.s. to
classical states, the g.c.s. would be parametrized by coordinates in the
phase space of the system. A phase space is a particular case of a sym-
plectic manifold and it has already been shown [37-41] how non trivial
symplectic manifolds are naturally involved in the description of classical
relativistic or non relativistic elementary systems. In this case, the
symplectic manifolds are canonically related to the Poincaré and Galilei
group by the Kostant-Souriau theorem [42] . Let us underline that the
transitivity property only expressed the elementary character of the
classical system under consideration.

It follows from our discussion that, whatever is the way of
introducing the concept of closeness to classical states, the orbit of
g.c.s. must be a symplectic one. Let us examine how strong is the res-
triction for an orbit to be a sympiectic one in the case of the SU(2)
group. According to the Kostant-Souriau theorem [42] s the only symplectic
homogeneous spaces of a Lie group G are the orbits of G on the dual
vector space of the Lie algebra. It is quite simple to see that the only
symplectic homogeneous space of SU(2) s the sphere 52 (as a coset
space it is S0(3)/50(2)). According to [26] the only states which have
SO(2) as stability subgroup are the states of type \jmj7 with m#0 .
On the thh sky there are j + %- or Jj such orbits according to j is
half dintegral or integral. It is quite remarkable that the restriction of
symplecticness only select a finite number of orbits among an 1nfinity.+

Obviously, the Radcliffe choice is the most natural one.

The restricted definition we proposed is unfortunately not so
successful in the case of the Heisenberg-lieyl or oscillator group, because
we are still left with an infinite number of symplectic orbits. However,
in the case of the Galilei group, it can be shown, for a spinless particle,
that one of possible systems of g.c.s. would be of the form

=

g o

T s a o
'Q. L Q"PG{((F"Q)")

* Except in the case Jj = %- for which the projective space is a single orbit.
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where T ,'3 ,'? are parameters. We immediately note that the ordinary
c.s. belong to this kind. Similar g.c.s. could be defined for relativistic
particles with the aid of the Poincaré group+. One of the most promising
sets of g.c.s. seems to be the twistor space [43] .

Y an symplectic manifolds invariant under the Poincaré group have been
classified in [41].
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