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(green), 0.89 (blue), γ = 1, Γi ∝ χ
1
6
r , χr = 70. . . . . . . . . . . . . . 33
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(right) for ḡ = 0.7 (red), 0.8 (green), 0.9 (blue), γ = 1, Γi ∝ χ
1
6
r , χr =

70, m = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Abstract

In this thesis, we study inflationary dynamics, cosmic evolution and structure of

hypothetical geometries. Firstly, we investigate the behavior of warm intermediate

and logamediate inflationary models for flat isotropic and homogeneous universe in

Einstein frame representation of f(R) gravity. In this scenario, we study the dynam-

ics of strong and weak constant as well as generalized dissipative regimes. In both

regimes, we discuss inflaton solution, slow-roll parameters, scalar and tensor power

spectra, corresponding spectral indices as well as tensor-scalar ratio for Starobinsky

inflationary model and determine their compatibility with Planck 2015 constraints.

Secondly, we study the existence of Noether symmetry and associated conserved

quantity of some isotropic as well as anisotropic universe models in f(R, T ) gravity.

The cyclic variable is introduced to construct exact solution of Bianchi I model.

We also consider a generalized spacetime which corresponds to different anisotropic

homogeneous universe models and scalar field model (quintessence and phantom)

admitting minimal coupling with f(R, T ) models. For these models, we formulate

exact solutions without introducing cyclic variable. We investigate the behavior of

some cosmological parameters using exact solutions through graphical analysis.

Finally, we discuss wormhole solutions of static spherically symmetric spacetime

via Noether symmetry approach in f(R) and f(R, T ) theories. We formulate symme-

try generators, associated conserved quantities and wormhole solutions for constant

as well as variable red-shift functions. For perfect fluid, we evaluate an explicit form

of generic function f(R) and also evaluate exact solution for f(R) power-law model.

In f(R, T ) gravity, we consider two f(R, T ) models appreciating indirect curvature-

matter coupling and formulate solutions for both dust as well as perfect fluids. We

study the behavior of null/weak energy conditions with respect to ordinary matter and

effective energy-momentum tensor for physically acceptable of wormhole solutions.
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In this thesis, the signatures of the spacetimes will be (−, +, +, +). Also, we shall

use the following list of abbreviations.

BI: Bianchi Type I

BIII: Bianchi Type III

CDM: Cold Dark Matter

CMBR: Cosmic Microwave Background Radiations

DE: Dark Energy

EoS: Equation of State

FRW: Friedmann-Robertson-Walker

KS: Kantowski-Sachs

LRS: Locally Rotationally Symmetric

NEC: Null Energy Condition

WEC: Weak Energy Condition

WH: Wormhole

WMAP: Wilkinson Microwave Anisotropy Probe
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Introduction

The standard model of the universe provides cosmological view of the early universe

(radiation or matter dominated phase) leading to decelerated expansion. This expan-

sion introduces some critical issues like horizon (why current universe seems to be

isotropically homogeneous?) and flatness (why total density of the universe is getting

closer to critical density?). To resolve these long standing issues, the inflationary

scenario proposed the most conclusive solution without disturbing the achievements

of cosmological model. Guth [1] introduced an epoch of rapid exponential expan-

sion before decelerated expanding universe, called “inflation”. This revolutionary

approach explains the origin of CMBR as well as distribution of large scale structure.

Inflationary scenario is referred as an intrinsic constituent of the standard model.

The inflationary paradigm follows a straightforward mechanism in which scalar

field acts as a source of rapid expansion known as “inflaton”. This field releases

potential energy when it moves from false to true vacuum. The released energy acts

as a repulsive force and hence inflates the early universe [2]. The existence of inflaton

field incorporating kinetic as well as potential energy leads to split inflation into

two distinct regimes, i.e., slow-roll and reheating. In slow-roll regime, the inflaton

field is found to be non-interacting which assures the existence of dominant potential

energy [3]. In reheating phase, the inflaton field appreciates strong interactions in true

1
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vacuum as both kinetic and potential energies are approximately equivalent. This

defines an oscillatory motion of inflaton leading to dissipate into radiations around

origin of potential energy and consequently, introduces ending stage of inflation [4].

The inflationary paradigm triggered researchers to establish a smooth joining be-

tween infant and late-time universe. Berera [5] resolved this issue by introducing the

idea of warm inflation. In this scenario, inflaton appreciates interactions with back-

ground field that releases vacuum energy in slow-roll regime. When vacuum energy

completely dissipates into radiation energy, the inflating universe possesses enough

temperature to allow a graceful exit into radiation dominated era without admitting

any separate reheating phase. In warm inflation, the existence of thermal fluctuations

generates strong dissipation effects leading to create relativistic particles. The dissi-

pation coefficient determines the effect of dissipation by characterizing two important

regions, i.e., weak and strong dissipative regimes. In the region of weak dissipation,

the dissipation coefficient identifies a slow rate of decaying inflaton due to weak in-

teractions. However, strong interactions of inflaton with any other field yield enough

amount of dissipation that effectively increases the decay rate of inflaton in strong

dissipative regime.

The exact solutions of scale factor provide an optimistic approach to categorize

different inflationary models. The cold inflationary model corresponds to scale fac-

tor that measures de Sitter expansion (exponential expansion) while a scale factor

with quasi-de Sitter expansion leads to chaotic inflationary model. For intermediate

inflationary model, the scale factor incorporates expansion rate slower than that of

exponential expansion but faster than power-law expansion [6]. Herrera et al. [7]

studied intermediate as well as logamediate warm inflationary models and discussed
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the behavior of these inflationary models through generalized dissipation coefficient

in both weak as well as strong dissipative regimes. Setare and Kamali [8] investigated

the dynamical role of warm vector isotropic inflation for same inflationary models

and observed the consistency of inflationary parameters with WMAP7 constraints.

Sharif and Saleem [9] considered BI universe model to evaluate compatibility criteria

of these models in the context of warm vector inflation. After inflationary stage, the

cosmic journey represents radiation as well as matter dominated eras and eventually

demonstrates current stage of the universe.

Recent observations indicate late-time cosmic accelerated expansion showing the

presence of some mysterious force comprising repulsive gravitational effects, referred

as DE. There are two main proposals to explain its nature. In the first approach,

matter part while in the second approach geometric part of the Einstein-Hilbert action

is modified. The second proposal leads to modified theories of gravity like f(R) (R

represents Ricci scalar) theory which is obtained by replacing R with an arbitrary

function. This theory appreciates minimal coupling with matter part yielding some

interesting results in cosmology [10].

Felice and Tsujikawa [11] investigated the dynamics of non-warm inflation with

Starobinsky model in both Einstein as well as Jordan frames of f(R) gravity. Bamba

et al. [12] reconstructed some f(R) models via non-warm inflationary constraints and

identified that observational parameters relative to power-law model yield the most

compatible results. Artymowski and Lalak [13] extended Starobinsky inflationary

model in the context of non-warm inflation and obtained observational parameters

compatible with Planck and BICEP2 in both frames. Sharif and Ikram [14] inves-

tigated dynamics of warm inflation via intermediate and logamediate inflationary
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models in Jordan frame representation of f(G) gravity (G represents Gauss-Bonnet

term). The same authors [15] studied non-warm inflationary dynamics through scalar

field and fluid cosmology in this gravity.

The non-minimal coupling provides a fresh insight among researchers as it helps

to study various cosmological scenarios. Bertolami et al. [16] merged this concept be-

tween gravity and matter such that arbitrary function of R appreciates non-minimal

coupling with matter Lagrangian density (Lm). Harko et al. [17] developed an ex-

tension of f(R) gravity known as f(R, T ) gravity (T identifies trace of the energy-

momentum tensor) incorporating non-minimal curvature-matter coupling. Sharif and

Zubair [18] explored cosmic evolution through reconstruction of some DE models with

energy conditions, exact anisotropic solutions, stability criteria and thermodynamical

picture in the this gravity.

The existence of continuous symmetry reduces complexity and yields connection

between differentiable symmetry and conserved quantity of the dynamical system.

The continuous symmetries relative to Lagrangian are characterized as Noether sym-

metries. Capozziello et al. [19] used this approach to determine a generalized exact

static spherically symmetric solution of f(R) power-law model. The same authors

[20] extended this work to non-static spherically symmetric solution as well as axially

symmetric model. Hussain et al. [21] found Noether symmetries relative to f(R)

power-law model for isotropic universe model and identified that the corresponding

boundary term turns out to be zero while Shamir et al. [22] determined some extra

symmetries with non-zero boundary term. Kucukakca and Camci [23] analyzed the

existence of Noether symmetry for the same universe model via Palatini f(R) formal-

ism. Momeni et al. [24] explored Noether symmetry in mimetic f(R) and f(R, T )
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theories and analyzed stability of solutions in the presence of normal matter.

Sharif and Fatima [25] explored the existence of conserved quantities relative to

Noether symmetries in both vacuum as well as non-vacuum regions in f(G) grav-

ity. Shamir and Ahmad [26] obtained exact solutions through this approach in non-

minimally coupled f(G, T ) gravity. Sanyal [27] found exact anisotropic solutions for

KS universe in modified gravity non-minimally coupled with scalar field. Camci and

Kucukakca [28] generalized this work to obtain explicit forms of scalar field for BI and

BIII universe models. Kucukakca et al. [29] investigated the presence of continuous

symmetry and formulated anisotropic solutions in the same gravity. Subsequently,

Camci et al. [30] extended this work for BI, BIII and KS universe models. Zhang et

al. [31] studied multiple scalar field scenario and found corresponding potential func-

tions that established a relation between quintessence and phantom models. Jamil et

al. [32] explored f(R) tachyon model and obtained explicit forms of potential as well

as f(R) functions.

The structure of WH geometry comprises a hypothetical tunnel or bridge through

which a smooth passing is possible in different regions of spacetime. Lobo and Oliveira

[33] discussed WH geometry for different fluids with constant red-shift function in

f(R) gravity. Bahamonde et al. [34] constructed non-static cosmological WH sup-

ported by perfect fluid in the same gravity. Mazharimousavi and Halilsoy [35] consid-

ered f(R) model admitting polynomial expansion and obtained a sufficient condition

leading to a near-throat WH solution for both vacuum as well as non-vacuum cases.

Sharif and Fatima [36] found physically acceptable static and non-static WH solutions

for galactic halo region and conformal symmetry in modified Gauss-Bonnet gravity,

respectively. Zubair et al. [37] discussed static WH solution and explored realistic
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nature for isotropic, barotropic and anisotropic fluids in f(R, T ) gravity. Bahamonde

et al. [38] used Noether symmetry technique to obtain exact solutions of red-shift

and shape functions. They also discussed geometry of WH solutions to determine

their realistic fate in scalar-tensor theory non-minimally coupled with torsion scalar.

This thesis is devoted to study cosmic inflation through warm inflationary universe

model and evolution of the universe for isotropic as well as anisotropic universe models

using Noether symmetry approach in f(R) and f(R, T ) theories of gravity. We also

use this approach to investigate the existence of realistic and traversable static WH

solutions. This thesis is arranged as follows.

• Chapter One provides basic concepts and definitions related to this thesis.

• Chapter Two explores the dynamics of warm inflation via intermediate and

logamediate inflationary models in Einstein representation of f(R) gravity.

• Chapter Three investigates exact solutions of some isotropic and anisotropic

universe models via Noether symmetry approach for non-minimal curvature-

matter coupling appreciating minimal coupling with matter and scalar fields.

• In chapter Four, we discuss the existence of static spherically symmetric WH

solutions for both constant as well as variable forms of red-shift function.

• Chapter Five presents summary of all results and also specifies some issues for

future research.



Chapter 1

Basic Review

This chapter is dedicated to understand some basic aspects of modern cosmology

corresponding to this thesis.

1.1 Cosmic Inflation

The revolutionary idea of cosmic inflation was proposed to explain evolution in very

early phase of the universe (just after the Planck epoch but prior to radiation era).

This notable proposal is not a replacement of standard cosmological model as it

supports the standard achievements as well as successfully overcomes some critical

shortcomings of the model. Alan Guth defined this cosmological inflation as an

epoch in which the scale factor grows exponentially and ä > 0 leading to accelerated

expansion in early universe. For the existence of inflationary epoch, the necessary

condition is

d

dt

(
1

aH

)
< 0,

where (aH)−1 defines comoving Hubble length (an approximate distance that light

covers during Hubble time H−1) decreasing with time. The extent of inflation is

7
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measured by number of e-folds given by

N = ln[
af

ai

] =

∫ tf

ti

H(t)dt,

where ti and tf represent initial and end times of inflation. We study how inflationary

era solves long standing problems, i.e., horizon and flatness problems. The isotropic

temperature of CMBR leads to state horizon problem as “why photons of the CMBR

coming from opposite directions today have the same temperature to high precision

while the size of causally connected regions at the last scattering is at most one

degree?” The flatness problem is “if the curvature of the universe is not very large at

present scale, then it must have been extremely small at early times”.

During inflation, the exponential expansion (H = H0, where H0 is constant)

tremendously increases size of the universe while dramatic reduction of comoving

Hubble length indicates that current observable universe originates from a tiny re-

gion. This region establishes thermal equilibrium in past and therefore admits causal

contact between these regions. Thus, the temperature of CMBR seems to be isotropic

in opposite regions of sky because the particles were able to communicate in past.

Hence, the horizon problem remains no more a mystery. To resolve the flatness prob-

lem, the density parameter not only needs to close to one, in fact it must drives so

close to one that even all subsequent expansion from inflation to current cosmic eras

is entirely insufficient to move it away again. The exponential expansion with de-

creasing comoving Hubble length (aH increases with time) drives density parameter

extremely close to one implying flat geometry at very early times. Thus, the ne-

cessity of fine-tuned initial conditions is completely avoided and flatness problem is

successfully resolved.
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1.1.1 Inflationary Dynamics

The inflationary scenario offers an admissible explanation for cosmologist to resolve

long standing issues but the question arises what factor is responsible to inflate early

universe? The satisfactory answer demands the presence of some ingredient possess-

ing large negative pressure. Our universe experiences a dramatic phase transition

(extensive change in cosmic properties) in early times. On relativistic grounds, this

early transition can be explained by scalar field (the only component of cosmic fluid)

with large negative pressure. In this regard, the homogeneous scalar field is referred

as perfect candidate to study dynamics of inflation.

In inflationary cosmology, the scalar field with potential energy (at each point) is

increasing very slowly as the universe expands and since, it is dynamical so kinetic

energy also appears. The Lagrangian density relative to scalar field is [39]

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (1.1.1)

where the first term identifies kinetic energy φ̇
2

while the second term denotes po-

tential energy. Due to incredible equivalence of scalar field with perfect fluid (along

zero momentum density and isotropic stress), the corresponding energy density and

pressure are defined as

ρφ =
φ̇2

2
+ V (φ), pφ =

φ̇2

2
− V (φ), (1.1.2)

where dot defines time derivative. The corresponding continuity equation leads to

scalar wave equation as

φ̈ + 3Hφ̇ + V,
φ
= 0,

where subscript of V denotes derivative with respect to φ. When the scalar field φ

rests at its minimum position (vacuum state), both energy density as well as pressure
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turn out to be zero implying φ̇2

2
≈ |V (φ)|. In inflationary paradigm, there are two

vacuum states, i.e., false and true vacuum. The former stage is defined when φ = 0 but

the space is not empty while later stage appears when potential gets minimum with

φ 6= 0 and φ̇2

2
≈ |V (φ)|. The cosmic inflation started its journey when inflaton initiates

to move out from false vacuum and begins to roll down very slowly demonstrating

slow-roll inflation.

In region of slow-roll, the inflaton field remains non-interacting with any other

background field. This non-interacting behavior leaves no possibility of radiation

production and consequently, vacuum energy density dominates as well as tempera-

ture of the universe dramatically drops down as it expands. The necessary conditions

of inflation are accelerated expansion and decreasing comoving Hubble length while

sufficient condition is slowly varying Hubble parameter that leads to define slow-roll

condition as follows

ä

a
= Ḣ + H2 > 0.

This condition holds for Ḣ > 0 otherwise, we require − Ḣ
H2 < 1. Thus, the slow-roll

parameters are

ε =
1

2

(
V,2

φ

V 2

)
= − Ḣ

H2
, η =

V,φφ

V
= − Ḧ

HḢ
, (1.1.3)

where ε characterizes accelerated and decelerated expansion for ε < 1 and ε > 1,

respectively. Besides specifying expansion, the qualitative analysis of these para-

meters indicate that the scalar field should not quickly roll down towards potential

origin. For this purpose, the slope of potential should not be too steep. The slow-roll

approximation also avoids φ̈ from scalar wave equation and provides φ̇2

2
<< V (φ).

After slow-roll, the inflaton must lead to the end of inflation but the supercooled

universe needs to attain enough temperature to enter into radiation dominated era.
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To achieve this ending phase, a separate reheating phase is introduced in which the

inflaton initiates oscillatory motion in true vacuum phase and kinetic energy becomes

equivalent to potential energy. This process decays inflaton into radiations and uni-

verse becomes hot enough to admit an exit from inflationary epoch to radiation

dominated universe. Thus, cosmological inflation ends for ε ≈ 1.

1.2 Warm Inflation

In cold inflationary era, the universe expands in one region (supercooled slow-roll

phase) while decay of inflaton occurs in another region (reheating phase). In contrast

to supercooled inflation, the idea of warm inflation significantly unifies these two dy-

namical regions. In warm inflation, inflaton interacts with background field implying

a continuous production of radiations (create relativistic particles) throughout the in-

flationary phase and dramatic fall of temperature is elegantly avoided. Therefore, the

salient characteristic of warm inflation is to connect end stage of inflationary epoch

with the current cosmos as it smoothly heats up enough to enter into radiation era.

During inflation, the vacuum energy density dominates over radiation density ρr as

well as kinetic energy. The radiation density evolves as

ρ̇r + 4Hρr = Γφ̇2,

where Γi represents dissipation coefficient and Γφ̇2 acts as a source term that en-

courages radiation energy while 4Hρr is referred as sink term which throws them

away.

The radiation production (appears due to inflaton decay) is counterbalanced by
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dissipation effects introduced in the equation of motion of inflaton as

φ̈ + (3H + Γ)φ̇ + V (φ) = 0.

Here source term appreciates thermal equilibrium during the decaying process of

inflaton. If a system does not admit thermal equilibrium then it is not possible to

explain the dissipation effect as well as decay of inflaton through source term [40]. In

the decay process, the energy released by inflaton converts into heat and consequently,

increases radiation density. During inflation, the Hubble parameter, dissipation factor

and inflaton possess an extremely small variation leading to a non-zero steady state

point of radiation density. Therefore, the radiation production is entirely based on

source rather than initial conditions. The dissipation factor can be considered as

constant, φ-dependent function or in terms of thermal bath temperature T (due to

its interaction with T).

In the dynamics of warm inflation, thermal bath temperature plays a significant

role to determine the origin of density perturbations. In cold inflation, the quantum

fluctuations of inflaton generate initial density perturbations while these perturba-

tions emerge from thermal fluctuations in warm inflation. For the existence of warm

inflation, thermal temperature defines necessary condition T > H which indicates

that thermal fluctuations will dominate over the quantum fluctuations. In case of

slow-roll approximation, this temperature turns out to be constant and therefore,

successfully eliminates the necessity of reheating phase. The inflationary paradigm

is categorized in two distinct regimes relative to strength of dissipation. If the effect

of dissipation is small then particles belong to weak dissipative regime whereas the

intensive dissipation effect leads to strong dissipative regime. The warm inflation

experiences a graceful exit when vacuum energy density ρφ completely dissipates into



13

radiation density.

1.3 Some Constraints on Inflationary Model

We have discussed fundamental features of inflation, just a theoretical phase occurred

in very early times but recent observations successfully support this hypothetical era

by evaluating some standard constraints. These observational constraints follow the

trail of quantum fluctuations relative to density perturbations (scalar perturbations

arising from inflaton) and gravitational waves (tensor perturbations appears from

metric tensor). The scalar and tensor perturbations leave a strong impact on the

spectrum of CMBR while the scalar perturbations only provide seeds for large scale

structure. The vacuum energy released by inflaton dominates over energy density

of the universe and generates small inhomogeneities defined as source for structure

formation. Recent cosmological observations measure the effect of these perturbations

leading to constrain the inflationary models.

To analyze variance in fluctuations, some important parameters like scalar power

spectrum (∆2
R) and tensor power spectrum (∆2

T ) have been introduced [41]. For

quantum fluctuations, the scalar and tensor power spectra are calculated in terms of

slow-roll and Hubble parameters as

∆2
R =

(
H

φ̇
< δφ >

)2

, ∆2
T =

2κ2H2

π2
. (1.3.1)

For non-warm and warm inflationary models, < δφ > is given by

< δφ >quantum=
H2

2π
, < δφ >thermal=

(
ΓHT2

(4π)3

) 1
4

.

A slight deviation of scalar and tensor power spectra from physical scale length is
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measured by the corresponding spectral indices given as

ns = 1− 6ε + 2η, nT = −2ε.

Here ns and nT denote scalar and tensor spectral indices, respectively. If the spectral

index is unity, then the corresponding spectrum is referred as scale invariant. Recent

observations of Planck 2015 [42] provide constraints for spectral index and tensor-

scalar ratio (R) as ns = 0.9603±0.0062 (68%CL) andR < 0.10 (95%CL), respectively.

1.4 Modified Theories of Gravity

In the following, we discuss f(R) theory and its extension f(R, T ) theory.

1.4.1 f(R) Theory

In Einstein-Hilbert action, the modification induces the replacement of linear scalar

curvature with a more generic function appreciating only minimal coupling with mat-

ter. Such gravitational modification defines the action as

I =

∫
d4x

√−g[
f(R)

2κ2
+ Lm], (1.4.1)

where g identifies determinant of the metric tensor gµν , f(R) represents non-linear

generic function minimally coupled with Lagrangian density of matter Lm. There

are three standard variational approaches that derive f(R) field equations from ac-

tion (1.4.1). The first approach defines the metric formalism which drives the field

equations by metric variation of the action. In this formalism, the basic entity is the

dependence of affine connection Γσ
µν on gµν while matter Lagrangian density depends

only on gµν . The second approach is referred as Palatini formalism that comprises
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Γσ
µν and gµν as independent variables. In third approach, the same process of Palatini

formalism continues but here Lm is considered to be a function of both Γσ
µν as well

as gµν . Due to these distinct formalisms, the f(R) gravity is characterized as metric

f(R) gravity, Palatini f(R) gravity and metric-affine f(R) gravity. In the following,

we discuss basic formalism and standard models of metric f(R) gravity.

The metric variation of action (1.4.1) leads to

fRRµν − 1

2
fgµν −∇µ∇νfR + gµν2fR = κ2T (m)

µν . (1.4.2)

Here, fR shows derivative of generic function f with respect to R, ∇µ represents

covariant derivative, 2 = ∇µ∇µ and T
(m)
µν denotes the energy-momentum tensor.

The equivalent form of Eq.(1.4.2) is

Gµν =
1

fR

(T (m)
µν + T (c)

µν ) = T eff
µν , (1.4.3)

where Gµν , T
(c)
µν and T eff

µν identify Einstein, curvature and effective energy-momentum

tensors, respectively. The curvature terms relative to generic function define T
(c)
µν as

T (c)
µν =

f −RfR

2
gµν +∇µ∇νfR −2fRgµν . (1.4.4)

The stability analysis is a significant aspect in modified theories as it provides viability

criteria of different modifications in the Einstein-Hilbert action. These gravitational

theories avoid instabilities such as ghosts degrees of freedom endorsed in Ostrograd-

ski’s instability and Dolgov-Kawasaki instability [43]. Ghost is referred as a field

which consists of particles moving with negative kinetic energy. In f(R) gravity, the

appearance of ghost is avoided for fR > 0 [11]. Dolgov and Kawasaki [44] discussed

instability criteria of R − µ4

R
model which becomes unstable if fRR < 0 and sets sta-

bility condition for viable f(R) models as fRR > 0. Thus, viable f(R) models require
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to satisfy stability constraints fR(R) > 0, fRR(R) > 0, R > R0, where R0 is the

current value of Ricci scalar.

In this thesis, we shall use three viable f(R) models to study early as well as

current cosmic expansion. The first f(R) model is Starobinsky inflationary model

given as [45]

f(R) = R + µR2, (1.4.5)

where µ is a positive constant. This model is also known as the first inflationary model

found to be consistent with anisotropy observed in CMBR. Thus, it can be considered

as a viable alternative to scalar field inflationary models. Besides explaining early

expansion, this model also leads to current cosmic expansion due to R2 term. The

second model is f(R) power-law model defined as [46]

f(R) = f0R
n, n 6= 0, 1, (1.4.6)

where n and f0 represent constants. This model suffers from big-rip singularity for

n < 0 but for n > 1 with f0 > 0, this singularity may be avoided. The third

f(R) model represents a generalization of Starobinsky model which includes an Rn

extension as follows [47]

f(R) = R + µR2 + νRn, (1.4.7)

where ν ≥ 3 and clearly, this model is free from singularity.

Jordan Frame of f(R) Theory

In Jordan frame, there is a direct interaction between geometrical and matter parts

in the action of f(R) gravity. We consider flat FRW metric as

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1.4.8)
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where a is the scale factor. The energy-momentum tensor for perfect fluid is given by

T (m)
µν = (ρm + pm)uµuν + gµνpm,

where ρm and pm identify energy density and pressure, respectively while uµ denotes

four-velocity of comoving fluid. For action (1.4.1), we obtain the following field equa-

tions along with perfect fluid

f −RfR

2
+ 3H2fR + 3HḟR = κ2ρm, (1.4.9)

f̈R + 2ḢfR −HḟR = −κ2(ρm + pm), (1.4.10)

In order to evaluate an expression for a and H, we consider Starobinsky model (1.4.5)

with µ = 1
6M2 , where M is a positive constant having dimension of mass. Inserting

this model into (1.4.9) and (1.4.10), we obtain

a = ai exp

[
Hi(t− ti)− M2(t− ti)

2

12

]
, H = Hi − M2(t− ti)

6
, (1.4.11)

where ti denotes initial cosmic time whereas ai and Hi represent scale factor and

Hubble parameter at t = ti, respectively. In order to discuss inflationary paradigm,

we need to consider perfect fluid as equivalent to scalar field implying ρm = ρφ =

φ̇2

2
+ V (φ) and pm = pφ = φ̇2

2
− V (φ). It is strongly claimed that the equivalence of

perfect fluid with scalar field is not viable in Jordan frame representation due to the

existence of negative kinetic energy [48]. To get rid of such negative kinetic energy,

the fourth order field equations are transformed conformally from Jordan to Einstein

frame which contains an additional scalar degree of freedom with positive kinetic term

[49].
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Einstein Frame of f(R) Theory

In the Einstein frame, the f(R) gravity indicates existence of extra scalar degree of

freedom which drives early as well as late-time cosmic acceleration. A conformal

transformation over a metric structure allows to scale time, length and mass whereas

angles remain unchanged. The action of f(R) gravity can also be written as

I =
1

2κ2

∫
d4x

√−g(fRR− V (φ)) + Lm(gµν , ψ), (1.4.12)

where V (φ) = fRR − f . For a conformal factor g̃µν = ϕ2gµν = fRgµν , this action

takes the form

IE =

∫
d4x

√
−g̃

(
R̃

2κ2
− 1

2
g̃µν∂µφ∂νφ− U(φ) + L̃m(f−1

R (φ)g̃µν , ψ)

)
. (1.4.13)

Here, U(φ) = V (φ)

f2
R

, the considered conformal factor becomes field dependent as ϕ2 =

fR = exp[
√

2
3
κφ] and the gravitational term of action (1.4.1) takes equivalent form of

the Einstein-Hilbert action appreciating minimal coupling between matter Lagrangian

density and scalar field. In this frame, the flat FRW model becomes

ds̃2 = −dt̃2 + ã2(t̃)(dx2 + dy2 + dz2), (1.4.14)

where

ds̃ =
√

fRds, dt̃ =
√

fRdt, ã =
√

fRa. (1.4.15)

The energy-momentum tensor corresponding to matter and scalar parts are

T̃ (m)
µν = − 2√−g̃

∂L̃m

∂g̃µν
, T̃ (φ)

µν = − 2√−g̃

∂(∂
√−g̃L̃φ)

∂g̃µν
. (1.4.16)

where L̃φ represents Lagrangian density of a scalar field given by

L̃φ = −1

2
g̃µν∂µφ∂νφ− U(φ).
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For the action (1.4.13), the field equations and continuity equation turn out to be

3H̃2

κ2
= ρ̃m, 3H̃2 + 2

dH̃

dt̃
= −κ2p̃m, (1.4.17)

dρ̃m

dt̃
+ 3H̃(t̃)(ρ̃m + p̃m) = 0. (1.4.18)

The energy density and pressure are represented by ρ̃m = ρm

f2
R

and p̃m = pm

f2
R

whereas

H̃ denotes Hubble parameter in this frame. In order to formulate expressions of t̃, ã

and H̃ for (1.4.5) with µ = 1
6M2 , we integrate Eq.(1.4.15) yielding

t̃ =
2

M

[
Hi(t− ti)− M2(t− ti)

2

12

]
, (1.4.19)

ã(t̃) =
2Hiai

M

[
1− M3t̃

12H2
i

]
e

Mt̃
2 , H̃(t̃) =

M

2

[
1− M2

6H2
i

(
1− M3t̃

12H2
i

)−2
]

.

The conformal transformation allows a smooth transition between these two frames as

it only redefines the scales of fundamental quantities that retain physical predictions

in both frames [50]. The main difference in both frames is that the Jordan frame

defines f(R) gravity on the basis of metric tensor whereas Einstein frame describes

the theory with the help of metric tensor along with scalar field interacting with

matter sector.

1.4.2 f(R, T ) Theory

The modification carried out by a direct coupling between curvature and matter

(known as non-minimally coupled gravity) put forward another step on the road of

theoretical developments. If such modification is introduced in f(R) gravity then

it yields a generalized theory of gravity named as f(R, T ) gravity. For this non-

minimally coupled gravity, the Einstein-Hilbert action is modified as

I =

∫
d4x

√−g[
f(R, T )

2κ2
+ Lm]. (1.4.20)
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The field equations are obtained through metric variation of this action as

RµνfR(R, T )− 1

2
gµνf(R, T ) + (gµν∇µ∇µ −∇µ∇ν)fR(R, T ) + fT (R, T )

×T (m)
µν +AµνfT (R, T ) = κ2T (m)

µν , (1.4.21)

where subscripts of f define corresponding partial derivatives, and Aµν denotes

Aµν =
gµνδT

(m)
µν

δgµν
= gµνLm − 2T (m)

µν − 2gµν ∂2Lm

∂gµν∂gµν
.

The curvature terms evolve as follows

T (c)
µν = fT T (m)

µν − fT gµνLm +
1

2
gµν(f −RfR) + (∇µ∇ν −∇µ∇µgµν)fR. (1.4.22)

In non-minimally coupled f(R, T ) gravity, the covariant derivative of energy-momentum

tensor yields an extra force which behaves as a source of deviation for massive test

particles given by

∇µT (m)
µν =

fT

κ2 − fT

[
(T (m)

µν +Aµν)∇µ ln fT +∇µAµν − gµν∇µT

2

]
.

Harko et al. [17] introduced some theoretical models in this gravity by taking

different choices of matter contribution as

• f(R, T )=R + 2g(T ),

• f(R, T )=f(R) + g(T ),

• f(R, T )=f1(R) + f2(R)g(T ).

The viability of these f(R, T ) models can be analyzed through Dolgov-Kawasaki

instability which requires similar sort of constraints as in f(R) gravity along with an

additional constraint, i.e., 1 + fT (R, T ) > 0 [51]. The viability criteria for f(R, T )

gravity is based on the following conditions

fR(R) > 0, fRR(R) > 0, 1 + fT (R, T ) > 0, R > R0. (1.4.23)
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1.5 Noether Symmetry Approach

Symmetry defines features of a mathematical/physical system that are preserved un-

der some change. At geometric level, symmetry appears if the system remains invari-

ant in the presence of particular transformations, i.e., rotation, reflection or scaling

while mathematically, it specifies a point transformation. The symmetry which ap-

pears due to continuous changes in a system are referred as continuous symmetry

(spacetime symmetries) and the continuous symmetry corresponding to Lagrangian

of a system is called Noether symmetry. The physical features of a dynamical sys-

tem can be characterized by constructing the associated Lagrangian which describes

energy content as well as provides information about possible symmetries of the sys-

tem. Noether symmetry approach helps to construct new cosmological models and to

specify conserved quantities of a system. This is due to remarkable Noether theorem

which states that every symmetry generator yields associated conserved quantity if

pointlike Lagrangian remains invariant under a continuous group. If a system admits

translational symmetry in time and position then it undergoes conservation of energy

and linear momentum, respectively whereas rotational symmetry leads to conserva-

tion law of angular momentum.

Noether symmetry and associated conserved quantity are highly motivated from

Lie symmetries. For the sake of simplicity, we consider two-dimensional system in

which the point transformation is defined as x̃ = x̃(x, y), ỹ = ỹ(x, y) that maps the

pair (x, y) onto (x̃, ỹ). In order to evaluate symmetry of the system, we define an

infinitesimal parameter ε in point transformation as

x̃ = x̃(x, y; ε), ỹ = ỹ(x, y; ε).
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The corresponding infinitesimal generator can be found by Taylor series as follows

x̄(x, y; ε) = x + εξ̄(x, y) + ... = x + εKx + ...,

ȳ(x, y; ε) = y + εη̄(x, y) + ... = y + εKy + ...,

where K identifies the associated infinitesimal symmetry generator given by

K = ξ̄(x, y)
∂

∂x
+ η̄(x, y)

∂

∂y
,

where ξ̄(x, y) = ∂x̄
∂ε
|ε→0, η̄(x, y) = ∂ȳ

∂ε
|ε→0. This point transformation may also de-

termine infinitesimal generalized position as Qi = Qi(qj, ε) that leads to define the

vector field for these generalized positions as

K = ξ̄(ϑ, qi)
∂

∂ϑ
+ η̄j(ϑ, qi)

∂

∂qj
, (1.5.1)

where ϑ represents affine parameter.

Noether symmetry requires the invariance condition given as

K [1]L+ (Dξ̄)L = DB(ϑ, qi), (1.5.2)

where B identifies boundary term while the first order prolongation of vector field

K [1] and total derivative D are defined as

D =
∂

∂ϑ
+ q̇i ∂

∂qi
, K [1] = K + (η̄j,ϑ +η̄j,i q̇

i − ξ̄,ϑ q̇j − ξ̄,i q̇
iq̇j)

∂

∂q̇j
. (1.5.3)

Symmetries from invariance condition leading to conserved quantities as follows

I = B − ξ̄L − (η̄j − q̇j ξ̄)
∂L
∂q̇j

. (1.5.4)

This quantity also called Noether integral or first integral. If the first order prolonga-

tion of vector field and boundary term of the extended symmetry vanish, then vector
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field (with complete lift), invariance condition and corresponding first integral take

the following form

K = η̄i(qi)
∂

∂qi
+

[
d

dt
(η̄i(qi))

]
∂

∂q̇i
, LKL = KL = 0, I = −η̄i ∂L

∂q̇i
, (1.5.5)

where L is Lie derivative. For a dynamical system, the Euler-Lagrange equation and

the associated energy function are defined as

∂L
∂qi

− d

dt

(
∂L
∂q̇i

)
= 0,

∑
i

q̇i ∂L
∂q̇i

− L = EL.

The existence of Noether symmetry generator assures the presence of a cyclic

variable which significantly simplifies the complicated structure of the field equations

and leads to formulate corresponding exact solutions. Such variable is determined by

a point transformation, ϕ̄ : X(xi) → Y (yi). This transformation defines an interior

product operator of the vector field K as ϕ̄Kdyi = 0 and ϕ̄Kdyj = 1 with i 6= j

yielding yj as cyclic variable. The complexity of the system will be reduced using this

transformation but the cyclic variable is not unique in a dynamical system, therefore

an appropriate choice of coordinates is quite critical. If the corresponding Lagrangian

is free form this variable then exact solution can be obtained successfully.

1.6 Wormholes

A wormhole is defined as a theoretical geometry that creates a shortcut across long

distances spacetime. If speculative passage joins two distinct patches of the same

spacetime then intra-universe WH exists while inter-universe WH establishes for two

distinct spacetimes. The existence of exotic matter (matter possesses negative energy

density) at the WH throat encourages a smooth passing for an observer in tunnel but
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its sufficient amount yields a controversial existence of a realistic WH. The first hypo-

thetical structure is the solution of Einstein field equations named as Schwarzschild

WH which opposed the two-way traveling (non-traversable WH). The traversable

behavior is disturbed due to the existence of strong tidal forces destroying anything

that comes closer to WH throat. This destruction appears because of rapid expansion

(circumference expands from zero to finite) and subsequent contraction (compresses

to zero) of WH throat. Thus, the Schwarzschild WH strongly denies the presence of

stable antihorizon. In order to overcome these shortcomings, Morris and Thorne [52]

proposed the existence of unrealistic matter that pushes WH walls apart and keeps

the throat open for traversable motion. Different approaches like modified theories,

non-minimal curvature-matter coupling and scalar field models have been introduced

to investigate the existence of traversable as well as realistic WH [53].

A general static spherically symmetric spacetime is given by [19]

ds2 = −eâ(r)dt2 + eb̂(r)dr2 + M̂(r)(dθ2 + sin2 θdφ2), (1.6.1)

where â, b̂ and M̂ are radial functions. This static spacetime explains WH geometry

for eb̂(r) =
(
1− h(r)

r

)−1

, where h(r) is the shape function and â(r) is referred as

red-shift function determining gravitational red-shift. In order to identify a WH

throat, the radial coordinate admits non-monotonic behavior such that it starts from

infinity, decreases upto a minimum value r0 locating WH throat at h(r0) = r0 and then

starts increasing from minimum value to infinity providing r > r0. The derivative

condition h′(r0) < 1 is introduced at throat, where prime denotes radial derivative.

The throat is considered to be the minimum radius of WH geometry leading to

the flaring-out condition, i.e., h(r)−h(r)′r
h(r)2

> 0. Apart from throat, the shape of WH

depends on asymptotically flat space implying h(r)
r

→ 0. To avoid event horizon
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in traversable WH, the key point is to have a finite red-shift function everywhere

introducing negligible tidal forces at throat. If tidal forces are strong (magnitude

of these forces is same as forces at horizon) at throat then horizon will appear and

consequently, these forces would crush anything that tries to pass through.

The energy conditions provide a significant way to analyze physical existence of

cosmological geometries. The presence of physically acceptable traversable WH is

possible if the energy conditions are violated. Raychaudhari equations are considered

to be the most fundamental ingredients to define such energy bounds

dΘ

dτ
= −1

3
Θ2 − σµνσ

µν + wµνw
µν −Rµνl

µlν , (1.6.2)

dΘ

dτ
= −1

2
Θ2 − σµνσ

µν + wµνw
µν −Rµνk

µkν , (1.6.3)

where Θ, lµ, kµ, σµν and wµν represent expansion scalar, timelike vector, null vector,

shear and rotation tensors. The set of these two equations is defined for timelike

and null congruences. The positivity of the last term of both equations demands

attractive gravity. For the Einstein-Hilbert action, these conditions split into null

(NEC) (ρm + pm ≥ 0), weak (WEC) (ρm ≥ 0), strong (SEC) (ρm + 3pm ≥ 0)

and dominant (DEC) (ρm ± pm ≥ 0) energy conditions [54]. As the Raychaudhari

equations are found to be purely geometric implying that T
(m)
µν kµkν ≥ 0 can be

replaced with T eff
µν kµkν ≥ 0. Thus, the energy conditions in modified theories of

gravity turn out to be [55]

NEC : ρeff + peff ≥ 0,

WEC : ρeff ≥ 0, ρeff + peff ≥ 0,

SEC : ρeff + peff ≥ 0, ρeff + 3peff ≥ 0,

DEC : ρeff ≥ 0, ρeff ± peff ≥ 0.



Chapter 2

Warm Intermediate and
Logamediate Inflation in f (R)
Gravity

This chapter investigates the dynamics of warm intermediate and logamediate infla-

tion for flat isotropic and homogeneous universe in Einstein frame representation of

f(R) gravity. For both inflationary models, we discuss dissipative effects with weak

and strong interactions of inflaton using constant as well as generalized dissipative

coefficient. In both dissipative regimes, we find inflaton solutions corresponding to

scalar potential and radiation density. Under slow-roll approximation, we also de-

termine observational parameter, i.e., scalar and tensor power spectra, their spectral

indices and tensor-scalar ratio for Starobinsky inflationary model. The behavior of

these parameters is analyzed graphically which lead to explore their compatibility

with Planck 2015 constraints. The chapter is organized as follows. In section 2.1,

we discuss dynamics of warm inflation in Einstein frame. Section 2.2 is devoted to

study warm intermediate strong and weak dissipation regimes for constant as well as

generalized dissipation coefficient with Starobinsky inflationary model while Section

2.3 evolves the analysis for warm logamediate inflationary model. The results of

26
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warm intermediate as well as logamediate models have been published [56, 57].

2.1 Dynamics of Warm Inflation in Einstein Frame

Here we explore the behavior of warm inflation in Einstein frame of f(R) gravity. The

interaction of scalar and radiation fields is considered to be the most basic elements

of the universe that realizes warm inflationary paradigm for a minimally coupled

scalar field subject to potential U(φ). The energy density (ρ̃φ) and pressure (p̃φ) of

self-interacting scalar field are

ρ̃φ =
φ̇2

2fR

+ U(φ), p̃φ =
φ̇2

2fR

− U(φ). (2.1.1)

In warm inflation, the total energy density of the universe not only consist of ρ̃φ but

also contain radiation density ρ̃r. For such inflationary scenario, Eqs.(1.4.17) and

(1.4.18) yield

3H̃2

κ2
= ρ̃φ + ρ̃r, 3H̃2 + 2

dH̃

dt̃
= −κ2(p̃φ + p̃r), (2.1.2)

dρ̃r

dt̃
+ 4H̃ρ̃r − Γ

(
dφ

dt̃

)2

= 0, (2.1.3)

dρ̃φ

dt̃
+ 3H̃(ρ̃φ + p̃φ) + Γ

(
dφ

dt̃

)2

= 0. (2.1.4)

During inflation, the radiation density must attain a non-zero steady state point and

gets quasi-stable leading to the following conditions

dρ̃r

dt̃
¿ 4H̃ρ̃r,

dρ̃r

dt̃
¿ Γ

(
dφ

dt̃

)2

. (2.1.5)

Using the above conditions in Eq.(2.1.2), we obtain

ρ̃r =
3

4f 2
R

r̃

(
dφ

dt̃

)2

= χrT
4, r̃ =

Γ

3H̃
. (2.1.6)
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Here, r̃ describes the rate of dissipation factor relative to expansion of the universe

and χr = π2g∗
30

, g∗ represents number of relative degrees of freedom.

In warm inflation, thermal fluctuations of inflaton field are considerable as T > H̃

and ρ̃r dissipates into ρ̃φ, i.e., ρ̃φ À ρ̃r. Under this condition, the first field equation

of (2.1.2) leads to (
dφ

dt̃

)2

= −
[

2

κ2(1 + r̃)

]
dH̃

dt̃
. (2.1.7)

The thermal bath temperature is evaluated by using Eq.(2.1.7) into (2.1.6) as

T =

[
− 3f 2

Rr̃dH̃/dt̃

2κ2χr(1 + r̃)

] 1
4

. (2.1.8)

Inserting Eqs.(2.1.6) and (2.1.7) in (2.1.2), we obtain potential corresponding to in-

flaton as

U(φ) =
3H̃2

κ2
+

dH̃/dt̃

κ2(1 + r̃)

[
1 +

3r̃

2

]
. (2.1.9)

For Einstein representation of FRW universe model, the observational parameters

under slow-roll approximation (H = H̃
√

fR) take the following form

∆2
R = −H̃2κ2(1 + r̃)T

2dH̃/dt̃

[
ΓH̃f

1
2
R

(4π)3

] 1
2

, ns = 1− d

dÑ
(ln ∆2

R), (2.1.10)

∆2
T = 8κ2

[
H̃f

1
2
R

2π

]2

, nT = −2ε, < δφ >thermal=

[
ΓH̃T2f

1
2
R

(4π)3

] 1
4

, (2.1.11)

R =
∆2

T

∆2
R

= − 4fRdH̃/dt̃

π2(1 + r̃)H̃
1
2 T

[
(4π)3

Γf
1
2
R

] 1
2

, Ñ =

∫ t̃

t̃i

H̃(t̃)dt̃, (2.1.12)

where t̃i represents cosmic time at the beginning of inflation in Einstein frame.
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2.2 Warm Intermediate Inflation

Here, we analyze warm inflation in weak (r̃ ¿ 1) as well as strong (r̃ À 1) dissipative

regimes for both constant as well as generalized dissipation coefficient corresponding

to a scale factor that represents expansion of the universe less than de Sitter but

greater than power-law expansion. In this case, the scale factor takes the form [58]

a(t) = ai exp[γtḡ], γ > 0, 0 < ḡ < 1. (2.2.1)

In Einstein frame, the intermediate scale factor and corresponding Hubble parameter

turn out to be

ã(t̃) = ãi

[
1− M3t̃

12H2
i

]
exp

[
γ

(
t̃M

2Hi

)ḡ
]

, ãi =
2aiHi

M
, (2.2.2)

H̃(t̃) =
1

ã

dã

dt̃
= γḡ

[
t̃M

2Hi

]ḡ−1

. (2.2.3)

In order to measure the extent of inflation, we have

Ñ = γ

[
M

2Hi

]ḡ

(t̃ḡ − t̃ḡi ). (2.2.4)

2.2.1 Constant Dissipative Coefficient

First, we consider constant dissipation coefficient Γ = Γi and analyze how inflaton

evolves from weak to strong dissipation regime. In region of weak dissipation, the

inflaton field reduces to

φ = φ0 + ᾱ1t̃
ḡ
2 , U(φ) =

3

κ2

[
γḡ

(
M

2Hi

)ḡ (
φ− φ0

ᾱ1

) 2(ḡ−1)
ḡ

]2

, (2.2.5)

where

ᾱ1 =

√
8γ(1− ḡ)

κ2ḡ

(
M

2Hi

)ḡ

.
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In Einstein frame, the dimensionless slow-roll parameters are introduced as

ε = − 1

H̃2

dH̃

dt̃
, η = −

[
H̃

dH̃

dt̃

]−1
d2H̃

dt̃2
, (2.2.6)

where dH̃/dt̃ must be negative. For slowly varying inflaton field, the slow-roll para-

meters (2.2.6) and radiation energy density corresponding to (2.2.3) and (2.2.5) take

the form

ε =
1− ḡ

γḡ

(
2Hi

M

)ḡ [
φ− φ0

ᾱ1

]−2

, η =
2− ḡ

γḡ

(
2Hi

M

)ḡ [
φ− φ0

ᾱ1

]−2

,

ρ̃r =
Γi(1− ḡ)

2κ2

(
φ− φ0

ᾱ1

)− 2
ḡ

.

At the earliest stage of inflationary epoch, the inflaton field at t̃ = t̃i becomes

φi = φ0 + ᾱ1

(
1− ḡ

γḡ

) 1
2
(

2Hi

M

) ḡ
2

.

The corresponding number of e-folds and inflaton field are given by

Ñ = γ

(
M

2Hi

)ḡ
[(

φ− φ0

ᾱ1

)2

−
(

φi − φ0

ᾱ1

)2
]

, (2.2.7)

φ = φ0 + ᾱ1

(
2Hi

M

) ḡ
2

[
Ñ

γ
+

1− ḡ

γḡ

] 1
2

. (2.2.8)

In weak dissipative regime, the observational parameters like scalar and tensor power

spectra as well as their spectral indices become

∆R =
κ2

2

(
Γi

2κ2χr

) 1
4

(γḡ)2(1− ḡ)−
3
4

(
2Hi

M

)− 1
4

[
Ñ

γ
+

1− ḡ

γḡ

] 8ḡ−5
4ḡ

,

ns = 1− 1

γḡ

(
8ḡ − 5

4ḡ

) [
Ñ

γ
+

1− ḡ

γḡ

]−1

,

∆T =
2κ2γ2ḡ2

π2

(
Ñ

γ
+

1− ḡ

γḡ

) 2(ḡ−1)
ḡ

, nT = 2

(
ḡ − 1

γḡ

) (
Ñ

γ
+

1− ḡ

γḡ

)−1

.
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Figure 2.1: ns versus Ñ (left) for ḡ = 0.7 (red), 0.999 (magenta) and R versus ns

(right) for ḡ = 0.7 (green), 0.8 (magenta), 0.9 (red), γ = 1, Γi ∝ χ
1
6
r , χr = 70.

The tensor-scalar ratio is

R =
4

π2

[(
Γi

2κ2χr

)−1 (
2Hi

M

)
(1− ḡ)3

] 1
4
(

Ñ

γ
+

1− ḡ

γḡ

)−3
4ḡ

.

For weak dissipation regime, the decay rate of inflaton and Hubble parameter in terms

of thermal bath temperature turn out to be

r̃ =
Γi

3γḡ

(
2Hi

M

)[
8ḡ − 5

4γḡ(1− ns)

] 1−ḡ
ḡ

,

H̃ =

[(
2κ2χr

Γi(1− ḡ)

) 1
4
(

M

2Hi

) 3−4ḡ
4(1−ḡ)

(γḡ)
1

4(1−ḡ) T

]4(1−ḡ)

.

Figure 2.1 (left plot) represents the graphical behavior of ns against Ñ in weak

dissipative regime which are found in enough abundance to discuss inflationary epoch

whereas the right plot indicates compatible R for the proposed values of ḡ. Figure

2.2 shows that T >> H̃ (left panel) and r̃ << 1 (right panel) for 0.7 ≤ ḡ ≤ 0.9 which

assures the existence of warm intermediate inflation in weak dissipative regime.

In strong dissipative regime, Eqs.(2.1.7) and (2.1.9) yield the inflaton field and

corresponding potential in the following form

φ = φ0 + ᾱ2t̃
2ḡ−1

2 , U(φ) =
3

κ2

[
γḡ

(
M

2Hi

)ḡ (
φ− φ0

ᾱ2

) 2(ḡ−1)
2ḡ−1

]2

, (2.2.9)
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Figure 2.2: Log(H̃) versus T (left) for ḡ = 0.9 (green) and Log(r̃) versus ns (right)
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r , χr = 70.

where φ0 is an integration constant and ᾱ2 is

ᾱ2 =

√
24(γḡ)2(1− ḡ)

κ2Γi(2ḡ − 1)2

(
M

2Hi

)2

. (2.2.10)

Using Eqs.(2.2.3) and (2.2.9), the slow-roll parameters become

ε =
1− ḡ

γḡ

(
2Hi

M

)ḡ [
φ− φ0

ᾱ2

] 2ḡ
1−2ḡ

, η =
2− ḡ

γḡ

(
2Hi

M

)ḡ [
φ− φ0

ᾱ2

] 2ḡ
1−2ḡ

. (2.2.11)

For inflaton field (2.2.9), the radiation density and e-folds take the form

ρ̃r =
3γḡ

2κ2
(1− ḡ)

(
M

2Hi

)ḡ (
φ− φ0

ᾱ2

) 2(ḡ−2)
2ḡ−1

, (2.2.12)

Ñ = γ

(
M

2Hi

)ḡ
[(

φ− φ0

ᾱ2

) 2ḡ
2ḡ−1

−
(

φi − φ0

ᾱ2

) 2ḡ
2ḡ−1

]
. (2.2.13)

To evaluate an expression for this earliest inflaton field, we take ε = 1 at the beginning

of inflationary epoch which yields

φi = φ0 + ᾱ2

[(
1− ḡ

γḡ

)(
M

2Hi

)ḡ] 2ḡ−1
2ḡ

. (2.2.14)

Combining Eqs.(2.2.13) and (2.2.14), we obtain inflaton in terms of e-folds as

φ = φ0 + ᾱ2

(
2Hi

M

) 2ḡ−1
2

[
Ñ

γ
+

1− ḡ

γḡ

] 2ḡ−1
2ḡ

. (2.2.15)
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6
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The observational parameters like scalar and tensor power spectra along with their

indices as a function of e-folds turn out to be

∆R =

√
Γ3

i 3
1
2 κ4

36(4π)3(2κ2χr)
1
2




(
γḡ

1− ḡ

)3 (
2Hi

M

)2
(

Ñ

γ
+

1− ḡ

γḡ

)3



1
4

,

ns = 1− 3

4γ

[
Ñ

γ
+

1− ḡ

γḡ

]−1

,

∆T =
2κ2γ2ḡ2

π2

(
Ñ

γ
+

1− ḡ

γḡ

) 2ḡ−1
ḡ

, nT = 2

(
ḡ − 1

γḡ

) (
Ñ

γ
+

1− ḡ

γḡ

)−1

.

The ratio of tensor and scalar power spectra yields

R =

[
(γḡ)

5
2 (1− ḡ)

3
2

(
144(4π)3(2κ2χr)

1
2

π4Γ3
i 3

1
2

)] 1
2 (

M

2Hi

) 1
2

(
Ñ

γ
+

1− ḡ

γḡ

) 5ḡ−8
4ḡ

.

The decay rate of inflaton field is given by

r̃ =
Γi

3γḡ

(
2Hi

M

)[
3

4γ(1− ns)

] 1−ḡ
ḡ

.

In the background of thermal bath radiations, Hubble parameter takes the form

H̃ =

[(
2κ2χr

3

)(
2Hi

M

) 3ḡ−2
1−ḡ

(γḡ)
1

1−ḡ (1− ḡ)−1T4

] 1−ḡ
2−ḡ

.
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Figure 2.4: Log(H̃) versus T (left) for ḡ = 0.89 (blue) and Log(r̃) versus ns (right)
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6
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Figure 2.3 (left plot) shows the variation of e-folds which are found to be smaller

than its standard value, i.e., Ñ = 19 at ḡ = 0.71, 0.8 and ḡ = 0.89. The right panel of

Figure 2.3 indicates that R < 0.10 at ns = 0.9603 which implies compatibility of R
in strong dissipation regime. In order to investigate dominant characteristics of warm

inflation, we plot H̃ versus T in left panel of Figure 2.4 which yields T >> H̃. The

right panel of Figure 2.4 implies that r̃ >> 1 which assures the presence of inflaton

particles in strong dissipative regime.

2.2.2 Generalized Dissipative Coefficient

The most general form of dissipation factor is given by [59]

Γ = Γi
Tm

φm−1
, (2.2.16)

where m represents an integer. For different values of m, dissipation coefficient cor-

responds to different physical processes, i.e., when m = 0, the dissipation coefficient

describes an exponential decay propagator in high temperature supersymmetry case.

For m = 1, it becomes proportional to thermal bath temperature while m = −1 deals
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with non-supersymmetry case [60]. In the present work, we study the behavior of

generalized dissipation coefficient in both dissipation regimes.

In weak dissipative regime, the constant as well as proposed generalized dissipative

coefficient leave the same effect over inflaton field, number of e-folds and slow-roll

parameters whereas radiation density becomes

ρ̃r =
1

2κ2

(
Γi

(2κ2χr)
m
4

) 4
4−m

(
2Hi

M

) 2m−4ḡ
4−m

(γḡ(1− ḡ))
4

4−m ᾱ
2(2−ḡ)

ḡ

1 φ
2(ḡ−2)

ḡ
+

4(1−m)
4−m .

The scalar and tensor power spectra, corresponding spectral indices and tensor-scalar

ratio are given by

∆R =
κ2

2

[
Γiᾱ

1−m
1

2κ2χr

(γḡ)2(4−m)(1− ḡ)m−3

(
2Hi

M

) (m−1)(2−ḡ)
2

+2(4−m)(ḡ−1)

×
(

Ñ

γ
+

1− ḡ

γḡ

) 2ḡ(4−m)+m−5
ḡ

+ 1−m
2




1
4−m

,

ns = 1−
(

2m− 10 + ḡ(17− 5m)

2(4−m)(1 + ḡ(Ñ − 1))

)
,

∆T =
2κ2γ2ḡ2

π2

(
2m− 10 + ḡ(17− 5m)

γ(ḡ + 2)(4−m)

) 2(ḡ−1)
ḡ

(1− ns)
2(1−ḡ)

ḡ ,

nT = 2

(
ḡ − 1

γḡ

)(
2m− 10 + ḡ(17− 5m)

γ(ḡ + 2)(4−m)

)−1

(1− ns),

R =
4

π2

[
Γiᾱ

1−m
1 (1− ḡ)m−3

2κ2χr

(
2Hi

M

)(m−1)(1− ḡ
2
) {

(1− ns)
−1

×
(

2m− 10 + ḡ(17− 5m)

γ(ḡ + 2)(4−m)

)} 3−m
ḡ

+ 1−m
2

] 1
m−4

.

The Hubble parameter in the background of thermal radiations and dissipation rate

of inflaton field take the form

H̃ =

[
Γiᾱ

m−1
1 (1− ḡ)−1

(2κ2χr)m−2
(γḡ)

ḡ(1−m)−2
2(ḡ−1)

(
2Hi

M

) ḡ(1−m)−2
2(1−ḡ)

+(m−1)ḡ−3

T4−m

] 2(ḡ−1)
ḡ(1−m)−2



36

20 40 60 80 100
Ñ

0.94

0.95

0.96

0.97

0.98

0.99

ns

0.6 0.7 0.8 0.9 1.0
ns

2.´ 10-7

4.´ 10-7

6.´ 10-7

8.´ 10-7

1.´ 10-6

1.2´ 10-6

1.4´ 10-6

R
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6
r , χr = 70, m = 0.

r̃ =
1

3

(
Γi

(2κ2χr)
m
4

)
ᾱ

4(1−m)
4−m

1 (1− ḡ)
m

4−m (γḡ)−1

(
2Hi

M

) 4+6m+2ḡ(1−m)
4−m

×
[(

2m− 10 + ḡ(17− 5m)

γ(ḡ + 2)(4−m)

)
(1− ns)

−1

] 4(1−ḡ)+m(ḡ−2)+2ḡ(1−m)
ḡ(4−m)

.

The graphical behavior of ns against number of e-folds and variation of R versus ns

for generalized dissipative coefficient is given in Figures 2.5, 2.7 and 2.9 for m = 0, 1

and m = −1, respectively. The e-folds are found to be lesser than standard value,

i.e., Ñ = 60 while R remains compatible for all considered values of m. Figures

2.6, 2.8 and 2.10 assure the condition of warm inflation in weak dissipative regime

for different values of model parameter ḡ.

In strong dissipative regime, the inflaton field and corresponding potential yield

φ = ᾱ3t̃
4(2ḡ−1)+m(2−ḡ)

4(3−m) , U(φ) =
3

κ2
(γḡ)2

(
M

2Hi

)2ḡ (
φ

ᾱ3

) 8(3−m)(ḡ−1)
4(2ḡ−1)+m(2−ḡ)

, (2.2.17)

where

ᾱ3 =





(
3−m

2

)(
6

κ2

) 1
2

[
(γḡ)8−m(1− ḡ)4−m

(
2Hi

M

)ḡ(m−8)−4m
] 1

8

×
(

8

4(2ḡ − 1) + m(2− ḡ)

)} 2
3−m

.
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Figure 2.7: ns versus Ñ (left) and R versus ns (right) for ḡ = 0.85 (red), 0.9 (green),
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Under the influence of inflaton field (2.2.17), the corresponding radiation density,

Hubble and slow-roll parameters turn out to be

ρ̃r =
3

2κ2
γḡ(1− ḡ)

(
M

2Hi

)ḡ (
φ

ᾱ3

) 4(3−m)(ḡ−2)
4(2ḡ−1)+m(2−ḡ)

,

H̃(t̃) = γḡ

(
M

2Hi

)ḡ (
φ

ᾱ3

) 4(3−m)(ḡ−1)
4(2ḡ−1)+m(2−ḡ)

, (2.2.18)

ε =
(1− ḡ)

γḡ

(
2Hi

M

)ḡ (
φ

ᾱ3

) −4(3−m)ḡ
4(2ḡ−1)+m(2−ḡ)

,

η =

(
2− ḡ

γḡ

)(
2Hi

M

)ḡ (
φ

ᾱ3

) −4(3−m)ḡ
4(2ḡ−1)+m(2−ḡ)

.

At the beginning of inflation (ε = 1), the initial value of inflaton field leads to

φ = ᾱ3

{(
2Hi

M

)ḡ
(

Ñ

γ
+

1− ḡ

γḡ

)} 4(2ḡ−1)+m(2−ḡ)
4(3−m)ḡ

. (2.2.19)

The corresponding scalar power spectrum and spectral index are

∆2
R =

κ2

6

[(
3

2κ2χr

) 3m+2
4

(
Γi

4π

)3

(γḡ)
3
4
(m+2)

(
2Hi

M

) 3
2
+ 3

4{ (1−m)(4(2ḡ−1)−m(2−ḡ))
(3−m)ḡ }

× ᾱ
3(1−m)
3

] 1
2

(
Ñ

γ
+

1− ḡ

γḡ

) 3
8 [

(3−m){ḡ(m+2)−2m}+(1−m){4(2ḡ−1)+m(2−ḡ)}
(3−m)ḡ ]

,

ns = 1− 3β̄0

8γ

(
Ñ

γ
+

1− ḡ

γḡ

)−1

,

where

β̄0 =
3

8

[
(3−m) {ḡ(m + 2)− 2m}+ (1−m) {4(2ḡ − 1) + m(2− ḡ)}

(3−m)ḡ

]
.

Similarly, tensor power spectrum and its spectral index become

∆2
T =

2κ2

π2
(γḡ)2

(
Ñ

γ
+

1− ḡ

γḡ

) 2
ḡ
(ḡ−1)

, nT =
2(ḡ − 1)

γḡ

(
Ñ

γ
+

1− ḡ

γḡ

)−1

.
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The above observational parameters generate tensor-scalar ratio as

R =

[
144

π4

(
2κ2χr

3

) 3m+2
4

(
4π

Γi

)3

(γḡ)
22−3m

4

(
2Hi

M

)− 3
2
− 3

4{ (1−m)(4(2ḡ−1)−ḡ(m+2))
(3−m)ḡ }

ᾱ
3(m−1)
3

] 1
2

× (
(8γ(1− ns))/3β̄0

) 3β̄0
8 .

The Hubble parameter in terms of thermal radiations and decay rate of inflaton field

take the form

H̃ =

[(
2κ2χr

3

)
(1− ḡ)−1(γḡ)

1
1−ḡ

(
2Hi

M

) 5−4ḡ
ḡ−1

T4

] 1−ḡ
2−ḡ

r̃ = ᾱmᾱ1−m
3 (3γḡ)

m−4
4 (1− ḡ)

m
4

(
2Hi

M

)m+1−m
2

+ 1−m
4(3−m)

{4(2ḡ−1)+m(2−ḡ)}

×
(

8γ(1− ns)

3β̄0

)ζ̄

,

where

ζ̄ = −1

ḡ
(1− ḡ) +

m

4ḡ
(2− ḡ) +

(m− 1)

4ḡ(3−m)
{4(2ḡ − 1) + m(2− ḡ)} .

The graphical behavior of ns versus number of e-folds is shown in left plot of

Figures 2.11, 2.13 and 2.16 for m = 0, 1 and m = −1, respectively. The right plot

of Figure 2.11, 2.13 and 2.16 indicate that R is constrained at observational value

of ns which leads to the consistent behavior of inflationary model for different values

of model parameter ḡ. Figures 2.12 (left plot), 2.15 and 2.17 (left plot) represent

graphical analysis of inflaton particles which satisfy the condition of warm inflation,

i.e, T >> H̃ in strong dissipative regime for m = 0, 1, −1. Figures 2.12 (right plot),

2.14 and 2.17 (right plot) show that r̃ >> 1 which implies that inflaton particles lies

in strong dissipative regime.
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2.3 Warm Logamediate Inflation

Here, we analyze warm inflation in both dissipative regimes for logamediate inflation-

ary model whose scale factor is defined as [58]

a(t) = ai exp(ĝ[ln t]β̄), ĝ > 0, β̄ > 1. (2.3.1)

In Einstein frame, the logamediate scale factor and corresponding Hubble parameter

turn out to be

ã(t̃) = ãi

[
1− M3t̃

12H2
i

]
exp

[
ĝ

{
ln

(
t̃M

2Hi

)}β̄
]

, ãi =
2aiHi

M
, (2.3.2)

H̃(t̃) = ĝβ̄t̃−1

{
ln

(
t̃M

2Hi

)}β̄−1

. (2.3.3)

2.3.1 Constant dissipation Coefficient

In weak dissipative regime, Eqs.(2.1.7) and (2.1.9) yield the inflaton field and corre-

sponding potential in the following form

φ = φ0 + ᾱ4

{
ln

(
t̃M

2Hi

)} β̄+1
2

, ᾱ4 =
2

β̄ + 1

√
2ĝβ̄

κ2
, (2.3.4)
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U(φ) =
3

κ2


ĝβ̄

(
M

2Hi

)
exp

{
−

(
φ

ᾱ4

) 2
β̄+1

} (
φ

ᾱ4

) 2(β̄−1)

β̄+1




2

, (2.3.5)

where φ0 is an integration constant. The dimensionless slow-roll parameters for

Eqs.(2.3.3) and (2.3.4) become

ε =
1

β̄ĝ

[
φ

ᾱ4

] 2(1−β̄)

β̄+1

, η =
1

β̄ĝ

[
φ

ᾱ4
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)
. (2.3.6)

For inflaton field (2.3.4), the radiation density and e-folds take the form

ρ̃r =
Γi

2κ2

(
M

2Hi

)
exp

[
−

(
φ

ᾱ4

) 2
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]
, (2.3.7)
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
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 . (2.3.8)

For the earliest inflaton field (ε = 1), we have

φi = φ0 + ᾱ4(ĝβ̄)
β̄+1

2(1−β̄) . (2.3.9)

Combining Eqs.(2.3.8) and (2.3.9), we obtain inflaton in terms of e-folds as

φ = φ0 + ᾱ4
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. (2.3.10)

The corresponding inflationary parameters turn out to be

∆R =
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2
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,
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Taking the ratio of tensor and scalar power spectra, it follows that
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4
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(
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The temperature of thermal bath radiations and decay rate of inflaton field are

T =

(
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2κ2χr

) 1
4
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
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ĝβ̄
+ (ĝβ̄)
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.

Figure 2.18 represents dominant characteristics of warm inflation, i.e., T >> H̃.

Both plots of Figure 2.19 imply that r̃ << 1 which represents weak interactions

between inflaton and matter fields and assures the presence of inflaton particles in

weak dissipative regime. In Figure 2.20 (left plot), the variation of e-folds approaches

to its standard value, i.e., Ñ = 60 as model parameter of inflationary model increases.
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1
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r , χr = 70.
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The right panel of Figure 2.20 indicates that R < 0.10 at ns = 0.9603 which implies

compatibility of R in weak dissipation regime.

In case of strong dissipative regime, the inflaton field and potential become

φ = φ0 + ᾱ5Ξ(t̃), U(φ) =
3(ĝβ̄)2

κ2

{
Ξ−1

(
φ

ᾱ5

)}−2 [
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,

(2.3.11)

where Ξ represents incomplete gamma function given as

Ξ(t̃) = γ

[
β̄,

1

2
ln

(
t̃M

2Hi

)]
, ᾱ5 = −2β̄ ĝβ̄

√
3M

Hiκ2Γi

.

The slow-roll parameters and radiation energy density corresponding to (2.3.11) are

given by

ε =
1

β̄ĝ

[
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(
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(
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)
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,
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,

ρ̃r =
3ĝβ̄
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.

At the initial stage of inflationary epoch, the inflaton at t̃ = t̃i gives

φi = φ0 + ᾱ5Ξ

(
exp

[
(ĝβ̄)

1
1−β̄ − ln

(
M

2Hi

)])
.
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The number of e-folds and inflaton field turn out to be
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(ĝβ̄)

1
1−β̄ − ln

(
M

2Hi

))}
, (2.3.12)
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In this case, the observational parameters take the form
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ĝβ̄

) 3(β̄−1)

4β̄

,

∆T =
2κ2β̄2ĝ2
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ĝβ̄
+ (ĝβ̄)
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The corresponding tensor-scalar ratio yields
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The decay rate and temperature of thermal bath radiations generates
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Γi

3


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Figure 2.21: Log(H̃) versus Log(T) (left) and Log(r̃) versus ns (right) for β̄ = 2 (red),

2.4 (green), 2.7 (blue), ĝ = 0.01, Γi ∝ χ
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6
r , χr = 70.
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Figure 2.21 indicates that T >> H̃ (left panel) and r̃ >> 1 (right panel) for

2 ≤ ĝ ≤ 2.7 which assures the existence of warm inflation for logamediate infla-

tionary model in strong dissipative regime. Figure 2.22 (left plot) represents the

graphical behavior of ns against Ñ which are found in very small ratio due to strong

interactions and high dissipation rate whereas the right plot indicates compatible R
for the proposed values of ĝ in strong dissipative regime.
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2.3.2 Generalized Dissipative Coefficient

Here, the dissipative coefficient (2.2.16) takes the form

Γ
4−m

4 = ᾱmφ1−m

(
−dH̃/dt̃

H̃

)m
4

(1 + r̃)−
m
4 f

m
2

R ,

where ᾱm = Γi

(2κ2χr)
m
4

. For weak and strong regimes, the dissipative coefficient gives

Γ = (ᾱmφ1−m)
4
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f
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(
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)m
4

f
m
2

R .

In weak dissipative regime, the constant as well as generalized dissipative coefficient

preserve inflaton field, number of e-folds and slow-roll parameters whereas radiation

density for generalized dissipative coefficient becomes

ρ̃r =
1

2κ2
ᾱ

4
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m

(
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The scalar and tensor power spectra along with corresponding spectral indices and

tensor-scalar ratio are given by
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
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Ñ
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ĝβ̄
+ (ĝβ̄)
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The dissipation rate of inflaton and temperature of thermal radiations are
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+ (ĝβ̄)

β̄
1−β̄ + ln

(
2Hi

M

) 1
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Figure 2.23: Log(H̃) versus Log(T) (left) for β̄ = 2 (red) and Log(H̃) versus Log(T)

(right) for β̄ = 3.5 (green), 4.5 (blue), ĝ = 4, Γi ∝ χ
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Figures 2.23-2.25 assure the condition of warm inflation for m = 0, 1 and m = −1

in weak dissipative regime for different values of the model parameter β̄. Figure 2.26

identifies the decay of inflaton particles for m = 0, 1 but this condition is violated

for m = −1. The graphical behavior of R versus ns and variation of ns against Ñ

for generalized dissipative coefficient is given in Figures 2.27 and 2.28 which lead to

compatible results for m = 0 and m = 1 in weak dissipative regime.

In strong dissipative regime, the inflaton field admitting potential leads to

φ = ᾱ6Ξm(t̃), U(φ) =
3(ĝβ̄)2
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,

(2.3.14)
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Figure 2.25: Log(H̃) versus Log(T) (left) for β̄ = 2 (red) and Log(H̃) versus Log(T)

(right) for β̄ = 3.5 (green), 4.5 (blue), ĝ = 4, Γi ∝ χ
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6
r , χr = 70, m = −1.
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(red), 1.45 (green), 1.65 (blue), ĝ = 2, Γi ∝ χ
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] 1

4(3−m)

.

The corresponding radiation density, Hubble and slow-roll parameters turn out to be

ρ̃r =
3ĝβ̄

2κ2

{
Ξ−1

m

(
φ

ᾱ6

)}−1 [
ln

(
Ξ−1

m

(
φ

ᾱ6

)
M

2Hi

)](β̄−1)

,

H̃(t̃) = ĝβ̄

{
Ξ−1

m

(
φ

ᾱ6

)}−1 [
ln

(
Ξ−1

m

(
φ

ᾱ6

)
M

2Hi

)](β̄−1)

, (2.3.15)

ε =
1

β̄ĝ

[
ln

(
Ξ−1

m

(
φ

ᾱ6

)
M

2Hi

)](1−β̄)

,

η =
1

β̄ĝ

[
ln

(
Ξ−1

m

(
φ

ᾱ6

)
M

2Hi

)]−β̄ (
2 ln

(
Ξ−1

m

(
φ

ᾱ6

)
M

2Hi

)
− (β̄ − 1)

)
.

For ε = 1, the initial value of inflaton field leads to φ as

φ = ᾱ6Ξm



exp




(
Ñ

ĝβ̄
+ (ĝβ̄)

β̄
1−β̄ − ln

(
M

2Hi

) 1
ĝβ̄

) 1
β̄






 .

The corresponding scalar power spectrum and spectral index are

∆2
R =

κ2

6

[
(ĝβ̄)

3(m+2)
4

(
M

2Hi

)−3(m+1) (
3

2κ2χr

) 3m+2
4

(
Γi

4π

)3
] 1

2

× exp


−3m

4

(
Ñ

ĝβ̄
+ (ĝβ̄)

β̄
1−β̄ + ln

(
2Hi

M

) 1
ĝβ̄

) 1
β̄




(
Ñ

ĝβ̄
+ (ĝβ̄)

β̄
1−β̄

+ ln

(
2Hi

M

) 1
ĝβ̄

) 3(m+2)(β̄−1)

8β̄
{

ᾱ6Ξm

(
exp

[(
Ñ

ĝβ̄
+ (ĝβ̄)

β̄
1−β̄
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− ln

(
M

2Hi

) 1
ĝβ̄

) 1
β̄








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

3(1−m)
2
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8

(
Ñ

ĝβ̄
+ (ĝβ̄)
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(
2Hi

M

) 1
ĝβ̄

)−1
β̄

.

Similarly, tensor power spectrum and its spectral index become

∆2
T =

2κ2(ĝβ̄)2

π2
exp


−2

(
Ñ

ĝβ̄
+ (ĝβ̄)
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1−β̄ + ln
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ĝβ̄

) 1
β̄




×
(

Ñ
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ĝβ̄
+ (ĝβ̄)
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.

The above observational parameters generate tensor-scalar ratio as

R =

[
144(4π)3

Γ3
i π

4

(
2κ2χr

3

) 3m+2
4

(ĝβ̄)
10−3m

4
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2Hi
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Ñ
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
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ĝβ̄

) 1
β̄











3(m−1)
2

,

The decay rate of inflaton field and thermal radiations take the form

r̃ = (Γi(2κ
2χr)

−m
4 )(3ĝβ̄)

m−4
4 exp


2−m

2
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Ñ
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) 1
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) 1
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
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×
(

2Hi
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ᾱ1−m
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Ñ
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+ (ĝβ̄)
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(
2Hi
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) 1
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







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1−m
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Figure 2.29: Log(H̃) versus Log(T) (left) for m = 0 and Log(H̃) versus Log(T ) (right)

for m = 1, β̄ = 1.5 (red), 2.5 (green), 3.5 (blue), ĝ = 0.01, Γi ∝ χ
1
6
r , χr = 70.

T =

(
3ĝβ̄

2κ2χr

) 1
4
(

2Hi

M

)
exp


−1

2

(
Ñ

ĝβ̄
+ (ĝβ̄)
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1−β̄ + ln

(
2Hi
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) 1
ĝβ̄

) 1
β̄


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×
(
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+ (ĝβ̄)

β̄
1−β̄ + ln

(
2Hi

M

) 1
ĝβ̄

) β̄−1
4β̄

.

Figures 2.29-2.31 represent graphical analysis of inflaton particles which satisfy

the condition of warm inflation, i.e, T >> H̃ and also show that r̃ >> 1. These

indications imply that inflaton particles lie in strong dissipative regime for m = 0, 1

and m = −1. Figures 2.32-2.34 describe the graphical behavior of ns versus number

of e-folds and variation of R versus ns for m = 0, 1 and m = −1. These plots indicate

that R is constrained at observational value of ns which leads to consistent behavior

of inflationary model for different values of the model parameter ĝ.
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Figure 2.30: Log(H̃) versus Log(T) (left) for ĝ = 0.01, m = −1 and Log(r̃) versus ns

(right) for ĝ = 0.0027, m = 0 ,β̄ = 1.5 (red), 2.5 (green), 3.5 (blue), Γi ∝ χ
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Figure 2.31: Log(r̃) versus ns (left) for m = −1 and Log(r̃) versus ns (right) for

m = 1, β̄ = 1.5 (red), 2.5 (green), 3.5 (blue), ĝ = 0.0027, Γi ∝ χ
1
6
r , χr = 70.
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Chapter 3

Some Exact Solutions via Noether
Symmetry Approach in f (R, T )
Gravity

This chapter investigates the existence of Noether symmetry of some isotropic as well

as anisotropic universe models in f(R, T ) gravity. Firstly, we evaluate symmetry gen-

erators with associated conserved quantities of flat FRW and BI universe models by

taking two f(R, T ) models admitting indirect curvature-matter coupling while cyclic

variable is used to construct exact solution of BI model. Secondly, we consider a gen-

eralized spacetime which corresponds to different anisotropic homogeneous universe

models in f(R, T ) gravity admitting minimal coupling with matter and scalar field

models. In this case, f(R, T ) models appreciate direct as well as indirect curvature-

matter coupling. For these models, we formulate corresponding symmetry generators,

conserved quantities and also determine exact solutions without introducing cyclic

variable.

The layout of this chapter is as follows. Section 3.1 is devoted to investigate the

existence of Noether symmetries of flat FRW and BI universe for both f(R, T ) models

while the first model leads to evaluate exact solution for perfect fluid. In section 3.2,

60
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we explore all possible Noether symmetries and associated conserved quantities for

generalized metric of anisotropic models. We construct exact solutions for both dust

as well as perfect fluids. We also construct graphical analysis in both sections to

investigate behavior of some cosmological parameters through exact solutions. The

results of this chapter have been published in two papers [61, 62].

3.1 Noether Symmetry for BI Universe Model

We apply Noether symmetry approach to deal with non-linear partial differential

equation (1.4.21). We consider BI universe model given by

ds2 = −dt2 + a2(t)dx2 + b2(t)(dy2 + dz2), (3.1.1)

where scale factors a and b measure expansion of the universe in x and y, z-directions,

respectively. For this purpose, we rewrite the action (1.4.20) as

I =

∫ √−g[f(R, T )− λ(R− R̄)− χ(T − T̄ ) + Lm]dt, (3.1.2)

where
√−g = ab2, R̄, T̄ represent dynamical constraints while λ, χ are Lagrange

multipliers given by

R̄ =
2

ab2
(äb2 + 2abb̈ + 2bȧḃ + aḃ2), T̄ = 3pm(a, b)− ρm(a, b),

λ = fR(R, T ), χ = fT (R, T ).

The field equation (1.4.21) is not easy to tackle with perfect fluid configuration and

also there is no unique definition of matter Lagrangian. Therefore, we consider Lm =

pm(a, b) [63] and construct Lagrangian as follows

L = ab2[f(R, T )−RfR(R, T )− TfT (R, T ) + fT (R, T )(3pm(a, b)− ρm(a, b))
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+ pm(a, b)]− (4bȧḃ + 2aḃ2)fR(R, T )− (2b2ȧṘ + 4abḃṘ)fRR(R, T )− (2b2ȧṪ

+ 4abḃṪ )fRT (R, T ). (3.1.3)

The corresponding equations of motion and energy function of dynamical system

become

ḃ2

b2
+

2b̈

b
= − 1

2fR(R, T )
[f(R, T )−RfR(R, T )− TfT (R, T ) + fT (R, T )

×(3pm(a, b)− ρm(a, b)) + pm(a, b) + a{fT (3pm,a −ρm,a ) + pm,a }+ 4b−1ḃṘ

×fRR(R, T ) + 2R̈fRR(R, T ) + 2Ṙ2fRRR(R, T ) + 4ṘṪ fRRT (R, T ) + 2T̈ fRT (R, T )

+2Ṫ 2fRTT (R, T ) + 4b−1ḃṪ fRT ], (3.1.4)

ä

a
+

ȧḃ

ab
+

b̈

b
= − 1

4fR(R, T )
[2(f(R, T )−RfR(R, T )− TfT (R, T )

+fT (R, T )(3pm(a, b)− ρm(a, b)) + pm(a, b)) + b{fT (3pm,
b
−ρm,

b
) + pm,

b
}]

+2(a−1ȧṘ + R̈)fRR + 2Ṙ2fRRR + 2(a−1ȧṪ + T̈ )fRT + 2(b−1ḃṘ + 2ṘṪ

+Ṫ 2)fRRT + 2b−1ḃṪ fRTT = 0, (3.1.5)

ḃ2

b2
+

2ȧḃ

ab
= − 1

fR(R, T )

[
2

(
2ḃṘ

b
+

ȧṘ

a

)
fRR(R, T ) + 2

(
2ḃṪ

b
+

ȧṪ

a

)

× fRT (R, T ) +
1

2
(f(R, T )−RfR(R, T )− TfT (R, T ) + fT (R, T )(3pm(a, b)

−ρm(a, b)) + pm(a, b))] . (3.1.6)

The conjugate momenta corresponding to configuration space (a, b, R, T ) are

pa =
∂L
∂ȧ

= −4bḃfR(R, T )− 2b2(ṘfRR(R, T ) + Ṫ fRT (R, T )), (3.1.7)

pb =
∂L
∂ḃ

= −4fR(R, T )(aḃ + bȧ)− 4ab(ṘfRR(R, T ) + Ṫ fRT (R, T )), (3.1.8)

pR =
∂L
∂Ṙ

= −(4abḃ + 2b2ȧ)fRR(R, T ), (3.1.9)

pT =
∂L
∂Ṫ

= −(4abḃ + 2b2ȧ)fRT (R, T ). (3.1.10)
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The vector field with complete lift (1.5.5) takes the following form

K = α
∂

∂a
+ β

∂

∂b
+ γ

∂

∂R
+ δ

∂

∂T
+ α̇

∂

∂ȧ
+ β̇

∂

∂ḃ
+ γ̇

∂

∂Ṙ
+ δ̇

∂

∂Ṫ
, (3.1.11)

where α, β, γ and δ are unknown coefficients of vector field depending on variables

a, b, R and T while the time derivatives of these coefficients are

α̇ = ȧ
∂α

∂a
+ ḃ

∂α

∂b
+ Ṙ

∂α

∂R
+ Ṫ

∂α

∂T
, β̇ = ȧ

∂β

∂a
+ ḃ

∂β

∂b
+ Ṙ

∂β

∂R
+ Ṫ

∂β

∂T
,

γ̇ = ȧ
∂γ

∂a
+ ḃ

∂γ

∂b
+ Ṙ

∂γ

∂R
+ Ṫ

∂γ

∂T
, δ̇ = ȧ

∂δ

∂a
+ ḃ

∂δ

∂b
+ Ṙ

∂δ

∂R
+ Ṫ

∂δ

∂T
.

Taking Lie derivative of Lagrangian (3.1.3) with respect to vector field (3.1.11) and

inserting time derivative of unknown coefficients, we obtain an over determined system

of equations by comparing the coefficients of ȧ2, ḃ2, Ṙ2, Ṫ 2, ȧḃ, ȧṘ, ȧṪ , ḃṘ, ḃṪ ,

ṘṪ and constant coefficient, given in Appendix A. We solve this non-linear system of

partial differential equations for two f(R, T ) models and evaluate possible solutions

of symmetry generator coefficients as well as corresponding conserved quantities.

3.1.1 f(R, T ) = R + 2g(T )

If this model incorporates a trace dependent cosmological constant, then it corre-

sponds to standard ΛCDM model defined as

f(R, T ) = R + 2Λ + g(T ). (3.1.12)

To find solution of Eqs.(A1)-(A11), we consider power-law form of unknown coeffi-

cients of vector field as

α = α0a
α1bα2Rα3T α4 , β = β0a

β1bβ2Rβ3T β4 , (3.1.13)

γ = γ0a
γ1bγ2Rγ3T γ4 , δ = δ0a

δ1bδ2Rδ3T δ4 , (3.1.14)
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where powers are unknown constants to be determined. Using these coefficients in

Eqs.(A1)-(A9), we obtain

α0 = −β0(α2 + 2), α1 = 1, α3 = 0, α4 = 0, γ = 0,

β1 = 0, β2 = α2 + 1, β3 = 0, β4 = 0.

Inserting these values in Eq.(3.1.13), it follows that

α = −β0(α2 + 2)abα2 , β = β0b
α2+1.

In order to evaluate α2, we substitute these solutions in Eq.(A10) which implies that

either α2 = 0 or α2 = 1
2
.

Case I: α2 = 0

In this case, the generator coefficients turn out to be

α = −2β0a, β = β0b.

Insert these values in Eqs.(3.1.4), (3.1.6) and (A11), we have

g(T ) = l1T + l2, δ = 0, pm = l3a
− 1

5 b−
2
5 ,

ρm = − 1

2l1
[2Λ + l2 + (3l1 − 1)l3a

− 1
5 b−

2
5 ].

Substituting all these solutions in Eqs.(A1)-(A11), we obtain l1 = −19
3
. Consequently,

the coefficients of symmetry generator and f(R, T ) model become

α = −2β0a, β = β0b, γ = 0, δ = 0, f(R, T ) = R− 19T

3
,

where g(T ) = −19T
3
− 2Λ and T = 87

19
l3a

− 1
5 b−

2
5 . In this case, the constructed f(R, T )

model is found to be viable for l3 < 0. Using the values of vector field coefficients, we
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obtain symmetry generator and corresponding conserved quantity as follows

K = −2β0a
∂

∂a
+ β0b

∂

∂b
, Σ = β0[−4abḃ + 4ȧb2].

The symmetry generator K indicates that scaling symmetry exists in this case.

We solve the field equations by introducing a cyclic variable whose existence is

assured by the presence of symmetry generator of Noether symmetry. We consider a

point transformation ϕ̄ : (a, b) → (v, z) which implies that ϕ̄Kdv = 0 and ϕ̄Kdz = 1.

The second mapping indicates that the Lagrangian must be free from the variable z.

Imposing this point transformation, we reduce the complexity of the system as

v = ζ0a
1
2 b, z =

ln b

β0

, (3.1.15)

where z is cyclic variable and ζ0 denotes arbitrary constant. The inverse point trans-

formation of variables yields

a = ζ1v
1
2 e−2β0z, b = ζ2e

β0z, ρm = −30ζ3v
− 2

5

19
, pm = ζ3v

− 2
5 . (3.1.16)

Here we redefine arbitrary constants as ζ3 = l3ζ
− 1

5
1 ζ

− 2
5

2 . For the above solutions, the

Lagrangian (3.1.3) and the corresponding equations of motion with associated energy

function (3.1.4)-(3.1.6) take the form

L = ζ4(4β0v
−1
2 v̇ż + 4β2

0v
1
2 ż2 − 30v

2
5 ),

2β0v
−1
2 z̈ + 2β2

0v
− 1

2 ż2 − 12v−
3
5 = 0,

8β0v
1
2 z̈ + v−

3
2 v̇2 + 4β0v

− 1
2 ż − 2v−

1
2 v̈ = 0,

30v
2
5 + 4β2

0v
1
2 ż2 + β0v

− 3
2 v̇2ż − 2β0v

− 1
2 v̇z̈ = 0.

Solving the above equations, we obtain time dependent solutions of new variables

(v, z) as follows

v = 2(t− ζ4)
1
2 (t2 − 2t + ζ2

4 ), z =
1

12β0

[12β0ζ5 − 2.93− 4 ln[(t− ζ4)
5
2 ]],
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where ζ4 and ζ5 represent integration constants. Inserting these values into Eq.(3.1.16),

we obtain

a =
8

5
ζ1e

−2β0ζ5(t− ζ4)
5
3 , b =

8

5
ζ2e

β0ζ5(t− ζ4)
− 1

3 (t2 − 2tζ1 + ζ2
1 ), (3.1.17)

ρm = −30ζ3

19
[2(t− ζ4)

1
2 (t2 − 2t + ζ2

4 )]−
2
5 , pm = ζ3[2(t− ζ4)

1
2 (t2 − 2t + ζ2

4 )]−
2
5 .

(3.1.18)

Now we study the behavior of some well-known cosmological parameters like Hub-

ble, deceleration and EoS parameters through exact solution of BI universe model.

Using Eq.(3.1.17), the Hubble and deceleration parameters turn out to be

H =
1

3

(
ȧ

a
+

2ḃ

b

)
=

5ζ6

3

(
1 +

t

ζ6

)
, q = − Ḣ

H2
− 1 = −3

5
(ζ6 + t)−2 − 1, (3.1.19)

where ζ6 = −ζ4. Inserting Eqs.(3.1.17) and (3.1.18) in (3.1.4) and (3.1.6), the effective

EoS parameter becomes

ωeff =
peff

ρeff

= 1− ζ4 − t + 3(
√

t− ζ4(t
2 − 2t + ζ2

4 ))
2
5

t− ζ4

.

The corresponding r − s parameters yield

r = q + 2q2 − q̇

H
= 1 +

18

25

(
2(t− ζ4)

−4 − 2(t− ζ4)
−3 + (t− ζ4)

−2
)
,

s =
r − 1

3(q − 1
2
)

=
1

3
(r − 1)

(
−3(t + ζ6)

−2

5
− 3

2

)−1

.

Both plots of Figure 3.1 represent graphical analysis of the scale factors a and b which

show the increasing behavior in x and y, z-directions, respectively. This increasing

nature of scale factors indicates the cosmic accelerated expansion in all directions.

The graphical analysis of Hubble and deceleration parameters is shown in Figure

3.2. Figure 3.2(i) shows that the Hubble parameter grows continuously represent-

ing expanding universe whereas Figure 3.2(ii) shows negative deceleration parameter
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Figure 3.1: Plots of scale factors versus cosmic time t: (i) a(t) versus t;
(ii) b(t) versus t for ζ1 = 0.15, ζ2 = 0.09, ζ4 = −0.99, ζ5 = 0.5, β0 = 0.1.
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Figure 3.2: Plots of (i) Hubble parameter and (ii) deceleration parameter versus
cosmic time t for ζ6 = −0.99.

which corresponds to accelerated expansion of the universe. In Figure 3.3, the first

plot indicates that the effective EoS parameter describes a smooth transition from

radiation dominated era to DE era while the region −0.3 > ωeff > −1 character-

izes quintessence phase. Figure 3.3(ii) represents correspondence of the constructed

model with standard ΛCDM universe model as (r, s) = (1, 0). Thus, the analysis of

cosmological parameters implies that the universe experiences accelerated expansion

for BI universe model.
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Figure 3.3: Plots of (i) EoS parameter and (ii) r-s parameters versus cosmic time t
for ζ6 = −0.99.

Case II: α2 = 1
2

For α2 = 1
2
, the coefficients of symmetry generator become

α = −5

2
β0ab

1
2 , β = β0b

3
2 ,

whereas Eq.(A11) yields

δ = 0, g(T ) = −2Λ + c1T, pm = m2a
3m2

1−3m1−1

3m1−1 b
3(5m2

1−4m1−2)

2(3m1−1) ,

ρm =

(
3m1 − 1

m1 − 2

)
m2a

3m2
1−3m1−1

3m1−1 b
3(5m2

1−4m1−2)

2(3m1−1) ,

where m1 and m2 represent arbitrary constants. The above solutions satisfy the

system of Eqs.(A1)-(A11) for m1 = 3±√21
6

. Under this condition, the solutions and

considered model of f(R, T ) gravity take the following form

α = −5

2
β0ab

1
2 , β = β0b

3
2 , γ, δ = 0, g(T ) = −2Λ +

(
3±√21

6

)
T,

pm = m2b
1
2 , ρm =

(
−3∓√21

9∓√21

)
m2b

1
2 , f(R, T ) = R +

(
3±√21

6

)
T,

where T =
(

30∓2
√

21
9∓√21

)
m2b

1
2 . Here, the constructed model ignores Dolgov-Kawasaki

instability as fR, fRR, 1 + fT > 0. The symmetry generator and its corresponding
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conserved quantity turn out to be

K = −5

2
β0ab

1
2

∂

∂a
+ β0b

3
2

∂

∂b
, Σ = β0[6ab

3
2 ḃ− 4ȧb

5
2 ].

We introduce z as a cyclic variable to evaluate exact solution which yields

v = m̄0a
2
5 b, z = −2b−

1
2

β0

,

where m̄0 denotes arbitrary constant. The corresponding inverse point transformation

leads to

a = m̄1v
5
2

(
−β0z

2

)5

, b = m̄2

(
−β0z

2

)−2

,

pm = m2m̄2

(
−β0z

2

)−1

, ρm =

(
−3∓√21

9∓√21

)
m2m̄2

(
−β0z

2

)−1

,

where m̄1 and m̄2 are arbitrary constants. For these solutions, the Lagrangian (3.1.3)

becomes

L = −2β0m̄1m̄
2
2

[
5v

3
2 v̇ − 6β0v

5
2 ż2

(
−β0z

2

)−1
]

+ m2v
5
2

[
4

(
3±√21

6

)

×
(

6∓√21

9∓√21

)
− 1

]
,

which depends upon the cyclic variable z. Thus, the resulting symmetry generator

for α2 = 0 yields scaling symmetry providing more significant results as compared to

α2 = 1
2
.

3.1.2 f(R, T ) = f(R) + g(T )

Here we consider f(R, T ) model which does not encourage any direct non-minimal

coupling of curvature and matter. For vector field K (3.1.11), we substitute this
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model in Eqs.(A1)-(A7) and (A9) which leads to

α = −2am3

b
√

fR

− 2am4 ln(fR)− 2m5√
b
− 4 ln(b)am4 − 6 ln(b)m6a + m7a,

β =
m3√
fR

+ (m8 + ln(fR)m4)b− (m4 + m6)b ln(b) + m6b ln(a),

γ = − 2√
fRfRRb

[
b((−3m4 − 4m6) ln(b) + m4 + m8 +

m7

2

+ m6 + m6 ln(a))(fR)
3
2 −m3fR

]
.

Here mi (i = 3, 4, 5, 6, 7, 8) are arbitrary constants. Inserting these solutions in

Eq.(A8), we obtain two solutions for f(R) as f(R) = m9R + m10 which is simi-

lar to the previous case while the second solution increases the complexity of the

system. To avoid this situation, we consider f(R) = f0R
n which yields

α = am11, β = bm12, γ =
(m11 + 2m12)R

1− n
, g(T ) =

T

3
+ m13,

pm =
1

12nm13

[
R1−nbρm,b−Rm13 − 6R1−nm13 + 2R1−nρm + 6nm13R

]
,

ρm = 3f0R
n + 3m13 − (m11aρm,a +m12bρm,b )

(m11 + 2m12)
.

These solutions satisfy (A1)-(A11) for n = 2 which implies that f(R) = f0R
2. Thus,

the matter contents and model of f(R, T ) gravity turn out to be

ρm = 3f0R
2 + 3m13 +

a
−1+

m12
m11 b

2
, pm =

1

24m13

[
3a

−1+
m12
m11 bR−1

2
+ 12m13R

]
,

f(R, T ) = f0R
2 +

T

3
+ m13, T = 3pm − ρm.

In this case, the constructed f(R, T ) model is found to be viable as it preserves

stability conditions. The corresponding symmetry generator takes the form

K = am11
∂

∂a
+ bm12

∂

∂b
−R(m11 + 2m12)

∂

∂R
.
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This generator yields scaling symmetry with the following conserved factors

Σ1 = 4ab2Ṙf0 − 4b2ȧf0R, Σ2 = −24abḃf0R− 8ab2Ṙf0,

where Σ1 and Σ2 are conserved quantities corresponding to m11 and m12, respectively.

To reduce the complex nature of the system, we consider ϕ̄ : (a, b, R) → (u, v, z)

implying that ϕ̄Kdu = 0, ϕ̄Kdv = 0 and ϕ̄Kdz = 1. In this case, we choose z as cyclic

variable which gives

u = Ã0a
m11+2m12

m11 R, v = Ã1b
m11+2m12

m12 R, z = − 1

m11 + 2m12

ln R,

where Ã0 and Ã1 denote integration constants. The corresponding inverse point

transformation yields

a = u
m11

m11+2m12 em11z, b = v
m12

m11+2m12 em12z, R = em11+2m12z.

For these solutions, the Lagrangian (3.1.3) takes the form

L =
1

(m11 + 2m12)2

(
24f0ż

2v
2m12

m11+2c12 m3
11u

m11
m11+2m12 m12 + 60f0ż

2v
2m12

m11+2m12 u
m11

m11+2m12

× m2
11m

2
12 + 80f0ż

2v
2m12

m11+2m12 m11m
3
12u

m11
m11+2m12 + 16f0v̇żu

m11
m11+2m12 m3

12v
− m11

m11+2m12

+ 4f0u̇żv
2m12

m11+2m12 m3
11u

− 2m12
m11+2m12 − 8f0u̇v̇m12m11v

− m11
m11+2m12 u

− 2m12
m11+2m12 + 8f0u̇ż

× v
2m12

m11+2m12 u
− 2m12

m11+2m12 m12m
2
11 + 8f0v̇żu

m11
m11+2m12 v

− m11
m11+2m12 m2

12m11 −
(
u

m11
m11+2m12

× em11z)
m12
m11 v

3m12
m11+2m12 e3m12zm2

11 − 4
(
u

m11
m11+2m12 em11z

)m12
m11 v

3m12
m11+2m12 e3m12zm2

12

− 4f0v̇
2m2

12u
m11

m11+2m12 v
− 2(m12+m11)

m11+2m12 + 48f0ż
2u

m11
m11+2m12 v

2m12
m11+2m12 m4

12 + 4v
2m12

m11+2m12

× u
m11

m11+2m12 f0m
4
11ż

2 − 4
(
u

m11
m11+2m12 em11z

)m12
m11 v

3m12
m11+2m12 e3m12zm11m12

)
.

Here, the Lagrangian again depends on the cyclic variable z. Consequently, this ap-

proach does not provide a successive way to evaluate exact solution of the anisotropic

universe model in this case.
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Now we determine Noether symmetry of isotropic as well as anisotropic homoge-

neous universe models in the presence of first order prolongation and boundary term

for f(R, T ) = f0R
n + g(T ) model.

Flat FRW Universe Model

For isotropic universe, the Lagrangian depends on configuration space (a, R, T )

with tangent space (a, R, T, ȧ, Ṙ, Ṫ ). The Lagrange multiplier approach with

Lm = pm(a) leads to

L = a3[f(R, T )−RfR(R, T )− TfT (R, T ) + fT (R, T )(3pm(a)− ρm(a)) + pm(a)]

− 6(aȧ2fR(R, T ) + a2ȧṘfRR(R, T ) + a2ȧṪ fRT (R, T )). (3.1.20)

The vector field with its first order prolongation is defined as

K = τ(t, a, R, T )
∂

∂t
+ α(t, a, R, T )

∂

∂a
+ β(t, a, R, T )

∂

∂R
+ γ(t, a, R, T )

∂

∂T
,

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂R
+ γ

∂

∂T
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
+ γ̇

∂

∂Ṫ
,

where τ, α, β and γ are unknown coefficients of vector field to be determined and

the time derivatives of these coefficients are

α̇ =
∂α

∂t
+ ȧ

∂α

∂a
+ Ṙ

∂α

∂R
+ Ṫ

∂α

∂T
− ȧ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
,

β̇ =
∂β

∂t
+ ȧ

∂β

∂a
+ Ṙ

∂β

∂R
+ Ṫ

∂β

∂T
− Ṙ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
,

γ̇ =
∂γ

∂t
+ ȧ

∂γ

∂a
+ Ṙ

∂γ

∂R
+ Ṫ

∂γ

∂T
− Ṫ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
.
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Substituting the values of vector field, its first order prolongation and correspond-

ing derivatives of coefficients in Eq.(1.5.2), we obtain the system of equations men-

tioned in Appendix A. Solving the system (A12)-(A20), it follows that

τ =
Â4t(3Â6Â2 − Â3Â5)

Â6

+ Â8, α = Â4(Â2a + Â3a
−1),

β =
Â4Â3(Â5 + Â6a

−2)R

Â6(1− n)
, B =

Â1t

2
, γ = 0, g(T ) =

T

3
+ Â7,

where Âj (j = 1...8) are arbitrary constants. For these coefficients, the symmetry

generator becomes

K =

(
Â4t(3Â6Â2 − Â3Â5)

Â6

+ Â8

)
∂

∂t
+

(
Â4Â3(Â5 + Â6a

−2)R

Â6(1− n)

)
∂

∂R

+ Â4(Â2a + Â3a
−1)

∂

∂a
.

This generator can be split as

K1 =
∂

∂t
, K2 =

(
t(3Â6Â2 − Â3Â5)

Â6

)
∂

∂t
+

(
Â3(Â5 + Â6a

−2)R

Â6(1− n)

)
∂

∂R

+ (Â2a + Â3a
−1)

∂

∂a
,

where the first generator corresponds to energy conservation. The corresponding

conserved quantities are

Σ1 = −t(3Â6Â2 − Â3Â5)

Â6

[
a3(f0R

n(1− n) + Â7 − ρm

3
)− 6(aȧ2 + (n− 1)

× a2ȧṘR−1)nf0R
n−1

]
+ 6anf0R

n−1(2ȧ− (n− 1)aR−1Ṙ)
[
(Â2a + Â3a

−1)

− tȧ(3Â6Â2 − Â3Â5)

Â6

]
− 6n(n− 1)f0a

2Rn−2ȧ

[
Â3(Â5 + Â6a

−2)R

Â6(1− n)

+
tṘ(3Â6Â2 − Â3Â5)

Â6

]
,

Σ2 = −a3(f0R
n(1− n) + Â7 − ρm

3
)− 6(aȧ2 + 2(n− 1)a2ȧṘR−1)nf0R

n−1.
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BI Universe Model

For Q = {t, a, b, R, T}, the vector field and corresponding first order prolongation

take the form

K = τ(t, a, b, R, T )
∂

∂t
+ α(t, a, b, R, T )

∂

∂a
+ β(t, a, b, R, T )

∂

∂b

+ γ(t, a, b, R, T )
∂

∂R
+ δ(t, a, b, R, T )

∂

∂T
,

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂R
+ δ

∂

∂T
+ α̇

∂

∂ȧ
+ β̇

∂

∂ḃ
+ γ̇

∂

∂Ṙ
+ δ̇

∂

∂Ṫ
,

where

α̇ = Dα− ȧDτ, β̇ = Dβ − ḃDτ, γ̇ = Dγ − ṘDτ, δ̇ = Dδ − ṪDτ.

Using the above vector field, its prolongation and coefficient derivatives in the invari-

ance condition (1.5.2), we formulate the system of equations provided in Appendix

A. Solving the system of equations (A21)-(A34), it follows that

τ = Ā1, B = (Ā2t + Ā3)Ā4Ā5, α = Ā5Ā6a, β = Ā5Ā6b,

γ =
Ā5Ā6R

2(1− n)
, δ = 0, ρm = −3Ā2Ā4(Ā7 + Ā8 ln a)

ab2Ā6Ā8

,

pm = − 1

2nf0

[f0R
n + R1−nĀ9 −Rnf0],

f(R, T ) = f0R
n − 1

6nf0

[f0R
n + R1−nĀ9 −Rnf0]− Ā2Ā4(Ā7 + Ā8 ln a)

ab2Ā6Ā8

.

The solution of these coefficients leads to

K = Ā1
∂

∂t
+ Ā5Ā6a

∂

∂a
+ Ā5Ā6b

∂

∂b
+

Ā5Ā6R

2(1− n)

∂

∂R
.

This generator can be split as

K1 =
∂

∂t
, K2 = a

∂

∂a
+ b

∂

∂b
+

R

2(1− n)

∂

∂R
,
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where the first generator yields energy conservation whereas the second generator

provides scaling symmetry. The corresponding conserved quantities are

Σ1 = −ab2[(f0R
n(1− n) + Ā9 − ρm

3
)− nf0R

n−1(2aḃ2 + (n− 1)R−1(2b2ȧṘ

+ 4abḃṘ) + 4bȧḃ)],

Σ2 = Ā2t + Ā3 − 4b2ȧnf0R
n−1.

3.2 Noether Symmetries of Generalized Anisotropic

Model

Here we investigate the existence of Noether symmetry in the context of a generalized

anisotropic universe model which identifies BI, BIII and KS universe models under

certain condition. The action incorporating gravity, matter and scalar field is given

as

I =

∫
d4x

√−g[Lg + Lm + Lφ]. (3.2.1)

We specify the above Lagrangian densities as

Lg = f(R, T ), Lm = pm(a, b), Lφ =
ε̄

2
gµν∂µφ∂νφ− V (φ), (3.2.2)

where ε̄ = 1 and -1 identify scalar field models, i.e., quintessence and phantom models,

respectively. Phantom model suffers with number of troubles like violation of dom-

inant energy condition, the entropy of phantom-dominated universe is negative and

consequently, black holes disappear. Such a universe ends up with a finite time future

singularity dubbed as big-rip singularity [64]. Different ideas are proposed to cure

the troubles of this singularity such as considering phantom acceleration as transient

phenomenon with different scalar potentials or to modify the gravity, couple DE with
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dark matter or to use particular forms of EoS for DE taking into account some quan-

tum effects which may delay/stop the singularity occurrence [65]. A generalization of

some anisotropic homogeneous universe models is given as [66]

ds2 = −dt2 + a2(t)dr2 + b2(t)(dθ2 + ζ̄(θ)dφ2), (3.2.3)

where ζ̄(θ) = θ, sin hθ, sin θ identify BI, BIII and KS models with the following

relationship

1

ζ̄

d2ζ̄

dθ2
= −ξ.

For ξ = 0,−1, 1, the spacetime (3.2.3) corresponds to BI, BIII and KS universe

models, respectively. Inserting Eq.(3.2.2) into (3.2.1), we obtain

I =

∫
d4x

√−g[
f(R, T )

2κ2
+ pm(a, b) +

ε̄

2
gµν∂µφ∂νφ− V (φ)], (3.2.4)

where

R =
2

ab2

(
äb2 + 2abb̈ + 2bȧḃ + aḃ2 + aξ

)
.

To evaluate Lagrangian corresponding to the action (3.2.4) for configuration space

Q = {a, b, R, T, φ} and perfect fluid distribution, we use Lagrange multiplier approach

which yields

L = ab2[f(R, T )−RfR(R, T ) + fT (R, T )(3pm(a, b)− ρm(a, b)− T )− ε̄φ̇2

2

+ pm(a, b)− V (φ)]− (4bȧḃ + 2aḃ2 − 2aξ)fR(R, T )− (2b2ȧṘ + 4abḃṘ)

× fRR(R, T )− (2b2ȧṪ + 4abḃṪ )fRT (R, T ). (3.2.5)

For Lagrangian (3.2.5), the conjugate momenta take the following form

pa = −4bḃfR − 2b2(ṘfRR + Ṫ fRT ), pφ = −ab2ε̄φ̇,
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pb = −4fR(aḃ + bȧ)− 4ab(ṘfRR + Ṫ fRT ),

pR = −(4abḃ + 2b2ȧ)fRR, pT = −(4abḃ + 2b2ȧ)fRT .

The dynamical equations of the system are

2fR(R, T )

(
ḃ2

b2
+

2b̈

b
+

2ξ

b2

)
+ f −RfR + fT (3pm(a, b)− ρm(a, b)− T )

+ pm(a, b)− ε̄φ̇2

2
− V (φ) + a{fT (3pm,a −ρm,a ) + pm,a }+ 4b−1ḃṘfRR

+ 4b−1ḃṪ fRT + 2R̈fRR + 2Ṙ2fRRR + 4ṘṪ fRRT + 2T̈ fRT + 2Ṫ 2fRTT = 0, (3.2.6)

2fR

(
ä

a
+

ȧḃ

ab
+

b̈

b

)
+ f −RfR + fT (3pm(a, b)− ρm(a, b)− T ) + pm(a, b)

− ε̄φ̇2

2
− V (φ) +

b

2
{fT (3pm,

b
−ρm,

b
)) + pm,

b
}+ 2(a−1ȧṘ + R̈)fRR + 2Ṙ2

× fRRR + 2(a−1ȧṪ + T̈ )fRT + 2(b−1ḃṘ + 2ṘṪ + Ṫ 2)fRRT + 2b−1ḃṪ fRTT = 0,

(3.2.7)

fRT (3pm(a, b)− ρm(a, b)− T ) = 0, fTT (3pm(a, b)− ρm(a, b)− T ) = 0,

ε̄φ̈ + 2ε̄b−1ḃφ̇ + ε̄a−1ȧφ̇− V,
φ
= 0. (3.2.8)

We formulate Hamiltonian as

H = 2fR

(
ḃ2

b2
+

2ȧḃ

ab

)
+ 2

(
2ḃ

b
+

ȧ

a

)
ṘfRR + 2

(
2ḃ

b
+

ȧ

a

)
Ṫ fRT + f −RfR

+ fT (3pm(a, b)− ρm(a, b)− T ) + pm(a, b) +
ε̄φ̇2

2
− V (φ) +

2ξfR

b2
. (3.2.9)

The infinitesimal symmetry generator and corresponding first order prolongation yield

K = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂R
+ δ

∂

∂T
+ η

∂

∂φ
, K [1] = τ

∂

∂t
+ α

∂

∂a
+ β

∂

∂b

+ γ
∂

∂R
+ δ

∂

∂T
+ η

∂

∂φ
+ α̇

∂

∂ȧ
+ β̇

∂

∂ḃ
+ γ̇

∂

∂Ṙ
+ δ̇

∂

∂Ṫ
+ η̇

∂

∂φ̇
, (3.2.10)
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where time derivative of unknown coefficients τ, α, β, γ, δ and η are

σ̇
l

= Dσ
l
− q̇iDτ, l = 1...5, (3.2.11)

Here σ1, σ2, σ3, σ4 and σ5 correspond to α, β, γ, δ and η, respectively.

In order to discuss the presence of Noether symmetry generator and relative con-

served quantity, we insert Lagrangian (3.2.5) along with (3.2.10) in (1.5.2), it fol-

lows a system of equations given in Appendix A. From Eq.(A41), we have either

fR, fRR, fRT = 0 with τ,a , τ,
b
, τ,

R
, τ,

T
6= 0 or vice versa. For non-trivial so-

lution, we consider second possibility (τ,a , τ,
b
, τ,

R
, τ,

T
= 0) as the first choice

yields trivial solution. We investigate the existence of symmetry generators, relative

conserved quantities for two f(R, T ) models appreciating direct as well as indirect

curvature-matter coupling. We also formulate corresponding exact solutions to ana-

lyze cosmological picture of these two models.

3.2.1 f(R, T ) = R + 2g(T )

To evaluate the coefficients of symmetry generator (3.2.10), we consider separation of

variables method which gives

α = α1(t)α2(a)α3(b)α4(R)α5(T )α6(φ), δ = δ1(t)δ2(a)δ3(b)δ4(R)δ5(T )δ6(φ),

γ = γ1(t)γ2(a)γ3(b)γ4(R)γ5(T )γ6(φ), η = η1(t)η2(a)η3(b)η4(R)η5(T )η6(φ),

β = β1(t)β2(a)β3(b)β4(R)β5(T )β6(φ), τ = τ1(t),

B = B1(t)B2(a)B3(b)B4(R)B5(T )B6(φ).

For these coefficients, we solve the system (A35)-(A56) yielding

α = −2ac1 , β = c1b, γ = 0, δ = 0, η = c4 ,
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B = c2t + c3 , τ = c5 , V (φ) = c6φ + c7 ,

pm(a, b) = −c4c6 ln a + 2c1a
1
2 b

2c1

− 2ξ

b2
− c2 ln a

2c1ab2
, (3.2.12)

ρm(a, b) = −3c4c6 ln a + 2c1a
1
2 b

2c1

− 6ξ

b2
− 3c2 ln a

2c1ab2
, (3.2.13)

where cî (̂i = 1...7) denotes arbitrary constants. For these coefficients, we split the

symmetry generator and corresponding first integral into the following form

K1 =
∂

∂t
, Σ1 = −ab2{f −RfR + fT (3pm − ρm − T ) + pm − c6φ− c7}

+ 2aξfR − 4bȧḃfR − 2aḃ2fR − ε̄φ̇2ab2

2
,

K2 = −2a
∂

∂a
+ b

∂

∂b
, Σ2 = −4abḃfR + 4b2ȧfR,

K3 =
∂

∂φ
, Σ3 = ε̄ab2φ̇.

For the considered model, the system (A35)-(A56) yields three symmetry generators

and associated conserved quantities. The symmetry generator K1 leads to energy

conservation while K2 represents scaling symmetry corresponding to conservation of

linear momentum.

Next, we explore the presence of Noether symmetry in the absence of first order

prolongation and boundary term of extended symmetry which leads to establish cor-

responding conservation law. In this case, the infinitesimal generator of continuous

group for Q = {a, b, R, T, φ} turns out to be

K = α
∂

∂a
+ β

∂

∂b
+ γ

∂

∂R
+ δ

∂

∂T
+ η

∂

∂φ
+ α̇

∂

∂ȧ
+ β̇

∂

∂ḃ
+ γ̇

∂

∂Ṙ
+ δ̇

∂

∂Ṫ
+ η̇

∂

∂φ̇
, (3.2.14)

where α̇ = q̇i ∂α
∂qi , β̇ = q̇i ∂β

∂qi , γ̇ = q̇i ∂γ
∂qi , δ̇ = q̇i ∂δ

∂qi and η̇ = q̇i ∂η
∂qi . Due to the absence

of affine parameter, the separation of variables method yields

α = α1(a)α2(b)α3(R)α4(T )α5(φ), β = β1(a)β2(b)β3(R)β4(T )β5(φ),
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γ = γ1(a)γ2(b)γ3(R)γ5(φ), δ = δ1(a)δ2(b)δ3(R)δ4(T )δ5(φ),

η = η1(a)η2(b)η3(R)η4(T )η5(φ).

In order to explore the consequences of indirect non-minimal curvature-matter cou-

pling, we evaluate symmetry generators with corresponding conservation laws for

non-existing boundary term. We also establish cosmological analysis through exact

solutions for both dust and perfect fluid distributions.

Dust Case

We consider T
(m)
µν = ρmuµuν and solve the system for (3.2.14) via separation of vari-

ables which yields

α = −2aĉ1 , β = ĉ1b, γ = 0, δ = 0, η = 0,

ρm(a, b) =
ξ

b2ĉ2

+ a
1
2 b, Λ(T ) = −g(T )

2
+ ĉ2T + ĉ3 ,

where ĉ1 , ĉ2 and ĉ3 represent arbitrary constants. The corresponding symmetry

generator and associated conserved quantity are

K = −2aĉ1

∂

∂a
+ ĉ1b

∂

∂b
, Σ = 4ĉ1abḃfR − 4ĉ1b

2ȧfR.

For dust fluid, there exists only scaling symmetry in the absence of affine parameter

as well as boundary term of extended symmetry and the considered model reduces to

f(R, T ) = R + 2ĉ2T + 2ĉ3 . (3.2.15)

For exact solution of equations of motion, we insert density of dust fluid and model

(3.2.15) in Eqs.(3.2.6) and (3.2.7) yielding

a(t) =
(40ĉ2t + 40ĉ3)

4
5

16
, b(t) =

ĉ1(40ĉ2t + 40ĉ3)
2
5

4
.
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To analyze the behavior of this power-law type exact solution, we construct cos-

mological analysis through some standard parameters such as Hubble, deceleration,

r−s and EoS. For generalized anisotropic universe model, the Hubble and deceleration

parameters turn out to be

H =
64ĉ2(40ĉ2t + 40ĉ3)

−1

3
, q =

7

8
.

In the present case, we obtain r = 0 with s = −8
9

indicating that the constructed

model does not correspond to any standard cosmological model. The corresponding

effective EoS parameter is

ωeff =
128ĉ2 + (40ĉ2t + 40ĉ3)

4
5 (5ĉ2

2
ĉ1t

2 + 10ĉ1 ĉ2 ĉ3t + 5ĉ1 ĉ
2
3
)

128ĉ2

The potential and kinetic energies of the scalar field play a dynamical role to study

cosmic expansion. For accelerated expansion, the field φ evolves negatively and po-

tential dominates over the kinetic energy ( φ̇2

2
< V (φ)) whereas negative potential

follows the kinetic energy for decelerated expansion of the universe ( φ̇2

2
> −V (φ))

[67]. Using Eq.(3.2.8), we obtain

φ =

∫
1

20ε̄(ĉ2t + ĉ3)

((
−ε̄ĉ2

(
25ĉ2

2
(40ĉ2t + 40ĉ3)

4
5 ĉ1t

2 + 50(40ĉ2t + 40ĉ3)
4
5

× ĉ2 ĉ1 ĉ3t + 25(40ĉ2t + 40ĉ3)
4
5 ĉ1 ĉ

2
3
+ 896ĉ2

)) 1
2

)
,

V (φ) =
1

800
(
ĉ2

2
t2 + 2ĉ2 ĉ3t + ĉ2

3

) [
25ĉ1

(
5ĉ3

2
t2 + 5ĉ2 ĉ

2
3
+ 10ĉ2

2
ĉ3t

)
(40ĉ2t

+ 40ĉ3)
4
5 + 8ĉ2 ĉ3

(−200ĉ2t
2 + 400ĉ3t

)− 8
(
48ĉ2

2
+ 200ĉ3

3

)]
.

Figure 3.4 shows graphical analysis of scale factors for the dust case. The scale

factor a(t) indicates large cosmic expansion in x-direction but b(t) represents that
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Figure 3.4: Plots of scale factors a(t) (left) and b(t) (right) versus cosmic time t for
ĉ1 = 0.24, ĉ2 = 0.45 and ĉ3 = 5.5.
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Figure 3.5: Plots of Hubble H(t) (left) and EoS parameters ωeff (right) versus cosmic
time t.
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Figure 3.6: Plots of scalar field φ(t) (left) versus cosmic time t and potential energy

V (φ) versus kinetic energy φ̇2

2
(right) for ε̄ = −1.

the universe is expanding very slowly in y and z-directions. Figure 3.5 (left plot)

indicates that Hubble parameter is decreasing with the passage of time. In the right

plot of Figure 3.5, the effective EoS parameter identifies that initially, the universe

appreciates radiation dominated era and after sometime, it corresponds to DE era by

crossing matter dominated phase.

Figures 3.6 and 3.7 analyze the behavior of scalar field and cosmic expansion via

phantom and quintessence models. The left plot of Figure 3.6 shows that the scalar

field is positive initially yielding decelerated expansion but gradually, it starts increas-

ing negatively which describes accelerated expansion. In case of quintessence model,

the scalar field grows from negative to positive indicating decelerated expansion of

the universe. The right plots of 3.6 and 3.7 satisfy φ̇2

2
< V (φ) and φ̇2

2
> −V (φ)

implying that phantom model yields accelerated expansion while quintessence model

corresponds to decelerated expansion.

To analyze a big-rip free model, the key point is that if EoS parameter rapidly

approaches to -1 and Hubble rate tends to be constant (asymptotically de Sitter

universe), then it is possible to have a model in which time required for singularity
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Figure 3.7: Plots of scalar field φ(t) (left) versus cosmic time t and potential energy

V (φ) versus kinetic energy φ̇2

2
(right) for ε̄ = 1.

is infinite, i.e., the singularity effectively does not occur [68]. The occurrence of

maximum potential of a phantom scalar field is another fact to avoid this singularity.

The graphical behavior of EoS parameter represents that ωeff rapidly approaches to

-1 and Hubble rate is decreasing but potential is not maximum. We may avoid the

big-rip singularity in the present case if we choose ĉ2 to be negatively large that yields

asymptotic behavior of Hubble rate.

Non-Dust Case

In the absence of boundary term and affine parameter, the coefficients of symmetry

generator (3.2.14) corresponding to a, b, R, T, φ remain the same as in the presence

of boundary term of extended symmetry. Thus, generator of Noether symmetry and

associated first integrals reduce to

K = −2ac1

∂

∂a
+ c1b

∂

∂b
+ c2

∂

∂φ
,

Σ = −4c1abḃfR + 4c1b
2ȧfR + ε̄c2ab2φ̇.
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In order to formulate exact solution of dynamical equations for perfect fluid distrib-

ution, we insert Eqs.(3.2.12) and (3.2.13) into (3.2.6) and (3.2.7) yielding

a(t) =

(
5
c9

) 2
5
(c2 sin(c10t) + c3 cos(c10t))

4
5

5
4
5

,

b(t) =
c4

(
5
c9

) 1
5
(c2 sin(c10t) + c3 cos(c10t))

2
5

5
2
5

.

This describes oscillatory solution of f(R, T ) model admitting indirect non-minimal

curvature-matter coupling. To study the cosmological behavior of this solution, we

consider cosmological parameters as follows

H =
8c10(c2 sin(c10t) + c3 cos(c10t))

15(c2 sin(c10t) + c3 cos(c10t))
,

q =
−8c2

2
cos2(c10t) + 7c3

3
+ 8c2

3
cos2(c10t) + 15c2

2
+ 16c2c3 cos(c10t) sin(c10t)

8(c2 sin(c10t) + c3 cos(c10t))
2

,

r =
−77c2

3 + 32c2
3 cos2(c10t)− 45c2

2 − 32c2
2 cos2(c10t) + 64c2 cos(c10t)c3 sin(c10t)

32(−c2
2 cos2(c10t) + 2c2 cos(c10t)c3 sin(c10t)− c2

3 + c2
3 cos2(c10t))

,

s = (−45((4c4
2
− 4c4

3
) cos2(c10t)− c4

3
− 6c2

2
c3 − 5c4

2
− (8c3

2
c3 + 8c2c

3
3
)

× cos(c10t) sin(c10t)))/256((c4
2
+ c4

3
− 6c2

2
c2

3
) cos4(c10t) + (6c2

2
c2

3
− 2c4

3
)

× cos2(c10t) + (−4c3
2
c3 + 4c2c

3
3
) sin(c10t) cos3(c10t)− 4c2c

3
3
cos(c10t)

× sin(c10t) + c4
3
),

ωeff =
χ(3pm − ρm) + pm − ε̄φ̇2

2
− V (φ) + 2ξ

b2
+ a(3pm,a −ρm,a ) + pm,a

χ(3pm − ρm) + pm + ε̄φ̇2

2
− V (φ) + 2ξ

b2

.

The scalar field as well as corresponding kinetic and potential energies identify the

early as well as current cosmic expansion and also characterize decelerated expan-

sion of the universe when kinetic energy dominates negative potential. In this case,

Eq.(3.2.8) yields

φ =

∫ ε̄c4 −
5c6c2

2
cos(2c10 t)

�
−22F1

h
3
10

, 1
2
, 13
10

,sin[π
4
+c10 t]

2
i
+
√

2−2 sin[2c10 t]
�

16c10

q
cos[π

4
+c10 t]

2
(c2 (cos[c10 t]+sin[c10 t]))2/5

dt

ε̄(c2 cos[c10t] + c2 sin[c10t])
8/5

,
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Figure 3.8: Plots of scale factor a(t) (left) and b(t) (right) versus cosmic time t for
c2 = c3 = c9 = 5.5 and c10 = 0.005.
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Figure 3.9: Plots of H(t) (left) and q(t) (right) versus cosmic time t.
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Figure 3.10: Plot of ωeff and r− s parameters versus cosmic time t for c2 = c3 = 5.5
and c10 = 0.005.

20 40 60 80 100
t

-3000

-2500

-2000

-1500

-1000

-500

ΦHtL

800 1000 1200

Φ

  2

2

1200

1250

1300

1350

1400

1450

1500

VHΦL

Figure 3.11: Plots of scalar field φ(t) (left) versus cosmic time t and potential energy

V (φ) versus kinetic energy φ̇2

2
(right) for c2 = 5.5, c4 = −103, c6 = 0.5 and c10 = 0.005.

where 2F1 represents hypergeometric function.

In Figure 3.8, the right plot shows that the universe experiences immense amount

of expansion in y and z-directions whereas the left plot yields comparatively a small

amount of expansion in x-direction. Figure 3.9 provides information about increasing

rate of expansion through Hubble parameter while negatively increasing deceleration

parameter assures accelerated cosmic expansion. The left plot of Figure 3.10 charac-

terizes quintessence phase of DE era while the right plot identifies the r−s parameters

trajectories in quintessence and phantom phases as s > 0 when r < 1. Both plots
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of Figure 3.11 verify the current cosmic expansion for quintessence as well as phan-

tom models as φ continuously increasing negatively and potential energy of the field

is dominating over kinetic energy. The graphical interpretation of EoS parameter

yields ωeff < −1 which is not a sufficient condition for the existence of singularity as

potential turns out to be maximum with the passage of time. Thus, we may avoid

big-rip singularity if Hubble rate decreases asymptotically in the presence of minimal

coupling of f(R, T ) gravity with scalar field.

3.2.2 f(R, T )=f1(R) + f2(R)g(T )

To analyze the effect of direct non-minimal curvature-matter coupling, we consider

this model and evaluate symmetry generators as well as associated conservation laws.

Inserting the model in Eqs.(A36)-(A38), (A44), (A45) and (A49) and using separation

of variables approach, we obtain

β = −bα

2a
+ φY1(t, a, b) + Y2(t, a, b),

f1(R) =
ε̄

4d3

(−d3Y12(R) + d2Y9(R)) + d5R + d6,

f2(R) = − ε̄

4d3

(−d3Y9(R),
R

+d1R) + d4, g(T ) = d2 + d3Y10(T ),

η =
1

b

[
Y1(t, a, b)(Y10(T )(d1 + Y9(R),

R
)− φ2 + Y12(R),

R
) + bφτ,t −2φ

× Y2(t, a, b) + bY14(t, a, b)] ,

where di denote arbitrary constants. We substitute these values in Eqs.(A35), (A42)

and (A43) which yield

τ =

∫
−Y23(t)

ε̄
dt + d8t + d9, B =

1

6d4

[
6ab(Y19(T )d1 + d4ε̄φ

2

+ Y19(T )d4e
−R)Y2(t, a, b),t +6abφ(

1

3
d4ε̄φ

2 + Y19(T )d4e
−R + Y19(T )



89

× d1)Y16(t, b),t +3d4(2Y22(t, a, b) + 2φY21(t, a, b),t +ab2φ2Y23(t),t )
]
,

Y1(t, a, b) = Y16(t, b) + Y15(a, b) Y10(T ) = −Y19(T )d3 + ε̄d2d4

ε̄d3d4

,

Y12(R) = −d2d4e
−R

d3

+ d6R + d7, Y9(R) = −e−Rd4 − 2d1R + d2,

Y14(t, a, b) = −Y21(t, a, b)

b2aε̄
− bad2ε̄d1Y16(t, b) + d6ε̄bad3Y16(t, b)

ε̄b2ad3

+ Y24(b, a).

To evaluate remaining unknown functions, we insert the above functions into β, η,

f1, g, f2 and solve Eqs.(A39)-(A41) with (A46)-(A48) and (A50)-(A55) leading to

Y21(t, a, b) = Y26(a, b), Y22(t, a, b) = d10t, Y16(t, b) = −d12b,

Y15(a, b) = d12b, Y24(b, a) = 0, Y2(t, a, b) = d9b,

Y23(t) = ε̄(−2d9 + e−Rd4d3d11e
R + d8), δ = 0, γ =

d11e
RT

d13

× (e−Rd4Td13d3 − d1d13d3T + (2((−2d5 +
1

2
ε̄d6)d3 + d1d2ε̄))d4).

Using these solutions in Eq.(A56) with d11=0 and d6 = d2d1

d3
, it follows that

τ = 3d9, α = d10a, β = b(d9 − d10

2
), δ = 0, γ = 0,

B = d10t, η = −d1

ε̄
+ 2d12d6, f1(R) = d6 + d5R− 3d6ε̄R

4
,

f2(R) = d4 − ε̄

4d3

(d4e
−R + d1R− 2d1), g(T ) = d2 − d2d4ε̄− d3d13T

d4ε̄
.

Inserting f1, f2 and g, the f(R, T ) model becomes

f(R, T ) = −3ε̄d6R

4
+ d5R + d6 + (d4 − ε̄

4d3

(d4e
−R + d1R− 2d1))(

d3d13T

d4ε̄
).

Thus, the constructed model also experiences a direct coupling between curvature

and matter parts. The symmetry generators and associated conserved quantities are

K1 = 3
∂

∂t
+ b

∂

∂b
, Σ1 =

1

4d3ε̄
(−4ab2ε̄2d3φ̇

2 + 4d10d3ε̄t + 3tab2d1RTd3ε̄
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− 9tab2d1Rpmd3ε̄ + 3tab2d1Rρmd3ε̄− 12td1T ȧḃbd3ε̄− 4b2d4T

× ȧe−Rd3ε̄− 4b2aṪd4e
−Rd3ε̄− 9tab2d4pme−Rd3ε̄ + 3tab2d4ρm

× e−Rd3ε̄ + 6td4Taḃ2e−Rd3ε̄ + 6td4Taqe−Rd3ε̄− 4bd4Taḃe−Rd3ε̄

+ 4b2aṘd4Te−Rd3ε̄ + 4b2aṪd1d3ε̄− 12tab2d2d1ε̄− 12tab2pm

× d3ε̄ + 12tab2V (φ)d3ε̄− 24td5aḃd3ε̄− 24td5aqd3ε̄ + 16bd5aḃ

× d3ε̄ + 36tab2d2
3d4pm − 12tab2d2

3d4ρm + 18tε̄2d2d1aḃ2 + 18tε̄2

× d2d1aq − 12bε̄2d2d1aḃ + 4b2d1T ȧd3ε̄− 12b2ε̄2d2d1ȧ + 16b2d5

× ȧd3ε̄− 3tab2Rd4Te−Rd3ε̄ + 12td4T ȧḃbe−Rd3ε̄ + 36tε̄2d2d1ȧḃb

+ 4bd1Taḃd3ε̄ + 6tab2eφ̇2d3ε̄ + 18tab2d1pmd3ε̄− 6tab2d1ρmd3ε̄

− 48td5ȧḃbd3ε̄− 6td1Taḃ2d3ε̄− 6td1Taqd3ε̄),

K2 = a
∂

∂a
− b

2

∂

∂b
, Σ2 = − b

2d3

(−aḃd1Td3 + 3aḃε̄d2d1 + aḃd4Te−Rd3

− 4aḃd5d3 + bd1T ȧd3 + 4bd5ȧd3 − 3bε̄d2d1ȧ− bd4T ȧe−Rd3),

K3 = −1

ε̄

∂

∂φ
, Σ3 = ab2φ̇, K4 = 2d12

∂

∂φ
, Σ4 = 2d12ab2ε̄φ̇.

We see that scaling symmetry appears through generator K2 with the first integral

Σ2 leading to conserved linear momentum.

Now we investigate the existence of Noether symmetry in the absence of affine

parameter and boundary term of the extended symmetry and also study the effect

of direct curvature-matter coupling on conservation laws. For this purpose, we solve

Eqs.(A39), (A40), (A43) and (A46)-(A55) which give

δ = − a

2Y9(T ),
T

(
1

3
Y4(a, b),a φ3 + 2Y4(a, b),a Y9(T )φ + 2Y4(a, b),a Y8(b)φ

+ φ2Y5(a, b),a +2Y7(a, b),a φ) + Y12(a,R, T, b), f1(R) = k4R + k5,

β = − b

2a
(Y10(a,R, T, b) + aY5(a, b)), g(T ) = k1 + Y9(T )k2
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η =
1

2
(φ2 + 2Y9(T ) + 2Y8(b))Y4(a, b) + Y5(a, b)φ + Y7(b, a),

f2(R) =
ε̄R

2(k2 + k3)
, γ = Y11(a, b, R, T ),

α = −Y4(a, b)aφ + Y10(a, b, R, T ),

where kl are arbitrary constants. Inserting these solutions into the remaining equa-

tions of the system, we obtain

V (φ) = k10φ + k11, Y10(a, R, T, b) = k8a, Y4(a, b) = 0,

Y12(a,R, T, b) = − k8

2k2

((ε̄(k6T + k7) + 2k4)k2 + ε̄k1), Y5(a, b) = −k6k8ε̄

2
,

Y7(b, a) = k9, Y9(T ) = k6T + k7,

pm =
2k9k10

ε̄k8k6

− k5 + k11 +
2k2k4k3

ε
+ a−

k6 ε̄
2 ε̄k6ba

1
2
− ε̄k6

4 ,

ρm =
k7

k6

+
6k2k4k3

ε̄
− 3k5 + 3k11 +

2k4

k6ε̄
+

6k9k10

k8k6ε̄
+

k1

k2k6

+ a−
k6 ε̄
2 ε̄k6ba

1
2
− ε̄k6

4 .

The corresponding Noether symmetry generator with associated first integral take

the form

K1 = a
∂

∂a
− b

2

(
1− k6ε̄

2

)
∂

∂b
+ R

∂

∂R
− (k1ε̄ + k2(ε̄(k6T + k7) + 2k4))

× 1

2k2

∂

∂T
− k6ε̄φ

2

∂

∂φ
, Σ1 = abḃε̄k6T − b2ε̄k1ȧ

k2

− b2ε̄k6T ȧ− baε̄k6k4ḃ

− baε̄2k2
6T ḃ

2
− baε̄2k6k7ḃ

2
+

abḃε̄k1

k2

+ abḃε̄k7 − baε̄2k6k1ḃ

2k2

− ab2ε̄2φ̇k6φ

2

+ 2abḃk4 − 2b2k4ȧ− b2ε̄k7ȧ +
b2aε̄2k2

6Ṫ

2
,

K2 =
∂

∂φ
, Σ2 = ab2ε̄φ̇k9.

Here the symmetry generator K1 yields scaling symmetry.



Chapter 4

Wormhole Solutions via Noether
Symmetry in f (R) and f (R, T )
Theories

This chapter investigates WH solutions of spherically symmetric spacetime via Noether

symmetry approach in f(R) and f(R, T ) theories. We formulate symmetry generators

with associated conserved quantities and WH solutions using constant and variable

red-shift functions in both theories. For perfect fluid, we determine an explicit form

of generic function f(R) and also evaluate exact solution of f(R) power-law model. In

f(R, T ) gravity, we choose two f(R, T ) models appreciating indirect curvature-matter

coupling and formulate solutions for both dust as well as perfect fluid. We analyze

the behavior of shape function and viability of constructed models graphically. To

analyze physical existence of WH solutions, we study the behavior of NEC and WEC

with respect to ordinary matter and effective energy-momentum tensor.

The format of this chapter is as follows. In section 4.1, we determine possible

Noether symmetry, corresponding conserved quantity and exact solutions of static

WH in the presence of minimal coupling of curvature and matter. Section 4.2 is

devoted to determine Noether symmetries as well as viable WH solutions under the
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influence of non-minimal curvature-matter coupling. The results of this chapter have

been submitted in two papers [69, 70].

4.1 Wormhole Solutions in f (R) gravity

We choose Lm = pm(â) and use Eqs.(1.4.2)-(1.4.4) and (1.6.1), it follows that

−1

4
(2â′′ + â′2 − â′b̂′ +

2â′M̂ ′

M̂
) =

1

fR

[
eb̂(RfR − f)

2
+ fRR

(
R′′ +

M̂ ′R′

M̂

− b̂′R′

2

)
+ R′2fRRR − eb̂pm

]
, (4.1.1)

−1

4
(2â′′ + â′2 − â′b̂′ +

4M̂ ′′

M̂
− 2b̂′M̂ ′

M̂
− 2M̂ ′2

M̂2
) =

1

fR

[
(f −RfR)

2

− R′fRR

eb̂

(
M̂ ′

M̂
+

â′

2

)
+ pm

(
1− â′

b̂′

)
− â′ρm

b̂′

]
, (4.1.2)

−1

4
(â′M̂ ′ − b̂′M̂ ′ − 4eb̂ + 2M̂ ′′) =

1

fR

[
eb̂(f −RfR)

2
− â′R′fRR

2
−R′′

× fRR −R′2fRRR − b̂′R′fRR

2
+

M̂ ′R′fRR

2M̂
+ eb̂pm

]
. (4.1.3)

Solving Eqs.(4.1.1) and (4.1.2) simultaneously, we obtain

pm = −f −RfR

2
+

fRR

eb̂

(
R′′ +

M̂ ′R′

M̂
− b̂′R′

2

)
+

R′2fRRR

eb̂
+

fR

4eb̂

× (2â′′ + â′2 − â′b̂′ +
2â′M̂ ′

M̂
), (4.1.4)

ρm =
1

â′

[
(b̂′ − â′)

{
−f −RfR

2
+

fRR

eb̂

(
R′′ +

M̂ ′R′

M̂
− b̂′R′

2

)
+

R′2fRRR

eb̂

+
fR

4eb̂
(2â′′ + â′2 − â′b̂′ +

2â′M̂ ′

M̂
)

}
− b̂′

{
− fR

4eb̂
(2â′′ + â′2 − â′b̂′ +

4M̂ ′′

M̂

− 2b̂′M̂ ′

M̂
− 2M̂ ′2

M̂2
)− f −RfR

2
+

R′fRR

eb̂

(
M̂ ′

M̂
+

â′

2

)}]
. (4.1.5)
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The NEC relative to the effective energy-momentum tensor yields

ρeff + peff =
1

2eb̂

(
M̂ ′2

M̂2
+

â′M̂ ′

M̂
+

b̂′M̂ ′

M̂
− 2M̂ ′′

M̂

)
. (4.1.6)

4.1.1 Point-like Lagrangian

In this section, we construct point-like Lagrangian corresponding to the action (1.4.1)

via Lagrange multiplier approach which gives

I =

∫ √−g[f(R)− λ(R− R̄) + pm(â)]dr, (4.1.7)

where

√−g = e
â
2 e

b̂
2 M̂, λ = fR, ρm = ρ0â

− (1+ω)
2ω , pm = ωρm = ωρ0â

− (1+ω)
2ω ,

R̄ =
1

eb̂

(
− â′2

2
+

â′b̂′

2
− â′M̂ ′

M̂
− 2M̂ ′′

M̂
+

b̂′M̂ ′

M̂
+

M̂ ′2

2M̂2
− â′′ +

2eb̂

M̂

)
.

Using these values in (4.1.7) and eliminating second order derivatives via integration

by parts, we obtain point-like Lagrangian for configuration space Q = {â, b̂, M̂ , R} as

L = e
â
2 e

b̂
2 M̂

(
f −RfR + ωρ0â

− (1+ω)
2ω +

2fR

M̂

)
+

e
â
2 M̂

e
b̂
2

{
fR

(
M̂ ′2

2M̂2
+

â′M̂ ′

M̂

)

+ fRR

(
â′R′ +

2M̂ ′R′

M

)}
. (4.1.8)

The Euler-Lagrange equation and Hamiltonian of the dynamical system or energy

function associated with point-like Lagrangian are defined as

∂L
∂qi

− dpi

dr
= 0, H =

∑
i

q′ipi − L,

The variation of Lagrangian with respect to configuration space leads to

eb̂

(
f −RfR + ωρ0â

− (1+ω)
2ω − (1 + ω)ρ0â

− (1+3ω)
2ω +

2fR

M̂

)
+

(
M̂ ′2

2M̂2
+

b̂′M̂ ′

M̂
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− 2M̂ ′′

M̂

)
fR + fRR

(
b̂′R′ − 2R′′ − 2M̂ ′R′

M̂

)
− 2R′2fRRR = 0,

eb̂

(
f −RfR + ωρ0â

− (1+ω)
2ω +

2fR

M̂

)
− fR

(
M̂ ′2

2M̂2
+

â′M̂ ′

M̂

)
− fRR (â′R′

+
2M̂ ′R′

M̂

)
= 0,

eb̂

(
f −RfR + ωρ0â

− (1+ω)
2ω +

2fR

M̂

)
+ fR

(
− â′2

2
+

â′b̂′

2
− â′M̂ ′

2M̂
− M̂ ′′

M̂
− â′′

+
b̂′M̂ ′

2M̂
+

M̂ ′2

2M̂2

)
+ fRR

(
b̂′R′ − â′R′ − 2R′′ − M̂ ′R′

M̂

)
− 2R′2fRRR = 0,

[
eb̂

(
2

M̂
−R

)
− â′2

2
+

â′b̂′

2
− â′M̂ ′

M̂
− 2M̂ ′′

M̂
+

b̂′M̂ ′

M̂
+

M̂ ′2

2M̂2
− â′′

]
fRR = 0.

The energy function and variation of Lagrangian relative to shape function yield

eb̂ =

fRM̂ ′

M̂

(
M̂ ′

2M̂2
+ â′M̂ ′

)
+ R′fRR(â′M̂ + 2M̂ ′)

f −RfR + ωρ0â
− (1+ω)

2ω + 2fR

M̂

. (4.1.9)

4.1.2 Noether Symmetry Approach

We consider a vector field

K = τ(r, qi)
∂

∂r
+ U i(r, qi)

∂

∂qi
, (4.1.10)

where r behaves as an affine parameter while τ and U i are unknown coefficients of

the vector field. In this case, the invariance condition (1.5.2) is defined as

K [1]L+ (Dτ)L = DB(r, qi). (4.1.11)

The first order prolongation and total derivative are given by

K [1] = K + (DU i − q′iDτ)
∂

∂q′i
, D =

∂

∂r
+ q′i

∂

∂qi
. (4.1.12)
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For invariance condition (4.1.11), the first integral is defined as

Σ = B − τL − (U i − q′iτ)
∂L
∂q′i

. (4.1.13)

The vector field and first order prolongation for configuration space Q = {â, b̂, M̂ , R}
take the following form

K = τ
∂

∂r
+ α

∂

∂â
+ β

∂

∂b̂
+ γ

∂

∂M̂
+ δ

∂

∂R
, K [1] = τ

∂

∂r
+ α

∂

∂â
+ β

∂

∂b̂

+ γ
∂

∂M̂
+ δ

∂

∂R
+ α′

∂

∂â′
+ β′

∂

∂b̂′
+ γ′

∂

∂M̂ ′ + δ′
∂

∂R′ , (4.1.14)

where the radial derivative of unknown coefficients of vector field are defined as

σ′
ĵ

= Dσ
ĵ
− q′iDτ, ĵ = 1...4. (4.1.15)

Here σ1, σ2, σ3 and σ4 correspond to α, β, γ and δ, respectively. Inserting Eqs.(4.1.8),

(4.1.14) and (4.1.15) in (4.1.11) and comparing the coefficients of â′2, â′b̂′M̂ ′, â′M̂ ′2

and â′R′2, we obtain

τ,
â
fR = 0, τ,

b̂
fR = 0, τ,

M̂
fR = 0, τ,

R
fRR = 0. (4.1.16)

This implies that either fR = 0 or vice verse. The first choice leads to trivial solution.

Therefore, we consider fR 6= 0 and compare the remaining coefficients which yield an

over determined system of equations given in Appendix B.

The geodesic deviation equation determines that M̂(r) = r2, sin r, sinh r for

K = 0, 1,−1 (K denotes curvature parameter) under the limiting behavior M̂(r) → 0

as r → 0, respectively [67]. In order to solve this system, we consider M̂(r) = r2 and

taking B,
â
, B,

M̂
, B,

R
= 0, Eqs.(B1)-(B9) give

α = Y2(â, r), γ = Y1(r), δ = Y3(r, R).
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Inserting these values in Eqs.(B10)-(B13), we obtain

Y1(r) = 0, Y2(â, r) = c2, Y3(r, R) =
c1fR

fRR

, β = 2c1 + c2 − 2τ,r .

where c1 and c2 are arbitrary constants. For these solutions, the coefficients of sym-

metry generator turn out to be

α = c2, β = 2c1 + c2, γ = 0, δ =
c1fR

fRR

, τ = c0. (4.1.17)

Substituting these coefficients in Eq.(B14), we formulate boundary term and explicit

form of f(R) as follows

f(R) = − 1

2(c1 + c2)

[
−(1 + ω)ρ0â

− (1+3ω)
2ω + 2ω(c1 + c2)ρ0â

− (1+ω)
2ω − 6c4e

−â−b̂
2

]
,

B = c3 + c4r
3.

The coefficients of symmetry generator, boundary term and solution of f(R) satisfy

the system of Eqs.(B1)-(B13) for c1 = 0. Thus, the symmetry generator and the

corresponding first integral take the form

K = c0
∂

∂r
+ c2

∂

∂â
+ c2

∂

∂b̂
,

Σ = c3 + c4r
3 − c0

[
e

â
2 e

b̂
2 r2(f −RfR + ωρ0â

− (1+ω)
2ω + 2fRr−2)

+
e

â
2 r2

e
b̂
2

{fR(2r−2 + 2a′r−1) + fRR(â′R′ + 4R′r−1)}
]

− c2e
â−b̂
2 (R′r2fRR + 2rfR).

The verification of Eq.(B14) yields

b̂(r) =

∫
8c6r

2 + â′′r2 + 4â′r′ + â′2r2 − 4c7

r(4 + â′r)
dr + c5, (4.1.18)

where ci are arbitrary constants and this solution satisfies Eq.(B14) for ω = 1, 1/3,

−1/3,−1. To discuss physical features and geometry of WH via shape function, we
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take red-shift function, â(r) = k and â(r) = −k
r
, k > 0, where k denotes constant

[71]. In the following, we solve integral for both choices of red-shift function.

Case I: â(r) = k

We first consider red-shift function to be constant and evaluate b̂(r) such as

b̂(r) = c6r
2 − c7 ln r + c5. (4.1.19)

Consequently, the shape function turns out to be

h(r) = r(1− e−b̂(r)) = r(1− c7re
−c6r2−c5). (4.1.20)

In this case, the explicit form of f(R) reduces to

f(R) = − 1

2c2

[
−(1 + ω)ρ0k

− (1+3ω)
2ω + 2ωc2ρ0k

− (1+ω)
2ω − 6c4

√
c7re

−c6r2−c5−k
2

]
.

(4.1.21)

We investigate viability of the constructed f(R) model and study WH geometry

graphically. In Figure 4.1, both plots indicate that the constructed f(R) model

(4.1.21) preserves stability conditions. Figure 4.2 shows graphical analysis of the

shape function. The upper left plot represents positive behavior of h(r) while the

upper right indicates that the shape function admits asymptotic behavior. The lower

left plot locates the WH throat at r0 = 4.4 and the corresponding right plot identifies

that dh(r0)
dr

= 0.9427 < 1. To discuss physical existence of WH, we insert constant

red-shift function and Eq.(4.1.19) in (4.1.6) yielding

ρeff + peff =
rh′(r)− h(r)

r3
< 0,

which satisfies the flaring-out condition. Consequently, NEC violates, ρeff + peff < 0

which assures the presence of repulsive gravity leading to traversable WH.
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Figure 4.1: Plots of stability conditions of f(R) model versus r for c2 = 5, c4 = 0.01,
c5 = −0.35, c6 = 0.1, c7 = −0.25 and k = 0.5.
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Figure 4.2: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c5 = −0.35, c6 = 0.1
and c7 = −0.25.
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Figure 4.3: Stability conditions of f(R) versus r for c2 = 5, c4 = −0.5, c5 = −0.35,
c6 = 0.1, c7 = −0.25 and k = 0.5.

Case II: â(r) = −k/r

In this case, we choose red-shift function in terms of r leading to

b̂(r) =
1

8r
(8c6r

3 − 4c6kr2 − 32c8r ln r + 32r ln(4r + k)− 8c7r ln(4r + k)

+ c6kr2 ln(4r + k)− 8k/c8) + c5, k > 0. (4.1.22)

The corresponding f(R) and shape function become

f(R) = − 1

2c2

[
−(1 + ω)ρ0

(
−k

r

)− (1+3ω)
2ω

+ 2ωc2ρ0

(
−k

r

)− (1+ω)
2ω

− 6c4

×
√

c8r4(4r + k)−4+c7− k2c6
8 e

−(c6r2− c6kr
2 − k

c8r )−c5+k

2

]
, (4.1.23)

h(r) = r(1− c8r
4(4r + k)−4+c7− k2c6

8 e
−(c6r2− c6kr

2
− k

c8r
)−c5). (4.1.24)

Figure 4.3 shows that the model (4.1.23) follows the stability condition for 0 < ω <

−0.1, whereas Figure 4.4 represents the graphical behavior of the shape function. In

upper face, the left plot preserves the positivity of h(r) while the right plot ensures

asymptotic flat geometry of WH. In lower face, the left plot detects WH throat at
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Figure 4.4: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c5 = −4, c6 = 0.1,
c8 = −1 and k = 0.25.

r0 = 5.878 whereas the right plot indicates that dh(r0)
dr

= 0.1673 < 1. For Eqs.(4.1.6)

and (4.1.22), we obtain

ρeff + peff =
k

r2(r − h(r))
+

rh′(r)− h(r)

r3
.

Figures 4.5-4.7 indicate that ρm+pm ≥ 0, ρm ≥ 0 and ρeff +peff < 0 for 1 < ω < −1.

Thus, the physical existence of WH is assured in this case.

Power-law f(R) Model

Here, we construct a WH solution with symmetry generator and corresponding con-

served quantity for f(R) power-law model. We solve Eqs.(B1)-(B9) leading to

α = Y3(â, r), γ = Y1(r), δ = Y2(r, R).
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Figure 4.5: Plots of ρm + pm versus r for ρ0 = 1, c2 = 5 and c4 = −0.5.

Figure 4.6: Plots of ρm versus r for ρ0 = 1, c2 = 5 and c4 = −0.5.

Figure 4.7: Plots of ρeff + peff , versus r for ρ0 = 1, c2 = 5 and c4 = −0.5.
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Inserting this solution into Eqs.(B10)-(B13), we obtain

Y1(r) = 0, Y3(â, r) = d2, Y2(r, R) = d1R, β = 2(n− 1)d1 + d2 − 2τ,r ,

where d1 and d2 represent arbitrary constants. For these values, the coefficients of

symmetry generator turn out to be

α = d2, β = 2(n− 1)d1 + d2 − 2τ,r , γ = 0, δ = d1R. (4.1.25)

Substituting these coefficients in Eq.(B14) and assuming B = d0 and τ = τ0, we have

b̂(r) =

∫
8d3r

2 + 2â′′r2 + 4â′r′ + â′2r2 − 4d4

r(4 + â′r)
dr

− ln


−d1 + 4

∫
e
R

8r2+2â′′r2+4â′r′+â′2r2−4
r(4+â′r)

dr

r(4 + â′r)
dr


 . (4.1.26)

The resulting coefficients of symmetry generator verifies the system (B1)-(B13) for

d2 = −2(n− 1)d1. The symmetry generator and associated first integral give

K = τ0
∂

∂r
− 2(n− 1)d1

∂

∂â
+ d1

∂

∂R
,

Σ = d0 − τ0

[
e

â
2 e

b̂
2 r2(f −RfR + ωρ0â

− (1+ω)
2ω + 2fRr−2) +

e
â
2 r2

e
b̂
2

× {fR(2r−2 + 2â′r−1) + fRR(â′R′ + 4R′r−1)}]− 2d1(1− n)e
â−b̂
2 (R′r2

× fRR + 2rfR)− d1RfRRe
â−b̂
2 (â′r2 + 4r).

Now, we solve the integral (4.1.26) for constant and variable forms of red-shift function

and study WH geometry via shape function.

Case I: â(r) = k

For constant red-shift function, the integral (4.1.26) reduces to

b̂(r) = d3r
2 − d4 ln r − ln

(
−d1r + er2

r

)
. (4.1.27)
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This satisfies Eq.(B14) for ω = 1, 1
3
,−1

3
,−1 and

ρ0 = −foe
3ω ln d1+4nω ln 2+ln d1

2ω

ωd1 − (1 + ω)
, ω 6= 0. (4.1.28)

In this case, the shape function yields

h(r) = r

[
1− d4r

(
−d1r + er2

r

)
e−d3r2

]
. (4.1.29)

We analyze WH geometry via shape function for n = 1
2
, 2 and n = 4. In upper face,

the left and right plots of Figure 4.8 show that h(r) remains positive and asymptotic

flat for n = 1
2
. The lower left plot identifies WH throat at r0 = 5.101 and right plot

satisfies the condition, i.e., h′(r0) = 0.17 < 1. In Figures 4.9 and 4.10, the shape

function preserves its positivity condition and also admits asymptotic flat geometry

for both n = 2 and n = 4. The WH throat is located at r0 = 0.23 and r0 = 2.052

for n = 2 and n = 4, respectively. The derivative condition is also satisfied at throat,

i.e., h′(r0) = 0.89 < 1 and h′(r0) = −0.49 < 1. The NEC relative to effective energy-

momentum tensor verifies ρeff + peff < 0 ensuring the presence of exotic matter at

throat.

Case II: â(r) = −k/r

In this case, the integral (4.1.26) implies that

b̂(r) = r2 − rd1(1− n)

2
+

d2
1(1− n)2 ln(d1(1− n) + 4r)

8
+ (d1(1− n))2

×
{
− 1

rd1(1− n)
+

4 ln(d1(1− n) + 4r)

(d1(1− n))2
− 4 ln r

(d1(1− n))2

}
− ln((1− n)

× d1 + 4r)− ln

[
4

∫
1

4r + d1(1− n)

(
r−4(d1(1− n) + 4r)3+

d2
1(1−n)2

8

× er2− rd1(1−n)
2

+
d1(1−n)

r

)
dr − d1

]
,
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Figure 4.8: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = 2.8, d3 = 1.001,
d4 = −2.2 and n = 1
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Figure 4.9: Plots of h(r), h(r)
r

, h(r)− r and dh(r)
dr

versus r for d2 = −12, d3 = 1.001,
d4 = 0.2 and n = 2.



106

2.0 2.5 3.0 3.5 4.0 4.5
r

2.2

2.4

2.6

2.8

3.0

3.2

3.4

hHrL

0 10 20 30 40 50
r

2

4

6

8
hHrL�r

1 2 3 4 5
r

-0.5

0.5

hHrL-r

2.1 2.2 2.3 2.4 2.5
r

-0.4

-0.2

0.2

0.4

h'HrL

Figure 4.10: Plots of h(r), h(r)
r

, h(r)−r and dh(r)
dr

versus r for d2 = −200, d3 = 1.001,
d4 = 0.2 and n = 4.

which satisfies Eq.(B14) for ω = −1. The shape function of WH takes the form

h(r)

r
=

(
1− r4(d1(1− n) + 4r)−3− d2

1(1−n)2

8 e−r2+
rd1(1−n)

2
− d1(1−n)

r

[∫
{4r + d1

× (1− n)}−1

(
r−4(d1(1− n) + 4r)3+

d2
1(1−n)2

8 er2− rd1(1−n)
2

+
d1(1−n)

r

)
dr − d1

])
.

When red-shift function is not constant (â′(r) 6= 0), then the geometry of WH cannot

be analyzed for f(R) power-law model due to the complicated forms of b̂(r) and h(r).

4.2 Wormhole Solutions in f (R, T ) Gravity

Now we formulate Lagrangian corresponding to the action (1.4.20) by using Lagrange

multiplier approach with Lm = pm(â, b̂, M̂) as follows

I =

∫ √−g[f(R, T )− λ(R− R̄)− χ(T − T̄ ) + pm(â, b̂, M̂)]dr. (4.2.1)
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Here

√−g = e
â
2 e

b̂
2 M̂, λ = fR, χ = fT , T = 3pm − ρm,

R =
1

eb̂

(
− â′2

2
+

â′b̂′

2
− â′M̂ ′

M̂
− 2M̂ ′′

M̂
+

b̂′M̂ ′

M̂
+

M̂ ′2

2M̂2
− â′′ +

2eb̂

M̂

)
.

(4.2.2)

Using these values in Eq.(4.2.1) and eliminating second order derivative trough inte-

gration by parts, it follows that

L = e
â
2 e

b̂
2 M̂

(
f −RfR − TfT (R, T ) + fT (R, T )(3pm − ρm) + pm +

2fR

M̂

)

+
e

â
2 M̂

e
b̂
2

{
fR

(
M̂ ′2

2M̂2
+

â′M̂ ′

M̂

)
fRR

(
â′R′ +

2M̂ ′R′

M̂

)
+ fRT

(
â′T ′ +

2M̂ ′T ′

M̂

)}
.

(4.2.3)

The variation of Lagrangian with respect to configuration space Q = {â, b̂, M̂ , R, T}
leads to

f −RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
â
−ρm,

â
) + pm,

â
}

+
1

eb̂

{
fRR

(
b̂′R′ − 2R′′ − 2M̂ ′R′

M̂

)
+ fRT

(
b̂′T ′ − 2M̂ ′T ′

M̂

)
− 2R′2fRRR

− 4R′T ′fRRT − 2T ′2fRTT

}
=

fR

eb̂

(
M̂ ′2

2M̂2
+

b̂′M̂ ′

M̂
− 2M̂ ′′

M̂
+

2eb̂

M̂

)
, (4.2.4)

f −RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
b̂
−ρm,

b̂
) + pm,

b̂
}

− 1

eb̂

{
fRR

(
â′R′ +

2M̂ ′R′

M̂

)
− fRT

(
â′T ′ +

2M̂ ′T ′

M̂

)}
=

fR

eb̂

(
M̂ ′2

2M̂2

+
â′M̂ ′

M̂
− 2eb̂

M̂

)
, (4.2.5)

f −RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
M̂
−ρm,

M̂
) + pm,

M̂
}

+
1

eb̂

{
fRR

(
b̂′R′ − â′R′ − 2R′′ − M̂ ′R′

M̂

)
− 4R′T ′fRRT − 2T ′2fRTT − 2R′2
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×fRRR + fRT

(
b̂′T ′ − â′T ′ − 2T ′′ − M̂ ′T ′

M̂

)}
= −fR

eb̂

(
−â′′ +

M̂ ′2

2M̂2
− â′2

2

− â′M̂ ′

2M̂
+

â′b̂′

2
+

b̂′M̂ ′

2M̂
− M̂ ′′

M̂

)
,

eb̂(fRT (3pm − ρm − T ) + fRR(2M̂−1R−R)) + fRR

(
−â′′ +

M̂ ′2

2M̂2
− â′2

2

− â′M̂ ′

2M̂
+

â′b̂′

2
+

b̂′M̂ ′

2M̂
− M̂ ′′

M̂

)
= 0,

eb̂(fTT (3pm − ρm − T ) + fRT (2M̂−1R−R)) + fRT

(
−â′′ +

M̂ ′2

2M̂2
− â′2

2

− â′M̂ ′

2M̂
+

â′b̂′

2
+

b̂′M̂ ′

2M̂
− M̂ ′′

M̂

)
= 0.

For Lagrangian (4.2.3), the variation of energy function leads to

eb̂(r) =

(
1− h(r)

r

)−1

=
fR

(
M̂ ′2

2M̂2
+ â′M̂ ′

M̂

)
+ (R′fRR + T ′fRT )

(
â′ + 2M̂ ′

M̂

)

f −RfR − TfT + fT (3pm − ρm) + pm + 2M̂−1fR

. (4.2.6)

The vector field and corresponding first order prolongation turn out to be

K = τ
∂

∂r
+ α

∂

∂â
+ β

∂

∂b̂
+ γ

∂

∂M̂
+ δ

∂

∂R
+ η

∂

∂T
,

K [1] = τ
∂

∂r
+ α

∂

∂â
+ β

∂

∂b̂
+ γ

∂

∂M̂
+ δ

∂

∂R
+ η

∂

∂T
+ α′

∂

∂â′
+ β′

∂

∂b̂′

+ γ′
∂

∂M̂ ′ + δ′
∂

∂R′ + η′
∂

∂T ′ . (4.2.7)

The derivative of unknown coefficients of vector field with respect to r are defined as

ζ ′
l
= Dζ

l
− q′iDτ, (4.2.8)

where ζ1, ζ2, ζ3, ζ4 and ζ5 correspond to α, β, γ, δ and η, respectively. In-

serting Eqs.(4.2.3), (4.2.7) and (4.2.8) in (4.1.11) and comparing the coefficients of

â′2M̂ ′, â′b̂′M̂ ′, â′M̂ ′2, â′R′2 and â′T ′2, we obtain

τ,
â
fR = 0, τ,

b̂
fR = 0, τ,

M̂
fR = 0, τ,

R
fRR = 0, τ,

T
fRT = 0. (4.2.9)
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This implies that either fR, fRR, fRT = 0 or vice verse. The first choice yields trivial

solution. Thus, we choose fR 6= 0 and equate the remaining coefficients leading to

system of equations (B15)-(B34) mentioned in Appendix B.

To solve over-determined system, we choose M̂(r) = r2 and study possible exis-

tence of symmetry generators, associated conserved quantities lead to analyze WH

geometry for two f(R, T ) models. We also construct corresponding exact solutions

to explore cosmological picture of these models. The models are given as

• f(R, T )=R + 2g(T ),

• f(R, T )=f(R) + g(T ).

4.2.1 f(R, T ) = R + 2g(T )

We formulate symmetry generators and conserved quantities by solving the system

(B15)-(B33) which yields

α = 0, β = −2c2B,r
r2

, γ = 0, δ = 0, η = 0, τ = c1 +

∫
c2B,r

r2
dr.

(4.2.10)

In the following, we explore the existence of realistic and traversable WH for dust as

well as non-dust distribution.

Dust Case

In order to evaluate matter component, we use Eq.(4.2.10) into (B34) which yields

ρm = −e
−â−b̂

2

2c2c3

, Λ(T ) = −g(T )

2
+ c3T + c4, (4.2.11)
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where c3 and c4 represent arbitrary constants. Assuming B,r = c5, the non-zero

coefficients of symmetry generator and f(R, T ) model take the form

B = c5r, τ = c1 − c2c5

r
, β = −2c2c5

r2
, f(R, T ) = R + 2c3T + c4.

The symmetry generators and the corresponding first integral become

K1 =
∂

∂r
, K2 = −c2

r

∂

∂r
− 2c2

r2

∂

∂b̂
,

Σ1 = −e
â−b̂
2 r2

[
eb̂

(
2c4 +

2

r2
+

e
−â−b̂

2

c2

)
+

2 + 2â′r
r2

]
,

Σ2 = r + c2e
â−b̂
2 r

[
eb̂

(
2c4 +

2

r2
+

e
−â−b̂

2

c2

)
+

2 + 2â′r
r2

]
.

To determine WH solution, we insert Eq.(4.2.11) in (4.2.6) leading to

eb̂(r) =
2
r2 + 2â′

r

2c4 + 2
r2 + e

−â−b̂
2

c2

. (4.2.12)

In the following, we solve Eq.(4.2.12) for â(r) = k and â(r) = −k
r
, k > 0.

Case I: â(r) = k

In this case, Eq.(4.2.12) yields

b̂(r) = 2 ln

[
−e−

k
2 r2 +

√
e−kr4 + 16c4r2c2

2
+ 16c2

2

4c2(c4r
2 + 1)

]
, (4.2.13)

which leads to shape function as

h(r) = [2r3(e−kr2 + ((e−
k
2

√
e−kr4 + 16c4r

2c2
2
+ 16c2

2
− 8c2

2
c4)− 8c2

2
c2

4
r2))]

× {(e− k
2 r2 +

√
e−kr4 + 16c4r

2c2
2
+ 16c2

2
)2}−1.

The energy density of dust fluid becomes

ρm = −e

− k
2
−ln

2
6664
−e
− k

2 r2+

vuut
 

e
− k

2

!2

r4+16r2c2
2

c4+16c2
2

4(c2(c4r2+1))

3
7775

2c2c3

.
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Figure 4.11: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c2 = 30, c3 = −0.5,
c4 = −0.0095 and k = −0.08.

Figure 4.11 shows graphical behavior of the shape function. In upper panel, the left

plot shows positively increasing shape function satisfying h(r) < r0 while the right

plot represents asymptotic flat behavior as h(r)
r
→ 0 with r → ∞. In the lower face,

the left plot identifies WH throat at r0 = 0.001 and the right plot yields dh(r0)
dr

< 1.

Figure 4.12 exhibits energy density as positively increasing. For the existence of

realistic WH, we substitute constant red-shift function and b̂(r) from Eq.(4.2.13) in

(4.1.6), it follows that

ρeff + peff =
rh′(r)− h(r)

r3
.
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Figure 4.12: Evolution of ρm versus r.

Using flaring-out condition, this implies that ρeff + peff < 0, i.e., NEC is violated

for effective stress-energy tensor. This indicates the presence of repulsive gravity and

consequently, assures the existence of physically viable traversable WH.

Case II: â(r) = −k/r

Here, Eq.(4.2.12) gives

b̂(r) = 2 ln[(e
k
2r r3 + {e k

r r6 + 16r4c4c
2
2
+ 16r3c4c

2
2
k + 16c2

2
r2 + 16c2

2rk}
1
2 )

× (4
(
c2r

(
c4r

2 + 1
))

)−1]. (4.2.14)

The corresponding shape function turns out to be

h(r) = (2r2(ek/rr5 + (e
k
2r r2{r(ek/rr5 + 16c4c

2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r

+ 16kc2
2
)} 1

2 − 8c4c
2
2r

3) + 8c4c
2
2kr2 + (8kc2

2 − 8c2
2r

5c2
4
)))/(e

k
2r r3

+
√

r(ek/rr5 + 16c4c
2
2r

3 + 16c4c
2
2kr2 + 16c2

2r + 16kc2
2))

2.

Figure 4.13 implies that h(r) preserves its positivity with h(r) < r while far from

throat, the shape of WH is found to be asymptotic flat in the upper face. The left
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Figure 4.13: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c2 = 0.5, c3 = 0.5,
c4 = 1.1 and k = 5.

plot of the lower face locates WH throat at r0 = 0.95 and the corresponding right plot

indicates that dh(r0)
dr

< 1. To investigate the presence of traversable WH, we insert

Eq.(4.2.14) in (4.1.6) yielding

ρeff + peff = (64(((e
k
2r r

7
2 (ek/rr5 + 16c4c

2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r + 16kc2

2
)

1
2

− 8c2
4
c2

2
r6)− 8c4c

2
2
r3k) + 4c2

4
k2r4c2

2
+ (8c4k

2r2c2
2
− 8c2

4
c2

2
kr5)

+ (ek/rr6 − 8r4c4c
2
2
) + 4k2c2

2
)(c4r

2 + 1)c2
2
)/((e

k
2r r3 + (r(ek/rr5

+ 16c4c
2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r + 16kc2

2
)

1
2 ))3(r(ek/rr5 + 16c4c

2
2

× r3 + 16c4c
2
2
kr2 + 16c2

2
r + 16kc2

2
))

1
2 ).
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Figure 4.14: Plots of ρm and ρeff + peff versus r.

Figure 4.14 shows that density is positively decreasing while the effective energy

density and pressure are negatively increasing such that ρm ≥ 0 and ρeff + peff ≤ 0.

This indicates the violation of NEC by effective energy-momentum tensor leading to

realistic traversable WH.

Non-Dust Case

In this case, we consider a particular relation between density and pressure such that

pm(â, b̂, M̂) = ωρm(â, b̂, M̂) and solve Eq.(B34) which yields

ρm = − e
−â−b̂

2

2c2(6ωc6 + ω − 2c6))
, Λ(T ) = −g(T )

2
+ c3T + c4 , (4.2.15)

where c6 denotes arbitrary constant. Here, symmetry generators remain the same as

for dust case but the corresponding conserved integral gives

Σ1 = −e
â−b̂
2 r2

[
eb̂

(
2c4 +

2

r2
+

e
−â−b̂

2 (2c3(3ω − 1) + 1)

2c2(6ωc6 + ω − 2c6)

)
+

2 + 2â′r
r2

]
,

Σ2 = r + c2e
â−b̂
2 r

[
eb̂

(
2c4 +

2

r2
+

e
−â−b̂

2 (2c3(3ω − 1) + 1)

2c2(6ωc6 + ω − 2c6)

)
+

2 + 2â′r
r2

]
.



115

Inserting Eq.(4.2.15) in (4.2.6), we obtain

eb̂(r) =
2(1 + â′r)c2

2c4r
2c2 + 2c2 + e−

â(r)
2
− b̂(r)

2 r2
. (4.2.16)

Case I: â(r) = k

For this case, Eq.(4.2.16) yields

b̂(r) = 2 ln

[
−e−

k
2 r2 +

√
e−kr4 + 16c4r

2c2
2
+ 16c2

2

4c2(c4r
2 + 1)

]
. (4.2.17)

The associated shape function takes the form

h(r) = −[2r3(−e−kr2 + e−
k
2

√
e−kr4 + 16c4r

2c2
2
+ 16c2

2 + 8c2
2
c4 + 8c2

2c
2
4
r2)]

× (e−
k
2 r2 −

√
e−kr4 + 16c4r

2c2
2 + 16c2

2)
−2.

Inserting Eq.(4.2.17) in (4.2.15), we obtain

ρm =
e
− k

2
−ln

2
4−e

− k
2 r2+

√
e−kr4+16c4r2c2

2
+16c22

4c2 (c4r2+1)

3
5

c2(6ωc6 + ω − 2c6)
. (4.2.18)

The upper plane of Figure 4.15 indicates that h(r) remains positive but it does not

preserve asymptotic flat shape. In lower face, the left plot identifies WH throat at

r0 ≈ 0.001 and the right plot satisfies h′(r0) < 1. Figure 4.16 shows that ρm and

ρm + pm are positively increasing for 1 ≤ ω ≤ 0.3 while ρeff + peff < 0 in this case.

Therefore, a realistic traversable WH solution exists.

Case II: â(r) = −k/r

For variable red-shift function, Eq.(4.2.16) leads to

b̂(r) = ln[(ek/rr5 + 8c2
2
k + 8c2

2
r3c4 + e

k
2r r5/2(ek/rr5 + 16kc2

2 + 16c2
2r
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Figure 4.15: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c2 = 5, c4 = −0.15,
c6 = 0.5 and k = 1.

Figure 4.16: Plots of ρm and ρm + pm versus r.
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+ 16c2
2kr2c4 + 16c2

2r
3c4)

1
2 ){8rc2

2(1 + 2r2c4 + r4r2c4 + r4c2
4
)}−1].

(4.2.19)

The corresponding shape function is

h(r) = [(ek/rr5 + 8c2
2
k + (8c2

2
kr2c4 − 8c2

2
r3c4) + (e

k
2r r5/2{ek/rr5 + 16c2

2
k

+ 16c2
2
r + 16c2

2
kr2c4 + 16c2

2
r3c4}

1
2 − 8c2

2
r5c2

4
))r]/(ek/rr5 + 8c2

2
k + 8c2

2
r

+ 8c2
2
kr2c4 + 8c2

2
r3c4 + e

k
2r r5/2{ek/rr5 + 16c2

2k + 16c2
2
r + 16c2

2
kr2c4

+ 16c2
2r

3c4}
1
2 ).

Figure 4.17 indicates that h(r) < r, h(r)
r
→ 0 as r → ∞, the minimum radius of

throat is located at r0 = 1 with h′(r0) < 1. We insert Eq.(4.2.19) in (4.1.6) and

(4.2.15) which leads to graphical interpretation of energy density and pressure with

respect to perfect fluid and effective energy-momentum tensor. Figure 4.18 shows

that ρm ≥ 0 and ρm + pm ≥ for 1 ≤ ω ≤ 0.3 while ρeff + peff < 0 for 1 ≤ ω ≤ −1.

Thus, a realistic traversable WH exists for variable red-shift function in non-dust

distribution.

4.2.2 f(R, T ) = f(R) + g(T )

Now we consider a general f(R, T ) model appreciating indirect non-minimal curvature-

matter coupling. We specify f(R) as follows

f(R, T ) = R + µR2 + νRn + g(T ), n ≥ 3, (4.2.20)

where µ and ν are arbitrary constants. We solve the system (B15)-(B33) for both

dust as well as non-dust distributions and discuss WH geometry for constant and

variable red-shift function.
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Figure 4.17: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for c2 = 4, c4 = 0.1,
c6 = 0.5, and k = 1.

Figure 4.18: Plots of ρm, ρm+pm and ρeff +peff versus r for c2 = 4, c4 = 0.1, c6 = 0.5
and k = 1.
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Dust Case

In this case, we solve the system (B15)-(B34) and obtain

α = d1, β = d1 − 2d4, γ = 0, δ = 0, η = 0, τ = d4r, B = d5,

ρm = e−âr2 − 1

d2r2
[−νRnr2 + νRnnr2 − 2νR( − 1 + n)n + µr2R2 − 4µR

− 2− r2d3], g(T ) = d2T + d3, (4.2.21)

where dl represents arbitrary constants. The symmetry generators and corresponding

first integrals are found to be

K1 =
∂

∂â
+

∂

∂b̂
, K2 = r

∂

∂r
− 2

∂

∂b̂
,

Σ1 = −e
â−b̂
2 r[2(1 + µR + nνRn−1) + rR′(2µ + n(n− 1)νRn−2)],

Σ2 = −e
â−b̂
2 r[2eb̂(n− 1)νRn−1 + 2(1 + µR + nνRn−1) + 4rR′(2µ + nν

× (n− 1)Rn−2)].

For b̂(r) = ln
(

−r
−r+h(r)

)
, Eq.(4.2.6) reduces to

− r

(−r + h(r))
+

(2(1 + 2µR))(1 + â′r)eâ

r4d2

= 0. (4.2.22)

We solve this equation numerically for both â(r) = k and â(r) = −k
r
.

Case I: â(r) = k

For constant red-shift function, we analyze the geometry of WH for both n = 0 as

well as n 6= 0. Inserting Eq.(4.2.2) in (4.2.22) for n = 0, it follows that

r

h(r)− r
− 2ek

d2r4


2µ





2(h(r)− r)2

(
r(h′(r)−1)
(h(r)−r)2

− 1
h(r)−r

)

r3
− 2(h(r)− r)

r3



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Figure 4.19: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = 0.0001, d3 = 1,
µ = 0.5, ν = 0.1 and k = −0.15.

+
4(h(r)− r)

r
+

2

r2

)
+ 1

]
= 0. (4.2.23)

We solve this equation for h(r) and establish graphical analysis to study its geometri-

cal properties. Figure 4.19 identifies that all WH conditions are satisfied as h(r) < r,

h(r)
r
→ 0, the minimum radius is r0 = 0.45 with h′(r0) < 1. Hence, ρeff + peff < 0

holds trivially while Figure 4.20 indicates that energy density remains positive.

For n 6= 0, Eq.(4.2.22) reduces to

r

−r + h(r)
− 2ek

r4d2

(
2µ

(
4(−r + h(r))

r
+

(
2(−r + h(r))2

r3

(
− 1

−r + h(r)

+
r(−1 + h′(r))
(−r + h(r))2

)
− 2(−r + h(r))

)
+

2

r2

)
+ nν

(
4(−r + h(r))

r
+

2

r2

+


2

(
− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)
(−r + h(r))2

r3
− 2(−r + h(r))

r3






−1+n



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Figure 4.20: Evolution of ρm versus r.

− 2ek

r4d2

= 0. (4.2.24)

The numerical solution of h(r) provides two roots for n = 3 as shown in Figure 4.21.

The left plot of upper face represents that both roots remain positive with h(r) < r

while the right plot identifies asymptotic flat shape of WH. The lower plot locates

the corresponding throat at r0 = 0.424 (red) and r0 = 0.36 (blue).

Case II: â(r) = −k/r

For n = 0, Eq.(4.2.22) gives

r

h(r)− r
+

(r + k)e−
k
r

r5d2

(
1 + 2µ

(
k2(−r + h(r))

2r5
+

4(−r + h(r))

r
+

2

r2

+
k

(
− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)
(−r + h(r))2

2r4
+

2

r3

((
− 1

−r + h(r)

+
r(−1 + h′(r))
(−r + h(r))2

)
(−r + h(r))2 − (−r + h(r))

)))
= 0. (4.2.25)

The numerical solution of this equation is shown in Figure 4.22 which shows that

all geometrical conditions of WH are preserved as h(r) < r, h(r)
r
→ 0, WH throat

is located at r0 = 0.45 with h′(r0) < 1. Figure 4.23 shows that ρm > 0 and ρeff +
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Figure 4.21: Plots of h(r), h(r)
r

and h(r) − r versus r for d2 = −0.0001, d3 = 1,
µ = 0.08, ν = −3.5, k = 0.5 and n = 3.
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Figure 4.22: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = 0.0001, d3 = 1,
µ = 0.5, ν = 0.1 and k = 0.01.
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Figure 4.23: Evolution of ρm and ρeff + peff versus r.

peff < 0 ensuring the violation of NEC for effective energy-momentum tensor yielding

physically acceptable traversable WH.

When n 6= 0, Eq.(4.2.22) takes the following form

r

−r + h(r)
− 2(r + k)e−

k
r

r5d2

(
1 + 2µ

(
k2(−r + h(r))

2r5
+

4(−r + h(r))

r
+

2

r2

+
k

(
− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)
(−r + h(r))2

2r4
+

2(−r + h(r))

r3
((−r + h(r))

×
(
− 1

−r + h(r)
+

r(−1 + h′(r))
(−r + h(r))2

)
− 1

))
+ nν

(
k2(−r + h(r))

2r5
+

2

r2

+
k

(
− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)
(−r + h(r))2

2r4
+

4(−r + h(r))

r
+

2(−r + h(r))

r3

×
((

− 1

−r + h(r)
+

r(−1 + h′(r))
(−r + h(r))2

)
(−r + h(r))− 1

))−1+n
)

= 0.

This yields two solutions of the shape function whose graphical analysis is established

for n = 3. In Figure 4.24, the upper left plot shows that both solutions of h(r)

preserve positive behavior with h(r) < r while the corresponding right plot determines

asymptotic flat shape of WH. The lower plot identifies minimum radius of WH at

r0 = 0.35 (red) and r0 = 0.25 (blue).
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Figure 4.24: Plots of h(r), h(r)
r

and h(r) − r versus r for d2 = −0.0001, d3 = 1,
µ = 0.08, ν = −2, k = 0.5 and n = 3.

Non-Dust Case

For perfect fluid, we consider pm = ωρm to evaluate symmetry generators and asso-

ciated conserved quantities. Solving Eqs.(B15)-(B34), we obtain

τ = d4, B = d5r, ρm =
1

R((3d2ω − d2) + ω)r2d1

[
d5e

− â(r)
2
− b̂(r)

2 â(r)R

+
((((

R3µr2d1 −Rνr2d1

)− d3(Rr)2d1

)− 2Rd1

)− 4µR2d1

)]
. (4.2.26)

These coefficients lead to the following symmetry generators and conserved integral

K1 =
∂

∂â
+

∂

∂b̂
, K2 =

∂

∂r
− 2

∂

∂b̂
,

Σ1 = −e
â−b̂
2 r[2(1 + µR + nνRn−1) + rR′(2µ + n(n− 1)νRn−2)],

Σ2 = −e
â−b̂
2 r2[R + µR2 + νRn + d3 + (2/r2 −R)(1 + 2µR + nνRn−1)

− d2

R((3d2ω − d2) + ω)r2d1

[
{(3ω − 1) + ω}(d5e

− â(r)
2
− b̂(r)

2 â(r)R
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Figure 4.25: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = −1.5, d3 = 1,
d5 = −0.84, µ = 2.5, ν = −1.1, k = 0.01 and n = 0.

+ (((R3µr2d1 −Rνr2d1)− d3(Rr)2d1)− 2Rd1)− 4µR2d1)
]
+ 2

× (1 + µR + nνRn−1) + 4rR′(2µ + nν(n− 1)Rn−2)].

Substituting b̂(r) = ln
(

−r
−r+h(r)

)
in Eqs.(4.2.6) and (4.2.22), we obtain Eq.(B35)

provided in Appendix B. We solve this equation numerically for both forms of red-

shift function.

Case I: â(r) = k

The numerical solution of Eq.(B35) for n = 0 leads to analyze WH conditions graphi-

cally. In Figure 4.25, the upper left plot shows that h(r) is positively increasing with

h(r) < r while the right plot assures asymptotic flat shape of WH. The lower left

plot determines throat at the minimum radius, i.e., r0 = 0.456 whereas the right plot

preserves the derivative condition at throat as h′(r0) < 1. We examine the behavior of
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Figure 4.26: Plots of ρm and ρm + pm versus r.

energy density and pressure of perfect fluid for ω = −0.3 in Figure 4.26. Both plots

indicate that NEC and WEC are preserved while NEC is trivially violated for the

effective energy-momentum tensor. Consequently, there exists a realistic traversable

WH for non-dust distribution.

Case II: â(r) = −k/r

In Figure 4.27, the left plot of upper panel represent positively increasing behavior

of h(r). The upper right plot indicates that WH appreciates asymptotic flat shape.

The lower left plot identifies the minimum radius at WH throat, i.e., r0 = 0.35 while

the right plot shows that derivative condition is satisfied at throat h′(r0) < 1. Both

upper plots of Figure 4.28 represent that NEC and WEC are recovered. For variable

red-shift function, the violation of NEC relative to effective energy-momentum tensor

is analyzed in lower plot. Thus, the existence of a realistic traversable WH is possible

for non-dust distribution with n = 0.



127

2 4 6 8 10
r

2

4

6

8

hHrL

0.4 0.5 0.6 0.7
r

0.2

0.4

0.6

0.8

1.0

hHrL�r

0.36 0.38 0.40 0.42 0.44
r

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

hHrL-r

0.340 0.342 0.344 0.346 0.348 0.350
r

-1.5

-1.0

-0.5

dhHrL�dr
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Chapter 5

Final Results

In this chapter, we summarize all the results obtained and finally provide some future

lines of action.

Chapter 2 is devoted to investigate the dynamics of warm inflation for flat FRW

universe model in f(R) gravity. We have analyzed warm intermediate as well as

logamediate inflationary model in weak and strong regimes for both constant and

generalized dissipative coefficients. The results of warm intermediate inflationary

model are summarized as follows.

• For weak constant dissipative regime, viable e-folds are obtained only when

0.626 ≤ ḡ ≤ 0.999 whereas the corresponding tensor-scalar ratio is found to

be compatible at the constrained value of scalar spectral index. For ḡ = 0.9,

we have found T À H̃ and r̃ ¿ 1 that verify the presence of inflaton in

weak dissipative regime and inflationary model is found to be consistent with

observational data.

• For strong constant dissipative regime, the number of e-folds remains less than

20 for 0.71 ≤ ḡ ≤ 0.89 while the corresponding graphical behavior of R − ns

leads to compatible range of R, i.e., R < 0.10. At ḡ = 0.89, the temperature
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of thermal bath radiations is found to be greater than Hubble parameter which

leads to the existence of warm inflation and r̃ À 1 indicates that inflaton

particles lie in strong dissipative regime.

• In case of weak dissipative regime, inflationary model is compatible for m =

0, 1, − 1 when 0.59 < ḡ < 1, 0.67 < ḡ < 1, 0.55 < ḡ < 1 ranges, respectively.

For generalized dissipative coefficient in strong dissipative regime, the inflation-

ary model yields consistent results with Planck constraints when m = 0, 1, −1

with 0.5 < ḡ < 1, 0.67 < ḡ < 1, 0.88 < ḡ < 1 ranges, respectively.

It is worth mentioning here that for m = 3, the condition of model parameter is

violated, i.e., 0 < ḡ < 1 leading to inconsistent behavior of inflationary model in

weak and strong dissipation regimes.

The summary of results for different values of logamediate model parameter β̄ is

given as follows.

• For weak constant dissipative regime, the e-folds are found in abundance to

resolve flatness and horizon issues whereas the corresponding tensor-scalar ratio

is compatible at the constrained value of scalar spectral index . For 1.5 ≤ β̄ ≤
3.5, we have found T À H̃ and r̃ ¿ 1 which verify the necessary condition

of warm inflation and also describe the existence of inflaton particles in weak

dissipative regime. This analysis implies that logamediate inflationary model is

found to be consistent with observational data.

• For strong constant dissipative regime, the number of e-folds remains less than

20 for 2 ≤ β̄ ≤ 2.7 while the corresponding graphical behavior of R− ns leads

to compatible range of R, i.e., R < 0.10 in the same range. The temperature
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of thermal bath radiations is found to be greater than Hubble parameter which

leads to the existence of warm inflation and r̃ À 1 indicates that inflaton

particles lie in strong dissipative regime for the proposed range of β̄.

• For generalized dissipative coefficient in weak dissipative regime, the inflationary

model yields consistent results with Planck constraints for m = 0, 1 with 1.1 ≤
β̄ ≤ 4.5. For m = −1, the existence of warm inflation is verified in this range

but r̃ is not found to be constrained at ns = 0.9603 which violates the condition

of weak dissipative regime. In case of strong dissipative regime, inflationary

model yields compatible results for m = 0, 1, − 1 with 1.1 ≤ β̄ ≤ 3.5 but

r̃ À 1 in 1.1 ≤ β̄ ≤ 1.9.

In Chapter 3, we have analyzed the presence of Noether symmetry of flat FRW

and BI universe models for two f(R, T ) models. We have formulated Noether sym-

metry generators, corresponding conserved quantities, matter contents (pm, ρm) as

well as particular forms of g(T ) for R + 2g(T ) and f0R
n + g(T ) models. Both models

explore symmetries of BI model in the absence of boundary term while the second

model provides symmetries and conserved quantities of both isotropic and anisotropic

models with non-zero boundary term. The graphical behavior of scale factors indicate

that the universe undergoes an expansion while cosmological parameters, i.e., Hub-

ble and deceleration parameters correspond to accelerated cosmic expansion whereas

EoS parameter identifies quintessence phase. The trajectory of r and s parameters

indicates that the constructed f(R, T ) model corresponds to standard ΛCDM model.

We have also formulated Noether symmetry of generalized anisotropic homoge-

neous model in this gravity admitting minimal interactions with scalar field model.

We have considered f(R, T ) models admitting direct and indirect curvature-matter
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coupling and formulated exact solutions for dust and perfect fluid distributions. The

indirect curvature-matter coupling yields three symmetry generators with non-zero

boundary term. The first generator defines translational symmetry in time yielding

energy conservation whereas the second generates scaling symmetry. For the second

model, we have found four conserved quantities relative to symmetry generators but

only one generator provides scaling symmetry. In the absence of boundary term, the

symmetry generator of first model assures the existence of scaling symmetry for dust

as well as perfect fluid while we have found two symmetry generators for the second

model.

We have also evaluated exact solutions for dust and perfect fluid with vanishing

boundary term in the background of indirect curvature-matter interactions. For dust

fluid, we have found power-law solution whose graphical analysis leads to decelerating

phase of the universe. The positively increasing scalar field and dominant kinetic en-

ergy ensure the decelerating behavior of cosmos for quintessence model. For phantom

model, the scalar field rolls down positively and tends to increase negatively while

kinetic energy dominates over potential energy. The graphical behavior of effective

EoS parameter identifies a transition from radiation to DE era. For perfect fluid, we

have found an oscillatory solution with increasing rate of Hubble parameter, negative

deceleration parameter, ωeff < −1 and s > 0 with r < 1 indicating phantom phase.

In this case, the scalar field increases negatively and potential energy dominates over

kinetic energy leading to an epoch of accelerated expansion. Thus, power-law and

oscillatory solutions of generalized anisotropic model characterize cosmic evolution

from decelerated to current accelerated phase.

Chapter 4 studies static wormhole solutions via Noether symmetry approach
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in f(R) and f(R, T ) theories for constant as well as variable red-shift functions.

For constant (â′ = 0) and variable red-shift function (â′ 6= 0), we have found that

particular form of f(R) satisfies stability conditions while shape function preserves

all geometric properties, i.e., h(r) > 0, dh(r)
dr

< 1 at r = r0 and asymptotic flat

geometry. The violation of NEC (using effective energy-momentum tensor) assures

the presence of repulsive nature of gravity for both forms of red-shift function whereas

the validity of NEC and WEC identifies ordinary matter when â′ 6= 0. These energy

bounds confirm the presence of a physically viable WH solution for variable red-shift

function. We have also formulated symmetry generator, corresponding first integral

and WH solutions for f(R) power-law model. When â′(r) = 0, we have established

graphical analysis of traversable WH conditions for n = 1/2, n = 2 and n = 4. In

this case, the shape function is found to preserve all conditions and ρeff + peff < 0

assures the violation of NEC identifying the existence of exotic matter at throat. For

â′ 6= 0, we have found a complicated form of the shape function.

For the first f(R, T ) model (admitting a correspondence with ΛCDM model) with

â′ = 0, WH solution satisfies all geometric conditions for dust distribution whereas

in non-dust case, the asymptotic flatness is not achieved. The energy density corre-

sponding to ordinary matter remains positive for both dust and non-dust cases while

the violation of NEC on effective energy-momentum tensor trivially holds. Thus, the

repulsive gravitational effects appear at throat leading to traversable WH while the

presence of ordinary matter leads to physically viable WH. When â′ 6= 0, we have

considered pm = ωρm in non-dust case and all WH conditions hold for both fluid

distributions. In dust case, we have ρm ≥ 0 while ρm, ρm + pm ≥ 0 for non-dust case

whereas ρeff + peff ≤ 0 for both fluid distributions. These inequalities indicate that
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WH is found to be traversable and physically acceptable.

For the second model, we have evaluated WH solutions for both n = 0 and n = 3.

When â′ = 0 and n = 0, we have found that WH conditions are recovered while

the validity of NEC and WEC specify ordinary matter for both fluids. When â′ 6= 0

with n = 0, we have found viable WH solutions for both dust as well as non-dust

cases. The physical existence of WH is verified as ρm ≥ 0 with ρeff + peff ≤ 0 for

dust distribution. For non-dust case, we have ρm, ρm + pm ≥ 0 and ρeff + peff ≤ 0

except for ω = 1. When n 6= 0 (dust fluid), we have found two solutions of shape

function which admit h(r) < r, h(r)/r → 0 and h(r0) = r0 for both constant as well

as variable red-shift function. The summary for viable WH solutions corresponding

is given in Table 5.1.

Table 5.1: Viable WH solutions in f(R, T ) gravity.

Red-Shift Function Model I Model II
â(r) = k dust dust & Non-dust, n = 0

â(r) = −k/r dust & Non-dust dust & Non-dust, n = 0

Table 5.1 indicates that Noether symmetry approach leads to viable wormhole solu-

tions in most of the cases.

It would be interesting to extend this work on the following lines.

• To analyze the role of anisotropic warm inflationary model with different fluids

and scalar field models in Einstein frame representation of f(R) theory.

• To discuss warm inflationary scenario with/without bulk viscosity in Einstein

frame representation of modified theories.

• To investigate the existence of physically viable dynamical as well as non-

dynamical WH with anisotropic fluid through Noether symmetry technique in
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f(R) and f(R, T ) theories.

• To discuss cosmic evolution from exact solutions of higher-dimensional isotropic

as well as anisotropic universe models via Noether symmetry approach in more

generalized non-minimally coupled modified theories minimally interacting with

different DE/matter models.

• To explore the effect of charge in WH geometry with non-commutative geomet-

rical background with/without Noether symmetry approach via different forms

of shape and red-shift functions.



Appendix A

For Lagrangian (3.1.3) and vector field (3.1.11), the invariance condition (1.5.5) yields

a system of equations as follows

(bα,
R

+2aβ,
R

)fRR = 0, (A1)

(bα,
T

+2aβ,
T

)fRT = 0, (A2)

2β,a fR + bγ,a fRR + bδ,a fRT = 0, (A3)

bα,
R

fRT + bα,
T

fRR + 2aβ,
R

fRT + 2aβ,
T

fRR = 0, (A4)

2βfRR + bγfRRR + bδfRRT + bα,a fRR + 2aβ,a fRR + 2β,
R

fR + bγ,
R

fRR

+bδ,
R

fRT = 0, (A5)

2βfRT + bγfRRT + bδfRTT + bα,a fRT + 2aβ,a fRT + 2β,
T

fR + bγ,
T

fRR

+bδ,
T

fRT = 0, (A6)

2βfR + 2bγfRR + 2bδfRT + 2bα,a fR + 2aβ,a fR + 2bβ,
b
fR + 2abγ,a fRR

+b2γ,
b
fRR + 2abδ,a fRT + b2δ,

b
fRT = 0, (A7)

2bαfRR + 2aβfRR + 2abγfRRR + 2abδfRRT + b2α,
b
fRR + 2bα,

R
fR + 2ab

×β,
b
fRR + 2aβ,

R
fR + 2abγ,

R
fRR + 2abδ,

R
fRT = 0, (A8)

2bαfRT + 2aβfRT + 2abγfRRT + 2abδfRTT + b2α,
b
fRT + 2bα,

T
fR + 2ab

×β,
b
fRT + 2aβ,

T
fR + 2abγ,

T
fRR + 2abδ,

T
fRT = 0, (A9)

αfR + aγfRR + aδfRT + 2bα,
b
fR + 2aβ,

b
fR + 2abγ,

b
fRR + 2abδ,

b

×fRT = 0, (A10)

b2α[f −RfR − TfT + fT (3pm − ρm) + pm + a{fT (3pm,a −ρm,a ) + pm,a }] + β[2ab

×(f −RfR − TfT + fT (3pm − ρm) + pm) + ab2{fT (3pm,
b
−ρm,

b
) + pm,

b
}] + ab2

×γ[−(RfRR + TfRT ) + fRT (3pm − ρm)] + ab2δ[−(RfRT + TfTT ) + fTT

×(3pm − ρm)] = 0. (A11)
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For invariance condition (1.5.2), the Lagrangian corresponding to flat FRW uni-

verse leads to

τ,a = 0, τ,
R

= 0, τ,
T

= 0, B,
T

= 0, (A12)

n(n− 1)f0R
n−2a2α,

R
= 0, (A13)

n(n− 1)f0a
2Rn−2α,

T
= 0, (A14)

2aα,
T

+(n− 1)aR−1β,
T

= 0, (A15)

6n(n− 1)f0a
2Rn−2α,t = −B,

R
, (A16)

nf0R
n−1[2aα,t +(n− 1)a2R−1β,t ] = −B,a , (A17)

α + (n− 1)aR−1β + 2aα,a −aτ,t +(n− 1)a2R−1β,a = 0, (A18)

2(n− 1)R−1α + (n− 1)(n− 2)aR−2β + (n− 1)aR−1α,a +2α,
R
−(n− 1)

×aR−1τ,t +(n− 1)aR−1β,
R

= 0, (A19)

α[3a2{f0R
n(1− n) + g(T )− Tg(T ),

T
+g(T ),

T
(3p− ρm) + pm}+ a3{g(T ),

T

×(3pm,a −ρm,a ) + pm,a }]− n(n− 1)f0a
3Rn−1β + a3γg(T ),

TT
(3pm − ρm − T )

+a3τ,t {f0R
n(1− n) + g(T )− Tg(T ),

T
+g(T ),

T
(3pm − ρm) + pm} = B,t . (A20)

For BI universe model, the invariance condition (1.5.2) yields

τ,a = 0, τ,
b
= 0, τ,

R
= 0, τ,

T
= 0, B,

T
= 0, (A21)

(bα,
R

+2aβ,
R

)n(n− 1)f0R
n−2 = 0, (A22)

(bα,
T

+2aβ,
T

)n(n− 1)f0R
n−2 = 0, (A23)

2β,a +(n− 1)bR−1γ,a = 0, (A24)

2β,
T

+(n− 1)bR−1γ,
T

= 0, (A25)

bα,
T

+aβ,
T

+(n− 1)abR−1γ,
T

= 0, (A26)

n(n− 1)f0R
n−2[2b2α,t +4abβ,t ] = −B,

R
, (A27)

nf0R
n−1[4bβ,t +2(n− 1)b2R−1γ,t ] = −B,a , (A28)

nf0R
n−1[4bα,t +4aβ,t +4(n− 1)abR−1γ,t ] = −B,

b
, (A29)

α + (n− 1)aR−1γ + 2bα,
b
+2aβ,

b
+2(n− 1)abR−1γ,

b
−aτ,t = 0, (A30)

2β + 2(n− 1)bR−1γ + 2bα,a +2aβ,a +2bβ,
b
+2(n− 1)abR−1γ,a

+(n− 1)b2R−1γ,
b
−2bτ,t = 0, (A31)

2(n− 1)R−1β + (n− 1)(n− 2)bR−2γ + (n− 1)bR−1α,a +2β,
R

+2(n− 1)aR−1β,a +(n− 1)bR−1γ,
R
−(n− 1)bR−1τ,t = 0, (A32)
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2(n− 1)bR−1α + 2(n− 1)aR−1β + 2(n− 1)(n− 2)abR−2γ + 2bα,
R

+(n− 1)b2R−1α,
b
+2(n− 1)abR−1β,

b
+2aβ,

R
+2(n− 1)abR−1γ,

R

−2(n− 1)abR−1τ,t = 0, (A33)

b2α[f0R
n(1− n) + g(T )− Tg(T ),

T
+g(T ),

T
(3pm − ρm) + pm + a{g(T ),

T

×(3pm,a −ρm,a ) + pm,a }] + β[2ab(f0R
n(1− n) + g(T )− Tg(T ),

T
+g(T ),

T

×(3pm − ρm) + pm) + ab2{g(T ),
T

(3pm,
b
−ρm,

b
) + pm,

b
}]− n(n− 1)f0ab2Rn−1γ

+ab2δg(T ),
TT

(3pm − ρm − T ) + ab2τ,t {f0R
n(1− n) + g(T )− Tg(T ),

T

+g(T ),
T

(3pm − ρm) + pm} = B,t . (A34)

For invariance condition (1.5.2), the system of equations is

εab2η,t = −B,
φ
, (A35)

bα + 2aβ + 2abη,
φ
−abτ,t = 0, (A36)

2bα,
φ
f

RR + 4aβ,
φ
f

RR + abεη,
R

= 0, (A37)

2bα,
φ
f

RT + 2aβ,
φ
f

RT + abεη,
T

= 0, (A38)

4β,
φ
fR + 2bγ,

φ
fRR + 2bδ,

φ
fRT + abεη,a = 0, (A39)

4bα,
φ
fR + 4aβ,

φ
fR + 4abγ,

φ
fRR + 4abδ,

φ
fRT + ab2εη,

b
= 0, (A40)

τ,a fR = 0, τ,
b
fR = 0, τ,

R
fRR = 0, τ,

T
fRT = 0, τ,

φ
= 0, (A41)

2b2α,t fRR + 4abβ,t fRR = −B,
R

, (A42)

2b2α,t fRT + 4abβ,t fRT = −B,
T

, (A43)

bα,
R

fRR + 2abβ,
R

fRR = 0, (A44)

bα,
T

fRT + 2abβ,
T

fRT = 0, (A45)

2β,a fR + bγ,a fRR + bδ,a fRT = 0, (A46)

4bβ,t fR + 2b2γ,t fRR + 2b2δ,t fRT = −B,a , (A47)

4bα,t fR + 4aβ,t fR + 4abγ,t fRR + 4abδ,t fRT = −B,
b
, (A48)

bα,
T

fRR + bα,
R

fRT + 2aβ,
T

fRR + 2aβ,
R

fRT = 0, (A49)

αfR + aγfRR + aδfRT + 2bα,
b
fR + 2aβ,

b
fR + 2abγ,

b
fRR + 2abδ,

b
fRT

−aτ,t fR = 0, (A50)

2βfRR + bγfRRR + bδfRRT + bα,a fRR + 2aβ,a fRR + 2β,
R

fR + bγ,
R

fRR

+bδ,
R

fRT − bτ,t fRR = 0, (A51)

2βfRT + bγfRRT + bδfRTT + bα,a fRT + 2aβ,a fRT + 2β,
T

fR + bγ,
T

fRR



138

+bδ,
T

fRT − bτ,t fRT = 0, (A52)

2βfR + 2bγfRR + 2bδfRT + 2bα,a fR + 4aβ,a fR + 2bβ,
b
fR + 2abγ,a fRR

+b2γ,
b
fRR + 2abδ,a fRT + b2δ,

b
fRT − 2bτ,t fR = 0, (A53)

2bαfRR + 2aβfRR + 2abγfRRR + 2abδfRRT + b2α,
b
fRR + 2bα,

R
fR + 2ab

×β,
b
fRR + 2aβ,

R
fR + 2abγ,

R
fRR + 2abδ,

R
fRT − 2abτ,t fRR = 0, (A54)

2bαfRT + 2aβfRT + 2abγfRRT + 2abδfRTT + b2α,
b
fRT + 2bα,

T
fR + 2ab

×β,
b
fRT + 2aβ,

T
fR + 2abγ,

T
fRR + 2abδ,

T
fRT − 2abτ,t fRT = 0, (A55)

b2α[f −RfR + fT (3pm − ρm − T ) + pm − V (φ) + a{fT (3pm,a −ρm,a )

+pm,a }+ 2ξfR] + β[2ab(f −RfR + fT (3pm − ρm − T ) + pm − V (φ))

+ab2{fT (3pm,
b
−ρm,

b
) + pm,

b
}] + γ[−ab2RfRR + 2aξfRR] + δ[−ab2RfRT

+2aξfRT ]− ab2V,
φ
η + τ,t [ab2(f −RfR + fT (3pm − ρm − T ) + pm

−V (φ)) + 2aξfR] = B,t . (A56)



Appendix B

In f(R) gravity, the invariance condition (1.5.2) and Lagrangian (4.1.8) yield

B,
b̂
= 0, τ,

â
= 0, τ,

b̂
= 0, τ,

M̂
= 0, τ,

R
= 0, (B1)

e
â
2 (γ,r fR + M̂δ,r fRR) = e

b̂
2 B,

â
, (B2)

e
â
2 (α,r M̂ + 2γ,r )fRR = e

b̂
2 B,

R
, (B3)

e
â
2 (α,r fR + γ,r M̂−1fR + 2δ,r fRR) = e

b̂
2 B,

M̂
, (B4)

γ,
â
fR + M̂δ,

â
fRR = 0, (B5)

γ,
b̂
fR + M̂δ,

b̂
fRR = 0, (B6)

α,
b̂
fR + γ,

b̂
M̂−1fR + 2δ,

b̂
fRR = 0, (B7)

M̂α,
b̂
fRR + 2γ,

b̂
fRR = 0, (B8)

M̂α,
R

fRR + 2γ,
R

fRR = 0, (B9)

fR(α− β − 2γM̂−1 + 4M̂α,
M̂

+4γ,
M̂
−2τ,r ) + fRR(2δ + 8M̂δ,

M̂
) = 0, (B10)

fR(α− β + 2α,
â
−2τ,r +2γ,

M̂
+2γ,

â
) + fRR(2δ + 2M̂δ,

M̂
+4δ,

â
) = 0, (B11)

fR(α,
R

+γ,
R

M̂−1) + fRR(α− β + M̂α,
M̂

+2γ,
M̂
−2τ,r +2δ,

R
) + 2δ

×fRRR = 0, (B12)

2γ,
R

fR + fRR(M̂α− M̂β + 2γ + 2M̂α,
â
−2M̂τ,r +4γ,

â
+2M̂δ,

R
) + 2M̂

×δfRRR = 0, (B13)

e
â
2 e

b̂
2 M̂{1

2
(f −RfR + ωρ0â

− (1+ω)
2ω +

2fR

M̂
)(α + β + τ,r )− 1

2
α(1 + ω)ρ0

×â−
(1+3ω)

2ω + δM̂(2M̂−1 −R)fRR}+ e
â
2 e−

b̂
2 γ(f −RfR + ωρ0â

− (1+ω)
2ω )

= B,r . (B14)

In f(R, T ) gravity, the over determined system of equations is given as follows

B,
b̂
= 0, τ,

â
= 0, τ,

b̂
= 0, τ,

M̂
= 0, τ,

R
= 0, τ,

T
= 0, (B15)
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e
â
2 (γ,r fR + M̂δ,r fRR + M̂η,r fRT ) = e

b̂
2 B,

â
, (B16)

e
â
2 (α,r M̂ + 2γ,r )fRR = e

b̂
2 B,

R
, (B17)

e
â
2 (α,r M̂ + 2γ,r )fRT = e

b̂
2 B,

T
, (B18)

e
â
2 (α,r fR + γ,r M̂−1fR + 2δ,r fRR + 2η,r fRT ) = e

b̂
2 B,

M̂
, (B19)

γ,
â
fR + M̂δ,

â
fRR + M̂η,

â
fRT = 0, (B20)

γ,
b̂
fR + M̂δ,

b̂
fRR + M̂η,

b̂
fRT = 0, (B21)

α,
b̂
fR + γ,

b̂
M̂−1fR + 2δ,

b̂
fRR + 2η,

b̂
fRT = 0, (B22)

M̂α,
b̂
fRR + 2γ,

b̂
fRR = 0, (B23)

M̂α,
b̂
fRT + 2γ,

b̂
fRT = 0, (B24)

M̂α,
R

fRR + 2γ,
R

fRR = 0, (B25)

M̂α,
T

fRT + 2γ,
T

fRT = 0, (B26)

M̂α,
T

fRR + 2γ,
T

fRR + M̂α,
R

fRT + 2γ,
R

fRT = 0, (B27)

fR(α− β − 2γM̂−1 + 4M̂α,
M̂

+4γ,
M̂
−2τ,r ) + fRR(2δ + 8M̂δ,

M̂
)

+fRT (2η + 8M̂η,
M̂

) = 0, (B28)

fR(α− β + 2α,
â
−2τ,r +2γ,

M̂
+2γ,

â
M̂−1) + fRR(2δ + 2M̂δ,

M̂
+4δ,

â
)

+fRT (2η + 2M̂η,
M̂

+4η,
â
) = 0, (B29)

fR(α,
R

+γ,
R

M̂−1) + fRR(α− β + M̂α,
M̂

+2γ,
M̂
−2τ,r +2δ,

R
) + 2δ

×fRRR + 2ηfRRT + 2η,
R

fRT = 0, (B30)

fR(α,
T

+γ,
T

M̂−1) + fRT (α− β + M̂α,
M̂

+2γ,
M̂
−2τ,r +2η,

T
) + 2δ

×fRRT + 2ηfRTT + 2δ,
T

fRR = 0, (B31)

2γ,
R

fR + fRR(M̂α− M̂β + 2γ + 2M̂α,
â
−2M̂τ,r +4γ,

â
+2M̂δ,

R
)

+2M̂δfRRR + 2M̂ηfRRT + 2M̂η,
R

fRT = 0, (B32)

2γ,
T

fR + fRT (M̂α− M̂β + 2γ + 2M̂α,
â
−2M̂τ,r +4γ,

â
+2M̂δ,

R
)

+2M̂δfRRT + 2M̂ηfRTT + 2M̂δ,
T

fRR = 0, (B33)

e
â
2 e

b̂
2 M̂

[
(f −RfR + fT (3pm − ρm − T ) + 2fRM̂−1 + pm)

(
α + β

2
+ τ,r

)

+ α{fT (3pm,
â
−ρm,

â
) + pm,

â
}+ β{fT (3pm,

b̂
−ρm,

b̂
) + pm,

b̂
}+ γ{fT

× (3pm,
M̂
−ρm,

M̂
) + pm,

M̂
}+ γM̂−1 (f −RfR + fT (3pm − ρm − T ) + pm)

+ δ{fRR(−R + 2M̂−1) + fRT (3pm − ρm − T )}+ η{fRT (−R + 2M̂−1)

+ fTT (3pm − ρm − T )}] = B,r . (B34)
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For perfect fluid and f(R, T ) model (4.2.20), we obtain

1

(−r + h(r))r3âd5

(
−8

√
− r

−r + h(r)
e

â
2 d6â

′r4h(r)µâ′′ + 4e
â
2 d6â

′r3

× h(r)2µâ′′
√
− r

−r + h(r)
− 4

√
− r

−r + h(r)
e

â
2 d6â

′3r4µh(r)− 18e
â
2

× d6â
′2r3µh(r)

√
− r

−r + h(r)
− 2

√
− r

−r + h(r)
e

â
2 d6â

′2r4µh′(r) + 2e
â
2 d6

× â′3r3h(r)2µ

√
− r

−r + h(r)
+ 8

√
− r

−r + h(r)
e

â
2 d6â

′2r2h(r)2µ− 32e
â
2

× d6â
′r4h(r)µ

√
− r

−r + h(r)
+ 16

√
− r

−r + h(r)
e

â
2 d6â

′r3h(r)2µ− 10e
â
2

× d6â
′rh(r)2µ

√
− r

−r + h(r)
+ 18

√
− r

−r + h(r)
e

â
2 d6â

′r2h(r)µ− 10e
â
2

× d6â
′r3h′(r)µ

√
− r

−r + h(r)
+ 8

√
− r

−r + h(r)
e

â
2 d6h(r)µrh′(r) + 4e

â
2

×
√
− r

−r + h(r)
d6µâ′′r4 + r4âd6 − 16

√
− r

−r + h(r)
e

â
2 d6µr2 + 16e

â
2 d6r

4

×
√
− r

−r + h(r)
µ− 16

√
− r

−r + h(r)
e

â
2 d6µh(r)2 − 2

√
− r

−r + h(r)
e

â
2 d6

× â′r5 + 2

√
− r

−r + h(r)
e

â
2 d6r

3h(r)− 2

√
− r

−r + h(r)
e

â
2 d6r

4 + 10e
â
2 d6

× â′r2

√
− r

−r + h(r)
h(r)µh′(r) + 2

√
− r

−r + h(r)
e

â
2 d6â

′2r3h(r)µh′(r)

+ 2

√
− r

−r + h(r)
e

â
2 d6â

′3r5µ + 10

√
− r

−r + h(r)
e

â
2 d6â

′2r4µ + 16e
â
2 d6

× â′r5µ

√
− r

−r + h(r)
− 8

√
− r

−r + h(r)
e

â
2 d6â

′r3µ− 32

√
− r

−r + h(r)

× e
â
2 d6r

3µh(r) + 16

√
− r

−r + h(r)
e

â
2 d6r

2h(r)2µ + 32

√
− r

−r + h(r)
e

â
2 h(r)

× d6µr − 8

√
− r

−r + h(r)
e

â
2 d6r

2h′(r)µ + 2

√
− r

−r + h(r)
e

â
2 d6â

′r4h(r) + 4e
â
2

× d6â
′r5µ

√
− r

−r + h(r)
â′′ − 8

√
− r

−r + h(r)
e

â
2 d6h(r)µâ′′r3 + 4e

â
2 d6µ

×
√
− r

−r + h(r)
â′′r2h(r)2

)
= 0. (B35)
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Abstract This paper investigates the behavior of warm in-

termediate inflation for flat isotropic and homogeneous uni-

verse in Einstein frame representation of f (R) gravity. In

this scenario, we study the dynamics of two distinct regimes,

i.e., strong and weak constant as well as generalized dissi-

pative regimes. In both regimes, we find inflaton solution

corresponding to scalar potential and then evaluate dimen-

sionless slow-roll parameters. Under slow-roll approxima-

tion, we formulate scalar and tensor power spectra, their

spectral indices and tensor-scalar ratio for Starobinsky in-

flationary model and study the graphical analysis of these

observational parameters. It is concluded that isotropic in-

termediate inflationary model with constant as well as gen-

eralized dissipation coefficient for m = 0,1 and −1 remains
compatible with Planck 2015 constraints in both dissipa-

tive regimes. The inflationary model satisfies warm inflation

condition in both dissipation regimes but found to be incon-

sistent for m = 3.

Keywords Slow-roll approximation ·Warm inflation ·
f (R) gravity

1 Introduction

The most revolutionary advancement on the grounds of cos-

mology is the establishment of a cosmological model en-

titled as big-bang model. This standard model successfully

B M. Sharif
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describes some surprising observational facts such as the ex-

istence of cosmic microwave background radiations (CMB),

presence of primordial light elements and also explain cur-

rent cosmic expansion (Gamow 1946; Penzias and Wilson

1965; Perlmutter et al. 1999). However, it suffers from some

serious and long standing theoretical issues like horizon,

flatness, origin of fluctuations and monopole. To get rid of

these problems, the standard model demands an epoch of

rapid acceleration in the early universe named as “inflation”.

This epoch is defined as an era of few Planck lengths that

suffers an instant exponential expansion due to the presence

of some gravitational effects (Lyth and Liddle 2009).

The first idea of an accelerated epoch was given by Guth

(1981) and Sato (1981) who proposed that early stage of

the universe experiences a rapid expansion because of the

existence of false vacuum. They argued that the inflating

universe gets filled with bubbles at the end of inflation.

These bubbles introduced some shortcomings like inflation-

ary epoch corresponds to de Sitter expansion that yields

inhomogeneous universe at the end of inflation. Such seri-

ous shortcomings led to another version of inflation dubbed

as new inflation or chaotic inflation where a scalar field

being a combination of potential and kinetic energies be-

haves like a source of accelerated expansion (Linde 1983).

At the beginning of inflating universe, the potential energy

dominates over kinetic energy due to worthless interactions

between scalar and other fields and inflaton starts moving

very slowly towards the origin of potential (Hawking 1982;

Bardeen et al. 1983). After this evolutionary stage, ki-

netic and potential energies are comparable due to oscilla-

tory motion of inflatons around minimum position of po-

tential energy. Thus, the reheating phase is initiated due

to decay of inflatons into radiation and matter (Kofman

et al. 1994; Khlebnikov and Tkachev 1996; Bassett et al.

2006).
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The most attractive feature for researchers is how to

join the ending of inflationary epoch with present acceler-

ating universe. In order to study the possible joining mech-

anism, Berera (1995, 1997) presented a revolutionary idea

which is different from cold inflation as a separate reheat-

ing phase is avoided at the end of inflation. He proposed

warm inflationary scenario that unifies slow-roll and re-

heating regimes because production of thermal radiations

appeared during inflationary paradigm. The existence of

thermal radiations of density plays a crucial role in the pro-

duction of initial fluctuations which are elementary ingre-

dients of large scale structures. When vacuum energy dis-

sipates into radiation energy, the inflating universe allows

a graceful exit into radiation dominated era (Berera 2000;

Hall et al. 2004). Yokoyama and Linde (1999) investigated

possible behavior of warm inflation scenario and claimed

that it is very difficult to study the existence of warm infla-

tion for realistic models of elementary particles.

During warm inflation, thermal fluctuations and scalar

field interactions lead to its final outcome in the form of

strong dissipation effect which directly corresponds to par-

ticle production. This dissipation effect appears as a lin-

ear friction term whose characteristics are determined by

dissipation coefficient. Berera and Ramos (2001) explored

warm inflationary dynamics and low temperature regimes

for a particular form of dissipation coefficient correspond-

ing to supersymmetric models. In order to discuss decay

as well as scattering rates, Bastero-Gil et al. (2011, 2013)

studied warm inflation paradigm in quantum field theory.

In warm inflation, dissipation effect characterizes two im-

portant regimes, i.e., weak (Γ ≪ H,Γ represents dissipa-

tion coefficient) and strong (Γ ≫ H) dissipative regimes.

In non-warm inflation, the primordial density perturbation

spectrum is established on the basis of quantum fluctuations.

In weak dissipative regime, these perturbations are deter-

mined by thermal fluctuations whereas in strong dissipative

regime, the decay rate increases.

To classify various inflationary universe models, the scale

factor plays a vital role as its evolution corresponding to

cosmic time determines some interesting exact solutions.

When a scale factor possesses a de Sitter expansion (expo-

nential expansion), it leads to the inflationary model which

describes old inflation but when scale factor follows quasi-

de Sitter expansion, it corresponds to new or chaotic infla-

tion (Linde 1986). An intermediate inflationary model is ob-

tained for a scale factor whose expansion growth is faster

than power-law but slower than de Sitter expansion (Bar-

row 1990; Barrow and Saich 1990). Herrera et al. (2013)

analyzed the behavior of isotropic warm inflation for inter-

mediate as well as logamediate inflationary models in both

strong and weak dissipative regimes via general dissipative

coefficient. Setare and Kamali (2013) studied warm vector

isotropic inflation in intermediate as well as logamediate in-

flationary epochs. They discussed strong dissipative regime

for constant as well as variable dissipative coefficient and

found compatible results for WMAP7. Sharif and Saleem

(2014) found that locally rotationally symmetric Bianchi I

universe model yields consistent results in the context of

warm vector inflation. Sharif and Saleem (2015, 2016) ex-

amined warm anisotropic intermediate and logamediate in-

flation in strong as well as weak dissipative regimes via gen-

eral dissipative coefficient.

Recent observational evidences indicate that the uni-

verse is again experiencing an accelerated expansion whose

source is named as “dark energy” (DE). This cosmic ac-

celerated expansion motivates researchers to establish ex-

tended gravitational theories. Many modified theories of

gravity have been proposed to explain current cosmic ex-

pansion like f (R), f (G), f (R,G) etc. It is a well-known

fact that ghosts can occur in higher derivative theories of

gravity but they are not problematic in f (R) theory as

the Ostrogradski instability does not apply to this grav-

ity (Barth and Christensen 1983; Calcagni et al. 2005;

Chiba 2005). Unlike the case of f (R) gravity which pre-

serves Einstein–Hilbert action through conformal transfor-

mation, the f (G) or f (R,G) theories are not conformally

related to general relativity with a scalar field. This confor-

mal correspondence provides a motivation to choose f (R)

gravity to study early expansion through inflationary epoch

and also investigates the apparent late-time accelerating ex-

pansion of the universe.

Bamba et al. (2014) investigated observational parame-

ters of non-warm inflationary models through reconstruction

method in this gravity. They studied different f (R) models

and concluded that power-law model gives the best fit values

compatible with BICEP2 and Planck observations. We have

analyzed the behavior of chaotic inflationary paradigm for

isotropic and homogeneous flat universe model in the frame-

work of Jordan frame of f (R) gravity (Sharif and Nawazish

2016). Sharif and Ikram (2016) studied dynamics of warm

intermediate and logamediate inflation for flat FRW universe

model in Jordan frame of f (G) gravity.

Many theoretical efforts have been made to discuss cou-

pling of gravity with other interactions that demand exis-

tence of scalar fields in Jordan frame. Some researchers

argued that scalar-tensor gravity is unreliable in Jordan

frame as it gives rise to the problem of negative kinetic

energy (Teyssandier and Tourrenc 1983; Sokolowski 1989;

Santiago and Silbergleit 2000). In f (R) gravity, this issue is

resolved by introducing a conformal transformation that re-

lates Einstein–Hilbert action and f (R) action, consequently

Jordan frame is shifted to Einstein frame under that confor-

mal factor (Allemandi et al. 2006; Capozziello et al. 2006).

Inflationary scenario has become a debatable issue in Jor-

dan as well as Einstein frames. de Felice and Tusjikawa

(2010) studied inflationary dynamics of Starobinsky infla-

tionary model for both frames in f (R) gravity. Artymowski
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and Lalak (2014) investigated modified Starobinsky infla-

tionary model in both Einstein and Jordan frames and ob-

tained compatible results for Planck and BICEP2 observa-

tions.

In this paper, we study warm intermediate inflation via

Einstein frame representation of f (R) gravity for isotropic

and homogeneous universe. The format of this paper is as

follows. Section 2 describes some basic features of f (R)

gravity in Jordan and Einstein frames. In Sect. 3, we exam-

ine strong and weak dissipation regimes for constant as well

as generalized dissipation coefficient with Starobinsky infla-

tionary model and discuss their effects graphically. Finally,

we conclude our results in the last section.

2 Dynamics of f (R) gravity

In this section, we discuss basic formalism of f (R) grav-

ity both in Jordan as well as Einstein frames which lead to

investigate warm inflationary dynamics.

2.1 Representation of Jordan frame

In Jordan frame, there is a direct interaction between geo-

metrical and matter parts in the action of f (R) gravity given

by Nojiri and Odintsov (2011)

I =
1

2κ2

∫

d4x
√

−gf (R) +Lm(gµν,ψ), (1)

where Lm represents matter Lagrangian. Varying the above

action corresponding to gµν , we obtain non-linear fourth or-

der partial differential equation as

fRRµν −
1

2
fgµν − ∇µ∇νfR + gµν¤fR = κ2Tµν, (2)

where fR = df (R)
dR

, ∇µ describes covariant derivative and

¤ = ∇µ∇µ. Equation (2) can be written in the form

Gµν =
κ2

fR

(

Tµν + T eff
µν

)

,

where the effective energy-momentum tensor is

T eff
µν =

1

κ2

(

gµν(f − RfR)

2
+ ∇µ∇νfR −¤fRgµν

)

.

We consider flat FRW metric as

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (3)

where a is the scale factor. The corresponding field equa-

tions (2) for perfect fluid lead to

f − RfR

2
+ 3H 2fR + 3HḟR = κ2ρ, (4)

f̈R + 2ḢfR − HḟR = −κ2(ρ + p), (5)

where ρ and p represent energy density and pressure of per-

fect fluid, respectively and dot denotes time derivative. In

order to evaluate an expression for a and H , we consider a

standard model given by Starobinsky (1980)

f (R) = R +
R2

6M2
, (6)

where M is a positive constant which has dimension of

mass. The first and second derivatives of this model corre-

sponding to R are positive which ensure its viability. Insert-

ing Eq. (6) into (4) and (5), we obtain

a = ai exp

[

Hi(t − ti) −
M2(t − ti)

2

12

]

,

H = Hi −
M2(t − ti)

6
,

(7)

where ti denotes initial cosmic time whereas ai and Hi rep-

resent scale factor and Hubble parameter at t = ti , respec-

tively. The f (R) gravity can be modified into scalar-tensor

theory by taking into account interactions of the scalar field

in Jordan frame but it is strongly claimed that this frame

is physically not suitable to discuss such interactions due

to existence of negative kinetic energy (Sokolowski 1989).

To get rid of such negative kinetic energy, the fourth or-

der field equations are transformed conformally from Jor-

dan to Einstein frame which contains an additional scalar

degree of freedom with positive kinetic term (Magnano and

Sokolowski 1994).

2.2 Representation of Einstein frame

In the Einstein frame, the f (R) gravity indicates existence

of extra scalar degree of freedom which drives early as well

as late-time cosmic acceleration. A conformal transforma-

tion over a metric structure allows to scale time, length and

mass whereas angles remain unchanged. The action of f (R)

gravity can also be written as

I =
1

2κ2

∫

d4x
√

−g
(

fRR − V (φ)
)

+Lm(gµν,ψ), (8)

where V (φ) = fRR − f . For a conformal factor g̃µν =
ϕ2gµν = fRgµν , this action takes the form

IE =
∫

d4x
√

−g̃

(

R̃

2κ2
−
1

2
g̃µν∂µφ∂νφ − U(φ)

+Lm

(

f −1
R (φ)g̃µν,ψ

)

)

. (9)

Here, U(φ) = V (φ)

f 2R
, the considered conformal factor be-

comes field dependent as ϕ2 = fR = exp[
√

2
3
κφ] and the
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gravitational term of action (1) takes the form of Einstein–

Hilbert action along with a non-minimal coupling between

matter Lagrangian density and scalar field. In this frame, the

flat FRW model becomes

ds̃2 = −dt̃ 2 + ã2(t̃)
(

dx2 + dy2 + dz2
)

, (10)

where

ds̃ =
√

fRds, dt̃ =
√

fRdt, ã =
√

fRa. (11)

The energy-momentum tensor corresponding to matter

and scalar parts are defined as

T̃ (m)
µν = −

2
√

−g̃

∂Lm

∂g̃µν
, T̃ (φ)

µν = −
2

√

−g̃

∂(∂
√

−g̃Lφ)

∂g̃µν
.

(12)

where Lφ represents Lagrangian density of a scalar field

given by

Lφ = −
1

2
g̃µν∂µφ∂νφ − U(φ).

For the action (9), the field equations and continuity equa-

tion turn out to be

3H̃ 2

κ2
= ρ̃m, 3H̃ 2 + 2

dH̃

dt̃
= −κ2p̃m, (13)

dρ̃m

dt̃
+ 3H̃ (t̃)(ρ̃m + p̃m) = 0. (14)

The energy density and pressure are represented by ρ̃m =
ρ

f 2R
and p̃m = p

f 2R
whereas H̃ denotes Hubble parameter in

Einstein frame. In order to formulate expressions of t̃ , ã and

H̃ for standard model (6), we integrate Eq. (11) yielding

t̃ =
2

M

[

Hi(t − ti) −
M2(t − ti)

2

12

]

,

ã(t̃) =
2Hiai

M

[

1−
M3 t̃

12H 2
i

]

e
Mt̃
2 ,

H̃ (t̃) =
M

2

[

1−
M2

6H 2
i

(

1−
M3 t̃

12H 2
i

)−2]

.

(15)

The conformal transformation allows a smooth transition

between these two frames as it only redefines the scales

of fundamental quantities that retain physical predictions in

both frames (Faraoni and Nadeau 2007). The main differ-

ence in both frames is that the Jordan frame defines f (R)

gravity on the basis of metric tensor whereas Einstein frame

describes the theory with the help of metric tensor along

with scalar field interacting with matter sector.

3 Dynamics of warm inflation in Einstein frame

In this section, we explore the behavior of warm inflation

in Einstein frame of f (R) gravity. An interaction of scalar

and radiation fields is considered to be the most basic ele-

ment of the universe that realize warm inflationary paradigm

for a minimally coupled scalar field subject to potential

U(φ). The energy density (ρ̃φ) and pressure (p̃φ) of self-

interacting scalar field are

ρ̃φ =
φ̇2

2fR

+ U(φ), p̃φ =
φ̇2

2fR

− U(φ). (16)

During warm inflation, the total energy density of the uni-

verse not only consists of ρ̃φ but also comprises radiation

density ρ̃r . For such inflationary scenario, Eqs. (13) and (14)

yield

3H̃ 2

κ2
= ρ̃φ + ρ̃r , 3H̃ 2 + 2

dH̃

dt̃
= −κ2(p̃φ + p̃r), (17)

dρ̃r

dt̃
+ 4H̃ ρ̃r − Γ

(

dφ

dt̃

)2

= 0, (18)

dρ̃φ

dt̃
+ 3H̃ (ρ̃φ + p̃φ) + Γ

(

dφ

dt̃

)2

= 0. (19)

In Eq. (18), the last term behaves like a source of radiations

whereas the second term responds as a sink term which dis-

sipates these radiations continuously. During inflation, the

Hubble parameter, dissipation factor and inflaton field vary

very slowly which imply that the radiation density must at-

tain a non-zero steady state point. Therefore, the radiation

production becomes independent of initial conditions and

gets quasi-stable which leads to the following conditions

dρ̃r

dt̃
≪ 4H̃ ρ̃r ,

dρ̃r

dt̃
≪ Γ

(

dφ

dt̃

)2

. (20)

Using the above conditions in Eq. (17), we obtain

ρ̃r =
3

4
r̃

(

dφ

dt̃

)2

= χrT
4, r̃ =

Γ

3H̃
. (21)

Here, r̃ describes the rate of dissipation factor relative to

expansion of the universe via Hubble parameter and χr =
π2g∗
30

, g∗ represents number of relative degrees of freedom
and T denotes temperature of thermal bath.

In warm inflation, thermal fluctuations of inflaton field

are considerable as T > H̃ and ρ̃r dissipates into ρ̃φ , i.e.,

ρ̃φ ≫ ρ̃r . Under this condition, Eq. (18) leads to

(

dφ

dt̃

)2

= −
[

2

κ2(1+ r̃)

]

dH̃

dt̃
. (22)
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The thermal bath temperature is evaluated by using Eq. (22)

into (21) as

T =
[

−
3f 2R r̃dH̃ /dt̃

2κ2χr (1+ r̃)

]
1
4

. (23)

Inserting Eqs. (21) and (22) in (17), we obtain potential cor-

responding to inflaton field as

U(φ) =
3H̃ 2

κ2
+

dH̃/dt̃

κ2(1+ r̃)

[

1+
3r̃

2

]

. (24)

For warm inflation, the variance of inflaton field is described

by thermal fluctuations whereas in case of non-warm in-

flationary scenario, this variation is presented by quantum

fluctuation. Inflationary paradigm characterizes these fluctu-

ations into scalar and tensor perturbations that leave a strong

impact over the CMB anisotropy as well as on the large

scales. To evaluate the variance and characteristics of these

fluctuations, some important parameters like scalar power

spectrum (12R), tensor power spectrum (12T ) and tensor-

scalar ratio (R) have been introduced (Linde 1990). For

FRW universe model in Einstein frame representation, these

parameters under slow-roll approximation (H = H̃
√

fR)

take the following form

12
R

= −
H̃ 2κ2(1+ r̃)T

dH̃/dt̃

[

Γ H̃f
1
2

R

(4π)3

]
1
2

,

ns = 1−
d

dÑ

(

ln12
R

)

,

(25)

12T = 8κ2
[

H̃f
1
2

R

2π

]2

, nT = −2ǫ,

〈δφ〉thermal =
[

Γ H̃T 2f
1
2

R

(4π)3

]
1
4

,

(26)

R=
12T

12
R

= −
4fRdH̃/dt̃

π2(1+ r̃)H̃
1
2 T

[

(4π)3

Γf
1
2

R

]
1
2

. (27)

Recent observations of Planck 2015 (Ade et al. 2016) con-

strain spectral index and tensor-scalar ratio as ns = 0.9603±
0.0062 (68 %CL) and R< 0.10 (95 %CL), respectively.

3.1 Warm intermediate inflation for Γ = Γi = Constant

Here, we analyze warm inflation in strong (r̃ ≫ 1) as well as

weak dissipative regimes (r̃ ≪ 1) corresponding to a scale

factor that represents expansion of the universe less than de

Sitter but greater than power-law expansion. In this case, the

scale factor takes the form (Muslimov 1990)

a(t) = ai exp
[

γ tg
]

, γ > 0, 0< g < 1. (28)

In Einstein frame, the intermediate scale factor and corre-

sponding Hubble parameter turn out to be

ã(t̃ ) = ãi

[

1−
M3 t̃

12H 2
i

]

exp

[

γ

(

t̃M

2Hi

)g]

, ãi =
2aiHi

M
,

(29)

H̃ (t̃) =
1

ã

dã

dt̃
= γg

[

t̃M

2Hi

]g−1
. (30)

In order to measure the extent of inflation, we have

Ñ =
∫ t̃

t̃i

H̃ (t̃)dt̃ = γ

[

M

2Hi

]g
(

t̃g − t̃
g
i

)

, (31)

where t̃i represents cosmic time at the beginning of infla-

tion in Einstein frame. The approximate extent of inflation

is found to be 70 but fluctuation spectrum of CMB reveals

that this limit of e-folds should be less than 70.

In strong dissipative regime, Eqs. (22) and (24) yield the

inflaton field and corresponding potential in the following

form

φ = φ0 + α1 t̃
2g−1
2 ,

U(φ) =
3

κ2

[

γg

(

M

2Hi

)g(
φ − φ0

α1

)

2(g−1)
2g−1

]2

,

(32)

where φ0 is an integration constant and α1 is

α1 =

√

24(γg)2(1− g)

κ2Γi(2g − 1)2

(

M

2Hi

)2

. (33)

In order to discuss inflationary paradigm during slow-roll

dynamics, an approximation is considered when interactions

between inflaton and radiation or matter become meaning-

less and even potential energy dominates kinetic energy dur-

ing slowly varying inflaton field (Kolb and Turner 1994).

The dimensionless slow-roll parameters are introduced as

(Hwang and Noh 2002)

ǫ = −
1

H̃ 2

dH̃

dt̃
, η = −

[

H̃
dH̃

dt̃

]−1
d2H̃

dt̃2
, (34)

where dH̃/dt̃ must be negative. When ǫ takes the value of

unity, the inflating universe vanishes which implies that ǫ

and so η must be very small but positive for the existence of

inflationary epoch. Using Eqs. (30) and (32), these parame-

ters become

ǫ =
1− g

γg

(

2Hi

M

)g[
φ − φ0

α1

]

2g
1−2g

,

η =
2− g

γg

(

2Hi

M

)g[
φ − φ0

α1

]

2g
1−2g

.

(35)
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Fig. 1 ns versus Ñ (left) and R versus ns (right) for g = 0.71 (red), 0.8 (green), 0.89 (blue), γ = 1, Γi ∝ χ
1
6
r , χr = 70

For inflaton field (32), the radiation density and e-folds take

the form

ρ̃r =
3γg

2κ2
(1− g)

(

M

2Hi

)g(
φ − φ0

α1

)

2(g−2)
2g−1

, (36)

Ñ = γ

(

M

2Hi

)g[(

φ − φ0

α1

)

2g
2g−1

−
(

φi − φ0

α1

)

2g
2g−1

]

, (37)

where φi denotes inflaton field at t̃ = t̃i . To evaluate an ex-

pression for this earliest inflaton field, we take ǫ = 1 at the
beginning of inflationary epoch which yields

φi = φ0 + α1

[(

1− g

γg

)(

M

2Hi

)g]
2g−1
2g

. (38)

Combining Eqs. (37) and (38), we obtain inflaton in terms

of e-folds as

φ = φ0 + α1

(

2Hi

M

)

2g−1
2

[

Ñ

γ
+
1− g

γg

]

2g−1
2g

. (39)

The perturbation parameters like scalar and tensor power

spectra along with their indices as a function of e-folds turn

out to be

1R =

√

√

√

√

Γ 3
i 3

1
2 κ4

36(4π)3(2κ2χr)
1
2

×
[(

γg

1− g

)(

2Hi

M

)2(
Ñ

γ
+
1− g

γg

)]
1
4

, (40)

ns = 1+
3

4γ

[

Ñ

γ
+
1− g

γg

]−1
, (41)

1T =
2κ2γ 2g2

π2

(

Ñ

γ
+
1− g

γg

)

2g−1
g

,

nT = 2
(

g − 1
γg

)(

Ñ

γ
+
1− g

γg

)−1
.

(42)

The ratio of tensor and scalar power spectra yields

R=
[

(γg)
5
2 (1− g)

3
2

(

144(4π)3(2κ2χr )
1
2

π4Γ 3
i 3

1
2

)]
1
2

×
(

M

2Hi

)
1
2
(

Ñ

γ
+
1− g

γg

)

5g−8
4g

. (43)

The decay rate of inflaton field is given by

r̃ =
Γi

3γg

(

2Hi

M

)[

3

4γ (1− ns)

]

1−g
g

. (44)

In the background of thermal bath radiations, Hubble pa-

rameter takes the form

H̃ =
[(

2κ2χr

3

)(

2Hi

M

)

3g−2
1−g

(γg)
1
1−g (1− g)−1T 4

]

1−g
2−g

.

(45)

Fig. 1(left plot) shows the variation of e-folds which are

found to be smaller than its standard value, i.e., Ñ = 19 at
g = 0.71, 0.8 and g = 0.89. The right panel of Fig. 1 indi-
cates that R < 0.10 at ns = 0.9603 which implies compati-
bility of R in strong dissipation regime. In order to investi-

gate dominant characteristics of warm inflation, we plot H̃

versus T in left panel of Fig. 2 which yields T ≫ H̃ . The

right panel of Fig. 2 implies that r̃ ≫ 1 which assures the

presence of inflaton particles in strong dissipative regime.
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Fig. 2 Log(H̃ ) versus T (left) for g = 0.89 (blue) and Log(r̃) versus ns (right) for g = 0.7 (red), 0.8 (green), 0.89 (blue), γ = 1, Γi ∝ χ
1
6
r ,

χr = 70

In case of weak dissipative regime (r̃ ≪ 1), the inflaton

field reduces to

φ = φ0 + α2 t̃
g
2 ,

U(φ) =
3

κ2

[

γg

(

M

2Hi

)g(
φ − φ0

α2

)

(g−1)
2g

]2

,

(46)

where

α2 =

√

8γ (1− g)

κ2g

(

M

2Hi

)g

.

For slowly varying inflaton field, the slow-roll parameters

and radiation energy density corresponding to φ take the

form

ǫ =
1− g

γg

(

2Hi

M

)g[
φ − φ0

α2

]−2
,

η =
2− g

γg

(

2Hi

M

)g[
φ − φ0

α2

]−2
,

ρ̃r =
Γi(1− g)

2κ2

(

φ − φ0

α2

)− 2
g

.

At the earliest stage of inflationary epoch, the inflaton field

at t̃ = t̃i becomes

φi = φ0 + α2

(

1− g

γg

)(

2Hi

M

)g

.

The corresponding number of e-folds and inflaton field

are given by

Ñ = γ

(

M

2Hi

)g[(

φ − φ0

α2

)2

−
(

φi − φ0

α2

)2]

, (47)

φ = φ0 + α2

(

2Hi

M

)

g
2
[

Ñ

γ
+
1− g

γg

]
1
2

. (48)

The corresponding observational parameters like scalar and

tensor power spectra as well as their spectral indices become

1R =
κ2

2

(

Γi

2κ2χr

)
1
4

(γg)2(1− g)−
3
4

(

2Hi

M

)− 1
4

×
[

Ñ

γ
+
1− g

γg

]

8g−5
4g

, (49)

ns = 1−
1

γg

(

8g − 5
4g

)[

Ñ

γ
+
1− g

γg

]−1
, (50)

1T =
2κ2γ 2g2

π2

(

Ñ

γ
+
1− g

γg

)

2(g−1)
g

,

nT = 2
(

g − 1
γg

)(

Ñ

γ
+
1− g

γg

)−1
.

(51)

The tensor-scalar ratio is

R=
4

π2

[(

Γi

2κ2χr

)−1(
2Hi

M

)

(1− g)3
]
1
4
(

Ñ

γ
+
1− g

γg

)
−3
4g

.

(52)

For weak dissipation regime, the decay rate and Hubble pa-

rameter in terms of thermal bath temperature turn out to be

r̃ =
Γi

3γg

(

2Hi

M

)[

8g − 5
4γg(1− ns)

]

1−g
g

, (53)

H̃ =
[(

2κ2χr

Γi(1− g)

)
1
4
(

M

2Hi

)

3−4g
4(1−g)

(γg)
1

4(1−g) T

]4(1−g)

.

(54)

Fig. 3(left plot) represents the graphical behavior of ns

against Ñ in weak dissipative regime which are found in

enough abundance to discuss inflationary epoch whereas
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Fig. 3 ns versus Ñ (left) for g = 0.7 (red), 0.999 (magenta) andR versus ns (right) for g = 0.7 (green), 0.8 (magenta), 0.9 (red), γ = 1, Γi ∝ χ
1
6
r ,

χr = 70

Fig. 4 Log(H̃ ) versus T (left) for g = 0.9 (green) and Log(r̃) versus ns (right) for g = 0.7 (red), 0.8 (green), 0.9 (magenta), γ = 1, Γi ∝ χ
1
6
r ,

χr = 70

the right plot indicates compatible R for the proposed val-

ues of g. Figure 4 shows that T ≫ H̃ (left panel) and

r̃ ≪ 1 (right panel) for 0.7≤ g ≤ 0.9 which assures the ex-
istence of warm intermediate inflation in weak dissipative

regime.

3.2 Warm intermediate inflation for generalized

dissipative coefficient

In warm inflationary scenario, the dissipative coefficient

plays a dynamical role as it represents a physical process of

dissipation regarding to inflaton field and thermal bath. This

coefficient may be a function of inflaton field, or thermal

bath, or both. The most general form of dissipation factor is

given by Zhang (2009)

Γ = Γi

T m

φm−1 ,

where Γi denotes a constant that describes microscopic dy-

namics of dissipation process and m represents an inte-

ger. For different values of m, dissipation coefficient cor-

responds to different physical processes, i.e., when m = 0,
the dissipation coefficient describes an exponential de-

cay propagator in high temperature supersymmetry case.

For m = 1, it becomes proportional to thermal bath tem-

perature while m = −1 deals with non-supersymmetry
case (Berera et al. 2009; Herrera et al. 2014). In the

present work, we study the behavior of generalized dis-

sipation coefficient in strong as well as weak dissipation

regimes.

In strong dissipative regime, the inflaton field and corre-

sponding potential take the form

φ = α3 t̃
4(2g−1)+m(2−g)

4(3−m) ,

U(φ) =
3

κ2
(γg)2

(

M

2Hi

)2g(
φ

α3

)

8(3−m)(g−1)
4(2g−1)+m(2−g)

,

(55)

where
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α3 =
{(

3− m

2

)(

6

κ2

)
1
2

×
[

(γg)8−m(1− g)4−m

(

2Hi

M

)g(m−8)−4m]
1
8

×
(

8

4(2g − 1) + m(2− g)

)}
2

3−m

.

Under the influence of inflaton field (55), the corresponding

radiation density, Hubble and slow-roll parameters turn out

to be

ρ̃r =
3

2κ2
γg(1− g)

(

M

2Hi

)g(
φ

α3

)

4(3−m)(g−2)
4(2g−1)+m(2−g)

,

H̃ (t̃) = γg

(

M

2Hi

)g(
φ

α3

)

4(3−m)(g−1)
4(2g−1)+m(2−g)

,

ǫ =
(1− g)

γg

(

2Hi

M

)g(
φ

α3

)

−4(3−m)g
4(2g−1)+m(2−g)

,

η =
(

2− g

γg

)(

2Hi

M

)g(
φ

α3

)

−4(3−m)g
4(2g−1)+m(2−g)

.

(56)

At the beginning of inflation (ǫ = 1), the initial value of in-
flaton field leads to express φ in the following form

φ = α3

{(

2Hi

M

)g(
Ñ

γ
+
1− g

γg

)}

4(2g−1)+m(2−g)
4(3−m)g

. (57)

The corresponding scalar power spectrum and spectral

index are

12R =
κ2

6

[(

3

2κ2χr

)
3m+2
4

(

Γi

4π

)3

(γg)
3
4 (m+2)

×
(

2Hi

M

)
3
2+

3
4 {

(1−m)(4(2g−1)−g(m+2))
(3−m)g

}
α
3(1−m)
3

]
1
2

×
(

Ñ

γ
+
1− g

γg

)β0

,

ns = 1−
3β0

8γ

(

Ñ

γ
+
1− g

γg

)−1
,

(58)

where

β0 = 3

8

[

(3− m){g(m + 2) − 2m} + (1− m){4(2g − 1) + m(2− g)}
(3− m)g

]

.

Similarly, tensor power spectrum and its spectral index be-

come

12T =
2κ2

π2
(γg)2

(

Ñ

γ
+
1− g

γg

)
2
g
(g−1)

,

nT =
2(g − 1)

γg

(

Ñ

γ
+
1− g

γg

)−1
.

The above observational parameters generate tensor-scalar

ratio as

R=
[

144

π4

(

2κ2χr

3

)
3m+2
4

(

4π

Γi

)3

(γg)
22−3m
4

×
(

2Hi

M

)− 3
2−

3
4 {

(1−m)(4(2g−1)−g(m+2))
(3−m)g

}
α
3(m−1)
3

]
1
2

×
((

8γ (1− ns)(3− m)g
)/(

3
[

(3− m)
{

g(m + 2)

− 2m
}

+ (1− m)
{

4(2g − 1) + m(2− g)
}]))β0− 2(g−1)

g .

(59)

The Hubble parameter in terms of thermal radiations and

decay rate of inflaton field take the form

H̃ =
[(

2κ2χr

3

)

(1− g)−1(γg)
1
1−g

(

2Hi

M

)

5−4g
g−1

T 4
]

1−g
2−g

(60)

r̃ = αmα1−m
3 (3γg)

m−4
4 (1− g)

m
4

×
(

2Hi

M

)m+1− m
2 + 1−m

4(3−m)
{4(2g−1)+m(2−g)}

×
(

8γ (1− ns )(3− m)g

3[(3−m){g(m + 2)−2m} + (1−m){4(2g−1) + m(2−g)}]

)ζ

,

(61)

where

ζ = −
1

g
(1− g) +

m

4g
(2− g)

+
(m − 1)
4g(3− m)

{

4(2g − 1) + m(2− g)
}

.

The graphical behavior of ns versus number of e-folds

is shown in left plot of Figs. 5, 6 and 7 for m = 0, 1 and

m = −1, respectively. The right plot of Fig. 5, 6 and 7 indi-
cate thatR is constrained at observational value of ns which

leads to the consistent behavior of inflationary model for dif-

ferent values of model parameter g. Figures 8 and 9 rep-

resent graphical analysis of inflaton particles which satisfy

the condition of warm inflation, i.e, T ≫ H̃ in strong dis-

sipative regime for m = 0,−1. Figure 10 shows that r̃ ≫ 1

which implies that inflaton particles lies in strong dissipative

regime while Fig. 11 supports the existence of warm infla-

tion for m = 1.
In weak dissipative regime, the constant as well as pro-

posed generalized dissipative coefficient leave the same ef-

fect over inflaton field, number of e-folds and slow-roll pa-

rameters whereas radiation density becomes
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Fig. 5 ns versus Ñ (left) and R versus ns (right) for g = 0.75 (red), 0.85 (green), 0.95 (blue), γ = 10−15, Γi ∝ χ
1
6
r , χr = 70, m = 0

Fig. 6 ns versus Ñ (left) and R versus ns (right) for g = 0.75 (red), 0.85 (green), 0.95 (blue), γ = 10−18, Γi ∝ χ
1
6
r , χr = 70, m = 1

Fig. 7 ns versus Ñ (left) and R versus ns (right) for g = 0.75 (red), 0.85 (green), 0.95 (blue), γ = 10−18, Γi ∝ χ
1
6
r , χr = 70, m = −1

ρ̃r =
1

2κ2

(

Γi

(2κ2χr)
m
4

)
4

4−m
(

2Hi

M

)

2m−4g
4−m

×
(

γg(1− g)
)

4
4−m α

2(2−g)
g

2 φ
2(g−2)

g
+ 4(1−m)

4−m .

The scalar and tensor power spectra along with correspond-

ing spectral indices and tensor-scalar ratio are given by

1R =
κ2

2

[

Γiα
1−m
2

2κ2χr

(γg)2(4−m)(1− g)m−3
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Fig. 8 Log(H̃ ) versus T (left) for g = 0.95 (magenta) and Log(r̃) versus ns (right) for g = 0.75 (red), 0.85 (green), 0.95 (blue), γ = 10−15,
Γi ∝ χ

1
6
r , χr = 70, m = 0

Fig. 9 Log(H̃ ) versus T (left) for g = 0.95 (magenta) and Log(r̃) versus ns (right) for g = 0.75 (red), 0.85 (green), 0.95 (green), γ = 10−18,
Γi ∝ χ

1
6
r , χr = 70, m = −1

×
(

2Hi

M

)

(m−1)(2−g)
2 +2(4−m)(g−1)

×
(

Ñ

γ
+
1− g

γg

)

2g(4−m)+m−5
g

+ 1−m
2

]
1

4−m

, (62)

ns = 1−
(

2m − 10+ g(17− 5m)

2(4− m)(1+ g(Ñ − 1))

)

, (63)

1T =
2κ2γ 2g2

π2

(

2m − 10+ g(17− 5m)

γ (g + 2)(4− m)

)

2(g−1)
g

× (1− ns)
2(1−g)

g , (64)

nT = 2
(

g − 1
γg

)(

2m − 10+ g(17− 5m)

γ (g + 2)(4− m)

)−1
(1− ns),

(65)

R=
4

π2

[

Γiα
1−m
2 (1− g)m−3

2κ2χr

×
(

2Hi

M

)(m−1)(1− g
2 ){

(1− ns)
−1

×
(

2m − 10+ g(17− 5m)

γ (g + 2)(4− m)

)}
3−m

g
+ 1−m

2
]

1
m−4

. (66)

The Hubble parameter in the background of thermal radia-

tions and dissipation rate of inflaton field take the form

H̃ =
[

Γiα
m−1
2 (1− g)−1

(2κ2χr )m−2 (γg)
g(1−m)−2
2(g−1)

×
(

2Hi

M

)

g(1−m)−2
2(1−g)

+(m−1)g−3
T 4−m

]

2(g−1)
g(1−m)−2

(67)

r̃ =
1

3

(

Γi

(2κ2χr )
m
4

)

α
4(1−m)
4−m

2 (1− g)
m
4−m (γg)−1

×
(

2Hi

M

)

4+6m+2g(1−m)
4−m

[(

2m − 10+ g(17− 5m)

γ (g + 2)(4− m)

)
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Fig. 10 Log(r̃) versus ns for g = 0.75 (red), 0.95 (blue) (left) and 0.85 (green) (right), γ = 10−18, Γi ∝ χ
1
6
r , χr = 70, m = 1

Fig. 11 Log(H̃ ) versus T for g = 0.95 (magenta), γ = 10−18,

Γi ∝ χ
1
6
r , χr = 70, m = 1

× (1− ns)
−1

]

4(1−g)g+m(g−2)+2g(1−m)
g(4−m)

. (68)

The graphical behavior of ns against number of e-folds and

variation of R versus ns for generalized dissipative coef-

ficient is given in Figs. 12, 13 and 14 for m = 0, 1 and

m = −1, respectively. Figures 15, 16 and 17 assure the con-
dition of warm inflation in weak dissipative regime for dif-

ferent values of model parameter g.

4 Concluding remarks

In this paper, we have investigated the dynamics of warm

inflation for flat FRW universe model in Einstein represen-

tation of f (R) gravity. In warm inflation, a separate reheat-

ing phase is avoided and interactions between inflaton and

other fields such as matter or radiations are taken into ac-

count. These interactions give rise to friction term in equa-

tion of motion of inflaton which provides dissipation effects

in strong and weak dissipative regimes. We have analyzed

warm intermediate inflationary model in strong and weak

regimes for both constant and generalized dissipative coef-

ficients. To avoid negative kinetic energy of inflaton field,

we have studied inflationary paradigm for Starobinsky infla-

tionary model in Einstein frame.

We have explored solutions of inflaton field and cor-

responding potentials and also formulated dimensionless

slow-roll parameters in terms of inflaton field. In warm in-

flation, density perturbations appear due to thermal fluctua-

tions instead of quantum fluctuations and the characteristics

of these fluctuations are described by observational param-

eters such as scalar and tensor power spectra, their corre-

sponding spectral indices and tensor-scalar ratio. We have

calculated these parameters under slow-roll approximation

and studied their graphical analysis for different values of in-

termediate model parameter g. The results are summarized

as follows.

• For strong constant dissipative regime, the number of e-
folds remain less than 20 for 0.71 ≤ g ≤ 0.89 while the
corresponding graphical behavior ofR−ns leads to com-

patible range of R, i.e., R < 0.10. At g = 0.89, the tem-
perature of thermal bath radiations is found to be greater

than Hubble parameter which leads to the existence of

warm inflation and r̃ ≫ 1 indicates that inflaton particles

lie in strong dissipative regime.

• For weak constant dissipative regime, viable e-folds are
obtained only when 0.626 ≤ g ≤ 0.999 whereas the cor-
responding tensor-scalar ratio is found to be compatible at

the constrained value of scalar spectral index in this inter-

val of g. For g = 0.9, we have found T ≫ H̃ and r̃ ≪ 1

which verify the presence of warm inflation in weak dis-

sipative regime and inflationary model is found to be con-

sistent with observational data.

• For generalized dissipative coefficient in strong dissipa-
tive regime, the inflationary model yields consistent re-

sults with Planck constraints for m = 0,1,−1 with 0.5<

g < 1, 0.67 < g < 1, 0.88 < g < 1, respectively. In case
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Fig. 12 ns versus Ñ (left) and R versus ns (right) for g = 0.79 (red), 0.8 (magenta), 0.99 (green), γ = 1, Γi ∝ χ
1
6
r , χr = 70, m = 0

Fig. 13 ns versus Ñ (left) and R versus ns (right) for g = 0.85 (red), 0.9 (green), 0.95 (blue), γ = 1, Γi ∝ χ
1
6
r , χr = 70, m = 1

Fig. 14 ns versus Ñ (left) and R versus ns (right) for g = 0.7 (red), 0.8 (green), 0.9 (blue), γ = 1, Γi ∝ χ
1
6
r , χr = 70, m = −1

of weak dissipative regime, inflationary model is compat-

ible for m = 0,1,−1 with 0.59 < g < 1, 0.67 < g < 1,

0.55< g < 1, respectively.

Sharif and Ikram (2016) have explored the dynamics of

warm intermediate inflation for flat FRW universe model in

Jordan frame of f (G) gravity. They have found consistent

results for constant dissipation coefficient through e-folds

and tensor-scalar ratio whereas for generalized dissipative

coefficient with m = 3, the observational parameters lead

to inconsistent results. We have studied warm intermediate

inflationary dynamics in strong as well as weak dissipation
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Fig. 15 Log(H̃ ) versus T (left) for g = 0.975 (magenta) and Log(r̃) versus ns (right) for g = 0.79 (red), 0.89 (magenta), 0.96 (green), γ = 1,
Γi ∝ χ

1
6
r , χr = 70, m = 0

Fig. 16 Log(H̃ ) versus T (left) for g = 0.922 (magenta) and Log(r̃) versus ns (right) for g = 0.85 (red), 0.9 (green), 0.95 (blue), γ = 1, Γi ∝ χ
1
6
r ,

χr = 70, m = 1

Fig. 17 Log(H̃ ) versus T (left) for g = 0.9 (magenta) and Log(r̃) versus ns (right) for g = 0.7 (red), 0.8 (green), 0.9 (blue), γ = 1, Γi ∝ χ
1
6
r ,

χr = 70, m = −1
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regimes. For constant dissipation coefficient, we have found

consistent results for both regimes. The graphical analysis

ensures the presence of warm inflation (T ≫ H̃ ) as well as

existence of inflaton particles in strong (r̃ ≫ 1) and weak

(r̃ ≪ 1) dissipative regimes. In case of generalized dissi-

pative coefficient, we have obtained compatible results for

m = 0,−1,1 which satisfy warm inflation condition but for
m = 3, the observational parameters yield inconsistent re-

sults in both regimes.

Finally, it is concluded that isotropic warm intermedi-

ate inflationary universe model remains consistent to Planck

2015 constraints for constant dissipation coefficient as well

as generalized dissipation coefficient for m = 0,1 and −1
in weak and strong dissipation regimes. For m = 3, the

condition for intermediate model parameter is violated, i.e.,

0< g < 1 which leads to inconsistent behavior of inflation-

ary model in weak and strong dissipation regimes.
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This paper investigates the dynamics of warm logamediate inflation for flat isotropic
and homogeneous universe in Einstein frame representation of f(R) gravity. In this
scenario, we study dissipative effects for weak and strong interactions of inflaton field
via constant and generalized dissipative coefficient. In both interacting regimes, we find
inflaton solution corresponding to scalar potential and radiation density of dissipating
inflaton. Under slow-roll approximation, we formulate scalar and tensor power spectra,
their spectral indices and tensor–scalar ratio for Starobinsky inflationary model and
construct graphical analysis of these observational parameters. It is concluded that this
model remains compatible with Planck 2015 constraints in weak and strong regimes for
constant dissipative coefficient. For generalized dissipative coefficient, the inflationary
model yields consistent results for m = 0, 1 and −1 in strong regime while condition of
warm inflation is violated for m = −1 in weak regime.

Keywords: Slow-roll approximation; warm inflation; f(R) gravity.
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1. Introduction

The development of a standard model describing observational facts like the exis-

tence of cosmic microwave background radiations (CMBR), presence of primordial

light elements and current cosmic expansion1 is considered as the crucial advance-

ment in cosmology. This model explains decelerated expansion at the initial stage

of the universe but leads to some issues like horizon, monopole and flatness. The

standard model needs an epoch of rapid acceleration in the early universe named

as “inflation”2 to overcome these issues. It was suggested3 that initial stage of the

universe passes through a rapid expansion due to the existence of false vacuum

filled with bubbles. The presence of these bubbles leads to de Sitter expansion

which yields inhomogeneous universe at the end of inflation. Consequently, another
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version of inflation dubbed as new or chaotic inflation was proposed.4 According to

this proposal, a scalar field behaves like a source of accelerated expansion. At the

beginning of inflating universe, the potential energy dominates over kinetic energy

and inflaton starts moving very slowly towards the origin of potential.5 After this

evolutionary stage, kinetic and potential energies are comparable due to oscilla-

tory motion of inflatons around minimum position of potential energy. Thus, the

reheating phase is initiated due to decay of inflatons into radiation and matter.6

Mukhanov and Chibisov7 explored the existence of primordial curvature perturba-

tions via Starobinsky inflationary model.

Berera8 presented a revolutionary idea to study possible joining of the early and

present universe entitled as warm inflationary scenario that unifies slow-roll and

reheating regimes. The existence of thermal radiations of density plays a crucial

role in the production of initial fluctuations which are elementary ingredients of

large scale structures. When vacuum energy dissipates into radiation energy, the

inflating universe allows a graceful exit into radiation dominated era.9,10 Yokoyama

and Linde11 investigated possible behavior of warm inflation scenario and claimed

that it is very difficult to study the existence of warm inflation for realistic models

of elementary particles. During warm inflation, thermal fluctuations and scalar field

interactions lead to its final outcome in the form of strong dissipation effect which

directly corresponds to particle production. This dissipation effect appears as a

linear friction term whose characteristics are determined by dissipation coefficient.

Berera and Ramos12 explored warm inflationary dynamics and low temperature

regimes for a particular form of dissipative coefficient corresponding to supersym-

metric models. Watanabe and Komatsu13 studied decay process of inflaton in f(φ)R

gravity and found that such model successfully eliminates the necessity of explicit

couplings between φ and bosonic or fermionic matter fields. In order to discuss decay

as well as scattering rates, Bastero-Gil et al.
14 studied warm inflation paradigm in

quantum-field theory. Takeda and Watanabe15 discussed the behavior of decaying

inflaton via Einstein frame picture of Starobinsky inflation model. In warm infla-

tion, dissipation effect characterizes two important regimes, i.e. weak (Γ ≪ H) and

strong (Γ ≫ H) dissipative regimes. In nonwarm inflation, the primordial density

perturbation spectrum is established on the basis of quantum fluctuations. In dissi-

pative regime, these perturbations are determined by thermal fluctuations whereas

decay rate determines the fate of inflaton particles.

The scale factor plays a crucial role in the classification of inflationary models

as its evolution determines some interesting exact solutions. When a scale factor

possesses a de Sitter expansion (exponential expansion), it leads to the inflationary

model which describes old inflation but when scale factor follows quasi-de Sitter

expansion, it corresponds to new or chaotic inflation.16 Logamediate inflationary

model is obtained by taking weak general conditions on cosmological model which

corresponds to power-law inflation for certain conditions.17 Herrera et al.
18 analyzed

the behavior of isotropic warm inflation for intermediate as well as logamediate
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inflationary models in both dissipative regimes via general dissipative coefficient.

Setare and Kamali19 studied warm vector isotropic inflation for intermediate and

logamediate models. Sharif and Saleem20 found that locally rotationally symmet-

ric Bianchi I universe model yields consistent results in the context of warm vector

inflation. The same authors21 examined warm anisotropic intermediate and logame-

diate inflation in strong as well as weak dissipative regimes via general dissipative

coefficient.

The current cosmic accelerated expansion motivates researchers to establish

extended gravitational theories. The f(R) theory is one of such modifications where

the Ricci scalar (R) is replaced by a generic function f(R). The puzzling nature

of DE provides an interesting way to discuss the present inflating universe in the

context of modified theories of gravity via inflationary models. Bamba et al.
22 inves-

tigated observational parameters of nonwarm inflationary models through recon-

struction method in this gravity and found compatible results for power-law model.

We have analyzed the behavior of chaotic inflationary paradigm for isotropic and

homogenous flat universe model in the framework of Jordan frame of f(R) grav-

ity.23 Sharif and Ikram24 studied dynamics of warm intermediate and logamediate

inflation for flat FRW universe model in Jordan frame of f(G) gravity.

Many theoretical efforts have been made to discuss coupling of gravity with

other interactions that demands existence of scalar fields in Jordan frame. Some

researchers argued that scalar–tensor gravity is unreliable in Jordan frame as it

gives rise to the problem of negative kinetic energy.25,33 In f(R) gravity, this issue

is resolved by introducing a conformal transformation that relates Einstein–Hilbert

action and f(R) action,26 consequently Jordan frame is shifted to Einstein frame

under that conformal factor. Inflationary scenario has become a debatable issue in

Jordan as well as Einstein frames. Artymowski and Lalak27 investigated modified

Starobinsky inflationary model in both Einstein and Jordan frame and obtained

compatible results for Planck and BICEP2 observations. de Felice and Tsujikawa28

studied inflationary dynamics of Starobinsky inflationary model for both frames in

f(R) gravity.

In this paper, we study warm logamediate inflation via Einstein frame repre-

sentation of f(R) gravity for isotropic and homogeneous universe. The format of

this paper is as follows. Section 2 describes inflationary dynamics of f(R) gravity

in Jordan and Einstein frames. In Sec. 3, we examine strong and weak dissipation

regimes for constant as well as generalized dissipative coefficient with Starobinsky

inflationary model and discuss their effects graphically. Finally, we conclude our

results in the last section.

2. Inflationary Dynamics of f(R) Gravity

In this section, we discuss basic formalism of f(R) gravity both in Jordan as well

as Einstein frame which leads to investigate warm inflationary dynamics.
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2.1. Inflationary dynamics in Jordan frame

In Jordan frame representation, the geometric part directly interacts with matter

part in the action of f(R) gravity given by29

IJ =
1

2κ2

∫

d4x
√−gf(R) + Lm(gµν , ψ), (1)

where Lm represents matter Lagrangian. Varying the above action corresponding

to gµν , we obtain nonlinear fourth-order partial differential equation as

fRRµν − 1

2
fgµν −∇µ∇νfR + gµν�fR = κ2Tµν , (2)

where fR = df(R)
dR

, ∇µ describes covariant derivative, � = ∇µ∇µ and κ2 = 8πGN =
8π

M2
P l

, M2
Pl = 1.2× 1019 GeV is the Planck mass. Equation (2) can be written in the

form

Gµν =
κ2

fR

(Tµν + T eff
µν ),

where the effective energy–momentum tensor is

T eff
µν =

1

κ2

(

gµν(f −RfR)

2
+ ∇µ∇νfR − �fRgµν

)

.

We consider flat FRW metric as

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3)

where a is the scale factor. The corresponding field equations (2) for action (1)

become

f −RfR

2
+ 3H2fR + 3HḟR = κ2ρ, (4)

f̈R + 2ḢfR −HḟR = −κ2(ρ+ p), (5)

where ρ and p represent energy density and pressure of perfect fluid, respectively

and dot denotes time derivative. We evaluate a and H for a viable model given by30

f(R) = R+
R2

6M2
, (6)

where M is a positive constant with dimension of mass. Inserting Eq. (6) into (4)

and (5), we obtain

a = ai exp

[

Hi(t− ti) −
M2(t− ti)

2

12

]

, H = Hi −
M2(t− ti)

6
, (7)

where ti denotes initial cosmic time whereas ai and Hi represent scale factor and

Hubble parameter at t = ti, respectively.

In order to discuss inflationary paradigm, we need to consider perfect fluid as

equivalent to scalar field implying ρ = φ̇2

2 + V (φ) and p = φ̇2

2 − V (φ). During
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inflation, the interactions between inflaton field and matter or radiations are con-

sidered to be meaningless which implies that kinetic energy becomes smaller than

potential energy due to slow-roll approximation.31 This approximation is carried

out to investigate inflationary paradigm via slow-roll parameters defined as

ǫ = − Ḣ

H2
, η = − Ḧ

HḢ
, (8)

where Ḣ must be negative. For the existence of inflating universe, ǫ and η should

be very small but positive, while the inflating universe vanishes for ǫ = 1 = η.32

The extent of inflation is measured by number of e-folds given by

N =

∫ tf

ti

H(t)dt, (9)

where tf represents cosmic time at the ending of inflationary epoch. It is strongly

claimed that the equivalence of perfect fluid with scalar field is not viable in Jordan

frame representation due to the existence of negative kinetic energy.33 This issue is

resolved by introducing a conformal transformation which connects Jordan frame

to Einstein frame with an additional nonlinear scalar field which contains a positive

kinetic term.34

2.2. Inflationary dynamics in Einstein frame

The Einstein frame representation of f(R) gravity contains an extra scalar degree of

freedom which analyzes early as well as late-time cosmic acceleration. A conformal

transformation provides a relationship between two metrics through a conformal

factor which allows to scale time, length and mass whereas angles remain unchanged

under this transformation. The action of f(R) gravity with a scalar field can be

rewritten as

IJ =
1

2κ2

∫

d4x
√−g(fRR− V (φ)) + Lm(gµν , ψ), (10)

where V (φ) = fRR − f . For a conformal factor g̃µν = ϕ2gµν = fRgµν , this action

reduces to

IE =

∫

d4x
√

−g̃
(

R̃

2κ2
− 1

2
g̃µν∂µφ∂νφ− U(φ) + Lm(f−1

R (φ)g̃µν , ψ)

)

. (11)

Here, U(φ) = V (φ)
f2

R

, the scalar field directly coupled with matter sector while con-

formal factor becomes field dependent as ϕ2 = fR = exp[
√

2
3κφ].

In Einstein formulation, the gravitational term of action (1) takes the form of

Einstein–Hilbert action with a nonminimal coupling between matter Lagrangian

density and scalar field. In this frame, the flat FRW model becomes

ds̃2 = −dt̃2 + ã2(t̃)(dx2 + dy2 + dz2), (12)

1750191-5

b
y

 G
R

IF
F

IT
H

 U
N

IV
E

R
S

IT
Y

 o
n

 1
0

/2
6

/1
7

. 
F

o
r 

p
er

so
n

al
 u

se
 o

n
ly

.



M. Sharif and I. Nawazish

where

ds̃ =
√

fRds, dt̃ =
√

fRdt, ã =
√

fRa. (13)

For g̃µν = f−1
R gµν and

√−g̃ = f2
R

√−g, the energy–momentum tensor correspond-

ing to matter and scalar parts take the form

T̃ (m)
µν = − 2√−g̃

δ(
√−g̃Lm)

δg̃µν
, T̃ (φ)

µν = − 2√−g̃
δ(
√−g̃Lφ)

δg̃µν
, (14)

where Lφ represents Lagrangian density of a scalar field given by

Lφ = −1

2
g̃µν∂µφ∂νφ− U(φ).

For the action (11), the field equations and continuity equation yield

3H̃2

κ2
= ρ̃, 3H̃2 + 2

dH̃

dt̃
= −κ2p̃, (15)

dρ̃

dt̃
+ 3H̃(t̃)(ρ̃+ p̃) = 0, (16)

where H̃ denotes Hubble parameter whereas ρ̃ = ρ̃φ + ρ̃r and p̃ = p̃φ + p̃r represent

total energy density and pressure in Einstein frame given by

H̃ =
1

ã

dã

dt̃
=

1√
fR

(

H +
˙fR

2fR

)

,

ρ̃φ =
ρφ

f2
R

=
φ̇2

2fR

+ U(φ), p̃φ =
pφ

f2
R

=
φ̇2

2fR

− U(φ).

In order to formulate t̃, ã and H̃ for the standard model (6), we integrate Eq. (13)

yielding

t̃ =
2

M

[

Hi(t− ti) −
M2(t− ti)

2

12

]

,

ã(t̃) =
2Hiai

M

[

1 − M3t̃

12H2
i

]

e
Mt̃
2 , H̃(t̃) =

M

2

[

1 − M2

6H2
i

(

1 − M3t̃

12H2
i

)−2
]

.

(17)

In Einstein frame, the slow-roll parameters and extent of inflation are measured as

ǫ = − 1

H̃2

dH̃

dt̃
, η = − 1

H̃

(

dH̃

dt̃

)−1
d2H̃

dt̃2
, Ñ =

∫ t̃

t̃i

H̃(t̃)dt̃, (18)

where t̃i represents initial time in Einstein frame. The approximate extent of infla-

tion is found to be 70 but fluctuation spectrum of CMBR reveals that this limit of

e-folds should be less than 70. Thus, the conformal transformation allows a smooth

transition between these two frames as it only redefines the scales of fundamental

quantities that retain physical predictions in both frames.35 The main difference in

both frames is that the Jordan frame defines f(R) gravity on the basis of metric
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Warm logamediate inflation in Starobinsky inflationary model

tensor whereas Einstein frame describes the theory with the help of metric tensor

along with scalar field interacting with matter sector. The Einstein representation

of f(R) gravity admits an equivalence with scalar–tensor theory whose gravitational

part incorporates Rφ. This equivalence provides a way to explore dissipation effects

in nonsupersymmetric background.

3. Warm Inflation in Einstein Frame

In this section, we study the basic mechanism of warm inflation in Einstein rep-

resentation of f(R) gravity. As opposed to the cold inflation, the most attractive

feature of warm inflation is not to have a separate reheating phase at the end of

rapid accelerated expansion of the universe. This happened due to the decay of

inflaton particles into radiations during slow-roll inflation. Consequently, temper-

ature of the universe drops down smoothly and the universe enters into radiation

dominated era. During warm inflation, the total energy density of the universe also

comprises radiation density ρ̃r while density perturbations arising from thermal

fluctuations are larger than those of quantum fluctuations. For such inflationary

scenario, Eqs. (15) and (16) yield

3H̃2

κ2
= ρ̃φ + ρ̃r, 3H̃2 + 2

dH̃

dt̃
= −κ2(p̃φ + p̃r), (19)

dρ̃r

dt̃
+ 4H̃ρ̃r − Γ

(

dφ

dt̃

)2

= 0, (20)

dρ̃φ

dt̃
+ 3H̃(ρ̃φ + p̃φ) + Γ

(

dφ

dt̃

)2

= 0, (21)

where Γ is a dissipation factor which describes the decay of inflaton field into

radiations. In Eq. (20), the last term behaves like a source of radiations whereas the

second term responds as a sink term which dissipates these radiations continuously.

During inflation, the Hubble parameter, dissipation factor and inflaton field vary

very slowly which imply that the radiation density must attain a nonzero steady

state point. Therefore, the radiation production becomes independent of initial

conditions and gets quasi-stable which leads to the following conditions

dρ̃r

dt̃
≪ 4H̃ρ̃r,

dρ̃r

dt̃
≪ Γ

(

dφ

dt̃

)2

. (22)

Using the above conditions in Eq. (20), we obtain

ρ̃r =
3

4
r̃

(

dφ

dt̃

)2

= χrT
4, r̃ =

Γ

3H̃
. (23)

Here, r̃ describes the rate of dissipation factor relative to expansion of the universe

via Hubble parameter, χr = π2g∗

30 , g∗ represents number of relative degrees of

freedom and T denotes temperature of thermal bath.
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M. Sharif and I. Nawazish

In warm inflation, thermal fluctuations of inflaton field are considerable as T >

H̃ and ρ̃r dissipates into ρ̃φ, i.e. ρ̃φ ≫ ρ̃r. Under this condition, the first field

equation of (19) leads to

(

dφ

dt̃

)2

= −
[

2

κ2(1 + r̃)

]

dH̃

dt̃
. (24)

The thermal bath temperature is evaluated by using Eq. (24) in (23) as

T =









−
3r̃dH̃

dt̃
2κ2χr(1 + r̃)









1
4

. (25)

Inserting Eqs. (23) and (24) in (19), we obtain potential corresponding to inflaton

field as

U(φ) =
3H̃2

κ2
+

dH̃

dt̃
κ2(1 + r̃)

[

1 +
3r̃

2

]

. (26)

For warm inflation, the variance of inflaton field is described by thermal fluctuations

whereas in case of nonwarm inflationary scenario, this variation is presented by

quantum fluctuation. Inflationary paradigm characterizes these fluctuations into

scalar and tensor perturbations that leave a strong impact over the CMB anisotropy

as well as on the large scales.5 To evaluate the variance and characteristics of these

fluctuations, some important parameters like scalar power spectrum (∆2
R), tensor

power spectrum (∆2
T ) and tensor–scalar ratio (R) have been introduced.36 For FRW

universe model in Einstein frame representation, these parameters under slow-roll

approximation (H = H̃
√
fR) take the following form

∆2
R

= − H̃
2κ2(1 + r̃)T

2dH̃

dt̃

[

ΓH̃

(4π)3

]
1
2

, ns = 1 − d

dÑ
(ln ∆2

R
), (27)

∆2
T = 8κ2

[

H̃

2π

]2

, nT = −2ǫ, (28)

R =
∆2

T

∆2
R

= −
4dH̃

dt̃

π2(1 + r̃)H̃
1
2 T

[

(4π)3

Γ

]
1
2

. (29)

Thermal fluctuations for strong and weak dissipative regimes are found to be9,37

〈δφ〉thermal =

[

ΓH̃T 2

(4π)3

]
1
4

, 〈δφ〉thermal =
√

H̃T .
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Warm logamediate inflation in Starobinsky inflationary model

Recent observations of Planck 201538 constrain spectral index and tensor–scalar

ratio as ns = 0.9603± 0.0062 (68%CL) and R < 0.10 (95%CL), respectively.

3.1. Warm logamediate inflation for Γ = Γi = constant

For all inflationary models, the exact solutions are expressed in exponential or

power-law forms. Here, we analyze warm inflation in weak (r̃ ≪ 1) as well as strong

(r̃ ≫ 1) dissipative regimes for logamediate inflationary model whose scale factor

is defined as39

a(t) = ai exp(g[ln t]β), g > 0, β > 1. (30)

The logamediate inflationary model is motivated by weak general conditions

imposed on the indefinitely expanding cosmological models which corresponds to

power-law inflation for g = p and β = 1.40 In Einstein frame, the logamediate scale

factor and corresponding Hubble parameter turn out to be

ã(t̃) = ãi

[

1 − M3t̃

12H2
i

]

exp

[

g

{

ln

(

t̃M

2Hi

)}β
]

, ãi =
2aiHi

M
, (31)

H̃(t̃) = gβt̃−1

{

ln

(

t̃M

2Hi

)}β−1

. (32)

Interactions of inflaton particles with matter leads to dissipate these particles

into thermal bath radiations. If these interactions are weak then dissipation will

be small and consequently, inflaton particles belong to weak dissipative regime. In

case of strong interactions, the dissipation effect will be large which leads to strong

dissipative regime. In weak dissipative regime, Eqs. (24) and (26) yield the inflaton

field and corresponding potential in the following form

φ = φ0 + α1

{

ln

(

t̃M

2Hi

)}

β+1
2

, α1 =
2

β + 1

√

2gβ

κ2
, (33)

U(φ) =
3

κ2



gβ

(

M

2Hi

)

exp

{

−
(

φ

α1

)
2

β+1

}

(

φ

α1

)

2(β−1)
β+1





2

, (34)

where φ0 is an integration constant. In order to discuss inflationary paradigm during

slow-roll dynamics, the dimensionless slow-roll parameters for Eqs. (32) and (33)

become

ǫ =
1

βg

[

φ

α1

]

2(1−β)
β+1

, η =
1

βg

[

φ

α1

]
−2β
β+1

(

2

{

φ

α1

}
2

β+1

− (β − 1)

)

. (35)

For inflaton field (33), the radiation density and e-folds take the form

ρ̃r =
Γi

2κ2

(

M

2Hi

)

exp

[

−
(

φ

α1

)
2

β+1

]

, (36)
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M. Sharif and I. Nawazish

Ñ = βg



ln

(

2Hi

M
exp

[

(

φ

α1

)
2

β+1

])

(

φ

α1

)

2(β−1)
β+1

− ln

(

2Hi

M
exp

[

(

φi

α1

)
2

β+1

])

(

φi

α1

)

2(β−1)
β+1



, (37)

where φi denotes inflaton field at t̃ = t̃i. To evaluate an expression for this earliest

inflaton field, we take ǫ = 1 at the beginning of inflationary epoch which yields

φi = φ0 + α1(gβ)
β+1

2(1−β) . (38)

Combining Eqs. (37) and (38), we obtain inflaton in terms of e-folds as

φ = φ0 + α1



ln

(

M

2Hi

)

+

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}
1
β





β+1
2

. (39)

The perturbation parameters like scalar and tensor power spectra along with

their indices as a function of e-folds turn out to be

∆R =
κ2

2

(

Γi

2κ2χr

)
1
4
(

2Hi

M

)−
5
4

(gβ)2 exp

[

−5

4

{

Ñ

gβ
+ (gβ)

β
1−β

− ln

(

M

2Hi

)
1

gβ

}
1
β





{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}

2(β−1)
β

, (40)

∆T =
2κ2β2g2

π2
exp



−2

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}
1
β





×
{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}

2(β−1)
β (

M

2Hi

)2

, (41)

ns = 1 − 2(β − 1)

gβ2

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}−1

, (42)

nT = − 2

gβ

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}

1−β
β

. (43)

The ratio of tensor and scalar power spectra yields

R =
4

π2

(

2κ2χr

Γi

)
1
4
(

2Hi

M

)−
3
4

exp



−3

4

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}
1
β



. (44)

In order to verify the warm inflationary condition and presence of inflaton particles

in weak dissipative regime, we evaluate temperature of thermal bath radiations and
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Warm logamediate inflation in Starobinsky inflationary model

decay rate of inflaton field as

T =

(

Γi

2κ2χr

)
1
4
(

M

2Hi

)

exp



−
{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}
1
β



, (45)

r̃ =
Γi

3βg

(

2Hi

M

)

exp





{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}
1
β





×
{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

}

1−β
β

. (46)

Figure 1 (left plot) represents dominant characteristics of warm inflation, i.e.

T ≫ H̃ . The right panel of Fig. 1 identifies r̃ ≪ 1 specifying weak interactions

between inflaton and matter fields which assures the presence of inflaton particles

in weak dissipative regime. In Fig. 2, the left plot indicates the variation of e-folds

approaching to its standard value, i.e. Ñ = 60 as model parameter of inflationary

model increases. The right plot represents R < 0.10 at ns = 0.9603 which preserves

compatibility of R in weak dissipation regime.

In case of strong dissipative regime (r̃ ≫ 1), the inflaton field along with its

potential take the following form

φ = φ0 + α2Ξ(t̃),

U(φ) =
3(gβ)2

κ2

{

Ξ−1

(

φ

α2

)}−2 [

ln

(

Ξ−1

(

φ

α2

)

M

2Hi

)]2(β−1)

,
(47)

where Ξ represents incomplete gamma function given as

Ξ(t̃) = γ

[

β,
1

2
ln

(

t̃M

2Hi

)]

, α2 = −2βgβ

√

3M

Hiκ2Γi

.

Fig. 1. (Color online) Log(H̃) versus Log(T ) (left) and Log(r̃) versus ns (right) for β = 1.5 (red),

2.5 (green), 3.5 (blue), g = 0.75, Γi ∝ χ
1
6
r , χr = 70.
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M. Sharif and I. Nawazish

Fig. 2. (Color online) ns versus Ñ (left) and R versus ns (right) for β = 1.5 (red), 2.5 (green)

for β = 3.5 (blue), g = 0.75, Γi ∝ χ
1
6
r , χr = 70.

For slowly varying inflaton field, the slow-roll parameters and radiation energy

density corresponding to φ take the form

ǫ =
1

βg

[

ln

(

Ξ−1

(

φ

α2

)

M

2Hi

)](1−β)

,

η =
1

βg

[

ln

(

Ξ−1

(

φ

α2

)

M

2Hi

)]−β (

2 ln

(

Ξ−1

(

φ

α2

)

M

2Hi

)

− (β − 1)

)

,

ρ̃r =
3gβ

2κ2

{

Ξ−1

(

φ

α2

)}−2 [

ln

(

Ξ−1

(

φ

α2

)

M

2Hi

)](β−1)

.

At the earliest stage of inflationary epoch, the inflaton field at t̃ = t̃i becomes

φi = φ0 + α2Ξ

(

exp

[

(gβ)
1

1−β − ln
M

2Hi

])

.

The corresponding number of e-folds and inflaton field are given by

Ñ = gβ

{

ln

(

Ξ−1

(

φ

α2

))[

ln

(

Ξ−1

(

φ

α2

))

M

2Hi

]β−1

− (gβ)−1

(

(gβ)
1

1−β − ln
M

2Hi

)

}

, (48)

φ = φ0 + α2Ξ







exp

(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β







. (49)

The corresponding observational parameters become

∆R =
κ2

6

(

(gβ)
3
2 Γ3

i 3
1
2

(2κ2χr)
1
2 (4π)3

)
1
2
(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)

3(β−1)
4β

, (50)
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Warm logamediate inflation in Starobinsky inflationary model

∆T =
2κ2β2g2

π2
exp

(

−2

{

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

})
1
β

×
[

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

]2(β−1)

, (51)

ns = 1 − 3(β − 1)

4gβ2

(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)−1

,

nT = − 2

gβ

(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)1−β

.

(52)

The tensor–scalar ratio is found to be

R =

[(

144(4π)3(2κ2χr)
1
2

Γ3
iπ

43
1
2

)

(gβ)
5
2

]
1
2

exp



−2

(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β





×
(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)

5(β−1)
4β

. (53)

The decay rate and temperature of thermal bath radiations turn out to be

r̃ =
Γi

3



gβ exp







(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β







×
(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)

β−1
β





−1

, (54)

T = gβ

(

3

2κ2χr

)
1
4

exp







−1

2

(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β







×
(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)

β−1
4β

. (55)

Figure 3 indicates that T ≫ H̃ (left panel) and r̃ ≫ 1 (right panel) for 2 ≤ g ≤
2.7 which assures the existence of warm inflation for logamediate inflationary model

in strong dissipative regime. Figure 4 (left plot) represents the graphical behavior

of ns against Ñ which are found in very small ratio due to strong interactions and

high dissipation rate whereas the right plot indicates compatible R for the proposed

values of g in strong dissipative regime.
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M. Sharif and I. Nawazish

Fig. 3. (Color online) Log(H̃) versus Log(T ) (left) and Log(r̃) versus ns (right) for β = 2 (red),

2.4 (green), 2.7 (blue), g = 0.01, Γi ∝ χ
1
6
r , χr = 70.

Fig. 4. (Color online) ns versus Ñ (left) for g = 0.1 and R versus ns (right) for g = 0.01, β = 2

(red), 2.4 (green), 2.7 (blue), Γi ∝ χ
1
6
r , χr = 70.

3.2. Warm logamediate inflation for generalized dissipative

coefficient

In warm inflationary scenario, the dissipative coefficient plays a dynamical role as

it represents a physical process of dissipation regarding to interacting inflaton field.

The dissipating effects appear from friction term which characterizes the process of

scalar field dissipating into thermal bath radiations via its interaction with other

fields. Due to such dissipative effects, radiations produced instantly during rapid

accelerated expansion of the universe and hence the universe smoothly entered into

radiation dominated era. This dissipative coefficient may be expressed as a function
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Warm logamediate inflation in Starobinsky inflationary model

of inflaton field, or thermal bath, or both. The most general form of dissipation

factor is given by41

Γ = Γi

Tm

φm−1
,

where Γi denotes a constant that describes microscopic dynamics of dissipation

process and m represents an integer. In the background of thermal bath radiations,

this dissipative coefficient takes the form

Γ
4−m

4 = αmφ
1−m









−dH̃
dt̃

H̃









m
4

(1 + r̃)−
m
4 ,

where αm =
Cφ

(2κ2χr)
m
4

. For different values of m, dissipation coefficient corresponds

to different physical processes, i.e. when m = 0, the dissipation coefficient describes

an exponential decay propagator in high temperature supersymmetry case. Form =

1, it becomes proportional to thermal bath temperature while m = −1 deals with

nonsupersymmetry case.42 For weak and strong regimes, the dissipative coefficient

turns out to be

Γ = (αmφ
1−m)

4
4−m









dH̃

dt̃

H̃









m
4−m

, Γ = αmφ
1−m

(

−3
dH̃

dt̃

)
m
4

.

In the present work, we study the behavior of generalized dissipation coefficient

both in weak as well as strong dissipation regimes.

In weak dissipative regime, the constant as well as proposed generalized dissi-

pative coefficient leave the same effect over inflaton field, number of e-folds and

slow-roll parameters whereas radiation density becomes

ρ̃r =
1

2κ2
α

4
4−m
m

(

2Hi

M

)
4

m−4

exp

[

(

4

m− 4

)(

φ− φ0

α2

)
2

β+1

]

φ
4(1−m)
4−m .

The scalar and tensor power spectra along with corresponding spectral indices and

tensor–scalar ratio are given by

∆R =
κ2

2





{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}
1
β





(β+1)(1−m)
2(4−m) +2(β−1)

× exp





m− 5

4 −m







(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β











(

Γi

2κ2χr

)
1

4−m

(gβ)2

×
{

(

2Hi

M

)(m−5)(4−m)

α1−m
3

}
1

4−m

, (56)
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M. Sharif and I. Nawazish

ns = 1 − 1

gβ2

{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}
1
β
−1

×





{

(β + 1)(1 −m)

2(4 −m)
+ 2(β − 1)

}

×





{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}
1
β



+

(

m− 5

4 −m

)



, (57)

∆T =
2κ2β2g2

π2
exp







−2

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β







×
(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

2(β−1)
β

, (58)

R =
4

π2
exp





(

m− 3

4 −m

)

{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}
1
β





(

Γi

(2κ2χr)4

)
1

m−4

×α
1−m
m−4

3

(

2Hi

M

)
3−m
m−4





{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}
1
β





(β+1
2 )( 1−m

m−4 )

.

(59)

The dissipation rate of inflaton field and temperature of thermal radiations are

found to be

r̃ =
1

3gβ

(

2Hi

M

)
2m−4
4−m

{

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

}(β+1
2β ){ 2(1−β)

(β+1)
+ 4(1−m)

4−m }

×
(

Γi

(2κ2χr)
m
4

)

exp







2m− 4

m− 4

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β







, (60)

T =

(

Γ2
i

(2κ2χr)m−2

)
1

2(m−4)

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

(β+1)(1−m)
2β(4−m)

×
(

2Hi

M

)
1

m−4

α
1−m
4−m

3 exp







1

m− 4

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β







. (61)

Figure 5 assures the condition of warm inflation for m = 0, 1 and m = −1

in weak dissipative regime for different values of the model parameter β. Figure 6
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Warm logamediate inflation in Starobinsky inflationary model

Fig. 5. (Color online) Log(H̃) versus Log(T ) for β = 2 (red), β = 3.5 (green), 4.5 (blue), g = 4,

Γi ∝ χ
1
6
r , χr = 70, m = 0, m = 1 and m = −1.

Fig. 6. (Color online) r̃ versus ns (left) for m = 0 and r̃ versus ns (right) for m = 1, β = 3.5

(red), 4.5 (green), g = 2, Γi ∝ χ
1
6
r , χr = 70.

identifies the inflaton particles for m = 0, 1 but this condition is violated for

m = −1. The graphical behavior of R versus ns and variation of ns against Ñ for

generalized dissipative coefficient is given in Figs. 7 and 8 which lead to compatible

results for m = 0 and m = 1 in weak dissipative regime.

In strong dissipative regime, the inflaton field and corresponding potential take

the form

φ = α4Ξm(t̃), U(φ) =
3(gβ)2

κ2

{

Ξ−1
m

(

φ

α4

)}−2 [

ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)]2(β−1)

,

(62)
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M. Sharif and I. Nawazish

Fig. 7. (Color online) Log(R) versus ns (left) for m = 0 and Log(R) versus ns (right) for m = 1,

β = 1.25 (red), 1.45 (green), 1.65 (blue), g = 1, Γi ∝ χ
1
6
r , χr = 70.

Fig. 8. (Color online) ns versus Ñ (left) for m = 0 and ns versus Ñ (right) for m = 1, β = 1.25

(red), 1.45 (green), 1.65 (blue), g = 2, Γi ∝ χ
1
6
r , χr = 70.

where

Ξm(t̃) =

(

γ

[

1 +
(8 −m)(β − 1)

8
,
2 −m

4
ln

(

t̃M

2Hi

)])

2
3−m

,

α4 =

[

(

3 −m

2

)8

(6Γ−1
i κ−2)4(2κ2χr)

m(gβ)8−m

(

M

2Hi

)2−m

×
(

m− 2

4

)(β−1)(m−8)−8
]

1
4(3−m)

.

Under the influence of inflaton field (62), the corresponding radiation density, Hub-

ble and slow-roll parameters turn out to be

ρ̃r =
3gβ

2κ2

{

Ξ−1
m

(

φ

α4

)}−1 [

ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)](β−1)

,
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Warm logamediate inflation in Starobinsky inflationary model

H̃(t̃) = gβ

{

Ξ−1
m

(

φ

α4

)}−1 [

ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)](β−1)

,

ǫ =
1

βg

[

ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)](1−β)

,

η =
1

βg

[

ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)]−β (

2 ln

(

Ξ−1
m

(

φ

α4

)

M

2Hi

)

− (β − 1)

)

.

(63)

For ǫ = 1, the initial value of inflaton field leads to φ as

φ = α4Ξm







exp





(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β











.

The corresponding scalar power spectrum and spectral index are

∆2
R =

κ2

6

[

(gβ)
3(m+2)

4

(

3

2κ2χr

)
3m+2

4
(

Γi

4π

)3
]

1
2

× exp



−3m

4

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β





×
(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

3(m+2)(β−1)
8β

×







α4Ξm



exp





(

Ñ

gβ
+ (gβ)

β
1−β − ln

(

M

2Hi

)
1

gβ

)
1
β















3(1−m)
2

,

ns = 1 − 3(m+ 2)(β − 1)

8

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)−1

.

(64)

Similarly, tensor power spectrum and its spectral index become

∆2
T =

2κ2(gβ)2

π2
exp



−2

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β





×
(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

2(β−1)
β

,

nT = − 2

gβ

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

1−β
β

.
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M. Sharif and I. Nawazish

The above observational parameters generate tensor–scalar ratio as

R =

[

144(4π)3

Γ3
iπ

4

(

2κ2χr

3

)

3m+2
4

(gβ)
10−3m

4 α
3(m−1)
4

]

1
2

× exp





3m− 8

4

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β





×
(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

(β−1)(10−3m)
8β

×







Ξm



exp





(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β















3(m−1)
2

.

The decay rate of inflaton field and thermal radiations take the form

r̃ = (Γi(2κ
2χr)

−
m
4 )(3gβ)

m−4
4 exp





2 −m

2

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β





×α1−m
4



Ξm







exp





(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β















1−m

, (65)

T =

(

3

2κ2χr

)
1
4

exp



−1

2

(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)
1
β





×
(

Ñ

gβ
+ (gβ)

β
1−β + ln

(

2Hi

M

)
1

gβ

)

β−1
4β

. (66)

Figures 9–11 represent graphical analysis of inflaton particles which satisfy the

condition of warm inflation, i.e. T ≫ H̃ and also show that r̃ ≫ 1. These indications

imply that inflaton particles lie in strong dissipative regime for m = 0, 1 and m =

−1. Figures 12–14 describe the graphical behavior of ns versus number of e-folds

and variation of R versus ns for m = 0, 1 and m = −1. These plots indicate that

R is constrained at observational value of ns which leads to consistent behavior of

inflationary model for different values of the model parameter g.

4. Concluding Remarks

In this paper, we have investigated the dynamics of warm inflation for flat FRW

universe model in Einstein representation of f(R) gravity. In warm inflation, inter-

actions between inflaton and other fields like matter or radiations avoid a separate
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Warm logamediate inflation in Starobinsky inflationary model

Fig. 9. (Color online) Log(H̃) versus Log(T ) (left) for m = 0 and Log(H̃) versus Log(T ) (right)

for m = 1, β = 1.5 (red), 2.5 (green), 3.5 (blue), g = 0.01, Γi ∝ χ
1
6
r , χr = 70.

Fig. 10. (Color online) Log(H̃) versus Log(T ) (left) for g = 0.01, m = −1 and Log(r̃) versus ns

(right) for g = 0.0027, m = 0, β = 1.5 (red), 2.5 (green), 3.5 (blue), Γi ∝ χ
1
6
r , χr = 70.
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M. Sharif and I. Nawazish

Fig. 11. (Color online) Log(r̃) versus ns (left) for m = −1 and Log(r̃) versus ns (right) for

m = 1, β = 1.5 (red), 2.5 (green), 3.5 (blue), g = 0.0027, Γi ∝ χ
1
6
r , χr = 70.

Fig. 12. (Color online) ns versus Ñ (left) for m = 0 and ns versus Ñ (right) for m = −1, β = 1.65

(red), 1.75 (green), 1.85 (blue), g = 0.2, Γi ∝ χ
1
6
r , χr = 70.

Fig. 13. (Color online) ns versus Ñ (left) for m = 1, β = 1.65 (red), 1.75 (green), 1.85 (blue),
g = 0.2, and R versus ns (right) for m = 0, β = 1.1 (red), 1.15 (green), 1.2 (blue), g = 0.0027,

Γi ∝ χ
1
6
r , χr = 70.
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Warm logamediate inflation in Starobinsky inflationary model

Fig. 14. (Color online) R versus ns (left) for m = −1, β = 1.65 (red), 1.75 (green), 1.85 (blue),

and R versus ns (right) for m = 1, β = 1.5 (red), 2.5 (green), 3.5 (blue), g = 0.0027, Γi ∝ χ
1
6
r ,

χr = 70.

reheating phase in the inflationary universe. These interactions give rise to friction

term in the equation of motion of inflaton which yield dissipation effects in strong

and weak dissipative regimes. The strong dissipative effects lead to strong dissi-

pative regime whereas weak dissipation regime is supported by small dissipation

and weak interactions. We have analyzed warm logamediate inflationary model in

both regimes for constant and generalized dissipative coefficients. To avoid negative

kinetic energy of inflaton field, we have studied inflationary paradigm for Starobin-

sky inflationary model in Einstein frame.

We have explored solutions of inflaton field along with corresponding potentials

and also formulated dimensionless slow-roll parameters in terms of inflaton field. In

warm inflation, density perturbations appear due to thermal fluctuations instead

of quantum fluctuations and characteristics of these fluctuations are described by

observational parameters such as scalar and tensor power spectra, their correspond-

ing spectral indices and tensor–scalar ratio. We have calculated these parameters

under slow-roll approximation and studied their graphical analysis for different val-

ues of logamediate model parameter β. The results are summarized as follows:

• For weak constant dissipative regime, the e-folds are found in abundance to

resolve flatness and horizon issues whereas the corresponding tensor–scalar ratio

is compatible at the constrained value of scalar spectral index. For 1.5 ≤ β ≤ 3.5,

we have found T ≫ H̃ and r̃ ≪ 1 which verify the presence of warm inflation and

also describe the existence of inflaton particles in weak dissipative regime. This

analysis implies that logamediate inflationary model is found to be consistent

with observational data.

• For strong constant dissipative regime, the number of e-folds remains less than

20 for 2 ≤ β ≤ 2.7 while the corresponding graphical behavior of R − ns leads

to compatible range of R, i.e. R < 0.10 in the same range. The temperature

of thermal bath radiations is found to be greater than Hubble parameter which

leads to the existence of warm inflation and r̃ ≫ 1 indicates that inflaton particles

lie in strong dissipative regime for the proposed range of β.
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• For generalized dissipative coefficient in weak dissipative regime, the inflationary

model yields consistent results with Planck constraints for m = 0, 1 with 1.1 ≤
β ≤ 4.5. For m = −1, the existence of warm inflation is verified in this range but

r̃ is not found to be constrained at ns = 0.9603 which violates the condition of

weak dissipative regime. In case of strong dissipative regime, inflationary model

yields compatible results for m = 0, 1,−1 with 1.1 ≤ β ≤ 3.5 but r̃ ≫ 1 in

1.1 ≤ β ≤ 1.9.

Finally, it is concluded that isotropic warm logamediate inflationary universe model

remains consistent with Planck 2015 constraints for both constant as well as gen-

eralized dissipation coefficient for m = 0, 1 and −1 in strong dissipation regime.

In case of weak dissipation regime, the inflationary model yields compatible results

with constant and generalized dissipative coefficients for m = 0, 1 but for m = −1,

the behavior of model is found to be inconsistent.
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Abstract This paper explores Noether and Noether gauge symmetries of anisotropic
universe model in f (R, T ) gravity. We consider two particular models of this gravity
and evaluate their symmetry generators as well as associated conserved quantities. We
also find exact solution by using cyclic variable and investigate its behavior via cosmo-
logical parameters. The behavior of cosmological parameters turns out to be consistent
with recent observations which indicates accelerated expansion of the universe. Next
we study Noether gauge symmetry and corresponding conserved quantities for both
isotropic and anisotropic universe models. We conclude that symmetry generators and
the associated conserved quantities appear in all cases.

Keywords Noether symmetry · Conserved quantity · f (R, T ) gravity

1 Introduction

In the last century, the crucial observational discoveries established revolutionary
advancements in modern cosmology that introduced a new vision of the current accel-
erated expanding universe. The accelerated epoch of the universe known as “dark
energy” (DE) possesses a huge amount of negative pressure. At theoretical level,
the conclusive evidences about accelerated expansion of the universe and enigmatic
behavior of DE lead to introduce modified theories of gravity. The f (R) gravity is
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the simplest proposal (R represents Ricci scalar) developed by replacing R with a
generic function independent of any non-minimal curvature and matter coupling in
the Einstein–Hilbert action.

Different researchers established basic review of f (R) gravity [1–3] and also dis-
cussed stability of its different models [4]. The idea of coupling between curvature and
matter was initially presented by Nojiri and Odintsov [5] who explored explicit and
implicit couplings in f (R) gravity. Harko et al. [6] developed a gravitational theory
involving both curvature as well as matter components known as f (R, T ) gravity (T
denotes trace of the energy-momentum tensor). Sharif and Zubair [7–12] discussed
universe evolution via energy conditions along with stability criteria, reconstructed
different DE models, exact solutions of anisotropic universe and thermodynamical
picture in f (R, T ) gravity.

The discovery of CMBR reveals that the early universe was spatially homogeneous
but largely anisotropic while this anisotropy still exists in terms of CMB temperature
in the present universe. We consider Bianchi type models which measure the effect
of anisotropy in the early universe through current observations [13]. The anisotropic
universe model indicates that the initial anisotropy determines the fate of rapid expan-
sion of the early universe which will continue for initially large values of anisotropy.
If the initial anisotropy is small then the rapid expansion will end leading to a highly
isotropic universe [14,15]. Akarsu and Kilinc [16] studied Bianchi type I (BI) model
that corresponds to de Sitter universe for different equation of state (EoS) models.
Sharif and Zubair [17] formulated exact solutions of BI universe model for power-law
and exponential expansions in f (R, T ) gravity. Shamir [18] discussed exact solutions
of locally rotationally symmetric (LRS) BI universe model and investigated physical
behavior of cosmological parameters in this gravity. Kanakavalli and Ananda [19]
obtained exact solutions of LRS BI model in the presence of cosmic string source and
curvature-matter coupling.

Symmetry approximation plays a crucial role to determine exact solutions or ele-
gantly reduces complexity of a non-linear system of equations. Noether symmetry is a
useful approach to evaluate unknown parameters of differential equations. Sharif and
Waheed explored Bardeen model [20] as well as stringy charged black holes [21] via
approximate symmetry. They also evaluated Noether symmetries of FRW and LRS
BI models by including an inverse curvature term in the action of Brans-Dicke theory
[22]. Kucukakca et al. [23] established exact solutions of LRS BI universe model
through Noether symmetry approach in the same gravity. Jamil et al. [24] discussed
Noether symmetry in f (T ) gravity (T denotes torsion) that involves matter as well as
scalar field contributions and determined explicit form of f (T ) for quintessence and
phantom models. Kucukakca [25] found exact solutions of flat FRW universe model
via Noether symmetry in scalar–tensor theory incorporating non-minimal coupling
with torsion scalar. Sharif and Shafique [26] discussed Noether and Noether gauge
symmetries in this gravity. Sharif and Fatima [27] explored Noether symmetry of flat
FRW model through vacuum and non-vacuum cases in f (G) gravity.

Capozziello et al. [28] explored Noether symmetry to determine exact solutions of
spherically symmetric spacetime in f (R) gravity. Vakili [29] obtained Noether sym-
metry of flat FRW metric and analyzed the behavior of effective EoS parameter in
quintessence phase. Jamil et al. [30] studied Noether symmetry of flat FRW universe
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using tachyon model in this gravity. Hussain et al. [31] studied Noether gauge sym-
metry of flat FRW universe model for f (R) power-law model which generates zero
gauge term. Shamir et al. [32] analyzed Noether gauge symmetry for the same model
as well as for static spherically symmetric spacetime and found non-zero gauge term.
Kucukakca and Camci [33] established Noether gauge symmetry of FRW universe
model in Palatini formalism of f (R) gravity. Momeni et al. [34] investigated the exis-
tence of Noether symmetry and discussed stability of solutions for flat FRW universe
model in f (R, T ) and mimetic f (R) gravity. They also explored a class of solutions
with future singularities.

In this paper, we discuss Noether and Noether gauge symmetries of BI universe
model in f (R, T ) gravity. We formulate exact solution of the field equations to discuss
cosmic evolution via cosmological parameters. The format of this paper is as follows. In
Sect. 2, we discuss a basic formalism of f (R, T ) gravity, Noether and Noether gauge
symmetries. Section 3 explores Noether symmetry of BI model for two theoretical
models of f (R, T ) gravity and also establish exact solution via cyclic variables. In
Sect. 4, we obtain symmetry generator and corresponding conserved quantities through
Noether gauge symmetry for flat FRW and BI models. In the last section, we summarize
the results.

2 Basic framework

The current cosmic expansion successfully discusses not only from the contribution
of the scalar-curvature part but also describes from a non-minimal coupling between
curvature and matter components as well. This non-minimal coupling yields non-zero
divergence of the energy-momentum tensor due to which an extra force appears that
deviates massive test particles from geodesic trajectories. The action of such modified
gravity is given by [6]

I =
∫

d4x
√

−g

[

f (R, T )

2κ2
+ Lm

]

, (1)

where f describes a simple coupling of geometry and matter whereas Lm denotes the
matter Lagrangian. The variation of action (1) with respect to gµν yields non-linear
partial differential equation of the following form

fR(R, T )Rµν −
1

2
f (R, T )gµν + (gµν� − ∇µ∇ν) fR(R, T ) + fT (R, T )Tµν

+ fT (R, T )�µν = κ2Tµν, (2)

where ∇µ shows covariant derivative and

� = ∇µ∇µ, fR(R, T ) =
∂ f (R, T )

∂ R
, fT (R, T ) =

∂ f (R, T )

∂T
,

�µν =
gαβδTαβ

δgµν
= gµνLm − 2Tµν − 2gαβ ∂2Lm

∂gαβ∂gµν
.
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The trace of Eq. (2) provides a significant relationship between geometric and matter
parts as follows

R fR(R, T ) + 3� fR(R, T ) − 2 f (R, T ) + T fT (R, T ) + � fT (R, T ) = κ2T .

Harko et al [6] introduced some theoretical models for different choices of matter as

• f (R, T ) = R + 2 f (T ),
• f (R, T ) = f1(R) + f2(T ),
• f (R, T ) = f1(R) + f2(R) f3(T ).

Noether symmetry is the most significant approach to deal with non-linear partial
differential equations. The existence of Noether symmetry is possible only if Lie
derivative of Lagrangian vanishes, i.e., the vector field is unique on the tangent space.
In such situation, the vector field behaves as a symmetry generator which further
generates conserved quantity. Noether gauge symmetry being generaliztion of Noether
symmetry preserves some extra symmetries along a non-vanishing gauge term. The
vector field and its first order prolongation are defined as

K = ξ
(

t, q i
) ∂

∂t
+ η j

(

t, q i
) ∂

∂q j
,

K [1] = K +
(

η j ,t +η j ,i q̇ i − ξ,t q̇ j − ξ,i q̇ i q̇ j
) ∂

∂ q̇ i
,

where t identifies as affine parameter, ξ, η are symmetry generator coefficients, q i

represents n generalized positions and dot denotes time derivative. The vector field K

generates Noether gauge symmetry if Lagrangian preserves the following condition

K [1]L + (Dξ)L = DG(t, q i ).

Here G(t, q i ) represents the gauge term and D denotes the total derivative operator
defined as

D =
∂

∂t
+ q̇ i ∂

∂q i
.

According to Noether theorem, there exists a conserved quantity corresponding to each
symmetry of a system. In case of Noether gauge symmetry, the conserved quantity for
vector field K takes the form

� = G − ξL −
(

η j − q̇ jξ
) ∂L

∂q̇ j
.

For the existence of Noether symmetry, the following condition must holds

L K L = KL = 0,

where L represents Lie derivative while the vector field K and conserved quantity
corresponding to symmetry generator turn out to be
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K = β i
(

q i
) ∂

∂q i
+

[

d

dt

(

β i
(

q i
))

]

∂

∂ q̇ i
, � = −η j ∂L

∂q̇ j
. (3)

The equation of motion and associated Hamiltonian equation of a dynamical system
are defined as

∂L

∂q i
−

d

dt

(

∂L

∂q̇ i

)

= 0, �i q̇
i pi − L = H, pi =

∂L

∂q i
,

where pi represents conjugate momenta of configuration space.

3 Noether symmetry for BI universe model

Here we apply Noether symmetry approach to deal with non-linear partial differen-
tial Eq. (2) and evaluate symmetry generators as well as corresponding conserved
quantities of BI universe model given by

ds2 = −dt2 + a2(t)dx2 + b2(t)(dy2 + dz2), (4)

where t denotes cosmic time, scale factors a and b measure expansion of the universe
in x and y, z-directions, respectively. We consider the perfect fluid distribution given
by

Tµν = (ρ + p)uµuν + pgµν,

where p, ρ and uµ represent pressure, energy density and four-velocity of the fluid,
respectively. To evaluate the Lagrangian, we rewrite the action (1) as

I =
∫ √

−g[ f (R, T ) − λ(R − R̄) − χ(T − T̄ ) + Lm]dt, (5)

where
√−g = ab2, R̄, T̄ are dynamical constraints while λ, χ are Lagrange multi-

pliers given by

R̄ =
2

ab2
(äb2 + 2abb̈ + 2bȧḃ + aḃ2), T̄ = 3p(a, b) − ρ(a, b),

λ = fR(R, T ), χ = fT (R, T ).

The field Eq. (2) is not easy to tackle with perfect fluid configuration and also there
is no unique definition of matter Lagrangian. In order to construct Lagrangian, we
consider Lm = p(a, b) which yields

L(a, b, R, T, ȧ, ḃ, Ṙ, Ṫ ) = ab2[ f (R, T ) − R fR(R, T ) − T fT (R, T )

+ fT (R, T )(3p(a, b) − ρ(a, b)) + p(a, b)] − (4bȧḃ + 2aḃ2) fR(R, T )

− (2b2ȧ Ṙ + 4abḃ Ṙ) fR R(R, T ) − (2b2ȧṪ + 4abḃṪ ) fRT (R, T ). (6)
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The corresponding equations of motion and energy function of dynamical system
become

ḃ2

b2
+

2b̈

b
= −

1

2 fR(R, T )
[ f (R, T ) − R fR(R, T ) − T fT (R, T ) + fT (R, T )

×(3p(a, b) − ρ(a, b)) + p(a, b) + a
{

fT (3p,a −ρ,a ) + p,a

}

+
4ḃ Ṙ fR R(R, T )

b

+ 2R̈ fR R(R, T ) + 2Ṙ2 fR R R(R, T )

+ 4ṘṪ fR RT (R, T ) + 2T̈ fRT (R, T )

+ 2Ṫ 2 fRT T (R, T )
]

, (7)

ä

a
+

ȧḃ

ab
+

b̈

b
= −

1

4 fR(R, T )
[2( f (R, T ) − R fR(R, T ) − T fT (R, T )

+ fT (R, T )(3p(a, b) − ρ(a, b)) + p(a, b))

+ b
{

fT (3p,
b
−ρ,

b
) + p,

b

}]

+ 2(a−1ȧ Ṙ + R̈) fR R + 2Ṙ2 fR R R + 2(a−1ȧṪ + T̈ ) fRT

+ 2(b−1ḃ Ṙ + 2ṘṪ + Ṫ 2) fR RT + 2b−1ḃṪ fRT T , (8)

ḃ2

b2
+

2ȧḃ

ab
= −

1

fR(R, T )

[(

2ḃ Ṙ

b
+

ȧ Ṙ

a

)

fR R(R, T ) +
(

2ḃṪ

b
+

ȧṪ

a

)

× fRT (R, T ) +
1

2
( f (R, T ) − R fR(R, T )

− T fT (R, T ) + fT (R, T )(3p(a, b)

− ρ(a, b)) + p(a, b))] . (9)

The conjugate momenta corresponding to configuration space (a, b, R, T ) are

pa =
∂L

∂ ȧ
= − 4bḃ fR(R, T ) − 2b2(Ṙ fR R(R, T ) + Ṫ fRT (R, T )), (10)

pb =
∂L

∂ ḃ
= − 4 fR(R, T )(aḃ + bȧ − 4ab(Ṙ fR R(R, T ) + Ṫ fRT (R, T )), (11)

pR =
∂L

∂ Ṙ
= −(4abḃ + 2b2ȧ) fR R(R, T ), (12)

pT =
∂L

∂ Ṫ
= −(4abḃ + 2b2ȧ) fRT (R, T ). (13)

For Noether symmetry, the vector field (3) takes the following form

K = α
∂

∂a
+ β

∂

∂b
+ γ

∂

∂ R
+ δ

∂

∂T
+ α̇

∂

∂ ȧ
+ β̇

∂

∂ ḃ
+ γ̇

∂

∂ Ṙ
+ δ̇

∂

∂ Ṫ
, (14)

where α, β, γ and δ are unknown coefficients of generator which depend on variables
a, b, R and T while the time derivatives of these coefficients are
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α̇ = ȧ
∂α

∂a
+ ḃ

∂α

∂b
+ Ṙ

∂α

∂ R
+ Ṫ

∂α

∂T
, β̇ = ȧ

∂β

∂a
+ ḃ

∂β

∂b
+ Ṙ

∂β

∂ R
+ Ṫ

∂β

∂T
, (15)

γ̇ = ȧ
∂γ

∂a
+ ḃ

∂γ

∂b
+ Ṙ

∂γ

∂ R
+ Ṫ

∂γ

∂T
, δ̇ = ȧ

∂δ

∂a
+ ḃ

∂δ

∂b
+ Ṙ

∂δ

∂ R
+ Ṫ

∂δ

∂T
. (16)

Taking Lie derivative of Lagrangian (6) for vector field (14) and inserting Eqs. (15)
and (16), we obtain the following over determined system of equations by comparing
the coefficients of ȧ2, ḃ2, Ṙ2, Ṫ 2, ȧḃ, ȧ Ṙ, ȧṪ , ḃ Ṙ, ḃṪ and ṘṪ as

(bα,
R
+ 2aβ,

R
) fR R = 0, (17)

(bα,
T

+ 2aβ,
T

) fRT = 0, (18)

2β,a fR + bγ,a fR R + bδ,a fRT = 0, (19)

bα,
R

fRT + bα,
T

fR R + 2aβ,
R

fRT + 2aβ,
T

fR R = 0, (20)

2β fR R + bγ fR R R + bδ fR RT + bα,a fR R + 2aβ,a fR R + 2β,
R

fR + bγ,
R

fR R

+ bδ,
R

fRT = 0, (21)

2β fRT + bγ fR RT + bδ fRT T + bα,a fRT + 2aβ,a fRT + 2β,
T

fR + bγ,
T

fR R

+bδ,
T

fRT = 0, (22)

2β fR + 2bγ fR R + 2bδ fRT + 2bα,a fR + 2aβ,a fR + 2bβ,
b

fR + 2abγ,a fR R

+ b2γ,
b

fR R + 2abδ,a fRT + b2δ,
b

fRT = 0, (23)

2bα fR R + 2aβ fR R + 2abγ fR R R + 2abδ fR RT + b2α,
b

fR R + 2bα,
R

fR + 2ab

×β,
b

fR R + 2aβ,
R

fR + 2abγ,
R

fR R + 2abδ,
R

fRT = 0, (24)

2bα fRT + 2aβ fRT + 2abγ fR RT + 2abδ fRT T + b2α,
b

fRT + 2bα,
T

fR + 2ab

× β,
b

fRT + 2aβ,
T

fR + 2abγ,
T

fR R + 2abδ,
T

fRT = 0, (25)

α fR + aγ fR R + aδ fRT + 2bα,
b

fR + 2aβ,
b

fR + 2abγ,
b

fR R + 2abδ,
b

× fRT = 0, (26)

b2α[ f − R fR − T fT + fT (3p − ρ) + p + a{ fT (3p,a −ρ,a ) + p,a }] + β[2ab

×( f − R fR − T fT + fT (3p − ρ) + p) + ab2{ fT (3p,
b
−ρ,

b
) + p,

b
}] + ab2

×γ [−(R fR R + T fRT ) + fRT (3p − ρ)] + ab2δ[−(R fRT + T fT T ) + fT T

×(3p − ρ)] = 0. (27)

We solve this non-linear system of partial differential equations for two models of
f (R, T ) gravity and evaluate possible solutions of symmetry generator coefficients
as well as corresponding conserved quantities.

3.1 f (R, T ) = R + 2 f (T )

Here we discuss a solution for a simple model that explores Einstein gravity with
matter components such as f (R, T ) = R +2 f (T ), where the curvature term behaves
as a leading term of the model. This model corresponds to �CDM model when matter
part comprises cosmological constant as a function of trace T . Consequently, this
model reduces to
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f (R, T ) = R + 2� + h(T ). (28)

To find the solution of Eqs. (17)–(27), we consider power-law form of unknown
coefficients of vector field as

α = α0aα1 bα2 Rα3 T α4 , β = β0aβ1 bβ2 Rβ3 T β4 , (29)

γ = γ0aγ1 bγ2 Rγ3 T γ4 , δ = δ0aδ1 bδ2 Rδ3 T δ4 , (30)

where the powers are unknown constants to be determined. Using these coefficients
in Eqs. (17)–(25), we obtain

α0 = −β0(α2 + 2), α1 = 1, α3 = 0, α4 = 0, γ = 0,

β1 = 0, β2 = α2 + 1, β3 = 0, β4 = 0.

Inserting these values in Eq. (29), it follows that

α = −β0(α2 + 2)abα2 , β = β0bα2+1.

In order to evaluate α2, we substitute these solutions in Eq. (26) which implies that
either α2 = 0 or α2 = 1

2 .

Case I: α2 = 0

In this case, the generator coefficients turn out to be

α = −2β0a, β = β0b.

In order to evaluate the remaining coefficients, we insert these values in Eqs. (7), (9)
and (27) which give

h(T ) = l1T + l2, δ = 0, p = l3a− 1
5 b− 2

5 ,

ρ = −
1

2l1

[

2� + l2 + (3l1 − 1)l3a− 1
5 b− 2

5

]

.

Substituting all these solutions in Eqs. (17)–(25), we obtain l1 = − 19
3 . Consequently,

the coefficients of symmetry generator and f (R, T ) model become

α = −2β0a, β = β0b, γ = 0, δ = 0, f (R, T ) = R −
19T

3
,

where h(T ) = − 19T
3 − 2� and T = 87

19 l3a− 1
5 b− 2

5 . To avoid Dolgov–Kawasaki
instability, the f (R, T ) model preserves the following conditions [35,36]

fR(R) > 0, fR R(R) > 0, 1 + fT (R, T ) > 0, R > R0. (31)
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In this case, the constructed f (R, T ) model is found to be viable for l3 < 0. Using
the values of symmetry generator coefficients, we obtain symmetry generator which
yields scaling symmetry and its conserved quantity as

K = −2β0a
∂

∂a
+ β0b

∂

∂b
, � = β0

[

−4abḃ + 4ȧb2
]

.

Now we solve the field equations using cyclic variable whose existence is assured
by the presence of symmetry generator of Noether symmetry. We consider a point
transformation which reduces complex nature of the system to φ : (a, b) → (v, z)

implying that φK dv = 0 and φK dz = 1. The second mapping indicates that the
Lagrangian must be free from the variable z. Imposing this point transformation, we
reduce the complexity of the system as

v = ζ0a
1
2 b, z =

ln b

β0
, (32)

where z is cyclic variable and ζ0 denotes arbitrary constant. The inverse point trans-
formation of variables yields

a = ζ1v
1
2 e−2β0z, b = ζ2eβ0z, ρ = −

30ζ3v
− 2

5

19
, p = ζ3v

− 2
5 . (33)

Here we redefine arbitrary constants as ζ3 = l3ζ
− 1

5
1 ζ

− 2
5

2 . For the above solutions, the
Lagrangian (6) and the corresponding equations of motion with associated energy
function (7)–(9) take the form

L = ζ4

(

4β0v
−1
2 v̇ż + 4β2

0v
1
2 ż2 − 30v

2
5

)

,

2β0v
−1
2 z̈ + 2β2

0v− 1
2 ż2 − 12v− 3

5 = 0,

8β0v
1
2 z̈ + v− 3

2 v̇2 + 4β0v
− 1

2 ż − 2v− 1
2 v̈ = 0,

30v
2
5 + 4β2

0v
1
2 ż2 + β0v

− 3
2 v̇2 ż − 2β0v

− 1
2 v̇z̈ = 0.

We solve the above equations to evaluate the time dependent solutions of new variables
(v, z)

v = 2(t − ζ4)
1
2

(

t2 − 2t + ζ 2
4

)

, z =
1

12β0

[

12β0ζ5 − 2.93 − 4 ln
[

(t − ζ4)
5
2

]]

,

where ζ4 and ζ5 represent integration constants. Inserting these values into Eq. (33),
we obtain

a =
8

5
ζ1e−2β0ζ5(t − ζ4)

5
3 , b =

8

5
ζ2eβ0ζ5(t − ζ4)

− 1
3 (t2 − 2tζ1 + ζ 2

1 ), (34)

ρ = −
30ζ3

19
[2(t − ζ4)

1
2 (t2 − 2t + ζ 2

4 )]−
2
5 ,
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p = ζ3[2(t − ζ4)
1
2 (t2 − 2t + ζ 2

4 )]−
2
5 . (35)

We study the behavior of some well-known cosmological parameters like Hub-
ble, deceleration and EoS parameters using scale factors and matter contents. These
parameters play significant role to discuss cosmic expansion as Hubble parameter (H)

measures the rate of cosmic expansion while deceleration parameter (q) determines
that either expansion is accelerated (q < 0) or decelerated (q > 0) or constant expan-
sion (q = 0). The EoS parameter (ω = p

ρ
) evaluates different eras of the universe and

also differentiates DE era into different phases like quintessence (−1 < ω ≤ −1/3)
or phantom (ω < −1). In case of BI universe model, the Hubble and deceleration
parameters are

H =
1

3

(

ȧ

a
+

2ḃ

b

)

, q = −
Ḣ

H2
− 1.

Using Eq. (34), the Hubble and deceleration parameters turn out to be

H =
5ζ6

3

(

1 +
t

ζ6

)

, q = −
3

5
(ζ6 + t)−2 − 1, (36)

where ζ6 = −ζ4. Inserting Eqs. (34) and (35) in (7) and (9), the effective EoS parameter
becomes

ωe f f =
pe f f

ρe f f

= 1 −
ζ4 − t + 3(

√
t − ζ4(t

2 − 2t + ζ 2
4 ))

2
5

t − ζ4
.

The crucial pair of (r, s) parameters study the correspondence between con-
structed and standard universe models such as for (r, s) = (1, 0), the constructed
model corresponds to standard constant cosmological constant cold dark matter
(�CDM) model. In terms of Hubble and deceleration parameters, these are defined
as

r = q + 2q2 −
q̇

H
, s =

r − 1

3(q − 1
2 )

.

Using Eq. (36), these parameters take the form

r = 1 +
18

25

(

2(t − ζ4)
−4 − 2(t − ζ4)

−3 + (t − ζ4)
−2

)

,

s =
1

3
(r − 1)

(

−
3(t + ζ6)

−2

5
−

3

2

)−1

.

Both plots of Fig. 1 represent graphical analysis of the scale factors a and b which
show the increasing behavior of both scale factors in x and y, z-directions, respectively.
This increasing nature of scale factors indicates the cosmic accelerated expansion
in all directions. The graphical analysis of Hubble and deceleration parameters is
shown in Fig. 2. Figure 2i shows that the Hubble parameter grows continuously rep-
resenting expanding universe whereas Fig. 2ii shows negative deceleration parameter
which corresponds to accelerated expansion of the universe. In Fig. 3, the first plot
indicates that the effective EoS parameter corresponds to quintessence phase while
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a b

Fig. 1 Plots of scale factors versus cosmic time t : i a(t) versus t ; ii b(t) versus t for ζ1 = 0.15, ζ2 = 0.09,
ζ4 = −0.99, ζ5 = 0.5, β0 = 0.1

Fig. 2 Plots of i Hubble parameter and ii deceleration parameter versus cosmic time t for ζ6 = −0.99

Fig. 3 Plots of i EoS Parameter and ii r-s parameters versus cosmic time t for ζ6 = −0.99

Fig. 3ii represents correspondence of the constructed model with standard �CDM uni-
verse model. Thus, the analysis of cosmological parameters implies that the universe
experiences accelerated expansion for BI universe model in the context of f (R, T )

gravity.

Case II: α2 = 1
2

For α2 = 1
2 , the solutions become
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α = −
5

2
β0ab

1
2 , β = β0b

3
2 ,

whereas Eq. (27) yields

δ = 0, h(T ) = −2� + c1T, p = c2a
3c2

1−3c1−1

3c1−1 b
3(5c2

1−4c1−2)

2(3c1−1) ,

ρ =
(

3c1 − 1

c1 − 2

)

c2a
3c2

1−3c1−1

3c1−1 b
3(5c2

1−4c1−2)

2(3c1−1) .

The above solutions satisfy the system of Eqs. (17)–(25) for c1 = 3±
√

21
6 . Under this

condition, the solutions and considered model of f (R, T ) gravity take the following
form

α = −
5

2
β0ab

1
2 , β = β0b

3
2 , γ, δ = 0, h(T ) = −2� +

(

3 ±
√

21

6

)

T,

p = c2b
1
2 , ρ =

(

−3 ∓
√

21

9 ∓
√

21

)

c2b
1
2 , f (R, T ) = R +

(

3 ±
√

21

6

)

T,

where T =
(

30∓2
√

21
9∓

√
21

)

c2b
1
2 . Here, the constructed model ignores Dolgov–Kawasaki

instability as fR, fR R, 1 + fT > 0. The symmetry generator and its corresponding
conserved quantity turn out to be

K = −
5

2
β0ab

1
2

∂

∂a
+ β0b

3
2

∂

∂b
, � = β0

[

6ab
3
2 ḃ − 4ȧb

5
2

]

.

We consider z to be a cyclic variable which yields

v = χ0a
2
5 b, z = −

2b− 1
2

β0
,

where χ0 denotes arbitrary constant. The corresponding inverse point transformation
leads to

a = χ1v
5
2

(

−
β0z

2

)5

, b = χ2

(

−
β0z

2

)−2

,

p = c2χ2

(

−
β0z

2

)−1

ρ =
(

−3 ∓
√

21

9 ∓
√

21

)

c2χ2

(

−
β0z

2

)−1

,

where χ1, χ2 are arbitrary constants. For these solutions, the Lagrangian (6) becomes
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L = −2β0χ1χ
2
2

[

5v
3
2 v̇ − 6β0v

5
2 ż2

(

−
β0z

2

)−1
]

+ c2v
5
2

[

4

(

3 ±
√

21

6

)

×
(

6 ∓
√

21

9 ∓
√

21

)

− 1

]

,

which depends upon the cyclic variable z. Thus, the resulting symmetry generator for
α2 = 0 yields scaling symmetry providing more significant results as compared to
α2 = 1

2 .

3.2 f (R, T ) = f1(R) + f2(T )

Here we consider f (R, T ) model which does not encourage any absolute non-minimal
coupling of curvature and matter. For vector field K (14), we substitute this model in
Eqs. (17)–(23) and (25) yielding the coefficients of symmetry generator in the form

α = −
2ac3

b

√

f ′
1(R)

− 2ac4 ln( f ′
1(R)) −

2c5√
b

− 4 ln(b)ac4 − 6 ln(b)c6a + c7a,

β =
c3

√

f ′
1(R)

+ (c8 + ln( f ′
1(R))c4)b − (c4 + c6)b ln(b) + c6b ln(a),

γ = −
2

√

f ′
1(R) f ′′

1 (R)b

[

b((−3c4 − 4c6) ln(b) + c4 + c8 +
c7

2

+ c6 + c6 ln(a))( f ′
1(R))

3
2 − c3 f ′

1(R)
]

,

where prime denotes derivative with respect to R and ci (i = 3, 4, 5, 6, 7, 8) are
arbitrary constants. Inserting these solutions in Eq. (24), we obtain two solutions for
f1(R) as f1(R) = c9 R + c10 which is similar to the previous case while the second
solution increases the complexity of the system. To avoid this situation, we consider
f1(R) = f0 Rn, (n �= 0, 1) which yields

α = ac11, β = bc12, γ =
(c11 + 2c12)R

1 − n
, f2(T ) =

T

3
+ c13,

p =
1

12nc13

[

R1−nbρ,b −Rc13 − 6R1−nc13 + 2R1−nρ + 6nc13 R
]

,

ρ = 3 f0 Rn + 3c13 −
(c11aρ,a +c12bρ,b )

(c11 + 2c12)
.

These solutions satisfy (17)–(27) for n = 2 which implies that f1(R) = f0 R2 and
hence this quadratic curvature term describes an indirect non-minimal coupling of the
matter components with geometry. Thus the matter contents and model of f (R, T )

gravity turn out to be
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ρ = 3 f0 R2 + 3c13 +
a

−1+ c12
c11 b

2
, p =

1

24c13





3a
−1+ c12

c11 bR−1

2
+ 12c13 R



 ,

f (R, T ) = f0 R2 +
T

3
+ c13, T = 3p − ρ.

In this case, the constructed f (R, T ) model is found to be viable as it preserves stability
conditions (31). The corresponding symmetry generator takes the form

K = ac11
∂

∂a
+ bc12

∂

∂b
− R(c11 + 2c12)

∂

∂ R
.

This generator yields scaling symmetry with the following conserved factors

�1 = 4ab2 Ṙ f0 − 4b2ȧ f0 R, �2 = −24abḃ f0 R − 8ab2 Ṙ f0,

where �1 and �2 are conserved quantities corresponding to c11 and c12, respectively.
To reduce the complex nature of the system, we consider φ : (a, b, R) → (u, v, z)

implying that φK du = 0, φK dv = 0 and φK dz = 1. In this case, we choose z as
cyclic variable which gives

u = A0a
c11+2c12

c11 R, v = A1b
c11+2c12

c12 R, z = −
1

c11 + 2c12
ln R,

where A0 and A1 denote integration constants. The corresponding inverse point trans-
formation yields

a = u
c11

c11+2c12 ec11z, b = v
c12

c11+2c12 ec12z, R = ec11+2c12z .

For these solutions, the Lagrangian (6) takes the form

L =
1

(c11 + 2c12)2

(

24 f0 ż2v

2c12
c11+2c12 c3

11u

c11
c11+2c12 c12 + 60 f0 ż2v

2c12
c11+2c12 u

c11
c11+2c12

× c2
11c2

12 + 80 f0 ż2v

2c12
c11+2c12 c11c3

12u

c11
c11+2c12 + 16 f0v̇ żu

c11
c11+2c12 c3

12v
− c11

c11+2c12

+ 4 f0u̇ żv

2c12
c11+2c12 c3

11u
− 2c12

c11+2c12 − 8 f0u̇v̇c12c11v
− c11

c11+2c12 u
− 2c12

c11+2c12 + 8 f0u̇ ż

× v

2c12
c11+2c12 u

− 2c12
c11+2c12 c12c2

11 + 8 f0v̇ żu

c11
c11+2c12 v

− c11
c11+2c12 c2

12c11 −
(

u

c11
c11+2c12 ec11z

)

c12
c11

× v

3c12
c11+2c12 e3c12zc2

11 − 4

(

u

c11
c11+2c12 ec11z

)

c12
c11

v

3c12
c11+2c12 e3c12zc2

12 − 4 f0v̇2c2
12

× u

c11
c11+2c12 v

− 2(c12+c11)

c11+2c12 + 48 f0 ż2u

c11
c11+2c12 v

2c12
c11+2c12 c4

12 + 4v

2c12
c11+2c12 u

c11
c11+2c12

× f0c4
11 ż2 − 4

(

u

c11
c11+2c12 ec11z

)

c12
c11

v

3c12
c11+2c12 e3c12zc11c12



 .
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Here, the Lagrangian again depends on the cyclic variable z. Consequently, this
approach does not provide a successive way to evaluate exact solution of the anisotropic
universe model in this case.

4 Noether gauge symmetry

In this section, we determine Noether gauge symmetry of homogeneous and isotropic
as well as anisotropic universe for f (R, T ) = f0 Rn + h(T ) model.

4.1 Flat FRW universe model

We first consider flat FRW metric given by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (37)

where the scale factor a describes expansion in x, y and z-directions. For isotropic
universe, the Lagrangian depends on configuration space (a, R, T ) with tangent space
(a, R, T, ȧ, Ṙ, Ṫ ). The metric variation of action (1) with Lm = p(a) leads to

L(a, R, T, ȧ, Ṙ, Ṫ ) = a3[ f (R, T ) − R fR(R, T ) − T fT (R, T ) + fT (R, T )

×(3p(a) − ρ(a)) + p(a)] − 6(aȧ2 fR(R, T ) + a2ȧ Ṙ fR R(R, T )

+ a2ȧṪ fRT (R, T )). (38)

For Noether gauge symmetry, the vector field K with its first order prolongation is
defined as

K = τ(t, a, R, T )
∂

∂t
+ α(t, a, R, T )

∂

∂a
+ β(t, a, R, T )

∂

∂ R
+ γ (t, a, R, T )

∂

∂T
,

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂ R
+ γ

∂

∂T
+ α̇

∂

∂ ȧ
+ β̇

∂

∂ Ṙ
+ γ̇

∂

∂ Ṫ
,

where τ, α, β and γ are unknown coefficients of vector field to be determined and
the time derivatives of these coefficients are

α̇ =
∂α

∂t
+ ȧ

∂α

∂a
+ Ṙ

∂α

∂ R
+ Ṫ

∂α

∂T
− ȧ

{

∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂ R
+ Ṫ

∂τ

∂T

}

,

β̇ =
∂β

∂t
+ ȧ

∂β

∂a
+ Ṙ

∂β

∂ R
+ Ṫ

∂β

∂T
− Ṙ

{

∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂ R
+ Ṫ

∂τ

∂T

}

,

γ̇ =
∂γ

∂t
+ ȧ

∂γ

∂a
+ Ṙ

∂γ

∂ R
+ Ṫ

∂γ

∂T
− Ṫ

{

∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂ R
+ Ṫ

∂τ

∂T

}

.

The existence of Noether gauge symmetry demands

K [1]L + (Dτ)L = DG(t, a, R, T ), (39)
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where G represents gauge function and D = ∂t + ȧ∂a + Ṙ∂R + Ṫ ∂T . Substituting
the values of vector field, its first order prolongation and corresponding derivatives of
coefficients in Eq. (39), we obtain the following system of equations

τ,a = 0, τ,
R
= 0, τ,

T
= 0, G,

T
= 0, (40)

n(n − 1) f0 Rn−2a2α,
R
= 0, (41)

n(n − 1) f0a2 Rn−2α,
T

= 0, (42)

2aα,
T

+(n − 1)a R−1β,
T

= 0, (43)

6n(n − 1) f0a2 Rn−2α,t = −G,
R
, (44)

n f0 Rn−1[2aα,t +(n − 1)a2 R−1β,t ] = −G,a , (45)

α + (n − 1)a R−1β + 2aα,a −aτ,t +(n − 1)a2 R−1β,a = 0, (46)

2(n − 1)R−1α + (n − 1)(n − 2)a R−2β + (n − 1)a R−1α,a +2α,
R
−(n − 1)

×a R−1τ,t +(n − 1)a R−1β,
R
= 0, (47)

α[3a2{ f0 Rn(1 − n) + h(T ) − T h(T ),
T

+h(T ),
T

(3p − ρ) + p} + a3{h(T ),
T

×(3p,a −ρ,a ) + p,a }] − n(n − 1) f0a3 Rn−1β + a3γ h(T ),
T T (3p − ρ − T )

+ a3τ,t { f0 Rn(1−n)+h(T )−T h(T ),
T
+h(T ),

T
(3p−ρ)+ p}=G,t . (48)

Solving the above system, it follows that

τ =
ξ4t (3ξ11ξ2 − ξ3ξ10)

ξ11
+ ξ13, α = ξ4(ξ2a + ξ3a−1),

β =
ξ4ξ3 (ξ10 + ξ11a−2)R

ξ11(1 − n)
, G =

ξ1t

2
, γ = 0,

where ξi are arbitrary constants. For these coefficients, the symmetry generator
becomes

K =
(

ξ4t (3ξ11ξ2 − ξ3ξ10)

ξ11
+ ξ13

)

∂

∂t
+

(

ξ4ξ3(ξ10 + ξ11a−2)R

ξ11(1 − n)

)

∂

∂ R

+ξ4(ξ2a + ξ3a−1)
∂

∂a
.

This generator can be split as

K1 =
∂

∂t
, K2 =

(

t (3ξ11ξ2 − ξ3ξ10)

ξ11

)

∂

∂t
+

(

ξ3(ξ10 + ξ11a−2)R

ξ11(1 − n)

)

∂

∂ R

+ (ξ2a + ξ3a−1)
∂

∂a
,

where the first generator corresponds to energy conservation. The corresponding con-
served quantities are

�1 = −
t (3ξ11ξ2 − ξ3ξ10)

ξ11

[

a3
(

f0 Rn(1 − n) + ǫ0 −
ρ

3

)

− 6(aȧ2 + (n − 1)
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× a2ȧ Ṙ R−1)n f0 Rn−1
]

+ 6an f0 Rn−1(2ȧ − (n − 1)a R−1 Ṙ)
[(

ξ2a + ξ3a−1
)

−
t ȧ(3ξ11ξ2 − ξ3ξ10)

ξ11

]

− 6n(n − 1) f0a2 Rn−2ȧ

[

ξ3(ξ10 + ξ11a−2)R

ξ11(1 − n)

+
t Ṙ(3ξ11ξ2 − ξ3ξ10)

ξ11

]

,

�2 = −a3
(

f0 Rn(1 − n) + ǫ0 −
ρ

3

)

− 6(aȧ2 + 2(n − 1)a2ȧ Ṙ R−1)n f0 Rn−1.

4.2 Bianchi I universe model

Here we investigate Noether gauge symmetry for BI universe model. In this case, the
vector field and corresponding first order prolongation take the form

K = τ(t, a, b, R, T )
∂

∂t
+ α(t, a, b, R, T )

∂

∂a
+ β(t, a, b, R, T )

∂

∂b

+ γ (t, a, b, R, T )
∂

∂ R
+ δ(t, a, b, R, T )

∂

∂T
,

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂ R
+ δ

∂

∂T
+ α̇

∂

∂ ȧ
+ β̇

∂

∂ ḃ
+ γ̇

∂

∂ Ṙ
+ δ̇

∂

∂ Ṫ
,

where

α̇ = Dα − ȧDτ, β̇ = Dβ − ḃDτ, γ̇ = Dγ − ṘDτ, δ̇ = Dδ − Ṫ Dτ.

Using the above vector field, its prolongation and coefficients derivatives in the condi-
tion of the existence of Noether gauge symmetry, we formulate the following system
of nonlinear partial differential equations as

τ,a = 0, τ,
b
= 0, τ,

R
= 0, τ,

T
= 0, G,

T
= 0, (49)

bα,
R
+ 2aβ,

R
= 0, (50)

bα,
T

+2 aβ,
T

= 0, (51)

2β,a + (n − 1)bR−1γ,a = 0, (52)

2β,
T

+ (n − 1)bR−1γ,
T

= 0, (53)

bα,
T

+ aβ,
T

+(n − 1)abR−1γ,
T

= 0, (54)

n(n − 1) f0 Rn−2[2b2α,t +4abβ,t ] = −G,
R
, (55)

n f0 Rn−1[4bβ,t +2(n − 1)b2 R−1γ,t ] = −G,a , (56)

n f0 Rn−1[4bα,t +4aβ,t +4(n − 1)abR−1γ,t ] = −G,
b
, (57)

α + (n − 1)a R−1γ + 2bα,
b
+2aβ,

b
+2(n − 1)abR−1γ,

b
+aτ,t = 0, (58)

2β + 2(n − 1)bR−1γ + 2bα,a +2aβ,a +2bβ,
b
+2(n − 1)abR−1γ,a

+ (n − 1)b2 R−1γ,
b
−2bτ,t = 0, (59)

2(n − 1)R−1β + (n − 1)(n − 2)bR−2γ + (n − 1)bR−1α,a +2β,
R
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+ 2(n − 1)a R−1β,a +(n − 1)bR−1γ,
R
−(n − 1)bR−1τ,t = 0, (60)

2(n − 1)bR−1α + 2(n − 1)a R−1β + 2(n − 1)(n − 2)abR−2γ + 2bα,
R

+ (n − 1)b2 R−1α,
b
+2(n − 1)abR−1β,

b
+ 2aβ,

R
+2(n − 1)abR−1γ,

R

− 2(n − 1)abR−1τ,t = 0, (61)

b2α[ f0 Rn(1 − n) + h(T ) − T h(T ),
T

+h(T ),
T

(3p − ρ) + p + a{h(T ),
T

×(3p,a −ρ,a ) + p,a }] + β[2ab( f0 Rn(1 − n) + h(T ) − T h(T ),
T

+h(T ),
T

×(3p − ρ) + p) + ab2{h(T ),
T

(3p,
b
−ρ,

b
) + p,

b
}] − n(n − 1) f0ab2 Rn−1γ

+ ab2δh(T ),
T T (3p − ρ − T ) + ab2τ,t { f0 Rn(1 − n) + h(T ) − T h(T ),

T

+ h(T ),
T

(3p − ρ) + p} = G,t . (62)

We solve this system of equations

τ = η1, G = (η2t + η3)η4η5, α = η5η6a, β = η5η6b,

γ =
η5η6 R

2(1 − n)
, δ = 0, ρ = −

3η2η4(η7 + η8 ln a)

ab2η6η8
,

p = −
1

2n f0
[ f0 Rn + R1−nη9 − Rn f0],

f (R, T ) = f0 Rn −
1

6n f0
[ f0 Rn + R1−nη9 − Rn f0] −

η2η4(η7 + η8 ln a)

ab2η6η8
,

where the constants ηi are redefined. The solution of these coefficients lead to

K = η1
∂

∂t
+ η5η6a

∂

∂a
+ η5η6b

∂

∂b
+

η5η6 R

2(1 − n)

∂

∂ R
.

This generator can be split as

K1 =
∂

∂t
, K2 = a

∂

∂a
+ b

∂

∂b
+

R

2(1 − n)

∂

∂ R
,

where the first generator yields energy conservation whereas the second generator
provides scaling symmetry. The corresponding conserved quantities are

�1 = −ab2
[(

f0 Rn(1 − n) + ǫ1 −
ρ

3

)

− n f0 Rn−1(2aḃ2 + (n − 1)R−1(2b2ȧ Ṙ

+ 4abḃ Ṙ) + 4bȧḃ)
]

,

�2 = η2t + η3 − 4b2ȧn f0 Rn−1.

5 Final remarks

In this paper, we have discussed Noether and Noether gauge symmetries of
BI universe model in f (R, T ) gravity. We have formulated Noether symme-
try generators, corresponding conserved quantities, matter contents (p, ρ) as

123



Exact solutions and conserved quantities in f (R, T )... Page 19 of 20  76 

well as explicit forms of generic function f (R, T ) for BI model via two the-
oretical models of f (R, T ) gravity, i.e., R + 2� + h(T ) and f0 Rn + h(T ).
We have also evaluated Noether gauge symmetries and conserved quantities of
homogeneous isotropic as well as anisotropic universe models for f0 Rn + h(T )

model.
For BI universe model, we have found two Noether symmetry generators for the

first model in which the first generator gives scaling symmetry. We have solved
the system by introducing cyclic variable which lead to exact solution of the
scale factors and f (R, T ) model. The graphical behavior of scale factors indicate
that the universe undergoes an expansion in x, y and z-directions. To evaluate
exact solution of the anisotropic universe model for the second symmetry gener-
ator, we have constructed Lagrangian in terms of cyclic variable. The Lagrangian
violates the mapping φK dz = 1 as it is not independent of cyclic variable z.
Thus, the symmetry generator with scaling symmetry yields exact solution of the
anisotropic universe model. We have investigated graphical behavior of the cosmo-
logical parameters, i.e., Hubble and deceleration parameters for this solution. This
indicates an accelerated expansion of the universe while EoS parameter corresponds
to quintessence phase. The trajectory of r and s parameters indicates that the con-
structed f (R, T ) model corresponds to standard �CDM model. For the second
model ( f (R, T ) = f1(R) + f2(T )) when f1(R) = f0 Rn , the symmetry genera-
tor provides scaling symmetry for n = 2. This implies that the scaling symmetry
induces an indirect non-minimal quadratic curvature matter coupling in this grav-
ity.

Finally, we have discussed Noether gauge symmetry and associated conserved
quantities of flat FRW and BI universe models. The time coefficient of symme-
try generator is found to be t dependent for FRW universe but becomes constant
for BI model while gauge function is non-zero in both cases. The symmetry gen-
erator provides energy conservation for isotropic universe whereas for anisotropic
universe, we have energy conservation along with scaling symmetry. In the pre-
vious work [37], we have formulated exact solution through Noether symmetry
approach for LRS BI universe using f (R) power-law model. The cosmological
parameters correspond to accelerated expanding universe while the EoS parameter
describes phantom divide line from quintessence to phantom phase. The Noether
symmetry generator provides scaling symmetry whereas Noether gauge symmetry
yields energy conservation with constant time coefficient of symmetry generator
and gauge term. Here, we have discussed exact solution via Noether symme-
try for BI model. The cosmological parameters yield consistent results but EoS
parameter corresponds to phantom era. In case of Noether gauge symmetry, we
have found time dependent gauge term and time coefficient of symmetry genera-
tor for flat FRW model but this time coefficient remains constant for BI model.
Thus, the Noether and Noether gauge symmetries yield more symmetries for
non-minimal curvature matter coupling in f (R, T ) gravity as compared to f (R) grav-
ity.
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Abstract This paper determines the existence of Noether

symmetry in non-minimally coupled f (R, T ) gravity admit-

ting minimal coupling with scalar field models. We con-

sider a generalized spacetime which corresponds to different

anisotropic and homogeneous universe models. We formu-

late symmetry generators along with conserved quantities

through Noether symmetry technique for direct and indi-

rect curvature–matter coupling. For dust and perfect flu-

ids, we evaluate exact solutions and construct their cos-

mological analysis through some cosmological parameters.

We conclude that decelerated expansion is obtained for the

quintessence model with a dust distribution, while a perfect

fluid with dominating potential energy over kinetic energy

leads to the current cosmic expansion for both phantom as

well as quintessence models.

1 Introduction

The generic function in f (R) gravity is a coupling-free func-

tion which helps to resolve many cosmological issues. Nojiri

and Odintsov [1] proposed the concept of a non-minimal

curvature–matter coupling, which led to fresh insight among

researchers. This coupling successfully incorporates clusters

of galaxies or dark matter in galaxies, yielding natural pre-

heating conditions corresponding to inflationary models and

thus one introduced the idea of traversable wormholes in the

absence of any exoticmatter [2–5].Harko et al. [6] proposed a

newversion ofmodified theorywhose generic function incor-

porates curvature aswell asmatter, knownas f (R, T )gravity

(T is the trace of the energy-momentum tensor). This func-

tion induces strong interactions of gravity and matter, which

play a dynamical role in analyzing the current cosmic expan-

sion [7]. Sharif and Zubair [8–13] investigated some cosmic

issues like energy conditions, thermodynamics, anisotropic

a e-mail: msharif.math@pu.edu.pk

b e-mail: iqranawazish07@gmail.com

exact solutions, reconstruction of some dark energy mod-

els, and also they studied the stability issue in this theory of

gravity.

The interest in exact solutions of higher order non-linear

differential equations keeps researchers motivated as these

are extensively used to investigate different cosmic aspects.

Harko and Lake [14] discussed exact solutions of the cylin-

drical spacetime in the presence of non-minimal coupling

between R and matter Lagrangian density (Lm). The higher

order non-linear differential equations of f (R, T ) gravity

attract many researchers as they perform cosmological anal-

ysis via exact solutions of the field equations. Sharif and

Zubair [15] considered exponential and power-law expan-

sions to evaluate some exact solutions and kinematical quan-

tities of the Bianchi type I (BI) model in this gravity. Shamir

and Raza [16] formulated exact solutions corresponding to

cosmic strings as well as a non-null electromagnetic field.

Shamir [17] found exact solutions of a locally rotation-

ally symmetric BI model and studied the physical behavior

through cosmological parameters.

In mathematical physics and theoretical cosmology, con-

tinuous symmetry reduces the complexity of non-linear sys-

tems, which successfully yields exact solutions. In a dynam-

ical system, Noether symmetry points to a correspondence

between infinitesimal symmetry generator and conserved

quantity. Capozziello et al. [18] used this approach to find

exact solutions of spherically symmetric spacetime in f (R)

gravity. Hussain et al. [19] investigated the existence of

Noether symmetry of a power-law f (R) model and found

the boundary term to vanish for the flat FRW universe model

but Shamir et al. [20] obtained a non-zero boundary term

of the same model. Momeni et al. [21] explored a Noether

point symmetry of the isotropic universe in mimetic f (R)

and f (R, T ) gravity theories. Shamir and Ahmad [22] con-

structed exact solutions in f (G, T ) gravity (G denotes the

Gauss–Bonnet term).

Sanyal [23] determined exact solutions of the Kantowski–

Sachs (KS) universe model through the Noether symmetry
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technique in non-minimally coupled gravity with a scalar

field. Camci and Kucukakca [24] extended this work by

adding BI as well as BIII universe models and formulated

explicit forms of the scalar field. Kucukakca et al. [25] dis-

cussed the presence of Noether symmetry to formulate exact

solutions of a locally rotationally symmetric BI universe.

Camci et al. [26] generalized this work for anisotropic uni-

verse models such as BI, BIII and KS. We have obtained

exact solutions of a f (R) power-law model [27] as well as of

a f (R, T ) model admitting indirect non-minimal curvature–

matter coupling [28].

In non-minimally coupled gravitational theory, the

Noether symmetry approach is extensively used to study dif-

ferent cosmological models and the dynamical role of various

scalar field models [29]. Vakili [30] identified the existence of

Noether point symmetry along with a conserved quantity for

the flat FRW universe and studied the behavior of effective

equation of state (EoS) parameter for the quintessence model

in f (R) gravity. Zhang et al. [31] explored a multiple scalar

field scenario and formulated a relationship of the potential

function with quintessence and phantom models. Jamil et al.

[32] ensured the presence of Noether symmetry with conser-

vation law for the f (R) tachyon model. Sharif and Shafique

[33] obtained exact solutions of isotropic and anisotropic uni-

verse models in scalar–tensor theory non-minimally coupled

with the torsion scalar.

In this paper, we discuss the existence of Noether symme-

tries of non-minimally coupled f (R, T ) gravity interacting

with generalized scalar field model. The format of the paper

is as follows. Section 2 introduces some basic aspects of this

gravity. In Sect. 3, we discuss all possible Noether symme-

tries with associated conserved quantities for two particular

models of this theory. We also formulate exact solutions for

dust as well as perfect fluid distribution and study their phys-

ical behavior through some cosmological parameters. In the

last section, we present final remarks.

2 Some basics of f (R, T ) gravity

We consider the action incorporating gravity, matter and

scalar field:

I =
∫

d4x
√

−g[Lg + Lm + Lφ], (1)

where g denotes the determinant of the metric tensor, Lg and

Lφ represent gravity and scalar field Lagrangian densities.

For non-minimal coupling, the gravitational Lagrangian is

considered to be a generic function f (R, T ) admitting min-

imal coupling only with Lm and Lφ [6]. In this case, the

metric variation of Lg and Lm yields

fR(R, T )Rµν −
1

2
f (R, T )gµν

+(gµν∇µ∇µ − ∇µ∇ν) fR(R, T ) + fT (R, T )Tµν

+ fT (R, T )

(

gµνLm−2Tµν−2gαβ ∂2Lm

∂gαβ∂gµν

)

= κ2Tµν,

where the subscripts R and T describe corresponding partial

derivatives of f , ∇µ indicates the covariant derivative and

Tµν represents the energy-momentum tensor. The divergence

of the energy-momentum tensor leads to

∇µTµν =
fT

κ2 − fT

[

(Tµν + �µν)∇µ ln fT

+∇µ�µν −
gµν∇µT

2

]

.

In non-minimally coupled modified gravity, the energy-

momentum tensor no more remains conserved. This non-

zero divergence introduces an extra force in the equation of

motion which is responsible for a deviation of massive test

particles from the geodesic trajectories.

A generalization of some anisotropic and homogeneous

universe models is given as [34]

ds2 = −dt2 + a2(t)dr2 + b2(t)(dθ2 + ζ(θ)dφ2), (2)

where a and b are scale factors and ζ(θ) = θ, sin hθ, sin θ

identify BI, BIII and KS models with the following relation-

ship:

1

ζ

d2ζ

dθ2
= −ξ.

For ξ = 0,−1, 1, the spacetime (2) corresponds to the BI,

BIII and KS universe models, respectively. For a perfect fluid,

the energy-momentum tensor is

Tµν = (ρm + pm)uµuν + pm gµν,

where pm and ρm define pressure and energy density, respec-

tively whereas u represents the four-velocity of the fluid. For

the action (1), the Lagrangian density of matter and scalar

fields are defined as [35,36]

Lm = pm(a, b), Lφ =
ǫ

2
gµν∂µφ∂νφ − V (φ), (3)

where V (φ) denotes the potential energy of the scalar field

and ǫ = 1,−1 indicate scalar field models, i.e., quintessence

and phantom models.

Phantom model suffers with number of troubles like vio-

lation of dominant energy condition, the entropy of phantom-

dominated universe is negative and consequently, black holes

disappear. Such a universe ends up with a finite time future

singularity dubbed a big-rip singularity [37]. Different ideas

are proposed to cure the troubles of this singularity such as

considering phantom acceleration as transient phenomenon

with different scalar potentials or to modify the gravity, cou-

ple dark energy with dark matter or to use particular forms

of EoS for dark energy taking into account some quantum
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effects (giving rise to the second quantum gravity era) which

may delay/stop the singularity occurrence [38–42]. Inserting

Eq. (3) into (1), we obtain

I =
∫

d4x
√

−g

[

f (R, T )

2κ2
+ pm(a, b)

+
ǫ

2
gµν∂µφ∂νφ − V (φ)

]

, (4)

where

R =
2

ab2
(äb2 + 2abb̈ + 2bȧḃ + aḃ2 + aξ),

T = 3pm(a, b) − ρm(a, b).

To evaluate Lagrangian corresponding to the action (4)

for configuration space Q = {a, b, R, T, φ}, we use the

Lagrange multiplier approach which yields

L = ab2

[

f (R, T ) − R fR(R, T ) + fT (R, T )(3pm(a, b)

−ρm(a, b) − T ) −
ǫφ̇2

2
+ pm(a, b) − V (φ)

]

−(4bȧḃ + 2aḃ2 − 2aξ) fR(R, T )

−(2b2ȧ Ṙ + 4abḃ Ṙ)

× fR R(R, T ) − (2b2ȧṪ + 4abḃṪ ) fRT (R, T ). (5)

In a dynamical system, the Euler–Lagrange equation, the

Hamiltonian (H) and conjugate momenta (pi ) play a signif-

icant role to determine basic features of the system, defined

as

∂L

∂q i
−

d pi

dt
= 0, H =

∑

i

q̇ i pi − L, pi =
∂L

∂q̇ i
,

where q i refers to n coordinates of the system. For the

Lagrangian (5), the conjugate momenta take the following

form:

pa = −4bḃ fR − 2b2(Ṙ fR R + Ṫ fRT ), pφ = −ab2ǫφ̇,

pb = −4 fR(aḃ + bȧ) − 4ab(Ṙ fR R + Ṫ fRT ),

pR = −(4abḃ + 2b2ȧ) fR R, pT = −(4abḃ + 2b2ȧ) fRT .

The dynamical equations of the system are

2 fR(R, T )

(

ḃ2

b2
+

2b̈

b
+

2ξ

b2

)

+ f − R fR

+ fT (3pm(a, b) − ρm(a, b) − T )

+pm(a, b) −
ǫφ̇2

2
− V (φ)

+a{ fT (3pm,a −ρm,a ) + pm,a } + 4b−1ḃ Ṙ fR R

+4b−1ḃṪ fRT + 2R̈ fR R + 2Ṙ2 fR R R + 4ṘṪ fR RT

+2T̈ fRT + 2Ṫ 2 fRT T = 0, (6)

2 fR

(

ä

a
+

ȧḃ

ab
+

b̈

b

)

+ f − R fR + fT (3pm(a, b) − ρm(a, b) − T )

+pm(a, b) −
ǫφ̇2

2
− V (φ) +

b

2
{ fT (3pm,

b
−ρm,

b
))

+pm,
b
} + 2(a−1ȧ Ṙ + R̈) fR R + 2Ṙ2

× fR R R + 2(a−1ȧṪ + T̈ ) fRT + 2(b−1ḃ Ṙ

+2ṘṪ + Ṫ 2) fR RT + 2b−1ḃṪ fRT T = 0, (7)

fRT (3pm(a, b) − ρm(a, b) − T ) = 0,

fT T (3pm(a, b) − ρm(a, b) − T ) = 0,

ǫφ̈ + 2ǫb−1ḃφ̇ + ǫa−1ȧφ̇ − V ′(φ) = 0. (8)

In order to evaluate the total energy of the dynamical system,

we formulate the Hamiltonian as

H = 2 fR

(

ḃ2

b2
+

2ȧḃ

ab

)

+ 2

(

2ḃ

b
+

ȧ

a

)

Ṙ fR R

+2

(

2ḃ

b
+

ȧ

a

)

Ṫ fRT + f − R fR

+ fT (3pm(a, b) − ρm(a, b) − T ) + pm(a, b)

+
ǫφ̇2

2
− V (φ) +

2ξ fR

b2
. (9)

The Hamiltonian constraint H = 0 yields the total pressure

of the dynamical system.

3 Noether symmetry and conserved quantities

The Noether symmetry approach helps to solve complicated

non-linear system of partial differential equations yielding

exact solutions at theoretical grounds of physics and cosmol-

ogy. Noether theorem states that if Lagrangian of a dynami-

cal system remains invariant under a continuous group then

group generator leads to the associated conserved quantity.

The conservation of energy and linear momentum appears

for translational invariant Lagrangian in time and position,

respectively whereas the angular momentum is conserved

for rotationally symmetric Lagrangian [43]. In gravitational

theories, the presence of conserved quantities also enhances

physical interpretation of theory but if it does not appreciate

the existence of any conserved quantity, then the theory will

be abandoned due to its non-physical features.

To investigate the existence of Noether symmetry and

associated conserved quantity in non-minimally coupled

gravitational theory, we consider the first order prolongation

K [1] of continuous group defined as

K [1] = K + (ϕ j ,t +ϕ j ,i q̇ i − ϑ,t q̇ j − ϑ,i q̇ i q̇ j )
∂

∂q̇ j
, (10)

where the cosmic time t is considered to be an affine param-

eter and K represents the symmetry generator given by
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K = ϑ(t, q i )
∂

∂t
+ ϕ j (t, q i )

∂

∂q j
. (11)

Here ϑ and ϕ j are unknown coefficients of the generator. The

existence of Noether symmetry is ensured when K follows

the invariance condition,

K [1]L + (Dϑ)L = DB(t, q i ), D =
∂

∂t
+ q̇ i ∂

∂q i
, (12)

where D is the total derivative, while B represents a boundary

term of K . When the symmetry generator becomes indepen-

dent of the affine parameter then boundary term along with

first order prolongation vanishes yielding

K = ̺i (q i )
∂

∂q i
+

[

d

dt
(̺i (q i ))

]

∂

∂ q̇ i
, L K L = 0, (13)

where L identifies Lie derivative. The symmetries coming

from symmetry generators (11) and (13) lead to correspond-

ing conservation law through the first integral defined as

� = B − ϑL − (ϕ j − q̇ jϑ)
∂L

∂ q̇ j
, � = −η j ∂L

∂q̇ j
. (14)

For Q = {t, a, b, R, T, φ}, the infinitesimal symmetry gen-

erator and corresponding first order prolongation take the

form

K = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂ R
+ δ

∂

∂T
+ η

∂

∂φ
,

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b

+γ
∂

∂ R
+ δ

∂

∂T
+ α̇

∂

∂ ȧ
+ β̇

∂

∂ ḃ
+ γ̇

∂

∂ Ṙ
+ δ̇

∂

∂ Ṫ
+ η̇

∂

∂φ̇
,

(15)

where the time derivative of the unknown coefficients

τ, α, β, γ, δ and η are

σ̇
l
= Dσ

l
− q̇ i Dτ, l = 1, . . . , 5, (16)

Here σ1, σ2, σ3, σ4 and σ5 correspond to α, β, γ, δ and

η, respectively.

In order to discuss the presence of Noether symmetry gen-

erator and relative conserved quantity of the model (2), we

insert the first order prolongation (10) along with (11) in

(12), it obeys a system of equations given in Appendix A.

From Eq. (A7), we have either fR, fR R, fRT = 0 with

τ,a , τ,
b
, τ,

R
, τ,

T
�= 0 or vice versa. For non-trivial solu-

tion, we consider second possibility (τ,a , τ,
b
, τ,

R
, τ,

T
=

0) as the first choice yields trivial solution. We investigate the

existence of symmetry generators, relative conserved quan-

tities for the following two models [6]:

• f (R, T ) = R + 2g(T ),

• f (R, T ) = F(R) + h(R)g(T ).

We also formulate corresponding exact solutions to analyze

cosmological picture of these two models.

3.1 f (R, T ) = R + 2g(T )

This model incorporates an indirect non-minimal curvature–

matter coupling and also admits a correspondence with stan-

dard cosmological constant cold dark matter (�CDM) model

if it comprises a trace dependent cosmological constant

defined as

f (R, T ) = R + 2�(T ) + g(T ). (17)

To evaluate the coefficients of symmetry generator (11),

we solve the system (A1)–(A22) via separation of variables

method which gives

α = α1(t)α2(a)α3(b)α4(R)α5(T )α6(φ),

δ = δ1(t)δ2(a)δ3(b)δ4(R)δ5(T )δ6(φ),

γ = γ1(t)γ2(a)γ3(b)γ4(R)γ5(T )γ6(φ),

η = η1(t)η2(a)η3(b)η4(R)η5(T )η6(φ),

β = β1(t)β2(a)β3(b)β4(R)β5(T )β6(φ),

τ = τ1(t),

B = B1(t)B2(a)B3(b)B4(R)B5(T )B6(φ). (18)

For these coefficients, the system (A1)–(A22) yields

α = −2ac1 , β = c1 b, γ = 0, δ = 0, η = c4 ,

B = c2 t + c3 , τ = c
5
, V (φ) = c6φ + c7 ,

pm(a, b) = −
c4 c6 ln a + 2c1a

1
2 b

2c1

−
2ξ

b2
−

c2 ln a

2c1ab2
, (19)

ρm(a, b) = −
3c4 c6 ln a + 2c1a

1
2 b

2c1

−
6ξ

b2
−

3c2 ln a

2c1ab2
, (20)

where the ci (i = 1, . . . , 7) denotes arbitrary constants. For

these coefficients, we split the symmetry generator and cor-

responding first integral into the following form:

K1 =
∂

∂t
, �1 = −ab2{ f − R fR + fT (3pm − ρm − T )

+pm − c6φ − c7}

+2aξ fR − 4bȧḃ fR − 2aḃ2 fR −
ǫφ̇2ab2

2
,

K2 = −2a
∂

∂a
+ b

∂

∂b
, �2 = −4abḃ fR + 4b2ȧ fR,

K3 =
∂

∂φ
, �3 = ǫab2φ̇.

For the model (17), the system (A1)–(A22) yields three sym-

metry generators and associated conserved quantities. In this

case, the symmetry generator K1 leads to energy conserva-

tion while K2 represents the scaling symmetry corresponding

to conservation of linear momentum.

Next, we explore the presence of Noether symmetry in the

absence of affine parameter and boundary term of extended
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symmetry which leads to establish corresponding conserva-

tion law. In this case, the infinitesimal generator of continuous

group for Q = {a, b, R, T, φ} turns out to be

K = α
∂

∂a
+ β

∂

∂b
+ γ

∂

∂ R
+ δ

∂

∂T
+ η

∂

∂φ
+ α̇

∂

∂ ȧ
+ β̇

∂

∂ ḃ

+γ̇
∂

∂ Ṙ
+ δ̇

∂

∂ Ṫ
+ η̇

∂

∂φ̇
, (21)

where α̇ = q̇ i ∂α
∂q i , β̇ = q̇ i ∂β

∂q i , γ̇ = q̇ i ∂γ

∂q i , δ̇ = q̇ i ∂δ
∂q i

and η̇ = q̇ i ∂η

∂q i . Due to the absence of affine parameter, the

separation of variables method yields

α = α1(a)α2(b)α3(R)α4(T )α5(φ),

β = β1(a)β2(b)β3(R)β4(T )β5(φ),

γ = γ1(a)γ2(b)γ3(R)γ5(φ),

δ = δ1(a)δ2(b)δ3(R)δ4(T )δ5(φ),

η = η1(a)η2(b)η3(R)η4(T )η5(φ).

In order to explore the consequences of indirect non-minimal

curvature–matter coupling, we evaluate symmetry genera-

tors with corresponding conservation laws for non-existing

boundary term. We also establish cosmological analysis

through exact solutions for both dust and perfect fluid distri-

butions.

3.1.1 Dust case

Dust fluid investigates matter contents of the universe when

the existence of radiations is not so worthy and the formation

of massive stars is possible only if dust particles interact with

radiations. Here we consider Tµν = ρmuµuν and solve the

system for (21) via separation of variables which yields

α = −2ac′
1
, β = c′

1
b, γ = 0, δ = 0, η = 0,

ρm(a, b) =
ξ

b2c′
2

+ a
1
2 b, �(T ) = −

g(T )

2
+ c′

2
T + c′

3
,

where the c′
j
( j = 1, . . . , 3) represent arbitrary constants.

The corresponding symmetry generator and associated con-

served quantity are

K = −2ac′
1

∂

∂a
+ c′

1
b

∂

∂b
, � = 4c′

1
abḃ fR − 4c′

1
b2ȧ fR .

For dust fluid, there exists only scaling symmetry in the

absence of affine parameter as well as boundary term of

extended symmetry and the model (17) reduces to

f (R, T ) = R + 2c′
2
T + 2c′

3
. (22)

For exact solution of equations of motion, we insert density

of dust fluid and model (22) in Eqs. (6) and (7) yielding

a(t) =
(40c′

2
t + 40c′

3
)

4
5

16
, b(t) =

c′
1
(40c′

2
t + 40c′

3
)

2
5

4
.

This leads to expansion of the universe whether it is acceler-

ated or decelerated. The power-law scale factor (a(t) = tλ)

identifies both expansions as for λ > 1, it measures acceler-

ated expansion while it corresponds to decelerated expansion

for λ < 1. When λ = 1
2

and λ = 2
3

, we have radiation and

matter dominated eras of the universe.

To analyze the behavior of power-law type exact solution,

we construct cosmological analysis through some cosmolog-

ical parameters such as Hubble, deceleration, r–s and EoS.

These parameters are useful to study current expansion as

well as different eras of the universe. The Hubble parameter

(H ) determines the rate of expansion, while the decelera-

tion parameter (q) evaluates the nature of cosmic expansion,

telling whether we have the decelerated (q > 0), accelerated

(q < 0) or constant (q = 0) case, respectively. In the case

of anisotropic universe models, these parameters turn out

to be

H =
64c′

2
(40c′

2
t + 40c′

3
)−1

3
, q =

7

8
.

The relevant pair of r–s parameters explores the charac-

teristics of dark energy candidates by establishing a corre-

spondence between constructed and standard cosmic mod-

els. When the pair lies in the (r, s) = (1, 0) region, this

corresponds to standard �CDM model while the trajectories

with s > 0 and r < 1 correspond to quintessence and phan-

tom phases of dark energy. In the present case, we obtain

r = 0 with s = − 8
9

indicating that the constructed model

does not correspond to any standard dark energy universe

model. The EoS parameter (ω) investigates different cosmic

eras such as it identifies radiation and matter dominated eras

for ω = 1
3

and ω = 0, respectively. This parameter specifies

dark energy era (ω = −1) into quintessence and phantom

phases when −1 < ω ≤ −1/3 and ω < −1, respectively.

The corresponding effective EoS parameter is

ωeff =
128c′

2
+ (40c′

2
t + 40c′

3
)

4
5 (5c′2

2
c′

1
t2 + 10c′

1
c′

2
c′

3
t + 5c′

1
c′2

3
)

128c′
2

The potential and kinetic energies of the scalar field play

a dynamical role to study cosmic expansion. For acceler-

ated expansion, the field φ evolves negatively and potential

dominates over the kinetic energy (
φ̇2

2
< V (φ)) whereas

negative potential follows the kinetic energy for decelerated

expansion of the universe (
φ̇2

2
> −V (φ)). Using Eq. (8), we

obtain

φ =
∫

1

20ǫ(c′
2
t + c′

3
)
((−ǫc′

2
(25c′2

2
(40c′

2
t + 40c′

3
)

4
5 c′

1
t2

+50(40c′
2
t + 40c′

3
)

4
5

×c′
2
c′

1
c′

3
t + 25(40c′

2
t + 40c′

3
)

4
5 c′

1
c′2

3
+ 896c′

2
))

1
2 ),
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Fig. 1 Plots of scale factors a(t) (left) and b(t) (right) versus cosmic time t for c′
1

= 0.24, c′
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= 0.45 and c′
3

= 5.5
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Fig. 2 Plots of Hubble H(t) (left) and EoS parameters ωeff (right) versus cosmic time t

V (φ) =
1

800(c′2
2

t2 + 2c′
2
c′

3
t + c′2

3
)
[25c′

1
(5c′3

2
t2

+5c′
2
c′2

3
+ 10c′2

2
c′

3
t)(40c′

2
t

+40c′
3
)

4
5 + 8c′

2
c′

3
(−200c′

2
t2 + 400c′

3
t)

−8(48c′2
2

+ 200c′3
3
)].

Figure 1 shows the graphical analysis of the scale factors

for the dust case. The scale factor a(t) indicates large cos-

mic expansion in the x-direction but b(t) represents that the

universe is expanding very slowly in the y- and z-directions.

Figure 2 (left plot) indicates that the Hubble parameter is

decreasing with the passage of time. In the right plot of Fig.

2, the effective EoS parameter identifies that, initially, the

universe associates with a radiation dominated era and, after

some time, it corresponds to a dark energy era by crossing

the matter dominated phase.

Figures 3 and 4 analyze the behavior of scalar field and

cosmic expansion via phantom and quintessence models. The

left plot of Fig. 3 shows that the scalar field is positive ini-

tially yielding decelerated expansion but gradually, it starts

increasing negatively which describes accelerated expansion.

In case of quintessence model, the scalar field grows from

negative to positive indicating decelerated expansion of the

universe. The right plots of 3 and 4 satisfy
φ̇2

2
< V (φ) and

φ̇2

2
> −V (φ), implying that the phantom model yields accel-

erated expansion, while the quintessence model corresponds

to decelerated expansion.

To analyze a big-rip free model, the key point is that if the

EoS parameter rapidly approaches −1 and the Hubble rate

tends to be constant (asymptotically de Sitter universe), then

it is possible to have a model in which the time required for

a singularity is infinite, i.e., the singularity effectively does

not occur [44]. The occurrence of a maximum potential of

a phantom scalar field is another evident issue as regards

avoiding this singularity [45]. The graphical behavior of the

EoS parameter represents that ωeff rapidly approaches −1

and the Hubble rate is decreasing but the potential is not

maximum. We may avoid the big-rip singularity in the present

case if we choose c′
2 to be negatively large, which yields an

asymptotic behavior of the Hubble rate.
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Fig. 4 Plots of scalar field φ(t) (left) versus cosmic time t and potential energy V (φ) versus kinetic energy
φ̇2

2
(right) for ǫ = 1

3.1.2 Non-dust case

At large scales, the perfect fluid successfully illustrates a

cosmic matter distribution in the presence of radiation. In

the absence of a boundary term and an affine parameter, the

coefficients of the symmetry generator (21) corresponding to

a, b, R, T, φ remain the same as in the presence of a bound-

ary term of extended symmetry. Thus, the generator of the

Noether symmetry and the associated first integrals reduce

to

K = −2ac1

∂

∂a
+ c1 b

∂

∂b
+ c2

∂

∂φ
,

� = −4c1abḃ fR + 4c1 b2ȧ fR + ǫc2 ab2φ̇.

In order to formulate an exact solution of the dynamical equa-

tions for a perfect fluid distribution, we insert Eqs. (19) and

(20) into (6) and (7), yielding

a(t) =

(

5
c

9

)
2
5
(c2 sin(c10 t) + c3 cos(c10 t))

4
5

5
4
5

,

b(t) =
c4

(

5
c

9

)
1
5
(c2 sin(c10 t) + c3 cos(c10 t))

2
5

5
2
5

.

This describes an oscillatory solution of the f (R, T ) model

admitting an indirect non-minimal curvature–matter cou-

pling. To study the cosmological behavior of this solution,

we consider the cosmological parameters as follows:

H =
8c10 (c2 sin(c10 t) + c3 cos(c10 t))

15(c2 sin(c10 t) + c3 cos(c10 t))
,

q =
−8c2

2
cos2(c10 t) + 7c3

3
+ 8c2

3
cos2(c10 t)+15c2

2
+16c2 c3 cos(c10 t) sin(c10 t)

8(c2 sin(c10 t)+c3 cos(c10 t))2
,

s = (−45((4c4
2

− 4c4
3
) cos2(c10 t) − c4

3
− 6c2

2
c3 − 5c4

2
− (8c3

2
c3 + 8c2 c3

3
)
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Fig. 5 Plots of scale factor a(t) (left) and b(t) (right) versus cosmic time t for c2 = c3 = c9 = 5.5 and c10 = 0.005
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Fig. 6 Plots of H(t) (left) and q(t) (right) versus cosmic time t

× cos(c10 t) sin(c10 t)))/256((c4
2

+ c4
3

− 6c2
2
c2

3
) cos4(c10 t) + (6c2

2
c2

3
− 2c4

3
)

× cos2(c10 t) + (−4c3
2
c3 + 4c2 c3

3
) sin(c10 t) cos3(c10 t) − 4c2 c3

3
cos(c10 t)

× sin(c10 t) + c4
3
),

ωeff =
χ(3pm − ρm) + pm − ǫφ̇2

2
− V (φ) + 2ξ

b2 + a(3pm,a −ρm,a ) + pm,a

χ(3pm − ρm) + pm + ǫφ̇2

2
− V (φ) + 2ξ

b2

.

The scalar field and the corresponding kinetic and poten-

tial energies identify the early as well as the current cosmic

expansion and also characterize the decelerated expansion of

the universe when the kinetic energy dominates the negative

potential. In this case, Eq. (8) yields

φ =
∫

ǫc4 −
5c

6
c2

2
cos(2c

10
t)

(

−22 F1

[

3
10 , 1

2 , 13
10 ,sin

[

π
4 +c

10
t
]2

]

+
√

2−2 sin[2c
10

t]
)

16c
10

√

cos
[

π
4 +c

10
t
]2

(c
2
(cos[c

10
t]+sin[c

10
t]))2/5

dt

ǫ(c2 cos[c10 t] + c2 sin[c10 t])8/5
,

where 2 F1 represents the hypergeometric function.

In Fig. 5, the right plot shows that the universe experiences

an immense amount of expansion in the y- and z-directions,

whereas the left plot shows a small amount of expansion

in the x-direction. Figure 6 provides information as regards

an increasing rate of expansion through the Hubble param-

eter, while the negatively increasing deceleration parameter

ensures accelerated cosmic expansion. The left plot of Fig. 7

characterizes the quintessence phase of the dark energy era,

while the right plot identifies the r–s parameter trajectories in

the quintessence and phantom phases as s > 0 when r < 1.

Both plots of Fig. 8 verify the current cosmic expansion for

quintessence as well as phantom models as φ is continuously

increasing negatively, and the potential energy of the field is

dominating over the kinetic energy. The graphical interpre-

tation of the EoS parameter yields ωeff < −1, which is not

a sufficient condition for the existence of a singularity as

the potential turns out to be maximum with the passage of

time. Thus, we may avoid a big-rip singularity if the Hub-

ble rate decreases asymptotically in the presence of minimal

coupling of f (R, T ) gravity with scalar field.

3.2 f (R, T ) = F(R) + h(R)g(T )

To analyze the effect of a direct non-minimal curvature–

matter coupling, we consider this model and evaluate the

symmetry generators as well as the associated conservation

laws. Inserting the model in Eqs. (A2)–(A4), (A10), (A11)
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Fig. 7 Plot of ωeff and r–s parameters versus cosmic time t for c2 = c3 = 5.5 and c10 = 0.005
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(right) for c2 = 5.5, c4 = −103,
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and (A15) and using separation of variables approach, we

obtain

β = −
bα

2a
+ φY1(t, a, b) + Y2(t, a, b),

F(R) =
ǫ

4d3
(−d3Y12(R) + d2Y9(R)) + d5 R + d6,

h(R) = −
ǫ

4d3

(

−d3Y9(R),
R
+d1 R

)

+ d4,

g(T ) = d2 + d3Y10(T ),

η =
1

b
[Y1(t, a, b)(Y10(T )(d1 + Y9(R),

R
)

−φ2 + Y12(R),
R
) + bφτ,t −2φ

×Y2(t, a, b) + bY14(t, a, b)],

where the di (i = 1, . . . , 7) denote constants. We substitute

these values in Eqs. (A1), (A8) and (A9) which yield

τ =
∫

−
Y23(t)

ǫ
dt + d8t + d9,

B =
1

6d4

[

6ab(Y19(T )d1 + d4ǫφ
2

+Y19(T )d4e−R)Y2(t, a, b),t

+6abφ(
1

3
d4ǫφ

2 + Y19(T )d4e−R + Y19(T )

×d1)Y16(t, b),t +3d4(2Y22(t, a, b)

+2φY21(t, a, b),t +ab2φ2Y23(t),t )
]

,

Y1(t, a, b) = Y16(t, b) + Y15(a, b),

Y10(T ) = −
Y19(T )d3 + ǫd2d4

ǫd3d4
,

Y12(R) = −
d2d4e−R

d3
+ d6 R + d7,

Y9(R) = −e−Rd4 − 2d1 R + d2,

Y14(t, a, b) = −
Y21(t, a, b)

b2aǫ

−
bad2ǫd1Y16(t, b) + d6ǫbad3Y16(t, b)

ǫb2ad3
+ Y24(b, a).

To evaluate remaining unknown functions, we insert the

above functions into β, η, F, g, h and solve Eqs. (A5)–(A7)

with (A12)–(A14) and (A16)–(A21), leading to

Y21(t, a, b) = Y26(a, b), Y22(t, a, b) = d10t,

Y16(t, b) = −d12b,
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Y15(a, b) = d12b, Y24(b, a) = 0, Y2(t, a, b) = d9b,

Y23(t) = ǫ(−2d9 + e−Rd4d3d11eR + d8), δ = 0,

γ =
d11eR T

d13

×(e−Rd4T d13d3 − d1d13d3T

+(2((−2d5 +
1

2
ǫd6)d3 + d1d2ǫ))d4).

Using these solutions in Eq. (A22) with d11 = 0 and d6 =
d2d1
d3

, it follows that

τ = 3d9, α = d10a, β = b(d9 −
d10

2
),

δ = 0, γ = 0,

B = d10t, η = −
d1

ǫ
+ 2d12d6,

F(R) = d6 + d5 R −
3d6ǫR

4
,

h(R) = d4 −
ǫ

4d3
(d4e−R + d1 R − 2d1),

g(T ) = d2 −
d2d4ǫ − d3d13T

d4ǫ
.

Inserting F, h and g, the f (R, T ) model becomes

f (R, T ) = −
3ǫd6 R

4
+ d5 R + d6

+(d4 −
ǫ

4d3
(d4e−R + d1 R − 2d1))

(

d3d13T

d4ǫ

)

.

Thus, the constructed model also experiences a direct cou-

pling between curvature and matter parts. In this case, the

symmetry generators and associated conserved quantities are

K1 = 3
∂

∂t
+ b

∂

∂b
, �1 =

1

4d3ǫ
(−4ab2ǫ2d3φ̇

2

+4d10d3ǫt + 3tab2d1 RT d3ǫ

−9tab2d1 Rpmd3ǫ + 3tab2d1 Rρmd3ǫ

−12td1T ȧḃbd3ǫ − 4b2d4T

×ȧe−Rd3ǫ − 4b2aṪ d4e−Rd3ǫ

−9tab2d4 pme−Rd3ǫ + 3tab2d4ρm

×e−Rd3ǫ + 6td4T aḃ2e−Rd3ǫ

+6td4Taqe−Rd3ǫ − 4bd4T aḃe−Rd3ǫ

+4b2a Ṙd4T e−Rd3ǫ + 4b2aṪ d1d3ǫ

−12tab2d2d1ǫ − 12tab2 pm

×d3ǫ + 12tab2V (φ)d3ǫ

−24td5aḃd3ǫ − 24td5aqd3ǫ + 16bd5aḃ

×d3ǫ + 36tab2d2
3 d4 pm − 12tab2d2

3 d4ρm

+18tǫ2d2d1aḃ2 + 18tǫ2

×d2d1aq − 12bǫ2d2d1aḃ + 4b2d1T ȧd3ǫ

−12b2ǫ2d2d1ȧ + 16b2d5

×ȧd3ǫ − 3tab2 Rd4T e−Rd3ǫ + 12td4T ȧḃbe−Rd3ǫ

+36tǫ2d2d1ȧḃb

+4bd1T aḃd3ǫ + 6tab2eφ̇2d3ǫ

+18tab2d1 pmd3ǫ − 6tab2d1ρmd3ǫ

−48td5ȧḃbd3ǫ − 6td1T aḃ2d3ǫ − 6td1Taqd3ǫ),

K2 = a
∂

∂a
−

b

2

∂

∂b
, �2 = −

b

2d3
(−aḃd1T d3

+3aḃǫd2d1 + aḃd4T e−Rd3

−4aḃd5d3 + bd1T ȧd3 + 4bd5ȧd3

−3bǫd2d1ȧ − bd4T ȧe−Rd3),

K3 = −
1

ǫ

∂

∂φ
, �3 = ab2φ̇, K4 = 2d12

∂

∂φ
,

�4 = 2d12ab2ǫφ̇.

We see that scaling symmetry appears through generator K2

with the first integral �2 leading to conserved linear momen-

tum.

Now we investigate the existence of Noether symmetry

in the absence of affine parameter and boundary term of

the extended symmetry and also study the effect of direct

curvature–matter coupling on conservation laws. For this

purpose, we solve Eqs. (A5), (A6), (A9) and (A12)–(A21),

which gives

δ = −
a

2Y9(T ),
T

(

1

3
Y4(a, b),a φ3

+2Y4(a, b),a Y9(T )φ + 2Y4(a, b),a Y8(b)φ

+φ2Y5(a, b),a +2Y7(a, b),a φ

)

+Y12(a, R, T, b), F(R) = k4 R + k5,

β = −
b

2a
(Y10(a, R, T, b) + aY5(a, b)),

g(T ) = k1 + Y9(T )k2,

η =
1

2
(φ2 + 2Y9(T ) + 2Y8(b))Y4(a, b)

+Y5(a, b)φ + Y7(b, a),

h(R) =
ǫR

2(k2 + k3)
, γ = Y11(a, b, R, T ),

α = −Y4(a, b)aφ + Y10(a, b, R, T ),

where the kl (l = 1, . . . , 5) are arbitrary constants. Inserting

these solutions into the remaining equations of the system,

we obtain

V (φ) = k10φ + k11, Y10(a, R, T, b) = k8a, Y4(a, b) = 0,

Y12(a, R, T, b) = −
k8

2k2
((ǫ(k6T + k7) + 2k4)k2 + ǫk1),

Y5(a, b) = −
k6k8ǫ

2
,

Y7(b, a) = k9, Y9(T ) = k6T + k7,

pm =
2k9k10

ǫk8k6
− k5 + k11 +

2k2k4k3

ǫ
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+a− k6ǫ

2 ǫk6ba
1
2 − ǫk6

4 ,

ρm =
k7

k6
+

6k2k4k3

ǫ
− 3k5 + 3k11 +

2k4

k6ǫ
+

6k9k10

k8k6ǫ
+

k1

k2k6

+a− k6ǫ

2 ǫk6ba
1
2 − ǫk6

4 .

The corresponding Noether symmetry generator with the

associated first integral take the form

K1 = a
∂

∂a
−

b

2

(

1 −
k6ǫ

2

)

∂

∂b

+R
∂

∂ R
− (k1ǫ + k2(ǫ(k6T + k7) + 2k4))

×
1

2k2

∂

∂T
−

k6ǫφ

2

∂

∂φ
, �1 = abḃǫk6T

−
b2ǫk1ȧ

k2
− b2ǫk6T ȧ − baǫk6k4ḃ

−
baǫ2k2

6 T ḃ

2
−

baǫ2k6k7ḃ

2
+

abḃǫk1

k2

+abḃǫk7 −
baǫ2k6k1ḃ

2k2
−

ab2ǫ2φ̇k6φ

2

+2abḃk4 − 2b2k4ȧ − b2ǫk7ȧ +
b2aǫ2k2

6 Ṫ

2
,

K2 =
∂

∂φ
, �2 = ab2ǫφ̇k9.

Here the symmetry generator K1 yields the scaling symme-

try.

4 Final remarks

In this paper, we have analyzed the existence of Noether

symmetry in a non-minimally coupled f (R, T ) gravity inter-

acting with scalar field model for anisotropic homogeneous

universe models like BI, BIII and KS models. Using Noether

symmetry approach, we have found conserved quantities

associated with symmetry generators and studied the contri-

bution of direct as well as indirect curvature–matter coupling

through two f (R, T ) models. We have also formulated exact

solutions for dust and perfect fluid distributions whose cos-

mological analysis is discussed through cosmological param-

eters.

For the f (R, T ) model admitting indirect curvature–

matter coupling, we have found three symmetry generators

in the presence of an affine parameter and a boundary term.

The first generator of translational symmetry in time yields

the energy conservation law, whereas the second generator

generates scaling symmetry. For the second model, we have

formulated four conserved quantities associated with sym-

metry generators but only one generator provides the scaling

symmetry leading to the conservation of linear momentum.

In the absence of a boundary term of extended symmetry

and an affine parameter, the symmetry generator of the first

model ensures the existence of scaling symmetry for dust

as well as perfect fluid, while we have found two symmetry

generators for the second model.

For the first model, we have evaluated exact solutions

without considering boundary term. For the dust distribution,

we have found a power-law solution. The graphical analy-

sis of scale factors and cosmological parameters leads to a

decelerating phase of the universe. The positively increas-

ing scalar field and the kinetic energy dominating over the

potential energy ensure the decelerating behavior of the cos-

mos for the quintessence model. In the case of the phantom

model, the scalar field rolls down positively and tends to

increase negatively while the kinetic energy dominates over

the potential energy for t ∈ [0.8, 1.6]. The graphical behav-

ior of the effective EoS parameter reveals that the universe

experiences a phase transition from a radiation dominated era

to a dark energy era by crossing the matter dominated phase.

For a perfect fluid, we have determined an oscillatory solu-

tion with increasing rate of the Hubble parameter, a negative

deceleration parameter and ωeff < −1. The trajectories of the

r–s parameters identify quintessence and phantom phases as

s > 0 when r < 1. For the quintessence and phantom mod-

els, with the scalar field continuously increasing negatively,

the potential energy of the field is dominating over the kinetic

energy. This analysis indicates that an epoch of accelerated

expansion is achieved for a non-dust distribution.

Shamir [17] investigated the exact solution of the BI

model without using Noether symmetry approach in f (R, T )

gravity. For indirect curvature–matter coupling, the exact

solution is determined using a relationship between expan-

sion and shear scalars. The study of corresponding cosmo-

logical parameters yields a positive deceleration parameter,

ωeff = 1, the volume and average scale factor turn out to

be zero at t = 0. Thus, the analysis of this exact solution

yields a decelerating epoch for the R + 2 f (T ) model. For

the f1(R) + f2(T ) model, a power-law form of f1(R) is

considered that gives exponential and power-law solutions

for different choices of f2(T ). For the exponential solution,

the average Hubble parameter becomes zero, leading to the

Einstein universe. Camci et al. [26] formulated exact solu-

tions of these anisotropic models via the Noether symmetry

approach in non-minimally scalar coupled gravity. The scale

factors are found to be proportional to the inverse of the

scalar field whose explicit form is not determined for any

anisotropic model. Consequently, the cosmological analy-

sis of these exact solutions is not established. In the present

paper, we have found two exact solutions, power-law and

oscillatory solutions, via the Noether symmetry approach,

that correspond to decelerating as well as current accelerat-

ing universe for dust and non-dust distributions.

We conclude that the constructed f (R, T ) models admit

direct as well as indirect curvature–matter coupling. The
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existence of symmetry generators and associated conserved

quantities is ensured for both f (R, T ) models. It is worth-

while to mention here that we have found maximum symme-

try generators along with conserved quantities for the second

f (R, T ) model in the presence of boundary term. This indi-

cates that the model appreciating a direct curvature–matter

coupling leads to more physical results relative to the first

model, while the exact solutions describe cosmic evolution.
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Appendix A

For the invariance condition (12), the system of equations is

ǫab2η,t = −B,φ , (A1)

bα + 2aβ + 2abη,φ −abτ,t = 0, (A2)

2bα,φ f
R R + 4aβ,φ f

R R + abǫη,
R
= 0, (A3)

2bα,φ f
R T + 2aβ,φ f

R T + abǫη,
T

= 0, (A4)

4β,φ fR + 2bγ,φ fR R + 2bδ,φ fRT + abǫη,a = 0, (A5)

4bα,φ fR + 4aβ,φ fR + 4abγ,φ fR R

+4abδ,φ fRT + ab2ǫη,
b
= 0, (A6)

τ,a fR = 0, τ,
b

fR = 0, τ,
R

fR R = 0,

τ,
T

fRT = 0, τ,φ = 0, (A7)

2b2α,t fR R + 4abβ,t fR R = −B,
R
, (A8)

2b2α,t fRT + 4abβ,t fRT = −B,
T

, (A9)

bα,
R

fR R + 2abβ,
R

fR R = 0, (A10)

bα,
T

fRT + 2abβ,
T

fRT = 0, (A11)

2β,a fR + bγ,a fR R + bδ,a fRT = 0, (A12)

4bβ,t fR + 2b2γ,t fR R + 2b2δ,t fRT = −B,a , (A13)

4bα,t fR + 4aβ,t fR + 4abγ,t fR R + 4abδ,t fRT = −B,
b
,

(A14)

bα,
T

fR R + bα,
R

fRT + 2aβ,
T

fR R + 2aβ,
R

fRT = 0,

(A15)

α fR + aγ fR R + aδ fRT + 2bα,
b

fR

+2aβ,
b

fR + 2abγ,
b

fR R + 2abδ,
b

fRT − aτ,t fR = 0,

(A16)

2β fR R + bγ fR R R + bδ fR RT + bα,a fR R + 2aβ,a fR R

+2β,
R

fR + bγ,
R

fR R + bδ,
R

fRT − bτ,t fR R = 0,

(A17)

2β fRT + bγ fR RT + bδ fRT T + bα,a fRT + 2aβ,a fRT

+2β,
T

fR + bγ,
T

fR R + bδ,
T

fRT − bτ,t fRT = 0,

(A18)

2β fR + 2bγ fR R + 2bδ fRT

+2bα,a fR + 4aβ,a fR + 2bβ,
b

fR + 2abγ,a fR R

+b2γ,
b

fR R + 2abδ,a fRT +b2δ,
b

fRT − 2bτ,t fR =0,

(A19)

2bα fR R + 2aβ fR R + 2abγ fR R R + 2abδ fR RT

+b2α,
b

fR R + 2bα,
R

fR + 2ab

×β,
b

fR R + 2aβ,
R

fR + 2abγ,
R

fR R

+2abδ,
R

fRT − 2abτ,t fR R = 0, (A20)

2bα fRT + 2aβ fRT + 2abγ fR RT + 2abδ fRT T

+b2α,
b

fRT + 2bα,
T

fR + 2ab

×β,
b

fRT + 2aβ,
T

fR

+2abγ,
T

fR R + 2abδ,
T

fRT − 2abτ,t fRT = 0, (A21)

b2α[ f − R fR + fT (3pm − ρm − T ) + pm − V (φ)

+a{ fT (3pm,a −ρm,a ) + pm,a } + 2ξ fR]
+β[2ab( f − R fR + fT (3pm − ρm−T ) + pm − V (φ))

+ab2{ fT (3pm,
b
−ρm,

b
) + pm,

b
}]

+γ [−ab2 R fR R + 2aξ fR R] + δ[−ab2 R fRT

+2aξ fRT ] − ab2V ′(φ)η

+τ,t [ab2( f − R fR + fT (3pm − ρm − T ) + pm

−V (φ)) + 2aξ fR] = B,t . (A22)
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a b s t r a c t

This paper investigates the geometry of static traversable worm-
hole through Noether symmetry approach in f (R) gravity. We take
perfect fluid distribution and formulate symmetry generators with
associated conserved quantities corresponding to general form,
power-law and exponential f (R) models. In each case, we eval-
uate wormhole solutions using constant and variable red-shift
functions. We analyze the behavior of shape function, viability
of constructed f (R) model and stability of wormhole solutions
graphically. The physical existence of wormhole solutions can be
examined through null/weak energy conditions of perfect fluid and
null energy condition of the effective energy–momentum tensor.
The graphical interpretation of constructed wormhole solutions
ensures the existence of physically viable and traversable worm-
holes for allmodels. It is concluded that the constructedwormholes
are found to be stable in most of the cases.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

On the landscape of theoretical and observational modern cosmology, the most revolutionizing

fact is believed to be the current cosmic accelerated expansion. Recent experiments indicate that this

expansion must be due to some enigmatic force with astonishing anti-gravitational effects, known

as dark energy. There are many proposals to explain its ambiguous nature. The f (R) gravity is one of

such proposals established by replacing geometric part of the Einstein–Hilbert actionwith this generic
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function depending on the Ricci scalar R. The fourth order non-linear field equations of this gravity
keep triggering researchers to evaluate exact solution.

The study of exact solutions under assorted scenarios is extensively used to explore different
cosmic aspects that unveil sophisticated picture of cosmic evolution. Sharif and Shamir [1] constructed
vacuum as well as non-vacuum exact solutions of Bianchi I and V universe models in f (R) gravity
and also investigated physical behavior of these solutions. Gutiérrez-Piñeres and López-Monsalvo [2]
evaluated exact vacuum solution for static axially symmetric spacetime in the same gravity and found
that solution corresponds to naked singularity. Sharif and Zubair [3] considered interaction of matter
with geometry to formulate some exact solutions of Bianchi I model. Gao and Shen [4] found a new
method to formulate exact solutions of static spherically symmetric metric. They also analyzed some
general properties of solutions like event horizon, singularity and deficit angle in Jordan and Einstein
frames.

Noether symmetry approach is considered to be the most appreciable technique which explores
not only exact solutions but also evaluates conserved quantities relative to symmetry generators
associatedwith dynamical system. Capozziello et al. [5] formulated exact solution of static spherically
symmetricmetric for f (R) power-lawmodel. The same authors [6] generalized thiswork for non-static
spherically symmetric spacetime and also discussed possible solutions for axially symmetric model.
Vakili [7] studied the scalar field scenario of flat FRW model through this approach and discussed
current cosmic phase via effective equation of state parameter corresponding to quintessence phase.
Momeni et al. [8] investigated the existence of Noether symmetry for isotropic universe model in
mimetic f (R) as well as f (R, T ) gravity theories (T denotes trace of energy–momentum tensor). Sharif
and his collaborators [9] investigated cosmic evolution as well as current cosmic expansion through
Noether symmetry approach.

Our universe always bring eye opening questions for cosmologists regrading its surprising and
mysterious nature. The existence of hypothetical geometries is considered as themost debatable issue
which leads to wormhole geometry. A wormhole (WH) structure is defined through a hypothetical
bridge or tunnel which allows a smooth connection among different regions only if there exists exotic
matter (matter with negative energy density). The existence of a physically viable WH is questioned
due to the presence of enough amount of exotic matter. Consequently, there is only one way to have
a realistic WH model, i.e., the presence of exotic matter must be minimized. Besides the existence
of such astrophysical configurations, the most crucial problem is stability analysis which defines
their behavior against perturbations as well as enhances physical characterization. A singularity-free
configuration identifies a stable state which successfully prevents theWH to collapse while aWH can
also exist for quite a long time even if it is unstable due to very slow decay. The evolution of unstable
system can lead tomany phenomena of interest from structure formation to supernova explosions. To
exploreWH existence, different approaches have been proposed such as modified theories of gravity,
non-minimal curvature–matter coupling, scalar field models etc. [10].

The study of WH solutions has been of great interest in modified theories of gravity. Lobo and
Oliveira [11] considered constant shape function and different fluids to explore WH solution in f (R)
gravity. Jamil et al. [12] formulated viableWH solutions for f (R) power-lawmodel and also considered
particular shape function in the background of non-commutative geometry. Bahamonde et al. [13]
constructed cosmological WH threaded by perfect fluid approaching to FRW universe in the same
gravity. Mazharimousavi and Halilsoy [14] found a near-throat WH solution of f (R) model admitting
polynomial expansion and also satisfying necessary WH conditions for both vacuum as well as non-
vacuumcases. Sharif and Fatima [15] discussed static spherically symmetricWH in galactic halo region
as well as investigated non-static conformal WH in f (G) gravity, (G represents Gauss–Bonnet term).
Noether symmetry approach elegantly explores the WH geometry by formulating exact solutions.
Bahamonde et al. [16] obtained exact solutions of red-shift as well as shape functions through this
approach and analyzed their geometric behavior graphically in scalar-tensor theory incorporating
non-minimal coupling with torsion scalar.

In this paper, we studyWH geometry threaded by perfect fluid via Noether symmetry approach in
f (R) gravity. The format of the paper is as follows. Section 2 explores basic review of f (R) gravity. In
Section 3, we construct point-like Lagrangian which is used in Section 4 to evaluate WH solutions for
both constant as well as variable red-shift functions. Section 5 investigates stability of the constructed
WH solutions. In the last section, we present final remarks.
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2. Basics of f (R) gravity

We consider a minimally coupled action of f (R) gravity given by

I =
∫

d4x
√

−g[
f (R)

2κ2
+ Lm], (1)

where g identifies determinant of the metric tensor gµν , f (R) describes a coupling-free function while
Lm denotes Lagrangian density of matter. The metric variation of action (1) leads to

fRRµν −
1

2
fgµν − ∇µ∇ν fR + gµν�fR = κ2T (m)

µν , T (m)
µν = gµνLm − 2

∂Lm

∂gµν
. (2)

Here, fR shows the derivative of generic function f with respect to R, ∇µ represents covariant
derivative, � = ∇µ∇µ and T (m)

µν denotes energy–momentum tensor. The equivalent form of Eq. (2)
is

Gµν =
1

fR
(T (m)

µν + T (c)
µν ) = T eff

µν , (3)

where Gµν, T (c)
µν and T eff

µν identify Einstein, curvature and effective energy–momentum tensors,

respectively. The curvature terms relative to generic function define T (c)
µν as

T (c)
µν =

f − RfR

2
gµν + ∇µ∇ν fR − �fRgµν . (4)

The energy–momentum tensor corresponding to perfect fluid is

T (m)
µν = (ρm(r) + pm(r))uµuν + pm(r)gµν,

where ρm and pm characterize energy density and pressure, respectively whereas uµ denotes four

velocity of the fluid as uµ = (−e
a(r)
2 , 0, 0, 0).

The static spherically symmetric spacetime is [17]

ds2 = −ea(r)dt2 + eb(r)dr2 + M(r)(dθ2 + sin2 θdφ2), (5)

where a, b and M are arbitrary functions depending on radial coordinate r . The geodesic deviation
equation determines thatM(r) = r2, sin r, sinh r forK = 0, 1, −1 (K denotes curvature parameter)
under the limiting behavior M(r) → 0 as r → 0, respectively [18]. In case of M(r) = r2,
the spherical symmetry defines Morris–Thorne WH where a(r) is recognized as red-shift function

identifying gravitational red-shift while eb(r) explores the geometry of WH for eb =
(

1 − h(r)

r

)−1
,

h(r) is known as shape function. In order to locate throat of a WH, radial coordinate must follow
non-monotonic behavior such that it decreases from maximum to minimum value r0 identifying
WH throat at h(r0) = r0 and then it starts increasing from r0 to infinity. To have a WH solution
at throat, the condition h′(r0) < 1 is imposed, where prime denotes derivative with respect to r .

The flaring-out condition is the fundamental property of WH which demands h(r)−h(r)′r
h(r)2

> 0. For the

existence of traversable WH, the surface should be free from horizons, the red-shift function must be
finite everywhere and 1 − h(r)/r > 0. To formulate the field equations for the action (1), we choose
Lm = pm(r) [19] and use Eqs. (2)–(5), it follows that

ea

4ebM2
(−4M ′′M + 2b′M ′M + M ′2 + 4Meb) =

1

fR

[

e−b(RfR − f )

2

− f ′
R

(

a′ea

2eb

)

+ ea−bf ′′
R + ea−bf ′

R

(

a′ − b′

2
+

M ′

M

)

+ eaρm

]

, (6)

−
1

4M2
(M ′2 + 2a′M ′M − 4Meb) =

1

fR

[

(f − RfR)

2
−

b′f ′
R

2
− f ′

R

× ea−bf ′
R

(

a′ − b′

2
+

M ′

M

)(

a′ − b′

2
+

M ′

M

)

+ ebpm

]

, (7)
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1

4Meb
(M ′M(a′ − b′) + 2M ′′M + M2a′2 − M2a′b′ − M ′2 + 2M2a′′)

=
1

fR

[

Mpm +
M ′f ′

R

2ebM
+

M(RfR − f )

2
−

f ′′
R

Meb
−

f ′
R

Meb

(

a′ − b′

2
+

M ′

M

)]

.

The energy conditions provide a significantway to analyze physical existence of some cosmological
geometries. For WH geometry, the violation of these conditions ensures the existence of a realistic
WH. To define energy conditions, Raychaudhari equations are considered to be themost fundamental
ingredients given as

dθ

dτ
= −

1

3
θ2 − σµνσ

µν + ΘµνΘ
µν − Rµν l

µlν, (8)

dθ

dτ
= −

1

2
θ2 − σµνσ

µν + ΘµνΘ
µν − Rµνk

µkν, (9)

where θ, lµ, kµ, σ and Θ represent expansion scalar, timelike vector, null vector, shear and rotation
tensors. The first equation is defined for timelike congruence while the second is for null congruence.
The positivity of the last term of both equations demands attractive gravity. For the Einstein–Hilbert
action, these conditions split into null (NEC) (ρm+pm ≥ 0),weak (WEC) (ρm ≥ 0, ρm+pm ≥ 0), strong
(SEC) (ρm + pm ≥ 0, ρm + 3pm ≥ 0) and dominant (DEC) (ρm ≥ 0, ρm ± pm ≥ 0) energy conditions
[20]. As the Raychaudhari equations are found to be purely geometric implying that T (m)

µν kµkν ≥ 0 can

be replaced with T eff
µν k

µkν ≥ 0. Thus, the energy conditions in f (R) gravity turn out to be [21]

NEC : ρeff + peff ≥ 0,

WEC : ρeff ≥ 0, ρeff + peff ≥ 0,

SEC : ρeff + peff ≥ 0, ρeff + 3peff ≥ 0,

DEC : ρeff ≥ 0, ρeff ± peff ≥ 0.

Solving Eqs. (6) and (7), we obtain

pm = −
f

2
+ e−bf ′

R

(

a′

2
+

M ′

M

)

−
fR

4ebM2

(

2M ′2 − 4M ′′M − a′2M2

+ a′b′M2 + 2b′M ′M − 2M2a′′) , (10)

ρm =
fR

4ebM2

(

M2a′2 − M2a′b′ + 2a′M ′M + 2M2a′′) + e−bf ′′
R + e−bf ′

R

×
(

−b′

2
+

M ′

M

)

+
f

2
. (11)

In f (R) gravity, NEC relative to the effective energy–momentum tensor for (5) yields

ρeff + peff =
1

2eb

(

M ′2

M2
+

a′M ′

M
+

b′M ′

M
−

2M ′′

M

)

. (12)

3. Point-like Lagrangian

In this section, we construct point-like Lagrangian corresponding to the action (1) via Lagrange
multiplier approach. In this regard, we consider following form of gravitational action [22]

I =
∫ √

−g[f (R) − λ(R − R̄)]dr, (13)

where

√
−g = e

a
2 e

b
2 M, λ = fR, (14)

R̄ =
1

eb

(

−
a′2

2
+

a′b′

2
−

a′M ′

M
−

2M ′′

M
+

b′M ′

M
+

M ′2

2M2
− a′′ +

2eb

M

)

.
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The dynamical constraint λ is obtained by varying the action (13) with respect to R. In order to
determine pm, we consider Bianchi identity (∇µT

µν) whose radial component gives

dpm

dr
+

a′(r)

2
(pm + ρm) = 0. (15)

Solving this differential equation with pm = ωρm, it follows that

ρm = ρ0a
− (1+ω)

2ω , pm = ωρm = ωρ0a
− (1+ω)

2ω , (16)

where ω represents equation of state parameter. Inserting Eqs. (14) and (16) in (13), we obtain

I =
∫

e
a−b
2 M

[

f (R) − RfR +
fR

eb

(

−
a′2

2
+

a′b′

2
−

a′M ′

M
−

2M ′′

M
+

b′M ′

M

+
M ′2

2M2
− a′′ +

2eb

M

)

+ ωρ0a
− (1+ω)

2ω

]

dr. (17)

Eliminating second order derivatives via integration by parts from the above action and following
Lagrangian density definition, we obtain point-like Lagrangian as

L(r, a, b,M, R, a′, b′,M ′, R′) = e
a
2 e

b
2 M

(

f − RfR + ωρ0a
− (1+ω)

2ω +
2fR

M

)

+
e

a
2 M

e
b
2

{

fR

(

M ′2

2M2
+

a′M ′

M

)

+ fRR

(

a′R′ +
2M ′R′

M

)}

. (18)

For static spherically symmetric spacetime, the Euler–Lagrange equation and Hamiltonian of the
dynamical system or energy function associated with point-like Lagrangian are defined as

∂L

∂qi
−

dpi

dr
= 0, H =

∑

i

q′ipi − L,

where qi are generalized coordinates and pi = ∂L

∂q′i represents conjugate momenta. The variation of

Lagrangian with respect to configuration space leads to

eb
(

f − RfR + ωρ0a
− (1+ω)

2ω − (1 + ω)ρ0a
− (1+3ω)

2ω +
2fR

M

)

+
(

M ′2

2M2
+

b′M ′

M

−
2M ′′

M

)

fR + fRR

(

b′R′ − 2R′′ −
2M ′R′

M

)

− 2R′2fRRR = 0,

eb
(

f − RfR + ωρ0a
− (1+ω)

2ω +
2fR

M

)

− fR

(

M ′2

2M2
+

a′M ′

M

)

− fRR
(

a′R′

+
2M ′R′

M

)

= 0,

eb
(

f − RfR + ωρ0a
− (1+ω)

2ω +
2fR

M

)

+ fR

(

−
a′2

2
+

a′b′

2
−

a′M ′

2M
−

M ′′

M
− a′′

+
b′M ′

2M
+

M ′2

2M2

)

+ fRR

(

b′R′ − a′R′ − 2R′′ −
M ′R′

M

)

− 2R′2fRRR = 0,

[

eb
(

2

M
− R

)

−
a′2

2
+

a′b′

2
−

a′M ′

M
−

2M ′′

M
+

b′M ′

M
+

M ′2

2M2
− a′′

]

fRR = 0.

The energy function and variation of Lagrangian relative to shape function yield

eb =
fRM

′

M

(

M ′

2M2 + a′M ′
)

+ R′fRR(a
′M + 2M ′)

f − RfR + ωρ0a
− (1+ω)

2ω + 2fR
M

. (19)
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4. Noether symmetry approach

The physical characteristics of a dynamical system can be identified by constructing the associated
Lagrangian which successfully describes energy content and the existence of possible symmetries
of the system. In this regard, Noether symmetry approach provides an interesting way to construct
new cosmological models and geometries in modified theories of gravity. According to well-known
Noether theorem, group generator yields associated conserved quantity if point-like Lagrangian
remains invariant under a continuous group. In order to investigate the presence of Noether symmetry
and relative conserved quantity of static spherically symmetric metric, we consider a vector field [23]

K = τ (r, qi)
∂

∂r
+ ζ i(r, qi)

∂

∂qi
, (20)

where r behaves as an affine parameter while τ and ζ i are unknown coefficients of the vector field K .
The presence of Noether symmetry is assured only if point-like Lagrangian satisfies the invariance

condition and the vector field is found to be unique on tangent space. Consequently, the vector field
acts as a symmetry generator generating associated conserved quantity. In this case, the invariance
condition is defined as

K [1]
L + (Dτ )L = DB(r, qi), (21)

where B denotes boundary term of the extended symmetry, K [1] describes first order prolongation
and D represents total derivative given by

K [1] = K + (Dζ i − q′ iDτ )
∂

∂q′i
, D =

∂

∂r
+ q′i ∂

∂qi
. (22)

Noether symmetries coming from invariance condition (21) lead to identify associated conserved
quantities through first integral. If the Lagrangian remains invariant under translation in time and po-
sition, then the first integral identifies energy and linear momentum conservation while rotationally
symmetric Lagrangian yields conservation of angular momentum [24]. For invariance condition (21),
the first integral is defined as

Σ = B − τL − (ζ i − q′ iτ )
∂L

∂q′ i
. (23)

For configuration space Q = {a, b,M, R}, the vector field K and first order prolongation K [1] take
the following form

K = τ
∂

∂r
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂M
+ δ

∂

∂R
, K [1] = τ

∂

∂r
+ α

∂

∂a
+ β

∂

∂b

+ γ
∂

∂M
+ δ

∂

∂R
+ α′ ∂

∂a′ + β ′ ∂

∂b′ + γ ′ ∂

∂M ′ + δ′ ∂

∂R′ , (24)

where the radial derivative of unknown coefficients of vector field are defined as

σ ′
j
= Dσ

j
− q′iDτ , j = 1, . . . , 4. (25)

Here σ1, σ2, σ3 and σ4 correspond to α, β, γ and δ, respectively. Inserting Eqs. (18), (24) and (25) in
(21) and comparing the coefficients of a′2, a′b′M ′, a′M ′2 and a′R′2, we obtain

τ ,a fR = 0, τ ,
b
fR = 0, τ ,

M
fR = 0, τ ,

R
fRR = 0. (26)

This equation implies that either fR = 0 or vice verse. The first choice leads to trivial solution.
Therefore, we consider fR 6= 0 and compare the remaining coefficients which yield the following
system of equations

B,
b
= 0, τ ,a = 0, τ ,

b
= 0, τ ,

M
= 0, τ ,

R
= 0, (27)

e
a
2 (γ ,r fR + Mδ,r fRR) = e

b
2 B,a , (28)
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e
a
2 (α,r M + 2γ ,r )fRR = e

b
2 B,

R
, (29)

e
a
2 (α,r fR + γ ,r M

−1fR + 2δ,r fRR) = e
b
2 B,

M
, (30)

γ ,a fR + Mδ,a fRR = 0, (31)

γ ,a fR + Mδ,a fRR = 0, (32)

α,
b
fR + γ ,

b
M−1fR + 2δ,

b
fRR = 0, (33)

Mα,
b
fRR + 2γ ,

b
fRR = 0, (34)

Mα,
R
fRR + 2γ ,

R
fRR = 0, (35)

fR(α − β − 2γM−1 + 4Mα,
M

+4γ ,
M

−2τ ,r ) + fRR(2δ + 8Mδ,
M
) = 0, (36)

fR(α − β + 2α,a −2τ ,r +2γ ,
M

+2γ ,a ) + fRR(2δ + 2Mδ,
M

+4δ,a ) = 0, (37)

fR(α,
R
+γ ,

R
M−1) + fRR(α − β + Mα,

M
+2γ ,

M
−2τ ,r +2δ,

R
) + 2δ

× fRRR = 0, (38)

2γ ,
R
fR + fRR(Mα − Mβ + 2γ + 2Mα,a −2Mτ ,r +4γ ,a +2Mδ,

R
) + 2M

× δfRRR = 0, (39)

e
a
2 e

b
2 M{

1

2
(f − RfR + ωρ0a

− (1+ω)
2ω +

2fR

M
)(α + β + τ ,r ) −

1

2
α(1 + ω)ρ0

× a− (1+3ω)
2ω + δM(2M−1 − R)fRR} + e

a
2 e− b

2 γ (f − RfR + ωρ0a
− (1+ω)

2ω )

= B,r . (40)

In order to solve this system, we consider M(r) = r2 and taking B,a , B,
M

, B,
R
= 0, Eqs. (27)–(35)

give

α = Y2(a, r), γ = Y1(r), δ = Y3(r, R).

Inserting these values in Eqs. (36)–(39), we obtain

Y1(r) = 0, Y2(a, r) = c2, Y3(r, R) =
c1fR

fRR
, β = 2c1 + c2 − 2τ ,r ,

where c1 and c2 are arbitrary constants. For these solutions, the coefficients of symmetry generator
turn out to be

α = c2, β = 2c1 + c2, γ = 0, δ =
c1fR

fRR
, τ = c0. (41)

Substituting these coefficients in Eq. (40), we formulate boundary term and explicit form of f (R) as
follows

f (R) = −
1

2(c1 + c2)

[

−(1 + ω)ρ0a
− (1+3ω)

2ω + 2ω(c1 + c2)ρ0a
− (1+ω)

2ω

− 6c4e
−a−b

2

]

, B = c3 + c4r
3.

The coefficients of symmetry generator, boundary term and solution of f (R) satisfy the system of
Eqs. (27)–(39) for c1 = 0. Thus, the symmetry generator and the corresponding first integral take
the form

K = c0
∂

∂r
+ c2

∂

∂a
+ c2

∂

∂b
,

Σ = c3 + c4r
3 − c0

[

e
a
2 e

b
2 r2(f − RfR + ωρ0a

− (1+ω)
2ω + 2fRr

−2)
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+
e

a
2 r2

e
b
2

{fR(2r−2 + 2a′r−1) + fRR(a
′R′ + 4R′r−1)}

]

− c2e
a−b
2 (R′r2fRR + 2rfR).

The verification of Eq. (40) yields

b(r) =
∫

8c6r
2 + a′′r2 + 4a′r ′ + a′2r2 − 4c7

r(4 + a′r)
dr + c5, (42)

where ci’s (i = 3, . . . , 8) are arbitrary constants and this solution satisfies Eq. (40) for ω =
1, 1/3, −1/3,−1. To discuss physical features and geometry of WH via shape function, we take red-

shift function, a(r) = k and a(r) = − k
r
, k > 0, where k denotes constant [25]. In the following, we

solve integral for both choices of red-shift function.

Case I: a(r) = k

We first consider red-shift function to be constant and evaluate b(r) such as

b(r) = c6r
2 − c7 ln r + c5. (43)

Consequently, the shape function turns out to be

h(r) = r(1 − e−b(r)) = r(1 − c7re
−c6r

2−c5 ). (44)

In this case, the explicit form of f (R) reduces to

f (R) = −
1

2c2

[

−(1 + ω)ρ0k
− (1+3ω)

2ω + 2ωc2ρ0k
− (1+ω)

2ω − 6c4
√
c7re

−c6r
2−c5−k

2

]

. (45)

The f (R) theory of gravity is one of the competitive candidates in modified theories of gravity as

it naturally unifies two expansion phases of the universe, i.e., inflation at early times and cosmic

acceleration at current epoch. The higher derivative of curvature terms with positive power are

dominant at the early universe leading to the inflationary stage. The terms with negative power of

the curvature serve as gravitational alternative for the dark energy that acts as a possible source to

speed-up cosmic expansion [26]. Despite the fact that the ghost-free f (R) theory is very interesting

and useful as it passes solar system tests, it also suffers from instabilities. For instance, the theory

with 1
R
may develop the instability [27] whereas by adding a term of R2 to this specific form of f (R)

model, one can easily eliminate this instability [28]. Therefore, the viable f (R)models require to satisfy

the following stability constraints fR(R) > 0, fRR(R) > 0, R > R0 where R0 is the current Ricci

scalar [29].

In Fig. 1, both plots indicate that the constructed f (R) model (45) preserves the stability conditions.

Fig. 2 shows the graphical analysis of shape function. The upper left plot represents positive behavior

of h(r) while the upper right indicates that the shape function admits asymptotic behavior. The

lower left plot locates the WH throat at r0 = 4.4 and the corresponding right plot identifies that
dh(r0)

dr
= 0.9427 < 1. To discuss physical existence of WH, we insert constant red-shift function and

Eq. (43) in (12) yielding

ρeff + peff =
rh′(r) − h(r)

r3
< 0,

which satisfies the flaring-out condition. Consequently, NEC violates in this case, ρeff + peff < 0 and

assures the presence of repulsive gravity leading to traversable WH. In order to study the realistic

existence of traversable WH, we analyze the behavior of NEC and WEC in Fig. 3. Both plots indicate

that energy density and pressure recover energy bounds as ρm ≥ 0 and ρm + pm ≥ 0 implying

physically acceptable traversable WH.
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Fig. 1. Plots of stability conditions of f (R) model versus r for c
2

= 5, c
4

= 0.01, c
5

= −0.35, c
6

= 0.1, c
7

= −0.25, ρ0 = 1 and

k = 0.5.

Case II: a(r) = −k/r

In this case, we choose red-shift function in terms of r leading to

a(r) = −
k

r
, b(r) =

1

8r
(4c6r

2(2r − k) − 32c8r ln r + (32r − 8c7r + c6kr
2)

× ln(4r + k) − 8k/c8) + c5, k > 0. (46)

For this solution of a(r) and b(r), the generic function takes the form

f (R) = −
1

2c2

[

−(1 + ω)ρ0

(

−
k

r

)− (1+3ω)
2ω

+ 2ωc2ρ0

(

−
k

r

)− (1+ω)
2ω

− 6c4

×
√

c8r4(4r + k)−4+c7− k2c6
8 e

−(c6r
2− c6kr

2
− k

c8r
)−c5+k

2

]

. (47)

The corresponding shape function becomes

h(r) = r(1 − c8r
4(4r + k)−4+c7− k2c6

8 e
−(c6r

2− c6kr

2
− k

c8r
)−c5 ). (48)

Fig. 4 shows that the model (47) follows the stability condition for 0 < ω < −0.08 whereas

Fig. 5 represents the graphical behavior of the shape function. In upper face, the left plot preserves

the positivity of h(r) while the right plot ensures asymptotic flat geometry of WH. In lower face, the

left plot detects WH throat at r0 = 5.878 whereas the right plot indicates that
dh(r0)

dr
= 0.1673 < 1.

For Eqs. (12) and (46), we obtain

ρeff + peff =
k

r2(r − h(r))
+

rh′(r) − h(r)

r3
.

To investigate the presence of realistic traversable WH, we establish the graphical behavior of NEC

andWEC corresponding to perfect fluid aswell as NEC relative to effective energy–momentum tensor.

Fig. 6 indicates that ρm + pm ≥ 0, ρm ≥ 0 and ρeff + peff < 0 for 1 < ω < −1. Thus, the physical

existence of WH is assured in this case.
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Fig. 2. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for c

5
= −0.35, c

6
= 0.1 and c

7
= −0.25.

Fig. 3. Plots of ρm and ρm + pm versus r .

4.1. Power-law f (R) model

Here,we construct aWH solutionwith symmetry generator and corresponding conserved quantity

for f (R) power-lawmodel, i.e., f (R) = f0R
n, n 6= 0, 1. For this purpose, we solve Eqs. (27)–(35) leading

to

α = Y3(a, r), γ = Y1(r), δ = Y2(r, R).
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Fig. 4. Stability conditions of f (R) versus r for c
2

= 5, c
4

= 0.01, c
5

= −0.35, c
6

= 0.1, c
7

= −0.25 and k = 0.5.

Fig. 5. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for c

5
= −4, c

6
= 0.1, c

8
= −1 and k = 0.25.

Inserting this solution into Eqs. (36)–(39), we obtain

Y1(r) = 0, Y3(a, r) = d2, Y2(r, R) = d1R, β = 2(n − 1)d1 + d2 − 2τ ,r ,

where d1 and d2 represent arbitrary constants. For these values, the coefficients of symmetry gener-

ator turn out to be

α = d2, β = 2(n − 1)d1 + d2 − 2τ ,r , γ = 0, δ = d1R. (49)
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Fig. 6. Plots of ρm , ρm + pm and ρeff + peff versus r .

Substituting these coefficients in Eq. (40) and assuming B = d0 and τ = τ0, it follows that

b(r) =
∫

8d3r
2 + 2a′′r2 + 4a′r ′ + a′2r2 − 4d4

r(4 + a′r)
dr

− ln



−d1 + 4

∫

e

∫

8r2+2a′′r2+4a′r′+a′2r2−4
r(4+a′r) dr

r(4 + a′r)
dr



 . (50)

The resulting coefficients of symmetry generator verify the system (27)–(39) for d2 = −2(n − 1)d1.

Under this condition, the symmetry generator and associated first integral take the form

K = τ0
∂

∂r
− 2(n − 1)d1

∂

∂a
+ d1

∂

∂R
,

Σ = d0 − τ0

[

e
a
2 e

b
2 r2(f − RfR + ωρ0a

− (1+ω)
2ω + 2fRr

−2) +
e

a
2 r2

e
b
2

× {fR(2r−2 + 2a′r−1) + fRR(a
′R′ + 4R′r−1)}

]

− 2d1(1 − n)e
a−b
2 (R′r2

× fRR + 2rfR) − d1RfRRe
a−b
2 (a′r2 + 4r).
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Fig. 7. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for d

2
= 16, d

3
= 1.001, d

4
= −0.2 and n = 1

2
.

Now, we solve the integral (50) for constant and variable forms of red-shift function and study WH

geometry via shape function.

Case I: a(r) = k

For constant red-shift function, the integral (50) reduces to

b(r) = d3r
2 − d4 ln r − ln

(

−d1r + er
2

r

)

. (51)

This satisfies Eq. (40) for ω = 1, 1
3
, − 1

3
, −1 and

ρ0 = −
foe

3ω ln d1+4nω ln 2+ln d1
2ω

ωd1 − (1 + ω)
, ω 6= 0. (52)

In this case, the shape function yields

h(r) = r

[

1 − d4r

(

−d1r + er
2

r

)

e−d3r
2

]

. (53)

We analyze WH geometry via shape function for n = 1
2
, 2 and n = 4. In upper face, the left and

right plots of Fig. 7 show that h(r) remains positive and asymptotic flat for n = 1
2
. The lower left

plot identifies WH throat at r0 = 5.101 and right plot satisfies the condition, i.e., h′(r0) = 0.17 < 1.

In Figs. 8 and 9, the shape function preserves its positivity condition and also admits asymptotic flat

geometry for both n = 2 and n = 4. The WH throat is located at r0 = 0.23 and r0 = 2.052 for n = 2

and n = 4, respectively. The derivative condition is also satisfied at throat, i.e., h′(r0) = 0.89 < 1 and

h′(r0) = −0.49 < 1. The NEC relative to effective energy–momentum tensor verifies ρeff + peff < 0
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Fig. 8. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for d

2
= −200, d

3
= 1.001, d

4
= 0.2 and n = 2.

Fig. 9. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for d

2
= −200, d

3
= 1.001, d

4
= 0.2 and n = 4.
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Fig. 10. Plots of ρm and ρm + pm versus r for n = 0.5.

while Fig. 10 identifies ρm ≥ 0 and ρm + pm ≥ 0 for n = 0.5. In case of n = 2 and n = 4, the energy

density and pressure corresponding to perfect fluid evolve in the same way.

Case II: a(r) = −k/r

Here we consider red-shift function to be r-dependent and solve the integral (50) implying that

b(r) = r2 −
rd1(1 − n)

2
+

d21(1 − n)2 ln(d1(1 − n) + 4r)

8
+ (d1(1 − n))2

×
{

−
1

rd1(1 − n)
+

4 ln(d1(1 − n) + 4r)

(d1(1 − n))2
−

4 ln r

(d1(1 − n))2

}

− ln((1 − n)

× d1 + 4r) − ln

[

4

∫

1

4r + d1(1 − n)

(

r−4(d1(1 − n) + 4r)3+
d2
1
(1−n)2

8

× er
2− rd1(1−n)

2
+ d1(1−n)

r

)

dr − d1

]

.

This solution satisfies Eq. (40) for ω = −1. The shape function of WH takes the form

h(r)

r
=

(

1 − r4(d1(1 − n) + 4r)−3−
d2
1
(1−n)2

8 e−r2+ rd1(1−n)

2
− d1(1−n)

r

×
[∫

{4r + d1(1 − n)}−1

(

r−4(d1(1 − n) + 4r)3+
d2
1
(1−n)2

8 er
2− rd1(1−n)

2
+ d1(1−n)

r

)

dr − d1

])

.

When red-shift function is not constant (a′(r) 6= 0), then the geometry of WH cannot be analyzed for

f (R) power-law model due to the complicated forms of b(r) and h(r).

4.2. Exponential model

In this section, we consider another example of viable f (R) model, i.e., exponential model to realize

the existence of realistic traversable WH. The simplest version of this model is proposed as [30]

f (R) = R − 2Λ(1 − e
− R

R0 ), (54)

where Λ denotes cosmological constant while R0 defines curvature parameter. If R ≫ R0, then the

corresponding model recovers standard cosmological constant cold dark matter model. To formulate
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WHsolution,we first solve the systemof Eqs. (27)–(40) for themodel (54)which leads to the following
coefficients of symmetry generator and boundary term

α = 0, β =
4Λχ1

R0

, γ = 0, δ = χ1(R0e
R
R0 − 2Λ), τ = τ0,

B =
2e

a+b
2 Λχ1

R2
0

[

−
2r3R0Λ

3

(

1 − e
− R

R0 −
2R

R0

)

+
r3R0(1 − RR0)

3
+ 4r

× (R0 − 2Λe
− R

R0 )

]

+ χ2,

where χ1 and χ2 represent arbitrary constants. These solutions satisfy the system for ω = ρ0 = −1
and the following constraint

e
R
R0 r2R2

0 − 2r2R0Λ + 4r2RΛ − 24Λ = 0. (55)

Now we determine the coefficient of radial component of the metric (5) using this constraint with
Eq. (19) for both constant as well as variable forms of red-shift function and study WH geometry via
shape function.

Case I: a(r) = k

In this case, we obtain

eb(r) = −(4(−2R0r
2 + (R0r

2 + 12r4) exp((1/2)(12 + R0r
2)/(R0r

2))

− 48r4χ4 + 24(1 − χ4))){(r2((5r4R2
0 − 2r4R0 − 4R0r

2)

× exp((1/2)(12 + R0r
2)(R0r

2)−1) − 6r4R2
0 + 48r2χ4 − 48r2

− 120R0r
2χ4 + 104R0r

2 − 96 + 96χ4))}−1. (56)

From this expression, we formulate shape function through h(r) = r[1 − e−b(r)] and analyze the
WH geometry graphically. In Fig. 11, the upper face indicates that the shape function is positively
increasing while the corresponding geometry is found to be asymptotically flat as h(r)/r → 0 when
r → ∞. In the lower face, the left plot indicates that the WH throat exists at r0 = 0.05 and also
preserves the condition, i.e., h(0.05) = 0.05 while the right plot shows that h′(r0) = −0.007 < 1.
Since the red-shift function is constant therefore, the traversable nature of the constructed WH
solution is preserved by the violation of effective NEC, i.e., peff +ρeff < 0. Fig. 12 evaluates the criteria
for physically viable WH as ρm > 0 and pm + ρm > 0.

Case II: a(r) = −k/r

Using Eqs. (19) and (55), it follows that

eb(r) = −(4(24 + 48kr2 − 2R0r
2 − 4kr4R0 − 12(r + 4)kr2χ4

− 24χ4(1 + 2r4)) + (2kr4R0 + 3r3k + R0r
2 + 12r4)

× exp((1/2)(12 + R0r
2)/(R0r

2))){r2(−2r4R0 + 5r4R2
0 − 4R0r

2)

× exp((1/2)(12 + R0r
2)/(R0r

2)) − (6r2R0 + 104)R0r
2 − 48(r2 + 2)

− (120R0r
2 − 48r2 + 96)χ4}−1.

Inserting the above expression in h(r) = r[1 − e−b(r)], we construct WH solution relative to variable
but finite red-shift function whose graphical interpretation is given in Fig. 13. Both plots of the upper
and lower panels indicate that the constructed WH follows asymptotic flat geometry whose throat
is located at r0 = 0.01 and h′(0.01) = −0.001 < 1. In order to analyze the presence of repulsive
gravitational effects at throat, we study the behavior of effective NEC in Fig. 14 which ensures that the
sum of peff and ρeff remains negative. Thus, the constructed WH is found to be traversable. Both plots
of Fig. 15 shows that the WH is physically viable as NEC and WEC corresponding to ordinary matter
are preserved.
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Fig. 11. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for χ

4
= −200, R0 = −0.95 = Λ and k = 0.005.

Fig. 12. Plots of ρm and ρm + pm versus r .
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Fig. 13. Plots of h(r), h(r)

r
, h(r) − r and dh(r)

dr
versus r for χ

4
= −0.20, R0 = −0.95 = Λ and k = 2.

5. Stability analysis

Here we discuss the stability of WH solutions relative to both constant as well as variable red-shift

function via Tolman–Oppenheimer–Volkov (TOV) equation. For isotropic fluid distribution, the radial

component of Bianchi identity (∇µT
µν = 0) defines TOV equation as

dpm

dr
+

a′(r)

2
(pm + ρm) = 0. (57)

The conservation of energy–momentum tensor relative to high order curvature terms leads to

T
′(c)
11 +

a′

2

(

T
(c)
00 + T

(c)
11

)

−
M ′

M

(

f ′′
R −

f ′
R

eb(r)

{

b′

2
+

M ′

2M

})

= 0. (58)

Combining Eqs. (57) and (58), it follows that

p′
(eff ) +

a′(r)

2

(

peff + ρeff

)

−
M ′

M

(

f ′′
R −

f ′
R

eb(r)

{

b′

2
+

M ′

2M

})

= 0, (59)



M. Sharif, I. Nawazish / Annals of Physics 389 (2018) 283–305 301

Fig. 14. Evolution of ρeff + peff versus r .

Fig. 15. Plots of ρm and ρm + pm versus r .

where peff = pm + T
(c)
11 and ρeff = ρm + T

(c)
00 . This equation determines the fate of the WH as it can be

expressed as a combination of hydrostatic Fh and gravitational force Fg . Using Eq. (59), these forces

take the following form

Fh = p′
(eff ) =

d

dr
(pm + T

(c)
11 ),

Fg =
Meff e

a−b
2

r2

(

peff + ρeff

)

−
M ′

M

(

f ′′
R −

f ′
R

eb(r)

{

b′

2
+

M ′

2M

})

,

where Meff = a′r2e
b−a
2

2
denotes effective gravitational mass. The null effect (Fh + Fg = 0) of these

dynamical forces leads to stable state of a WH.



302 M. Sharif, I. Nawazish / Annals of Physics 389 (2018) 283–305

Fig. 16. Plots of Fg (green) and Fh (red) versus r for a(r) = k (left) and a(r) = −k/r (right) for c
2

= 5, c
4

= 0.01, c
5

= −0.35,

c
6

= 0.1, c
7

= −0.25, ρ0 = −0.01 and k = 0.5. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

In Figs. 16–18, we analyze the stability of WH solutions constructed with the help of a new f (R)
model as well as power-law and exponential forms of generic function f (R). In Fig. 16, the left plot
represents the stability of WH solution (44) relative to constant red-shift function and f (R) model
(45). The effect of gravitational and hydrostatic forces appear to be the same but in opposite directions
canceling each other effect. Thus, the considered WH is found to be stable due to null effect of these
forces. For variable red-shift function, the equilibrium state ofWHsolution (48) is analyzed in the right
plot of Fig. 16. Initially, theWH geometry seems to be unstable but gradually it attains an equilibrium
state due to equal but opposite effect of hydrostatic and gravitational forces. Fig. 17 determines the
existence of stableWH for n = 0.5, n = 2 and n = 4 with constant red-shift function. For n = 0.5 and
n = 0.4, the system remains unstable as Fg + Fh 6= 0 whereas the constructed WH attains a stable
state for n = 2. In Fig. 18, the WH solutions gradually attain equilibrium state corresponding to both
forms of red-shift function.

6. Final remarks

In general relativity, the physical existence of a static traversable WH demands the violation of
NEC by the energy–momentum tensor. This violation confirms the presence of exotic matter which
would be minimized to have a physically viable WH. In case of f (R) gravity, the energy–momentum
tensor threading WH satisfies NEC and WEC whereas the existence of exotic matter is assured by
the effective energy–momentum tensor which violates NEC. In this paper, we have discussed the
presence of static traversable WH via Noether symmetry approach in f (R) gravity. For this purpose,
we have considered perfect fluid distribution and studied possible existence of realistic WH solutions
for generic as well as f (R) power-law model. We have solved over-determined system by invariance
condition and found symmetry generator, associated conserved quantity, exact solution of f (R) and
b(r) for static spherically symmetric metric. For these solutions, we have studied WH geometry and
also investigated stable state of WH solutions via modified TOV equation for the red-shift function
when a(r) = k, − k/r .

In case of constant red-shift function, we have obtained viable f (R) model and the shape function
satisfies all the properties, i.e., h(r) > 0, WH geometry is found to be asymptotic flat and dh(r)

dr
< 1

at r = r0. The violation of NEC (using effective energy–momentum tensor) assures the presence of
repulsive nature of gravity while existence of ordinary matter is supported by verification of NEC
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Fig. 17. Plots of Fg (green) and Fh (red) versus r for a(r) = k, d
2

= −2.2, d
3

= 1.001, d
4

= 0.05, f0 = 1 and Meff = 2. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and WEC relative to perfect fluid. When a′ 6= 0, the f (R) model preserves stability conditions for

0 < ω < −0.08 and the shape function has preserved all conditions of traversable WH while

ρeff + peff < 0, ρm + pm ≥ 0 and ρm ≥ 0 minimizing the presence of exotic matter due to the

presence of repulsive gravity. These energy bounds confirm the presence of a realistic WH solution

threaded by T (m)
µν . Consequently, we have found a physically viable WH solution for a′ 6= 0. For both

forms of red-shift function, the constructedWH solutions attain an equilibrium state as Fg +Fh = 0.

We have also formulated symmetry generator, corresponding first integral and WH solutions for

f (R) power-law model. When a′(r) = 0, we have established graphical analysis of traversable WH

conditions for n = 1/2, n = 2 and n = 4. In this case, the shape function is found to preserve all

conditions and ρeff + peff < 0 assures the violation of NEC identifying the existence of exotic matter

at throat. The consistent behavior of ρm ≥ 0 and ρm + pm ≥ indicate that the constructed traversable

WH is supported by ordinarymatter. The stability analysis of these realistic traversableWHs identifies

that the WH geometry would be stable only for n = 2. For a′ 6= 0, we have found a complicated form

of the shape function. For exponential f (R) model, the WH geometry is discussed near the throat.
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Fig. 18. Plots ofFg (green) andFh (red) versus r for a(r) = k (left), k = 0.005,Meff = −2 and a(r) = −k/r (right), χ
4

= −0.2,

R
0

= −0.95, k = 2 and Meff = 2. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

The shape of WH is found to be asymptotically flat for both constant as well as variable forms of the
red-shift function. The violation of effective NEC and verification of NEC as well as WEC of ordinary
matter assure the presence of realistic traversable WH solutions. The total effect of gravitational and
hydrostatic forces identifies equilibrium state of WHs in both cases.

The WH solutions are found in f (R) gravity which is equivalent to Brans–Dicke theory under
a particular conformal transformation. Coule [31] established static unrealistic WH solutions in
Einstein frame of f (R) theory. Nandi et al. [32] examined the possibility of static WH solutions in
the background of both Jordan and Einstein frames of Brans–Dicke theory. They found that the non-
traversable WH exists in the former frame whereas in the latter frame, WH solutions do not exist at
all unless energy conditions are violated by hand. Furey and DeBenedictis [33] discussed geometry of
the WH solutions near the throat while Bronnikov and Starobinsky [34] claimed that the existence
of throat can be preserved under a conformal transformation. In general, the back transformation
from Jordan to Einstein frames does not assure to get physical solutions. It has been even widely
demonstrated that passing from one frame to the other can completely change the physical meaning
as well as the stability of the solutions [35]. Bahamonde et al. [36] observed the presence of big-
rip (type I) singularity in the Einstein frame of f (R) gravity while along back mapping, the universe
evolution is found to be singularity free.

In this paper, we have explored the existence of realistic and stable traversable WH solutions in
the Jordan frame representation of f (R) theory. It is worth mentioning here that the WH geometry
is discussed at the throat in case of standard power-law and constructed f (R) models whereas in
case of exponential model, we have analyzed the WH geometry near the throat. The presence of
repulsive gravity due to higher order curvature terms leads to traversable WHs while the existence
of ordinary matter confirms the realistic nature of these traversable WH solutions in each case. For
f (R) power-lawmodel, theWH solutions are stable only for n = 2while stability is preserved for both
exponential aswell as constructed f (R)models. Itwould be interesting to analyze thepresence of these
configurations in the Einstein frame where contribution of scalar field may enhance the traversable
nature as it introduces anti-gravitational effects. On the other hand, the backmapping of these frames
may or may not ensure the presence of stable as well as realistic traversable wormholes.
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Viable Wormhole Solutions and

Noether Symmetry in f (R, T ) Gravity
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Abstract

This paper investigates wormhole solutions of spherically sym-
metric spacetime via Noether symmetry approach in f(R, T ) grav-
ity. For this purpose, we choose f(R, T ) models appreciating indirect
curvature-matter coupling and examine symmetry generators with as-
sociated conserved quantities. We determine possible existence of re-
alistic traversable wormhole solutions for both dust as well as non-
dust distributions and also study stable behavior of these solutions.
For both models, we use constant as well as variable forms of red-
shift function. To analyze physical existence of wormhole solutions,
we study the behavior of null/weak energy conditions with respect
to ordinary as well as effective energy-momentum tensor. It is con-
cluded that there exist physically viable traversable as well as stable
wormhole solutions in most of the cases.

Keywords: Noether symmetry; Wormhole solution; f(R, T ) gravity.
PACS: 04.20.Jb; 04.50.Kd; 95.36.+x.

1 Introduction

The concept of non-minimal coupling introduces one of the fascinating ap-
proaches to study current cosmic expansion. This revolutionary idea is ex-
tensively applied to different cosmological scenarios that suggests new and
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†iqranawazish07@gmail.com
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intriguing phenomenology. Bertolami et al. [1] emerged non-minimal cou-
pling between curvature and matter parts such that generic function of R (R
is the Ricci scalar) admits non-minimal coupling with Lagrangian density of
matter (Lm). Harko et al. [2] deduced a generalization of f(R) gravity whose
generic function includes both curvature as well as matter called f(R, T )
gravity (T is the trace of energy-momentum tensor). This non-minimally
coupled theory successfully explores dark matter in galaxies or clusters of
galaxies, natural preheating conditions relative to inflationary models and
presence of traversable wormhole (WH) in the absence of exotic matter [3].

The analysis of exact solutions under some assorted scenarios leads to
study different cosmic aspects that unveil sophisticated picture of cosmic
evolution. Gutiérrez-Piñeres and López-Monsalvo [4] evaluated static axi-
ally symmetric vacuum solution which corresponds to naked singularity for
minimally coupled curvature and matter contents. Sharif and Zubair [5]
used power-law and exponential expansions to formulate exact solutions and
associated kinematical quantities of anisotropic universe model in f(R, T )
gravity. Harko and Lake [6] obtained exact cylindrical solutions for non-
minimal coupling of R with Lm. Shamir [7] formulated exact anisotropic
solutions and also determined their physical behavior via cosmological para-
meters in f(R, T ) gravity. Gao and Shen [8] established a new method to find
exact static spherically symmetric solutions in the absence of non-minimal
curvature-matter coupling.

Noether symmetry technique is considered to be the most applicable ap-
proach that establishes not only exact solutions but also proposes association
between symmetry generators and conserved quantities relative to dynamical
system. Capozziello et al. [9] found exact static spherically symmetric solu-
tion for f(R) power-law model. The same authors [10] extended this work to
evaluate non-static spherically symmetric solutions and also explored possi-
ble solutions for axially symmetric model. Momeni et al. [11] discussed the
presence of Noether symmetry for flat isotropic model in f(R) and f(R, T )
theories. Sharif and his collaborators [12] studied cosmic evolution as well as
late-time cosmic expansion using this approach. We have constructed exact
solution of f(R, T ) model admitting indirect curvature-matter coupling and
also analyzed corresponding behavior via cosmological parameters [13]. We
have also found exact solutions of some anisotropic universe models by taking
generalized scalar field model [14].

A wormhole (WH) is a hypothetical bridge or tunnel that allows a smooth
passing through different regions of spacetime. If hypothetical tunnel con-
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nects two regions of the same spacetime then intra-universe WH is estab-
lished whereas inter-universe WH appears for two distinct spacetimes. The
existence of exotic matter (matter with negative energy density) encourages
observer to move smoothly through tunnel but its sufficient amount leads to
controversial existence of a realistic WH. Consequently, the only way to have
a physically viable WH model is to minimize the usage of exotic matter in
the tunnel. Morris and Thorne [15] established traversable WH that allows
an observer to possess traverse motion. Different proposals have been intro-
duced to analyze the existence of traversable as well as realistic WH such
as modified theories, non-minimal coupling between curvature and matter,
scalar field models etc [16].

There is a growing interest about the existence of WH solutions in mod-
ified theories. Lobo and Oliveira [17] formulated WH solution for constant
shape function and different fluids in f(R) gravity. Jamil et al. [18] consid-
ered particular form of shape function in the background of non-commutative
geometry and found physically viable WH solutions for f(R) power-law
model. Bahamonde et al. [19] established cosmological WH supported by
perfect fluid in the same gravity. Mazharimousavi and Halilsoy [20] dis-
cussed f(R) model appreciating polynomial expansion and constructed a
near-throat WH solution satisfying necessary conditions of WH for both vac-
uum as well as non-vacuum cases. Sharif and Fatima [21] analyzed static
WH solution in galactic halo region as well as non-static conformal WH in
modified Gauss-Bonnet gravity. Zubair et al. [22] explored static WH solu-
tion and analyzed physical existence for anisotropic, barotropic and isotropic
fluids in f(R, T ) gravity. Bahamonde et al. [23] used Noether symmetry
approach to evaluate exact solutions of red-shift as well as shape functions.
They also studied geometric behavior of WH solutions in scalar-tensor theory
admitting non-minimal coupling with torsion scalar.

In this paper, we explore static wormhole solutions and analyze their
physical existence via Noether symmetry approach in f(R, T ) gravity. The
format of the paper is as follows. In section 2, we review Lagrangian for-
mulation and energy bounds of f(R, T ) gravity. Section 3 explores Noether
symmetry approach to construct WH solutions for two f(R, T ) models and
investigate physical existence via energy bounds graphically. In section 4,
we study the stable behavior of WH solution through TOV equation. In the
last section, we present final remarks.
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2 Basic Formalism of f (R, T ) Gravity

For the non-minimal coupling of curvature and matter, the Einstein-Hilbert
action is modified as [2]

I =

∫

d4x
√−g[

f(R, T )

2κ2
+ Lm], (1)

where g is the determinant of the metric tensor, f is the generic function
which appreciates non-minimal curvature-matter coupling. The field equa-
tions are obtained through metric variation of the action (1) as

RµνfR(R, T ) − 1

2
gµνf(R, T ) + (gµν∇µ∇µ −∇µ∇ν)fR(R, T ) + fT (R, T )

×Tµν + ΘµνfT (R, T ) = κ2T (m)
µν . (2)

Here subscripts of f defines corresponding partial derivatives, ∇µ is the co-
variant derivative whereas the energy-momentum tensor (Tµν) and Θµν are
defined as

T (m)
µν = gµνLm − 2

∂Lm

∂gµν
, Θµν =

gµνδT
(m)
µν

δgµν
= gµνLm − 2T (m)

µν − 2gµν ∂2Lm

∂gµν∂gµν
.

An alternative form of the field equations relating the Einstein tensor (Gµν)
with matter and curvature energy-momentum tensors is given as

Gµν =
1

fR

(T (c)
µν + T (m)

µν ) = T eff
µν , (3)

where T
(c)
µν and T eff

µν identify curvature and effective energy-momentum ten-

sors, respectively. For the action (1), the curvature terms are defined T
(c)
µν

as

T (c)
µν = fT T (m)

µν − fT gµνLm +
1

2
gµν(f − RfR) + (∇µ∇ν −∇µ∇µgµν)fR. (4)

In non-minimally coupled f(R, T ) gravity, the covariant derivative of energy-
momentum tensor yields an extra force which behaves as a source of deviation
for massive test particles given by

∇µT (m)
µν =

fT

κ2 − fT

[

(T (m)
µν + Θµν)∇µ ln fT + ∇µΘµν −

gµν∇µT

2

]

. (5)
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For perfect fluid distribution, the energy-momentum is defined as

T (m)
µν = uµuν(ρm + pm) + pmgµν ,

where uµ characterizes four velocity defined as uµ = (−e
a(r)
2 , 0, 0, 0) whereas

pm and ρm represent pressure and energy density of perfect fluid, respectively.
A static spherically symmetric spacetime is [15]

ds2 = −ea(r)dt2 + eb(r)dr2 + M(r)(dθ2 + sin2 θdφ2), (6)

where a, b and M are radial functions. The geodesic deviation equation de-
duces M(r) = r2, sin r, sinh r for K = 0, 1,−1 (K is curvature parameter)
in the limit M(r) → 0 as r → 0, respectively [24]. To study WH geometry,

we consider M(r) = r2 and eb(r) =
(

1 − h(r)
r

)−1

, where h(r) is the shape

function and a(r) is referred as red-shift function determining gravitational
red-shift. In order to identify a WH throat, the radial coordinate admits non-
monotonic behavior such that it starts from infinity, decreases upto a mini-
mum value r0 locating WH throat at h(r0) = r0 and then starts increasing
from minimum value to infinity providing r > r0. At throat, the derivative
condition h′(r0) < 1 is introduced, where prime denotes radial derivative.
The throat is considered to be the minimum radius of WH geometry leading
to the flaring-out condition, i.e., h(r)−h(r)′r

h(r)2
> 0. Apart from throat, the shape

of WH depends on asymptotically flat space implying h(r)
r

→ 0. If a WH is
independent of horizon and red-shift function is finite everywhere then there
exists a traversable WH.

In order to formulate Lagrangian corresponding to the action (1), we
choose Lm = pm(a, b, M) [25] and use Lagrange multiplier approach

I =

∫ √−g[f(R, T ) − λ(R − R̄) − χ(T − T̄ ) + pm(a, b, M)]dr. (7)

Here

√−g = e
a
2 e

b
2 M, λ = fR, χ = fT , T̄ = 3pm − ρm,

R̄ =
1

eb

(

−a′2

2
+

a′b′

2
− a′M ′

M
− 2M ′′

M
+

b′M ′

M
+

M ′2

2M2
− a′′ +

2eb

M

)

.

(8)
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Using these values in Eq.(7) and eliminating second order derivative trough
integration by parts, it follows that

L(a, b, M, R, T, a′,M ′, R′, T ′) = e
a
2 e

b
2 M (f − RfR − TfT (R, T )

+ fT (R, T )(3pm − ρm) + pm +
2fR

M

)

+
e

a
2 M

e
b
2

{

fR

(

M ′2

2M2
+

a′M ′

M

)

+ fRR

(

a′R′ +
2M ′R′

M

)

+ fRT

(

a′T ′ +
2M ′T ′

M

)}

. (9)

The corresponding Euler-Lagrange equation and energy function/Hamiltonian
of the dynamical system are

∂L
∂qi

− dpi

dr
= 0, H =

∑

i

q′ipi − L,

where qi represents n generalized coordinates and pi = ∂L
∂q′i

is the conjugate
momenta. Varying the Lagrangian with respect to configuration space Q =
{a, b, M, R, T}, we obtain

f − RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
a
−ρm,

a
) + pm,

a
}

+
1

eb

{

fRR

(

b′R′ − 2R′′ − 2M ′R′

M

)

+ fRT

(

b′T ′ − 2M ′T ′

M

)

− 2R′2fRRR

− 4R′T ′fRRT − 2T ′2fRTT

}

=
fR

eb

(

M ′2

2M2
+

b′M ′

M
− 2M ′′

M
+

2eb

M

)

, (10)

f − RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
b
−ρm,

b
) + pm,

b
}

− 1

eb

{

fRR

(

a′R′ +
2M ′R′

M

)

− fRT

(

a′T ′ +
2M ′T ′

M

)}

=
fR

eb

(

M ′2

2M2

+
a′M ′

M
− 2eb

M

)

, (11)

f − RfR − TfT + fT (3pm − ρm) + pm + 2{fT (3pm,
M
−ρm,

M
) + pm,

M
}

+
1

eb

{

fRR

(

b′R′ − a′R′ − 2R′′ − M ′R′

M

)

− 4R′T ′fRRT − 2T ′2fRTT − 2R′2

×fRRR + fRT

(

b′T ′ − a′T ′ − 2T ′′ − M ′T ′

M

)}

= −fR

eb

(

−a′′ +
M ′2

2M2
− a′2

2

− a′M ′

2M
+

a′b′

2
+

b′M ′

2M
− M ′′

M

)

,
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eb(fRT (3pm − ρm − T ) + fRR(2M−1R − R)) + fRR

(

−a′′ +
M ′2

2M2
− a′2

2

− a′M ′

2M
+

a′b′

2
+

b′M ′

2M
− M ′′

M

)

= 0,

eb(fTT (3pm − ρm − T ) + fRT (2M−1R − R)) + fRT

(

−a′′ +
M ′2

2M2
− a′2

2

− a′M ′

2M
+

a′b′

2
+

b′M ′

2M
− M ′′

M

)

= 0.

For Lagrangian (9), the variation of the energy function leads to

H = (f − RfR − TfT + fT (3pm − ρm) + pm + 2M−1fR)eb(r) − fR

×
(

M ′2

2M2
+

a′M ′

M

)

− (R′fRR + T ′fRT )

(

a′ +
2M ′

M

)

.

For H = 0, the above equation yields

eb(r) =

(

1 − h(r)

r

)−1

=
fR

(

M ′2

2M2 + a′M ′

M

)

+ (R′fRR + T ′fRT )
(

a′ + 2M ′

M

)

f − RfR − TfT + fT (3pm − ρm) + pm + 2M−1fR

.

(12)
For WH geometry, the presence of physically acceptable traversable WH

is possible if the energy conditions are violated. In order to specify energy
conditions, we write down Raychaudhari equations as

dθ

dτ
+

1

3
θ2 − wµνw

µν + σµνσ
µν + Rµνl

µlν = 0, (13)

dθ

dτ
+

1

2
θ2 − wµνw

µν + σµνσ
µν + Rµνk

µkν = 0, (14)

where θ, lµ, kµ, σµν and wµν represent expansion scalar, timelike and null
vectors, shear and rotation tensors. These equations are determined for
timelike and null congruences. In both equations, the positive behavior of
last term requires attractive nature of gravity. In general relativity, these
conditions are categorized as null (NEC) (ρm + pm ≥ 0), weak (WEC) (ρm +
pm ≥ 0, ρm ≥ 0), strong (SEC) (ρm + 3pm ≥ 0) and dominant (DEC)
(ρm ± pm ≥ 0) energy conditions [26]. For non-geodesic (null or timelike)
congruences, an acceleration term due to contribution of non-gravitational
force evolves in the Raychaudhari equation as follows

dθ

dτ
+

1

3
θ2 − wµνw

µν + σµνσ
µν + Rµνl

µlν −A = 0,

7



where A = ∇ν(u
µ∇µu

ν). The purely geometric nature of Raychaudhari equa-

tions implies that T
(m)
µν kµkν−A ≥ 0 which can be replaced by T eff

µν kµkν−A ≥
0. Consequently, the energy conditions following non-geodesic congruences
in f(R, T ) gravity are defined as [27]

NEC : ρeff + peff −A ≥ 0,

WEC : ρeff −A ≥ 0, ρeff + peff −A ≥ 0,

SEC : ρeff + peff −A ≥ 0, ρeff + 3peff −A ≥ 0,

DEC : ρeff −A ≥ 0, ρeff ± peff −A ≥ 0.

In modified theories, static WH demands the violation of NEC on effec-
tive energy-momentum tensor for the existence of physically viable WH. In
f(R, T ) gravity, Eqs.(10) and (11) lead to a standard relation between ρeff

and peff as follows

ρeff + peff −A =
1

2eb

(

M ′2

M2
+

a′M ′

M
+

b′M ′

M
− 2M ′′

M

)

, (15)

where acceleration term A is given by
(

1 − h(r)

r

)[

a′′

2
+

a′2

4
+

a′

r

]

− a′(rh′(r) − h(r))

4r2
. (16)

3 Noether Symmetry Approach

Noether symmetry introduces an interesting way to establish new cosmolog-
ical models and corresponding geometries in modified theories. To analyze
the existence of Noether symmetry with associated conserved quantity of
static spherically symmetric spacetime, we consider

K = τ(r, qi)
∂

∂r
+ ξi(r, qi)

∂

∂qi
, (17)

where r is referred as an affine parameter whereas τ and ξi represent unknown
coefficients of the vector field K. To ensure the presence of Noether symme-
tries, the Lagrangian must satisfy invariance condition for unique vector field
K on tangent space. In this case, the vector field behaves as a symmetry
generator leading to formulate conserved quantity. The invariance condition
is

K [1]L + (Dτ)L = DB(r, qi). (18)

8



Here B is the boundary term, K [1] denotes first order prolongation and D
describes total derivative defined as

K [1] = K + (Dξi − q′
i
Dτ)

∂

∂q′i
, D =

∂

∂r
+ q′

i ∂

∂qi
. (19)

When a Lagrangian follows the invariance condition, the first integral is used
to evaluate conserved quantity of the system. If the Lagrangian is trans-
lational invariant in time and position, then the first integral determines
conservation of energy and linear momentum whereas if Lagrangian remains
invariant under rotation, it yields conservation of angular momentum [28].
The first integral for invariance condition (18) is defined as

Σ = B − τL − (ξi − q′
i
τ)

∂L
∂q′i

. (20)

For configuration space Q = {a, b, M,R, T}, the vector field and corre-
sponding first order prolongation turn out to be

K = τ
∂

∂r
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂M
+ δ

∂

∂R
+ η

∂

∂T
,

K [1] = τ
∂

∂r
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂M
+ δ

∂

∂R
+ η

∂

∂T
+ α′ ∂

∂a′
+ β′ ∂

∂b′

+ γ′ ∂

∂M ′
+ δ′

∂

∂R′
+ η′ ∂

∂T ′
. (21)

The derivative of unknown coefficients of vector field with respect to r are
defined as

ζ ′
j
= Dζ

j
− q′

i
Dτ, j = 1...5, (22)

where ζ1, ζ2, ζ3, ζ4 and ζ5 correspond to α, β, γ, δ and η, respectively.
Inserting Eqs.(9), (21) and (22) in (18) and comparing the coefficients of
a′2M ′, a′b′M ′, a′M ′2, a′R′2 and a′T ′2, we obtain

τ,
a
fR = 0, τ,

b
fR = 0, τ,

M
fR = 0, τ,

R
fRR = 0, τ,

T
fRT = 0. (23)

This implies that either fR, fRR, fRT = 0 or vice verse. The first choice
yields trivial solution. Thus, we choose fR 6= 0 and equate the remaining
coefficients yielding

B,
b
= 0, τ,

a
= 0, τ,

b
= 0, τ,

M
= 0, τ,

R
τ,

T
= 0, (24)
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e
a
2 (γ,

r
fR + Mδ,

r
fRR + Mη,

r
fRT ) = e

b
2 B,

a
, (25)

e
a
2 (α,

r
M + 2γ,

r
)fRR = e

b
2 B,

R
, (26)

e
a
2 (α,

r
M + 2γ,

r
)fRT = e

b
2 B,

T
, (27)

e
a
2 (α,

r
fR + γ,

r
M−1fR + 2δ,

r
fRR + 2η,

r
fRT ) = e

b
2 B,

M
, (28)

γ,
a
fR + Mδ,

a
fRR + Mη,

a
fRT = 0, (29)

γ,
b
fR + Mδ,

b
fRR + Mη,

b
fRT = 0, (30)

α,
b
fR + γ,

b
M−1fR + 2δ,

b
fRR + 2η,

b
fRT = 0, (31)

Mα,
b
fRR + 2γ,

b
fRR = 0, (32)

Mα,
b
fRT + 2γ,

b
fRT = 0, (33)

Mα,
R

fRR + 2γ,
R

fRR = 0, (34)

Mα,
T

fRT + 2γ,
T

fRT = 0, (35)

Mα,
T

fRR + 2γ,
T

fRR + Mα,
R

fRT + 2γ,
R

fRT = 0, (36)

fR(α − β − 2γM−1 + 4Mα,
M

+4γ,
M
−2τ,

r
) + fRR(2δ + 8Mδ,

M
)

+fRT (2η + 8Mη,
M

) = 0, (37)

fR(α − β + 2α,
a
−2τ,

r
+2γ,

M
+2γ,

a
M−1) + fRR(2δ + 2Mδ,

M
+4δ,

a
)

+fRT (2η + 2Mη,
M

+4η,
a
) = 0, (38)

fR(α,
R

+γ,
R

M−1) + fRR(α − β + Mα,
M

+2γ,
M
−2τ,

r
+2δ,

R
) + 2δ

×fRRR + 2ηfRRT + 2eta,
R

fRT = 0, (39)

fR(α,
T

+γ,
T

M−1) + fRT (α − β + Mα,
M

+2γ,
M
−2τ,

r
+2η,

T
) + 2δ

×fRRT + 2ηfRTT + 2delta,
T

fRR = 0, (40)

2γ,
R

fR + fRR(Mα − Mβ + 2γ + 2Mα,
a
−2Mτ,

r
+4γ,

a
+2Mδ,

R
)

+2MδfRRR + 2MηfRRT + 2Mη,
R

fRT = 0, (41)

2γ,
T

fR + fRT (Mα − Mβ + 2γ + 2Mα,
a
−2Mτ,

r
+4γ,

a
+2Mδ,

R
)

+2MδfRRT + 2MηfRTT + 2Mδ,
T

fRR = 0, (42)

e
a
2 e

b
2 M

[

(f − RfR + fT (3pm − ρm − T ) + 2fRM−1 + pm)

(

α + β

2
+ τ,

r

)

+ α{fT (3pm,
a
−ρm,

a
) + pm,

a
} + β{fT (3pm,

b
−ρm,

b
) + pm,

b
} + γ{fT

× (3pm,
M
−ρm,

M
) + pm,

M
} +

γ

M
(f − RfR + fT (3pm − ρm − T ) + pm)

+ δ{fRR(−R + 2M−1) + fRT (3pm − ρm − T )} + η{fRT (−R + 2M−1)

+ fTT (3pm − ρm − T )}] = B,
r
. (43)
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Noether symmetry technique refers as the most admirable approach as it
reduces the complexity associated with matter contents and helps to evaluate
exact solutions. Thus, the study of traversable and realistic WH solutions
using Noether symmetry approach and non-minimal curvature-matter cou-
pling would be more interesting. We study possible existence of symmetry
generators, associated conserved quantities and analyze WH geometry for
two models. We also construct corresponding exact solutions to explore cos-
mological picture of these models. The models are given as [2]

• f(R, T )=R + 2g(T ),

• f(R, T )=F (R) + G(T ).

3.1 f(R, T ) = R + 2g(T )

We consider a correspondence of this model with standard cosmological con-
stant cold dark matter model by taking into account a trace dependent cos-
mological constant defined as

f(R, T ) = R + 2Λ(T ) + g(T ). (44)

We formulate symmetry generators and conserved quantities by solving the
system (24)-(42) which yields

α = 0, β = −2c2B,
r

r2
, γ = 0, δ = 0, η = 0, τ = c1 +

∫

c2B,
r

r2
dr,

(45)

where c1 and c2 denote arbitrary constants. In gravitational theories of grav-
ity, the study of perfect fluids is of great interest. Such matter distribution
describes quite accurately matter content of several astrophysical objects
such as stars, galaxies and even the universe at scales larger than 100 Mpc.
The matter distribution of the universe can also be described by dust fluid
only if there exist a negligible amount of radiations. The dust particles inter-
acting with radiations are responsible for the formation of massive stars. In
following, we explore the existence of realistic and traversable WH at large
scales and find exact solution of f(R, T ) model as well as matter components
for dust as well as non-dust distribution of perfect fluid.
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Dust Case

For dust distribution, the energy-momentum tensor (2) reduces to

T (m)
µν = ρm(r)uµuν .

Using Eq.(45), we solve (43) leading to

ρm = −e
−a−b

2

2c2c3

, Λ(T ) = −g(T )

2
+ c3T + c4, (46)

where c3 and c4 represent arbitrary constants. Assuming B,
r
= c5, the non-

zero coefficients of symmetry generator and f(R, T ) model take the form

B = c5r, τ = c1 −
c2c5

r
, β = −2c2c5

r2
, f(R, T ) = R + 2c3T + c4.

The symmetry generators and the corresponding first integral become

K1 =
∂

∂r
, K2 = −c2

r

∂

∂r
− 2c2

r2

∂

∂b
,

Σ1 = −e
a−b
2 r2

[

eb

(

2c4 +
2

r2
+

e
−a−b

2

c2

)

+
2 + 2a′r

r2

]

,

Σ2 = r + c2e
a−b
2 r

[

eb

(

2c4 +
2

r2
+

e
−a−b

2

c2

)

+
2 + 2a′r

r2

]

.

Inserting Eq.(46) in (12), we obtain

eb(r) =
2
r2 + 2a′

r

2c4 + 2
r2 + e

−a−b
2

c2

. (47)

In order to study geometry as well as realistic existence of WH via shape
function and energy bounds, we consider red-shift function both constant as
well as variable a(r) = k and a(r) = −k

r
, k > 0, where k denotes constant

[29]. In the following, we solve Eq.(47) for both choices of red-shift function.

Case I: a(r) = k

In this case, Eq.(47) yields

b(r) = 2 ln

[

−e−
k
2 r2 +

√

e−kr4 + 16c4r2c2
2
+ 16c2

2

4c2(c4r
2 + 1)

]

, (48)
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Figure 1: Plots of h(r), h(r)
r

, h(r)−r and dh(r)
dr

versus r for c2 = 30, c3 = −0.5,
c4 = −0.0095 and k = −0.08.

which leads to shape function as

h(r) = [2r3(e−kr2 + ((e−
k
2

√

e−kr4 + 16c4r
2c2

2
+ 16c2

2
− 8c2

2
c4) − 8c2

2
c2

4
r2))]

× {(e− k
2 r2 +

√

e−kr4 + 16c4r
2c2

2
+ 16c2

2
)2}−1.

The energy density of dust fluid becomes

ρm = −e

− k
2
−ln











−e
−

k
2 r2+

√

√

√

√

 

e
−

k
2

)2

r4+16r2c2
2

c4+16c2
2

4(c2(c4r2+1))











2c2c3

.

Figure 1 shows graphical behavior of the shape function. In upper panel,
the left plot shows positively increasing shape function satisfying h(r) < r0

13



Figure 2: Evolution of ρm −A versus r.

while the right plot represents asymptotic flat behavior as h(r)
r

→ 0 with
r → ∞. In the lower face, the left plot identifies WH throat at r0 = 0.001 and
the right plot yields dh(r0)

dr
< 1. Figure 2 exhibits energy density as positively

increasing. For the existence of realistic WH, we substitute constant red-shift
function and b(r) from Eq.(48) in (15), it follows that

ρeff + peff =
rh′(r) − h(r)

r3
.

Using flaring-out condition in non-geodesic background, this implies that
ρeff + peff − A < 0, i.e., NEC is violated for effective stress-energy tensor.
This indicates the presence of repulsive gravity and consequently, assures the
existence of physically viable traversable WH.

Case II: a(r) = −k/r

Here, Eq.(47) gives

b(r) = 2 ln[(e
k
2r r3 + {e k

r r6 + 16r4c4c
2
2
+ 16r3c4c

2
2
k + 16c2

2
r2 + 16c2

2rk}
1
2 )

× (4
(

c2r
(

c4r
2 + 1

))

)−1]. (49)

The corresponding shape function turns out to be

h(r) = (2r2(ek/rr5 + (e
k
2r r2{r(ek/rr5 + 16c4c

2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r

+ 16kc2
2
)} 1

2 − 8c4c
2
2r

3) + 8c4c
2
2kr2 + (8kc2

2 − 8c2
2r

5c2
4
)))/(e

k
2r r3

+
√

r(ek/rr5 + 16c4c
2
2r

3 + 16c4c
2
2kr2 + 16c2

2r + 16kc2
2))

2.
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Figure 3: Plots of h(r), h(r)
r

, h(r)−r and dh(r)
dr

versus r for c2 = 0.5, c3 = 0.5,
c4 = 1.1 and k = 5.

Figure 3 implies that h(r) preserves its positivity with h(r) < r while far
from throat, the shape of WH is found to be asymptotic flat in the upper
face. The left plot of the lower face locates WH throat at r0 = 0.95 and
the corresponding right plot indicates that dh(r0)

dr
< 1. To investigate the

presence of traversable WH, we insert Eq.(49) in (15) yielding

ρeff + peff = (64(((e
k
2r r

7
2 (ek/rr5 + 16c4c

2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r + 16kc2

2
)

1
2

− 8c2
4
c2

2
r6) − 8c4c

2
2
r3k) + 4c2

4
k2r4c2

2
+ (8c4k

2r2c2
2
− 8c2

4
c2

2
kr5)

+ (ek/rr6 − 8r4c4c
2
2
) + 4k2c2

2
)(c4r

2 + 1)c2
2
)/((e

k
2r r3 + (r(ek/rr5

+ 16c4c
2
2
r3 + 16c4c

2
2
kr2 + 16c2

2
r + 16kc2

2
)

1
2 ))3(r(ek/rr5 + 16c4c

2
2

× r3 + 16c4c
2
2
kr2 + 16c2

2
r + 16kc2

2
))

1
2 ).

Figure 4 shows that density is positively decreasing while the effective energy
density and pressure are negatively increasing such that ρm − A ≥ 0 and
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Figure 4: Plots of ρm −A and ρeff + peff −A versus r.

ρeff + peff −A ≤ 0. This indicates the violation of NEC by effective energy-
momentum tensor leading to realistic traversable WH.

Non-Dust Case

At large scales, the non-dust distribution successfully illustrates matter distri-
bution of the universe in the presence of radiations. In this case, we consider
a particular relation between density and pressure such that pm(a, b, M) =
ωρm(a, b, M) (ω denotes equation of state parameter) and solve Eq.(43) which
yields

ρm = − e
−a−b

2

2c2(6ωc6 + ω − 2c6))
, Λ(T ) = −g(T )

2
+ c3T + c4 , (50)

where c6 denotes arbitrary constant. Here, symmetry generators remain the
same as for dust case but the corresponding conserved integral gives

Σ1 = −e
a−b
2 r2

[

eb

(

2c4 +
2

r2
+

e
−a−b

2 (2c3(3ω − 1) + 1)

2c2(6ωc6 + ω − 2c6)

)

+
2 + 2a′r

r2

]

,

Σ2 = r + c2e
a−b
2 r

[

eb

(

2c4 +
2

r2
+

e
−a−b

2 (2c3(3ω − 1) + 1)

2c2(6ωc6 + ω − 2c6)

)

+
2 + 2a′r

r2

]

.

Inserting Eq.(50) in (12), we obtain

eb(r) =
2(1 + a′r)c2

2c4r
2c2 + 2c2 + e−

a(r)
2

−
b(r)
2 r2

. (51)
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Case I: a(r) = k

For this case, Eq.(51) yields

b(r) = 2 ln

[

−e−
k
2 r2 +

√

e−kr4 + 16c4r
2c2

2
+ 16c2

2

4c2(c4r
2 + 1)

]

. (52)

The associated shape function takes the form

h(r) = −[2r3(−e−kr2 + e−
k
2

√

e−kr4 + 16c4r
2c2

2
+ 16c2

2 + 8c2
2
c4 + 8c2

2c
2
4
r2)]

× (e−
k
2 r2 −

√

e−kr4 + 16c4r
2c2

2 + 16c2
2)

−2.

Inserting Eq.(52) in (50), we obtain

ρm =
e
− k

2
−ln





−e
−

k
2 r2+

√
e−kr4+16c4r2c2

2
+16c22

4c2 (c4r2+1)





c2(6ωc6 + ω − 2c6)
. (53)

The upper plane of Figure 5 indicates that h(r) remains positive but it
does not preserve asymptotic flat shape. In lower face, the left plot identifies
WH throat at r0 ≈ 0.001 and the right plot satisfies h′(r0) < 1. Figure 6

shows that ρm−A and ρm +pm−A are positively increasing for 1 ≤ ω ≤ 0.3
while ρeff + peff −A < 0 in this case. Therefore, a realistic traversable WH
solution exists.

Case II: a(r) = −k/r

For variable red-shift function, Eq.(51) leads to

b(r) = ln[(ek/rr5 + 8c2
2
k + 8c2

2
r3c4 + e

k
2r r5/2(ek/rr5 + 16kc2

2 + 16c2
2r

+ 16c2
2kr2c4 + 16c2

2r
3c4)

1
2 ){8rc2

2(1 + 2r2c4 + r4r2c4 + r4c2
4
)}−1].

(54)

The corresponding shape function is

h(r) = [(ek/rr5 + 8c2
2
k + (8c2

2
kr2c4 − 8c2

2
r3c4) + (e

k
2r r5/2{ek/rr5 + 16c2

2
k

+ 16c2
2
r + 16c2

2
kr2c4 + 16c2

2
r3c4}

1
2 − 8c2

2
r5c2

4
))r]/(ek/rr5 + 8c2

2
k + 8c2

2
r
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Figure 5: Plots of h(r), h(r)
r

, h(r)−r and dh(r)
dr

versus r for c2 = 5, c4 = −0.15,
c6 = 0.5 and k = 1.

Figure 6: Plots of ρm −A and ρm + pm −A versus r.
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Figure 7: Plots of h(r), h(r)
r

, h(r)− r and dh(r)
dr

versus r for c2 = 4, c4 = 0.1,
c6 = 0.5, and k = 1.

+ 8c2
2
kr2c4 + 8c2

2
r3c4 + e

k
2r r5/2{ek/rr5 + 16c2

2k + 16c2
2
r + 16c2

2
kr2c4

+ 16c2
2r

3c4}
1
2 ).

Figure 7 indicates that h(r) < r, h(r)
r

→ 0 as r → ∞, the minimum radius
of throat is located at r0 = 1 with h′(r0) < 1. We insert Eq.(54) in (15) and
(50) which leads to establish graphical interpretation of energy density and
pressure with respect to perfect fluid and effective energy-momentum tensor.
Figure 8 shows that ρm −A ≥ 0 and ρm + pm −A ≥ for 1 ≤ ω ≤ 0.3 while
ρeff + peff −A < 0 for 1 ≤ ω ≤ −1. Thus, a realistic traversable WH exists
for variable red-shift function in non-dust distribution.

3.2 f(R, T ) = F (R) + h(T )

Now we consider a general f(R, T ) model appreciating indirect non-minimal
curvature-matter coupling. We specify F (R) as follows [30]

f(R, T ) = R + µR2 + νRn + G(T ), n ≥ 3, (55)

19



Figure 8: Plots of ρm − A, ρm + pm − A and ρeff + peff − A versus r for
c2 = 4, c4 = 0.1, c6 = 0.5 and k = 1.

where µ and ν are arbitrary constants. We solve the system (24)-(42) for
both dust as well as non-dust distributions and discuss WH geometry for
constant and variable red-shift function.

Dust Case

In this case, we solve the system (24)-(43) and obtain

α = d1, β = d1 − 2d4, γ = 0, δ = 0, η = 0, τ = d4r, B = d5,

ρm = e−ar2 − 1

d2r2
[−νRnr2 + νRnnr2 − 2νR( − 1 + n)n + µr2R2 − 4µR

− 2 − r2d3], G(T ) = d2T + d3, (56)

where dj represents arbitrary constants. For these coefficients of K, the
symmetry generators and corresponding first integrals are found to be

K1 =
∂

∂a
+

∂

∂b
, K2 = r

∂

∂r
− 2

∂

∂b
,

Σ1 = −e
a−b
2 r[2(1 + µR + nνRn−1) + rR′(2µ + n(n − 1)νRn−2)],

Σ2 = −e
a−b
2 r[2eb(n − 1)νRn−1 + 2(1 + µR + nνRn−1) + 4rR′(2µ + nν

× (n − 1)Rn−2)].
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Figure 9: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = 0.0001,
d3 = 1, µ = 0.5, ν = 0.1 and k = −0.15.

For b(r) = ln
(

−r
−r+h(r)

)

, Eq.(12) reduces to

− r

(−r + h(r))
+

(2(1 + 2µR))(1 + a′r)ea

r4d2

= 0. (57)

We solve this equation numerically for both a(r) = k and a(r) = −k
r
.

Case I: a(r) = k

For constant red-shift function, we analyze the geometry of WH for both
n = 0 as well as n 6= 0. Inserting Eq.(8) in (57) for n = 0, it follows that

r

h(r) − r
− 2ek

d2r4



2µ









2(h(r) − r)2
(

r(h′(r)−1)
(h(r)−r)2

− 1
h(r)−r

)

r3
− 2(h(r) − r)

r3





+
4(h(r) − r)

r
+

2

r2

)

+ 1

]

= 0. (58)

We solve this equation for h(r) and establish graphical analysis to study
its geometrical properties. Figure 9 identifies that all WH conditions are
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Figure 10: Evolution of ρm −A versus r.

satisfied as h(r) < r, h(r)
r

→ 0, the minimum radius is r0 = 0.45 with
h′(r0) < 1. Hence, ρeff + peff − A < 0 holds trivially while Figure 10

indicates that energy density remains positive.
For n 6= 0, Eq.(57) reduces to

r

−r + h(r)
− 2ek

r4d2

(

2µ

(

4(−r + h(r))

r
+

(

2(−r + h(r))2

r3

(

− 1

−r + h(r)

+
r(−1 + h′(r))

(−r + h(r))2

)

− 2(−r + h(r))

)

+
2

r2

)

+ nν

(

4(−r + h(r))

r
+

2

r2

+





2
(

− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)

(−r + h(r))2

r3
− 2(−r + h(r))

r3









−1+n






− 2ek

r4d2

= 0. (59)

The numerical solution of h(r) provides two roots for n = 3 as shown in
Figure 11. The left plot of upper face represents that both roots remain
positive with h(r) < r while the right plot identifies asymptotic flat shape
of WH. The lower plot locates the corresponding throat at r0 = 0.424 (red)
and r0 = 0.36 (blue).
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Figure 11: Plots of h(r), h(r)
r

and h(r)− r versus r for d2 = −0.0001, d3 = 1,
µ = 0.08, ν = −3.5, k = 0.5 and n = 3.
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Figure 12: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = 0.0001,
d3 = 1, µ = 0.5, ν = 0.1 and k = 0.01.
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Figure 13: Evolution of ρm −A and ρeff + peff −A versus r.

Case II: a(r) = −k/r

For n = 0, Eq.(57) gives

r

h(r) − r
+

(r + k)e−
k
r

r5d2

(

1 + 2µ

(

k2(−r + h(r))

2r5
+

4(−r + h(r))

r
+

2

r2

+
k

(

− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)

(−r + h(r))2

2r4
+

2

r3

((

− 1

−r + h(r)

+
r(−1 + h′(r))

(−r + h(r))2

)

(−r + h(r))2 − (−r + h(r))

)))

= 0. (60)

The numerical solution of this equation is shown in Figure 12 which shows
that all geometrical conditions of WH are preserved as h(r) < r, h(r)

r
→ 0,

WH throat is located at r0 = 0.45 with h′(r0) < 1. Figure 13 shows that
ρm − A > 0 and ρeff + peff − A < 0 ensuring the violation of NEC for
effective energy-momentum tensor yielding physically acceptable traversable
WH.

When n 6= 0, Eq.(57) takes the following form

r

−r + h(r)
− 2(r + k)e−

k
r

r5d2

(

1 + 2µ

(

k2(−r + h(r))

2r5
+

4(−r + h(r))

r
+

2

r2

+
k

(

− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)

(−r + h(r))2

2r4
+

2(−r + h(r))

r3
((−r + h(r))

×
(

− 1

−r + h(r)
+

r(−1 + h′(r))

(−r + h(r))2

)

− 1

))

+ nν

(

k2(−r + h(r))

2r5
+

2

r2

24



0.20 0.25 0.30 0.35 0.40
r

0.25

0.30

0.35

hHrL

0.2 0.4 0.6 0.8 1.0
r

0.5

1.0

1.5

2.0

hHrL�r

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
r

-0.20

-0.15

-0.10

-0.05

0.05

0.10

0.15

hHrL-r

Figure 14: Plots of h(r), h(r)
r

and h(r)− r versus r for d2 = −0.0001, d3 = 1,
µ = 0.08, ν = −2, k = 0.5 and n = 3.

+
k

(

− 1
−r+h(r)

+ r(−1+h′(r))
(−r+h(r))2

)

(−r + h(r))2

2r4
+

4(−r + h(r))

r
+

2(−r + h(r))

r3

×
((

− 1

−r + h(r)
+

r(−1 + h′(r))

(−r + h(r))2

)

(−r + h(r)) − 1

))−1+n
)

= 0.

This yields two solutions of the shape function whose graphical analysis is
established for n = 3. In Figure 14, the upper left plot shows that both
solutions of h(r) preserve positive behavior with h(r) < r while the corre-
sponding right plot determines asymptotic flat shape of WH. The lower plot
identifies minimum radius of WH at r0 = 0.35 (red) and r0 = 0.25 (blue).

Non-Dust Case

For perfect fluid, we consider pm = ωρm to evaluate symmetry generators
and associated conserved quantities. Solving Eqs.(24)-(43), we obtain

τ = d4, B = d5r, ρm =
1

R((3d2ω − d2) + ω)r2d1

[

d5e
−

a(r)
2

−
b(r)
2 a(r)R

+
((((

R3µr2d1 − Rνr2d1

)

− d3(Rr)2d1

)

− 2Rd1

)

− 4µR2d1

)]

. (61)
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These coefficients lead to the following symmetry generators and conserved
integral

K1 =
∂

∂a
+

∂

∂b
, K2 =

∂

∂r
− 2

∂

∂b
,

Σ1 = −e
a−b
2 r[2(1 + µR + nνRn−1) + rR′(2µ + n(n − 1)νRn−2)],

Σ2 = −e
a−b
2 r2[R + µR2 + νRn + d3 + (2/r2 − R)(1 + 2µR + nνRn−1)

− d2

R((3d2ω − d2) + ω)r2d1

[

{(3ω − 1) + ω}(d5e
−

a(r)
2

−
b(r)
2 a(r)R

+ (((R3µr2d1 − Rνr2d1) − d3(Rr)2d1) − 2Rd1) − 4µR2d1)
]

+ 2

× (1 + µR + nνRn−1) + 4rR′(2µ + nν(n − 1)Rn−2)].

Substituting b(r) = ln
(

−r
−r+h(r)

)

in Eqs.(12) and (57), it follows that

1

(−r + h(r))r3ad5

(

−8

√

− r

−r + h(r)
e

a
2 d6a

′r4h(r)µa′′ + 4e
a
2 d6a

′r3
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√

− r

−r + h(r)
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√
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a
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Figure 15: Plots of h(r), h(r)
r

, h(r) − r and dh(r)
dr

versus r for d2 = −1.5,
d3 = 1, d5 = −0.84, µ = 2.5, ν = −1.1, k = 0.01 and n = 0.
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Figure 16: Plots of ρm −A and ρm + pm −A versus r.

Case I: a(r) = k

We numerically solve Eq.(62) for n = 0 which leads to analyze WH conditions
graphically. In Figure 15, the upper left plot shows that h(r) is positively
increasing with h(r) < r while the right plot assures asymptotic flat shape
of WH. The lower left plot determines throat at the minimum radius, i.e.,
r0 = 0.456 whereas the right plot preserves the derivative condition at throat
as h′(r0) < 1. We examine the behavior of energy density and pressure of
perfect fluid for ω = −0.3 in Figure 16. Both plots indicate that NEC and
WEC are preserved while NEC is trivially violated for the effective energy-
momentum tensor. Consequently, there exists a realistic traversable WH for
non-dust distribution.

Case II: a(r) = −k/r

In Figure 17, the left plot of upper panel represent positively increasing
behavior of h(r). The upper right plot indicates that WH appreciates as-
ymptotic flat shape. The lower left plot identifies the minimum radius at
WH throat, i.e., r0 = 0.35 while the right plot shows that derivative condi-
tion is satisfied at throat h′(r0) < 1. Both upper plots of Figure 18 represent
that NEC and WEC are recovered. For variable red-shift function, the vi-
olation of NEC relative to effective energy-momentum tensor is analyzed in
lower plot. Thus, the existence of a realistic traversable WH is possible for
non-dust distribution with n = 0.
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4 Stability Analysis

In this section, we analyze the stability of realistic and traversable WH so-
lutions via Tolman-Oppenheimer-Volkov (TOV) equation corresponding to
both minimally coupled f(R, T ) models and constant as well as variable
red-shift function. For this purpose, we consider non-conserved energy-
momentum tensor and determine TOV equation for isotropic fluid distri-
bution. The radial component of Eq.(5) yields

{

dpm

dr
+

a′(r)

2
(pm + ρm)

}(

1 +
2fT

1 − fT

)

+
fT (p′m − ρ′

m)

2(1 − fT )
= 0. (63)

This equation describes the equilibrium state of WH due to combination of
hydrostatic force Fh and gravitational force Fg. In view of Eq.(63), these
dynamical forces can be split into following form

Fh = p′m

[(

1 +
2fT

1 − fT

)

+
fT

2(1 − fT )

]

,

Fg =
a′(r)

2
(pm + ρm)

(

1 +
2fT

1 − fT

)

− fT ρ′
m

2(1 − fT )
.

The existence of stable realistic traversable WH is possible only if the total
effect of these dynamical forces is zero, i.e., Fh + Fg = 0.

In Figure 19, we study the stable/unstable behavior of physically accept-
able traversable WH at different evolutionary stages, i.e., decelerating and
accelerating cosmos through Eqs.(50), (52) and (53). In upper plane, both
plots indicate that the hydrostatic and gravitational forces counterbalance
each other effect due to same magnitude but in opposite direction for ω = 1
and ω = 0.3. The null effect of these forces defines stable state of WH
at the time when universe was filled with stiff matter and this stability is
maintained till radiation dominated era. In lower plane, the trajectories of
gravitational and hydrostatic forces appear in the same direction and conse-
quently, violate equilibrium condition for both ω = −0.3 and ω = −1. This
analysis specifies the existence of stable and physically acceptable traversable
WH with constant gravitational red-shift in decelerating phase of the uni-
verse whereas this stability is disturbed as the universe experiences strong
anti-gravitational effects leading to an era of accelerated expansion.

In case of variable red-shift function, the shape function (54) and TOV
equation (63) explores the stability of WH in the presence of stiff fluid, ra-
diation dominated phase and DE era. The upper and lower panels of Figure

30



Figure 19: Plots of Fg (red) and Fh (green) versus r for c2 = 5, c4 = −0.15,
c3 = c6 = 0.5, a(r) = k and k = 1.
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Figure 20: Plots of Fg (red) and Fh (green) versus r for c2 = 4, c4 = 0.1,
c3 = c6 = 0.5, a(r) = −k/r and k = 1.
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20 determine the fate of traversable WH as it attains stable state when uni-
verse is decelerating whereas gets unstable in DE era. The stability analysis
of traversable WHs (62) corresponding to second f(R, T ) model is shown
in Figures 21 and 22. For constant red-shift function, both plots of Figure
21 represent that the stability of WH solution is preserved only in radiation
dominating phase while repulsive effects of DE destroy this equilibrium state.
In case of variable red-shift function, the WH solution remains unstable dur-
ing decelerating as well as accelerating cosmic expansion.

5 Final Remarks

In this paper, we have investigated the presence of physically viable WHs
through Noether symmetry approach and also checked whether normal mat-
ter supports WHs or not in f(R, T ) gravity. For this purpose, we have con-
sidered two f(R, T ) models appreciating indirect curvature-matter coupling
and analyzed possible existence of realistic WH solutions for both dust as
well as non-dust distributions. We have also analyzed the stability of these
WH solutions via TOV equation. For both models, we have solved over-
determined system via Noether symmetry approach and evaluated symmetry
generators as well as associated conserved quantities with explicit forms of
density, f(R, T ) models and shape function.

For the first f(R, T ) model (admitting a correspondence with ΛCDM
model) with constant red-shift function, WH solution satisfies all geomet-
ric conditions for dust distribution whereas in non-dust case, WH does not
appreciate asymptotic flatness condition. The energy density correspond-
ing to ordinary matter remains positive for both cases while the violation of
NEC on effective energy-momentum tensor trivially holds. Thus, the repul-
sive gravitational effects appear at throat describe traversable nature of WH
while the presence of ordinary matter leads to physically viable WH. For
variable red-shift function, we have considered pm = ωρm in non-dust case
and all WH conditions hold for both fluid distributions. In dust case, we
have ρm −A ≥ 0 while ρm −A, ρm + pm −A ≥ 0 for non-dust case whereas
ρeff + peff −A ≤ 0 for both fluid distributions. These inequalities indicate
that the WH is found to be traversable and physically acceptable. In case
of both constant as well as variable red-shift function, the f(R, T ) model
admitting minimal coupling between linear curvature and matter parts iden-
tifies stable state of WH against stiff fluid as well as in radiation dominated
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era. The realistic and stable traversable WHs lost their stability as universe
crosses dust dominated era and smoothly entered into DE era.

For the second f(R, T ) model, we have considered F (R) = r+µR2 +νRn

and discussed WH solutions for n = 0 and n = 3. When a(r) = k and n = 0,
we have found that WH conditions are recovered for both cases. The validity
of NEC and WEC by ordinary matter indicates that WH is supported by
normal matter. For a(r) = −k/r, we have found viable WH solutions for
both dust as well as non-dust cases. The physical existence of WH is verified
as ρm −A ≥ 0 with ρeff + peff −A ≤ 0 for dust distribution. For non-dust
case, we have ρm − A, ρm + pm − A ≥ 0 and ρeff + peff − A ≤ 0 except
for ω = 1. When n 6= 0 (dust fluid), we have found two solutions of shape
function which admit h(r) < r, h(r)/r → 0 and h(r0) = r0 for both con-
stant as well as variable red-shift function. For constant red-shift function
(n = 0), we have analyzed that the WH solution preserves its stability only
in radiation dominated phase while in case of variable red-shift function, the
WH solution remains unstable through cosmic evolution. The summary for
viable WH solutions are given in Table 1.

Table 1: Viable WH solutions in f(R, T ) gravity.

Red-Shift Function Model I Model II

a(r) = k Dust Dust & Non-dust, n = 0

a(r) = −k/r Dust & Non-dust Dust & Non-dust, n = 0

Table 1 indicates that Noether symmetry approach leads to viable worm-
hole solutions in most of the cases. Zubair et al. [22] found static WH
solutions with anisotropic, isotropic, and barotropic matter contents with-
out using Noether symmetry technique in f(R, T ) gravity. For this purpose,
they have considered a generalization of Starobinsky f(R) model with lin-
ear form of f(T ) and tackled the complexity of field equations via numerical
approach. To analyze physical viability of WHs, they constructed graphical
analysis of energy bounds for all considered fluids and found that WH so-
lutions can be constructed without evolving exotic matter in certain regions
of spacetime. They concluded that WH solutions are realistic and stable
only for anisotropic matter in f(R, T ) gravity. In the present paper, we have
found realistic and stable traversable WH solutions in most of the cases for
isotropic fluid via Noether symmetry approach in the same gravity.
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