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I - Introduct ion 

Coherent states (c .s . )  introduced by Schr~dinger F1] have been 

shown [ 2 ]  to play an important role in Quantum Optics [ 3 -  5 ] .  They have 

nice propert ies r6 - 77 that  many attempts have been made to so many gene- 

ra l ize  them. The most a t t rac t ive  attempt is probably that of Perelomov [8 ]  

who, emphasizing the role played by the n i lpotent  Weyl group (also known as 

the Heisenberg group), defined a way of constructing systems of generalized 

coherent states (g .c .s . )  associated with (almost) any i r reducib le  unitary 

representation of any Lie group. The property of the ordinary c.s. which has 

been emphasized by this author in his general izat ion is the t rans i t i ve  action 

of the Weyl group on the set of c .s . .  The de f in i t i on  of Perelomov w i l l  be 

discussed below. 

Another attempt was made a few months ea r l i e r  by Barut and Girar- 

del lo [9]  where the accent was on the fact that  usual c.s. are eigenstates of 

an unbounded operator, namely the annih i la t ion operator. Their g.c.s,  are 

eigenstates of a n i lpotent  generator of a given semi-simple (non compact) 

Lie group. As already stressed by Perelomov [8] the i r  method cannot be 

extended to a l l  Lie groups, especia l ly  to compact ones. 

Other systems of g.c.s,  have been defined by various authors [10-15] 

for  spec i f ic  physical problems . The remarkable fact  is that a l l  these sets 

involve Lie groups and appear as special cases of the Perelomov de f in i t i on .  

Apart the Weyl and osc i l l a to r  [].6] groups which underly the usual c.s. and 

the ones of the Landau electron [ i3]  , the Lie groups which have been involved 

are SU(2) , S0(4,2) and SU(n,1) : (a) An SU(2) system of g.c.s,  has been 

[ I ~  in 1971 under the name of spin coherent states introduced by Radcl i f fe 

this system has already been invest igated in many works [4,  10, 11, 17-21] . 

The angular momentum c.s. invented by Atkins and Dobson [1~ in re lat ion 

with the Schwinger [22] - Bargmann L23] approach of the roation group are 

closely related with the Radcl i f fe ones ; (b) GUrsey and Orfanidis [12] 

have used the conformal group to define four vector coherent states associated 

with four vector posi t ion and energy momentum operators ; (c) SU(n,1) sets of 

g.c.s,  have been invest igated ~4,15]  in the special case n = 3 fo r  a 

covariant descr ipt ion of the r e l a t i v i s t i c  harmonic osc i l l a to r .  
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In the present paper, we intend to describe the re la t ionsh ip  

between the geometric propert ies of d i f f e ren t  types of g.c.s.  A f ter  a b r i e f  

review of the Perelomov d e f i n i t i o n  of g.c .s ,  we w i l l  show how i t  allows 

the in t roduct ion of the Radcl i f fe  spin c.s. The connection between harmonic 

o s c i l l a t o r  c.s. (h .o .c .s . )  and Radc l i f fe 's  ones is invest igated.  The Pere- 

lomov d e f i n i t i o n  is c r i t i c i z e d  and res t r i c ted  in order to get a r i cher  

s t ructure.  

I I  - Perelomov's d e f i n i t i o n  of a system of g.c.s.  [8 ]  

De f in i t i on  : Let G be a Lie group and ~ the H i lber t  sp~ce of an 

i r reduc ib le  un i tary  continuous representation of G . Let P~,. be the 

p r o j e c t i v e  space associated with ~ ( ~  is the set of rays of ~ , 

i . e .  the set of one dimensional subspaces of ~ referred to as the set 

of s tates) .  Let ~ be an a rb i t ra ry  s ta te ,  the set of a l l  g ~  where 

g E G is cal led by Perelomov a system of generalized c.s. 

Such systems have the fo l low ing  propert ies 

i )  Let H be the s t a b i l i z e r  of ,~ , that  is the subgroup of G such 
A 

that  H ~ = J (  . Any element g of G can be wr i t t en  as a product 

g = xh where h E H and x ~  G/H . One read i l y  sees that  g.c.s,  can 

be parametrized by the elements of the coset space G/H . 

i i )  The group G acts t r a n s i t i v e l y  on g.c .s .  This means that  given two 
A 

g.c.s .  X l ~  and x 2 ~  , there ex is ts  a group transformation mapping 

x I on x 2 (one also says that  the g.c .s ,  form a homogeneous space of G). 

i i i )  Suppose there exists on G/H an inva r ian t  measure dx . I f  I x  > 

a normalized vector ly ing  on the ray x ,~  , the operator 
I 

denotes 
! 

~ ' ~  ~ l ~ > < x l  ~ (1) 
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provided i t  ex i s t s ,  is a mul t ip le  of the un i t  operator : B = ~  

I t  fol lows that  any element ~ >  of o~e can be wr i t ten  in the form 

l-F>= t-- ~dxlx>.<~l,V.., > X 

I t  fo l lows,  from (1) that the system of g.c .s ,  is c omplet_e 

i i i )  From ( I )  , any wave funct ion on G/H can be wr i t ten  as fol lows 

where K(y,x) = ( y l x >  is a reproducing kernel~ 

One eas i ly  recognizes some important properties of the ordinary 

c.s. when G is the n i lpo ten t  Weyl group. In fac t ,  i f  we use the Perelomov 

d e f i n i t i o n  for  the Weyl group, we get an i n f i n i t e  number of s~stems of 

g.c.s,  in which the usual system appears as a very special case. In fac t ,  

according to a famous theorem of Von Neumann [24] , the Weyl group only 

has one kind of continuous i r reduc ib le  f a i t h f u l  representations. In th is  

representat ion, any state ~ can be sh i f ted  in a non t r i v i a l  way by 

transformations generated by x i and - C  ~- ~-~,. . In other words, any state 

l ies  on a two-dimensional system of g.c.s,  in the Perelomov sense. The usua 

c.s. are the ones which l i e  on the o rb i t  of the ground state of a harmonic 

o s c i l l a t o r .  I t  fol lows that the Perelomov d e f i n i t i o n  of g.c .s ,  does not 

contain one of the charac ter is t i c  propert ies of Schr~dinger c . s . ,  namely 

the closeness of c.s. to the c lassical  s tates,  a property which comes from 

the minimal izat ion of the Heisenberg uncerta inty re lat ions ~Kcz~p~.  =1~ 

Unfortunately,  such a property is not eas i ly  general izable to a rb i t ra ry  

Lie groups. 
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I I I  - Radc l i f fe 's  c.s, from Perelomov d e f i n i t i o n  

According/to Perelomov's ideas, given a couple ( G , ~ )  , we 

have to decompose ~ in to  a union of orb i ts  [25] (homogeneous spaces) 

of G , each of them corresponding to a set of g .c .s .  When G is the 

ordinary ro ta t ion  group, such a decomposition has been made in [26]  + 

The resul ts have a simple geometrical descr ip t ion we are going to reca l l  

here : f i r s t ,  l e t  us define the concept of cons te l la t ion .  

Conste l la t ion of order n :  Let A 1, A 2 . . . . .  A k be k points of a manifold, 

l with weights ~-i~ d . : ~ . , .  ~ , respect ive ly .  The ~- 's are s t r i c t l y  

I pos i t i ve  integers and sa t i s fy  the re la t ion  ~ - ~  ~ +  ..  ÷ W~:n~  . 

i F i r s t  Examp.]e : Any complex polynomial in one var iable o f  degree n is 

associated with a conste l la t ion of order n in  the complex plane ( i t s  roots) 

and vice-versa ( i f  the polynomials are defined up to a non-zero fac to r ) .  

Second Example : Any complex polynomial in one var iable of degree_< n is 

associated with a conste l la t ion of order n on a two dimensional sphere 

(.Proof : i f  the degree of the polynomial is m , we say that  n-m roots 

are i n f i n i t e  ; then, the extended complex l i ne  is mapped on the Riemann 

sphere through a stereographic pro jec t ion) .  The set of  conste l la t ions of 

order n on ~he Riemann sphere w i l l  be referred to as the n th sky S (n) 

A 

I Theorem [2~ . The pro ject ive space ~ associated with an (n+l)-dimensional 

H i lbe r t  space ~ can be i den t i f i ed  with the n th sky S (n) 

As a consequence, f ind ing  a f i n i t e  pro ject ive representation of G 

is equivalent to f ind ing  how G acts on the corresponding sky ++. The 

answer is qui te simple for  SU(2) : "JUST ROTATE THE SKY" . Therefore, spin 

+ The corresponding decomposition of ~ ( instead o f ~  ) in to  a 
union of orb i ts  has been made by Mickelsson and Niederle ~27] . 

++ About the act ion of SL(2,C) on the sky S (2j)  associated with the 

representation Djo , see reference [2 4 . I am gratefu l  to Dr. R. Shaw 

for  having pointed out th is  reference to me. 
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states are conste l la t ions of order 2j and two conste l la t ions are on 

the same o rb i t  i f  and only i f  they can be brought in to  superposit ion by 

ro ta t ion .  Two such conste l la t ions w i l l  be said to have the same shape. 

The c lass i f i ca t i on  of orb i ts  which are present in a representation of 

SU(2) has been given in [26] . Let us note that  many descr ipt ions are 

possible ÷ but the fo l lowing one is qui te simple : the state Jjm ~ is 

represented by a cons te l la t ion  of order 2j wi th one point  at the North 

pole with m u l t i p l i c i t y  2m and one point  at the South pole wi th m u l t i p l i -  

c i t y  2j - 2m . The operators J + act in a very elementary way on such 

states• I t  is c lear in th is  scheme that  the states l jm > and I j - m> 

l i e  on the same o rb i t .  

According to Perelomov's d e f i n i t i o n ,  any system of g .c .s ,  is 

given by an o rb i t  and thus characterized by a shape of cons te l la t ion .  

The system which has been introduced by Radcl i f fe [10] is the one of 

"collapsed" conste l la t ions that  is  the one which contains the state l j j ~  • 

Therefore any Radcl i f fe  c•s. can be label led by spherical coordinates 

J~.= ~0~ ~ )  or by a complex number z . I t  fo l lows that a spin c.s. 

can take the value z = ~0 in con t rad is t inc t ion  with the h .o .c .s .  

The o rb i t  of Radcl i f fe  c.s. is sometimes referred to as the Bloch s ~ r e  [4 ] .  

The main propert ies of spin c.s. have been established in 

[10, 17, 20] . Let us mention some of them 

, j  - j> (2) 

(~, ~'~ ) 1 ~' ~ ' I ~ >  = [ - - -  j (3) 

In the (~) l~)  
that 

notat ion,  one gets ~ m ~ - e ~  ~ -~  ~ ; i t  fo l lows 

Due to the t r ans i t i ve  act ion of U(n) on S ( n -~  any state can be 

represented by a given cons te l la t ion .  
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where ~) is the angle between the two corresponding rad i i  on the Bloch 

sphere S (two orthogonal states are opposite on S ) . The completeness 

re la t ion reads 

~j'+~ (5) 

where d - rL is the usual ro ta t ionna l ly  invar iant  measure. 

Remarks : i )  The complex parametrization of the Radcl i f fe c.s. is in t imate ly  

related to the Riemann sphere used by Vi lenkin [2 9 in his construction of 

the SU(2) representations. 

i i )  SU(2) is general ly used in physical problems involv ing two level 

systems. In the case of the polar izat ion space of the electron: ~ is 

a sphere which can be readi ly  embedded in the ordinary space because the 

rotat ion group acts in an obvious way on i t  with an obvious in terpre ta t ion .  

In the case of the polar izat ion space of the photon, ~ is the Poincar6 

sphere but rotat ions ef th is sphere are not related with the physical rota- 

t ions of the photon states. Isospin and quasi-spin states also correspond 

to abstract spheres. 

i i i )  According to the work of reference [26] , the sky representation can 

be used for  any f in i te-dimensional H i lber t  space. The Bloch sphere [4 ]  

corresponds to sym!~etrized states of N ident ica l  coherent ~o - l eve l  atoms. 

A general izat ion of the Bloch sphere for  the descript ion of non coherent 

ident ica l  systems appears to be possible with the aid of the conste l la t ion 

concept. 

IV - Connection between spin c.s. and h.o.c.s.  

Radcl i f fe [10] has described a re lat ionship between his spin c.s, 

and the c.s. of the harmonic osc i l l a t o r  in one dimension. I t  has been shown 

in [17] that th is re lat ionship is bet ter  understood with the aid of a group 
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contraction [30 ,  3~ . Moreover, i t  follows from the work by Atkins and 

Dobson L l l ]  , that another re lat ionship can be found between Radcl i f fe 

c.s. and the c.s. of the two-dimensional h.o. This is closely related to 

the Schwinger [22]- Bargmann [23] way of studying the SU(2) group. 

We intend to show here how this approach can be given a physical in terpre-  

ta t ion with the Poincar~ sphere of e l l i p t i c  polar izat ions of an electroma- 

gnetic plane wave. 

1) T h.e Poincar~ sphere and the angular momentum c.s. 

Poincar~ [32] has shown that every e l l i p t i c  polar izat ion of 

an electromagnetic plane wave (propagating in a given d i rect ion)  is 

represented by a point on a sphere + . A modern group theoret ical  approach 

of the Poincar~ sphere geometry would be as fol lows. Let 

H = .~ (61 

be the (c lass ica l )  Hamiltonian of the two-dimensional h.o. I t  can also be 

wr i t ten 

where 

(8) 

Since i t  is a two degrees of freedom problem, a complete set of constants 

of the motion must contain four c lassical  observables. I f  we discard the 

phase and energy, the complex number z = z+/z_ uniquely define a solu- 

t i on ,  a polar izat ion= I t  is clear that z belongs to the extended complex 

l ine .  With the aid of a ster~ographic project ion, we are led to the Poincar~ 

sphere. 

Now, i t  is clear from Eq(7) that H is invar iant  under SU(2) . 

Therefore SU(2) must act on the Poincar~ sphere. The SU(2) generators 

North (resp.South) hemisphere corresponds to r igh t  (r~sp4 l e f t )  polar iza- 
t ions ; the la t i tude angle 21 is such that cos I = (A -B~)/(A L + B L) where 
A and B are the hal f  axes lengths of the e l l i pse  ; the longitude angle 
is 2~where ~ is the angle of the main axis with a given direct ion 
in the polar izat ion plane. 
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are 

which are constants of the motion sinca[J,HJ = 0 . We readi ly  note that 
=¼ --" 

J 2  H 2 and tha t  d def ines  exac t l y  one po in t  on the Poincar~ sphere 

of radius  H/2 with the very meaning i n d i c a t e d  in the l a s t  foo tno te .  

In o ther  words, the knowledge of "~/H determines uniquely the shape and 

the o r i e n t a t i o n  of the e l l i p s e .  

The quantum mechanical approach i s  qu i te  analogous : we def ine  

the a n n i h i l a t i o n  opera to rs  as in (8) 

1 
- (io) 

and the corresponding (Hermitian conjugate) creation operators 

We get 

~ ----&10~ 4- ou% Ou + 

+ 
a_+ 

( I I )  

(12) 

Then, the J operators expressed in terms of a and a + are exact ly 

the ones Schwinger [2 0 introduced in his study of the SU(2) group. 

I f  z ~ are the eigenvalues of a± , we see how we go from h.o.c.s.  

z+, z_ to the spin c.s. I z~  jus t  by def ining equivalence classes 

\~:+ 5_> = 1  k~.4_, i~_> (1.3) 

each equivalence class defining a spin c.s. In the Poincar~ in te rp re ta t ion ,  

two harmonic osc i l l a t o r  motions are equivalent i f  they correspond to the 

same polar izat ion ( that  is i f  t he i r  corresponding e l l ipses have same eccen- 

t r i c i t y  and or ientat ion)  + . 

+ + 
Another in terest ing property is the fol lowing one : the operator a+ 

(resp. a:) can be interpreted as the creator of a point at North (resp. South) 

pole of the Poincar~ sphere. Therefore J~. = a4+ a raises a point from South to 
North pole and J = a~ a_ does the opposite (see [26] ). 
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R~sum# 

Two-dimensional h.o.c.s.  ~ 

Bargmann-Schwinger study of SU(2) < 

Electromagnetic plane wave <. ___> 

spin c.s. 
> Vilenkin study of SU(2) 

e l l i p t i c  polar izat ion 

2) Group contraction of the rotat ion group into the osc i l l a t o r  grou~ 

A set of Lie algebras G(~. , ~  ) of dimension 4 which has 

been extensively investigated by M i l l e r  [3~ are in t imate ly  related with 

special functions. These Lie algebras have the fol lowing commutation brackets 

[J3' J1] = i J2 

[J3' J2] = -iJ1 
(14) 

[J1, J2] = i 'J3 + 

[ E , ? ]  =o 

These real Lie algebras are the ones of S0(3) x ~ for  ~ >  0 , 

S0(2,1) x IT~ for  ~<  0 , E(2) x T~. for  ~ = ~ = 0 and Osc(1) for 

oC = 0 , ~ # 0 . Here E(2) denotes the Euclidean group in the two dimensional 

space, Osc(1) is the osc i l l a t o r  group D6] and ~ is the one dimensional 

t rans lat ion group. M i l l e r  [33] has shown that these Lie algebras are related 

through contraction processes [30 , 31] in the fol lowing way : 

S0(3) x 1 - ~ ~ )  

S0(2,1) xIR, - /  

~ E(2) ×~.  

each arrow denoting a contraction. 

Arecchi et a l .  [17] have stated that the contraction from SO(3) x ~ ,  

to Osc(1) transform the spin c.s. into the h.o.c.so This statement is tru~ 

but the proof presented by these authors is incomplete. Our purpose is to give 

an exact derivat ion of the contraction by using uni tary representations of 

the real groups under consideration, i . e .  S0(3) x ~ and Osc(1) . 
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We s ta r t  from the Lie algebra of SO(3) x ~ with generators 7 > and 

sat is fy ing (14) with M = I and ~= 0 . We perform the fol lowing 

change of basis 

I H  = J3 + (c + ½ -  1 - ~ -  ) E 

I 

~ F  = E 

(15) 

The commutation rules read : 

I ~H , A~] = • A~ 

2TI 2c 21 ) F (16) [A+,  A_]= ~ H - (1 + 

~ F ,HI : 0 

I For c = ~ , the change of basis is the iden t i t y  one. When we make c 

going to i n f i n i t y ,  we get the Osc(1) Lie algebra as a contracted Lie 

algebra. Obviously, i t  would be possible to perform this contract ion 

by use of a simpler parametrization than (15) . However the one we 

chose is convenient fo r  the study of c.s. 

So fa r ,  we have invest igated the contract ion on the Lie algebra. 

Let us now see what we get for  the representat ion. We s ta r t  from the Vi lenki l  

descr ipt ion [29] by polynomial of degree ~ 2 j  

J3 = Z~z J 

J+ = - z 2 ~ + 2jz 
~ z  

J_=  

(17) 

E = I  

Let us renormalize by set t ing 

z = /2V T (18) 
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This corresponds to a redef in i t ion  of Radcl i f fe 's  states (Eq.2) 

, ~ i  ~- ' ~/~v~" J+ ~' 
(19) 

With this change of normalization, Eqs.(15) and (17)g ive  us 

_ j ,  ~ - J L - z c  

, 3 ~  A+= ~ 

A = ~-"@--~ _0_ - - ~  

F = I  

(20) 

I f  we now make c = j and then make j going to i n f i n i t y ,  

we readi ly  obtain the usual h.o.c.s,  of the group Osc(1) , namely 

(21) 

Let us now give a more rigorous description of what we have jus t  

arr ived at. Let ~ be a Bargmann space [7 ]  and ;et  Pj be the projector 

on the subspace of polynomials of degree less than or equal to 2j . Each 

set of the fol lowing operators 

f 
H(J) = f- ~ ~ 0 

F(J) = P. 
3 

defines an i r reducib le representation of the Lie algebra generated by H ( j )  

A ( j )  and F ( j )  , When j goes to i n f i n i t y ,  we get the Bargmann represen- 

ta t ion of the group Osc(1). 
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Remarks : i )  The change (18) from z to ~ corresponds to giving to 
the 2j th sky a radius 2 ~ .  

i i )  The question arises how to define a Radcl i f fe c.s. as a function of 

instead of the ket defined in (19) . The answer follows from the i den t i t y  

.~ ' [ ' -  ~j 

- ~---~- ) (23) 

In fac t ,  since 1 is the function associated with the state I j - j  2 ,  

one readi ly  sees that the Radcl i f fe c.s. ( in the Y var iable)  

corresponds to the function 
' "~J' ~-3' 

,--T-) + (24) 

which, when j goes to i n f i n i t y  provide us with the usual c.s. functions 

~ )  _ I '~'1" ~ " 3  

i i i )  A set offfundamental invar iants of the algebra (16~ is given by F and 

• = ~ :  C' * ~ .  ) ~ r -  .,- z ('~-, A _-'- A. ,~ . . )  (26) 

We read i ly  see that Q eo is the invar ian t  of the group Osc(1) + 

SummaE~ 

In F 1 , the Bargmann spaces of ent i re  functions of ~ , one 

can define a sequence of representations Dj of the SU(2) x ~  Lie algebra 

on an increasing sequence of subspaces PjF I (representations given by 

Eqs.(15) and (22) with c = j ). When j tends to i n f i n i t y ,  this Lie algebra 

contracts into that of Osc(1) . The operators (22) which are bounded for  

The Casimir operator of SU(2) , the eigenvalues of which are 
, I 2 F 2 given by Qj = 2j Qj + ( j  + ½ -  -~-~-) . 

j ( j + l )  is  
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j f i n i t e  tend to the unbounded operators (21) in the fo l lowing sense : 

i f  f belongs to H domain, Lira i lH ( J ) f  - Hf i l=  0 . Moreover the Rad- 

c l i f f e  c.s. R ( j  , ( ~ )  of J Eq.(24) tends to the usual c.s. (25) , 

i . e .  

Lim /~R(j, ) - R~ ~)11 = 0 

V - Completeness of subsets of g.c .s .  

Any system of g°c.s, being complete, i t  is  natural to look for  

some complete subset. Such a question has already been answered fo r  the 

usual c.s. by Von Neumann [25] , by Bargmann et al [34]  and Perelomov [35] .  

In th is  special case an in te res t ing  complete set of c.s. which has been 

invest igated,  is generated by a discrete subgroup of the Weyl group, namely 

tile group of discrete t rans lat ions of a l a t t i c e  in phase space 

e imbx e inap (27) 

where x and p are pos i t ion and momentum operators, m and n are 

integers and a and b are related by the condit ion ab = 2~ 

I t  is therefore natural to look, follo~#ing Perelomov [ 8 ]  , for  

complete subsets of g.c .s ,  which are orb i ts  of some subgroup of the group 

under consideration. In the case of g.c.s,  associated with the Weyl group, 

and s u f f i c i e n t  condit ion has been given in [36] for  a necessary a state 

to generate a complete set under the l a t t i c e  group (27). 

For the case of spin c.s. , i t  can be read i ly  seen that  any 

subset of 2j+1 spin c.s. of spin j is complete, i . e .  form a (nonorthogonal) 

basis of the representation space. Tile proof is as fol lows : a spin c.s. 

has components of the form F26] : 
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I 

Consider 2j+1 such states : I Z l ~ '  I z2 ~7 . . . .  Iz2j+l  ~ 

to be independent, i t  is necessary that the determinant 

1 1 i . . . . . . . . . .  1 

~iZl ~1z2 ~1z3 =~1z2j+1 

~2z~ ~2z~ 'V2z ~ ~2z2j+1 

~.. z2j ~ 2j " ,:Z.. 2 j  2j I 2jz2 '~2jz~ J 2j~2j+1 

• For these c.s. 

does not vanish. I t  is readi ly  seen that th is determinant is d i f f e ren t  

from zero i f  and only i f  a l l  the z i ' s  are d i s t i nc t .  This proves the 

statement• 

VI - Conclusion 

The Pere]omov de f in i t i on  of g.c.s,  is only based on the t r a n s i t i v i t y  

property and no physical j u s t i f i c a t i o n  has been given for  that .  Moreover, 

according to th is  de f i n i t i on ,  any state is coherent. This is not very sa t i s -  

factory and i t  is  desirable not only to j u s t i f y  the need of an o rb i t  but 

also to r e s t r i c t  the de f in i t i on  by using some physical argument. The most 

physical argument which is used for  usual c.s. is probably the closeness of 

h.o.c.s,  to c lassical  states,  a property which is expressed by the minima- 

l i za t i on  of the Heisenberg inequal i ty .  Unfortunately, we do not know how 
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to general ize the Heisenberg uncer ta inty  p r inc ip le  to a l l  Lie groups but 

i t  is  c lear that  i f  we were able to express the closeness of g .c .s ,  to 

c lass ica l  s tates,  the g.c .s ,  would be parametrized by coordinates in the 

phase space of the system. A phase space is a pa r t i cu la r  case of a sym- 

manifold and i t  has already been shown [37-4~ how non t r i v i a l  p lec t i c  

symplectic manifolds are na tu ra l l y  involved in the descr ipt ion of c lass ica l  

r e l a t i v i s t i c  or non r e l a t i v i s t i c  elementary systems. In th is  case, the 

symplectic manifolds are canonical ly  re lated to the Poincar~ and Ga l i l e i  

group by the Kostant-Souriau theorem [42] . Let us underl ine that  the 

t r a n s i t i v i t y  property only expressed the elementary character of the 

c lassical  system under considerat ion. 

I t  fo l lows from our discussion that ,  whatever is the way of 

in t roducing the concept of closeness to c lass ica l  s tates,  the o rb i t  of 

g .c .s ,  must be a symplectic one. Let us examine how strong is the res- 

t r i c t i o n  fo r  an o rb i t  to be a sympiectic one in the case of the SU(2) 

group. According to the Kostant-Souriau theorem [42] , the only symplectic 

homogeneous spaces of a Lie group G are the orbi ts  of G on the dual 

vector space of the Lie algebra. I t  is qui te simple to see that the only 

symplectic homogeneous space of SU(2) is  the sphere S 2 (as a coset 

space i t  is S0(3)/S0(2)). According to [26] the only states which have 

SO(2) as s t a b i l i t y  subgroup are the states of type l j m > w i t h  m # 0 . 
2j th On the sky there are j + ~ or j such orb i ts  according to j is 

ha l f  in tegra l  or i n tegra l .  I t  is qui te remarkable that  the r es t r i c t i on  of 
+ 

symplecticness only select  a f i n i t e  number of orb i ts  among an i n f i n i t y .  

Obviously, the Radcl i f fe  choice is the most natural one. 

The res t r i c ted  d e f i n i t i o n  we proposed is unfor tunate ly  not so 

successful in the case of the Heisenberg-~eyl or o s c i l l a t o r  group, because 

we are s t i l l  l e f t  with an i n f i n i t e  number of symplectic orb i ts .  However, 

in the case of the Ga l i l e i  group, i t  can be shown, fo r  a spinless p a r t i c l e ,  

that  one of possible systems of g.c .s ,  would be of the form 

+ Except in the case j = ~ for  which the pro ject ive space is a s ingle orb i t .  
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where ~ ~ -~ , , are parameters. We immediately note that the ordinary 

c.s. belong to th is  kind. Simi lar  g.c .s ,  could be defined for  r e l a t i v i s t i c  
+ 

par t ic les  wi th the aid of the Poincar~ group . One of the most promising 

sets of g.c.s,  seems to be the tw is to r  space F437 
~ J 

g 

Al l  symplectic manifolds inva r ian t  under the Poincar6 group have been 

c lass i f i ed  in [ 4 ~ .  
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