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Abstract

The characterization of the polarization properties of a quantum state requires the knowledge of
the joint probability distribution of the Stokes variables. This amounts to assessing all the
moments of these variables, which are aptly encoded in a multipole expansion of the density
matrix. The cumulative distribution of these multipoles encapsulates in a handy manner the
polarization content of the state. We work out the extremal states for that distribution, finding
that SU(2) coherent states are maximal to any order, so they are the most polarized allowed by
quantum theory. The converse case of pure states minimizing that distribution, which can be
seen as the most quantum ones, is investigated for a diverse range of number of photons.
Exploiting the Majorana representation, the problem appears to be closely related to distributing
a number of points uniformly over the surface of the Poincaré sphere.

Online supplementary data available from stacks.iop.org/ps/90/108008 /mmedia

Keywords: polarization, quantum optics, fluctuations, anti-coherence, Majorana representation,
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1. Introduction

In this focus issue, celebrating the International Year of Light,
we wish to discuss one of the fundamental properties of a
beam of light: its polarization [1]; which can be roughly
defined as the figure traced out by the tip of the electric field
vector during one optical cycle.

Content from this work may be used under the terms of the

BY Creative Commons Attribution 3.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOL

0031-8949/15/108008+09$33.00

In classical optics, if the field is fully polarized, this
figure is an ellipse, which can degenerate into a line or a
circle. If the field is completely unpolarized, then the figure is
erratic and can only be described in statistical terms. This
statistical description must be invariant under any change of
the polarization basis: in operational terms, this means that
unpolarized light remains invariant under any polarization
transformation.

At the quantum level, this picture becomes too simplistic.
There are, for example, states that classically are unpolarized,
but which do carry a quantum polarization structure. These

© 2015 The Royal Swedish Academy of Sciences Printed in the UK
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are called states with ‘hidden polarization’ [2, 3]. What we
will show here is that this is just the first level of a hierarchy
of states that at first glance look unpolarized, but are in fact
polarized when one looks at higher-order fluctuations.

In order to systematically derive this hierarchy, we shall
use the Majorana representation [4], which maps any
N-photon state onto N points on the Poincaré sphere. We will
subsequently show that the problem we consider, quantum
optical states with peculiar polarization properties, is con-
nected to several other seemingly unrelated problems in
physics and computational science. We do not yet understand
either why or to what extent the problems are related, but
intuitively they all boil down to a geometrical problem,
namely: what is the optimal configuration if one wishes to
place N points on the unit sphere in the ‘most symmetric
fashion’ possible? [5-7].

This paper is organized as follows. In section 2 we
review some of the required mathematical concepts. In
section 3 we state the problem in more precise terms and in
section 4 we present some of the stars of the quantum Uni-
verse, i.e. the most unpolarized and therefore the most non-
classical states in a polarization context. Subsequently, in
section 5, we discuss several related problems and compare
the solutions. In section 6 we speculate about the potential use
our stars may have. Finally, in section 7 we make some
concluding remarks and explore ideas for the future directions
of this research.

2. Basic polarization tools and concepts

We consider a monochromatic, plane field, described by two
amplitudes @, and d_, representing the annihilation operators
of two circularly polarized orthogonal modes, right-handed
(+) and left-handed (—), respectively. They obey the bosonic
commutation relations [a;, &,j'] = 0j (j, k € {+, —}) and the
superscript 1 stands for the Hermitian conjugate.

The Stokes operators are [8]:

and bear a very simple operational interpretation: S,
represents the intensity, $; the intensity difference between
horizontal and vertical linear polarizations, S, the intensity
difference between linear polarizations at +45° and —45°,
and S the intensity difference between right- and left-handed
circular polarizations. While the last assertion is rather
obvious, it is less obvious that §1 indeed is the the intensity
difference between horizontal (H) and vertical (V) linear
polarizations. However, expressing dy = (4, + d.)/+/2 and
dy = (@, — a_)/J2 it is straightforward to derive that S
indeed equals 4;;dy — ayay.

As written in equation (1), they differ by a factor 1/2
from the conventional definition [9], but in this way they
satisfy the commutation relations of the su(2) algebra (in

units /2 = 1 throughout)
[S1, $21 = iS5, )

and cyclic permutations. This noncommutability precludes
the simultaneous sharp measurement of the quantities they
represent. Among other consequences, this implies that no
field state (apart from the vacuum) can have sharp
nonfluctuating values of all the operators S = S, S5, S3)
simultaneously. This is expressed by the uncertainty relation

(So) < A28, + A28, + NS5 < (Sp(So + 1)), 3)

where the variances are given by AS; = (§i2> — ($)2. In
other words, the electric field of a quantum state never traces
out a definite ellipse. Note that there is a complete formal
equivalence between the space of fixed total photon number N
with a spin § = Sy = N/2.

In addition, we have

S, So] =0, )

and one must therefore address each subspace with a fixed
number of photons N separately. This can be emphasized if
instead of the two-mode Fock basis |n,, n_), we employ the
relabeling

IS, m) =|n, =S+ mn_ =S —m). (5)

In this way, for each fixed S (i.e., fixed number of photons N),
m runs in unit steps from —S to S and these states span a
(25+1)-dimensional subspace wherein S acts in the
usual way.

In classical optics the total intensity is a well-defined
quantity. In consequence, normalizing the Stokes variables
by the intensity determines the unit Poincaré sphere. At the
quantum level, as fluctuations in the number of photons are
unavoidable, one should talk of a three-dimensional Poin-
caré space (with axes S;, S, and S3) that can be envisioned as
foliated in a set of nested spheres with radii proportional to
the different photon numbers that contribute significantly to
the state. But if one limits oneself to a single spin component
S and picks one of those nested spheres, we can rightly
speak about the unit Poincaré sphere as in the classical
world.

The Stokes operators are also the infinitesimal generators
of SU(2) polarization transformations; that is

U, 0) = exp(—i6S - n/2), (6)

with 6 a real parameter, and n a normalized, three-
dimensional, real vector. These are all linear energy-
preserving transformations of the field amplitudes, embracing
every optical operation of phase plates and rotators. It can be
seen that the action of U (n, 6) on S is a rotation of angle 6
around an axis n:

Um, 08U '(m, 0) =R, 0)S. 7
Observe that given the rotation R(n, #), with 0 < 6 < 7,
both Um, 0 and U, 6 + 27) = —Um, §) lead to
R(n, 0).
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The relation (4) implies that the polarization properties of
any quantum state can be analyzed by splitting its density
matrix into a direct sum of finite-dimensional components

Opot = D2V, §=0,
s

L3, 8)

N | W

1
E’

where 2 is the density matrix in the subspace of spin S. This
Opol has been termed the polarization sector [10] or the
polarization density matrix [11].

Instead of using the states {|S, m) }, in the following we
will expand 5 as

o0 = Z Z ) flg) 9)

K=0 ¢g=—K
The irreducible tensor operators f}g) are [12, 13]

NG
7O _

2K+1 <3
Ke =\ 5e Z

28 + 1 Squ |S m><S’m|’

(10)

mm =

with CSSH'Z/K(I being the Clebsch—Gordan coefficients that
couple a spin S and a spin K (0 < K < 25) to a total spin
S. The tensors f,((f{) constitute an orthonormal basis and have
desirable properties under SU(2) transformations. An impor-
tant property is that T,S; can be written down in terms of the
Kth powers of the Stokes operators (1). In particular, if for a
given pair of § and M all coefficients o%) vanish for

=12, ..
(with Sp =
Clearly, this then also holds for all moments <§,f> where

{< M.
The expansion coefficients g(,é; are known as state mul-

tipoles. Hence, 25:7 $) ) P
of the state with the Kth multlpole pattern in the Sth subspace.
For most states only a limited number of multipoles play a
substantive role and the rest of them have quite a small
contribution. Therefore, it seems that a convenient way to
quantify the polarization information is to look at the cumu-
lative distribution

M, irrespective of g, then the moment (flfw )
S - n) will be isotropic and independent of n.

is just the square of the overlap

(S)f Z Z ‘g(s) , (11)

K=1 ¢g=—-K

which conveys all the information up to order M. Note that
the monopole term | g(s) |? is excluded, as it is just a constant
term. As with any cumulative distribution, ASE) is a monotone,
nondecreasing function of the multipole order. Using (9) and
the fact that the tensor operators are orhonormal we see that

Tr ([29F) = Z Z oy P

K=0 g=—K

(S) + Ig(s) |2, (12)
so for a state with a fixed S, ASY) is equal to the state’s purity
[14-16] (minus the monopole contribution | g(s ) 2 =
S + D).

We shall be mainly interested in dealing with pure states
belonging to a specific excitation manifold S. Accordingly, if
we expand the state as |[U®)) = an:_s U, |S, m), with

coefficients ¥,, = <S, m|¥), we can then recast (11) as

2

K= 1q7—K2S+1

S
*
Z Sm Kq\:[/ \Ijm

mm'=—8

(13)

3. Classical versus quantum polarization states

Given a fixed spin S, the classical configuration space is the
unit sphere associated with the SU(2) symmetry. The SU(2)
coherent states in this case can be identified with a point on
the sphere obtained by a rotation of the North pole |S, S)
[17, 18]. There is a consensus that they are the most classical
states, as they have all their polarization aligned in one
direction. Besides, they have nice extremal properties, such as
minimal total variance of S [19] or minimal Wehrl
entropy [20].

In our context, it is remarkable that they have maximal
aggregated multipole strength Agf,) for any order M [15, 21]. It
is irresistible to ask which states attain the minimum of this
magnitude, as they can be considered in a sense as ‘the
opposite’ of SU(2) coherent states and so the most non-
classical ones. This appears to be closely related with a pro-
posal that has met with considerable interest: anti-coherent
states, defined as the states that have a vanishing Stokes
vector as well as isotropic Stokes variances [22].

A useful tool in this context is the Majorana repre-
sentation of a pure N-photon state [4], which is based on the
fact that any such state |U'®)) (where the reader is reminded
that N = 25) can be written as [23]

) e I ()

+ el sm(ez )AT]|0 0),

where A is a normalization factor, and the angles 6,, and ¢,
satisfy the natural constraints 0 < 6,, < mand 0 < ¢, < 27.
Thus, each factor in (14) can be pictured as a point on the unit
Poincaré sphere. Since the operators d] and @' create an
excitation in right- and left-hand circularly polarized modes,
respectively, each of the factors in (14) can also naively be
thought of as creating an ‘excitation component’ with a
polarization state corresponding to its position on the sphere.
The resulting configuration of points is called the Majorana
constellation associated to the state |\IJ(S)>. An illustration of
these ideas is schematized in figure 1.

We associate the North (South) pole with right- (left-)
handed circular polarization and thus the equator represents
different linear polarization excitations. For example, the N-
photon SU(2) coherent state |S, S) = (N!)~'/2(al)V|0, 0) is
represented by N points at the North pole of the sphere so that
all ‘excitation components’ have identical (right-handed)
circular polarization.

An SU(2) rotation simply corresponds to a solid rotation
of the Majorana constellation. Thus, states with the same
constellation, irrespective of its relative orientation, have the

(14)
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Figure 1. The star denotes the Majorana constellation of the state
cos (0/2)11/2, 1/2) + exp(iyp) sin(8/2)|1/2, —1/2). The four red
dots give the constellation for the S = 2 NOON state in equation (17).

same polarization invariants. Intuitively, one would guess that
states with polarization as isotropic as possible would have a
constellation as symmetric as possible.

To place this guess in a more rigorous mathematical
frame, one can go beyond the variance, and look for the states
that have isotropic polarization properties for all the moments
{(Sh)» (S‘,f), e (3,:”) } [22, 24, 25]. For a given S, one cannot
find pure states that have isotropic moments up to order
M = 2§: only completely mixed states have this property
[26, 27]. Thus, for each § there exists a set of pure states that
are unpolarized up to a maximal degree M. These Mth-order
unpolarized states are the stars of the quantum Universe.
Below we shall sometimes be a bit imprecise and speak about
a constellation as a state, which is evident from (14).

4. Stars of the quantum Universe

To find the Mth-order unpolarized states for a given S, we
start from a set of 25 + 1 amplitudes ¥,, = a,, + ib,,, where
am, b, are real numbers, as in equation (13). Since the
orientation of the constellation is irrelevant we can reduce the
number of variables by fixing one of the points to be at, say,
the North pole and another to lie in the the S,—S3 plane. We
subsequently try to get Agf,) = 0 for the highest possible M,
which amounts to setting the state multipoles o) to zero.
This leads to a system of polynomial equations of degree two
for a,, and b,,, which we solve using Grobner bases [28]
implemented in the computer algebra system MAGMA
[29, 30]. In this way, we get exact algebraic expressions, and
we can detect when no feasible solution exists.

Our results can be summarized as follows. For small
values, 1/2 < § < 3/2, the parameter space is simply too
small even to allow for states with isotropic variance. For
S =1and S = 3/2 one can find states with vanishing Stokes
vector, but all such pure states have non-isotropic variance
[21] and so they present hidden polarization [2]. The § = 2
excitation manifold is the first allowing a second-order

unpolarized state. However, the space is still so small that the
solution is unique. For S = 5/2 no second-order unpolarized
state exists. For larger numbers, S > 3, there exist several
different constellations that all are unpolarized to the same
order M, but that are not simply connected by a unitary
polarization transformation. We have not yet found a way of
assuring that we find all constellations for a given S, nor have
we found a general way of asserting with certainty that for a
given S we have found the constellations that maximize M.
This is related to the fact that with growing S, the number of
different maximally unpolarized constellations grows and it
becomes more difficult to show that the corresponding system
of polynomial equations has no solution over the real num-
bers. The same kind of difficulties appear in several related
problems such as spherical #-designs, the Thomson problem,
and the Queens of quantumness that will be discussed in the
next section. However, after spending considerable time on
computer searches, we are fairly confident that the con-
stellations we present are indeed optimal.

Let us now look at some of the stars of the quantum
Universe. A list of star states having S = 1 to 10 can be found
in the Supplementary material file, available at stacks.iop.
org/ps/90/108008 /mmedia. Note that for most values of S,
except for the smallest, there exist many inequivalent star
states. As exemplified in figure 3, below, in general they have
different cumulative multipole distributions A$). For more
complete information and lists over inequivalent star states for
different values of S, the reader is referred to [31].

S = 2. The least excited second-order unpolarized state
is the four-photon state. Its Majorana constellation is a regular
tetrahedron and this configuration is unique. The corre-
sponding state is (|2, - 1)+ 42 2, 2>)/\/§ (and, of
course, all states on its SU(2) orbit).

S = 5/2. Five is a number that does not allow a high
degree of spherical symmetry. Based on an elementary
counting, it was conjectured in [22] that five-photon anti-
coherent states would exist. However, some time later it was
proven that one can only find first-order, but no second-order
unpolarized states [32]. The constellation consists of the
vertices of an equilateral triangle inscribed in the equator, plus
the two poles.

S = 3. Now another Platonic solid appears, the regular
octahedron. The corresponding state, which is unique up to
SU(2) transformations, is (|3, —2) + |3, 2) )/\/5 This is the

least excited state that is third-order unpolarized. Since

<§HM> = —(fﬁ) for odd M, all odd order Stokes operator

moments must vanish for them to be isotropic (irrespective of
S). This state, like all states that have isotropic variance, has
the maximum sum of Stokes operator variances. Since for any

A

unpolarized state (S) = 0, the relation (3) imposes the bound

So) < 8D + (5) + 5 < SoGo+ D). (15)

All second-order unpolarized states saturate the upper bound
in the inequality above [22]. Thus, all maximally unpolarized
states with N > 6 fulfill <§nz ) =SS + 1)/ 3 in any direction n
on the Poincaré sphere. In figure 2 we plot the Majorana
constellation, the Q-function, and the first non-isotropic
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Figure 2. Density plots of the SU(2) Q-function (left) and the first non-isotropic moments (§: ) (right) for the maximally unpolarized state
(13, =2) + |3, 2) )/~/2 in the excitation manifold S = 3. In both cases, we have used a pseudo-color map with the indicated scales. On top,
we have given the Majorana constellation of the state, which is a regular octahedron inscribed in the Poincaré sphere. Note that the vertices
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coincide with the zeros of the Q function, but not with the zeros of (S, ).
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Figure 3. The multipole cumulative distribution A%?/ 2 as a function

of the multipole order M for all the 31 maximally unpolarized
constellations we have found for S = 9/2. The last constellation,

number 32, corresponds to an SU(2) coherent state, taken as a
reference.

moments (M = 4) as a function of the direction on the
Poincaré sphere for this state.

S =9/2. In this space there are at least 31 different
constellations with six different abstract symmetry groups that
are second-order unpolarized, but we conjecture that no third-
order unpolarized constellations exist. The constellations
differ in how the aggregated multipole strength ASE/ )
increases with M. We have found 20 different such functions
and they are plotted in figure 3. The constellation with the

smallest third-order multipole strength has .A(39/ 2~ 0.00642,
and the one with the largest has A{/? ~ 0.141. The former
case is generated by three equilateral triangles: one inscribed
in the equator and the other in two rings symmetrically placed
above and below the equator. The middle triangle is rotated
60° around the polar axis with respect to the other two. The
corresponding state is

(V619/2, — 9/2) — 24/319/2, — 3/2)
—24/319/2,3/2) + /619/2,9/2))/6.

The S = 9/2 case is rather typical for § > 4: several
different constellations unpolarized to the same (maximal)
order exist. Different constellations may have the same or
different accumulated multipole strength A{) as a function
of M.

For some values of S, such as 4, 6, 8, 12 and 20, one can
guess a maximally unpolarized constellation, in each case
corresponding to the vertices of a Platonic solid. For other
numbers such as § = 17/2 it is not easy to guess an optimal,
‘exact’ constellation, but solving the system of polynomial
equations, as described at the beginning of this section, yields
exact algebraic expressions for the coefficients V,,, from
which one can easily compute the points of the Majorana
constellation with arbitrary numerical precision.

5. Other spherical configuration problems

The problem of distributing N points on a sphere in the ‘most
symmetric’ fashion has a long history and many different
solutions depending on the cost function one tries to optimize
[5, 6]. Here, we shall only discuss a few of the formulations:
spherical #-designs [33-35], the Thomson problem [36-39]
and the Queens of quantumness [40]. We leave out the con-
nections to other intriguing problems, such as as maximally
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Table 1. Some designs on a sphere and their respective degrees of unpolarization M. ‘same’ and ‘similar’ always refer to the closest
description column to the left. Explicit expressions for the stars of the quantum Universe for several values of S can be found in [31].

S Quantum stars M t-design t M Thomson M Queens M
1 Radial line 1 same 1 1 same 1 same 1
3/2  Equatorial triangle 1 same 1 1 same 1 same 1
2 Tetrahedron 2 same 2 2 same 2 same 2
5/2  Equatorial triangle + poles 1  same 1 1 same 1 same 1
3 Octahedron 3 same 3 3 same 3 same 3
7/2  Two triangles + pole 2 similar 2 0 equatorial pentagon + poles 1 same 1
4 Cube 3  same 3 3 square antiprism 1 see[40] 1
9/2  Three triangles 2 similar 2 1 three staggered triangles 1 similar 1
5 Pentagonal prism 3 similar 3 1 two staggered squares + poles 1 same 1
6 Icosahedron 5 same 5 5 same 5 NA —
7 Four triangles + poles 4  same 4 1 two hexagonal rings + poles 1 NA —
10 Dodecahedron 5 same 5 3 see[38] ? NA —

entangled symmetric states [41, 42], k-maximally mixed
states [43], and states with maximal Wehrl-Lieb entropy [44].

Spherical r-designs are configurations of N points on a
sphere such that the average value of any polynomial of
degree at most ¢ has the same average over the N points as
over the sphere. Thus, the N points can be seen to give a
representative average value of any polynomial of degree ¢ or
lower. Such designs can be found for (hyper)spheres of higher
dimensions, but to connect to the stars we will only consider
t-designs on the three-dimensional sphere. It has been con-
jectured that a state is r-order unpolarized if and only if its
Majorana constellation is a spherical #-design [24]. However,
although the statement is true for some #-designs, such as
those represented by the Platonic solids, the conjecture is not
true in general [25].

It is clear that there must be some connection between the
number of points that are at one’s disposal and the maximal
degree t for which an N point configuration allows for a
spherical 7-design. The configurations that maximize ¢ for a
given N are called optimal designs, and in the following ¢ will
denote the degree of an optimal N-point design. No analytical
expression is known between N and #: it is known that for a
t-design in three-dimensional space, the number of points N is
at least proportional to %, whereas for some orders ¢ only
constructions are known for which N scales proportionally to
£. As a function of N, the order ¢ is non-monotonic. The
current state of knowledge is summarized for1 < N < 100 in
[35]. In table 1 we list some maximally unpolarized con-
stellations and their corresponding optimal 7-designs.

Several interesting conclusions can be drawn from
table 1. First, the maximum M and ¢ coincide. In fact, this has
been the case for any excitation manifold we have studied,
and these include all S up to 24, with some omissions. We
therefore conjecture that if an optimal spherical design of
order ¢ exists for some N, then one can find an Mth-order
unpolarized N-photon state with M = .

The next thing one can note is that an optimal z-design
does not necessarily give a rth-order unpolarized state. Quite
often the configurations are similar, e.g. regular polygons
with their surface normals along the polar axis, but displaced

from each other along the axis by certain distances. However,
these distances need often be fine-tuned for an optimal
t-design to become a star. The Platonic solids are exceptions
to this observation. That the optimal configurations for
t-designs and maximally unpolarized states do not coincide
underscores the ‘mystery’ that the optimal ¢ and maximal M
always seem to be equal for any N (or equivalently, for
any S).

Another similarity between optimal spherical #-designs
and the stars of the quantum Universe is that the configura-
tions typically are not unique, aside from the smallest
dimensions.

The Thomson problem consists of arranging N identical
point charges on the surface of a sphere so that the electro-
static potential energy of the configuration is minimized. For
N = 2 the solution is easily visualized: the repelling force
tends to place the charges on antipodal points of the sphere,
thereby maximizing the distance between them. The problem
can be generalized to potential energies of the form r~¢,
where r is the Euclidian distance between the charges. The
choice d = 1 is the Thomson problem, corresponding to the
usual Coulomb potential and it is the one we will focus on in
this work. The case d — oo is called Tammes problem [45].

In table 1 we have listed the optimal Thomson config-
urations and the degree of unpolarization of the corresponding
state. We see that for small S, up to 3, the configurations are
identical to the optimal spherical #-design and to the stars. For
larger S, they differ in general and the degree of unpolariza-
tion of the ‘Thomson’ states is lower than the maximum.
Different from the two previous cases, the solution of the
Thomson problem appears to be unique for every S [46].

The Queens of quantumness are the states that maximize
the Hilbert—Schmidt distance to the closest point of the con-
vex hull of the mixed SU(2) coherent states [40]. This convex
hull defines the subspace of classical states. Therefore, the
states maximizing the distance to the nearest point on this hull
can be thought of as having maximally quantum character-
istics. In [40] it is claimed that the Queens can be seen as the
least classical (or most quantum) of all states given this
metric. Although we have used another figure of merit, our
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approach and that in [40] share the view that the states ‘most
different” from SU(2) coherent states are the most
nonclassical.

It is not surprising that the Queens turn out to be anti-
coherent (second-order unpolarized) when possible, since
they should be as ‘far away’ from the SU(2) coherent state as
possible. In table 1 we have also listed the configurations and
the degree of unpolarization for these states. These config-
urations also seems to be unique, contrary to the maximally
unpolarized states and the optimal spherical t-designs. We
also see that the Queens are not maximally unpolarized except
when S < 3.

6. What are the applications?

In deriving the maximally unpolarized states we have simply
been driven by the quest for the most nonclassical states from
a polarization perspective. Yet, the remarkable properties of
such states make them potential candidates to outperform
classical states in certain tasks.

The salient feature of the stars is their ability to signal
small, but arbitrary SU(2) transformations with optimal
resolution. This has already been anticipated in [32], where
the authors specifically found that for photon numbers 4, 6, 8,
12 and 20, the states corresponding to regular polyhedra
Majorana constellations best signal misalignments between
two Cartesian reference frames. To understand this, it is
instructive to look at related states, namely the NOON states

L
NG

Such NOON states are known to have the highest sensitivity
for a fixed excitation S to small rotations about the $;-axis
[47]. Their Majorana constellation consists of 2S5 equidis-
tantly placed points around the Poincaré sphere equator. For
example, the state |W) = (|2,2) — |2, — 2))/</2 can be
written

INOON) = —(|S, S) — |5, — S)). (16)

(al +a')(a] —a')(a] +ia’)(al —ia’)

43

W) = 10, 0).

a7

That is, the four Majorana points are (1, 0, 0), (—1, 0, 0),
(0, 1, 0) and (0, —1, 0), as sketched in figure 1. The angle
between any two adjacent points is 7/2, while for a general
NOON state of the form (16), this angle is 7/S.

A rotation around the Ss-axis is described by the unitary
operator U @) = exp(—i19§3/ 2). We have that for
¥ = 7/(2S) the states [NOON) and U (9)|NOON) are ortho-
gonal, whereas for ©+ = g7 /S they are parallel, where ¢ is an
integer. Thus, it should not come as a surprise that NOON
states are optimal for detecting small rotations around the S;
-axis, in the interval 0 < ¢ < 7/(2S). However, as soon as
the rotation exceeds the upper bound in this inequality, one
will have difficulties in resolving the rotation angle, as two or
more rotation angles will result in the very same rotated state.
If the rotation axis lies in the equatorial plane, then a rotation

of 7 is needed to get a parallel state, irrespective of S. This
happens only if the axis intersects one of the Majorana points
when S is a half integer, or if the axis intersects either a point
or is the intersector between two points if S is an integer.
Thus, the rotation resolution is highly directional for a NOON
state.

The situation is to some extent similar and to some extent
different for the stars of the quantum Universe. It may not be
obvious from their appearance that they have high sensitivity
to small rotations around an arbitrary axis. To substantiate this
claim, recall that the action 7 needed to make a state |¢))
evolve so that | (1] exp(iAT)W) ? = 1 — ¢ where €is a
small, positive, real number, and A is Hermitian, is inversely
proportional to the state’s variance AA [48]. The relation
connecting the evolution speed de/dr and the variance is
sometimes called the ‘quantum speed limit’ [49, 50]. A NOON
state in the S5 basis has maximal variance A2S; = S? for a
fixed S and thus is the state with maximal sensitivity for a
rotation around the §3 axis. However, the state’s S‘l and 52
variances are only S/2 and thus the state is rather insensitive
for rotations around those axes (or to any rotation axis in the
S-S, plane). However, all the star states have isotropic var-
iances equal to S(S + 1)/3, that is, close to the maximum.
The proof of this statement is as follows:

A2§1 + A2§2 + A2§3

=)+ 8D+ E) =) =sE+D. 18
The second expression from the left follows from the fact that
the star states have vanishing mean first order moments (S,).
Since their variance per definition is isotropic, we also have
that <§,,2 ) = (512) = (5;) = <§32>. Having a large, and
isotropic variance of the Stokes operator, the quantum speed
limit theorem thus asserts that these states are rather sensitive
to rotations around any axis S

Another way of explaning the star states’ sensitivity to a
rotation around an arbitrary axis is to observe that, since these
states have ‘maximal’ spherical symmetry, they become
parallel, or almost parallel, for relatively small rotations
around several axes. For example, for the Platonic solids,
rotations around all the facets normal axes map the Majorana
constellation onto itself (resulting in a parallel state) for
rotations of 27 /3 (tetrahedron, octahedron and icosahedron),
7/2 (cube), or 27 /5 (dodecahedron). For other constellations
and other rotation axes the Majorana constellation will only
become approximately identical, but the problem with reso-
lution of large rotations will predominantly remain. However,
having a high degree of spherical symmetry, the maximally
unpolarized states will resolve rotations around any axis
approximately equally well. To quantify this statement one
could use the Fisher information and the Cramér-Rao bound
to assess the uncertainty in estimating the rotation direction
and the rotation angle [49, 50]. Such an investigation lies
outside the scope for this paper, but work along this direction
is in progress.

To conclude, we stress that there is also some structural
similarity between the stars of the quantum Universe and



Phys. Scr. 90 (2015) 108008

Invited Comment

quantum error correcting codes. In both cases, low-order
terms in the expansion of the density matrices vanish. The
putative application of the stars for error correction constitutes
an important goal for our future research.

7. Conclusions

We have derived a class of pure states that lack polarization
properties to the lowest orders. They can be seen as gen-
eralizations of states with hidden polarization and the anti-
coherent states. We call them stars of the quantum Universe

and they are Mth-order unpolarized: the moments <.§n[> are
isotropic for 1 < ¢ < M. We find, so far to our surprise, that
although their respective Majorana constellations do not
necessarily coincide, we always find that for a pure N-pho-
ton state, the highest possible degree of unpolarization is
M = t, where t is the maximal degree for an N-point sphe-
rical #-design. Our conjecture is that this is indeed true for
any N.

We have also discussed the possible connections between
the Majorana constellations for the stars and some other
problems involving symmetry of points on a sphere, namely
the Thomson problem and the Queens of quantumness. The
conclusion is that although the problems are related, the fact
that the solutions coincide for small dimensions is surely due
to the limited degrees of freedom low-dimensional systems
offer. When the dimension becomes larger, say involving
more than ten points, the solutions are no longer identical
except perhaps for when ‘exact’ symmetry is possible, as is
the case for the Platonic solid constellations.

The maximally unpolarized states are an academic curi-
osity in that they can be said to be the most nonclassical
polarization states. In a more practical setting, they seem to be
the optimal states for detecting small SU(2) rotations around
an arbitrary unknown axis. However, there are still many
things to explore: for example, what is the significance of the
strength of the first nonzero multipole of a maximally unpo-
larized state? The cumulative distribution A% may increase
in different ways as seen in figure 3, but since
.A(ZSS) =28 / (25 + 1) for any pure state, a slower growth for
small M must be compensated by a faster growth for larger M.
What difference do different constellations make on the
fundamental and on the application level?

It is also still unclear why there seems to be such a strong
connection between spherical #-designs and maximally
unpolarized states. In particular, this connection seems
unjustified, as the optimal Majorana constellations do not
coincide.

In summary, one can use the example of maximally
unpolarized states to marvel about the connections between
different branches of science, and on how some seemingly
simple problems—distributing points in the most symmetric
manner on a sphere—can illuminate such complicated opti-
mization problems that we have just described. The science of
light is fantastic!
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