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Abstract

Studies on black hole physics have lead to the holographic principle, which states that

a quantum gravitational system can be captured by a theory living in fewer dimen-

sions. Given the observed accelerating expansion of our universe, it has been a major

challenge to understand the realization of the holographic principle in cosmology. In

this dissertation we review our progress in building such a framework.

Starting from concrete AdS/CFT (anti de Sitter/conformal field theory) dual

pairs, we obtain de Sitter (dS) and other general Friedman-Robertson-Walker (FRW)

solutions by adding branes and other ingredients from string theory. In the de Sit-

ter case, our brane construction gives a microscopic realization of the dS/dS cor-

respondence. The degrees of freedom in the semi-holographic dual theory provide a

parametric interpretation of the Gibbons-Harking entropy of the bulk de Sitter space.

In the FRW case, we focus on a family of simple FRW solutions sourced by

magnetic flavor branes. These solutions have a holographic dual interpretation which

decouples from gravity at late time, opening up the possibility of a precise duality.

Time-dependent effects play a crucial role in these dual theories. In particular, we

find that time-dependent couplings in a quantum field theory can strongly affect long-

distance physics, effectively shifting the infrared operator dimensions and generalizing

known unitarity bounds.
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Chapter 1

Introduction

At present we lack a fundamental theory of quantum gravity in cosmological back-

grounds. String theory, widely considered the most promising candidate for such a

theory, is still under active development. With the advent of the Matrix theory [1] and

the AdS/CFT (anti de Sitter/conformal field theory) correspondence [2, 3, 4], string

theory in certain Minkowski or AdS backgrounds became reasonably well-defined.

Unfortunately, we have observed accelerated expansion and hence a positive cosmo-

logical constant in our universe. It therefore remains a major challenge to formulate

string theory in cosmology.

Studies on black hole physics have lead to the holographic principle [5, 6], which is

the statement that a gravitational system can be captured by a theory living in fewer

dimensions. It has been viewed as a key property of the ultimate theory of quantum

gravity. String theory appears to be holographic in a nontrivial way. In particular,

both the Matrix theory and the AdS/CFT correspondence satisfy the holographic

principle.

In this work, we review our progress in building a holographic framework for quan-

tum gravity in cosmological backgrounds such as de Sitter or general Friedmann–

Robertson–Walker (FRW) spacetime. Such a framework is essential not only con-

ceptually, but also in making contacts with experiments that measure the cosmic

microwave background radiation and allow us to “see” the very early universe. It

could also lead to a better understanding of the ultimate fate of our universe.

1



2 CHAPTER 1. INTRODUCTION

Our general approach is to explore how our current understanding of string the-

ory helps us resolve various puzzles, such as the nature of cosmological horizons,

singularities, observables, and entropy. In Chapter 2 we develop tools to engineer

de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds

to uplift Freund-Rubin compactifications with CFT duals. The dual brane construc-

tion is compact and constitutes a microscopic realization of the dS/dS correspon-

dence, realizing d-dimensional de Sitter space as a warped compactification down to

(d − 1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors.

This provides a parametric microscopic interpretation of the Gibbons-Hawking en-

tropy. We illustrate these ideas with an explicit class of examples in three dimensions,

and describe ongoing work on four-dimensional constructions.

In Chapter 3, we present simple FRW solutions sourced by magnetic flavor branes

and analyze correlation functions and particle and brane dynamics. To obtain a

holographic description, we exhibit a time-dependent warped metric on the solution

and interpret the resulting redshifted region as a Lorentzian low energy effective field

theory in one fewer dimension. At finite times, this theory has a finite cutoff, a

propagating lower dimensional graviton and a finite covariant entropy bound, but at

late times the lower dimensional Planck mass and entropy go off to infinity in a way

that is dominated by contributions from the low energy effective theory. This opens

up the possibility of a precise dual at late times. We reproduce the time-dependent

growth of the number of degrees of freedom in the system via a count of available

microscopic states in the corresponding magnetic brane construction.

In Chapter 4 we generalize unitarity bounds on operator dimensions in conformal

field theory to field theories with spacetime dependent couplings. Below the energy

scale of spacetime variation of the couplings, their evolution can strongly affect the

physics, effectively shifting the infrared operator scaling and unitarity bounds deter-

mined from correlation functions in the theory. We analyze this explicitly for large-N

double-trace flows, and connect these to UV complete field theories. One motivating

class of examples comes from our previous work on FRW holography, where this effect

explains the range of flavors allowed in the dual, time dependent, field theory.

In Chapter 5 We show how backreaction of the inflaton potential energy on heavy
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scalar fields can flatten the inflationary potential, as the heavy fields adjust to their

most energetically favorable configuration. This mechanism operates in previous UV-

complete examples of axion monodromy inflation – flattening a would-be quadratic

potential to one linear in the inflaton field – but occurs more generally, and we illus-

trate the effect with several examples. Special choices of compactification minimizing

backreaction may realize chaotic inflation with a quadratic potential, but we argue

that a flatter potential such as power-law inflation V (φ) ∝ φp with p < 2 is a more

generic option at sufficiently large values of φ.

In Chapter 6 we present the necessary and sufficient conditions for a Euclidean

scale factor to be a solution of the Coleman-De Luccia equations for some analytic

potential V (φ), with a Lorentzian continuation describing the growth of a bubble

of lower-energy vacuum surrounded by higher-energy vacuum. We then give a set

of explicit examples that satisfy the conditions and thus are closed-form analytic

examples of Coleman-De Luccia geometries.

The work presented in Chapters 2 and 4 was done in collaboration with Bart

Horn, Eva Silverstein, and Gonzalo Torroba, and was published in [7, 8]. The work

presented in Chapter 3 was done in collaboration with Shunji Matsuura in addition to

the aforementioned group, and was published in [9]. The work presented in Chapter 5

was done in collaboration with Bart Horn, Eva Silverstein, and Alexander Westphal,

and was published in [10]. The work presented in Chapter 6 was done in collaboration

with Daniel Harlow, and was published in [11].



Chapter 2

Micromanaging de Sitter

holography

2.1 Introduction

We develop tools to engineer de Sitter vacua with semi-holographic duals, using el-

liptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT

duals. The dual brane construction is compact and constitutes a microscopic realiza-

tion of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped

compactification down to (d − 1)-dimensional de Sitter gravity coupled to a pair of

large-N matter sectors. This provides a parametric microscopic interpretation of the

Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples

in three dimensions, and describe ongoing work on four-dimensional constructions.

The Gibbons-Hawking entropy of the de Sitter horizon [12] invites a microscopic

interpretation and a holographic formulation of inflating spacetimes. Much progress

was made in the analogous problem in black hole physics using special black holes

in string theory whose microstates could be reliably counted, such as those ana-

lyzed in [13, 14, 15]; this led to the AdS/CFT correspondence [2, 3, 4]. In contrast,

a microscopic understanding of the entropy of de Sitter space is more difficult for

several reasons including its potential dynamical connections to other backgrounds

(metastability), the absence of a non-fluctuating timelike boundary, and the absence

4



2.2. DS HOLOGRAPHY AND MICROSCOPY 5

of supersymmetry.

In this chapter, we develop a class of de Sitter constructions in string theory, built

up from AdS/CFT dual pairs along the lines of [16], which are simple enough to

provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking

entropy. These models realize microscopically a semi-holographic description of meta-

stable de Sitter space which had been derived macroscopically in [17, 18, 19]. It would

also be interesting to connect this to other approaches to de Sitter holography such

as [20, 21, 22] and to other manifestations of the de Sitter entropy such as [23, 24].1

The construction is somewhat analogous to neutral black branes analyzed in [26].

We will begin in §2.2 by explaining the salient features of the holographic duality

and of the de Sitter construction which realizes it microscopically. In §2.3 we will lay

out our methods in more detail, applying them to worked examples of dS3 in §2.4. Fi-

nally, §2.5 discusses further directions and ongoing work, including dS4 constructions

in progress.

2.2 dS holography and microscopy

A semi-holographic duality follows simply by recognizing the de Sitter static patch

as a warped compxactification

ds2
dSd

= dw2 + sin2

(
w

RdS

)
ds2

dSd−1
. (2.1)

The warp factor sin2(w/RdS) goes to zero at w = 0, πRdS and rises to a finite maxi-

mum in between, implying two warped throats and a propagating graviton in d − 1

dimensions. Such a semi-holographic duality is familiar in the study of warped com-

pactifications (such as [27]) and Randall-Sundrum models [28]. In these systems, the

bulk of the throats admits a dual description in terms of a field theory (as in [29]),

but the finite maximum of the warp factor implies that this field theory is cut off at

a finite scale and coupled to gravity [28, 30, 31]. The main observation in [17, 18, 19]

was that the same statements apply to de Sitter (2.1).

1See [25] for a different proposal.
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This macroscopic derivation of a holographic description leaves open the question

of what degrees of freedom build up the two throats microscopically. In this work,

we find that ‘uplifting’ AdS/CFT brane constructions to de Sitter space automati-

cally produces the two-throat structure, while revealing (example by example) the

microscopic degrees of freedom that build up the throats.

Before turning to the detailed examples, let us explain the main features of the

construction and its realization of de Sitter holography. Freund-Rubin solutions of

the form AdSd × Bn × T 10−d−n, with Bn positively curved and with fluxes thread-

ing through the compactification, provided the first examples of the holographic

AdS/CFT duality [2, 3, 4]. These can be described in terms of a d-dimensional effec-

tive potential (as in [32, 33, 34, 35, 36, 37, 38, 39]), with a negative curvature-induced

term arising from the dimensional reduction of the Einstein term
√
gR, played off

against a positive term from the flux energy.

In the dual brane construction, these fluxes and the corresponding geometry arise

from the presence of color branes (e.g. D3-branes in the canonical AdS5×S5 example

and D1-D5 for AdS3 × S3 × T 4) probing the space transverse to their worldvolume

directions. The space probed by these branes takes the form of a cone with base Bn,

ds2 = dw2 +R(w)2ds2
B (2.2)

with R(w) = w. For our purposes it will be useful to review how this comes about in

the following way. The equations of general relativity applied to the radius R(w) of

the base require
(dR/dw)2

R2
∼ +

1

R2
(2.3)

with the + sign corresponding to the positive curvature of Bn. This is a radial

analogue of the Friedmann equation of cosmology, with R′/R (prime denoting differ-

entiation with respect to the radial coordinate w) playing the role of Hubble, and we

have included only the curvature term on the right hand side because this is all that

contributes in the absence of the color branes. This has the solution R = w, giving

the metric ds2 = dw2 + w2ds2
B of a noncompact cone.

In the presence of the color branes, the near horizon AdSd solution arises from
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a competition of the positive curvature of Bn against flux terms which must be in-

cluded on the right hand side of (2.3) along with the curvature of the d noncompact

dimensions.

Starting from these Freund-Rubin solutions, we will next add ingredients to “up-

lift” the AdS solution to dS, deriving an effective potential which has minima with pos-

itive cosmological constant. Then, we will ask what becomes of the original AdS/CFT

brane construction in the process of uplifting.

The method we will use to achieve the uplifting is to introduce, among other

things,

(i) Contributions which overcompensate the positive curvature in the original Freund-

Rubin compactification. One such ingredient is an elliptic fibration of the T 10−n−d

over Bn,

T 10−n−d → Y10−d

↓

Bn (2.4)

which introduces negative contributions to the scalar curvature that compete with

the negative potential term in the original Freund-Rubin compactification [16]. NS5-

branes at real codimension two on the base B also compete with its curvature. D-

branes wrapping all of Bn (along with suitably stabilized anti-branes or other sources

canceling their charge) dominate in the expansion in inverse radii and can play an

important role in the uplifting, though they are subdominant in the string coupling

and hence must be combined with other sources.

(ii) Orientifolds, at higher codimension than the leading uplifting term, to generate the

intermediate negative term in the potential required to obtain a metastable minimum.

We will explain this and related methods in a detailed class of (A)dS3 examples

in the remainder of the chapter; further examples in four dimensions are in progress

[40]. For now, let us assume such a construction exists and analyze its effect on the

brane construction and the structure of the resulting holographic dual.

Elliptic fibrations (i) can be thought of as a configuration of 5-branes as in [41, 42,
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43]; we will call these “stringy cosmic 5-branes (SC5s)”. Since they are extended in

the radial direction, they are flavor branes and in general introduce both electric and

magnetic matter. Neveu-Schwarz branes and spacefilling D-branes also contribute

flavors. Orientifolds (ii) project the D-brane theory onto a different gauge group,

flavor group, and matter content, with unitary groups replaced by orthogonal or

symplectic groups.

More significantly, we would like to understand what happens to the space – the

analog of the cone described above – on which the color branes live. We will in par-

ticular consider what uplifting does to the equation (2.3) satisfied by R (the radial

modulus of the base) in the absence of the flux contributed by the color branes. In

general, this problem is more complicated than in the simplest AdS/CFT models: re-

moving the flux will destabilize many moduli in general, leading to radial and/or time

evolution of more than just R. In a given construction, one may study this in detail.

However, there is a general qualitative feature of the de Sitter brane construction

which follows more simply.

Let us start with a configuration, at some initial time, in which the non-radial

moduli are independent of w, and carry zero kinetic energy. We can then focus on

the radial modulus R, solving its equation of motion by letting it vary radially with

w. Given the uplifting, the radial Friedmann equation is now of the form

R′(w)2

R2
∼ − 1

Rn1
+
const

Rn2
(2.5)

We have taken into account that the positive-curvature term in (2.3) has been over-

compensated. We have also included the orientifold stress-energy of the uplifted

model, and in order for this to provide an intermediate negative term in the potential

we must have n1 < n2.2

Since n2 > n1, there will be points at which R′(w) = 0, so the radius R grows

to a maximum size and then proceeds to decrease again. In the analogue Friedmann

equation, this is like a closed universe in the radial direction. (Note that since we

2For the purposes of the present heuristic discussion, we have not included kinetic mixing of
moduli; we will address this below in (2.25) and find that it does not change the qualitative result.
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are discussing spatial rather than temporal evolution, the case of a closed universe

follows from negative rather than positive curvature.) The cone of the AdS/CFT

brane construction has become a compact space in the de Sitter case.

Now let us add back in the color branes. In the AdS case, we place color branes

at the tip of a cone, and they warp the geometry to produce a Freund-Rubin flux

compactification. In the dS case, since the radial direction is compact, there is a

second tip where R shrinks to zero size. If we put color branes at one tip and anti-

branes at the other, this again generates the flux which plays off against the other

ingredients to stabilize the compactification. The two tips in the brane construction

correspond to the two warped throats comprising the de Sitter static patch. That

is, the brane construction corresponding to the uplifted model has automatically

produced a microscopic realization of these throats!

As in the cosmological analogue, this geometry can develop curvature singularities

at the tips whereR(w) shrinks to zero size; these are radial analogues of a big bang and

big crunch. These generalize the conical singularity in familiar AdS/CFT examples.

The nature of the singularities depends on the powers n1 and n2 arising in (2.5). The

second (orientifold) term dominates the right hand side of (2.5) near R = 0. In the

case of negative curvature, n1 = 2 and n2 > 2; in this case the orientifold term induces

a timelike singularity which is worse than conical. This has to do with the singularity

at the cores of the orientifolds, which would be interesting to resolve. However, in

our construction below this question is evaded, as the leading R-dependences in (2.5)

will yield n1 = 0, n2 = 2 at fixed string coupling.

In the presence of the flux corresponding to Nc color branes, the right hand side

of the radial Friedmann equation (2.5) acquires one or more additional terms of the

form ∼ −N2
c /R

2n (with 2n > n2). This dominates at small R and prevents the crunch

or bang singularity from happening. Once all the ingredients are included in a way

which yields a complete stabilization mechanism, R′ goes to zero for all w (as the

moduli are stabilized) and the right hand side of (2.5) acquires new terms including

the d-dimensional de Sitter curvature.

In the regime of couplings applicable to the de Sitter solution, the color branes are

best described in terms of their dual gravity solution. The first, simplest examples of
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Figure 2.1: de Sitter brane constructions are compact as a result of the net positive
potential energy carried by the flavor branes, curvature, and orientifolds. The two
tips with color branes or antibranes correspond to the two warped throats of dSd in
the dSd−1 slicing.
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AdS/CFT dual pairs had a line of fixed points connecting the regimes of weak and

strong coupling in the low energy limit of the brane construction. In cosmological

solutions such as this (and also for generic gauge/gravity duals, even some such as

[44] closely related to the original examples of AdS/CFT), there is not a line of

maximally symmetric solutions allowing one to continue between weak and strong

couplings regimes of the brane construction. One may, however, consider weakly

coupled, but less symmetric, time dependent backgrounds by analyzing the runaway

region near weak coupling and/or large radius.

As we discussed above, the dS/dS correspondence is ‘semiholographic’ in the sense

that the Planck mass is finite and (d − 1)-dimensional gravity does not decouple.

Nevertheless, as we will show below, the dS entropy can be understood parametrically

in terms of the degrees of freedom of the brane system. The reason for this is fairly

simple – the ingredients we add to uplift add a small number of flavors and projections

to the original AdS brane system, which does not change its entropy as a function of

large quantum numbers such as the dimensions of the color groups.

2.3 General techniques

Our technique for stabilizing moduli while uplifting AdS/CFT dual pairs can be

thought of as a combination of two familiar methods: Freund-Rubin stabilization, and

the identification of elliptically fibered manifolds with branes on their base. In this

section, we discuss the general methods involved in this construction before coming

to an explicit class of examples in §2.4.

de Sitter model-building in string theory (without a connection to a known holo-

graphic dual) has proceeded actively since the discovery of the late-time acceleration

of the universe (see e.g. [32, 33, 34, 35, 36, 37, 38, 39] for some reviews with var-

ious perspectives on the problem). Following work anticipating the landscape and

its role in interpreting the cosmological constant [45, 46], early constructions make

use of the positive leading potential from supercriticality [47, 48] or from anti-D3-

branes [49] in warped flux compactifications [27] with non-perturbative contributions

to the superpotential. The latter scenario has provided rich ground for low-energy
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supersymmetric model building in cosmology and particle physics, but particularly

for the goal of understanding de Sitter holography microscopically it may be advan-

tageous to seek simple and explicit de Sitter solutions using perturbative ingredients

[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61].

In this line of development, one lesson thus far has been that brane sources with

tension ∼ 1/g2
s play a very useful role in de Sitter stabilization; certain no go results

follow in their absence. These are a priori more difficult to control at weak string

coupling than D-branes. One way in which the present work builds further in this

direction is to realize such objects via elliptic fibration [42, 43, 16], which incorporates

their backreaction. (In some cases we will find that the core sizes of required solitonic

branes are controllably small in any case.)

2.3.1 The strategy for stabilization

With their backreaction taken into account, the sets of NDp color branes described

above are replaced by corresponding RR fluxes,∫
Σ8−p

F8−p = NDp ⇒ F8−p ∼
NDp

vol(Σ8−p)
(2.6)

where vol(Σ8−p) denotes the volume of the surface threaded by the flux. Here we set

α′ = 1 and simplify the formulas by omitting numerical factors such as 2π; these will

be taken into account in the explicit analysis in §2.4. Also, the metric signature is

taken to be (−+ . . .+).

We look for solutions which are locally of the form

dSd ×Bn × T 10−n−d (2.7)

in the presence of background fluxes (2.6), plus the flavor branes and orientifolds.

The radius of dSd is denoted by RdS. Notice that in general these localized sources

will break the isometries of Bn × T 10−n−d.

There are two different approaches to this problem. First, one can work directly

in ten dimensions, looking for solutions to the equations of motion derived from the
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(string frame) action

S =
1

2κ2
10

∫ √
−g(10)

[
e−2φ(R(10) + 4(∇φ)2 − 1

2
|H3|2)− 1

2
|F̃n|2

]
+SCS +Sloc . (2.8)

Here SCS denotes the type II Chern-Simons terms, and Sloc stands for contributions

from localized sources,

Sloc = −Tp
∫ √

−gp+1 . (2.9)

This method is preferable when practical. However, explicit solutions to the equations

of motion can be easily obtained only when enough isometries are present, which is

not the case here.

Instead, we will analyze the d-dimensional effective field theory derived by com-

pactifying (2.8) on Bn × T 10−n−d, anticipating a solution with internal dimensions

small with respect to the de Sitter radius RdS. This requires identifying the light

scalar fields which must be stabilized,3 computing their effective potential, and find-

ing a minimum with positive cosmological constant. In fact a minimum is not strictly

necessary: in order to study accelerated expansion, one requires that any tachyonic

masses be small compared to the Hubble scale of the de Sitter solution. A holographic

or semi-holographic description of this situation would be interesting in itself.

To begin with, we will derive an approximate d-dimensional moduli potential by

averaging the localized sources over the internal space, ignoring the warp factor. Then

it must be checked that such a solution can be lifted to a full 10d configuration. The

10d consistency conditions will be discussed in §2.3.3 and addressed in our specific

model in §2.4.

Three of the moduli consist of the dilaton and internal volumes4

R̃n
0 ≡ 〈vol(Bn)〉 , L10−n−d

0 ≡ 〈vol(T 10−n−d)〉. (2.10)

3which we will loosely refer to as “moduli”
4We use a tilde on the base size R̃0 because in explicit models such as orbifolds, the base may be

anisotropic and we will find it useful to reserve the notation R for the curvature radius of the base.
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In terms of these, the d-dimensional Planck scale from dimensional reduction is

(Md)
d−2 =

R̃n
0L

10−n−d
0

g2
s,0

. (2.11)

It is useful to introduce fluctuating fields with vanishing VEV,

gs = gs,0e
φ , R̃ = R̃0e

σR , L = L0e
σL . (2.12)

At fixed Planck scale, φ, σR and σL have kinetic terms independent of the overall

volume.

The effective action becomes

Seff = Md−2
d

∫ √
−g(d)e−2φ+nσR+kσLR(d) + . . . , (2.13)

where here k = 10− n− d. The dependence of the Einstein term on the fluctuating

scalars is removed by a Weyl rescaling,

g
(d)
Eµν ≡

(
e−2φ+nσR+kσL

)2/(d−2)
g(d)
µν . (2.14)

From now on we work in Einstein frame and drop the ‘E’ subindex. Then, the action

takes the form

Seff =

∫ √
−g(d)

[
Md−2

d

(
R(d) −Gij g

µν∂µσ
i∂νσ

j
)
− U

]
. (2.15)

The (positive definite) kinetic term metric Gij for the moduli σi follows by dimen-

sionally reducing
∫ √
−g(10)R(10) on Bn×T 10−n−d in Einstein frame.5 In our normal-

ization for the moduli, Gij has order one eigenvalues that depend on d and n. There

is kinetic mixing between R and L (GRL 6= 0), reflecting the fact that the overall

volume modulus arises from the combination R̃nLk.

5When backreaction from localized sources is important, a slightly more complicated metric
ansatz is required and kinetic terms receive warping corrections. We refer the reader to [62, 63, 64]
for details. Here we will consistently work in the limit of small warping, where such effects can be
ignored.
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The d-dimensional Einstein frame potential energy reads

U ≡ Md
d

(
g2
s

R̃nL10−d−n

)d/(d−2) [
− 1

g2
s

∫ √
g(10−d)

(
R(10−d) − 4(∇φ)2 − 1

2
|H3|2

)
+

+
∑
loc, q

Tq vol(Σq+1−d) + R̃nL10−n−d
∑
p

N2
Dp

vol(Σ8−p)2

]
. (2.16)

The first two factors come from the Weyl rescaling and the fact that we work at fixed

d-dimensional Planck mass Md. The second term inside the square brackets is the

contribution from the localized sources (2.9), and Σq+1−d is the cycle wrapped by the

q-brane along the internal directions. For D-branes/O-planes, Tq ∼ 1/gs; NS5, KK5

and SC5-branes have tension T ∝ 1/g2
s that can compete against curvature if they

sit at real codimension two on the base Bn.6 The last term is produced by the flux

backreaction eq. (2.6) from the color branes.

So far, we are ignoring contributions from the warp factor derived carefully in

[65, 66, 67] which we will address below. Note that as is standard, with the Weyl

rescaling factor in place each term in the effective potential goes to zero at weak

coupling or large radius.

2.3.2 Stabilization procedure

Minima of Eq. (2.16) are conveniently analyzed with the “abc” method of [50], as

follows. Before adding the torus fibration, we have curvature

R(10−d) ∼ 1

R2
, (2.17)

where as mentioned above, the curvature radius R may differ from the nth root of the

volume R̃ in anisotropic models such as orbifolds. The potential energy from positive

6The 10d dilaton can vanish or blow up at the cores of localized sources. In our discussion, gs
denotes the d-dimensional field, which corresponds to an average value of the 10d mode away from
the sources. A similar comment applies to the complex and Kähler moduli of T 10−n−d, which can
degenerate at the positions of SC5 branes.



16 CHAPTER 2. MICROMANAGING DE SITTER HOLOGRAPHY

curvature is

UR ∼ −Md
d

(
g2
s

R̃nL10−n−d

)2/(d−2)
1

R2
. (2.18)

The calculations simplify in terms of the variable

η ≡ 1

R

(
g2
s

R̃nL10−n−d

)1/(d−2)

(2.19)

which gives UR ∼ −Md
d η

2. We note the useful relation between the Planck scale

(2.11) and the stabilized value of the moduli,

Md = (η0R0)−1 . (2.20)

Stringy cosmic branes and NS5 branes give positive contributions to η2, competing

with and potentially over-cancelling the curvature potential energy if they arise at real

codimension two on the base Bn. Orientifold planes and D-branes contribute terms

of order η(d+2)/2 with opposite signs; the net effect should give a negative coefficient

in front of η(d+2)/2 (denoted below by −b(σ), with b(σ) > 0). Flux energy scales like

ηd and always gives a positive coefficient c(σ) > 0. Putting everything together, we

find an effective potential with the structure

U = Md
d η

2
(
a(σ)− b(σ)η(d−2)/2 + c(σ)ηd−2

)
, (2.21)

where here σI are the moduli different from the combination in Eq. (2.19). The

functions a(σ), b(σ) and c(σ) are computed from (2.16).

Let us first consider the AdS case, where only the fluxes (related to color branes)

and positive internal curvature are kept:

a(σ) = −1 , b(σ) = 0 , c(σ) = RdR̃nL10−n−d
∑
p

N2
Dp

vol(Σ8−p)2
. (2.22)

The σ fields are stabilized at the critical points of c(σ) (denoted by σ0). Plugging
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this back into eq. (2.21) gives a minimum

ηd−2
0 =

2

d c0

, U0 = −Md
d

d− 2

d
η2

0 (2.23)

and a cosmological constant (see eqs. (2.15) and (2.20))

Λmin =
U0

Md−2
d

= −d− 2

d

1

R2
0

. (2.24)

Of course, this is the well-known result that Freund-Rubin solutions supported only

by flux and positive curvature have an AdS radius of the same order of magnitude as

the internal curvature radius, R2
AdS ≈ R2

0.

Moving on to the dS case, the ingredients described above give uplifting terms

that set a(σ) > 0, orientifolds plus D-branes to set b(σ) > 0, and flux contributions

as in the AdS case. It is instructive to first analyze the background solution in the

absence of color branes (a and b nonzero, but c = 0). This will make contact with

the discussion of the radial Friedmann equation (2.5).

We focus on the radial evolution (coordinate w in the slicing of Eq. (2.1)) of the

volume moduli R and L. As discussed above, generically some of the moduli will

become time dependent; here we restrict to an initial time where the kinetic energy

is small compared to the gradient energy from radial variation. Neglecting this time

dependence we can extremize the effective action (2.15) with respect to g
(d)
00 , obtaining

Gij∇wσi∇wσ
j =

d− 2

d
R(d) − U

Md−2
d

. (2.25)

The left hand side is a positive definite quadratic combination of R′(w)/R and

L′(w)/L. In general, R′(w) 6= 0 sources radial dependence in L through the kinetic

mixing. We can solve for L′(w)/L in terms of R′(w)/R. Then using the expression

(2.16) for the potential energy, the right hand side of Eq. (2.25) has the structure

discussed in (2.5) (after a conformal rescaling that relates 10- and d-dimensional Ein-

stein frames). Namely, U has both positive and negative contributions so that the

right hand side in (2.25) admits nontrivial roots for R. R(w) grows until it reaches
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this value, and then decreases again. As discussed in §2.2, the effective description

reveals that the background space is compact.

Next, placing the color branes and antibranes at the tips R = 0 gives a nonzero

c(σ). There exists a solution with positive energy for

1 <
4ac

b2
<

(d+ 2)2

8d
, (2.26)

evaluated at the minimum of the other moduli σI . The strategy is to first minimize

δ(σ) ≡ 4ac

b2
− 1 (2.27)

at a small value, with the potential and minimum then becoming

U = Md
d η

2

(
a

(
1− b

2a
η(d−2)/2

)2

+
b2

4a
δ ηd−2

)
⇒ η

(d−2)/2
0 =

2a0

b0

. (2.28)

The positive cosmological constant gives a dS radius

R2
dS ≈

R2
0

δ0a0

. (2.29)

Small values of δ and/or a then lead to solutions with small internal dimensions

relative to the de Sitter radius. This was studied for AdS compactifications in [16],

and will arise in a different way in the examples in the present work.

2.3.3 Effects from localized sources

Let us now discuss the ten dimensional consistency of the solutions. Using the

dimensionally reduced theory, approximating the sources as smeared, we have ex-

plained how the ingredients described above can combine to give a solution of the

form dSd × Bn × T 10−n−d. Now we shall analyze the model from a 10d perspective.

We would like to understand under what circumstances there exists a 10d solution

to Eq. (2.8) that, after averaging over the internal space, gives results approximately

consistent with the ones derived from (2.16).
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The equations of motion must be solved pointwise in ten dimensions. Some of

the ingredients such as O-planes are localized in the internal dimensions; i.e. their

charge and stress-energy are delta-function supported in some directions. According

to the effective theory (2.16), these O-planes play off against fluxes and net negative

internal curvature to stabilize the moduli. However, the fluxes and internal negative

curvature are not delta-function localized at the positions of the O-planes, and so

these effects alone cannot play off of each other pointwise to give 10d solutions.

The missing contributions come from p-forms and warping [65, 66, 67], which must

be consistently included in the effective potential. As we will shortly review, these

effects are small when the sources are dilute enough or have little enough tension that

the gravitational and RR potentials they source are small in the bulk of the internal

geometry. In our construction in the next section, this will hold for D-branes and

orientifold planes; the elliptic fibration itself does not correspond to well-localized

sources, but contributes to the curvature-induced potential energy in a manner we

can compute using a sigma model.

Let us discuss explicitly the gravitational backreaction. Gravitational and p-form

effects are of the same order of magnitude for BPS objects, so the two analyses are

parallel. As argued in e.g. [65, 66, 67], the contribution that accounts for the localized

stress-energy of the sources is a warp factor eA multiplying the (A)dSd metric which

varies over the internal dimensions (as well as conformal factors in the internal metric,

depending on one’s conventions for the fiducial internal metric). We will look for

solutions with A� 1 away from the cores of the localized sources.

The equation of motion for the warp factor is of the form

∇2A− (∇A)2 = −R(10−d) + g2
s |F |2 + g2

s T
loc − g2

s U (2.30)

where we have replaced various powers of eA by 1, anticipating a solution with A� 1.

Here R(10−d) is curvature, F is flux and U is the d-dimensional effective potential,

a constant independent of the internal coordinates. This equation has the property

that for delocalized sources the right hand side would vanish and no nontrivial warp

factor would be generated.
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The corrections to the effective potential U are of order (∇A)2/g2
s . If A� 1, and

hence ∇2A� (∇A)2, this means that the corrections are negligible. That is, the ∇2A

term dominates over the (∇A)2 term in the equation of motion, providing a mecha-

nism to solve the 10d equations in the presence of the unsmeared, localized sources;

while at the same time the correction to the effective potential is of order (∇A)2,

a subdominant effect. Here we are assuming that no special tuning or cancellations

occur among the terms in the effective potential.

As mentioned above, a similar criterion applies to the p-form potential fields. The

corrections to the effective potential are of order |∇Cp|2 (as can be read directly

from the ten-dimensional action (2.8)), while the equations of motion require nonzero

∇2Cp.

2.4 dS3 worked example

Our dS3 construction builds up from the venerable D1-D5 system [14, 15] correspond-

ing to an AdS3×S3/Zk×T 4 near-horizon geometry (with the Zk acting freely on the

S3). The freedom to take the orbifold order k large will be used to stabilize the in-

ternal curvature at a small value. Before analyzing the dS3 construction in detail, we

should point out that in our model the internal curvature and string coupling, though

consistently small, cannot be taken to be parametrically small. Indeed, specific de-

tails of the internal geometry will be found to limit the order of k and the amount of

flux that can be turned on in order to get a dS solution. Ongoing constructions in

higher dimensions [40] suggest that this is not a general property of our approach.

To summarize the construction: we will first consider a nontrivial fibration –

allowing the T 4 to vary its shape or size over the S3/Zk – as in [16, 41, 42, 43].

T 2 × T 2 → Y7

↓

S3/Zk (2.31)

This, together with a set of NS5-branes, will contribute positive curvature energy
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and help to ‘uplift’ the negative potential energy of the S3/Zk. We will then include

orientifolds which produce an intermediate negative term in the potential. Fluxes

corresponding to the color D1- and D5-branes contribute a third set of positive terms.

We begin by discussing these ingredients in detail in §2.4.1. In §2.4.2 we obtain

the 3d effective potential and find a dS3 solution with the radii and string coupling

self-consistently stabilized. Other modes are included in §2.4.3 and §2.4.4, and the

construction is analyzed from the 10d viewpoint in §2.4.5. In §2.4.6 we estimate the

de Sitter entropy, and we end in §2.4.7 by commenting on other three-dimensional

alternative examples.

2.4.1 Brane construction

Our construction requires ingredients which are collected in Table 2.1. We will shortly

0 1 2 3 4 5 6 7 8 9
D1 x x
D5 x x x x x x
O5 x x x x x x
O5′ x x x x x x
ρ5 x x x x x x
ρ5′ x x x x x x
NS5 x x x x x x
NS5′ x x x x x x

D7, D7 x x x x x x x x
D7′, D7′ x x x x x x x x

Table 2.1: Ingredients for the brane construction of dS3

explain each of these ingredients. First let us describe the underlying geometry. The

T 4 lies along the 6789 directions. The 2345 directions correspond to the radial and

S3/Zk directions. As discussed above, the radial direction is compact due to the effects

of flavor branes and curvature. The color D1 and D5 branes (and the corresponding

antibranes) are then placed at the tips where S3/Zk vanishes. From the expression for

the potential energy below, in the present construction these are conical singularities.

Let us denote φ1 = x2 + ix3, φ2 = x4 + ix5. We can realize the S3 as a Hopf
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fibration: |φ1|2 + |φ2|2 = R2, with the fiber circle along the γ ≡ arg(φ1) + arg(φ2)

direction. The base CP1 of the Hopf fibration is given by gauging this direction. The

Zk orbifold acts as (φ1, φ2) → e2πi/k(φ1, φ2), i.e. by a shift on γ. The scalar fields

we must stabilize include the string coupling gs, the sizes R
√
α′, Rf

√
α′ of the base

and fiber of the S3/Zk, and the size L
√
α′ of the T 2 factors in the geometry. We will

address these first. In general, we must consider all deformations of the 10d fields

which are sourced by our ingredients to check if any are unstable. We will find that

axions and anisotropic metric modes are either projected out or are stabilized by the

dynamics of our model.

The ingredients are as follows:

• (1) a variation of the Kähler moduli ρ = bT + iL2 of each T 2 over the base

CP1. Here bT ∼ B67L
2 = B89L

2 comes from the 67 and 89 components of the NS-NS

two-form potential.

This introduces complex codimension-two branes, i.e. “stringy cosmic fivebranes”

(SC5-branes), as was described in [42, 43]; ρ degenerates at points on the CP1 cor-

responding to the positions of these branes. In general, both the complex structure

moduli τ and the complexified Kähler moduli ρ of the T 2 fibers could become sin-

gular, corresponding to two types of stringy cosmic fivebranes, which we shall call

τ5- and ρ5-branes respectively. In the present construction, for simplicity we will use

only ρ5-branes.

The set of ρ5-branes makes two important contributions to the potential energy.

First, recall that a varying complex structure τ over the base CP1 subtracts from the

scalar curvature. Since T-duality interchanges τ -fibrations with ρ-fibrations, the same

holds for the ρ5-branes. A slightly more subtle effect is the following. Appropriate

sets of (p,q) ρ5-branes set boundary conditions for ρ = bT + iL2 at their cores, fixing

the size L of (and the axion bT on) the corresponding T 2 fiber to be some value L∗ (and

b∗), usually of string scale. As we introduce other ingredients into our construction,

they can cause the (averaged) size L of the T 2 fibers to increase, and the variation of
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L (and bT ) results in extra gradient energy of order

∫
Y7
d7y
√
g
|∇ρ|2

g2
sρ

2
2

∼ n̂ρ
g2
sR

2(α′)3/2

L4R3

k

((
log

L2

L2
∗

)2

+
(bT − b∗)2

L4

)
(2.32)

deriving from the curvature of the fibration. We write n̂ρ here to denote the number of

stacks of coincident ρ5-branes which introduce a boundary condition. This is distinct

from the total number of ρ5-branes. We will use the contribution from the gradient

energy sourced by the ρ5-branes to help stabilize L.

To be specific, we will use the following ρ5-brane configuration. Let us describe

it in terms of its T-dual, in order to provide a geometrical description in terms of a

gauged linear sigma model (GLSM) [68]. For reasons which will become clear shortly,

we will find it useful to consider branes which locally pin the elliptic fibers at an order

one value in string units, using as few branes as possible to accomplish this. We take

a (2,2)-supersymmetric GLSM with charges

Φ1 Φ2 X1 Y1 Z1 P1 X2 Y2 Z2 P2

0 0 2 3 1 −6 0 0 0 0

0 0 0 0 0 0 2 3 1 −6

6 6 0 0 −1 0 0 0 −1 0

(2.33)

under a U(1)3 gauge symmetry. The D-terms take the form

∑2
j=1(2|xj|2 + 3|yj|2 + |zj|2 − 6|pj|2 − `)2 (2.34)

+ (6|φ1|2 + 6|φ2|2 − |z1|2 − |z2|2 − ξ)2

Here the Fayet-Iliopoulos parameters correspond to size moduli ξ ∼ R2 and ` ∼ L2.

We take a gauge-invariant superpotential of the form

∫
d2θ

2∑
j=1

Pj
{
Y 2
j −X3

j − Z6
j gj(φ1, φ2)−XjZ

4
j fj(φ1, φ2)

}
(2.35)

with g1 = φ1, g2 = φ2 of degree 1 and fj = 0 in order to respect the gauge invariances



24 CHAPTER 2. MICROMANAGING DE SITTER HOLOGRAPHY

(2.33). This gives the T 2 fibrations as the vanishing loci of Weierstrass polynomials

of the form

y2
j − x3

j − z6
j gj(φ)− xjz4

j fj(φ) = 0 , for j = 1, 2 .

Each T 2 degenerates over a codimension 2 surface, φ1 = 0 or φ2 = 0 respectively.

These each correspond to singularities with fixed ρ→ eiπ/3. Since f = 0 everywhere,

the fibration has constant

ρ = ρ∗ = j−1(0) = eiπ/3

everywhere, not just at these special points where the ρ5-branes sit. In our complete

construction, other ingredients will source ρ, and deviations from the constant value

ρ∗ will cost gradient energy (2.32).

So far, the two T 2s vary over a base CP1 with homogeneous coordinates φ1 and

φ2. In this model as it stands, there is a (spacetime supersymmetric) Z6 orbifold

singularity at z1 = z2 = 0 descending from the third U(1) gauge symmetry in the

table (2.33).

In our model of interest (2.31), the base is not in fact CP1; it is instead a Zk
orbifold of a Hopf fibration over this CP1, a Lens space. In the GLSM, the third U(1)

gauge transformation parameterizes the Hopf fiber. For our purposes, we need the

model obtained by reducing this continuous gauge identification to a Zk identification.

As in [16] we can obtain the elliptic fibration over S3 (including the Hopf fiber)

as the base of a cone. We introduce the radial direction of this cone along with the

Hopf fiber by adding another chiral field Φ0 to the GLSM, assigning Φ0 charge -10

under the third U(1). (We insist here that the sum of charges cancel, producing a

non-compact Calabi-Yau fourfold, in order to preserve SUSY among the ρ5-branes.)

In order to incorporate the Zk orbifold we also mod out by

(φ1, φ2, z1, z2)→ (α6φ1, α
6φ2, α

−1z1, α
−1z2)

where α = e2πi/k (with the other fields invariant).

From the vanishing of the discriminant ∆ = 27g2+4f 3, this model introduces nρ =

4 ρ5-branes, significantly fewer than the 24 which would fully cancel the curvature of
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the CP1. This agrees with the fact that beta function for the Fayet-Iliopoulos (FI)

parameter R2 ∼ ξ describing the size of the base is (12−2)/12 = 20/24 times what it

would be in the absence of the nontrivial fibration. (This beta function is proportional

to the curvature; in the GLSM it is proportional to the sum of the charges of the fields

under the U(1) gauge symmetry corresponding to this FI parameter.) In this model,

the number of defects itself is 2; i.e. n̂ρ = 2 in (2.32). We will use these numbers for

definiteness in our analysis.

Since we do not require the fibration to nearly cancel the curvature, the singular-

ities analyzed in [16] do not arise. A priori we do not require a hierarchy between

the dS and internal curvatures in order to study conceptual questions about de Sit-

ter holography; however, we will obtain such a hierarchy in our explicit construction

below for somewhat different reasons from those in [16].

The additional ingredients are as follows:

• (2) ND5 units of RR F3 flux on the S3/Zk, and ND1 units of RR F7 flux on Y7

(2.31).

• (3) An orientifold five-plane wrapped on an unorbifolded S1 in S3/Zk times one

T 2. The O5-plane acts as an orientation reversal combined with a reflection on the

other T 2 and on two of the directions of the S3/Zk. We include a second O5-plane

on an orthogonal S1 and the other T 2. Note that the orbifold enhances the effect

of the orientifold planes relative to the ρ5-branes and other sources which wrap the

fiber circle. In general in de Sitter model building, one needs a negative intermediate

term in the potential which competes with the leading term. This requires the ratio

of their coefficients to be large; in our case this ratio is given effectively by k.

In terms of the elliptic fibration given above, the orientifold projection acts as

φ1 → ∓φ1, φ2 → ±φ2, and xj, yj, zj, and Pj are also projected to their conjugates.

It is interesting to study this effect – that orientifolds counteract positive energy

sources – in a ten dimensional description. The O5 metric, at distances large com-

pared to the string scale, looks like

ds2 = (1− (α′gs/r
2))−1/2(−dt2 + dx2

‖) + (1− (α′gs/r
2))1/2dx2

⊥ (2.36)
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The O-planes contract the space around them, more strongly so near the object. Now

consider starting from a metric with a deficit angle induced by a stringy cosmic brane,

and orientifold it. The contraction induced by the O5 will have a more pronounced

effect near its core than farther away, since the effect dies off at large r away from

the O5. This reduces the deficit angle.

• (4) An NS5-brane wrapped on an unorbifolded S1 in S3/Zk and stretched along

a one-cycle of each T 2. Include another one wrapped on orthogonal directions. For

future convenience, we will take these branes to wrap along the orientifold loci in the

base CP1, which has the effect of reducing the NS5-brane tensions and of projecting

out their slippage modes. An important issue which we will address below is the

backreaction of these NS5-branes. In our ultimate construction below we will ensure

that their core sizes are significantly smaller than the base radius.

• (5) Dp-branes and anti-Dp-branes: to begin with, we will consider a D7-brane

wrapped on S3/Zk and stretched along a one-cycle of each T 2, and an anti D7-brane

wrapped on the same cycle but in a different discrete Wilson line vacuum. Include

also another such pair wrapping the other cycle of each T 2. We put each anti-brane

in a nontrivial discrete Wilson line vacuum in order to prevent perturbative brane-

antibrane annihilation, as we will explain in §2.4.3. In order to decrease the curvature

of the base Bn, we will find that a simple variant with D5-branes replacing the D7-

branes is advantageous. We will discuss this below in section §2.4.7 after working

through the D7-brane version of the model.

These ingredients all together break supersymmetry. However, pairwise many

preserve supersymmetry and hence do not attract or repel to leading order. As in the

standard AdS3 model, the D1-D5 color branes are replaced by fluxes in the solution.

In particular, all the other ingredients are pairwise mutually supersymmetric except

the D7-D7 pair, whose stability we will explain in detail below.

2.4.2 Stabilization mechanism

To begin with, we will write down a näıve 3d effective potential obtained by averag-

ing each source over the compact directions. This procedure ignores warping which
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develops as a result of the varying degree of localization of the sources in the internal

dimensions [65, 66, 67]. We will show this to be a self-consistent approximation by

analyzing the form of the equations determining the warp factor, finding that the

warping necessary to solve the 10d equations of motion contributes a subdominant

term to the 3d potential energy (as discussed in general terms in §2.3.3). In essence,

we find that the stabilized values of the coupling and inverse radii are small enough

to justify our expressions for the stress energy contributed by the various ingredients

we have listed.

We denote the radii of the base and fiber of the S3/Zk in string units by R and

Rf , so that the volume of S3/Zk is 2π2R2Rf . Below we find Rf ∼ R/k. Note that

the curvature radius of S3/Zk is R. The radii of the T 4 are denoted by L6, L7, L8,

and L9 with L6L7L8L9 ≡ L4. We also need to consider the field bT ∼ L2B67 = L2B89

sourced by the ρ5-branes. Define

η̃ ≡ gs
R2L2

, β ≡ kRf

R
. (2.37)

We find it more convenient to work with the combination η̃ instead of the variable

η = kη̃2/β defined in (2.19). Transforming to 3d Einstein frame as in (2.16), we

obtain

U ≈16M3
3k

3

{(
4π2 − 2π2

3β2

[
24− nρ − n̂ρ

((
log

L2

L2
∗

)2

+
(bT − b∗)2

L4

)]
+
πknNS5

L2β3

)
η̃4

k

−
(

2πR2 − nD7R
4β

2k

)
η̃5

β3
+ 4π2

(
N2
D5L

4 +
(ND1 + b2

TND5)2

L4
+ 2b2

TN
2
D5

)
kη̃6

β4

}
(2.38)

Here M3 is the reduced Planck mass. The first term is the metric flux contribution

from the Hopf fibration over CP1, and the second term (i.e. the square bracket) rep-

resents the net curvature introduced by the elliptic fibration (2.4), with the presence

of ρ5-branes. The boundary values L∗ and b∗ are determined from the GLSM as

ρ∗ = b∗ + iL2
∗ = eiπ/3 .
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The third contribution to η̃4 comes from the tension of NS5-branes.

The η̃5 term receives a negative contribution from the O5-planes, plus a positive

term from the D7- and anti D7-branes. For the RR flux contributions we have three

terms, the first coming from |F3|2, the second from |F7 + 1
2
B2∧B2∧F3|2 (which can be

understood by T-dualizing the type IIA coupling |F4 + 1
2
B2 ∧B2 ∧ F0|2 three times),

and the final term from |B2 ∧ F3|2 (since we do not have F5 in our construction).7

We have included numerical factors such as 2π, according to

Tp =
1

(2π)pgsα′(p+1)/2
, 2κ2

10 = (2π)7α′4 ,

and the quantization of the p-form fluxes

1

(2π
√
α′)p−1

∫
Σp

Fp ∈ Z .

In this expression for the potential, and elsewhere, we have set α′ = 1 for simplicity.

The various sets of flavor branes including the elliptic fibration, and the orientifolds,

are supersymmetric in themselves and also pairwise supersymmetric with each other.

As a result, their contributions to the potential are well approximated by their under-

lying BPS tension formulae. Not all factors are known precisely, however; for example

the term proportional to log(L2) is an approximation of the gradient term (2.32) by

∇2 → 2
3R2 which we believe to be a reasonable estimate up to factors close to one

(based on computations with trial sinusoidal wavefunctions).

We have included the effect of the orientifolds as well as the Zk projection in

reducing the volume, but we do not know the precise internal geometry taking into

account the effects of all the ingredients. In our best controlled examples below, we

will find that starting from the above expression for the potential energy, the curvature

7We should point out that although näıvely the zero modes from B67 and B89 would be projected
out by the orientifolds, a nonzero expectation value b∗ 6= 0 is allowed because ρ∗ = eiπ/3, e2πi/3 are
related by a modular transformation. As explained around (2.32), the fluctuation bT ∼ L2B67 =
L2B89 away from b∗ has nontrivial dependence along the internal directions, so it does not correspond
to a zero mode. Physically, this variation is sourced by a competition between ρ5 branes and RR
fluxes. With these caveats, we will sometimes refer to bT as an “axion”; however, it should not be
confused with the B2 zero modes analyzed below in §2.4.4.
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in string units, Rα′, comes out to be of order 10−3 (with other examples giving Rα′ ∼
10−2 or 10−1 depending on the details of the Dp-branes used in the construction).

For this reason, although we will not obtain parametrically large radii, we expect

corrections to be reasonably small. Because we will tune the de Sitter cosmological

constant to be somewhat smaller than the internal curvature scale, O(α′) corrections

can affect the depth of the de Sitter minimum. However, since the individual terms in

the potential are much larger than this, these effects should only shift the stabilized

values of the moduli by a small amount.

At this point it may be useful to emphasize an important distinction between

curvature radii and size moduli. The curvature of our internal dimensions goes like

1/R2, but does not get large when the radii Rf and L of the Hopf and elliptic fibrations

become small. These can (and will) be closer to the string scale than R without

driving up the curvature and resulting α′ corrections.

The potential (2.38) has the form

U ∼M3
3 (aη̃4 − bη̃5 + cη̃6) (2.39)

which allows us to use the ‘abc’ technique in [50] to stabilize the moduli. We first

minimize 4ac/b2 as a function of all other moduli besides η̃ –see discussion around

(2.26). If we can use discrete quantum numbers to tune the minimal value of 4ac/b2

to be close to but slightly greater than 1, the potential (2.39) will have a de Sitter

minimum with η̃ stabilized near

η̃ ≈ 2a

b
≈ b

2c
. (2.40)

The only R dependence of the potential comes from the coefficient b, so we can

easily minimize it with respect to R at

R2 =
2πk

nD7β
. (2.41)
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After that the middle term is reduced to −2π2kη̃5/(nD7β
4) and 4ac/b2 becomes

4ac

b2
=

16n2
D7

k2

{
β4 − 1

6

[
24− nρ − n̂ρ

((
log

L2

L2
∗

)2

+
(bT − b∗)2

L4

)]
β2 +

knNS5

4πL2
β

}

×
(
N2
D5L

4 +
(ND1 + b2

TND5)2

L4
+ 2b2

TN
2
D5

)
(2.42)

Let us focus next on the stabilization of β. This follows from the factor in curly

brackets, which has a three-term structure analogous to (2.39):

{. . . } ≡ ãβ − b̃β2 + β4 (2.43)

where

ã =
knNS5

4πL2
, b̃ =

1

6

[
24− nρ − n̂ρ

((
log

L2

L2
∗

)2

+
(bT − b∗)2

L4

)]
(2.44)

In this case, if we can minimize ã2/b̃3 with respect to L and bT at

ã2

b̃3
=

4

27
+ ε, (2.45)

with a small positive ε (analogously to 1 . 4ac/b2), then we can minimize {. . . } with

respect to β at a positive small value of {. . . },

{. . . } =
3

4
b̃2ε , β =

√
b̃

3

(
1− 9

8
ε

)
. (2.46)

This will in turn help us to tune 4ac/b2 to be slightly larger than 1 and will give a

parametrically small string coupling.

Minimizing ã2/b̃3 with respect to the axion bT gives bT = b∗. The RR flux con-

tributions to the potential want to push bT to 0 but as long as ε is small they are

subdominant and only cause a small deviation away from bT ≈ b∗. Therefore b̃ is



2.4. DS3 WORKED EXAMPLE 31

reduced to 1
6
[24− nρ − n̂ρ(log(L2/L2

∗))
2]. Minimizing ã2/b̃3 respect to L2 requires

24− nρ − n̂ρ
(

log
L2

L2
∗

)2

= 3n̂ρ log
L2

L2
∗

(2.47)

which we would like to satisfy with a large (though limited) L. This relation deter-

mines L, and then Eq. (2.45) fixes knNS5,

knNS5 =
4π

3
βn̂ρ

(
log

L2

L2
∗

)
L2 +O(ε) . (2.48)

Therefore, the order of the orbifold is limited by L.

An explicit example of an appropriate ρ fibration was given above, with nρ = 4

and n̂ρ = 2. With these numbers, we find L = 2.5 and knNS5 = 88; this gives

ε = 0.0016.

Before going on, let us note that in order to minimize 4ac/b2 with respect to L

(and requiring (2.48)), it is enough to take

L2 =

√
ND1

ND5

+ b2
∗. (2.49)

This is also the scaling of the D1-D5 AdS solution. However, this is not strictly

necessary, because deviations from this equality produce a tadpole from the flux

factor that is suppressed by ε as compared to the mass squared responsible for the first

equality. Such a contribution then causes only a small deviation from the solution

(2.47). For simplicity, though, in the formulas below we specialize to the scaling

L4 ∼ ND1/ND5.

Altogether we obtain (dropping numerical factors)

4ac

b2
∼ n2

D7

k2

[
24− nρ − n̂ρ5(log(L2/L2

∗))
2
]2
εND1ND5 ∼ 1. (2.50)

Setting nNS5 ∼ nD7 ∼ 1, Eq. (2.45) implies that parametrically k ∼ L2 ≈
√
ND1/ND5,

and (2.50) reduces to ND5 ∼ 1/
√
ε, which gives large ND5 and even larger ND1. With

them it should be possible to tune 4ac/b2 to be close to but slightly greater than
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1. After minimizing 4ac/b2 we find a de Sitter minimum at η̃ ≈ 2a/b ∼ ε/k2. The

moduli and dS radius scale as follows with the parameters:

Rf ∼
R

k
, R2 ∼ L2 ∼ k ∼

√
ND1

ND5

, ND5 ∼
√

1

ε
, gs ∼ ε, R2

dS ∼
R2

ε
(2.51)

Note that we have obtained large radius and weak string coupling, thanks to the small

ε. From eq. (2.29), tuning a ∝ ε to be small also produces a hierarchy RdS � R.

So our model features parametrically small internal dimensions (compared to the dS

scale), giving a gap between 3d moduli and internal KK excitations.

Importantly, the size of L is limited by (2.47). The fact that this relation is

logarithmic helps drive up the value of L, but it is limited by the size of the other

terms; as mentioned above we take the minimal values we can obtain for nρ and n̂ρ.

Numerical example

We can check this numerically for the potential estimated above, and the results are

summarized in Table 2.2. Here nNS5 = 2 and nD7 = 4 are the fewest number of

Input data
nρ 4
n̂ρ 2
ρ∗ exp(iπ/3)
nNS5 2
nD7 4
k 44
ND1 156
ND5 5

Stabilized moduli
R 9.2
kRf 7.5
L 2.5
bT 0.48
gs 0.02
ε 0.002

4ac/b2 1.003

Table 2.2: Numerical example for a dS3 solution

branes required for the setup to have the necessary symmetries in the T 4 directions.

As can be seen from the above tables, our initial data fix the moduli in a de Sitter

minimum. The axion is stabilized at bT = 0.48 very close to b∗ = 0.5.

Comparing these numbers to the parametrics above, we see that numerical pref-

actors break the parametric degeneracy between L and R; also, ND5 is somewhat
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smaller than expected, but nevertheless gs � 1. The relation L2 =
√
ND1/ND5 has

not been enforced exactly, but this is a small effect since the contribution of the cor-

responding tadpole will be suppressed by O(ε). The primary use of the flux quantum

numbers ND1 and ND5 was not to fix L, as might be supposed from the form of the

effective potential, but to keep 4ac/b2 within the allowed range. Interestingly, it is

even possible to stabilize all moduli without color fivebranes as long as ε � 1. In

particular we find a dS minimum with ND1 = 262, ND5 = 0, and all other parameters

approximately as above. We will comment further on this possibility when we discuss

the scaling of the entropy.

It is worth commenting on the size of ε, since taking ε � 1 is responsible for

achieving a weak string coupling and also boosts the number of degrees of freedom.

In particular, in three-term stabilization mechanisms (as opposed to the two-term

Freund-Rubin mechanism), there is a priori extra freedom to tune the (A)dS radius

large. Our ability to tune ε small is limited by the size of the large quantum numbers

in the problem. We can express this in terms of k ∼ L2 (which is limited by (2.47)).

For example, if we shift k → k+1, we shift (2.45) and hence ε by ∼ kND5/ND1 ∼ 1/k.

Shifting ND1 by one would seem to shift ε by an amount of order 1/ND1, however,

this effect is suppressed by ε and the effect of changing ND1 is negligible when ε is

small.

The mass matrix is positive definite for the input data and the stabilized values

found above, and yields masses of order 1/R and
√
ε/R. This follows from the fact

that the canonically normalized fields are σR ≡ M
1/2
3 logR, σL ≡ M

1/2
3 logL,Φ ≡

M
1/2
3 log gs and σf ≡ M

1/2
3 logRf . Differentiating U twice with respect to each σ

yields contributions of the order of a typical term in U/M3 which sources it; this is

of order 1/R2 for the moduli σf and σL, and of order ε/R for σR and Φ. To the

extent that we tune the de Sitter minima to be smaller than the height of the moduli

barriers, these masses are larger than the de Sitter Hubble scale, and for ε � 1, the

masses of σL, σf are parametrically larger. For the numbers given above, the smallest

of the masses is about one order of magnitude above the Hubble scale.
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Higher order corrections

Finally, let us consider α′ and quantum corrections. Quantum effects are controlled

by g2
s ∼ ε, and are further suppressed by the KK scale 1/R2 (they have to vanish in

the limit in which supersymmetry is restored). These can therefore be safely ignored.

On the other hand, a slightly conservative estimate for the size of the O(α′)

corrections to the GLSM is given by the curvature

α′R ∼ 8

R2
∼ 0.1 (2.52)

in the example above. The factor of 8 comes from relating the CP1 and S3 radii. This

is on the edge of control, since we do not understand all O(1) factors arising from the

backreacted geometry and from the gradient energy terms. Such corrections will not

affect the moduli stabilization barriers, which are not suppressed by ε, but can alter

the stabilized value of the Hubble scale.

Strictly speaking, when studying the numerics for the case of small ε we must

start with the corrected effective potential to leading order in O(α′) and then tune k

to find ε small and positive, of order & 1/k. We stress once again that the numerics

quoted in our example are meant to illustrate the stabilization procedure but are

not to be taken as exact. However, metastable de Sitter solutions from our effective

potential are quite generic, and we expect the exact solution to be not qualitatively

different. Moreover, at the end of the section we present a simple way of pushing the

curvature to significantly smaller values, by replacing the flavor D7-branes by flavor

D5-branes.

2.4.3 D7-D7 stability analysis

Let us now elaborate on the stability of the D7- and anti D7-brane pairs, ingredient

(5) above. These wrap a T 2 fiber and the full S3/Zk. The latter introduces fractional

Wilson line vacua. There are k distinct Wilson line vacua (i.e. non-gauge-equivalent
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flat connections)

(
ei

∫
fiber A

)k
= 1 ⇒

∫
fiber

A =
2πn

k
, n = 0, . . . , k − 1. (2.53)

Explicit expressions for these vacua on a Lens space S3/Zk were given in e.g. [69].

Let us put the D7-branes in their n = 0 vacuum and the anti D7-branes in a vacuum

with n ∼ k/2. We must assess potential instabilities of this configuration from brane-

antibrane strings (assessing whether there is a tachyon), and from gauge field modes.

Because the fiber circle is small, for some purposes it is useful to analyze this in a

T-dual description.

One can see by periodicity of the gauge field or by T-duality that the size of the

circle seen by the Wilson lines is of order

R̃f ∼
1

Rf

∼ k

R
∼
√
k (2.54)

where in the last two relations we used our stabilization mechanism (2.51). This

circle being much larger than string scale, the brane and antibrane are separated by

a parametrically large distance even if they sit at the same position on the transverse

T 2.

Next let us analyze the Wilson lines for potential instabilities. Because the Wilson

line vacua are discrete, there is a positive contribution to the mass squared in varying

away from the corresponding flat connection. This scales like the square of the field

strength. Since F ∼ δA/R (R being the size of the space transverse to the fiber

circle), this mass squared goes like 1/R2.

There is also a negative contribution to the mass squared from the attraction

of the brane and antibrane. This can perhaps be seen and estimated most easily

in a T-dual description, with an inverted circle radius (2.54) and a T-dual string

coupling g̃s ∼ gs/Rf ∼ gsk/R. The (anti) D7-branes are turned into (anti) D6-

branes, wrapping the base CP1 times the T 2 and sitting in diametrically opposite

positions on the dual circle. The attractive potential between each brane/antibrane
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pair is (using the scaling R̃f ∼
√
k ∼ R)

U77̄ ∼ −M3
3

(
g2
s

R2RfL4

)3(
g̃2
s ×

1

g̃2
s

×R2L2

) ∞∑
n1,n2,n3=−∞

1

|~x− ~nR|
. (2.55)

The first factor here is the usual Einstein frame conversion factor, the g̃2
s is the 10d

Newton’s constant in the T-dual frame, the 1/g̃2
s is the product of tensions, the R2L2

is the volume over which the D6-branes are wrapped, and the last factor is the codi-

mension 3 potential. The sum over ~n = (n1, n2, n3) represents the compactification;

we can work on the covering space with a periodic array of localized sources, and

then later project by translations in order to compactify.

This potential gives a negative mass squared to the attraction mode between the

brane and antibrane pair. Expanding around x ∼ R/2, we get

U77̄ ∼ −M3
3

(
g2
s

R2RfL4

)3
L2

R

(
x− R

2

)2

. (2.56)

Switching to a canonically normalized kinetic term Lkin ∼ R2L2ẋ2/g̃s ∼ φ̇2, we get

the negative contribution to the mass squared from the attraction of the brane and

antibrane pair:

δm2 ∼ −M3
3

(
g2
s

R2RfL4

)3
L2

R

g̃s
L2R2

∼ − gs
R2
. (2.57)

Although this is parametrically of the same order of magnitude as the Hubble scale

(remember that the Hubble scale is tuned), it is parametrically smaller than the

positive mass squared arising in deformation away from a flat connection. This mode

is therefore perturbatively stable.

2.4.4 Stabilizing other moduli

So far we have addressed R, Rf , L, bT , gs and the D7-D7 stability. In this section

we will address the other possibly light directions in scalar field space. In order to

holographically formulate inflationary spacetimes, we must require that all modes be

lifted, or if tachyonic that the tachyonic mass be much smaller than the de Sitter
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Hubble scale.

Axions

First, there are potentially light scalars arising as axions from the RR forms and from

the B-field. The zero modes surviving the orientifold projection are

C2 = c1 dx
6 ∧ dx7 + c2 dx

8 ∧ dx9 (2.58)

B2 = b1 dx
7 ∧ dx8 + b2 dx

6 ∧ dx9 + b3 dx
6 ∧ dx8 + b4 dx

7 ∧ dx9 .

The zero modes from C0, B67 and B89 are projected out by the orientifold action.

(Recall that the field bT ∼ L2B67 = L2B89 analyzed before varies along the inter-

nal dimensions, so it does not correspond to a zero mode; see discussion around

Eq. (2.32)). Finally, the scalars from C4 threading nontrivial cycles are projected out

by the orientifold action.

We have analyzed the dependence of the potential energy of these modes com-

ing from fluxes and from the wrapped D-branes, finding a positive mass matrix for

our parameters. This follows more simply by noting first that the underlying D1-D5

AdS/CFT system has no tachyons (even allowed tachyons) from axions. The addi-

tional ingredients which uplift the system to de Sitter do not render their mass matrix

tachyonic. The orientifolds as just noted project out some modes. The Dp-branes

contribute positive masses to Neveu-Schwarz axions along their worldvolumes; sim-

ilarly, NS5-branes would contribute positively to the mass squareds for RR axions,

though in any case those along the NS5-brane worldvolumes are projected out by the

O-planes. The stabilization of L works slightly differently in the de Sitter case as

compared to AdS. This affects the mass matrix for the b axions, but in a way that

yields a positive mass squared solution for appropriate values of ND1/ND5, including

those of our numerical examples.

The ρ fibration contributes a subtle effect lifting C2, as follows. S-dualizing the

|F̃7|2 term described above and integrating by parts gives a term proportional to

|B2 ∧ C2 ∧ F3|2.8 The combined effect of F3 flux through the base S3/Zk and B2 =

8See e.g. [70]. The expressions for F̃7 and H̃7 can be understood by using S- and T-duality and



38 CHAPTER 2. MICROMANAGING DE SITTER HOLOGRAPHY

b∗(dx
6∧dx7 +dx8∧dx9) produced by the ρ5 branes gives positive mass terms to both

c1 and c2 in (2.58).

Moduli of the elliptic fibration and NS5-branes

The moduli of the elliptic fibration are flat to leading order since they come from

superpotential terms in a (2,2) sigma model. In the explicit model given above with

linear polynomials g(j)(φ), there is only one such deformation.

The NS5-branes wrap contractible cycles in the base CP1 and could possess slip-

page modes if they were not wrapped on the orientifold loci in these directions. In

this case the NS5-branes are frozen in place by the orientifold action. It can be

checked that the full solitonic field configuration corresponding to the NS5-brane is

compatible with the orientifold action; the compatibility condition is equivalent to

the condition that these ingredients be mutually supersymmetric.

Anisotropic deformations

The setup in Table 2.1 is rather symmetric, and the potential is automatically extrem-

ized with respect to directions that break the symmetry. However, we must ensure

that such directions are not too tachyonic. It is energetically favorable for orientifolds

to wrap larger cycles. Because of this, the O5 and O5′ contribute negatively to the

mass squared for anisotropies of the tori. However, the ρ5-branes and NS5-branes

contribute positively to the mass squared of these modes. The quantity 4ac/b2 (2.42)

is deformed in the following way by these contributions

4ac

b2
∝ εb̃2 + γ1φ

2

b2
0 + γ2φ2

(2.59)

where γ1 and γ2 are positive quantities which do not scale down with ε. The γ2 term

comes from the orientifold. The tachyonic mass squared that it imparts is suppressed

by the power of ε in the numerator. There is no such suppression of the positive mass

squared from the ρ5s or NS5s. So the net effect is a positive mass squared for these

from the anomalous D-brane couplings SWZ =
∫
eB ∧

∑
p Cp.
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anisotropic modes.9

However, anisotropies of the base are more subtle. The O-planes that we have

prescribed can elongate without breaking any of the symmetry. To see this, we can

coordinatize the S3 as follows. Set φ̃1 ≡ x3 + ix4 ≡ ρ1e
iγ1 , φ̃2 ≡ x2 + ix5 ≡ ρ2e

iγ2 .

The round S3 metric is

ds2 = |dφ̃1|2 + |dφ̃2|2 = dρ2
1 + ρ2

1dγ
2
1 + dρ2

2 + ρ2
2dγ

2
2 (2.60)

with ρ2
1 + ρ2

2 = R2. Using this latter relation, we can set ρ1 = R sinκ, ρ2 = R cosκ

with 0 ≤ κ ≤ π/2. This gives metric

ds2 = dκ2 + sin2 κdγ2
1 + cos2 κdγ2

2 (2.61)

The O5 lies along γ1 at κ = 0, while the O5′ lies along γ2 at κ = π/2. It is possible

to shrink the κ direction without breaking any of the symmetry, elongating the γ

directions to maintain constant volume. Therefore, the O-planes alone produce a

tadpole in this direction.

However, because of the tuning down of ε above, the NS5-branes and ρ5-branes

each contribute more to the forces in the problem. Indeed, while the O-planes com-

pete against the net term {. . . } ∝ ε � 1 above (2.43), NS5-branes and ρ5-branes

contribute larger, individual contributions to {. . . }. The NS5-branes push oppositely

to the orientifold planes. The ρ5-branes stretch in the κ direction, so the combined

effects of the ρ5-branes and NS5-branes together stabilize this direction.

2.4.5 Localization of sources and the warp factor

After having found a consistent solution in the 3d effective theory, we should analyze

the ten dimensional consistency of the construction. Following the discussion in

§2.3.3, let us argue that the localization of the sources will not appreciably change

9The mode L2
78 6= L2

69 is a special case: the only contribution is a positive mass term from D7-
branes. The energy of the other ingredients (NS5s, ρ5s and orientifolds) is independent of this field.
In the case where the D7-branes are replaced by flavor D5s wrapping S3/Zk, this direction becomes
flat at the classical level.
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the potential (2.38), though it requires taking into account a slowly varying warp

factor.

In the effective 3d theory (2.38) the localized sources (for instance O5 planes) play

off against fluxes and net negative internal curvature to stabilize the moduli. Since

these are not delta-function localized at the positions of the O5-planes, solving the

10d EOMs pointwise requires a warp factor eA multiplying the (A)dS3 metric which

varies over the internal dimensions [65, 66, 67]:

ds2 = e2A(y)ds2
AdS3

+ e−2A(y)g̃ijdy
idyj (2.62)

Recall from the discussion around (2.30) that if the equation for the warp factor

can be solved (by having nonzero ∇2A) with A � 1, then the corrections to the

effective potential are negligible since they are of order (∇A)2/κ2. This provides a

mechanism for solving the 10d equations in the presence of localized sources while

keeping corrections to the potential subdominant. Therefore, let us check that in the

present construction the condition A� 1 holds away from the cores of the localized

sources (whose tensions already take the cores into account).

First consider the O5-planes as a source for A. Note that the fiber circle being

small, these effectively wrap a T-dual circle of size R̃f ∼ 1/Rf ; there are three

directions ~y⊥ transverse to the O5s. Schematically we have

∇2A(~y⊥) ∼ 1

gs

1

Rf

g2
s

∑
nR,n1,n2

δ(3)(~y⊥ − ~y0 − ~nR) + other sources, (2.63)

the first factor here being the 1/gs tension, the second the wrapped T-dual circle,

and the g2
s factor arising from Newton’s constant κ2. Once again, we can work on

the covering space with a periodic array of localized sources, and then later project

by translations in order to compactify. Let us look at A at a point ~y⊥ halfway in the
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middle of the localized O5 sources. This gives us

A

(
R

2
,
L

2
,
L

2

)
∼ gs

1

Rf

∑
nR,n1,n2

1√
R2
(
nR − 1

2

)2
+ L2

(
n1 − 1

2

)2
+ L2

(
n2 − 1

2

)2

+ contributions from other sources. (2.64)

In the covering space, the sum on ~n represents the contributions from localized sources

farther and farther away from the point ~y⊥. As discussed above, if all sources were

smeared, the gradient of A would cancel. So the full expression for A, including all

localized and homogeneous sources, is essentially the difference between the sum on ~n

and the integral over ~n. Since L and R are of the same order of magnitude, the overall

contribution to the warp factor is A ∼ O(gs), and the localization of the source can be

ignored. Similarly, the gravitational potential sourced by the D7-branes is suppressed

by gs, leading to A� 1 when combined with the full complement of sources.

The ρ5-branes would produce A ∼ 1 in a similar way if we treated them as puta-

tively localized sources of stress-energy. Indeed, they do have long-range effects on the

geometry; they correspond to a nontrivial fibration (2.4) described by a Weierstrass

model. The corrected target space is described by the infrared regime of the gauged

linear sigma model (GLSM) presented above. Their contribution to the curvature

and hence to the moduli potential is of the same form as it would be in the näıve

estimate based on the tension of an isolated brane. The most familiar example of this

is the case of elliptically fibered Calabi-Yau manifolds, where the fibration exactly

cancels the curvature of the base. This occurs for example in the case of 24 stringy

cosmic fivebranes on a base CP1. More generally, the GLSM beta function ∼ 24 for

the running of the FI parameter ξ corresponding to the size R2 of the base is shifted

by the elliptic fibration to ∼ (24− nρ).
We expect similar statements to hold for the NS5-branes (ingredient (4) above).

By themselves, these NS5-branes could be described including backreaction in a half-

flat approximation by recognizing them à la [42, 43] as a different set of ρ5-branes

with monodromy ρ → ρ + 1. These are holomorphic with respect to a different

choice of complex coordinates on the R4 × T 4 of our brane construction, so it is
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not trivial to describe both sets of ρ5-branes using the same GLSM. However, the

two sets are mutually supersymmetric and their BPS tensions combine additively.

(They are U-duals of D-brane combinations with 4 Neumann-Dirichlet directions; such

combinations have no binding energy.) For this reason we expect their contributions

to be well described by the tensions we included in the moduli potential (2.38), at

least in cases where their core size is sufficiently small. In the D7-brane model so far

considered, this is marginal; the core size of the NS5 is not smaller than R, as we will

discuss below in §2.4.7. However, the variants in §2.4.7 involving D5-branes will push

the parameters to where the NS5-brane has a string-scale core, much smaller than R.

It would be useful to develop techniques to simultaneously control multiple types of

1/g2
s -tension branes more explicitly.

2.4.6 Entropy and brane construction

Given the above scalings (2.51), the entropy scales parametrically like

S ∼M3RdS ∼
L4R4

kg2
sε

1/2
∼ kND1ND5

ε3/2
(2.65)

This scaling of the entropy is the same as in the corresponding AdS model when

ε < 0. This makes sense, since the ρ5-brane flavors and the orientifold projections are

only of order 1 in number, so that the scaling is as in the corresponding D1-D5 AdS

orbifold quiver theory up to an enhancement by ε−3/2. This factor can be understood

as in section 3.5 of [16]: pull out a color brane from a tip of the cone, and count the

number of ways of winding strings around the base of the cone up to an energy cutoff

comparable to the energy of a string stretching radially to the tip. This gives an

enhancement factor ∼ (RdS/R)3 ∼ ε−3/2. As a result, we can read off the parametric

scaling of the Gibbons-Hawking entropy from the D1-D5 system.

Many details come into the precise coefficient over which we have no control at

present. As in [16], our main handle on the holographic dual is through its brane

construction. It would be interesting to develop tools to study this theory in more
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detail.10 With the brane construction in hand, however, one can immediately study

further questions of interest such as the microscopic description of decays out of the

metastable dS vacuum and their holographic description.11

As mentioned in §2, this model has a brane construction for which the radially

evolving R, at fixed initial values of the other moduli, solves the equation (2.5)

R′(w)2

R2
∼ −1 +

const

R2
(2.66)

for which the singularities at the tips R → 0 are conical. The first term here comes

from the D7-branes and anti D7-branes, and the second includes the O5-planes which

are at codimension two on the base.

It is also possible to stabilize the construction with ND5 = 0, as mentioned ealier.

In this case the parametric scaling is

S ∼M3RdS ∼
L4R4

kg2
sε

1/2
∼ N2

D1

kε3/2
(2.67)

In this case the tuning of ε plays the dominant role. It would be interesting to

understand this case better as it does not appear to arise directly from a known

AdS/CFT dual pair, as is the case for most models in the landscape.

2.4.7 Alternative examples

In this subsection we provide two alternative examples in which the radius of curvature

R is pushed to larger values and we therefore have better control of α′ corrections.

First, we can replace the D7- and anti D7-branes with a single pair of D5- and

anti D5-branes wrapping the S3/Zk, and put them in different Wilson line vacua to

10An intriguing possibility is that as in [71], the holographic duals may only exist as cutoff theories.
11Other macroscopic proposals for de Sitter holography which are based on different ways of slicing

the spacetime include [20, 21, 22]. It would be interesting to study whether our dS construction
building from AdS/CFT might also provide a microscopic realization of these ideas.
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prevent perturbative brane-antibrane annihilation:

0 1 2 3 4 5 6 7 8 9

D5, D5 x x x x x x
(2.68)

The stabilization proceeds as before with the middle term −bη̃5 in the effective po-

tential replaced by
U
M3

3

⊃ −16k3

(
2πR2 − nD5R

4β

2kL2

)
η̃5

β3
. (2.69)

This gives

R2 =
2πkL2

nD5β
, (2.70)

and the rest of the stabilization proceeds as before. Note that nD5 is the number

of flavor D5- and anti D5-branes as specified above, which should be distinguished

from ND5, the number of color D5-branes wrapping different directions in our brane

construction. With nD5 = 2, we find R ≈ 33 (as compared to R ≈ 9 in the model

with flavor D7 branes); now α′ corrections are of order 8/R2 = 7× 10−3.

We can push R to even larger values by wrapping the flavor D5-branes on an

unorbifolded S1 in the S3/Zk, the fiber S1/Zk, and one of the T 4 directions:

0 1 2 3 4 5 6 7 8 9

D5 x x (x) x x (x) x

D5′ x x x (x) (x) x x

(2.71)

Here the parentheses indicate that the true D5-brane locus is a combination of these

dimensions. Note that we do not need to include anti D5-branes here because the

D5-branes are wrapping a contractible cycle in the S3/Zk, but in order to stabilize the

anisotropic mode L2
78 6= L2

69 we need two D5-branes wrapping the 6 and 7 directions

respectively. Again, the middle term of the effective potential is replaced by

U
M3

3

⊃ −16k3

(
2πR2 − πnD5R

3β

kL

)
η̃5

β3
(2.72)

which stabilizes R = 4kL/(3nD5β). With nD5 = 2, the value of R is further increased
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from 33 to 91, with the α′ corrections of order 8/R2 = 1× 10−3.

Another advantage of these two alternative constructions is that the size of the

NS5-brane core is much smaller than the radius R. A simple way of looking at this

is to take the T-dual along the fiber direction Rf : the NS5-branes are turned into

KK5-branes with a fiber size R̃f = 1/Rf = k/(βR). In our previous construction with

D7-branes, this size is of the same order of magnitude as R, as we can see from the

parametric scaling R2 ∼ k. However, if we replace the D7-branes with D5-branes as

in the first example above, we have R2 ∼ kL2 ∼ k2 and the fiber size R̃f ∼ k/R ∼ 1

is much smaller than R. In the second example above, we have R2 ∼ k2L2 ∼ k3 and

the fiber size R̃f ∼ k/R ∼ 1/
√
k is again much smaller than R. This is also confirmed

by the numerics: with the previous D7 construction we have R̃f = k/(βR) = 5.9 not

much smaller than R = 9.2, with the first D5 construction we have R̃f = 1.64 much

smaller than R = 33, and with the second D5 construction we have R̃f = 0.59 much

smaller than R = 91.

The D7-D7 stability analysis can be repeated in the first D5 example, with anal-

ogous results: there is a negative mass squared of Hubble scale, but the deformations

away from the flat connection give large positive contributions to the mass squared

and keep the mode perturbatively stable. In the second example, the D5-branes are

mutually supersymmetric but may possess slippage modes because they wrap con-

tractible cycles on the base CP1; placing the branes at the orientifold loci (the effect

on their tension is already included in (2.72)) projects these modes out and freezes

the branes in place.

2.5 Discussion and Future Directions

Similar methods apply to the construction of semi-holographic de Sitter models in

other dimensions. Work on four dimensional examples of this kind is in progress

[40]. A promising class of candidate models arises from type IIA string theory on

an orientifold of an elliptic fibration over B4 (e.g. CP2 or CP1 × CP1) which over-

compensates the curvature energy of B4, along with RR 2-form and 6-form flux as

well as additional flavor branes.
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This work raises many interesting questions about the nature of the dual implied

by the brane constructions. Let us make a few comments here. The compactness of

the brane construction implies propagating d − 1-dimensional gravity. As we have

discussed, the fact that this is coupled to a matter sector with large entropy makes for

a useful albeit semi-holographic duality; d− 1-dimensional gravity is weakly interact-

ing over a large range of scales because of the enhancement of the d− 1-dimensional

Planck mass induced by the large number of species. (In the d = 3 case studied

explicitly in this chapter, the d− 1 dual is Liouville gravity coupled to a large-c mat-

ter sector, as anticipated macroscopically in [17, 18, 19] and proposed for somewhat

different reasons in [21, 22].) By the same token many other modes are dynamical. In

particular flavor groups are dynamical in d−1 dimensions, i.e. the flavor symmetry is

weakly gauged; the flavor groups have a large number ∼ Nc of matter fields charged

under them which screen their interactions. This is analogous to the weak dynamical

gravity in the d− 1 dimensional description, with large-c matter sector.

One basic question is whether the d − 1-dimensional matter theory here is UV

complete by itself (and just happens to be coupled to gravity in the case that it

arises as part of a dual for de Sitter). Another possibility, analogous to the situation

obtained for non-supersymmetric warped throats in [71], is that the matter theory

only exists as a low energy effective theory. In general, we would like to understand

the couplings of the matter degrees of freedom to Liouville gravity in our setup.

A related question concerns the microscopic interpretation of the entropy. So far

we obtained a parametric result, but not the precise coefficient. Even in AdS/CFT,

obtaining the precise coefficient is difficult; for example in the N = 4 supersymmetric

Yang Mills theory there is a famous ratio of 3/4 between the strong and weak coupling

results. In the present case, the coupling to d − 1-dimensional gravity is a further

complication. In particular, altogether the central charge vanishes in a theory of

gravity, something borne out by the macroscopic calculations in [17, 18, 19]. Perhaps

in the case d− 1 = 2, the effective central charge is the appropriate notion of a count

of degrees of freedom; this is sensitive to the matter contribution.

Our construction is reminiscent of the attempt [26] to count Schwarzschild entropy
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with a brane-antibrane system. In the present case, there is a variety of brane con-

structions which reflects the landscape of possible solutions: each de Sitter solution

corresponds to a definite brane construction.

Our solutions eventually decay. Decay modes include the strongly coupled, ex-

ponentially suppressed version of brane-antibrane annihilation: Schwinger decay of

the flux dual to the color branes. The decay of de Sitter solutions into each other

or to regions of zero or negative cosmological constant is central in many attempts

to formulate the landscape en masse, and concrete input from microscopic brane

constructions may be useful.



Chapter 3

FRW solutions and holography

from uplifted AdS/CFT

3.1 Introduction: keeping it real

At present we lack a complete theoretical framework for cosmology. One approach to

this problem is to try to organize cosmology holographically, building on the success of

the AdS/CFT correspondence. Doing so is not trivial for a number of reasons related

to the tendency of cosmological solutions to mix with each other and the absence of a

simple timelike boundary. Dynamical gravity, or an integration over metrics, is part

of the putative lower-dimensional dual in various attempts so far to generalize the

AdS/CFT correspondence to cosmology and describe a complete set of observables;

this includes dS/CFT [20, 72] at least as it is interpreted in [73],1 dS/dS [18, 19]

and FRW/CFT [21, 22]. Despite the lower dimensional gravity, the formulation of a

significant part of the system in terms of a large matter sector is a nontrivial step, one

which has recently been put on more solid footing microscopically [7]. Nonetheless it

is important to understand whether a more precise formulation might exist.

1For this example, there may at least be a subset of observables which correspond to a precise non-
gravitational CFT as described in [73], where the CFT computes the wavefunction of the universe.
However, this wavefunction is a functional of the metric which one must ultimately integrate over.
See the recent work [74] for more discussion of this question.

48
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The structure of UV complete cosmological solutions will likely be useful in an-

swering this question.2 In this chapter, we present and analyze concrete cosmological

solutions which are sourced by a generic ingredient – magnetic flavor branes – used to

uplift AdS/CFT systems [16] to cosmology. With sufficiently many magnetic flavor

branes, no nonsingular static solutions exist, but time-dependent solutions do exist

which are nonsingular at late times; these solutions are nonsingular at all times if

obtained from a bubble nucleation process. (Another interesting class of dynamical

F-theory solutions was studied in the earlier work [75], which emphasized the point

that no physical restriction on the number of 7-branes exists once the generic possi-

bility of time dependence is included.) We will introduce a holographic interpretation

of this class of solutions, employing the following basic strategy.

First, we find a warped metric on our spacetime and interpret the two highly red-

shifted regions in terms of a pair of low energy effective theories. This is a generaliza-

tion of the observation in [18, 19] that metastable d-dimensional de Sitter spacetime is

a warped compactification with two throats and propagating (d−1)-dimensional grav-

ity.3 This line of reasoning of course goes back to the original arguments [2, 4, 3, 77]

that the highly redshifted core region of a stack of branes should be equivalent to a

field theory, since it represents low energy degrees of freedom decoupled from the am-

bient Planck scale. We verify that particles are stable in the infrared region, though

color branes out on their approximate Coulomb branch propagate up the throat. We

call this phenomenon “motion sickness”; as we will discuss later on it is not fatal.

The next step is to compute the (d−1)-dimensional Newton constant: this reveals

that the (d−1)-dimensional graviton decouples at late times, in a way analogous to a

Randall-Sundrum theory with the “Planck brane” taken off to infinity. This, and the

growth of the entropy at late times [78], is consistent with the possibility of an ulti-

mately precise holographic dual decoupled from gravity. Although gravity decouples

in this promising manner, we will see that the way the field theory induces a growing

Planck mass is through a rapidly growing number of degrees of freedom, rather than

2In the somewhat analogous context of black hole physics, study of concrete string theoretic
examples led to microstate counts and ultimately the AdS/CFT correspondence.

3More recently, a description in terms of two CFTs coupled to gravity was motivated in another
way by [76].
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via a growing cutoff on the effective field theory. That is, the system at late times

behaves like a theory which is holographic and non-gravitational, but with a finite

cutoff for the dual theory. Cutoff quantum field theory is in principle well defined, but

many questions remain about its detailed implementation in gauge/gravity duality.4

In fact, we find a nontrivial match between the time-dependent number of degrees

of freedom in the (d− 1)-dimensional dual theory, computed using the gravity side in

three different ways, with an estimate of the number of available microscopic degrees

of freedom on the magnetic flavor branes responsible for the uplift to cosmology.

The states we count are drawn from the infinite algebras discussed in [80, 81], cut

off at finite time by backreaction and topological consistency criteria. As we will

describe below, as currently formulated this count is consistent with basic group-

theoretic requirements, but is not fully derived. It is subject to two assumptions

about unknown quantities – the first is a plausible conjecture made but not proved in

[80, 81], and the second regards the number of charged matter representations which

arise. With these assumptions, our count consistently reproduces the gravity-side

result in a general class of solutions in different dimensions in a way that appears

nontrivial, and generalizes the parametric microscopic estimate of the dS entropy

of [7] to FRW cosmologies. These results seem rather encouraging, and motivate

further study of time-dependent field theories with sufficiently many magnetic flavors

to provide candidate duals for cosmological solutions.

Our formulation of the holographic dual as a Lorentzian-signature field theory (or

effective field theory) maintains standard reality and unitarity properties; in particular

the number of degrees of freedom in the matter sector is a positive real number. There

are other interesting approaches to de Sitter or FRW holography which define the dual

on a spacelike (Euclidean) surface, and it would be interesting to study the relation

between these different formulations.5 It may be useful to note, however, that because

of the ultimate requirement of integrating over metrics, the argument for defining the

4There has been interesting recent progress in relating radial slices to RG scale in AdS/CFT [79],
but the detailed dictionary remains to be understood, and is subject to various important subtleties
such as the fact that different types of gravity-side particles have different relationships between
their energy and their radial position.

5In particular, an interesting approach to a concrete example of dS/CFT can be found in [82].
See also [83, 84, 85] for a formal analytic continuation of certain cosmological computations.
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theory on the boundary of the spacetime does not trivially generalize from AdS to dS

or FRW solutions. Microscopically, large-radius de Sitter solutions in string theory do

not arise as a simple continuation of AdS solutions, which turns the flux imaginary

in the Freund-Rubin solution. The physically consistent metastable dS solutions

that are known arise instead by uplifting AdS solutions with a more complicated

collection of stress-energy sources. As we will see, defining a Lorentzian-signature

dual via our warped metric does not a priori force us to forego a complete dual

description: our warped solution decompactifies at late times, somewhat analogously

to Randall-Sundrum with the Planck brane removed to infinity.

Another basic motivation for this work is to further develop our understanding

of the structure of time-dependent and cosmological solutions in string theory. We

compute correlation functions of massive and massless particles in our geometry; the

latter requires a careful treatment of pseudotachyon modes [86]. The structure of these

correlation functions should tell us much more about holography on our solutions, the

detailed analysis of which we leave for future work. One intriguing feature is that the

two-point function of Kaluza-Klein modes is a power law, rather than exponential.

This chapter is organized as follows: In the next section we present FRW solutions

sourced by magnetic flavor branes uplifting Freund-Rubin compactifications. We

exhibit a warped metric on the solution, indicating a low energy sector corresponding

to an effective field theory. In Section 3.3, we show that particles remain stably in

the throat at late times, and color branes move up the throat. This theory is cut

off and coupled to gravity at finite times, but the Planck mass and the number of

degrees of freedom go off to infinity at late times in a manner that is dominated by

contributions of the warped region, raising the possibility that the dual completes

to a precise non-gravitational theory in this limit. We compute the number of field

theoretic degrees of freedom in several macroscopic ways in Sections 3.2 and 3.4.2,

and also present, in Section 3.4.1, a count of brane degrees of freedom which agrees

with the macroscopic predictions given certain assumptions. In Section 3.5, we study

the two-point correlation functions of scalar fields in our solutions, in the massive and

massless cases; a full derivation is relegated to Appendix 3.A. Finally, we conclude in

Section 3.6, and outline directions for future study.
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3.2 FRW solution sourced by magnetic flavor branes

We would like to understand whether FRW cosmology in d dimensions, which oc-

curs for example after decays of metastable de Sitter, admits a (d − 1)-dimensional

holographic dual description. Our strategy is to look for a warped metric on the

FRW solutions derived from uplifted AdS/CFT solutions in string theory. We then

interpret the infrared region of the warped metric – the region of strong gravitational

redshift – in terms of a dual effective field theory (EFT). Finally, we analyze whether

the EFT might become a self-contained quantum field theory (QFT) in the far future,

since the entropy bound and the (d − 1)-dimensional Planck mass go to infinity in

that limit.

3.2.1 Magnetic flavor branes

The simplest AdSd/CFTd−1 dual pairs arise from Freund-Rubin compactifications on

a positively curved Einstein manifold Y stabilized by flux. These can be understood

as the near-horizon backreacted solution obtained from color branes placed at the tip

of a cone C with base Y .

We will uplift to cosmological solutions by adding heavy branes which reverse

the sign of the curvature of Y . Consider first the AdS5 × S5 solution of type IIB

string theory, with the S5 viewed as a Hopf fibration over a base CP2 (there are

many similar examples with S5 replaced by a more general Einstein space Y ). As

discussed in [16], there is a natural ingredient which competes with the internal

curvature: (p, q) 7-branes at real codimension two on the CP2, wrapping the Hopf

fiber circle and extended along AdS5. Such branes can be described using F-theory

[87, 88, 89], which geometrizes the varying axio-dilaton, and one finds that 36 7-

branes are required to exactly cancel the curvature of the CP2. Similarly, 24 7-branes

are required to exactly cancel the curvature of a CP1, which arises as the base of the

Hopf fibration in examples with a compactification on S3, such as AdS3 × S3 × T 4.

In the latter case, alternatively one can use “stringy cosmic 5-branes”[41, 42, 43],

elliptic fibrations with the torus fiber coming from the T 4. See for instance [7], where

SC5-branes together with other ingredients are used to cancel the curvature of CP1.
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Let us denote the elliptic fibration over the base B = CPm – the CPm with 7-

branes at real codimension two – by B̂, and the entire uplifted compactification by

Ŷ . Parameterize the number n of 7-branes or stringy cosmic branes in all cases by

defining a quantity

∆n ≡ n− nflat (3.1)

such that ∆n = 0 corresponds to a flat uplifted base B̂.

In the AdS case ∆n < 0, such configurations including their backreaction on the

geometry can be described relatively simply using F-theory. On the field theory side,

these systems have magnetic flavors, arising in the brane construction from (p, q)

strings stretching between D3-branes and the (p, q) 7-branes [90, 91].

Bringing 7-branes together in a time-independent manner generically introduces

singularities. For sufficiently few 7-branes, it is understood how these singularities

are resolved physically, giving enhanced symmetries and/or light matter fields. In

a gauged linear sigma model (i.e. toric) description of the geometry of the elliptic

fibration, singularities appear as additional branches in the target space [68]. A

criterion for physically resolved singularities of these static solutions [16] is that the

central charge of the additional branch be less than that of the main target space of

the sigma model. In this case, one may formulate a brane construction with 7-branes

intersecting at the tip of a cone, at which the color branes are placed.

This geometry and the backreacted solutions were described in [44, 16]. Its salient

features are captured by the five dimensional theory obtained by compactifying on

S5 and adding the potential energy of the 7-branes. The effective potential in 5D

Einstein frame is

U ∼M5
5 (RfR

4)−2/3

(
R2
f

R4
+

∆n

R2
+

N2
c

R8R2
f

)
(3.2)

where Rf

√
α′ is the size of the fiber circle S1

f , and R
√
α′ is the size of the uplifted

base B̂. The first term is from the metric flux of the S1 fiber, and the second is the

net contribution of the internal curvature and seven-branes. In this F-theory setting
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there is generically no global mode of gs. There are additional scalar fields from 7-

brane moduli, which are relatively flat as discussed in [16]. A simple case to consider

is one in which the dilaton is fixed at an SL(2,Z) invariant point, via the mechanisms

discussed in [44]. The third term comes from Nc units of 5-form flux corresponding to

the color branes. The middle term will concern us most in this work; it comes from

the 7-brane sources.

The 7-branes wrap AdS5×S1
f times a two-cycle in the base, and in the dimension-

ally reduced theory we do not keep track of their positions in the compact directions.

As reviewed in [16], the geometrical understanding [87, 88, 89] of 7-branes as an ellip-

tic fibration makes it possible to calculate their leading contribution to the curvature,

and hence to the potential energy (3.2). One can study the geometry by realizing it

as the target space of a gauged linear sigma model [68]. In this description, the beta

function for the size of the negatively curved internal space has the same scaling but

opposite sign as in the case of a CPm, by an amount ∆n that depends on the number

of 7-branes. The deformations of the 7-brane configuration are superpotential terms

in the sigma model and are intrinsically lighter. We can for convenience focus on

configurations where the string coupling has been fixed at gs ∼ 1, enforced by appro-

priate combinations of 7-branes; it is also interesting to consider the orientifold limit

[92]. The static solutions with ∆n < 0 are then described by minima of (3.2) [16].

Bringing ∆n ≥ 0 branes together in a static configuration leads to singularities

which violate the above condition for allowed singularities, with the central charge of

the singular branch being larger than that of the main target space. From the point of

view of the description (3.2), ∆n ≥ 0 leads to a decompactification limit. Moreover,

in such a configuration the states that transform under the infinite algebras realized

on (p, q) 7-branes [80, 81], which are broken for separated 7-branes, appear to come

down to zero mass. These effects hint that an infinite set of degrees of freedom may

ultimately be involved in formulating physics in the generic case of ∆n > 0, and

we will return to this point after developing a controlled gravitational description of

uplifted solutions.

In general, we should allow for time-dependent backreacted solutions [75]. As we

will explain shortly, the 7-branes need not come together anywhere at late times,
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and in appropriate examples (such as [7]). An initial singularity may be avoided

by matching to a Coleman-de Luccia tunneling process in the past (as described in

Appendix 3.A), though we will in any case focus on the late time physics in the

present work.

3.2.2 Solution and warping

Let us now introduce our solutions for ∆n > 0. It is interesting to analyze this class

of solutions both from a ten-dimensional perspective and using the d-dimensional

description obtained by compactification on the uplifted space Ŷ . Below, we will

exhibit a precise 10d solution, but let us begin with the d-dimensional description.

In the case d = 5, we have an effective potential (3.2) for the scalar fields R and

Rf . With ∆n > 0, the 7-branes overcompensate the contribution of the curvature to

the effective potential, so they turn the base CP2 into a net negatively curved space

B̂, whose curvature scales with R as if it were a hyperbolic space. All terms in the

potential (3.2) are positive in this case, and we look for time-dependent solutions

where the radii evolve with time (along with the FRW scale factor a(t) in the d-

dimensional theory).

As we will see momentarily, the d-dimensional FRW equations along with the

equations of motion for the scalar fields R and Rf admit a time-dependent solution

where at late times R and the scale factor expand with time, and the fiber circle Rf

remains constant. The dominant term in the potential energy (3.2) in this solution

is the term proportional to ∆n/R2, since the others decay more quickly at large R

and fixed Rf . In particular, the 5-form flux corresponding to the color branes is very

subdominant at late times. We will make contact with this in Section 3.3, when

analyzing the dynamics of color branes in our solutions.

Specifically, we find the scale factor a(t) ∝ t, while R ∝ t3/7 and Rf approaches a

constant. The mass of a KK mode on the uplifted base is

mKK ∼
nKK
R
× M5

(R4Rf )1/3
∝ nKK

t
(3.3)

where the second factor here is the conversion to Einstein frame. This means that, as
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in the original examples of AdS/CFT [2], there is no hierarchy between the internal

dimensions and the curvature scale in d dimensions. It is likely possible to use the

method developed in [16] to obtain a hierarchy of scales, but as we will see shortly

our solution is very simple in 10 dimensions.

These scalings can be obtained self-consistently by noting that in this limit the

dominant contribution to the energy is given by the 7-branes and curvature, while

the fluxes dilute faster. The FRW equations become

4
ä

a
= −28

3

Ṙ2

R2
+

2

9
M2

5 (R4Rf )
−2/3 ∆n

R2

12
ȧ2

a2
+ 12

K

a2
=

28

3

Ṙ2

R2
+

2

3
M2

5 (R4Rf )
−2/3 ∆n

R2
. (3.4)

Here K is the spatial curvature of the FRW metric. Looking for a solution of the

form a(t) = ct, the first equation gives

R(t) =

(
7M5

3
√

42

∆n1/2

R
1/3
f

)3/7

t3/7 . (3.5)

Plugging in the second equation yields K = −1 (i.e. an open FRW solution) and

c2 = 7/3 with a(t) = ct. Note that there will also be a dynamical equation for Rf (t);

however, analyzing this equation of motion shows that it is self-consistently frozen

in place in the regime above. This and other features of the solution will be very

clear in the 10d solution we will present shortly. Numerical studies of the equations

of motion for a(t), R(t), and Rf (t) show that the solution above is an attractor for a

range of initial conditions.

Let us now analyze the 10d solution. So far we have focused on (p, q) 7-branes,

but similar considerations apply more generally to FRW cosmologies sourced by other

branes realized as elliptic fibrations, such as stringy cosmic 5-branes. More generally,

other types of sources may be involved. For example, in decay from the metastable

dS3 solution in [7], the uplifting contribution arises in part from stringy cosmic 5-

branes but also from other sources such as NS5-branes. In general, it is interesting to

consider the FRW phase corresponding to the leading source at late times. The elliptic
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fibrations we consider here are natural sources which contribute to the curvature at

leading order, and we will continue to focus on this case here.

We then consider a d-dimensional FRW spacetime and an internal space that can

be described as a Hopf fibration over a base CPm. As we argued before, as far as

the evolution of the size R of the base goes, the uplifted base B̂ (the elliptic fibration

over CPm) behaves like a hyperbolic space H2m of real dimension 2m. Compactifying

on this, we find the following Ricci-flat string-frame metric, which is hence a vacuum

solution of Einstein’s equation:

ds2
s = −dt2s +

t2s
c2
dH2

d−1 +
t2s
ĉ2
dB̂2

2m + dx2
f , (3.6)

where c2 = (d+ 2m− 2)/(d− 2), ĉ2 = (d+ 2m− 2)/(2m− 1), and

dH2
d−1 = dχ2 + cosh2 χdH2

d−2 (3.7)

is the metric on a noncompact, unit hyperboloid of dimension d−1. dB̂2
2m is the metric

on our uplifted, negatively curved compact base space of dimension 2m. Although in

this work we are concerned with generic configurations with ∆n > 0 branes uplifting

AdS/CFT solutions, the solution above also describes the dynamics of a compactifi-

cation on S1 × H2m/Γ, a circle times a compact hyperbolic space. In that case, the

dilaton is meaningful (as oppposed to in F-theory); nevertheless, since our solution is

Ricci-flat in 10d string frame, the dilaton is not sourced in this solution.

In this solution we only included the effects of the flavor branes. In the ∆n < 0

case of AdS/CFT, the flux corresponding to color branes plays a leading role in the

backreacted solution. However, in the present case at late times the flux dilutes away

and is subdominant, as we emphasized above. Furthermore, since the contribution

from the metric flux (first term in (3.2)) can also be neglected and the fiber size

becomes constant at late times, we have approximated the fiber direction by an S1

factor in the geometry.6 In some cases, there may be additional transverse dimensions

6Although the metric flux is subdominant in the solution, it does affect the topology; in particular
the fiber circle remains contractible. This feature will play a role in our count of brane degrees of
freedom in Section 3.4.1. The nontrivial fibration of the circle is a feature of the AdS/CFT dual pair
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(such as the T 4 in models based on AdS3 × S3 × T 4), which we suppressed in the

metric (3.6).

Let us now compactify down to d dimensions. The volume of the compactification

manifold Ŷ is

Vol(Ŷ ) ∝ RfR
2m ∝ t2ms , (3.8)

where we have not kept track of time-independent coefficients and have used R ∼ ts

from (3.6). Going to the d-dimensional Einstein frame

g
(d)
µν,E =

(
Vol(Ŷ )M8

10

Md−2
d

)2/(d−2)

g(d)
µν,s, (3.9)

we get an FRW metric of the form

ds2
E = −dt2 + c2t2dH2

d−1 , (3.10)

where

c2 =
d+ 2m− 2

d− 2
, t ∝ tc

2

s . (3.11)

Cases of particular interest are uplifts of AdS5×S5, with c2 = 7/3 (d = 5, m = 2) and

uplifts of AdS3 × S3 × T 4, with c2 = 3 (d = 3, m = 1). This reproduces the results

obtained using the d-dimensional theory: R(t) ∝ t1/c
2
, in agreement with (3.5).

Since c > 1, the scale factor is expanding faster than in curvature dominated FRW

(a.k.a. flat spacetime in Milne coordinates). In general, ∆n > 0 corresponds to c > 1,

and we will find it very useful to contrast our results for c > 1 with the case of flat

space (c = 1). Our holographic interpretation will apply consistently for c > 1, and

will not apply to flat spacetime.

We may change variables by setting

t = (η2 − w2)c/2 , χ =
1

2
log

η + w

η − w
, (3.12)

which we are uplifting to FRW cosmology, so the metric flux may be an important element even
though its energetic contribution is subdominant. More generally, it would be interesting to develop
a holographic duality for the solution without any metric flux.
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and the metric (3.10) becomes

ds2 = c2(η2 − w2)c−1
(
dw2 − dη2 + η2dH2

d−2

)
. (3.13)

This metric exhibits warping for c > 1, which corresponds to ∆n > 0. We want to

understand the spectrum and dynamics of degrees of freedom that are redshifted to

low energies.

It is useful to consider a closely related time coordinate tUV = ηc, giving metric

ds2 = c2
(
t
2/c
UV − w

2
)c−1

dw2 +

(
1− w2

t
2/c
UV

)c−1 (
−dt2UV + c2t2UV dH

2
d−2

)
. (3.14)

On the UV slice w = 0, we have tUV = t. In this metric the warp factor

f(w, tUV ) ≡
(

1− w2

t
2/c
UV

)(c−1)/2

(3.15)

and the metric component gww depend only weakly on the coordinate time at late

times: ∣∣∣∣∂tUV f∂wf

∣∣∣∣ ∼ ∣∣∣∣∂tUV gww∂wgww

∣∣∣∣ ∼ t
−(1−1/c)
UV → 0 as tUV →∞ (3.16)

where in the last equivalence we have evaluated a point at constant warp factor, i.e.

constant w/t
1/c
UV . This is not a covariant quantity, but neither is the redshifted energy

and the small value of the ratio (3.16) may simplify some calculations at late times.

There are other ways of writing the FRW spacetime as a warped product metric:

as a simple example, we may pass to the conformal time T = 1
c

log(tUV /`) in the

(d − 1)-dimensional theory, where ` is an arbitrary length scale. We can absorb the

scale factor ctUV (in d − 1 dimensions) into the warp factor and write the warped

metric as

ds2 = c2(`2/ce2T − w2)c−1dw2 + c2`2e2cT

(
1− w2

`2/ce2T

)c−1

(−dT 2 + dH2
d−2). (3.17)

The dual theory now lives on a static (non-expanding) space R×Hd−2. This is similar
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to the AdS/CFT correspondence written on global vs. Poincaré slicing, or other slic-

ings with an expanding or static hyperboloid [93]. These various slicings describe a

dual theory living on different spacetimes. In our case, a complication is the presence

of time-dependent couplings and (in general) a time-dependent metric for the field

theory. Furthermore, since the dual theory is not conformal, the conformal transfor-

mation that removes the factor e2cT also modifies the running couplings, as we discuss

in Section 3.2.5. Other, more general slicings may lead to even more complicated dual

descriptions: for instance, using Gaussian normal coordinates starting from a central

spatial slice (hyperbolic or otherwise) gives different w-dependences in the temporal

and spatial warp factors. Although we will stick to the simpler example given above

in this work, it would be interesting to consider the existence of dual theories for more

general slicings.

Again, using the warped metric given above, we wish to determine what light

(meaning energy � bulk Planck mass Md) degrees of freedom there are. Given

a region of strong gravitational redshift, i.e. a region of light states in our gravity

solutions, the system may have a right to a field theory description as in the low

energy regime of the usual AdS/CFT.

The proper time interval between two events of coordinate interval ∆tUV is

∆T (w, tUV ) = ∆tUV

(
1− w2

t
2/c
UV

)(c−1)/2

. (3.18)

This redshift factor is, of course, 1 for c = 1 (flat spacetime), and for c > 1 it

is smaller than 1. This indicates gravitational redshift for probes of proper energy

∼ 1/∆T (fixed in units of the d-dimensional Planck mass Md). Energies of such

probes are redshifted down by a factor of f(w, tUV ) defined in (3.15). As we mentioned

above, this is time-dependent as well as dependent on the “radial” scale w, but its w

dependence is stronger (3.16). Slices of constant w/tUV
1/c are then slices of constant

scale. In terms of the coordinates given in (3.12), this corresponds simply to slices of

constant χ.

This effect arises in the absence of any flux, suggesting that the flavor branes (or
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more generally the geometry they source) support dynamical degrees of freedom in

the EFT region.7

It is important to note that basic degrees of freedom such as KK modes, oscillating

closed strings, 7-7 strings and junctions, D-branes, and so on do not have fixed masses

in units of Md. Their masses depend on t = (t
2/c
UV −w2)c/2, leading to t

2/c
UV −w2 depen-

dence in ∆T in (3.18). This is analogous to radially-dependent masses in AdS/CFT.8

For KK modes on the uplifted base, KK and winding modes on the fiber, strings, and

7-7 strings/junctions we obtain respectively

mKK ∝
1

t
, mf ∝ mstr ∝

1

t1−1/c2
, m77 ∝

1

t1−2/c2
. (3.19)

We will analyze their dynamics in Section 3.3. For our examples, the specific values

for the exponents are, respectively, −1, −4/7, −1/7 for m = 2, d = 5, and −1, −2/3,

−1/3 for m = 1, d = 3.

3.2.3 d− 1 Planck mass and its decoupling at late times

As in Randall-Sundrum theory (RS) [28], we can compute the (d − 1)-dimensional

Newton constant GN,d−1 by dimensionally reducing on the w direction. This yields

1

GN,d−1

≡Md−3
d−1 ∼Md−2

d

∫ t
1/c
UV

0

dw
√
−g̃g̃tUV tUV (3.20)

∼Md−2
d

∫ t
1/c
UV

0

dw

(
1− w2

t
2/c
UV

) (d−2)(c−1)
2

t
1−1/c
UV ∼Md−2

d tUV . (3.21)

7In some examples of AdS/CFT obtained by color branes probing the tip of a cone, there are
closed string moduli at the tip, for example ones corresponding to Fayet-Iliopoulos terms. The
question was raised in those examples of whether these modes are dynamical. There, the fact that
the cone itself was unwarped supports the conclusion that the FI term is a parameter, not a field.
In more general cases such as ours, however, the answer may be different.

8For example, in AdS/CFT compactified on a circle, momentum modes on the circle become
radially-dependent masses for which the redshift factor precisely cancels out, and there are many
other examples one could consider.
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where by g̃µν we mean the factors that appear in the d-dimensional metric but not in

the (d − 1)-dimensional metric. Thus at finite times, we have a warped compactifi-

cation with propagating (d− 1)-dimensional gravity as in the dS/dS correspondence

[18, 19], but as tUV →∞ gravity decouples.

This raises the possibility of a more precise field theory dual in the far future.

A simple but nontrivial test of this possibility is the following. In a general warped

compactification [94, 27, 49], a diverging (d − 1)-dimensional Planck mass can arise

in (at least) two ways:

(1) A leading contribution may come from the warped throat (the effective field

theory), as in RS with a Planck brane moving off to infinity. In this case, as the

Planck brane goes off to infinity the holographic dual becomes a pure QFT decoupled

from gravity, i.e. the effective field theory completes to a full QFT.

(2) Instead, in a more general warped compactification the leading contribution may

come from the volume of the compactification manifold, with the warped throat

subdominant. In this case, the effective field theory does not complete to a full QFT

which captures the full system.

Let us check which of these possibilities is realized in our system. First, let us

elaborate on the behavior (1) above in the case of RS. This consists of an AdS5

spacetime

ds2 =
r2

R2
AdS

(
−dt2 + d~x2

)
+
R2
AdS

r2
dr2 (3.22)

up to a finite radial scale rUV . The 4-dimensional Planck mass M4 is given by dimen-

sionally reducing on the radial direction:

M2
4 ∼M3

5

∫ rUV

0

dr
√
−g̃g̃tt ∼M3

5

r2
UV

RAdS

∼ Ñdof,AdSΛ2
c,RS (3.23)

In the last relation here, which indicates that the Planck mass is induced by the field

theory degrees of freedom, we used that the central charge of the field theory scales like

Ñdof,AdS ∼M3
5R

3
AdS [95] and that the energy scale of the cutoff is Λc,RS = rUV /R

2
AdS.

For our purposes, it will be useful to belabor this result in the following way.

First, let us break up the calculation (3.23) into two pieces: the integral over r from
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0 to ε rUV , and the rest of the integral from ε rUV to rUV , where ε is a fixed constant

between 0 and 1. This separates an IR contribution r < ε rUV (corresponding to

energies below ε rUV /R
2
AdS) from a UV contribution for r > ε rUV , using an arbitrary

reference scale ε rUV /R
2
AdS that is fixed in terms of the UV cutoff as we increase rUV .

The ratio of the two contributions is a constant as the Planck brane moves off to

infinity. In particular, the infrared region continues to contribute a leading piece to

the 4-dimensional Planck mass.

Let us analyze the same question in our FRW case. First, define a scale M∗

dividing the UV and IR regions of our throat via

M∗
MUV

≡ ε ⇒ w∗ = t
1/c
UV

√
1− ε2/(c−1) . (3.24)

In terms of this, we can work out the ratio of UV to IR contributions to the Planck

mass (3.21), obtaining

UV

IR
=

∫√1−ε2/(c−1)

0
dy(1− y2)(d−2)(c−1)/2∫ 1√

1−ε2/(c−1)
dy(1− y2)(d−2)(c−1)/2

= constant . (3.25)

Thus our setup behaves similarly to case (1), raising the possibility of a pure field

theory dual capturing the FRW physics at late times.

3.2.4 Covariant entropy bound

An important quantity that characterizes a field theory is its number of degrees of

freedom. For example, if we cut off a theory with a lattice, we require some number

Ñdof of degrees of freedom per lattice point to define it. That is, we denote the

number of field theoretic degrees of freedom by Ñdof. We would like to understand

this quantity in our putative holographic theory, generalizing the analysis given in

[95]. There, an infrared cutoff on the radial coordinate in AdS was related to a UV

cutoff in the corresponding QFT. Even in ordinary AdS/CFT this UV cutoff is not

understood very precisely, however: it is not literally a lattice cutoff since it does

not break the isometries of the space on which the field theory lives, and the UV/IR
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relation works differently for different types of probes on the gravity side. However,

gravitational calculations of the entropy of thermal states and of the central charges

in the field theory reproduce the behavior expected from an identification of Ñdof

with the number of degrees of freedom per lattice point, and we may revert to that

language.

We will compute the time dependence of this quantity in several distinct ways in

the present work, including a count of available states on the magnetic flavor branes,

obtaining the same answer. On the gravity side, a measure of the number of degrees

of freedom is given by the covariant entropy bound [96, 97] on the entropy passing

through an observer’s past light sheet. As emphasized in [78], for FRW solutions

(unlike the metastable de Sitter phase) the entropy bound grows to infinity at late

times.

Let us work this out explicitly in our solution. We start by choosing a spherically

symmetric set of coordinates on (3.10)

ds2
E = −dt2 + c2t2

(
dr2

1 + r2
+ r2dΩ2

d−2

)
. (3.26)

Consider an observer at the origin (r = 0) in our space at time t0. The past light

cone of this observer is foliated by spheres of size ρ = r(t)ct, where r(t) is determined

by

∫ r

0

dr√
1 + r2

= −
∫ t

t0

dt

ct
⇒ r(t) =

1

2

[(
t0
t

)1/c

−
(
t

t0

)1/c
]
. (3.27)

For c > 1, the sphere grows to a maximal size ρmax ∝ t0 and then begins to shrink

(because of the contraction of the FRW universe) as we go back in time.

The conjectured entropy bound [96, 97] is given by the area of this maximal sphere

in Planck units. From this we obtain, substituting the time t0 of the observer by t,

S ∼Md−2
d td−2. (3.28)

(For c = 1, the sphere never reaches a maximal size, but instead keeps growing,
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indicating a diverging entropy bound even at finite time.) In our case, the entropy

going to infinity at late times also suggests the possibility of a precise dual of our

FRW phase when t → ∞; this jibes with the infinite warped throat we develop at

late times in our solution.

3.2.5 Basic relations among parameters

We are now in a position to list some basic relations between several quantities in our

system: the (d−1)-dimensional Planck mass, the number of field theoretic degrees of

freedom Ñdof in the effective field theory (EFT), and the cutoff Λc of the EFT. These

relations will enable us to solve for their dependence on time tUV . We will derive Ñdof

independently using the quasilocal stress tensor below in §3.4.2, obtaining the same

result for its dynamics as is predicted by the simple considerations of this section.

First, since the (d − 1)-dimensional Planck mass is largely induced by the field

theory (as we just found in the previous subsection), we have the relation

Ñdof Λd−3
c ∼ 1

GN,d−1

≡Md−3
d−1 ∼Md−2

d tUV (3.29)

where Λc is the cutoff of our effective field theory.

In our (d−1)-dimensional theory, we expect a nontrivial quantum energy density.

If we assume that this is an order one fraction of the source of Hubble expansion

in the dual, we obtain a second relation comes from the Friedmann equation in the

(d− 1)-dimensional theory:

H2
d−1 =

1

t2UV
∼ ÑdofΛ

d−1
c GN,d−1. (3.30)

Here Hd−1 = 1/tUV is Hubble in the (d − 1)-dimensional theory obtained by dimen-

sional reduction on w in (3.14).

Putting these together, we find

Ñdof ∼Md−2
d td−2

UV , Λc ∼
1

tUV
. (3.31)
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This result is consistent with the entropy discussed in the last subsection if we assume

the basic relation

S ∼ ÑdofΛ
d−2
c Vold−2 (3.32)

where Vold−2 ∼ td−2
UV is the volume of space in the dual theory. The result (3.31) is

also consistent with the result for Ñdof below in (3.4.2).

It is also possible to define the theory on a non-expanding lattice using the coor-

dinatization (3.17), where the (d − 1)-dimensional theory lives on R × Hd−2. In this

case a calculation analogous to (3.21) gives

ÑdofΛ
d−3
c ∼ 1

GN,d−1

∼Md−2
d `e(d−2)cT ∼ Md−2

d td−2
UV

`d−3
. (3.33)

In this case, the Friedmann equation requires that

0 = H2
d−1 = GN,d−1ρ+

1

`2
(3.34)

where ` is the curvature scale of the hyperbolic spatial slices. One implication of

this is that the energy density must compensate the time dependence in the Newton

constant. If we assume again that the energy density is of order ÑdofΛ
d−1
c , we obtain

the relation

GN,d−1ÑdofΛ
d−1
c ∼ 1

`2
(3.35)

In this case, we then get

Ñdof ∼Md−2
d td−2

UV , Λc ∼ constant. (3.36)

Again, this agrees with the covariant entropy bound and with the independent deriva-

tion of Ñdof we find below in (3.4.2). Note that the cutoffs in (3.31) and (3.36) are

related by a conformal rescaling: to obtain the effective field theory on R × Hd−2,

we have to remove the overall factor e2cT in (3.17) by a conformal transformation.

This should be compared with the corresponding term in (3.14) where there is no

such factor. Since our theory does not have a conformal symmetry, this conformal

transformation changes the running coupling constants and other scale dependent
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quantities. We can see this explicitly in that the gravitational coupling GN,d−1 is

different in the two cases.

For both slicings, the final result agrees with the scaling (3.28) from the covariant

entropy bound, since at late times t ∼ tUV . Thus if we think of the cutoff as a lattice

cutoff, the system builds up entropy by accumulating degrees of freedom per lattice

point, rather than by increasing the number of lattice points. In Section 3.4.1 we will

provide an independent count of Ñdof using the magnetic brane construction, finding

that the infinite store of degrees of freedom on our ∆n > 0 set of 7-branes, cut off by

backreaction criteria, precisely reproduces this behavior. As described above, these

results are consistent with the possibility of a complete non-gravitational field theory

dual at late times, albeit one with a finite cutoff for the field theory. The growth

of Ñdof is consistent with this interpretation: in a field theory with time-dependent

masses and couplings, the number of degrees of freedom below a fixed cutoff scale

will generically change with time. In our case, it increases rapidly.

3.3 Dynamics of particles and branes

So far, we have presented our d-dimensional cosmological solution, exhibited a warped

metric on it, and derived basic properties of its (d − 1)-dimensional description, a

candidate holographic dual. In this section we study the motion of particles and

branes in our geometry. Their motion in the highly redshifted (infrared) region is

related to the long distance dynamics of the putative holographic dual. For simplicity

we will consider the d = 5 case; general dimensionalities d can be studied in a similar

fashion.

Our goals are twofold. First, we would like to better understand the role of the

color sector in our theory, given that the 5-form flux is subdominant in the solution

and warping arises without it. Secondly, we want to check whether the infrared

degrees of freedom in the highly redshifted (warped) throat are stable. In general,

it would be interesting to understand what additional criteria – beyond the presence

of strong warping – might need to be satisfied in order to obtain a holographic dual

capturing the low energy degrees of freedom (see [98, 99] for some earlier discussion
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of this question). One natural physical criterion is that the strength and variation of

the warp factor be such that light particles remain in the warped region.9

The results are as follows: color branes (D3-brane domain walls) are not stable

in the IR region of our warped geometry, but particles (massive (3.19) and massless)

do remain in the infrared region. These facts can be seen in a simple way from the

original metric (3.6) (they follow equivalently from a similar analysis using the warped

metric).

In the case d = 5, m = 2, the 10-dimensional string frame metric is (3.6)

ds2 = −dt2s +
t2s
c2

(dχ2 + cosh2 χdH2
3 ) +

t2s
c2
dB̂2

4 + dx2
f , (3.37)

where dH2
3 is the metric on a unit 3-dimensional hyperbolic space H3 and c2 = 7/3.

As mentioned above, slices of constant scale in our warped metric (3.14) translate

into slices of constant χ, and the two infrared regions correspond to large |χ|.
The isometries of the 4-dimensional hyperboloid, and the corresponding conserved

momenta, imply that particles that start moving out in the χ direction continue

propagating to larger |χ| as time goes on. Massless particles head toward null infinity,

traveling on null geodesics dχ = c dts/ts, so that

χmassless(ts) = c log(ts/t0). (3.38)

Massive particles at a fixed point on H3 are governed by the Born-Infeld action

Smassive = −
∫
dtsm(ts)

√
1− χ̇2t2s/c

2 (3.39)

where the particle mass m(ts) can depend on time in our system. In particular, the

string-frame counterparts of (3.19) are:

mKK,s ∝
1

ts
, mstr,s ∝ mf,s ∝ 1 , m77,s ∝ ts . (3.40)

9We thank D. Marolf and J. Polchinski for this suggestion.
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The conserved momentum is

p =
δL
δχ̇

=
m(ts)χ̇t

2
s/c

2√
1− χ̇2t2s/c

2
. (3.41)

A particle at fixed χ = χ0 (with χ̇ = 0 initially) stays at χ0; a particle moving toward

the bottom of either throat continues to do so as ts → ∞. We can solve for χ̇ using

(3.41), giving

χ̇ =
cp

ts
√
p2 +m(ts)2t2s/c

2
. (3.42)

From this we see that in all cases (3.40), χ̇→ 0 at late times.

At this point we should note that the two-dimensional slice of the spacetime

traced out by t and χ (at a fixed point on the H3) is simply flat space, with metric

−dt2 + c2t2dχ2. In that subspace alone, the low energy region we are defining is a

version of a Rindler horizon. Since c > 1 the spacetime is not flat overall, and the

curvature affects generic particle trajectories and quantum mechanical wave packets,

but a classical calculation of test particle trajectories does not sense this effect.

We get the same result, of course, by working directly in the d-dimensional warped

metric given above. There, to analyze particle dynamics we solve the equations of

motion for a particle with a mass of the form m(η, w) ∼ (η2 −w2)κ (with κ given by

(3.19) for some of the basic particles in our system). In our solution, this is obtained

by varying the action

Smassive = −
∫
dη m(η, w) c(η2 − w2)(c−1)/2

√
1− (dw/dη)2. (3.43)

At late η, this yields a solution of the form

w = c1η +
c2

ηb
(3.44)

with b = 2κ+(c−1). In the examples discussed above (KK modes, closed strings, and

7-7 strings) b ≥ −1, with equality occurring for the case of KK modes. Again, this

means that such particles stay in the infrared region we just defined if they start out

there. Note that when transformed back into regular coordinates t, χ, the subleading
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piece is important to allow the particles to propagate in time.

A D3-brane, on the other hand, experiences a force pushing it up the warped

throat. Its Born-Infeld action in 10d string frame is of the form

SD3 ∼ −T3

∫
dts

(
ts
c

)3

cosh3 χ
√

1− χ̇2t2s/c
2, (3.45)

where T3 is the D3-brane tension. The cosh3 χ factor introduces a force pushing

the brane to smaller values of |χ|. It is straightforward to verify, as we will do

momentarily, that as a result of this force the D3-branes come up the throat. We will

call this phenomenon “motion sickness.”10

Let us start from (3.37) in the dimensionless conformal time t̃ = c log(ts/`), where

` is an arbitrary length scale. The equation of motion that follows from the DBI

action is

d

dt̃

(
e4t̃/c cosh3 χ

χ′√
1− χ′2

)
+ 3e4t̃/c cosh2 χ sinhχ

√
1− χ′2 = 0 , (3.46)

where we took the D3-brane position to depend on time only, and here χ′ ≡ dχ/dt̃

represents the derivative with respect to the conformal time.

Deep in the IR of either of our warped throats (e.g. the one with χ � 1), (3.46)

can be reduced to a first order differential equation for χ′. Integrating this equation

reveals that after some time (t̃ > 1) the probe D3-brane propagates up the throat

and escapes from the IR region, reaching the UV slice χ = 0 within a finite time.11 It

is interesting to note that it takes longer and longer for the branes to escape to this

slice at later and later times ts: from (3.45), we have |χ̇| < c/ts.

Let us remark briefly on the significance of the motion sickness and its time

dependence, which should provide useful clues as to the nature of the dual theory.

Firstly, it is worth recalling that motion of color sector eigenvalues up the throat

10This is a relative of Fermi seasickness, though the term “Technicolor Yawn” [100] most colorfully
illustrates the connection between this class of phenomena and warped throats.

11If we set up the system with some 5-form flux (rather than starting with explicit D3-branes), it
would be interesting to determine whether, and at what rate, D3-branes are nucleated. The analysis
in this section shows that once present, color branes do not remain in the warped region for all time.
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occurs in some familiar examples of AdS/CFT. One example is the case of N = 4

supersymmetric Yang-Mills theory on a compact negatively curved space [93, 101],

where the eigenvalues are subject to a negative quadratic potential. This theory is

unitary, because the eigenvalues take forever to get to infinity. The system is properly

treated by putting the eigenvalues in a scattering state. Another example is Fermi

seasickness [102], where finite density effects draw color branes up the warped throat.

If one cuts off these theories by embedding them in a warped compactification then

the effect would take a finite time as long as the Planck mass is finite.

A new element in the present case is that the magnetic branes support some

warping by themselves, and the color sector is subdominant in the solution. As we

have just seen, particles stay down the warped throat created by the magnetic branes,

suggesting that the holographic dual may be built from degrees of freedom living on

them.

Altogether, there are two reasons motion sickness does not appear to be fatal in

our system: (i) the fact that there is an infrared region in the absence of the color

D3-branes, and (ii) the fact that even in familiar examples of gauge/gravity duality

where the color branes are responsible for all the warping, unitarity is not necessarily

sacrificed in the presence of a potential which pushes color branes toward the UV.

There are two approaches one can take: (1) eject the offending color branes (treating

the color sector as negligible, since the flavor branes provide warping anyway), or (2)

wait it out (keeping the color branes in the game, since the instability takes longer

at larger ts).

In particular, in trying to better understand the field theory dual it may remain

useful to think about starting with a color sector in place, since the ejection of the

branes takes longer and longer as ts →∞. As we will see in the next section, however,

the number of degrees of freedom is well accounted for by junction states living on

the 7-branes themselves.
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3.4 Degrees of freedom in FRW holography

In Section 3.2 we found that the covariant entropy bound and the number of degrees of

freedom per lattice point in the holographic dual grow as td−2. Now we will suggest a

microscopic explanation for this time-dependent growth in terms of states associated

to 7-7 strings and string junctions. These are natural candidates to account for the

growing Ñdof, because bringing together ∆n > 0 (p, q) 7-branes in a static way leads

to infinite dimensional algebras [80, 81] that are realized on light states. We make

this counting and the assumptions which go into it precise in Section 3.4.1.

In the gravity side, the magnetic flavor branes lead to warping and to an IR

region, as we discussed in the previous sections. In the AdS/CFT correspondence, a

warped geometry produces a nontrivial quasilocal stress tensor that can be used to

compute the CFT energy momentum tensor and the central charge. In Section 3.4.2

we generalize this method to cosmological solutions. This provides an independent

calculation of Ñdof that agrees with the microscopic count and with the results in

§3.2.5).

3.4.1 A microscopic count of degrees of freedom

In this chapter we are focusing on quantities we can calculate under control in our

gravity solutions, determining from them various basic features of the putative cutoff

field theory dual. This includes several independent computations showing that the

number of field theoretic degrees of freedom grows with time as Ñdof ∝ td−2
UV . In this

section, we will seek a microscopic accounting of these states. In general, such a count

is not guaranteed to work in any simple way; even in systems with a weak coupling

limit and a large number of unbroken supercharges, Ñdof generally suffers corrections

in going from weak to strong coupling. For example, the two are related by a factor

of 3/4 in the N = 4 super Yang-Mills theory, and by a more nontrivial interpolation

in other examples. Nonetheless, it is interesting to ask whether any natural count of

states reproduces the parametric behavior of Ñdof in a given example.

Rather than going to weak coupling, one may trade fluxes for branes, turning on

the corresponding scalar fields, and study the microstates which are evident in that
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phase [103]. For example, in the N = 4 super Yang-Mills theory if we go out on the

Coulomb branch by introducing Nc explicit D3-brane domain walls, the N2
c degrees of

freedom of the dual gauge theory become more manifest. In that example, of course,

the D3-branes source the warping, accounting for the low energy sector that indicates

the existence of the field theory dual [2].

In our solutions, the 7-branes source warping in themselves. As with flavor branes

in AdS/CFT, they do not come together in the backreacted solution (our time de-

pendent solution), but in the corresponding (singular) static solution they intersect

at a point (where the color branes are placed in the brane construction). Since they

source some warping (like color branes normally do), there is a possibility that there

are fundamental degrees of freedom of the dual theory that live on their intersection.

Since they dominate at late times (and since the color branes suffer from motion sick-

ness), they may account for the lion’s share of Ñdof. We will explore this possibility

in this section, finding rather encouraging results.

Consider string and string junction states stretching between 7-branes. For the

generic case of ∆n > 0, there is an infinite dimensional algebra generated by these

junctions [80, 81].12 If the fiber circle were not contractible, they could also a pri-

ori carry arbitrarily large momentum and winding quantum numbers around that

direction. However, they ultimately back react on the geometry, the fiber circle is

ultimately contractible, and Kaluza-Klein momenta are cut off by the giant gravi-

ton effect [107], so at any finite time only finitely many states are available. In this

section, we will estimate the total number of degrees of freedom Ñdof at late times

by counting junctions up to a cutoff determined by backreaction and topology. We

will be concerned with the t-dependence of Ñdof, and will not keep track of time-

independent factors.13 The resulting count of brane degrees of freedom will precisely

match the behavior

Ñdof ∼ td−2
UV (3.47)

12There have been similar intriguing appearances of large algebras organizing states and/or dy-
namics in works such as [104, 105, 106].

13In the future it might be very interesting to analyze the factors arising from group theory to
characterize the dual theory in more detail. The present calculation suggests that this is on the right
track.
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found above from macroscopic considerations (3.31). As we will describe below, this

statement is based on two assumptions we will specify.

Let us parameterize a state by the number nstr of strings it contains stretching

among the 7-branes, the winding number nf on the fiber circle, and the momentum

number kf on the fiber circle. We will ultimately analyze all cases, with various

dimensionalities for the compact and noncompact directions. Let us start with the

specific case of d = 5, m = 2 (i.e. uplifted AdS5 × S5).

We can bound nstr by the requirement that the core size of the set of nstr strings

not exceed R, to avoid strong backreaction. The core size is determined from the

gravitational potential, which goes like 1/rd⊥−2, where d⊥ is the codimension (e.g.

1/r for particles in 3+1 dimensions, 1/r4 for D3-branes in ten dimensions, and so

on). In our case, we need to take into account that the fiber circle is much smaller

than R, so the effective codimension of the strings is 7 rather than 8. With nstr

strings, the core size is given by
nstr

r5
core

∼ 1. (3.48)

From this, the condition that this size not exceed the size R of the base CP2 is

rcore ∼ n
1/5
str ≤ R ∼ ts ∼ t3/7 ⇒ nstr ≤ t15/7. (3.49)

The strings can wind around the fiber circle also. If they wind R/Rf ∼ ts ∼ t3/7

times, they can detect that the fiber is contractible. So let us cut off the windings at

nf ≤ t3/7. (3.50)

The string may also have momentum kf/(Rf

√
α′) along the fiber circle. There is

not a topological cutoff on kf as for windings; the momentum is a conserved charge.

However, the tower of momentum modes does not go up forever. Ultimately, it

was shown in [107] that Kaluza-Klein momenta are naturally cut off in UV-complete

string theoretic examples of AdS/CFT in exactly the right way to mirror the operator

content of the dual field theory. In the present case, there is an important crossover at

a lower scale. We may view our states as bound states of Kaluza-Klein gravitons and
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(p, q) string junctions. For sufficiently small kf , i.e. kf/Rf � R, the energy of each

stretched string is of order R/
√
α′; the gravitons are well bound to the strings. But

when kf crosses over to become much larger than RRf , they are not strongly bound

and the system as a whole behaves like a set of relativistic Kaluza-Klein gravitons

of total momentum kf/(Rf

√
α′). (Ultimately, as in [107], these gravitons grow into

giants.) Since the gravitons are not strongly bound to the stretched strings (if bound

at all), the state may no longer be fundamental. Because of this crossover, we will

count kf only up to RRf ∼ t3/7:

kf ≤ t3/7. (3.51)

Finally, we need to determine whether there are additional combinatorial factors

which depend on nstr arising from the algebra generated by the junctions. To start,

let us consider the configurations classified in [80, 81]. There, one starts from a subset

S0 of the (p, q) 7-branes which generates a finite Lie algebra G0. One then considers

junctions with some prongs ending on the S0 branes, transforming under G0 according

to their weight vector λ under G0. The rest of the prongs of these junctions form a

set of nZ strings with charge (p, q); these end on the remaining 7-branes (or some

subset of them) denoted collectively by Z. The works [80, 81] show that a junction

with weight λ and asymptotic charge nZ(p, q) satisfies a relation

λ · λ = −J2 + n2
Z(f(p, q)− 1). (3.52)

Here J2 ≥ −2 is the self-intersection of the junction, and f(p, q) is a specific function of

the asymptotic charges (see for example eqn. (2.9) of the second reference in [80, 81]).

Since λ · λ ≥ 0, f(p, q) ≥ 1 in the generic cases where the full system builds up

an infinite algebra Ginf . In particular, for f(p, q) > 1 the right hand side of (3.52)

can become large and positive by increasing nZ , and the equation may be satisfied

with longer and longer weight vectors λ in G0. (This is in contrast to the cases

with f(p, q) < 1, where at most a finite number of weights can satisfy (3.52).) It is

conjectured in [80, 81] that states with J2 = −2 have the special feature that they

can be realized by “Jordan Open Strings”, strings that end on two of the 7-branes

(crossing cuts emanating from the 7-branes in the process). We will count these
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strings.

Given that, next we need to know if there are any multiplicities in the tower of

available states which grow with nstr at large nstr. As mentioned below (5.52) of the

first reference in [80, 81], given a weight vector of length squared λ · λ, there is a

degeneracy given by the dimension of its Weyl orbit. However, this number cannot

grow arbitrarily large; it is bounded by the dimension of the Weyl group of G0. In

particular, if we consider any individual representation of G0, the number of weight

vectors degenerate with the longest weight vector is given by the Weyl group, and

does not grow with n.

There are additional degeneracies in the weight lattice beyond those required by

Weyl reflections, but these involve multiple representations. As long as the number

of these representations which arise in our physical system do not grow too fast with

nstr, the count we propose here holds up. It would be interesting to analyze this ex-

plicitly for specific Lie groups. This question of which charged matter representations

appear in F theory compactifications has been studied previously in string theory for

phenomenological model building, and similar techniques may be useful in the present

case.

Next, let us consider more general configurations which build up ∆n > 0. One

way to think about these is by iterating the procedure just described, considering

junctions stretching between the entire set of 7-branes corresponding to the infinite

group Ginf , and an additional (p, q) 7-brane. This works similarly to the above case,

except now the Cartan matrix of the Ginf set of sevenbranes is of indefinite signature.

This by itself would allow for an infinite number of weight vectors of a fixed length

squared (schematically of the form λ2
+ − λ2

− given the indefinite metric). So in the

equation (3.52) there would be an infinite number of solutions even for finite nZ .

However, this infinite number is itself cut off by insisting that the corresponding

junctions be made up of at most of order nstr strings. This limits λ+ and λ− above

to be at most of order nstr in length, and counting their degeneracy is similar to the

above count for finite groups.

Putting this all together, the number of available degrees of freedom is obtained
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from the product of the maximum values of nstr, nf , and kf :

Ñdof ∼ (nstrnfkf )max ∼ t15/7+2×3/7 = t3 = td−2 (3.53)

for d = 5.

Next, let us work out Ñdof for d = 3, m = 1 (i.e. an FRW uplift of AdS3×S3×T 4).

In this case, the T 4 is of fixed size, independent of t, so (3.48) becomes

nstr

rcore

∼ 1. (3.54)

As a result, (3.49) becomes

r ∼ nstr ≤ R ∼ ts ∼ t1/3 ⇒ nstr ≤ t1/3 (3.55)

Again, the strings can wind around the fiber circle as well. If they wind R/Rf ∼ ts ∼
t1/3 times, they see that the fiber is contractible. So we cut off the windings at

nf ≤ t1/3 (3.56)

and also the momentum

kf ≤ t1/3. (3.57)

Altogether we get

Ñdof ∼ (nstrnfkf )max ∼ t = td−2 (3.58)

for d = 3.

Having checked it now for two examples, let us finally consider all cases, varying

the dimensionalities of the FRW spacetime and the uplifted internal base space. For

d noncompact FRW dimensions and a 2m dimensional uplifted base space, together

with one fiber circle and 9− d− 2m toroidal directions, we have

nstr ≤ td+2m−4
s , nf ≤ ts, kf ≤ ts (3.59)

where ts is the 10-dimensional string frame time coordinate (3.6). So Ñdof goes like
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td+2m−2
s . Recall that ts goes like t1/c

2
in terms of the Einstein frame time coordinate

(3.10), and c2 = (d+ 2m− 2)/(d− 2) (3.11). Therefore for the general case, we have

Ñdof ∼ td−2 , (3.60)

whose time dependence agrees precisely with the macroscopic calculations of Ñdof.

3.4.2 Deriving Ñdof from the quasilocal stress tensor

In the AdS/CFT correspondence, there are several ways to compute the number of

degrees of freedom per lattice point of the CFT. For instance, Brown and Henneaux

[108] used the conformal structure of asymptotically AdS3 to identify the central

charge, which was rederived from different points of view in [109, 110]. The conformal

anomaly can also be computed from the variation of the renormalized effective action

under a conformal transformation [3, 111]. Those analyses, however, depend highly

on the conformal symmetry, or on the asymptotic structure of AdS spacetime. Since

our spacetime does not have such a structure, we need to apply other methods.

One possible method is to excite our FRW spacetime and produce a black hole

with a hyperbolic horizon in the IR region. The horizon entropy will be identified

with that of the effective field theory, from which we could extract Ñdof. This is

analogous to the entropy computation of an AdS black hole in [112].

Another method, which will be applied here, is to compute Brown and York’s

quasilocal stress tensor [113] and identify it with the expectation value of the stress

tensor in the boundary theory. In the context of AdS/CFT, this was used to compute

the Casimir energy and Ñdof of the boundary theory in [114, 115, 116, 110]. This

method can be generalized to the dS/dS correspondence [18, 19] and to our FRW

model. In order to see how it works, let us first review the definition of the quasilocal

stress tensor and then use it to calculate Ñdof of the dual theories in both dS/dS and

FRW.
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Quasilocal stress tensor

Let us consider a spacetime manifoldM with a timelike boundary ∂M and space-time

metric gµν . This boundary could be a regularized one at some coordinate cutoff rc.

Let nµ be the outward pointing normal vector to ∂M, normalized so that nµn
µ = 1.

The induced metric on the boundary is given by

γµν = gµν − nµnν , (3.61)

where a pullback onto ∂M is understood. The Einstein action including a boundary

term is

S =
Md−2

d

2

∫
M
ddx
√
−g(R− 2Λ)−Md−2

d

∫
∂M

dd−1x
√
−γΘ +Md−2

d Sct[γab], (3.62)

where Θ is the trace of the extrinsic curvature of the boundary

Θµν = −γµρ∇ρnν , (3.63)

Sct is a suitably chosen local functional of the intrinsic geometry γab of the boundary,

and a, b are coordinate indices on the boundary. The quasilocal stress tensor [113] is

given by

τab ≡ 2√
−γ

δS

δγab
= Md−2

d

(
Θab −Θγab +

2√
−γ

δSct

δγab

)
. (3.64)

The AdS/CFT correspondence relates the expectation value of the stress tensor 〈Tab〉
in the dual field theory to the limit of the quasilocal stress tensor τab as the regularized

boundary at rc is taken to infinity:

√
−hhab〈Tbc〉 = lim

rc→∞

√
−γγabτbc, (3.65)

where hab, the background metric on which the dual field theory is defined, is related

to the boundary metric γab by a conformal transformation. The counterterms in

Sct[γab] are chosen appropriately so as to cancel all divergences when the limit is

taken. This has a natural interpretation on the dual field theory side: we use local
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counterterms to obtain a finite, renormalized expectation value of the stress tensor in

the field theory.

Ñdof in AdS/CFT and dS/dS

Let us calculate the quasilocal stress tensor in AdSd and dSd, both sliced by dSd−1.

The metric is given by

ds2
(A)dSd

= R2dw2 + f(w)2ds2
dSd−1

, ds2
dSd−1

= habdx
adxb, (3.66)

where f(w) = sinhw for AdSd and sinw for dSd. Here R is the curvature radius of

both ds2
(A)dSd

and ds2
dSd−1

.

In the AdSd case, the AdS/CFT correspondence says that the bulk is dual to a

boundary conformal field theory living on dSd−1. In the dSd case, the dS/dS cor-

respondence [18, 19] conjectures that the bulk is dual to two effective field theories

living on dSd−1, both of which are cut off at an energy scale 1/R and coupled to

(d− 1)-dimensional gravity and to each other.

Coming back to our calculation, let us choose a regularized boundary at w = wc.

It has an induced metric γab = f(w)2hab, where hab is the dSd−1 metric on which the

field theory is defined. The extrinsic curvature tensor is

Θab = − 1

R
f(wc)f

′(wc)hab, (3.67)

and before adding the counterterms the quasilocal stress tensor is given by

τab =
(d− 2)Md−2

d

R
f(wc)f

′(wc)hab =


(d− 2)Md−2

d

R
(sinhwc coshwc)hab, for AdSd,

(d− 2)Md−2
d

R
(sinwc coswc)hab, for dSd.

(3.68)

In the AdSd case, the stress tensor is divergent as wc goes to infinity, and the coun-

terterms in Sct renormalize it to

τab ∼
Md−2

d

R
e−(d−3)wchab (3.69)
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for large wc, so the limit in (3.65) becomes finite and gives 〈Tab〉 ∼ (Md−2
d /R)hab.

14

Matching this to the expectation value of the CFT stress tensor on dSd−1 with Ñdof

degrees of freedom per lattice point

〈Tab〉 ∼
Ñdof

Rd−1
hab, (3.70)

we arrive at the correct number of degrees of freedom per lattice point

Ñdof ∼Md−2
d Rd−2 (3.71)

in the context of AdS/CFT. In fact we do not have to take wc to infinity to get this

parametric result. We could set wc to be of order 1 and forget about the counterterms

(because there are no divergences to cancel if wc is fixed at order 1, and including the

counterterms would only change the numerical coefficients which we are not keeping

track of). This gives the same parametric result for Ñdof.

This perspective is important for the dS/dS correspondence, because in this case

the w coordinate is bounded and we cannot take wc to infinity. What we can do is fix

wc at order 1, and by the same argument we get Ñdof ∼Md−2
d Rd−2. This means that

the number of degrees of freedom per lattice point for the dual theory on dSd−1 is

parametrically the same as the Gibbons-Hawking entropy of dSd. This was confirmed

by the concrete brane construction for the dS/dS correspondence in [7].

It is interesting to note that the quasilocal stress tensor (3.68) vanishes at wc = π/2

in the dSd case. This does not contradict our previous result Ñdof ∼ Md−2
d Rd−2,

because one can reliably deduce Ñdof of the dual field theory only well below its

cutoff. The “UV slice” wc = π/2 corresponds exactly to the energy scale where the

effective field theory is cut off and coupled to gravity. The vanishing of the quasilocal

stress tensor is reminiscent of the gravitational dressing effect discussed in [18, 19].

As we shall see in the next subsection, this also happens in our FRW spacetime.

Before going on, we should note that the advantage of being able to take wc

14Strictly speaking, the limit is nonzero only for odd d. In even (bulk) dimensions, the limit
vanishes and so does the trace anomaly of a CFT in odd (boundary) dimensions. We can still get
Ñdof by other means.
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to infinity in the AdSd case is that we can calculate the exact Ñdof including the

numerical coefficients. To demonstrate this, let us work for simplicity in d = 3. Only

one counterterm is needed in this case, which is simply a cosmological constant on

the boundary: Sct = −(1/R)
∫
∂M
√
−γ. The quasilocal stress tensor becomes

τab =
M3

R
(sinhwc coshwc − sinh2wc)hab, (3.72)

which gives 〈Tab〉 = (M3/2R)hab upon taking wc to infinity. The stress tensor from

Ñdof free massless scalar fields in dS2 may be calculated in a standard way,15 giving

〈Tab〉 = (Ñdof/24πR2)hab. This can also be obtained from the trace anomaly 〈T aa 〉 =

(c/24π)R of a two-dimensional CFT. Matching this result to the quasilocal stress

tensor, we arrive at

c ≡ Ñdof = 12πM3R, (3.73)

which agrees exactly with [111, 110].

Ñdof in the FRW dual

Let us now calculate the quasilocal stress tensor in our FRW spacetime. We start

with the warped metric

ds2
d = c2(η2 − w2)c−1(dw2 − dη2 + η2dH2

d−2), (3.74)

and choose the regularized boundary to be a surface of constant α where α is defined

by w = αη with 0 < α < 1. This is a hypersurface of constant energy scale relative

to the UV cutoff: α ≈ 1 corresponds to the IR, while α � 1 corresponds to the

UV. The exact value of α is not essential in our analysis, as long as it is of order

1. This is because our main interest is the parametric dependence of the quasilocal

stress tensor on η (or tUV ), and this is not affected by the exact location of the

hypersurface. One may also consider RG flows in our FRW geometry, as in AdS or

dS [118, 119, 120, 121, 122], and relate Ñdof in the IR to its value in the UV. The

15For two-dimensional (and therefore conformally flat) spacetimes one can use Eq. (6.136) of [117].
Note that their metric convention is the opposite of ours.
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η-dependence of Ñdof is not affected by the energy scale.16

From the coordinate transformation χ = 1
2

log η+w
η−w , a hypersurface of constant α

is also a hypersurface of constant χ = arctanhα, so it is much easier to calculate the

quasilocal stress tensor in the usual FRW coordinates

ds2
d = −dt2 + c2t2(dχ2 + cosh2 χdH2

d−2). (3.75)

The induced metric on the regularized boundary at χ = χc is given by

γabdx
adxb = −dt2 + c2t2 cosh2 χdH2

d−2, (3.76)

and the extrinsic curvature can be calculated as

Θtt = 0, Θij = −tanhχc
ct

γij, (3.77)

where i, j are the coordinate indices on Hd−2. The quasilocal stress tensor is given

by

τtt = (d− 2)
Md−2

d

ct
(tanhχc)γtt, τij = (d− 3)

Md−2
d

ct
(tanhχc)γij, (3.78)

It is interesting to note that this corresponds to a perfect fluid with equation of state

w = (d− 3)/(d− 2). It has vanishing pressure in d = 3.

The next step is to calculate the expectation value of the stress tensor in the dual

field theory, which lives on the background metric hab = γab and has Ñdof degrees of

freedom per lattice point:

〈Tab〉 ∼
Ñdof

td−1
hab. (3.79)

This can be obtained either on dimensional grounds or by using Eq. (6.134) of [117],

noting that γab is conformally flat. Let us set χc to be of order 1 as this is equivalent

to setting α to be of order 1. We match 〈Tab〉 to the quasilocal stress tensor (3.78)

16α = 1 is a singular surface and we do not set the hypersurface there. In a broader picture, this
singular surface is replaced by the Coleman–de Luccia instanton and connected to the parent de
Sitter space.
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and obtain

Ñdof ∼Md−2
d td−2

UV , (3.80)

where we have replaced t with tUV because on a hypersurface of constant α we have

t = (1 − α2)c/2tUV ∼ tUV from (3.13). This is in agreement with the microscopic

count of the number of degrees of freedom.

Just as in the dS/dS correspondence, the quasilocal stress tensor (3.78) vanishes

at χc = 0, corresponding to the UV slice w = 0. Again this suggests renormalization

from the (d− 1)-dimensional gravitational effects.

3.5 Correlation functions

In this section we compute two-point functions for massive and massless scalar fields

in our solution. These should provide detailed information about the nature of

the (d − 1)-dimensional theory. That theory lives on an FRW geometry, has time-

dependent and scale-dependent couplings, and is necessarily strongly coupled in order

to reproduce a large-radius gravity solution. We will leave a complete interpretation

of our Green’s functions to future work, but will note some of their interesting features

below.

3.5.1 Massive Green’s functions

In AdS/CFT it is well understood how gravitational scattering amplitudes behave

like field theory correlators. For example, massive propagators in the bulk (which are

exponentially suppressed in flat space) turn into power-law CFT two-point functions

in the dual theory through the effects of the warp factor, which is a strong function

of the radial distance r. Because of the warp factor, geodesics do not go along fixed-r

trajectories; they can take advantage of the warp factor and go along a shorter path

by moving in the radial direction. This leads to the power law rather than exponential

correlators. (A simple discussion of this can be found in [95].)

Let us ask the analogous question in our case. Our dual theory is formulated on

an FRW spacetime and has a time and scale-dependent coupling corresponding to
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the radius R of B̂, which depends on t = (t
2/c
UV − w2)c/2. (As noted above (3.16), this

quantity depends more strongly on the radial scale coordinate w than on time tUV .)

As we saw in Section 3.2.5 and Section 3.4, our theory is cut off at a finite scale, but

accumulates additional field theoretic degrees of freedom as time evolves forward. As

a result, the theory is not conformally invariant. Nonetheless we will see that there

is one sector of massive bulk fields – KK modes on the base B̂ – which have power

law correlators.

We will now compute the leading behavior of the 2-point Green’s functions for

particles of mass m(t) ∝ t−α in our geometry. To find the dominant trajectory, we

must solve the equations obtained by varying the action

S = −
∫
dλm(t)

√
ṫ2 − c2t2

(
χ̇2 + cosh2 χ ˙̃χ2 + . . .

)
, (3.81)

where “dot” represents a derivative with respect to the worldline coordinate λ and

dH2
d−1 = dχ2 + cosh2 χ(dχ̃2 + sinh2 χ̃ dΩ2

d−3). We are interested in computing the

propagator between the points (t, χ, χ̃) and (t, χ, χ̃ + ∆χ̃). Note that because of the

time-dependent mass, the calculation of the dominant trajectory is not equivalent to

a calculation of the geodesic distance between the two points in our spacetime.

Our result can only depend on time t and on the geodesic distance L between

two points in Hd−1 because of the isometries of Hd−1. For two points on the same

χ-surface, the geodesic distance L in Hd−1 is given by17

coshL = cosh2 χ cosh ∆χ̃− sinh2 χ . (3.82)

The central (UV) slice of our warped geometry is at χ = 0. We will be interested

both in Green’s functions formulated deep in the IR at χ � 1, and also in Green’s

functions formulated at the UV slice χ = 0.

Since the propagator can only depend on t and on the geodesic distance L, it is

actually easier to do the calculation at constant χ̃ and varying χ, and at the end

17This is the hyperbolic law of cosines, and it can be obtained by analytic continuation from a
similar formula on a sphere, or simply from the dot product in the embedding space.
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replace this by L. Consider a particle with mass

m(t) =
nα
tα
, (3.83)

where nα is a constant of dimension 1−α. In the d = 5 case, α = 1, 4/7, and 1/7 for

KK modes, closed strings, and 7-7 strings, respectively. Define the new coordinates

τ =
t1−α

1− α
, y = (1− α)cχ, (α 6= 1) (3.84)

and

τ = log(t/`), y = cχ, (α = 1). (3.85)

Let us first address the KK modes. Setting n1 ≡ nKK we see that the action (3.81)

at constant χ̃ reduces to

S = −nKK
∫
dλ
√
τ̇ 2 − ẏ2 (α = 1). (3.86)

This is equivalent to the action for a particle with a constant mass in flat spacetime.

The resulting two-point function is e−nKK∆y, exponentially suppressed in ∆y = c∆χ =

cL.

However, this is a power law suppression in the geodesic distance ∆X in the

(d− 1)-dimensional spacetime −dt2UV + c2t2UV dH
2
d−2 on which the d− 1 theory lives.

Working at χ = 0, we have the geodesic distance L = ∆χ̃ according to (3.82). We

can see the power law behavior by making a coordinate transformation

X = tUV sinh(cχ̃) , T = tUV cosh(cχ̃) , (3.87)

where the metric is Minkowskian on the plane spanned by X and T . Taking our two

points at the same T , i.e. taking χ̃1 = −χ̃2 = ∆χ̃/2, we obtain the geodesic distance

(for ∆χ̃� 1)

∆X = 2tUV sinh(c∆χ̃/2) ≈ tUV e
c∆χ̃/2, (3.88)

and hence our exponential result in ∆χ̃ becomes a power law in ∆X. The Green’s
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function is of the form

G(∆x) ∼ e−nKKcL ∼ e−nKKc∆χ̃ ∼ 1

(∆x)2nKK
, (3.89)

where ∆x ≡ ∆X/ctUV is the comoving geodesic distance.

This result is quite intriguing, as we obtain power law correlators from a massive

KK mode propagator, which is reminiscent of what happens in ordinary AdS/CFT.

However, here the mechanism for this involves the time dependence of the mass. The

propagator deep in the IR (large χ) and for large ∆χ̃, has an additional exponential

suppression as a function of χ,

G(χ; ∆x) ∼ e−nKKcL ∼ e−nKKc(2χ+∆χ̃) ∼ e−2cnKKχ
1

(∆x)2nKK
, (3.90)

where we used L ≈ 2χ + ∆χ̃ from the large χ, ∆χ̃ limit of (3.82). Recalling that

χ = 1
2

log η+w
η−w (3.12), we find that the propagator has a power law scaling with w/η.

This energy scaling of the correlator is again characteristic of a CFT, where power-law

wavefunction renormalization is produced by nontrivial anomalous dimensions. Note

that these formulas only apply in the c > 1 case, since for c = 1 the KK masses are

constant, and we do not get warping or this power law behavior.

Next, let us analyze the correlation functions for other massive scalar fields, those

for which α 6= 1.

S = −nα
∫
dλ
√
τ̇ 2 − τ 2ẏ2 (α 6= 1). (3.91)

This action is equivalent to the action for a particle with constant mass nα in the

Milne universe, and the dominant trajectory is obtained by analytic continuation

from flat space:

Scl = 2inατ sinh
∆y

2
, (3.92)

where the sign can be determined by the −iε prescription implicit in the square

root. Approximating the propagator by eiScl and rewriting the action in terms of the
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geodesic distance L obtains

G(t;L) ∼ exp

[
−2nα

t1−α

1− α
sinh

(1− α)cL

2

]
. (3.93)

Let us consider the massive fields with α < 1 (closed strings and 7-7 strings) at

large ∆χ̃ � 1, in which case we have L ≈ ∆χ̃ + 2 log coshχ from (3.82). Note that

this expression is valid for both small and large χ. In terms of the geodesic distance

∆X (3.88) in the (d− 1)-dimensional FRW spacetime, the massive Green’s function

(3.93) has (for large ∆χ̃� 1) an exponential suppression

G(t; ∆X) ∼ exp

[
−nα

t1−α

1− α

(
∆X

tUV

)1−α

(coshχ)c(1−α)

]
∼ exp

[
−nα

(∆X)1−α

1− α

]
,

(3.94)

where we have used tUV = t(coshχ)c from the coordinate transformation (3.12). It is

interesting to note that the α < 1 Green’s function in this form is independent of χ

(although there could be χ-dependent prefactors that we have not kept track of).

These α < 1 fields become parametrically heavy at late times, dying away at

long distances as compared to the KK modes with their power law correlators. But

they remain part of the theory: as we have seen in Section 3.4.1, the set of 7-7

strings and junctions which do not strongly backreact on the geometry make a leading

contribution to the count of degrees of freedom. This is somewhat reminiscent of off-

diagonal matrix elements in the N = 4 SYM theory out on its Coulomb branch: these

are parametrically heavy at large AdS radius as compared to KK modes, but they

cannot be decoupled from the system.

3.5.2 Massless Green’s functions

One can potentially learn about the field theory dual of a warped gravity solution such

as ours by studying the massless correlation functions. In this section, we give the

correlation function of a massless scalar field in our open FRW spacetime, considering

the case where it comes from a Coleman–de Luccia (CdL) decay [123]. Details on

deriving correlation functions in a general d-dimensional CdL geometry, including
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an explicitly Lorentzian prescription without the need to analytically continue the

eigenmode expansion, are presented in Appendix 3.A.

The calculation is of interest more generally, as it requires developing tools to

treat pseudotachyon modes [86] which arise from Hubble expansion. These are in-

frared modes which do not oscillate with time, but also do not grow large enough to

significantly affect the background solution. Such modes arise for c > 1, as explained

in Section 3.A.3. In general, these may be treated by putting them in a scattering

state and computing correlation functions as expectation values in this state. The

method we use here involves choosing a particular state, the Hartle-Hawking vacuum

that one obtains from the analytic continuation of the Euclidean CdL geometry.

We consider a minimally coupled massless scalar field φ in our FRW background

ds2
d = −dt2 + c2t2dH2

d−1, dH2
d−1 = dχ2 + cosh2 χdH2

d−2, (3.95)

where the scale factor a(t) = ct is correct at late times. If this FRW spacetime comes

from a CdL decay, the scale factor has to behave like a(t) = t+O(t3) for small t, so

that the big bang t = 0 is just a coordinate singularity.

We are interested in the large t behavior of the equal-time correlator

G(t, χ,∆χ̃) ≡ 〈φ(t, χ,∆χ̃)φ(t, χ, 0)〉, (3.96)

where we have put the two points on a hypersurface of constant χ, corresponding to

a given energy scale as discussed in Section 3.4.2. In particular, χ = 0 corresponds

to the UV and χ � 1 corresponds to the IR of the dual field theory. We use ∆χ̃ to

denote the geodesic separation of the two points in the Hd−2 directions. In Appendix

3.A we organize the correlation function into an expansion in the large t and large

∆χ̃ limit. The first two leading terms turn out to be

Gleading(t, χ,∆χ̃) ∼ ∆χ̃+ 2 log coshχ, (3.97)

Gsubleading(t, χ,∆χ̃) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ
e−(d−2)∆χ̃/2(∆χ̃+ 2 log coshχ), (3.98)
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up to terms that are “pure gauge”.18 The same leading term was obtained in [21, 22].

We rewrite the correlation function in terms of the geodesic distance ∆X in d− 1

dimensions, which was derived in Section 3.5.1 to be ∆X ≈ tUV e
c∆χ̃/2. From the

coordinate transformation (3.12), tUV and t are related by

tUV = t(coshχ)c. (3.99)

The leading contribution (3.97) to the correlation function becomes

Gleading(t, χ,∆X) ∼ log
∆X

tUV
+ c log coshχ = log

∆X

t
, (3.100)

where we have used (3.99) in the last equality. We note that this leading term is

present for both c > 1 and c = 1, and it is independent of the dimension d. This

suggests an interpretation of it as the contribution from the zero mode of φ localized

on the UV slice.

The subleading contribution to the correlation function in terms of ∆X is

Gsubleading(t, χ,∆X) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ

(
tUV
∆X

)(d−2)/c(
log

∆X

tUV
+ c log coshχ

)
(3.101)

=
t(d−2)(

√
1−1/c2−1+1/c)

(∆X)(d−2)/c
log

∆X

t
, (3.102)

where we have used (3.99) in the second line. This term is dominated by contributions

from the pseudotachyonic modes, and is present only for c > 1. This is the case we

have focused on in this chapter, which has a warped geometry with a consistent

description in terms of a low-energy (d− 1)-dimensional dual.

In order to holographically interpret these results for c > 1 in detail, it is necessary

to understand better the behavior of a strongly coupled field theory with time and

scale dependent couplings on a (d − 1)-dimensional FRW background. The strong

18This is because the massless correlator on a compact space such as the Euclidean CdL geometry
is only well-defined up to arbitrary constants and linear functions of the coordinates. See a more
detailed discussion in Section 3.A.1.
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coupling will limit our ability to compute, but it will be interesting to see if one can

determine enough about this theory to make detailed comparisons with results such

as (3.101). We will leave an in-depth study of this for future work.

3.6 Future directions: Magnetic flavors and time-

dependent QFT

This work raises many interesting questions, which we have only begun to explore.

In this section we describe a few of them.

On the gravity side, we have seen that in the presence of sufficiently many mag-

netic flavor branes to uplift AdS/CFT to cosmology, one has simple time-dependent

solutions, whereas the would-be static solutions are singular (as observed before in [75]

via another class of time-dependent F-theory solutions). We have exhibited a warped

metric on these solutions, and have obtained results consistent with the interpretation

of the corresponding low energy region as a (d− 1)-dimensional holographic dual.

It would be very interesting to understand directly from a field-theoretic point of

view where the distinction between ∆n < 0 and ∆n ≥ 0 comes from. If there is a

condition on the number of magnetic flavors (holding fixed other quantities) which

corresponds to ∆n < 0, the above results may suggest that time-dependent effects

in field theory could change this condition. Time dependent couplings affect the

scaling dimensions of the corresponding operators in the effective Lagrangian.19 On

sufficiently short timescales, of course, the system becomes insensitive to the time-

dependent couplings. Perhaps this is related to the finite cutoff we are left with in

our late-time non-gravitational field theories.

Even at finite times, the holographic description of our system will be very in-

teresting to develop further. The dual theory has time-dependent running couplings

and (depending on our choice of conformal frame) in general lives on its own FRW

geometry. These features render it somewhat complicated to match in detail the

correlation functions computed in Section 3.5 and Appendix 3.A to quantities in the

19One interesting new effect of time-dependent couplings in quantum field theory was discussed
in [124].
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holographic dual, a task we therefore leave to (near-)future work.

A crucial step in a holographic formulation of cosmology is the identification of the

correct microscopic degrees of freedom. In the solutions presented in this work, such

states are predominantly given by string junctions extended between the magnetic

flavor branes. We computed the number of degrees of freedom Ñdof in several ways,

and found agreement between the gravity and field theory sides. This generalizes the

microscopic calculation of the de Sitter entropy of [7] to a time-dependent cosmology.

While some of our results are specific to the class of solutions presented in Section

3.2, our methods suggest a concrete framework for holographic cosmology, which may

have wider applications. Yet another method would be to put the system at finite

temperature by adding a black brane and computing its entropy – we hope to pursue

this calculation further.

Finally, we expect our results here to translate into a clearer understanding of

appropriate observables in cosmological spacetimes. There have been a number of

interesting attempts to find a consistent framework in which to define probabilities

in cosmology. In our view, this program will likely benefit from concrete study of the

structure of UV complete time-dependent backgrounds, in the same way as occurred

in black hole physics. There, analyzing the dynamics of brane solutions in string the-

ory led to black hole entropy counts and ultimately to the AdS/CFT correspondence.

The details of particular examples may not be of central importance in the end, but

can provide much needed checks and may lead us toward the right principles.

On this note, it would be extremely interesting to determine to what extent the

magnetic flavor branes which play a key role here (and in other landscape construc-

tions which use F-theory [36]) are generic in cosmological solutions with holographic

duals. In general there is a longer list of “uplifting” possibilities, including starting

from a larger total dimensionality D > 10 (the more generic case) and/or compacti-

fying on more general curved manifolds [33]. Magnetic flavors bring in a new source

of strong coupling – in addition to the strong ’t Hooft coupling required to formulate

large-radius gravity – and it would be interesting to further understand their role in

the theory.
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3.A Correlation functions in general CdL geome-

try

In this appendix we develop an exact formalism for calculating correlation functions

in a general CdL geometry. One of our main goals is an explicitly Lorentzian formula

(3.133) for the real-time correlator in the FRW region of the CdL geometry, so that

one can apply it without having to analytically continue the Euclidean modes into

Lorentzian signature. This is very desirable in any calculation away from the thin-

wall limit, because in general the exact eigenmodes are not analytically tractable.

One can certainly make approximations or compute them numerically, but these are

not useful for analytic continuation because one cannot reliably continue an approx-

imate solution.20 Instead, we can derive an exact Lorentzian formula (3.133), and if

necessary make approximations from there. This is the approach of this appendix.

In Section 3.A.1 we deveop a Euclidean prescription (3.119) for the correlation

function. This is a relatively straightforward generalization of the discussion in Ap-

pendix A of [21, 22] to arbitrary dimensions and arbitrary scale factors.21 In Section

3.A.2 we analytically continue (3.119) to an exact, Lorentzian formula (3.133), with

extra care given to the choice of integration contours. Section 3.A.3 applies the

Lorentzian prescription to our FRW spacetime. Finally, in Section 3.A.4 we briefly

outline how to generalize this to a massive correlation function.

3.A.1 Euclidean prescription

The Euclidean CdL instanton in d dimensions is characterized by the isometries of a

(d−1)-dimensional sphere. It is the Euclidean version of a closed FRW universe. Let

20A toy example is the tanhx function, which is well approximated by 1 for large, real x, but
we certainly cannot continue this approximate result to the imaginary axis. A class of exact CdL
solutions showing this explicitly will appear in [11].

21Correlation functions in general dimensions were also calculated in [125] in the thin-wall limit.
In this appendix we work more generally, partly because our FRW spacetime with c > 1 is not in
the thin-wall limit.
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us work in the conformal coordinates:

ds2
d = a(X)2(dX2 + dΩ2

d−1), dΩ2
d−1 = dθ2 + sin2 θ dΩ2

d−2, (3.103)

where X varies from −∞ to +∞. The smoothness of the instanton requires that the

scale factor vanish as ξ +O(ξ3) at the two tips, where ξ is the proper coordinate in

the X direction. In the conformal coordinates this means a(X) approaches (up to

constant factors) eX as X → −∞, and approaches e−X as X → +∞.

We calculate the two-point function of a minimally coupled massless scalar field

φ. It is convenient to consider the rescaled field

φ̂ = a(X)k0φ, where k0 ≡
d− 2

2
, (3.104)

which has a canonical kinetic term. Note that k0 is the momentum gap for the nor-

malizable eigenmodes of the Laplacian on the unit (d− 1)-dimensional hyperboloid.

We let G and Ĝ denote the correlator of φ and φ̂ respectively. The rotational sym-

metry of the d − 1 sphere may be used to bring one of the two points to θ = 0, so

that the correlator Ĝ(X,X ′, θ) depends on no other angular coordinates and satisfies

the Laplace equation with a delta function source:

[
−∂2

X −∇2
Sd−1 + U(X)

]
Ĝ(X,X ′, θ) =

δ(X −X ′)δ(θ)
Sd−2 sind−2 θ

, (3.105)

where Sn = 2π(n+1)/2/Γ((n+1)/2) is the volume of the unit n-sphere, and the potential

U(X) is defined as

U(X) =
b′′(X)

b(X)
= k2

0 −
k0Φ′2 + d a(X)2V (Φ)

2(d− 1)
, where b(X) ≡ a(X)k0 . (3.106)

Here Φ is the scalar field sourcing the metric and has a canonical kinetic term. Its

potential22 V (Φ) between the two tunneling points Φ(X = ±∞) is nonnegative for

decays from de Sitter to de Sitter or to FRW with a zero cosmological constant (if

22It is important not to confuse the “Schrödinger potential” U(X) with the potential V (Φ) which
sources the geometry. It is also important to distinguish the two scalar fields φ and Φ.
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one assumes the null energy condition), so U(X) is bounded from above by k2
0 and

asymptotes to this bound as X → ±∞.

The correlator Ĝ(X,X ′, θ) can be obtained as an expansion in the eigenmodes of

the “Schrödinger operator” [−∂2
X + U(X)]. The result is

Ĝ(X,X ′, θ) =

∫ +∞

−∞

dk

2π
uk(X)u∗k(X

′)Gk(θ) +
∑
κ

uiκ(X)u∗iκ(X
′)Giκ(θ), (3.107)

where the first term is an integral over the orthonormal continuum modes satisfying

the “Schrödinger equation”

[
−∂2

X + U(X)
]
uk(X) = (k2 + k2

0)uk(X), (3.108)

with the boundary conditions

uk(X)→ eikX +R(k)e−ikX (X → −∞), uk(X)→ T (k)eikX (X → +∞),

(3.109)

u−k(X)→ Tr(k)e−ikX (X → −∞), u−k(X)→ e−ikX +Rr(k)eikX (X → +∞),

(3.110)

where k > 0 is understood. One can show that these coefficients are related by

T (k) = Tr(k),
R(k)

R∗r(k)
= − T (k)

T ∗r (k)
, |R(k)|2 + |T (k)|2 = 1. (3.111)

The second term in (3.107) is a discrete sum over the normalized bound states.

They satisfy the Schrödinger equation (3.108) with k = iκ. There is always at least

one bound state for a compact Euclidean CdL: the zero mode uik0(X) ∝ a(X)k0 .

For d ≤ 4 one can show that this is the only bound state using a technique of

supersymmetric quantum mechanics [21, 22]. For d > 4 there may be additional

bound states.
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The Gk(θ) that appears in (3.107) is the Green’s function on Sd−1 with an appro-

priate mass: [
−∇2

Sd−1 + (k2 + k2
0)
]
Gk(θ) =

δ(θ)

Sd−2 sind−2 θ
. (3.112)

The solution may be written in terms of the hypergeometric function:

Gk(θ) =
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0+ik)Γ(k0−ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cos2 θ

2

)
, (3.113)

which is a meromorphic function in k. It has simple poles located at

k = ±i(k0 + n), n = 0, 1, 2, · · · (3.114)

due to the Gamma functions in (3.113). In even dimensions the hypergeometric

function simplifies to an elementary function. For example, in d = 4 (3.113) as a

function of complex θ becomes

Gk(θ) =
sinh [k(π − θ)]

4π sinh(kπ) sin θ
, for 0 < Re(θ) < 2π. (3.115)

The Green’s function Giκ(θ) for the bound states is also given by (3.113). The only

subtlety appears when we consider the zero energy bound state a(X)k0 with k = ik0,

for which Gk(θ) hits a pole and diverges. This reflects the fact that the massless

correlator on a compact space is ill-defined because we cannot put a single source

there without violating Gauss’s law.23 The two-point function for the derivative of

a massless field is well-defined and physical, so one may say that the massless corre-

lator is well-defined up to arbitrary constant and/or linear terms in the coordinates.

These terms are called “pure gauge”. Therefore we may get a finite massless Green’s

function by subtracting an infinite constant from Gik0(θ). For example in d = 4 one

23The left hand side of (3.112) integrates to zero, but the right hand side does not. This may
be solved by subtracting an inhomogeneous term proportional to the inverse of the volume of the
compact space.
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prescription is

Gik0(θ) = lim
k→ik0

[
Gk(θ)−

1

2π2(k2 + 1)

]
+

1

8π2
=

cot θ

4π

(
1− θ

π

)
. (3.116)

Before we analytically continue to the Lorentzian signature, let us rewrite the ex-

pansion (3.107) in a simpler form. Instead of using uk(X) we might want to write the

correlator in terms of eigenmodes that have simpler asymptotic behavior as X → −∞,

as this is where we cross to the FRW region. Let us call this new set of eigenmodes

vk(X), defined with the boundary condition vk(X) → eikX as X → −∞ for both

positive and negative k. We may write them in terms of the old eigenmodes:

vk(X) =
u∗−k(X)

T ∗r (k)
, v−k(X) =

u−k(X)

Tr(k)
, k > 0. (3.117)

After some algebra, one finds that in terms of the new eigenmodes the continuum

contribution in (3.107) becomes

Ĝc(X,X
′, θ) =

∫ +∞

−∞

dk

2π
[vk(X)v−k(X

′) +R(k)v−k(X)v−k(X
′)]Gk(θ), (3.118)

where the reflection coefficient R(k) is extended from k > 0 to a meromorphic function

on the complex k-plane. For k < 0 one can show R(k) = R∗(−k). One may ask what

we have achieved by rewriting (3.107) as (3.118). It turns out24 that the bound-state

contribution in (3.107) can be accounted for, up to pure gauge, by simply deforming

the integration contour for the second term in (3.118). Specifically, the massless

correlator (3.107) simplifies to

Ĝ(X,X ′, θ) =

∫ +∞

−∞

dk

2π
vk(X)v−k(X

′)Gk(θ) +

∫
C

dk

2π
R(k)v−k(X)v−k(X

′)Gk(θ),

(3.119)

where C is a contour that goes from k = −∞ above the double pole k = ik0 to

k = +∞, as shown in Figure 3.1. In the limit X, X ′ → −∞, the second integrand

24This may be shown by expanding the Green’s function in terms of eigenmodes of the Laplacian
on Sd−1 (discarding the zero mode). This expansion exactly matches the sum of contributions from
the simple poles enclosed by Ca as shown in Figure 3.2a.
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k

C

Figure 3.1: Contour C going from k = −∞ above the double pole k = ik0 to k = +∞.
Remember k0 ≡ (d − 2)/2. The simple poles above the double pole are located at
k = i(k0 + n), n = 1, 2, 3, · · · . The locations of the simple poles below the double
pole are for illustration purposes only and should not be taken too seriously. They
depend on the reflection coefficient R(k), and also on whether we are considering the
second integrand in (3.119) or in (3.133). The pair of poles away from the imaginary
axis are resonance poles.

in (3.119) asymptotes to e−ik(X+X′), so we may push the contour C up to Ca, picking

up the simple poles at k = i(k0 + n), n = 1, 2, 3, · · · . This is shown in Figure 3.2a.

Note that R(k) has a simple pole at k = ik0 (corresponding to the zero mode)

and a zero at k = −ik0, so the second integrand in (3.119) has a double pole at ik0

and is regular at −ik0. It is precisely the residue at the double pole that cancels with

the zero energy bound state contribution up to pure gauge. For d > 4 there may be

additional bound states, corresponding to additional simple poles between k = 0 and

k = ik0. There could also be resonance poles, all of which must lie in the lower half

plane. As we will see in the next two subsections, these additional poles need to be

taken into account when calculating the exact correlation function, but at the order

we work, they do not contribute to our final result.
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k

Ca
HaL k

Cb

HbL

Figure 3.2: (a) Contour Ca surrounding simple poles at k = i(k0 +n), n = 1, 2, 3, · · · .
(b) Coutour Cb surrounding a double pole at k = ik0 and simple poles below ik0. In
general there could also be resonance poles away from the imaginary axis in the lower
half plane, in which case the contour Cb needs to enclose them as well.

3.A.2 Lorentzian prescription

Now that we have (3.119) for the massless correlator in the Euclidean CdL geometry,

we can analytically continue it to the FRW geometry

ds2
d = a(T )2(−dT 2 + dH2

d−1), dH2
d−1 = dr2 + sinh2 r dΩ2

d−2. (3.120)

The prescription for the analytic continuation in our conformal coordinates is given

by

X → T +
iπ

2
, θ → ir, a(X)→ ia(T ), vk(X)→ vk(T )e−kπ/2, (3.121)

so that vk(T ) similarly satisfies a “Schrödinger equation”

[
−∂2

T + U(T )
]
vk(T ) = (k2 + k2

0)vk(T ), U(T ) ≡ b̈(T )

b(T )
, b(T ) ≡ a(T )k0 , (3.122)

with the simple boundary condition vk(T )→ eikT as T → −∞.
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The Lorentzian correlator Ĝ(T, T ′, r) satisfies

[
−∂2

T +∇2
Hd−1

+ U(T )
]
Ĝ(T, T ′, r) =

iδ(T − T ′)δ(r)
Sd−2 sinhd−2 r

, (3.123)

and is therefore given (for sufficiently negative T +T ′) by analytically continuing the

Euclidean correlator (3.119):

Ĝ(T, T ′, r) = idĜ(X → T +
iπ

2
, X ′ → T ′ +

iπ

2
, θ → ir) ≡ Ĝ1 + Ĝ2 (3.124)

=

∫ +∞

−∞

dk

2π
vk(T )v−k(T

′)Gk(r) +

∫
Ca

dk

2π
R(k)v−k(T )v−k(T

′)G̃k(r),

(3.125)

where Gk(r) and G̃k(r) are defined as

Gk(r) = idGk(θ → ir), G̃k(r) = idekπGk(θ → ir) (3.126)

except for the subtlety mentioned below for G̃k(r). Let us call the two integrals in

(3.125) Ĝ1 and Ĝ2 respectively. Note that our choice of the contour Ca in Ĝ2 is correct

only for sufficiently negative25 T + T ′. On the other hand, we are most interested in

the massless correlator at late times. If we näıvely increase T +T ′ without deforming

the contour Ca, at some point the integral would diverge. A standard way of solving

this problem is to pull the contour down to C which goes from k = −∞ above the

double pole k = ik0 to k = +∞, as shown in Figure 3.1. Once this is done and the

new integral on C agrees with the old one on Ca for sufficiently negative T + T ′, we

simply use the new integral as the definition for any values of T + T ′. To evaluate

this new integral for large T + T ′, one can legally deform the contour from C to Cb

as shown in Figure 3.2b (at least for some of the terms in the integrand), picking

up the double and simple poles below the contour. This last step will be done on a

case-by-case basis in the next subsection. Here we first obtain the correct expression

for the new integral on C that is valid for any T and T ′.

It turns out that we cannot näıvely deform the contour from Ca to C in Ĝ2. If we

25One can see from (3.130) that “sufficiently negative” here means T + T ′ � −r.
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do that, the integral on C would diverge, as we will show shortly. This is different

from the situation before the analytic continuation, where it does not matter whether

we choose C or Ca, as long as X + X ′ is sufficiently negative. The main difference

is the additional ekπ factor inside G̃k(r), which comes from analytically continuing

v−k(X)v−k(X
′) to v−k(T )v−k(T

′) in Ĝ2.

A hint that something subtle is going on is that we could multiply the integrand

of Ĝ2 by any number of e2(k−ik0)π factors without changing the integral on Ca. The

reason is simply that the integral on Ca is equal to the sum of residues at the simple

poles k = i(k0 +n), n = 1, 2, 3, · · · , and e2(k−ik0)π is simply 1 at all these poles, so none

of the residues are changed. On the other hand, factors such as e2(k−ik0)π definitely

matter when the integral is performed on C. In fact, there is a unique prescription

for this factor for which the integral on C is actually convergent. This is the correct

prescription, which we will find in exact form below.

Let us use the connection formula for the hypergeometric function

2F1(a, b, c, z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, 1 + a− c, 1 + a− b, 1

z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1

(
b, 1 + b− c, 1 + b− a, 1

z

)
(3.127)

to decompose the G̃k(r) into two terms:

G̃k(r) = idekπ
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0 + ik)Γ(k0 − ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cosh2 r

2

)
= − 1

4πd/2(4z)k0

[
e2kπ(4z)−ikΓ(k0 + ik)Γ(−ik) 2F1

(
k0 + ik,

1

2
+ ik, 1 + 2ik,

1

z

)
+(4z)ikΓ(k0 − ik)Γ(ik) 2F1

(
k0 − ik,

1

2
− ik, 1− 2ik,

1

z

)]
,

(3.128)

where z is defined as cosh2(r/2). For d = 4 this decomposition looks very simple:

G̃k(r) =
ekπ sinh [k(π − ir)]
4πi sinh(kπ) sinh r

=
e2kπ−ikr − eikr

8πi sinh(kπ) sinh r
. (3.129)
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In general dimensions this decomposition may look complicated, but each term has

a simple asymptotic behavior at large r. Specifically as r →∞, z goes to er/4, both

hypergeometric functions in (3.128) goes to 1, and we have

G̃k(r) ≈ −
1

4πd/2ek0r
[
e2kπe−ikrΓ(k0 + ik)Γ(−ik) + eikrΓ(k0 − ik)Γ(ik)

]
. (3.130)

As k → ±∞ along the real axis, the absolute value of the products of Gamma

functions in (3.130) becomes

|Γ(k0 + ik)Γ(−ik)| = |Γ(k0 − ik)Γ(ik)| ≈ 2π|k|
d−4
2 e−|k|π. (3.131)

Clearly the first term in (3.130) diverges as k → +∞, while the second term goes to

zero as k → ±∞. As we argued earlier, we treat this divergence by multiplying the

first term by a factor of e−2(k−ik0)π = (−1)de−2kπ, changing the exact form (3.128) of

G̃k(r) into

G̃k(r) = − 1

4πd/2(4z)k0

[
(−1)d(4z)−ikΓ(k0 + ik)Γ(−ik) 2F1

(
k0 + ik,

1

2
+ ik, 1 + 2ik,

1

z

)
+(4z)ikΓ(k0 − ik)Γ(ik) 2F1

(
k0 − ik,

1

2
− ik, 1− 2ik,

1

z

)]
, (3.132)

where again z = cosh2(r/2). This does not change the integral on Ca, but enables us

to legally deform the contour from Ca to C for sufficiently negative T + T ′. In terms

of this improved G̃k(r) the Lorentzian correlator is

Ĝ(T, T ′, r) = Ĝ1+Ĝ2 =

∫ +∞

−∞

dk

2π
vk(T )v−k(T

′)Gk(r)+

∫
C

dk

2π
R(k)v−k(T )v−k(T

′)G̃k(r),

(3.133)

which looks the same as (3.125) except for the contour C. This is our final, exact

expression for the massless correlator in any open FRW spacetime resulting from a



3.A. CORRELATION FUNCTIONS IN GENERAL CDL GEOMETRY 103

CdL decay, valid for any T , T ′, and r. Here Gk(r) is given by (3.126) as

Gk(r) = id
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0 + ik)Γ(k0 − ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cosh2 r

2

)
.

(3.134)

Before concluding this section, let us comment on the structure of (3.133). In order

to calculate the Lorentzian correlator, we only need the eigenmodes vk(T ) and the

reflection coefficient R(k). For vk(T ) we solve the “Lorentzian Schrödinger equation”

(3.122) with the boundary condition vk(T ) → eikT as T → −∞. For R(k) we in

principle need to solve the “Euclidean Schrödinger equation” (3.108). We cannot in

general hope to calculate the complete Lorentzian correlator by knowing only a(T )

but not a(X) (or vice versa); an example is provided by the thin-wall limit discussed

in [21, 22], where the Lorentzian scale factor a(T ) = eT is exactly the same as that

of flat space in Milne coordinates, but the massless correlator still has a nontrivial

term due to the specific vacuum chosen by the CdL geometry. From the perspective

of (3.133), the choice of vacuum is encoded in the reflection coefficient R(k) which

must in general be calculated from the Euclidean scale factor a(X). Usually R(k) is

not analytically tractable away from the thin-wall limit, but fortunately all we need

to know in order to calculate the leading behavior of Ĝ2 is the fact that R(k) always

has a simple pole at k = ik0, and all other poles lie below it.

3.A.3 Our FRW spacetime

Let us now apply (3.133) to our FRW model

ds2
d = −dt2 + a(t)2dH2

d−1, (3.135)

where the scale factor a(t) asymptotes to ct at late times. Near the big bang singu-

larity t = 0 the scale factor a(t) = t+O(t3) as required by the smoothness of the CdL

instanton. Going to the conformal coordinates T =
∫
dt/a(t), the scale factor a(T )

approaches (up to constant factors) eT as T → −∞, and approaches ecT as T → +∞.

Therefore the “Schrödinger potential” U(T ) asymptotes to k2
0 as T → −∞ and c2k2

0

as T → +∞. This means that the eigenmodes vk(T ) have the following asymptotic
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behavior

vk(T )→ eikT (T → −∞), (3.136)

vk(T )→ αke
iT
√
k2−(c2−1)k20 + βke

−iT
√
k2−(c2−1)k20 (T → +∞), (3.137)

where αk and βk are analogous to reflection and transmission coefficients. For k >

k0

√
c2 − 1 the eigenmodes are oscillatory at large T ; for smaller k they are exponen-

tially decaying or growing. These are pseudotachyonic modes.

The exact eigenmodes vk(T ) are difficult to solve analytically except for perhaps

unrealistically simple U(T ) such as a step potential. Fortunately, we are most inter-

ested in the equal-time massless correlator at large T and large r, for which both vk(T )

and G̃k(r) simplify. Specifically in the large T limit v−k(T )v−k(T ) in Ĝ2 becomes

v−k(T )2 ≈ α2
−ke

−2iT
√
k2−(c2−1)k20 + β2

−ke
2iT
√
k2−(c2−1)k20 + 2α−kβ−k ≡ v− + v+ + v0,

(3.138)

where we have changed the sign of the exponent in v−k(T ) because we choose the

square root to have a branch cut between k = ±k0

√
c2 − 1. In the large r limit

(3.132) simplifies to

G̃k(r) ≈ −
1

4πd/2ek0r
[
(−1)de−ikrΓ(k0 + ik)Γ(−ik) + eikrΓ(k0 − ik)Γ(ik)

]
≡ G̃− + G̃+.

(3.139)

Therefore the integrand of Ĝ2 in (3.133) can be decomposed into six terms:

Ĝ2(T, T, r) ≈
∫
C

dk

2π
R(k)(v− + v+ + v0)(G̃− + G̃+), (3.140)

where for large |k| we have v± ∼ e±i2kT and G̃± ∼ e±ikr/ sinh(kπ) up to powers of k.

In the large T , large fixed r limit that we are interested in (i.e. T � r � 1) we

may deform the contour from C to Ca for the three terms v+(G̃− + G̃+) + v0G̃+,

and deform the contour to Cb for the other three: v−(G̃− + G̃+) + v0G̃−. If we are

interested in the large r, large fixed T limit (i.e. r � T � 1) instead, we simply

switch the contours for v+G̃− and v−G̃+. In both cases (or more generally, in any
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large T , r limit), the leading behavior of Ĝ2 can be shown to come from the residue

of the v−G̃− term at the double pole k = ik0. This can be evaluated up to numerical

factors:

Ĝ2(T, T, r) ∼ e2ck0T (2T + r), G2(T, T, r) =
Ĝ2(T, T, r)

a(T )k0a(T )k0
∼ 2T + r, (3.141)

where G2 is the corresponding piece of the original correlator for φ. The first term

2T is a pure gauge because it is linear in the coordinates. The second term r is not,

because it is actually the geodesic distance on Hd−1 between the two points of the

correlation function.

To study the holographic dual of our FRW model, we rewrite the metric in hy-

perbolic slicing

ds2
d = −dt2 + a(t)2(dχ2 + cosh2 χdH2

d−2), dH2
d−2 = dχ̃2 + sinh2 χ̃ dΩ2

d−3. (3.142)

Let us put both points of the correlator on a hypersurface of constant χ, with a

separation of ∆χ̃ in the χ̃ direction. Their geodesic distance on Hd−1 is therefore

r = arccosh(cosh ∆χ̃ cosh2 χ− sinh2 χ) ≈ ∆χ̃+ 2 log coshχ, (3.143)

where the approximation holds for large ∆χ̃ and any χ. For large χ the second term

on the right hand side of (3.143) simply becomes 2χ, but let us not commit ourselves

to that limit. In terms of χ and ∆χ̃ the leading behavior of G2 from (3.141) becomes

G2(t, χ,∆χ̃) ∼ ∆χ̃+ 2 log coshχ. (3.144)

This term is present for both c > 1 and c = 1, and it is independent of the dimension d.

This suggests an interpretation as the contribution from the zero mode of φ localized

on the UV slice.

The leading behavior of the other term in the correlator, namely Ĝ1, is dominated

by the contributions of the pseudotachyonic modes. The most pseudotachyonic mode
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is the one with k = 0, given by

v0(T ) ∼ ek0T
√
c2−1. (3.145)

In the large r limit G0(r) as defined in (3.134) goes like re−k0r, so the first term in

the correlator (3.133) becomes

Ĝ1(T, T, r) ∼ re2k0T
√
c2−1−k0r, G1(T, T, r) ∼ re2k0T (

√
c2−1−c)−k0r, (3.146)

which we rewrite in terms of t, χ, and ∆χ̃ as

G1(t, χ,∆χ̃) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ
e−(d−2)∆χ̃/2(∆χ̃+ 2 log coshχ). (3.147)

This term is present only for c > 1, in which case there is a warped geometry with a

consistent description in terms of a low-energy (d− 1)-dimensional dual.

3.A.4 Massive correlation functions

We have hitherto focused on massless correlation functions, but it is rather straight-

forward to generalize it to massive correlation functions, as we outline below. This

provides an alternative way of calculating the massive Green’s functions for the KK

modes, closed strings, and 7-7 strings in Section 3.5.1.

Let us consider a scalar field φ with mass m(t) which we allow to be time-

dependent. We can use the same techniques developed in Sections 3.A.1 and 3.A.2

to calculate its correlation function. The only difference is that we need to add a

corresponding mass term a(X)2m(X)2 to the “Schrödinger potential” U(X), and

similarly add −a(T )2m(T )2 to U(T ). This makes the potential U(X) shallower, and

the bound states either have larger eigenvalues (for small masses) or simply disappear

(for large masses). This means that the reflection coefficient R(k) no longer has a

pole at k = ik0. The pole is moved down to between k = ik0 and k = 0 if there is still

a bound state. Therefore, the formulae for both the Euclidean correlator (3.119) and

the Lorentzian correlator (3.133) are fully correct, as long as we define the contour C
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to go from k = −∞ to k = +∞, in a way that goes just below k = ik0 but always

above any possible poles corresponding to bound states.

The pseudotachyonic modes disappear for sufficiently large masses due to the

additional term −a(T )2m(T )2 in the “Schrödinger potential” U(T ). One can show

that in this case the leading term in the correlation function agrees with the estimates

in Section 3.5.1.



Chapter 4

Unitarity bounds and RG flows in

time dependent quantum field

theory

4.1 Motivations

Unitarity is essential to any closed quantum mechanical system such as Lorentzian-

signature quantum field theory. In conformal field theory, operator dimensions are

bounded in a way that derives from unitarity. For example for scalar operators O in

a d-dimensional theory, the condition

∆O ≥ (d− 2)/2 (4.1)

follows from the positivity of the norm of states created by O and its descendants.

If one couples additional fields χ to the CFT via couplings of the form
∫
ddxgχO,

the same condition (4.1) arises from the optical theorem for forward scattering of χ

(see [126] for a clear recent discussion and [127, 128] for general results on constraints

from conformal invariance).

One reason unitarity bounds are interesting is that they can help determine as-

pects of the infrared physics of nontrivial quantum field theories. For example, in

108
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supersymmetric QCD below the Seiberg window of conformal field theories, one can

use this unitarity bound along with other symmetries to show that the theory cannot

flow to a CFT [129, 130]. In other examples, such as [131, 132], unitarity bounds help

to establish that a certain field decouples from the rest of the theory in the infrared.

In this chapter, we are concerned with the question of what happens to the infrared

physics and unitarity bounds in field theories which have a time dependent coupling

g(t).1 More specifically, we will study the infrared limit of field theories with spacetime

dependent couplings that approximately preserve scale invariance but not Poincaré

invariance over a wide range of spacetime scales. Consider a coupling of the form∫
ddxLg =

∫
dtdd−1~x g(t, ~x)O, (4.2)

with g(t) ∼ tα or g(t, ~x) ∼ (t2 − ~x2)α/2, at sufficiently late times, or sufficiently well

within the forward light cone, respectively. As we rescale the coordinates xµ → λxµ,

the coupling transforms by the rescaling

g(x)→ λαg(x). (4.3)

If we perturb a CFT by
∫
ddxLg (4.2), the nontrivial scaling of g (4.3) affects the

question of whether Lg dominates at late times and large distance scales. If Lg
does dominate in the infrared and become marginal under our scaling by λ, then the

nontrivial scaling of g also affects the scaling of the operator O. This suggests that

unitarity conditions and scaling dimensions of the infrared theory may be modified by

the presence of g(x). Another way to organize this question, which we will consider

below as well, is to realize the spacetime dependent coupling dynamically, as the

profile of an additional field g(x) in the theory.

To answer our question, we will analyze the infrared behavior of correlation func-

tions in simple, tractable theories with such a coupling g(x). Clearly, the effects of the

spacetime dependence of the coupling become unimportant on short enough scales,

schematically ∆x� g/∂g. For this reason, we focus on an infrared, late-time regime

1Works on spacetime dependent couplings and RG flows in QFT include [133, 134, 135, 136, 137].
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which we define carefully below. At shorter distance scales, we cross over to static

physics. We will consider examples below in which this static theory is well defined

up to energy scales much larger than the scale ∂g/g, including a class of fully UV

complete examples.

The general motivations to study time dependent quantum field theories are very

simple. Time dependent backgrounds are generic, and have important applications in

fields as diverse as cosmology2 and condensed matter physics.3 On a more theoretical

front, it remains a major challenge to derive a framework for cosmology including the

effects of horizons, singularities, and transitions among metastable configurations;

various interesting approaches are being pursued.4 Recently, by uplifting AdS/CFT

solutions to cosmological ones (de Sitter and other FRW solutions), we made some

progress on this question, and encountered the above issue. Our uplifting proce-

dure [16, 7, 9] introduces a number n of (p, q) 7-branes, which introduce magnetic

flavors into the dual theory. For n greater than a certain integer n∗ (depending on the

dimensionality and other details of the example), one finds no static AdS/CFT solu-

tion. However, for n > n∗ one does find a controlled time dependent solution, which

furthermore admits a warped metric indicating a low energy field theory dual.5 We

analyzed the basic properties of this putative dual in several different ways, achieving

consistent results. As we will show below by using the most supersymmetric class of

examples, the problem with would-be static theories in the range n > n∗ can be traced

to unitarity. Our gravity solutions suggest that the time dependent background re-

laxes this condition. Moreover, in our FRW solutions, the dual effective field theory

is cut off at an energy scale proportional to ∂g/g ∼ 1/t.

This led us to the above (more general) question, which we will address in much

simpler examples than those of [9]. In particular, we will focus on a theory with a

2(ultimately providing a simple theory of the origin of structure in the universe)
3For example, quenching and thermalization is an interesting probe of field theories at finite

density [138, 139, 140, 141]. Nonequilibrium processes are also useful for stimulating interesting low
temperature phases [142, 143, 124].

4Some recent approaches can be found in [144, 20, 72, 82, 73, 18, 19, 7, 9, 145, 21, 22, 78, 146,
83, 147]. Other recent work on this general subject includes, for instance, [148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 93].

5A different class of solutions was analyzed in [75].
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spacetime dependent semi-holographic [28, 94, 27, 18, 158, 159, 160] coupling g(x)

between a large-N conformal field theory and a scalar field, including the simplest case

corresponding to double trace renormalization group flows [161, 162, 163, 164, 165,

79, 166, 167, 168, 169]. This system and its infrared unitarity for constant coupling

was analyzed recently in [170] in the case where the large-N CFT has a large-radius

holographic dual. Here, we determine the effects of the spacetime dependence of g(x)

on the relevance of the coupling and the analysis of unitarity in the infrared theory.

In particular, we will find – as anticipated in the FRW example just mentioned

– that spacetime dependent couplings can produce new interacting theories with

approximate scale invariance in the infrared for a wider range of flavors than in the

corresponding static theory. Our results about the infrared physics will apply for

parametrically long times at large N .6

This chapter is organized as follows. In §4.2, we present our main example, a

semi-holographic model in which we can compute the needed amplitudes explicitly.

In §4.3, we analyze spacetime dependent couplings involving fermions, finding similar

results. Then in §4.4, we consider supersymmetric gauge theories with time dependent

couplings; this provides a concrete UV completion of a class of models like those

of §4.2, and makes contact with our motivations from FRW holography. Finally,

we conclude in §4.5 with additional comments and potential generalizations of our

results. Several useful results are explained in more detail in the Appendix.

4.2 Spacetime dependent double trace flows and

semiholographic models

Let us now analyze in detail our main example. We will study the RG evolution of

a large-N CFT in d dimensions perturbed by a spacetime dependent coupling to a

6This is reminiscent of other large-N field theories for which scaling symmetry holds over a wide
range of scales but not arbitrarily far into the infrared.
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scalar field φ:7

S = SCFT −
1

2

∫
ddx (ηµν∂µφ∂νφ+m2φ2) +

∫
ddx g(x)Oφ , (4.4)

where O is an operator in the CFT. A related question that will be addressed is what

happens when a CFT is deformed by a space-time dependent double-trace operator,

S = SCFT +

∫
ddxλ(x)O2 . (4.5)

These two systems are closely related: when the coupling g in (4.4) is relevant, inte-

grating out a massive φ produces a double-trace deformation with λ = g2/(2m2).

For many purposes, it is useful to think of g(x) as a dynamical field rolling in

a potential. Then questions about unitarity and backreaction from interactions and

particle production can be understood more directly in the theory where g is a dy-

namical field. This will be explored in detail in Appendix §4.A, while in the rest of

this section g(x) will be treated as an external coupling.

While in general it is a hard problem to determine the RG evolution of a QFT

with spacetime dependent couplings, we will use the fact that in the large-N limit

the infrared dynamics can be calculated explicitly. We will first recall what happens

in the static case, and then incorporate the effects of spacetime dependence. Various

results and calculations are relegated to Appendices §4.B and §4.C.

4.2.1 RG flow in the static limit

Let us begin with the static case. The Lagrangian including the coupling between

the CFT and φ is

L = LCFT −
1

2
(ηµν∂µφ∂νφ+m2φ2) + gO±φ (4.6)

7Throughout, we will use mostly plus conventions for the metric signature. Our QFT conventions
are those of Weinberg [171].
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with O± a CFT operator of dimension

∆± =
d

2
± ν , ν > 0 , (4.7)

at the unperturbed g = 0 fixed point, where [g] = 1 ∓ ν. The two-point function is

normalized as

〈O±(x)O±(y)〉 =
1

[(x− y)2]∆±
. (4.8)

We analyze, in turn, three possibilities: coupling O− or O+ to φ when 0 < ν < 1, or

coupling O+ to φ for ν > 1.

First, consider the effect of coupling O− to φ. Unitarity of O− requires ν < 1,

and the coupling g is relevant. At low energies the kinetic term for φ is negligible;

integrating out φ sets

φ =
g

m2
O− . (4.9)

This produces a double-trace term g2

2m2O2
− ⊂ L, which is a relevant deformation of

dimension 2ν. It is known that this triggers a flow from O− to O+, which we now

review.

In order to calculate the dimension ∆(O−) in the infrared, it is convenient to first

compute the two-point function for φ and then use (4.9) to obtain the correlator for

O−. At large N , loops containing φ are negligible, and the φ two-point function is

given by a geometric series which sums to

〈φ(p)φ(−p)〉 =
−i

p2 +m2 − g2c−ν(p2)−ν
. (4.10)

This calculation is derived using path integrals in Appendix §4.B. In particular, it

uses the Fourier transform of the unperturbed correlator (4.8) for O,

〈O±(p)O±(−p)〉 = −i c±ν (p2 − iε)±ν , cν ≡ 2−2νπd/2
Γ(−ν)

Γ(d
2

+ ν)
. (4.11)

(Here p2 = −(p0)2 + (pi)2, and in what follows the iε prescription will be implicit in
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our formulas.) The last term in the denominator of (4.10) dominates at low energies,

〈φ(p)φ(−p)〉 ≈ i
(p2)ν

g2c−ν
, (4.12)

corresponding to an operator of dimension ∆+. Thus, ∆IR(O−) = ∆+, and we recover

the double-trace flow from O− to O+.

Next, let us instead couple O+ to φ, still in the range 0 < ν < 1. The gO+φ

interaction is relevant, and the two-point function for φ becomes

〈φ(p)φ(−p)〉 =
−i

p2 +m2 − g2cν(p2)ν
. (4.13)

The difference with the previous case is that now the g2 contribution is less important

than the mass term, so at low energies the correlator can be expanded in inverse

powers of the mass,

〈φ(p)φ(−p)〉 ≈ −i
m2

(
1 +

g2

m2
cν(p

2)ν + . . .

)
, (4.14)

corresponding to an operator of dimension ∆+.8 This implies that the dimension of

O+ does not change in flowing to the IR. This may be understood by noting that the

double trace deformation g2

2m2O2
+ ⊂ L obtained by integrating out φ is actually an

irrelevant perturbation of the g = 0 conformal fixed point.

Finally, we come to the range ν > 1 and consider an interaction gO+φ (O− does

not exist in this case since it would violate the unitarity bound). This was the static

theory studied in [170]. The propagator for φ is still given by (4.13) but, crucially,

now g is irrelevant. As a result, in the IR we simply have the original CFT plus a

decoupled scalar field. Conversely, in the UV g becomes strong at a scale of order

Λg ≈
1

g
1

ν−1

. (4.15)

Choosing for simplicity a mass parameter m � Λg, for ν > 1 the propagator (4.13)

8The first term in (4.14) gives a contact term that has to be subtracted when relating φ and O
inside the path integral via φ = g

m2O.
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has a new pole at p2 ≈ 1/(cνg
2)1/(ν−1), which moreover has a residue with the opposite

sign as the usual one at p2 ≈ −m2. We thus learn that the theory has a tachyonic

ghost and violates unitarity around the scale Λg. If we anyway continue past Λg

towards the UV, we may interpret the φ two-point function as giving an ‘inverse’ RG

flow to O−. Of course, the theory by itself is inconsistent and needs a UV modification

above the scale Λg.

At this point it is useful to discuss a physical way of deriving unitarity bounds in

the static theory proposed by [126], which we will then apply to the time dependent

theory. The idea is to couple a probe scalar χ to the operator of interestO via χO ⊂ L;

then requiring that the χ→ χ amplitude satisfy the optical theorem reproduces the

unitarity bound for O. In more detail, in terms of (4.11),

ImA(χ→ χ) ∝ Im i〈O(p)O(−p)〉 ∝ −cν sin(πν) . (4.16)

Then ImA ≥ 0 for ν > −1, which is the unitarity bound ∆+ ≥ d−2
2

for O+.

To summarize, the interaction gφO can either give a flow from O− to O+ in the

IR, a double trace deformation O2
+ that is irrelevant at the g = 0 fixed point with the

scalar φ becoming strongly coupled in the IR, or a theory where φ decouples in the

IR but its interaction with O+ is nonrenormalizable and violates unitarity around its

strong coupling scale Λg (above which we would formally get O−). In what follows

we will study how all this is modified when g becomes spacetime dependent.

4.2.2 Spacetime dependent case

Having reviewed the static limit, we now consider a spacetime dependent interaction

g(x)φO+ ⊂ L (4.17)

and study the long distance dynamics. Since we are interested in the possibility of a

new scale invariant regime at long distance, we will assume a power-law dependence

approaching

g(x)→ g0(t2 − ~x2)α/2 or g(x)→ g0|t|α , α > 0 , (4.18)
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well within the forward light cone, or at late times, respectively. With this in mind,

in what follows we denote (4.18) simply by g(x) = g0|x|α. We will show in §4.A that

this dependence arises when a dynamical field g rolls in a potential V ∝ −g2(1− 1
α).9

Before getting into any detailed calculation, let us start simply by noting the

scaling of the double trace interaction induced by our mixing term (4.17), taking the

rest of the Lagrangian to depend on φ simply as m2φ2. Integrating out φ leads as in

the static case to a double trace deformation∫
ddx

g(x)2

m2
O2

+. (4.19)

With the spacetime dependent g(x) in (4.18), the effective coupling is g2
0/m

2. This

has dimension [
g2

0

m2

]
= 2(α− ν) . (4.20)

This indicates that the condition for relevance of (4.17) is shifted by α relative to

the static case, to α > ν. As a result, we expect that even for cases with ν > 0 in

which the double trace deformation would be irrelevant in the static case (including

cases with ν > 1 in which the irrelevant deformation leads to a pathological theory

in the UV), as long as α > ν the term (4.17) will be relevant. Our calculations of

correlation functions below will bear this out.10

We are particularly interested in how (4.18) modifies the dynamics in the range

ν > 1, for which in the static theory unitarity violation arises in the UV and φ

becomes a free field in the IR. It is important to point out that for ν > 1 the theory

will still need a UV completion or cutoff, because at momenta much larger than the

rate of change ∂g/g, the static limit is recovered. On the other hand, we will show

that for momenta ∆p � (∂g/g) the spacetime dependent interaction changes the

theory in important ways, depending on the relation between α and ν. Similar effects

will be found when 0 < ν < 1, though in this range the theory is UV complete since

the static theory is consistent at high energies.

9For even α, it is possible choose a state defined by analytically continuing to the Euclidean
theory with g(x) = g0|x|α and imposing regularity at xµ = 0.

10We will also generalize to include the possibility that φ itself also starts with a kinetic term
−
∫
ddx(∂φ)2 in the UV.
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The calculation of the two-point function of φ is similar to the static one (4.10), and

can be done directly in position space for a general g(x). Denoting the propagators

of the unperturbed g = 0 theory by

K−1
O+

(x, y) ≡ i〈O+(x)O+(y)〉g=0 = cν

∫
ddp

(2π)d
eip(x−y)(p2 − iε)ν =

i

[(x− y)2]∆+

K−1
φ (x, y) ≡ i〈φ(x)φ(y)〉g=0 =

∫
ddp

(2π)d
eip(x−y)

p2 +m2 − iε
, (4.21)

the two-point function for φ including quantum effects fromO+ insertions but ignoring

φ loops becomes

〈φ(x)φ(x′)〉 = −iK−1
φ (x, x′)−i

∫
ddz1d

dz2K
−1
φ (x, z1)g(z1)K−1

O+
(z1, z2)g(z2)K−1

φ (z2, x
′)+. . .

(4.22)

This is again a geometric series, which in matrix notation sums to11

〈φ(x)φ(x′)〉 = −i
(
Kφ − gK−1

O+
g
)−1

(x, x′) . (4.23)

Recall that the static derivation requires large N at fixed g, so that internal loops

containing φ are suppressed by powers of 1/N . In the present spacetime dependent

situation, we need to be more careful about this since our specified g(x) grows at

large x. Ignoring φ loops as we just did is valid as long as g(x) � Nγ, with γ ∼ 1

depending on the details of the CFT OPEs. Thus, at large N and for a power-law

interaction, the correlator (4.23) starts receiving corrections at parametrically large

distances |x| ∼ Nγ/α. In what follows we restrict to scales where such effects are

negligible.

We thus find that at large N , quantum effects from the spacetime dependent

interaction can be calculated explicitly in our semiholographic model, and they lead

11Here the inverse K−1(x, y) means
∫
z
K(x, z)K−1(z, y) = δd(x− y), and g can be thought of as

a diagonal matrix g(x, y) = g(x)δd(x− y). Appendix §4.B presents a similar derivation in gaussian
theories directly from the path integral.
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to the effective action for φ

Seff[φ] = −1

2

∫
ddx ddx′ φ(x)

(
(−∂2

x +m2)δd(x− x′)− ig(x)g(x′)

[(x− x′)2]∆+

)
φ(x′) , (4.24)

which is equivalent to (4.23). Note that the factor of i appearing in the last term

of the effective action does not necessarily violate unitarity, since this is a nonlocal

term. Our analysis so far has been for a general g(x). Next we will specialize to

(4.18) and we will analyze how the decoupling of φ in the static limit is modified by

the spacetime dependence in the action (4.24).

4.2.3 Long distance propagator

Let us now focus on momenta ∆p � (∂g/g) ∼ 1/|x| and determine the propagator

when the last term in (4.24) dominates. This will be valid in a certain range of ν and

α that we find below by requiring the effects from Kφ(x, x′) to be negligible.

Ignoring the first two terms in (4.24) and keeping only the contributions propor-

tional to g(x)g(x′), the effective action becomes

Seff[φ] =
1

2

∫
ddx ddx′

iφ̃(x)φ̃(x′)

[(x− x′)2]∆+
, (4.25)

with φ̃(x) ≡ g(x)φ(x). From this it is clear that the φ̃ propagator is – up to a sign

which we will determine next – that of O−. In particular, Fourier transforming φ̃(x)

we obtain

Seff[φ] =
1

2

∫
ddp

(2π)d
φ̃(p)φ̃(−p) cν(p2 − iε)ν , (4.26)

where again the coefficient

cν = 2−2νπd/2
Γ(−ν)

Γ(d
2

+ ν)
. (4.27)

From (4.26), the two-point function for φ̃(p) is

〈φ̃(p)φ̃(−q)〉 = iδd(p− q) (p2 − iε)−ν

cν
. (4.28)
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We can then Fourier transform back to position space and get

〈φ̃(x)φ̃(x′)〉 =
i

cν

∫
ddp

(2π)d
eip·(x−x

′)(p2 − iε)−ν =
−1

cνc−ν [(x− x′)2]∆−
. (4.29)

Recalling the relation between φ̃(x) and φ(x), we arrive at our final expression for

the two-point function

〈φ(x)φ(x′)〉 =
−1

cνc−νg(x)g(x′)[(x− x′)2]∆−
, (4.30)

up to corrections from the first two terms in (4.24).

We now recall that the massive case is equivalent to a spacetime dependent double

trace deformation (4.19) of the original CFT. From the relation between φ andO+ and

the result (4.30), we conclude that the double trace perturbation induces a flow for

O+ between the UV two-point function (4.8) and a long distance/late times correlator

〈O+(x)O+(x′)〉 =
−m4

cνc−νg(x)2g(x′)2[(x− x′)2]∆−
. (4.31)

This is one of our main results, exhibiting the effects of the spacetime dependent

coupling on the IR dynamics. While translation invariance has been broken explicitly,

the power-law dependence of this correlator signals the appearance of a new scale

invariant regime. This two-point function implies that, under a dilatation (x, x′) →
λ(x, x′), the operator transforms as O+ → λ−( d2−ν+2α)O+. We should also stress that

this regime is approximate, being modified by small nonadiabatic effects as well as

by 1/N corrections.

Relevance condition

Before exploring the physics contained in this result, let us analyze its regime of

applicability. In other words, we need to find out when the last term in (4.24) is

relevant and dominates in the IR. We first analyze this with a simple scaling argument

which reproduces (4.20) in the case that the φ mass dominates, and then show the

same result by expanding the two-point function.
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Under the dilatation (x, x′) → λ(x, x′), the term ∂2
xδ
d(x − x′) transforms with

weight d + 2, m2δd(x − x′) transforms with weight d, and g(x)g(x′)/[(x − x′)2]∆+

transforms with weight 2(∆+ − α) in either the Lorentz invariant case g(x) = g0|x|α

or the purely time-dependent case g(x) = g0|t|α. Therefore the g(x)g(x′) term is more

relevant than the other terms if we satisfy

α >

ν , m 6= 0

ν − 1 , m = 0
(4.32)

We may reproduce these conditions by expanding the full two-point function (4.23)

around Kφ = 0:

〈φ(x)φ(x′)〉 = i
[
(gK−1

O+
g)−1 + (gK−1

O+
g)−1Kφ(gK−1

O+
g)−1 + · · ·

]
(x, x′) . (4.33)

The leading term here is given by (4.30). The subleading term from Kφ can be

neglected if ∣∣∣(gK−1
O+
g)−1Kφ(gK−1

O+
g)−1(x, x′)

∣∣∣� ∣∣∣(gK−1
O+
g)−1(x, x′)

∣∣∣ . (4.34)

We ask when this is true and the two-point function is well approximated by (4.30)

at long distance/late times (for large |x|, |x′|, and |x − x′|). We show in Appendix

§4.C.1 that the condition is the same as (4.32). These results are in agreement with

the effective dimension (4.20) calculated in the UV.

We may also ask under what conditions the free fixed point g = 0 is stable. In

other words we expand the full two-point function (4.23) (and the one for O) around

g = 0, and ask when the subleading terms are much smaller than the leading one.

We show in Appendix §4.C.2 that this condition is precisely the opposite of (4.32).

This is what we expect: if (4.32) is satisfied, our theory is dominated in the IR by

the last term in the effective action (4.24), otherwise it is dominated by the first two

terms in (4.24), giving a free, decoupled scalar field.

When the coupling is a function of t only, g = g0|t|α, it is more convenient to

study the relevance of the different terms in the action by first Fourier transforming
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the spatial coordinates. This gives, in Euclidean space,

Seff = −1

2

∫
t,t′,~p

φ~p(t)

(
(∂2
t +m2 + ~p 2)δ(t− t′)− Cνg(t)g(t′)|~p|2ν+1

Kν+ 1
2
(|~p||t− t′|)

(|~p||t− t′|)ν+ 1
2

)
φ−~p(t

′)

(4.35)

where Cν is a positive constant from the Fourier transform of 1/[(t− t′)2 +~x 2]∆+ with

respect to ~x. The two-point function in this mixed representation reads

〈φ~p(t)φ−~p(t′)〉 =
(
Kφ,~p − gK−1

O+,~p
g
)−1

(t, t′) (4.36)

where Kφ,~p and gK−1
O+,~p

g refer to the first and second term in (4.35). The condition

that the gK−1
O+,~p

g term dominates (which is still given by (4.34) but now in the mixed

(t, ~p) basis) gives again α > ν in the massive case and α > ν − 1 in the limit m = 0,

in agreement with (4.32).

4.2.4 Infrared physics and unitarity: two wrongs make a

right

We would now like to generalize and analyze standard unitarity conditions in our

theories. In ordinary quantum field theory, a theory that is well defined at a scale Λ

will retain unitarity in the infrared. With a good UV complete theory, in other words,

it is not that unitarity bounds can fail; but they are useful in helping constrain the

low energy behavior of the theory. We expect that the same holds for systems like

ours which are static at high energies but are subject to nontrivial time dependent

effects at lower energies.

Above the scale ∂g/g, the coupling in our theory becomes effectively static. We

may UV complete the theory in various ways; in §4.4 we will describe a supersym-

metric completion and in Appendix §4.A we will describe a partial UV completion in

which the time dependent coupling is the homogeneous mode of a dynamical field.

Without implementing such a procedure, however, starting at any given time we may

tune the value of the coupling to obtain a separation of scales between the scale Λg
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in which the static coupling becomes strong and the scale ∂g/g. This hierarchy even-

tually breaks down at late times when α > ν − 1, but can be tuned to apply over a

parametrically long region in time.12

Let us now turn to a direct analysis of unitarity conditions in our theories. We

have found that time dependence can significantly affect the infrared behavior of

correlation functions. It is particularly interesting to consider ν > 1. In this case, for

constant coupling g (i.e. α = 0), the semiholographic mixing term in the Lagrangian is

irrelevant; the operator we are considering has dimension ∆+ in the infrared, rather

than flowing to an operator of dimension ∆− (which would violate the unitarity

bound). However, in the time dependent version of the ν > 1 theory, with g(t) =

g0|t|α, if we choose α appropriately we have seen that the semiholographic deformation

can dominate in the infrared. Moreover, at long distances this theory has a two-point

function for φ̃ (4.29) which scales like that of an operator of dimension ∆− < (d−2)/2.

In addition, from (4.29) we see that the two-point function in position space is negative

for some ranges of ν, including 1 < ν < 2. In a conformal field theory, either of these

features would imply a failure of unitarity. The negative two-point function would

correspond to a negative norm state created by φ̃. If the two-point function of φ̃ were

positive, the subunitary operator dimension ∆− would imply that the descendant ∂2φ̃

creates a state of negative norm.13

In our case, on scales where the time dependent coupling affects the physics we lose

the constraints of conformal symmetry, and we cannot compute the norm of states

as in the static conformal field theory. However, we can use the method discussed

recently for conformal field theories in [126] to obtain a unitarity condition both in

the static and time dependent theories. In that way of organizing the problem, we

use the momentum space propagator (4.28) to compute the imaginary part of the

12In some cases, it may happen that the theory is sensible even when the nominal scale Λg goes
below the scale ∂g/g, but we have not fully analyzed such cases. A toy model in which we set up the
corresponding question appears in Appendix §4.D. A related question is whether one can implement
a cutoff at the scale ∂g/g; this arises at the level of a radial cutoff in the holographic models of FRW
cosmology in [9].

13For a primary operator O in a CFT, the norm of the state created by the descendant ∂2O can
be related to an expression containing the two-point functions 〈O∂2O〉 and 〈∂µO∂2O〉 as well as
〈∂2O∂2O〉, which are easily computed by taking derivatives of the propagator 1/|x − y|2∆− . The
final result has a sign equal to sgn(∆− − (d− 2)/2).
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forward scattering amplitude for Fourier modes, which must be positive for unitarity.

This quantity, as shown in [126], has a sign equal to sgn[C(∆ − (d − 2)/2)] for an

operator of dimension ∆ with two-point function C/|x− y|2∆.

We can now come to the key point: the imaginary part of the scattering ampli-

tude calculated using (4.28) has a sign equal to that of − sin(πν)/cν . See also the

discussion around (4.16). This is positive for all ν (recall ν > 0), implying a posi-

tive imaginary part for the forward scattering amplitude. This is consistent with the

general expectation that all theories in the class we are discussing – including both

spacetime dependent (α 6= 0) and static (α = 0) cases – are unitary in the infrared.

It is important for this argument that the sign of the position space propagator

only determines the sign of the norm of a state in the static case. Of course on short

scales where the time dependent couplings do not affect the physics, the theory reverts

to a static one. But on those scales, the correlation function is not of the form (4.28)

(4.29), and the unitarity conditions are the familiar ones. With a sensible completion

of the theory above the scale ∂g/g, such as those mentioned at the beginning of this

section, the static unitarity conditions are satisfied in this regime.

4.3 Spacetime dependent RG flow for fermionic

operators

Our analysis so far has focused on scalar operators. Now we will couple a fermion ψ

to a fermionic operator Of in a large-N CFT via a spacetime dependent interaction14

L = LCFT − iψ̄σ̄µ∂µψ −
1

2
mψψ + g(x)ψOf + c.c. (4.37)

14We employ the two-component notation of [172, 173], which is well adapted for calculations in
d = 4. All the fermions are Weyl and transform as (1/2, 0); also, ψ̄α̇ ≡ (ψα)†. In this section we will
restrict our discussion to d = 4; however, the results below can be adapted to other dimensions by
changing the representations of γ matrices.
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and study the RG evolution. In the massive case (4.37) leads to a spacetime dependent

double trace perturbation of the original CFT,∫
ddx

g(x)2

m
O2
f , (4.38)

and we will determine its effects at long distances. The main conclusions are similar

to the ones described in §4.2: at large N the system has an effectively gaussian

description which, for large enough α, flows to an approximately scale invariant regime

controlled by the time dependent coupling. As before, this will also be consistent

with scaling arguments around the UV fixed point. More explicit calculations for the

fermionic gaussian model are relegated to Appendix §4.B.

One motivation for looking at fermionic theories comes from supersymmetry. For

instance, the UV completion that we discuss in §4.4 is based on supersymmetric QCD

and features an interaction between the fermionic part of the meson superfield and

a fermionic operator made of magnetic quarks. We should nevertheless stress that

our analysis below does not assume supersymmetry, and in fact we will find that

the basic fermionic double trace flow is not related directly by supersymmetry to the

previous bosonic double trace result. Another application of the fermionic version

(which would be an interesting future direction), is to semiholographic Fermi surfaces

with time dependent interactions. The static version of this model was proposed

by [160] in 2 + 1 dimensions. Static double-trace fermionic deformations have been

studied recently in [174, 175]; from the bulk perspective, the double-trace operator

generated by (4.38) corresponds to a Majorana-type deformation in the classification

of [174].

4.3.1 Results for the static theory

As in the bosonic case, we will see that the new IR regime dominated by the time

dependent coupling has a simple description in terms of a static correlator for ψ̃(x) ≡
g(x)ψ(x), so it is useful to first analyze the static version of the theory.

We find it convenient to denote the fermionic CFT operators that couple to ψ by



4.3. SPACETIME DEPENDENT FERMIONIC RG 125

Of±, with dimensions at the g = 0 fixed point parametrized by

∆f± =
d

2
±
(
ν − 1

2

)
. (4.39)

Both operators are unitary for 0 < ν < 1, corresponding to the standard and alternate

quantizations of fermionic fields in AdS/CFT. Quantum corrections will again be

given by a geometric series containing the Of propagator,

〈Of (x)Of (y)〉 = −iσµ ∂

∂xµ
1

[(x− y)2]∆f− 1
2

= (2∆f − 1)
iσ · (x− y)

[(x− y)2]∆f+ 1
2

. (4.40)

The dependence on the coordinates and σ matrices is fixed by Lorentz and confor-

mal invariance, and the normalization has been chosen to be consistent with our

normalization (4.21) in cases when there is supersymmetry.15 We will also need the

correlator in momentum space,

〈Of+(p)Of+(q)〉 = iσ · p cν−1(p2 − iε)ν−1 δd(p− q) . (4.41)

The result for Of− follows by replacing ν − 1→ −ν.

Resumming the geometric series with quantum corrections from Of± gives a self-

energy for ψ proportional to the propagator (4.41). After inverting the Pauli matrices,

the two-point function becomes

〈ψ(p)ψ̄(p)〉 = −iσ · p 1− cγ|g|2(p2)γ

p2 (1− cγ|g|2(p2)γ)2 +m2 − iε
(4.42)

where we have defined γ ≡ ±
(
ν − 1

2

)
− 1

2
for Of± respectively.

Let us now briefly discuss the different consequences of this result. We restrict to

ν > 1/2 so that ∆f− < ∆f+; choosing ν < 1/2 just interchanges the roles of Of+

15Eq. (4.40) is then a consequence of the identity

〈Of (x)αδξO∗b (y)〉+ 〈δξOf (x)αO∗b (y)〉 = 0

where the supersymmetry variations are given by δξOb = ξOf , δξOf = iσµξ̄ ∂µOb . See e.g. [176]
for properties of correlation functions in superconformal field theories.
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and Of−. First, when ψ interacts with Of− via gψOf− ⊂ L, the dimension of the

interaction is [g] = ν and the double trace deformation O2
f− has dimension 2ν − 1,

so both are relevant. We need to restrict to ν < 1 for unitarity. The long distance

correlator becomes

〈ψ(p)ψ̄(p)〉 ≈ iσ · p (p2 − iε)ν−1

c−ν |g|2
(4.43)

corresponding to an operator of dimension ∆f+.16 In the massive case this then de-

scribes a fermionic double trace flow from Of− to Of+. This is the analog of the

bosonic double trace flow between O− and O+, although the fermionic version differs

in the shifts by 1/2. This difference has nontrivial consequences for supersymmetric

theories. It means that there cannot be a supersymmetric double trace flow between

superfields O− in the UV and O+ in the IR. For instance, if we start with a super-

symmetric (Ob−,Of−) of dimensions (d
2
− ν, d

2
− ν + 1

2
), the bosonic flow ends on a

scalar operator of dimension d
2

+ ν that would have a fermionic partner of dimension
d
2

+ ν + 1
2
, while the fermionic double trace flow would give a fermionic operator of

different dimension (d
2

+ ν − 1
2
).

The other possibility is to couple ψ to Of+. For 1/2 < ν < 1, the IR limit of

(4.42) is, up to contact terms,

〈ψ(p)ψ̄(p)〉 ≈ iσ · p cν−1|g|2(p2 − iε)ν−1

m2
, (4.44)

from which we deduce that the dimension is ∆f+. This behavior is consistent with the

fact that the interaction gψOf+ is relevant, but the induced double trace deformation

is actually an irrelevant perturbation of the g = 0 fixed point, so the dimension of

Of+ is not modified in the IR. Finally, for ν > 1 both ψOf and O2
f are irrelevant; in

the IR ψ decouples and O+ does not flow, as can be seen in (4.42).

16The correlator of a fermionic operator Of of dimension ∆f scales like 〈Of (p)Of (p)〉 ∼ iσ ·
p (p2)∆f− d

2−
1
2 .
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4.3.2 Infrared dynamics of the spacetime dependent theory

Let us now turn on a spacetime dependent interaction g(x)ψOf+ that approaches a

power law g(x) = g0|x|α at long distances. A scaling argument near the g = 0 fixed

point gives [g0] = α− (ν − 1), implying that time dependence makes this interaction

relevant for α > ν − 1. Similarly, the condition that the double trace g2

m
O2
f+ ⊂ L be

relevant is α > ν − 1/2.

The long distance correlators are computed as before using large-N factorization

and are described by the gaussian model of Appendix §4.B. For large enough α as

above, the self-energy for ψ̃(x) = g(x)ψ(x) receives the dominant contribution from

inverse of the O correlator (4.41), giving

〈ψ̃(p) ¯̃ψ(p)〉 = iσ · p 1

cν−1(p2 − iε)ν
. (4.45)

This is simply the previous static result (i.e. the limit of large g in (4.42)) but now

valid for ν > 1 as long as α > ν − 1/2. We note that this corresponds to a field

of subunitary dimension ∆f− but, as will be seen shortly, the propagator does not

violate unitarity. Transforming back to position space and rewriting ψ̃ in terms of ψ

obtains

〈ψ(x)ψ̄(y)〉 = −(2∆f− − 1)

c−νcν−1

iσ · (x− y)

g(x)[(x− y)2]
d
2
−ν+1g(y)∗

. (4.46)

This is our final form for the Green’s function of ψ in the regime where the effects

from time dependence are dominant.

Eq. (4.46) also allows us to determine the IR limit of the flow induced by a

spacetime dependent double trace deformation (4.38) of the original CFT. The result

is that at long distances the Of+ two-point function becomes

〈Of+(x)Of+(y)〉 = −(2∆f− − 1)

c−νcν−1

iσ · (x− y)m2

g(x)2[(x− y)2]
d
2
−ν+1g(y)∗2

. (4.47)

As in the scalar case, we see that the power-law time dependent coupling leads to an

(approximately) scale invariant regime with scaling dimensions modified by α.
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We should now discuss the unitarity constraints on this fermionic two-point func-

tion. For this, we couple ψ̃ to an external fermion χ by ψ̃χ + c.c. ⊂ L and demand

that the χ → χ scattering amplitude obey the optical theorem [126]. It is useful to

recall how this works in known static examples. Coupling χOf+ + c.c. ⊂ L, where

the CFT fermionic operator Of+ has two-point function

〈Of+(p)Of+(q)〉 = iσ · p cν−1(p2 − iε)ν−1 δd(p− q) , (4.48)

the scattering amplitude is

A(χ→ χ) ∝ cν−1(p2 − iε)ν−1 . (4.49)

The iε prescription implies that in the forward lightcone ImA ∝ −cν−1 sin(π(ν− 1)),

which is nonnegative for ν ≥ 0. This reproduces the unitarity bound ∆f+ ≥ (d−1)/2.

Now we come to our time dependent theory, where the appearance of an operator

of subunitary dimension ∆f− in (4.45) would naively suggest a violation of unitarity.

However, this is avoided because the propagator also comes with a coefficient cν−1.

Coupling our probe fermion to ψ̃ and requiring ImA ≥ 0 obtains sin(πν)/cν−1 ≥ 0.

This is satisfied for all ν ≥ 0. The conclusion is that as long as the UV dimension

∆f+ is above the unitarity bound, unitarity is preserved along the time dependent

RG flow.

4.4 Unitarity bounds in supersymmetric gauge the-

ories and FRW holography

So far we have worked with a simple class of large-N -solvable field theories exhibiting

the effect of spacetime dependent couplings on infrared physics and unitarity. We

focused on the infrared, noting that in some cases, unitarity problems arise in the

UV. In those cases, the theory needs to be cut off or cross over to different physics at

a sufficiently low scale to retain unitarity. This was implemented at the static level

recently in [170], and arose in our more complicated FRW examples [9].
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In this section, we will combine the methods we developed in the previous section

with those of supersymmetric gauge theory. Of course, spacetime dependent cou-

plings g(x) break translation invariance and supersymmetry at a scale of order ∂g/g.

Nonetheless, this will prove useful for two reasons:

(i) Via the relation between dimensions and R-symmetries, it provides a beautiful

method to relate unitarity bounds to the infrared dynamics of static theories (see

e.g. [129, 130]). We will be interested in comparing this to the infrared physics one

obtains instead in the presence of spacetime dependent couplings.

(ii) Well above the scale ∂g/g, the results of the static theory pertain and as we will

see can naturally provide a UV completion.

We begin by presenting a time-dependent version of an interesting class of mod-

els [131] with N = 1 supersymmetry; these have the structure of the above semiholo-

graphic models in the IR, and provide a concrete UV completion of that mechanism.

Then, we will return to our original motivation from [9] and consider N = 2 super-

symmetric gauge theories with time-independent couplings, such as those obtained on

D3-branes probing parallel (p, q) 7-branes. In this class of theories, one can vary the

hypermultiplet masses to obtain regimes where mutually nonlocal matter fields (elec-

tric and magnetic) become simultaneously light [177, 178, 179]. Our first question is

why from a field theory point of view this class of theories never involves more than

a certain number (here n∗ = 12) dyonic flavors descending from (p, q) strings stretch-

ing between the D3-branes and the (p, q) 7-branes. We will trace this to a unitarity

bound, which is evidently relaxed in the presence of appropriate time dependence as

determined from the gravity side of the corresponding holographic models [9].

4.4.1 N = 1 Supersymmetric QCD plus singlets: unitarity

bounds and UV completion

In this section, we begin with the construction in [131].17 In this class of models,

in the deep UV one has an asymptotically free theory plus a singlet. At sufficiently

low energies (well below a dynamical scale Λ), [131] gives strong evidence that the

17We thank K. Intriligator for suggesting this class of examples to us.
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theory consists of a nontrivial CFT with an irrelevant coupling to a (different) singlet

Φ, which hits the unitarity bound and decouples in the deep IR. Consequently, if we

consider a large-N version of the theory then in this infrared regime the system boils

down to a semi-holographic model of the kind we studied above.

Consider a four-dimensional N = 1 gauge theory with gauge group SU(Nc),

fundamental + antifundamental flavors (Q, Q̃), and a set of singlets S that couple

to some of the flavors. The flavors are divided into two sets: N ′f flavors (Q′a, Q̃
′
a) are

coupled to S by a superpotential

W = hSabQ′
α
a Q̃
′
b α (4.50)

(where α are the contracted gauge theory indices), while the remaining Nf flavors

(Qi, Q̃i) have no superpotential interactions. For h = 0 this is just SQCD withNf+N ′f

flavors, which flows to a superconformal field theory in the window 3
2
Nc < Nf +N ′f <

3Nc. In this range, the superpotential (4.50) is relevant, and drives the theory away

from the h = 0 fixed point. In [131], evidence was provided that the theory flows to

another nontrivial SCFT.

Symmetries and anomaly cancellation are not enough to determine the dimensions

of holomorphic operators at the putative new fixed point, but these dimensions can

be found using a-maximization [180, 131]. The result is that at the new fixed point

where (4.50) becomes marginal, the conformal dimensions are given by

∆(QQ̃) = 2y , ∆(Q′Q̃′) =
3(n+ 1− x)− 2y

n
, ∆(S) =

3(x− 1) + 2y

n
(4.51)

where

x ≡ Nc

Nf

, n ≡
N ′f
Nf

(4.52)

and the quantity y (which is the prediction from a-maximization) is

y =
−3[2n(n+ 2) + (n(n− 4)− 1)x+ x2] + n

√
9x2(x− 2n)2 − 8n(n2 − 1)x+ 4n2

2x− 2n(nx+ 4)
.

(4.53)



4.4. SUSY GAUGE THEORIES AND FRW HOLOGRAPHY 131

The gauge-invariant degrees of freedom are given by the mesons and baryons

Φ = (QQ̃) , P = (QQ̃′) , P ′ = (Q′Q̃) , Br = (QrQ′Nc−r) , (4.54)

whose dimensions are determined from those in (4.51).

The nature of the infrared theory changes when

x > xc(n) ≡ 1

3
+

5

3
n− 1

3

√
1− 14n+ 13n2 . (4.55)

If (4.50) were still nonzero and marginal, the meson Φ = (QQ̃) would violate the

unitarity bound:

∆(Φ) = 2∆(Q) < 1 . (4.56)

Instead of breaking unitarity, what happens at this point is that the meson decouples,

and for x > xc(n) we are left with a consistent CFT plus a free field Φ.18

Since for x . xc(n) Φ is weakly coupled, we can write down an effective action

L = LSCFT +

∫
d4θΦ†Φ +

∫
d2θ λΦO + c.c. (4.57)

with O being an operator in the CFT (which we identify below) of dimension

∆(O) = 3− 2y . (4.58)

For x = xc(n), Φ flows to a free field, implying that the ΦO interaction is irrelevant

so that Φ decouples. We see that this theory in the IR is like our semiholographic

model. The main difference is that the gauge theory is unitary all the way to the

UV; around the dynamical scale Λ the composite nature of Φ emerges. (Also, in the

static theory the dimension of Φ is calculated using supersymmetry, and no large-N

limit is required.)

In fact, Seiberg duality [129, 130] provides an explicit description for (4.57). Recall

that the dual of SU(Nc) SQCD with NF flavors (Q, Q̃) has a gauge group SU(NF −
18n ≥ 2 is required here, to avoid baryons hitting the unitarity bound. Eventually, for large

enough x the theory exits the conformal window and moves into the free magnetic phase.
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Nc), NF magnetic quarks (q, q̃) and N2
F singlets M with a superpotential

Wmag = qMq̃ . (4.59)

The singlets just correspond to the mesons M = (QQ̃).

The duality generalizes very simply to the theory with extra singlets as well. Start

in the UV with NF = Nf + N ′f flavors and dualize. At lower energy scales, below

the dynamical scale the superpotential (4.50) becomes a mass term Sab(Q′Q̃′)ab ⊂ W

that lifts the singlets S and the mesons (Q′Q̃′). Hence, at low energies the dual is

a theory with gauge group SU(Nf + N ′f − Nc), Nf magnetic quarks (q, q̃) (dual to

(Q, Q̃)), N ′f quarks (q′, q̃′) (dual to (Q, Q̃)), and singlets Φ, P , P ′ (identified in (4.54))

with superpotential

Wmag = qΦq̃ + qP q̃′ + q′P ′q̃ . (4.60)

In the magnetic theory, the meson Φ appears as an elementary field that couples

to the rest of the fields via Φqq̃ ⊂ W . So the operator O above is identified with

the product of magnetic quarks qq̃. In this dual theory, when x ≥ xc(n) the coupling

Φqq̃ is irrelevant and the elementary Φ becomes a free field, in agreement with the

analysis in the electric theory.

The dynamics of this system can be studied at large N . Indeed, the CFT exists at

large Nc and N ′f with Nf fixed, in which case loops containing Φ will be suppressed

by powers of Nf/Nc and Nf/N
′
f . Therefore in components we obtain a fermion ψ

and a complex scalar φ interacting with a large-N CFT sector. The fermion couples

linearly to the CFT operator qψq̃ + q̃ψq (where ψq is the fermion component of the

chiral superfield q and so on). In this large-N limit, the theory is in the same class of

theories as our semiholographic models, and can be analyzed using similar techniques.

In particular, we wish to understand what effect a spacetime dependent coupling

λ(x) would have on the infrared physics. Let us discuss this using the magnetic dual,

which is more appropriate for this purpose. We start with

Wmag ⊃ λ(x)qΦq̃ , (4.61)
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where we continue to use supersymmmetric language to package the following com-

ponent Lagrangian. Denoting the scalar and fermion components of Φ by φ and ψ

respectively, the resulting classical component Lagrangian is

L =LSCFT − ∂µφ∗∂µφ− iψ̄ 6∂ψ − λ(x)2|φ|2(|q|2 + |q̃|2)− λ(x)2|qq̃|2 − (λ(x)φψqψq̃

−λ(x)ψ(qψq̃ + q̃ψq) + c.c.) (4.62)

In the deep IR, supersymmetry no longer controls our calculations, but using large N

we can control the semiholographic mixing between ψ and qψq̃ + q̃ψq in the same way

as we did in §4.3, obtaining correlators which include a would-be subunitary operator

combined with factors of 1/λ which restore unitarity. At shorter scales than λ/∂λ,

we return to the static theory, for which the double trace deformation generated

by integrating out ψ is irrelevant. This theory is unitary, altogether providing a

UV completion of our basic semi-holographic mechanism. In §4.3 we analyzed the

fermionic case explicitly. It would also be interesting to study the full (4.62) at

large N , including the effects of the quartic couplings which are absent in the theory

analyzed in §§4.2 and 4.3.

Further remarks

Here we have considered a spacetime dependent coupling directly in the magnetic

theory, which by itself provides a consistent UV completion for our semiholographic

model. The electric theory gives a different UV theory (the two are equivalent only in

the deep IR), and it is interesting to ask how to incorporate time dependence in this

setup. One possibility would be to consider time dependent gauge couplings. Another

option is to add new singlets N and Φ to the electric theory, with superpotential

Wel ⊃ QNQ̃+ λ(x)NΦ . (4.63)

This is the dual of (4.61) when λ is small. Note that for constant λ the second term

gives masses to N and Φ; integrating out N then yields the usual relation between Φ

and the electric meson, (QQ̃) = −λΦ. In the time dependent case we should instead
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keep these fields in the effective theory; for x ≥ xc(n) we expect that λ(x) will modify

the dynamics of (QQ̃), which would otherwise decouple in the static limit.

Finally, let us briefly mention another type of modification of the theory which

could adjust the infrared physics in a similar way: add an extra chiral superfield X,

assumed to couple in the superpotential as

W ∼ λ
qΦq̃

Xk
(4.64)

to good approximation at sufficiently large and homogenous X, with k some posi-

tive number (and λ constant). For instance, instanton-generated superpotentials can

contain inverse powers of X. If there is a limit where we can treat X as a fixed

background, then requiring that (4.64) is marginal at the fixed point obtains

∆(Φ) = 3−∆(O) + k∆(X) (4.65)

with O = qq̃ as before. So the dimension of Φ would be increased by its interaction

with X, leading to unitarity consistent with nonvanishing λ, unlike the original static

theory in which λ → 0 in the infrared. We have not constructed an example of this

yet; it would be interesting to find a UV completion of this mechanism.

4.4.2 Seiberg-Witten theory and flavor bounds

Our next class of theories is an N = 2 gauge theory in four dimensions, studied by

Seiberg and Witten [181] as well as many other subsequent works19. Using these, we

will make contact with our motivating examples [9]. We will show that the matter

content derived from the brane construction in [9] in the case of parallel 7-branes

would not be unitary with static couplings. This fits well with the fact that the

dual description of the FRW spacetime solutions in [9] has time dependent couplings.

However, this theory is more complicated than those analyzed above; in particular

we have not isolated a simple limit in which to calculate correlation functions on the

field theory side.

19See e.g. [182] for a review and references.
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A useful way to geometrize the Coulomb branch of N = 2 theories is as position

collective coordinates of D3-branes probing sets of (p, q) 7-branes. In that language,

we are interested in nontrivial fixed points which arise when a stack of Nc color branes

hits a set of mutually nonlocal 7-branes. As the 3-branes approach the 7-branes, we

obtain light mutually nonlocal flavors [90, 91, 177, 178, 179]. We would like to use

field theory techniques to understand how many such flavors can arise in this way.

Let us focus on the case of an SU(2) gauge group, with a one complex dimensional

Coulomb branch labelled by u. This captures the dynamics of the center of mass of

the stack of D3-branes in the class of models just described. We work near a fixed

point which we take to sit at u = 0. Holomorphic quantities in the theory such as

the gauge coupling function, the metric on the Coulomb branch, and BPS particle

masses are related to the Seiberg-Witten (SW) curve

y2 = x3 − f(u)x− g(u) (4.66)

where x and y are complex variables, u is the local Coulomb branch coordinate and

the singularity is located at u = 0. f and g are polynomials in u; varying their

coefficients corresponds to turning on relevant deformations of the fixed point. The

SW curve defines a differential λSW by

dλSW
du

=
dx

y
. (4.67)

BPS masses are given by combinations of the periods of λSW on the torus (4.66);

these periods are denoted by (a, aD) and are functions of u. Moreover, the scalar

kinetic term is obtained by differentiating the Kähler potential

K = Im(ADĀ) . (4.68)

The Seiberg-Witten curve also determines the dimension of the Coulomb branch

coordinate u [179]; let us review how this comes about. Since the BPS masses are

linear combinations of a and aD, these periods have dimension one. This is also

consistent with the Kähler potential above having dimension 2. Since a ∼ (u/y)dx,
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we find the relation between the conformal dimensions

∆(x)−∆(y) + ∆(u) = 1 . (4.69)

Close enough to the singularity u = 0 that describes the CFT, f and g have a power-

law dependence, which we parametrize by

f(u) ∼ ur , g(u) ∼ us . (4.70)

For 2s < 3r (2s > 3r) the singularity is dominated by g (resp. f), so these cases need

to be treated separately.

First, when 2s < 3r, the SW curve for u → 0 is y2 ≈ x3 − us; since at the fixed

point it should scale homogeneously under dilatations, the scaling dimensions obey

2∆(y) = 3∆(x) = s∆(u) . (4.71)

Combining this with (4.69) we obtain

∆(u) =
6

6− s
. (4.72)

We see that for s > 6 the Coulomb branch field u would violate unitarity. On the

other hand, for 2s > 3r the singularity is dominated by f , and a similar analysis leads

to the dimension

∆(u) =
4

4− r
. (4.73)

This violates unitarity for r > 4. The set of all integers (r, s) allowed by unitarity

reproduce the ADE classification of singularities [183].

Now we want to express ∆(u) in terms of the number Nf of flavors – i.e. the

number of 7-branes in the D3–(p, q)7-brane realization of SW. Nf is given by the

order of the vanishing of the discriminant

∆ = 4f 3 + 27g2 (4.74)
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at the singularity. This relates Nf to (s, r) above: for 2s < 3r we have Nf = 2s, while

Nf = 3r if 2s > 3r. In terms of Nf , both (4.72) and (4.73) reduce to

∆(u) =
12

12−Nf

. (4.75)

We conclude that there is no unitary N = 2 supersymmetric conformal field theory

in this class of models for Nf > 12.

At this point it is useful to make contact with AdS/CFT and review how this

result is obtained in the gravity side. The F-theory description of Nf 7-branes in

Sen’s limit of constant axio-dilaton gives a 10d metric

ds2 = ηµνdx
µdxν +

dzdz̄

(zz̄)Nf/12
. (4.76)

Introducing a D3 probe parallel to the 7-branes, the worldvolume field u that describes

motion along the z direction has a kinetic term

S = −
∫
d4x ηµν

∂µu∂ν ū

(uū)Nf/12
. (4.77)

From here we can read off the scaling dimension ∆(u) = 12/(12−Nf ), in agreement

with the field theory result. (The relation between u and z that we used here is fixed

by supersymmetry.) Nontrivial CFTs (some of which have no known field theory

description) are obtained by placing Nc D3-branes near one of these ADE singularities

from 7-branes [184, 44].

The gravity side provides a useful description to explore mechanisms for avoiding

the unitarity violation that we just found. In particular, controlled late-time time-

dependent F-theory solutions with Nf > 12 were found in [75] and the implications

for the holographic duality were studied in [9]. There, we have a controlled gravity

description with warping and hence a low energy field theory regime; but in that case

the dual is strongly interacting and we have not done an independent field theoretic

calculation of the effects of the time dependence. From the gravity side we can see the

dual theory is defined up to a time-dependent cutoff Λ ∼ 1/t; it would be interesting

to understand in more detail how this holographic cutoff is realized in the dual theory.



138 CHAPTER 4. UNITARITY BOUNDS AND RG FLOWS

Gravity decouples in the dual theory at late times, so this question is purely field-

theoretic. Next, we will exhibit a static theory with n > n∗ massive flavors, another

way to restore unitarity.

4.4.3 Static theory with n > n∗ massive flavors

In general, a field theory which is well defined in the UV (e.g. QED on the lattice

above its Landau pole) will do something sensible at all scales. What we have shown

is that it cannot retain N = 2 SUSY and n > n∗ massless magnetic flavors. In

the discussion so far, we have focused on the effects of time dependence on unitarity

conditions. However, in this subsection we briefly mention another consistent flow in

the static case in which n > n∗ magnetic flavors are present, but massive.

The work [16] constructed noncompact Calabi-Yau fourfolds describing intersect-

ing (p, q) 7-branes, generalizing those in [184, 44]. These, combined with color D3-

branes placed at the intersection, can produce AdS/CFT dual pairs with small inter-

nal dimensions. In [16] a physical criterion for singularity-freedom was articulated,

matching but generalizing standard results. This limits how many 7-branes can in-

tersect, leading to bounds of the sort described above (the details of which depend on

the codimension of intersection). If we take a case with n > n∗, i.e. with a singular

intersection, and deform it so that the 7-branes do not intersect at the same point,

this can remove the singularity. It was argued in [184, 44] that generically for such

F-theory configurations adding D3 color branes produces a good AdS/CFT duality.

The deformation away from the singularity means that the flavors obtained from (p,q)

strings are not simultaneously light; they are generically massive.

Although it would take us too far afield to describe in detail here, we have used

gauge linear sigma model techniques to construct an example of a noncompact Calabi-

Yau fourfold describing a configuration of 7-branes with n > n∗, deformed away

from the would-be singular intersection. In the resulting dual theory, the excessive

magnetic flavors are massive, corresponding to a smoothed out tip controlled by a

deformation parameter in the superpotential of the sigma model. The model has

nontrivial RG flow corresponding to bending of the branes as one evolves in the
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radial direction toward the resolved singularity.

4.5 Future directions

Happy families are all alike; every unhappy family is unhappy in its own way. – Leo Tolstoy.

In this chapter, we have shown how infrared physics and unitarity conditions

are consistently modified in time dependent quantum field theory, as compared to

static versions of the same theory. We focused on double trace deformations and

related semiholograpic theories in order to explicitly analyze these effects in tractable

examples with nontrivial operator scaling. The lesson is more general, and suggests

several interesting directions to pursue.

We have seen how spacetime dependent couplings affect RG trajectories, in some

cases reversing the direction of flow at long distances as compared to the static ver-

sion of the theory. Similarly, in cases which are classically marginal at the static

level, spacetime dependent couplings will generically introduce nontrivial flow at the

same order. This opens up the possibility of new fixed points, for example in space-

time dependent QED in four dimensions with sufficiently many flavors to screen the

interaction at one loop.

Our results suggest a similar explanation for how the flavor content of the time

dependent holographic quantum field theory in [9] (dual to an FRW geometry with

a warped metric) is distinct from the flavor content allowed in the corresponding

static theories. It would be interesting to pursue other examples to see how unitarity

bounds are affected by spacetime dependent couplings. Examples to which we may

apply these ideas include minimal models which are nonunitary at the static level,

additional examples of SUSY and/or holographic gauge theories going below their

static unitarity bound, and no-ghost theorems in various holographic backgrounds

modified by time dependence.
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4.A Dynamical couplings and unitarity

In this section, we promote the time dependent coupling to a dynamical field, and

study unitarity constraints and scales in this ‘parent’ theory. This will provide a useful

partial UV completion of the main semiholographic example in the text, one which

requires a cutoff that is static and well above the energy scale of the time variation

of the effective coupling coming from the rolling scalar field. A UV completion up to

arbitrarily high scales is provided by the UV-supersymmetric examples in the main

text.

The full action is

L = LCFT −
1

2

(
(∂φ)2 +m2φ2

)
+ λ0 gφO+ −

1

2
(∂g)2 − V (g) (4.78)

where we have promoted the coupling g(x) to a field. Ignoring the cubic interaction

gφO, we will construct a potential V (g) such that at late times g(x) ≈ g0t
α. Then we

will determine the conditions under which g(x) may be considered as a background

field and we can neglect effects of the cubic interaction on the dynamics of this field.

The starting Lagrangian (4.78) has only static couplings, and it will be found that

V (g) does not involve higher dimension operators over the range of field of interest to

us. However, at the UV fixed point the cubic coupling is irrelevant, [λ0] = 2−∆+ < 0,

for d ≥ 2 and ν > 1. Thus, this theory needs a UV cutoff

Λ0 =
1

λ
1/(∆+−2)
0

. (4.79)

Using conservation of energy,

1

2

(
dg

dt

)2

+ V (g) = V0 (4.80)

and inverting t = (g/g0)1/α gives a (late time) potential

V (g) = V0 −
1

2
g

2
α
0 α

2g(x)2(1− 1
α

) . (4.81)



4.B. GAUSSIAN THEORIES WITH SPACETIME DEPENDENT MASSES 141

The potential is negative for large enough g, but the power 0 < 2(1 − 1
α

) < 2 for

α > 0. So g takes an infinite time to reach infinity and the system does not require

a self-adjoint extension.

For our purposes, we are concerned about unitarity bounds but not model-building

“taste bounds”; i.e. we are content to tune the potential as required to maintain

the shape (4.81). Similarly, we may avoid strong effects of particle (or unparticle)

production by coupling O to a sufficient number of additional operators in the CFT

which do not couple directly to g. Thus, as the time dependent motion of g produces

excited states of O, it quickly shares that energy with other modes which do not

directly backreact on g. This procedure may buy us a parametrically long time under

which nonadiabatic effects on the underlying state of the system may be ignored,

though at some point these effects become important.

The energy scale for the perturbations of the rolling scalar is given by the square

root of

V ′′(g) = −(α− 1)(α− 2)
g

2/α
0

g(x)2/α
= −(α− 1)(α− 2)

1

t2
, (4.82)

which is of the same order as ∂g/g. The range 1 < α < 2 is interesting in that

V ′′(g) > 0, giving the fluctuation δg a positive mass of order 1/t. Above the scale

∂g/g we must include the dynamics of the field g(x). This gives a UV completion

up to the scale Λ0 (4.79) at which we could introduce a (static) cutoff to render the

theory completely well defined. As a result, the theory must be unitary on all scales;

this is checked in the infrared in the main text.

4.B Gaussian theories with spacetime dependent

masses

In this appendix we consider a model of time dependence given by a quadratic action

with two fields coupled together via spacetime dependent masses, and perform the

path integral explicitly. The kinetic terms are taken to be arbitrary kernels K(x, y).

This theory also captures the leading result for the effective action of a field coupled

to a large-N CFT that was analyzed in §4.2 and §4.3.
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4.B.1 Bosonic model

Consider a Gaussian bosonic theory of the form

S = −1

2

∫
ddxddy (φ(x)Kφ(x, y)φ(y) +O(x)KO(x, y)O(y)) +

∫
ddx g(x)O(x)φ(x) .

(4.83)

In the setup of §4.2, O would be an operator in a nontrivial CFT, φ is the weakly

coupled scalar, and g(x) is the spacetime dependent coupling. Also, in this case the

kernels Kφ and KO would be translationally invariant, but in our present discussion

these kernels will be arbitrary. (Of course, they should be positive definite, so that

the path integral is well defined.)

Our goal is to compute the two-point functions for (4.83). For this, it is convenient

to adopt a matrix notation where

S = −1

2
φaKabφb (4.84)

and

Kab =

(
Kφ(x, y) −g(x)δ(x− y)

−g(x)δ(x− y) KO(x, y)

)
(4.85)

Here a, b are multi-indices that distinguish both (φ,O) and the position coordinates;

summation over repeated indices also contains an integral over positions. With our

mostly plus sign conventions, we have

Z[J ] =

∫
Dφ exp

[
− i

2
φaKabφb + Jaφa

]
= exp

[
− i

2
Ja(K

−1)abJb

]
(4.86)

and the two-point function is given by

〈φaφb〉 =
δ2Z

δJaδJb
= −i(K−1)ab . (4.87)

The inverse of (4.85) can be calculated using the formula for the inverse of a block
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matrix(
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)
, (4.88)

which gives

(K−1)ab =

(
(Kφ − gK−1

O g)−1 K−1
φ g(KO − gK−1

φ g)−1

K−1
O g(Kφ − gK−1

O g)−1 (KO − gK−1
φ g)−1

)
(4.89)

=

(
(Kφ − gK−1

O g)−1 K−1
φ g(KO − gK−1

φ g)−1

(KO − gK−1
φ g)−1K−1

φ g (KO − gK−1
φ g)−1

)
(4.90)

The two-point functions are then

〈φ(x)φ(y)〉 = −i(Kφ − gK−1
O g)−1(x, y)

〈φ(x)O(y)〉 = −i
[
K−1
φ g(KO − gK−1

φ g)−1
]

(x, y)

〈O(x)O(y)〉 = −i(KO − gK−1
φ g)−1(x, y) . (4.91)

These formulas reproduce the large-N result (4.23) for 〈φ(x)φ(y)〉 obtained by

summing the geometric series with O propagators. However, it is important to note

that for a kernel such as

K−1
O (x, y) =

i

[(x− y)2]∆
(4.92)

we need to add the rest of the CFT (that is responsible for the nontrivial dimension ∆)

in order to have a consistent theory. So, while the gaussian model captures correctly

the two-point functions for φ and O, one should keep in mind that it is not complete

by itself without the remaining CFT. This is what we mean by ‘effectively gaussian’

in the main text.
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4.B.2 Fermionic model

Let us now analyze a fermionic Gaussian theory with spacetime dependent coupling

g:

S = ψ̄Kψψ −
1

2
m(ψψ + ψ̄ψ̄) +OfKfO + gψOf + ηψ + ηfOf + c.c. (4.93)

where the sources η and ηf are introduced to calculate the propagators, and are set

to zero at the end. For instance, Kψ = −iσ̄µ∂µ δd(x− y) for a free fermion; we follow

the two-component notation of [172, 173]. As before, Of plays the role of the CFT

fermionic operator, so we have not included a mass term for this field.

It is useful to introduce a ‘Majorana’ fermion Ψa ≡ (ψ, ψ̄,Of ,Of ), and similarly

for the sources Na ≡ (η̄, η, η̄f , ηf ), such that the action can be written compactly as

S =
1

2
Ψ̄aKabΨb + Ψ̄aNa , (4.94)

with

Kab =


Kψ −m 0 g∗

−m K̄ψ g 0

0 g∗ Kf 0

g 0 0 K̄f

 . (4.95)

Here K̄ψ is defined by ψK̄ψψ̄ = ψ̄Kψψ, and similarly for K̄f . In particular, K̄ψ =

−iσµ∂µ δd(x− y) for a free fermion.

The equation of motion gives KabΨb = −Na, so the partition function becomes

Z[Na] =

∫
DΨ eiS = exp

[
− i

2
N̄a(K

−1)abNb

]
. (4.96)

From here, the two-point functions are

〈ΨaΨ̄b〉 = − δ2Z

δNbδN̄a

= i(K−1)ab . (4.97)

The inverse (K−1)ab is calculated using (4.88). In the notation of this equation we
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have, for instance,

A−BD−1C =

(
Kψ − g∗K̄−1

f g −m
−m K̄ψ − gK−1

f g∗

)
. (4.98)

This shows that quantum effects from Of shift the effective action of ψ by Kψ →
Kψ − g∗K̄−1

f g. The inverse of (4.98) gives

〈ψ(x)ψ̄(y)〉 = i
[
(K̄ψ − gK−1

f g∗) ·
(
(Kψ − g∗K̄−1

f g)(K̄ψ − gK−1
f g∗)−m2

)−1
]

(x, y)

〈ψ(x)ψ(y)〉 = im
(
(Kψ − g∗K̄−1

f g)(K̄ψ − gK−1
f g∗)−m2

)−1
(x, y) , (4.99)

in agreement with the large-N results in §4.3.

4.C Expansion of the two-point functions

4.C.1 Expansion around the nontrivial scale-invariant regime

The two-point function (4.30) suggests that there is an approximately scale-invariant

regime in our semi-holographic model. In the following we show that our theory

indeed flows to this regime in the IR for a range of α.

For this we start with the full two-point function (4.23) and evaluate the correc-

tions to (4.30) from Kφ. These are obtained by expanding (4.23) around Kφ = 0:

〈φ(x)φ(x′)〉 = i
[
(gK−1

O+
g)−1 + (gK−1

O+
g)−1Kφ(gK−1

O+
g)−1 + · · ·

]
(x, x′) . (4.100)

The leading term here is given by (4.30). The subleading term from Kφ can be

neglected if ∣∣∣(gK−1
O+
g)−1Kφ(gK−1

O+
g)−1(x, x′)

∣∣∣� ∣∣∣(gK−1
O+
g)−1(x, x′)

∣∣∣ , (4.101)
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or more directly∣∣∣∣[(x− x′)2]∆−
∫
ddz

1

g(z)[(x− z)2]∆−
(−∂2

z +m2)
1

g(z)[(z − x′)2]∆−

∣∣∣∣� 1 . (4.102)

Let us estimate this integral in euclidean space for the power law coupling g(x) =

g0|x|α. Convergence at the origin (in the Euclidean version of this calculation) requires

α < (d − 2)/2 when φ has a kinetic term, or α < d/2 if it only has a mass term,

but as mentioned above we need not extend the power law form of g(x) all the way

to the origin. Convergence at z → x, x′ requires ν > 0, 1 respectively, however,

these divergences are present in the static case as well and can be cancelled by local

counterterms. Convergence at large |z| requires α > 2ν − d/2 in the massive case

m 6= 0, or α > 2ν − d/2− 1 in the massless case m = 0.

We would like to show (4.102) for large |x|, |x′|, and |x− x′|. There are (at least)

two ways of taking this limit: either |x| ∼ |x′| ∼ |x − x′|, or one of them is much

larger – say |x| � |x′|. In either case, a leading contribution to the integral comes

from the region |z| ∼ |x′| and the left hand side of (4.102) is of order

∼
(
− 1

|x′|2
+m2

)
1

|x′|2(α−ν)
. (4.103)

One may verify that higher order corrections in (4.100) all come with additional

powers of (4.103). Therefore all corrections from Kφ are negligible for large |x|, |x′|
if we have

α > ν (4.104)

in the massive case m 6= 0, or

α > ν − 1 (4.105)

in the massless case m = 0. These conditions are strictly stronger than the corre-

sponding convergence conditions at large |z|, as long as ∆− = d/2 − ν > 0. We

conclude that our theory flows to an IR fixed point characterized by the two-point

function (4.30) when (4.104) or (4.105) is satisfied.

The analog calculation in Minkowski signature would have additional divergences
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on the light cone if ∆− > 1. These divergences are present already in the static

limit, and are absent given an appropriate iε prescription which is easy to implement

in momentum space. In our case as well, this is simplest to address by Fourier

transforming the factors 1/[(x− z)2]∆− and 1/[(x′ − z)2]∆− , then integrating over z.

This turns the left hand side of (4.102) into an expression proportional to (considering

for simplicity the term proportional to m2)

m2c2
ν

∣∣∣∣∣[(x− x′)2]∆−
∫
ddp1

∫
ddp2

˜( 1

g2

)
(p1 + p2)

ei(p1x+p2x′)

(p2
1 − iε)ν(p2

2 − iε)ν

∣∣∣∣∣ (4.106)

with
˜( 1
g2

)
(p1 +p2) the Fourier Transform of 1/g2(z), a smooth function of z. For even

α, this can also be done by analytically continuing the (regular) Euclidean result.

It is also worth noting that the scale covariance manifest in our IR two-point

functions does not hold for all times, as we have explained above. In particular, our

theory has (un)particle production due to the spacetime-dependent coupling, and

1/N corrections also become important at sufficiently late times.

4.C.2 Expansion around the free fixed point

We may also ask if there are other IR fixed points to which our theory could flow.

Specifically, we may ask if the free g = 0 fixed point characterized by (4.21) is IR

stable.

Let us first work in the massless case m = 0, so the fixed point contains a free

massless scalar field decoupled from a CFT. To investigate its stability in the IR, we

expand the full two-point function (4.23) around g = 0:

〈φ(x)φ(x′)〉 = −i
(
K−1
φ +K−1

φ gK−1
O+
gK−1

φ + · · ·
)

(x, x′) . (4.107)

The leading term here is 1/|x−x′|d−2, the two-point function of a free massless scalar

field. The subleading term can be neglected if∣∣∣∣|x− x′|d−2

∫
ddz

∫
ddz′

g(z)g(z′)

|x− z|d−2|z − z′|2∆+ |x′ − z′|d−2

∣∣∣∣� 1 . (4.108)
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Again one could consider different ways of taking |x|, |x′|, and |x−x′| to large values.

Convergence of the integral at large |z|, |z′| leads to a weaker condition than our final

result. The left hand side of (4.108) is estimated to be of order |x′|2(α−ν+1). Therefore

we conclude that the free fixed point is IR stable when α < ν−1. When this condition

is violated, our previous result shows that the theory flows to the nontrivial fixed point

characterized by (4.30).

Note that we would have arrived at the same conclusion (4.105) had we demanded

that the g(x)g(x′) term in the effective action be a relevant deformation of the free

fixed point. Indeed, under the scaling transformation

x→ λx , x′ → λx′ , φ→ λ−
d−2
2 φ (4.109)

the last term in (4.24) is relevant precisely when α > ν − 1. So our previous explicit

calculation shows that we are in a situation where scaling arguments from static

QFT still apply in the presence of spacetime dependent couplings. The power law

g(x) = g0|x|α has turned an interaction that would have been irrelevant in the static

case into a relevant one (for α > ν − 1). The scale at which this coupling crosses

over from irrelevant to relevant is ∆p ∼ 1/|x|. In other words, this is a “dangerously

irrelevant” operator, with the “danger” coming from spacetime dependence.

One could also consider the massive case m 6= 0, where the scalar field is gapped

out from the free fixed point in the IR. In this case we look at the two-point function

of O+.20 In the large-N limit it similarly sums to

〈O+(x)O+(x′)〉 = −i
(
KO+ − gK−1

φ g
)−1

(x, x′) . (4.110)

The free fixed point is stable in the IR if we can ignore the subleading corrections in

the expansion

〈O+(x)O+(x′)〉 = −i
(
K−1
O+
−K−1

O+
gK−1

φ gK−1
O+

+ · · ·
)

(x, x′) , (4.111)

20One should in principle analyze 〈O+O+〉 also at the nontrivial scale-invariant regime, but there
we have an approximate operator equation O+(x) = m2φ/g(x) in the IR, so the analysis is similar.
In the massless case we have a different operator equation O+(x) = −∂2φ(x)/g(x), so O+ is the
descendant of φ up to a factor of g(x).
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where the propagator K−1
φ (x, y) is approximately a delta function δd(x − y)/m2 in

the IR. Therefore we arrive at the following condition∣∣∣∣|x− x′|2∆+

∫
ddz

∫
ddz′

δd(z − z′)g(z)g(z′)

m2|x− z|2∆+ |x′ − z′|2∆+

∣∣∣∣� 1 , (4.112)

which can be verified to be equivalent to α < ν for large |x|, |x|′, and |x−x′|. Again,

we conclude that our theory flows to the free fixed point in the IR if α < ν, otherwise

it flows to the nontrivial scale-invariant regime characterized by (4.30).

4.D Higher-derivative toy model

In this chapter we have focused on models that are static in the UV and exhibit

time dependence at energies below the scale ∂g/g. It is also possible that the scale

∂g/g lies above the scale Λg (a scale at which in the static theory ghosts can appear).

With time dependent couplings, the role of Λg is different from what it is in the

static theory; the would-be ghost solutions must be reanalyzed. Here we set up that

question in a simple toy model.

Consider a scalar field

S =

∫
ddx

{
(∂φ)2 + g(t)(∂2φ)2 + . . .

}
(4.113)

There are additional solutions to the wave equation since the action is fourth order

rather than second order. These solutions represent a breakdown of the theory in the

standard quantization21, however, as long as the theory is cut off in the UV before the

scale at which the new solutions enter it will be well-defined and unitary. With time

dependence, there will be additional terms involving ġ, g̈ in the equation of motion

which may remove the new solutions over some range of scales. We can analyze this

explicitly in a class of models with g(t) = g0t
α.

21It is however possible to quantize the time-independent theory under an alternate quantization
such that the spectrum is ghost-free, since the Hamiltonian is PT-symmetric. For a discussion of
these issues, see e.g. [185, 186].
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The equations of motion following from the action are

−∇2φ+∇2((g(t)∇2φ) = 0. (4.114)

It is clear from this that there is always a solution ∇2φ = 0. For constant g(t), there

is additionally a solution with ∇2φ ∼ φ/g2. However, for φ̇ġ
φg

or g̈
g
� 1/g this solution

is absent, the ansatz fails. The toy example makes the origin of the O(1
t
) cutoff

(which we found also in the semiholographic example) particularly transparent: for

g̈ � 1, the overall scale g0 of the coupling cancels from the equation of motion, and

the solutions depend on the scales of the derivatives ∂g
g
,
(
∂2g
g

)1/2

.

Working for simplicity in flat space, for the time-independent case α = 0, the

solutions are of the form φ(t, ~x) ∝ eiωt+i
~k~x, where

ω = ±|~k|,±
√

1

g
− ~k2. (4.115)

The first pair of solutions corresponds to the ‘normal’ solutions with ∂2φ = 0.

For general α 6= 1, in the regime g̈ ∼ g0
t2
� 1 we can drop the first term in 4.114.

The solutions are separable in space and time and can be found explicitly. For a

spatial ansatz ei
~k~x, there are a pair of normal solutions with time-dependent factor

e±ikt and an additional pair whose positive frequency solution is

∝ eikt
(
−2iktα

1− α

)
+ e−ikte

−iπα
2 (2k)αΓ[1− α,−2ikt] (4.116)

where we have made use of the incomplete gamma function. The additional (positive

frequency) solution in the case α = 1 is

∝ eikt log(t) + e−iktEi(2ikt) (4.117)

The power-law dependence means that these solutions enter at an energy scale of

O(1
t
), which is above the static cutoff defined by the instantaneous value of the cou-

pling for a range of parameters. Thus the analysis of unitarity conditions will be

significantly different in the time dependent version of this theory as compared to the
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static case.



Chapter 5

Simple exercises to flatten your

potential

5.1 Motivation: realizing your potential

Inflation [187, 188, 189, 190] is a powerful framework for addressing the cosmological

flatness and horizon puzzles, and for generating the primordial seeds of structure. One

recent advance is the development of a model-independent “bottom-up” effective field

theory framework [191, 192, 193], which organizes CMB observables in terms of the

lowest dimension operators participating in the effective theory. Still, model building

plays an important role, both in field theory1 and from the “top down” in string

theory. In particular, inflation is sensitive to Planck-suppressed higher dimension

operators in the low energy Lagrangian (an infinite sequence of them in the case of

large-field inflation with detectable tensor modes). It is therefore of interest to model

inflation within a UV-complete candidate for quantum gravity, of which string theory

is our best-studied example (see [195] for a recent review).

The extra degrees of freedom of string theory – arising at various mass scales up to

the four-dimensional Planck scale – affect the effective action along candidate inflaton

directions in field space. This has led to important constraints and complications,

such as order one corrections to slow roll parameters from compactification effects

1See [194] for a recent example.
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[196] and bounds on the inflationary energy relative to the scale of moduli stabilizing

potential energy barriers [197][198].

Additional fields can play other roles, sometimes in fact contributing useful effects

to model building. The string theory motivated possibility of many additional light

fields assisting inflation has been addressed in works such as [199, 200], and the ten-

dency of particle production to slow down the inflaton was analyzed in [201, 202].2

In some circumstances, integrating out heavy fields changes the character of the in-

flationary mechanism, producing higher dimension operators suppressed by the in-

flaton. An early example of this is [153, 155] where off-diagonal Yang-Mills matrix

fields renormalize the effective action for the diagonal fields. In [209] similar effects

were constructed via integration out of heavy fields coupled through the kinetic term.

Integrating out heavy fields can also introduce a field-dependent enhancement of the

kinetic term in the inflaton equation of motion [210] or produce features in the power

spectrum for small enough radius of curvature in field space (see e.g. [211] for a recent

discussion). Effects of heavy fields on precision observables such as the spectral tilt

and the tensor to scalar ratio were considered in [212].

In this note, we show how interactions with heavy scalar fields – such as moduli

and KK modes – can help flatten the inflaton potential. This mechanism was used in

the small-field models of [213, 214, 215] but can occur very generally. The reason is

very simple: the heavy fields coupled to the inflaton relax to their most energetically

favorable configuration. Consider, as motivation, a simple field theoretic toy model

with two fields φL, φH with the following potential

V (φL, φH) = g2φ2
Lφ

2
H +m2(φH − φ0)2 . (5.1)

The light field φL will play the role of the inflaton in this toy model. Assuming its

kinetic energy is a subdominant effect (as we will shortly confirm), the heavy field

will track its instantaneous minimum, which is itself a function of φL, and so the

2For similar approaches using a gas of particles to slow the inflaton field on a steep potential see
e.g. [203, 204, 205, 206, 207, 208].
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potential takes the form

V (φL, φH,min(φL)) =
g2φ2

L

g2φ2
L +m2

m2φ2
0 . (5.2)

For φL � m/g, the inflationary potential is nearly flat. The Friedmann equation

becomes 3H2M2
P ≈ m2φ2

0, and

H2 ∼ m2 φ
2
0

M2
P

. (5.3)

We take φ0 to satisfy 0 < φ0 � MP so that m � H, enforcing that φH be heavy

enough not to produce scalar perturbations during inflation.3 As mentioned above,

here we ignored the time derivative terms in the φH equation of motion. The ratio

between 3Hφ̇H and a typical term ∼ g2φHφ
2
L in ∂φHV is tiny in our solution, of order

(m/gφL)4(φ0/φL)2.

This mechanism can operate purely within field theory. However string theory

naturally provides a wealth of heavy scalar fields coming from moduli stabilization

and from Kaluza-Klein modes which may play the role of φH , as well as potentially

lighter fields such as axions and certain brane positions that may play the role of the

light inflaton φL. In a general compactification we expect couplings between axions,

fluxes and geometry. As long as the moduli are not destabilized in the process4

the adjustments of the heavy fields will generically go in the direction of flattening

the potential. (For restricted couplings, this can fail; for example if we shifted φ0

by a term proportional to φL in the above example, it becomes quadratic at large

field values, and can even steepen to quartic for a finite range of φL depending on

parameter choices.)

One interesting consequence of this concerns m2φ2 chaotic inflation, a classic

model [190]. The couplings in the effective action including the light and heavy fields

are analytic, and the scalar potential is generically quadratic around an extremum

of the potential. In string theory, a key example of such a quadratic term descends

3Such fluctuations from additional light fields are constrained by existing limits on isocurvature
fluctuations and non-Gaussianities in the CMB. [216, 217, 218, 219, 220]

4Although this is a more energetically favorable outcome, it requires the fields to go over moduli-
stabilizing barriers.
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from couplings of the form |B ∧ F |2 in the low energy effective action, where B is a

two-form potential field which produces an axion upon integration over a two-cycle

in the compactification. However, although the potential is quadratic near the origin,

the response of the heavy fields generically flattens the potential further out. The

models of [221] in which the potential ends up linear in φL for φL > MP is a particular

example of this. The present work aims to provide a more systematic understanding

of this theoretical trend. (See [222, 223, 224] for an interesting discussion of m2φ2

inflation from flux monodromy developed within an effective field theory framework.)

Observationally, a quadratic potential is still viable, currently sitting at the edge

of the 1σ exclusion contours, with smaller powers (corresponding to flatter potentials)

lying further inside the allowed region [216, 217, 218, 219, 220]. Upcoming measure-

ments [225] are expected to significantly improve the constraints on the tensor to

scalar ratio and the tilt of the power spectrum. Because of the effects of heavy fields,

including the flattening effect we consider here, it would not be surprising if the m2φ2

model gets excluded. Special choices of compactification minimizing backreaction

may realize chaotic inflation with a quadratic potential, but flatter potentials such

as power-law inflation V (φ) ∝ φp with p < 2 appear to arise more generically at

sufficiently large values of φ. We illustrate the predictions of a flattening monomial

power-law potential against the present status of the WMAP 7-year results for the

CMB in Fig. 5.1.

This chapter is organized as follows. In the remainder of this section and the next,

we introduce the general setup, further specify conditions under which the energetic

argument leading to flattening of the potential applies, and describe important situ-

ations where it fails. In section 3 we give several distinct realizations of the effect in

the context of axion inflation in string theory, with different fields playing the role of

φH . In section 4 we make some concluding remarks.

5.1.1 Additional kinetic effects

In the toy model presented above, we solved for φH in terms of φL to good approxi-

mation by solving ∂φHV (φL, φH) ≡ 0; the kinetic term φ̇2
H was subdominant. In more
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φ4/5

φ

φ2/3

WMAP 7yr + BAO + H0

Figure 5.1: Combined data constraints on the tensor to scalar ratio r and the tilt
ns [216, 217, 218, 219, 220] together with the predictions for power-law potentials
∝ φp , p > 0 for 50 e-foldings (green line) and 60 e-foldings (blue line) of inflation.
Flattening the potential corresponds to moving down and to the right along these
lines. The colored points denote powers that have arisen in various large-field mon-
odromy inflation models in string theory: IIB linear axion monodromy from 5-branes
(squares; φ), IIA moving 4-brane monodromy (diamonds; φ2/3), and a candidate
example of IIB flux axion monodromy (this work; triangles; φ4/5).
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general examples we will need to establish whether the same approximation holds.

Consider an action (for homogeneous fields) of the form∫
d4x
√
−g
{
φ̇2
H +GLL(φH)φ̇2

L − V (φL, φH)
}
. (5.4)

In integrating out φH , there are two effects that may arise from the kinetic terms.

The first, discussed in [210], is that the φ̇2
H kinetic term affects the solution for φH as

φL rolls. This is significant if |dφH/dφL| is large compared to
√
GLL. In our examples,

as in the above toy model, we will check that this quantity is small.

The second, discussed in [209], arises from the coupling of φH in the light field’s

kinetic term GLL(φH)φ̇2
L. If φ̇2

L is large enough during inflation, this term can signif-

icantly affect the solution for φH , leading to a nontrivial k-inflationary [226] effective

Lagrangian L[(∂φL)2, φL]. In this class of models, inflation may occur on a steep

potential, with self-interactions of the field φL slowing it down (resulting in a large

non-Gaussian signature in the power spectrum). The energetics of the backreaction

for these more general solutions is not as simple as it is in the limit of slow roll in-

flation, where the heavy fields adjust in such a way as to flatten the potential when

possible. Within slow roll inflation we have φ̇2
L � V , and this will allow us to self-

consistently bound the effect in our examples below. It would be interesting to find

UV-complete examples of the effects in [209, 210] in future work.

Steepening from kinetic curvature

We should emphasize that flattening of the potential is not an automatic consequence

of couplings to massive fields. For example, even when the kinetic effects of the

previous subsection are small it can fail, as can be seen from the following variant of

our previous toy model:

L =
1

2

φH
MP

φ̇2
L +

1

2
φ̇2
H − g2φ2

Lφ
2
H −m2(φH − φ0)2 − µ2φ2

L . (5.5)

As before, for large φL, |dφH/dφL| is small compared to
√
GLL and φ̇2

H can safely be

neglected, and the kinetic term φH
MP

φ̇2
L is subdominant to the potential, so that the
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effects of [209] are suppressed. The canonical field φ̃ at large φL is now ≈ m
g

√
φ0
MP

log

(φL/MP ), and the potential has the form

Veff (φ̃) ≈ m2φ2
0 + µ2M2

P e
2gφ̃
m

√
MP
φ0 . (5.6)

Thus, if GLL(φH,min(φL)) scales like a negative power of φL, then the dressed kinetic

term is responsible for steepening the potential. This inverse power can arise for ex-

ample in the case where φH descends from the overall (inverse) volume of a string

compactification, leading to an increased volume at large inflaton field values (fatten-

ing the manifold, and steepening the potential). This can be neglected in examples

with sufficiently strong volume-stabilizing potential barriers. In a complete example,

µ would likely not be a fixed parameter, and all backreaction effects would need to

be incorporated consistently.

5.2 Warmup: review of axion monodromy infla-

tion

Our string-theoretic examples grew out of a project aimed at developing the flux

version of axion monodromy inflation. Let us begin by briefly reviewing the general

discussion of this mechanism in [221]. A flux version of monodromy inflation has

been obtained at the level of effective field theory also in [223, 222, 224], and the

phenomenology of monodromy inflation was further developed in [227, 228].

String theory naturally provides axions

b =

∫
Σp
Bp , c =

∫
Σp
Cp (5.7)

coming from p-form Neveu-Schwarz–Neveu-Schwarz and Ramond-Ramond fields Bp,

Cp wrapped on p-cycles in the compact directions. Assuming a single scale L
√
α′

for the compactification geometry, the canonically normalized field is related to the
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angular scalar field (5.7) by

φb
Mp

∼ b

Lp
,

φc
Mp

∼ gsc

Lp
. (5.8)

The theory contains couplings between the axions and various fluxes and spacefilling

branes that are generically present in compactifications. These couplings introduce

monodromy in the axion direction: the system builds up potential energy as b or c

traverses its basic period.

In the specific, UV-complete examples discussed in [221] the axion potential is

lifted by the DBI action

SDBI = − 1

gsα′3

∫ √
det(GMN +BMN)∂αXM∂βXN ⇒ V (φb) ∝

√
1 +

(
φb
MP

)2

(5.9)

for a spacefilling D5-brane wrapped on the 2-cycle (or its S-dual in the case of RR ax-

ions). Using the AdS/CFT correspondence, this result can be described equivalently

in terms of a dual geometry plus fluxes. In that description, the monodromy arises

from flux couplings of the form

L ∼ |B2 ∧ F3|2 + . . . (5.10)

or its S-dual |C2 ∧ H3|2. Although the coupling (5.10) is quadratic, backreaction of

the axion and fluxes on the geometry leads to a linear potential, as we will discuss in

more detail below. This provides an explicit example of the general trend discussed

in the introduction: that back reaction of the potential energy descending from (5.10)

should flatten the potential, since this is energetically favorable.

Globally, however, the most energetically favorable configuration in metastable

string compactifications is the runaway to large radius and/or weak coupling, or

decays to negative cosmological constant. Therefore, before discussing examples of

potential-flattening effects, let us first briefly review the combined conditions for

maintaining moduli stabilization and the COBE normalization of the power spectrum.

As is emphasized in [221], the canonically normalized axion potential is, in the
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absence of strong warping (supposing for illustration that B2 is the inflationary axion)

1

α′4

∫
d6x
√
−g|B2 ∧ Fq|2 ∼

1

α′4
φ2
b

M2
P

∫
d6x
√
−g|Fq|2 . (5.11)

If the q-form flux lifting the axion potential makes a sufficiently subleading contribu-

tion to the moduli stabilization, one can obtain a super-Planckian field range without

destabilizing the moduli.

In order to provide a successful phenomenological model of chaotic inflation, we

must have a sufficient range to give Ne = 60 e-foldings of inflation, and the power

spectrum of scalar perturbations must match the COBE normalization,

∆2
scalar =

H4

(2π)2φ̇2
∼= 10−9 . (5.12)

For a power-law potential V (φ) ∝ µ4−nφn, the required field range is ∆φ/Mp ∼
√
nNe,

which is O(15) for the quadratic case. The COBE normalization becomes

(
µ

MP

)2−n
2
(

∆φ

MP

)n
2

+1

∼ 10−5 (5.13)

which becomes µ/MP ∼ 10−6 for a quadratic potential and O(10−3) for a linear

potential.

Let us first review the basic scales in the problem which show that it is possi-

ble for axion monodromy inflation to self-consistently satisfy the required number of

e-foldings and COBE normalization. Here is an estimate of the effects of these obser-

vational constraints in the extreme case of m2φ2 inflation, in the absence of warping

(flatter potentials and warped models being easier to embed below the moduli stabi-

lizing barrier, this is the most conservative estimate we can make). Supposing that

the inflaton comes from a Cp axion lifted by the term |Cp ∧H3|2, the flux potential is

U =
1

α′4

∫
d6x
√
−g|Cp ∧H3|2 ∼

M2
P

α′

(gsc
Lp

)2
(
K

L3

)2

∼M4
P

(
g2
sK

2

L12

)
φ2
c

M2
P

(5.14)

where we have labeled the number of H3 flux quanta by K. The condition for realizing
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60 e-foldings of inflation without destabilizing the moduli and for matching the power

spectrum to the COBE normalization then becomes (returning to the general case of

q-form flux lifting the inflaton ∼ |Cp ∧ Fq|2)

15Kinf � Kmoduli ;
µ

Mp

∼=
gsKinf

Lq+3
(2π)7/2 ∼= 10−6 . (5.15)

These conditions can be satisfied for reasonable parameter values, e.g. gs ∼ 0.02,

Kinf ∼ 1, q = 3, L ∼ 10. Moreover, as already mentioned, warping can naturally

suppress the potential energy if the inflationary sector is localized in a region of large

gravitational redshift, as in the specific examples in [221]. Therefore there is no

immediate obstruction to fitting the flux-based version of axion monodromy inflation

into stabilized string compactifications, avoiding catastrophic decay of the vacuum.

More generally, there may be single-sector models where the inflaton potential

itself helps stabilize the moduli during inflation, competing with or even dominating

over some of the terms in the moduli potential. The gravity dual of the models [221]

is a familiar local example of this, where down the brane throat the axion c =
∫

Σ2
C2

helps stabilize the cycle Σ2 it threads. Below we will explore potential generalizations

of this which are further from a simple brane construction.

5.2.1 Flattening vs. moduli potential barriers

Before proceeding to our main flattening exercises, it is worth describing a simple

example which illustrates both the flattening effect and how the requirement of mod-

uli stabilization can cut it off. De Sitter vacua can plausibly be achieved in string

theory via perturbative techniques, where localized sources of energy such as cur-

vature, D-branes and NS5-branes, fluxes, orientifolds and others contribute to an

effective potential for the four dimensional scalar fields, which is minimized to solve

the equations of motion. Such constructions were introduced in [33] and discussed in

[51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]; worked examples include [48, 229, 50, 7]. It

is useful to organize these mechanisms in terms of an ‘abc’ structure for the potential,

V (g) = ag2 − bg3 + cg4 (5.16)
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where g is a representative modulus such as the the string coupling (with the coeffi-

cients a, b, and c depending on the other moduli). Such a potential generally arises

with curvature, Neveu-Schwarz–Neveu-Schwarz fluxes, and/or supercritical dimen-

sionality in the a term, orientifold planes in the b term, and Ramond-Ramond fluxes

in the c term. This potential has a positive metastable minimum when the quantity

4ac/b2 is minimized as a function of the other moduli, within the window

1 <
4ac

b2
<

9

8
. (5.17)

Adding flux energy from an axion term will produce an effective potential of the form

V (g, x) = ag2 − bg3 + (1 + x2)cg4 (5.18)

where x is proportional to the axion field. Explicit examples may be found among

the axions in [229, 50, 7], though we have not developed complete models.

Setting 4ac/b2 = 1, the potential is stabilized at a Minkowski minimum for x = 0,

and as x is turned on, the de Sitter minimum persists as long as

x2 <
1

8
. (5.19)

Including backreaction, V (gmin(x), x) is no longer quadratic, as plotted in Figure 5.2.

As expected, the potential is quadratic for small values of x where backreaction can

be ignored, and then flattens as x is increases. However, the flattening only starts to

become significant when x is of order one, but from (5.19) it is clear that x begins to

destabilize the minimum at this point.

5.3 Workout: axions pushing on heavy fields

Finally let us turn to the effects of interest in this chapter, the backreaction of the

energy (5.11)(5.14) on heavy fields and its effect on the inflationary potential energy.
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Figure 5.2: Effects of an inflationary flux on the three-term structure stabilized in a
Minkowski minimum for x = 0.

5.3.1 Bowflux: Sloshing of flux on fixed cycles

The axion potential may be modified by rearrangement of fluxes on fixed cycles so

as to minimize their energy. To illustrate this effect, we consider a model of the kind

discussed by [27, 49] stabilized by three-form fluxes H3, F3. We add a small extra

three-form flux ∆H3 to an unwrapped cycle, and turn on an axion C2 threading a

cycle Σ2 as the inflaton. Our candidate inflaton will be c ∼
∫

Σ2
C2. We minimize the

other fields at a given value of c, given consistency with moduli stabilization which

requires that the inflationary energy stay below the moduli-stabilizing barriers. In

general the potential will descend from terms in the 10D action of the form

1

g2
s

|H3 + ∆H3|2 + |C2 ∧ (H3 + ∆H3)|2 + |F3|2 . (5.20)

The number of flux quanta threading a given cycle is topological and does not change,

but the fluxes may slosh around on their cycles so as to minimize the total energy.

If the flux ∆H3 shifts so that its support is partially separated from that of C2,

for instance, the Chern-Simons term would be weakened, but the contribution to

the potential from the |∆H3|2 term would increase. The competition between them
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determines the optimal field configuration. In general the geometry and the axion

wavefunction can adjust as well. Before considering the potential energy, C2 minimizes

its energy by forming a flat connection cω2 (where ω2 is a nontrivial closed form

which integrates to one over Σ2). In the presence of potential energy, it might prove

energetically favorable for Kaluza-Klein modes of C2 to turn on to reduce the second

term in (5.20), at the cost of introducing a contribution to the |F3|2 term. However,

to illustrate our effect, let us focus on the sloshing of ∆H3 at fixed C2, since the

adjustment of any other modes (such as the geometry and C2 itself) can only enhance

the flattening effect.

Keeping fixed the integral of ∆H3 over the three-cycles it threads, ∆H3 can

scrunch up in three directions w along the three-cycle to reduce its overlap with

C2. Let us denote by L̃
√
α′ the size of the region over which the scrunched-up field

∆H3 has support, modeling its profile locally by

√
α′∆H3 ∼

∆N

L̃3
e−w

2/L̃2α′ (5.21)

where ∆N is the number of ∆H3 flux quanta. We would like to minimize the potential

energy with respect to L̃ and determine the effect of this on the axion potential. If

the profile of C2 were flat in the internal dimensions, shrinking L̃ would not be

advantageous. Of course harmonic forms in nontrivial compactification manifolds are

not constant. Taylor expanding (and assuming rough isotropy locally), let us model

C2 in the region of support of ∆H3 as

C2(w) ∼ c

L2

(
1 + γ

w2

L2α′
+ . . .

)
(5.22)

where γ is a constant derived from the Taylor expansion of C2’s profile.5 Here we are

assuming ∆H3 is centered on a local minimum of C2, which is its preferred configu-

ration if available (otherwise one would obtain a linear term in the expansion (5.22),

with similar results).

After integrating over the internal volume, the relevant terms in the potential are

5Note that C2 ∧H3 will in general include angular factors depending on the geometry. We will
not write these factors here.
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proportional to

1

g2
s

∆N2

(
L

L̃

)3

+ γN∆N

(
L̃

L

)2
φ2
c

M2
P

 (5.23)

where N refers to the number of H3 flux quanta and L
√
α′ is a typical length scale in

the compactification. Here the first term comes from |∆H3|2. The second term comes

from (C2 ∧ H3) · (C2 ∧∆H3), and gets its leading contribution from the w2 term in

(5.22) convolved with (5.21).6 The potential will then minimize these two terms and

be proportional to φ
6/5
c , which is flatter than quadratic.

This illustrates the flattening mechanism, but only provides a lower bound on the

effect. Adjustments of other fields including C2 and the compactification geometry

would further flatten the potential.

Bounding additional kinetic effects

As discussed above in §5.1.1, we must check whether it is a good approximation to

determine the heavy field φH (in this case corresponding to KK modes of B2) in terms

of φL by solving ∂φHV ≡ 0, neglecting the contributions from the kinetic terms. The

kinetic effects of [210] are small if |∂φH/∂φL| � 1, i.e. if the KK modes of B2 that

we consider make a negligible correction to C2’s kinetic term. It is straightforward to

see that this may be obtained in the present example, as follows. The kinetic term

for L̃ descends from the kinetic term for ∆H3 and is

Lkin ∼
∆N2M2

P

L̃3L3
(∂L̃)2 , (5.24)

giving the canonically normalized field φH as

φH ∼
∆NMP

L̃1/2L3/2
+ const . (5.25)

6The other terms are either subleading or do not depend on L̃.
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Minimizing the potential (5.23) with respect to L′, we get

L

L̃
∼
(
γN

∆N

)1/5(
φc
MP

)2/5

. (5.26)

Combining the above equations and writing φH as a function of φc, we get

dφH
dφc
∼ ∆N

L2

(
γN

∆N

)1/10(
MP

φc

)4/5

, (5.27)

which can be much smaller than 1 for a reasonable range of parameters.

5.3.2 Puffing on the kinetic term

In the previous subsection we have considered modification of the effective potential

due to backreaction on the potential terms. The backreaction of the inflationary

potential on the geometry can also affect the kinetic term, realizing the “running

kinetic term” mechanism described in [230].

In a simple situation where the NS-NS or R-R field threads a cycle of size L
√
α′

that is the same as the typical length scale in the compactification, the canonical

normalization of the inflaton field is given in terms of the number of axion windings

by
φb
MP

∼ b

L2
,

φc
MP

∼ gsc

Lp
(5.28)

respectively for a 2-form NS-NS and for a p-form R-R axion. If instead we consider

cases where the p-form field is localized (e.g. in a throat) and is therefore threading

a much smaller cycle of size L′
√
α′, the canonically normalized field becomes

φb
MP

∼ b

L′2
L′3

L3
∼ bL′

L3
,

φc
MP

∼ gsc

L′p
L′3

L3
∼ gscL

′3−p

L3
. (5.29)

Here we are considering the case that the support of the axion is of order the size

L′
√
α′ in all directions in the compactification (as occurs for example in the case that

L′
√
α′ describes the size of an internal cycle localized within a Freund-Rubin throat).

Now if the inflationary flux backreacts on the size L′
√
α′ of the wrapped cycle, L′
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will become a function of the axion and this will alter the relation between b or c

and the canonically normalized field. The terms of the form |axion ∧ flux|2 push the

geometry to expand. Given this, L′(b) will vary as a positive power of b and reduce

the power of φb in the potential. For example, in the case where the size L′
√
α′ is

mostly supported by |B2 ∧ F3|2, we have L′4 ∝ b and therefore φb ∝ b5/4. In the

case where the inflation arises from a Ramond-Ramond field, we will have p ≤ 3 for

magnetic fluxes in six compact dimensions, and so L′(c) will either reduce the power

of the potential or leave it unchanged.

Bounding additional kinetic effects

In this example, we solved for the heavy field L′ in terms of the light field φb (or

φc) by minimizing the potential in the L′ direction. Let us now address the question

of additional kinetic effects described in §5.1.1 in the context of the present model.

Before describing the kinetic interactions of φb and L′, let us note that the overall size

L
√
α′ of the compactification will not be pushed far in the process given a sufficient

hierarchy between the inflationary energy and the moduli stabilizing barriers.

First, let us check whether |dφH/dφL| is small. This requires knowledge of the

kinetic term for φH , i.e. the relation between the canonically normalized field φH and

the modulus L′. The kinetic term for L′ descends from the ten-dimensional Einstein

term, and in four-dimensional Einstein frame is given by∫
d4x
√
−gM2

P

(
L′

L

)6(
∂L′

L′

)2

(5.30)

in the above example. From this, the canonically normalized field φH is

φH ∼MP

(
L′

L

)3

. (5.31)

Now, from the above-mentioned scaling L′4 ∝ b, φb ∝ b5/4, we obtain φH ∝ φ
3/5
b and∣∣∣∣dφHdφL

∣∣∣∣ ∝ φ
−2/5
L (5.32)
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which is � 1 for sufficiently large φb = φL.

Next, let us check that the kinetic term for φL = φb does not constitute a significant

source for φH as considered in [209]. To do this, write L′ ≡ L′0e
σ′(t)/MP (note here

σ′ is not the canonically normalized field). The relevant terms in the effective action

have the form ∫
d4x
√
−g
(
e2σ′/Mpφ̇2

b − V (σ′, φb)
)
. (5.33)

Each term in the potential scales like a power of L′ ∝ eσ
′/MP . Varying this action

with respect to σ′, the first term is of order φ̇2
b/MP , much smaller than the second

term which is of order V/Mp during inflation. Thus we can self-consistently ignore

the effect of [209] here.

5.3.3 Weight lifting: pushing on moduli

The fact that the axion × flux energy pushes on the moduli can lead to a similar but

distinct effect from the backreaction on the inflaton kinetic term just discussed. One

concrete example of this is simply the one developed in [221], described in terms of its

gravity dual. Again, the term |C2 ∧H3|2 is quadratic in the axion c =
∫
C2. But the

axion builds up effective D3-brane charge, and from that point of view the potential

should be linear in cgs, which is proportional to the effective number of D3-branes.

This works out because the generalized 5-form RR flux F̃5 = C2∧H3 + . . . backreacts

on the moduli, giving a near horizon internal geometry with size R
√
α′ depending on

c as

R4 ∼ gsÑ ∼ gsc

∫
S3

H3 (5.34)

as in standard Freund-Rubin solutions. Folding this into the effective action, we see

that it scales like

S ∼ 1

α′4

∫
d10x
√
−G|F̃5|2 + · · · ∼ V ol(4d)

Ñ2

R10
×R6 ∼ Ñ

gs
V ol(4d) (5.35)

as befits a set of D3-branes (here V ol(4d) is the volume of the worldvolume swept

out by the brane). A straightforward calculation of the four dimensional effective
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potential, derived for general warping in [65][66], allows one to reproduce from the

gravity side the corresponding four-dimensional Einstein frame potential energy V

descending from the brane throat:

V (c) ∼M4
P

(
g2
s

V ol

)2
Ñ

gs
(5.36)

where V ol is the compactification volume in string units. In the specific construction

[221], the kinetic term of the axion was dominated by the ultraviolet region of the

compactification well outside the brane throat. Therefore, in that example the kinetic

backreaction of §5.3.2 does not apply, but backreaction on the geometry (specifically,

on the internal size R
√
α′) flattens the potential from quadratic to linear. In this

example, the kinetic effects are bounded much as in §5.3.2.

5.3.4 Circuit training: toward more generic UV complete

examples

A general string compactification involves multiple backreaction effects that are simul-

taneously important. We have not fully controlled any such example in this chapter,

but will note here an interesting candidate. Consider an S3 localized down a warped

throat. Put M units of RR F3 flux on its dual cycle S̃3. On the S3 itself, put zero

total units of flux, but introduce a topologically trivial configuration of h units of

H3 = dB2 on one hemisphere (north of the equator, say) and −h units on the other

(south of the equator). This will dynamically relax back down to zero, and if the

geometry were fixed the |H3|2 term would produce a quadratic potential for the inte-

gral b ≡
∫
equator

B2 = h of B2 over the equator of the S3. Backreaction, however, will

change this significantly. Consider starting the system in a configuration in which

each hemisphere times the S̃3 with flux is approximately solving the equations of mo-

tion as in [29, 27, 49]. This constitutes, in effect, a 3-brane throat and an anti-3-brane

throat at the bottom of the original throat. One can set this up explicitly in terms of

two close-by conifold singularities with flux. A similar construction with metastable

fluxes on a noncompact Calabi-Yau geometry is studied in [231].
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Each throat carries potential energy of order Ñ ∼ Mb(t) including the back-

reaction of §5.3.3. Moreover, the kinetic energy of b is subject to backreaction as

in §5.3.2. The four-dimensional canonically normalized field φb in four-dimensional

Einstein frame is given by∫
d4x
√
−gE(∂φb)

2 ∼ 1

g2
sα
′4

∫
d10x
√
−gst(∂B2)2 ∼ 1

α′

∫
d4x
√
−gst

(
R6

g2
s

)
(∂b)2

R4

∼
∫
d4x
√
−gEM2

P

(
g2
s

V ol

)(
R2

g2
s

)
(∂b)2

∼
∫
d4x
√
−gE

(
M2

P

V ol

)
R2(∂b)2

∼
∫
d4x
√
−gE

M2
P (gsM)1/2

V ol
b1/2(∂b)2 (5.37)

and so φb
MP
∼ (gsM)1/4√

V ol
b5/4. These two effects, taken together, suggest a potential

V (φb) = µ16/5φ
4/5
b . (5.38)

However, in order to obtain a concrete prediction for the evolution of this system, we

would require a better understanding of the region between the brane and antibrane

throats and full control over all sources of backreaction in all directions in field space.

This would be interesting to pursue further.

5.4 Cooldown

A quadratic inflaton potential may be the simplest possibility from a bottom-up

approach, but interactions with heavier fields typically deform the effective action,

flattening the potential in the cases discussed here for a simple energetic reason. This

is a basic aspect of the UV sensitivity of inflation, complementary to others much

discussed in the recent literature. If the upcoming round of CMB measurements be-

come consistent with the predictions of m2φ2 chaotic inflation, this would significantly

constrain the inflaton’s couplings to additional fields, including those much heavier

than the inflationary Hubble scale. Conversely, if the mild trend in the data toward
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flatter potentials sharpens, the considerations of this chapter may help explain the

results.

In the case of axion monodromy inflation, we have outlined two specific mecha-

nisms for backreaction to flatten the axion potential; in general the fluxes and the

geometry will seek out the state of lowest energy consistent with the higher dimen-

sional equations of motion. In general, determining the correct form of the potential

seems a complicated task. Complete catalogs of the modes found in compactification

geometries, such as [232, 233], may be of use in constructing more explicit examples.

It would also be interesting to see if these considerations apply to other mechanisms

for inflation, including general small field models and models with more generic kinetic

terms where the energetic analysis is somewhat more complicated.7

7It would also be interesting to study backreaction further in models where a cycle size modulus
plays the role of the inflaton such as [234] or [235].



Chapter 6

Analytic Coleman-De Luccia

Geometries

6.1 Introduction

The Coleman-De Luccia (CDL) geometry [123] is essential to the study of eternal

inflation (see [236, 237] and the references therein) and the string theory landscape

[46, 49, 238]. Most discussions of this geometry take place in the “thin-wall” limit,

where the geometries inside and outside of the bubble are pieces of de Sitter space,

Minkowski space, or Anti de Sitter space, sewn together nonanalytically at the domain

wall. This picture is sufficient for many qualitative questions, but is troublesome when

applied to calculations of correlation functions in the CDL background [21, 9]. This

often involves various analytic continuations from Euclidean to Lorentzian signature,

and also from one part to another of the geometry, and pathologies can appear when

the geometry is not analytic. Our goal in this chapter is to give some reasonably

simple analytic expressions for “thick-wall” CDL bubbles which mediate various types

of decays. There is a conservation of trouble here, however, in that we will not be

able to give closed form expressions for the scalar potentials which give rise to these

geometries. Rather we will work out a set of general constraints that the metric

needs to obey in order for it to come from some scalar field theory with a potential,

and then give examples of geometries which satisfy all the constraints. Since it is

172
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the potential that usually comes out of “top-down” constructions this may not seem

eminently useful, but we consider our approach to be more appropriate for “bottom-

up” investigations of bulk physics in the CDL background. Similar analyses have been

applied to other less-restricted cases such as thick domain walls [239, 240, 241] and

FRW cosmologies [242], both of which are contained in our analytic CDL geometries.

6.2 General Properties of the Coleman-De Luccia

Geometry

6.2.1 Euclidean Preliminaries

The Euclidean CDL geometry is a solution of the equations of motion for the scalar-

gravity system with Euclidean action

S = − 1

16πG

∫
ddx
√
gR +

∫
ddx
√
g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
. (6.1)

The solution has SO(d) symmetry, so we can write the metric as

ds2 = dξ2 + a(ξ)2
(
dθ2 + sin2 θdΩ2

d−2

)
. (6.2)

The equations of motion for solutions with this symmetry are

φ′′ + (d− 1)
a′

a
φ′ − V ′(φ) = 0(

a′

a

)2

=
1

a2
+

16πG

(d− 1)(d− 2)

(
1

2
φ′2 − V (φ)

)
. (6.3)

If V has a local extremum at φ = φmin then there is a simple solution. When

V (φmin) = 0 we have flat space:

a(ξ) = ξ. (6.4)
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When V (φmin) = ρmin > 0, we have the sphere:

a(ξ) = `ds sin(ξ/`ds)

`−2
ds =

16πGρmin
(d− 2)(d− 1)

. (6.5)

When V (φmin) = ρmin < 0, we have hyperbolic space:

a(ξ) = `ads sinh(ξ/`ads)

`−2
ads = − 16πGρmin

(d− 2)(d− 1)
. (6.6)

More interesting solutions will interpolate smoothly between different minima of

the potential; these have the interpretation of causing bubble nucleation.1 The ge-

ometries describing the decay of Minkowski space and AdS are noncompact and can

be chosen to have ξ ∈ [0,∞), while the geometry describing the decay of dS space

is compact and can be chosen to have ξ ∈ [0, ξc]. In all cases for the solution to be

smooth at ξ = 0 we need

φ(ξ) = φ0 +O(ξ2)

a(ξ) = ξ +O(ξ3). (6.7)

For the noncompact cases, as ξ → ∞ we want φ to approach its value in the false

vacuum and a to approach (6.4) or (6.6). When the false vacuum is dS then as ξ → ξc

smoothness requires

φ(ξ) = φc +O((ξc − ξ)2)

a(ξ) = (ξc − ξ) +O((ξc − ξ)3). (6.8)

1The Euclidean solution does not actually quite reach the minimum; the more precise boundary
conditions are stated momentarily. Also for vacua which have V < 0 it is possible for a maximum
to be stable or metastable; we include this case below in our definition of a CDL geometry.
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6.2.2 Lorentzian Continuation

To find the Lorentzian geometry describing the aftermath of bubble nucleation we

analytically continue the Euclidean solution of the previous subsection. To get inside

the bubble we define

ξ = it

θ = iρ

â1(t) = −ia(it), (6.9)

which gives an open FRW cosmology

ds2 = −dt2 + â1(t)2
(
dρ2 + sinh2 ρdΩ2

d−2

)
. (6.10)

To get the Lorentzian geometry outside of the bubble we continue

θ =
π

2
+ iω, (6.11)

which gives a “warped de Sitter” geometry

ds2 = dξ2 + a(ξ)2
[
−dω2 + cosh2 ωdΩ2

d−2

]
. (6.12)

When the false vacuum is dS there is an additional region outside of the bubble which

is up near the future boundary of the false vacuum, which we reach by

ξ = ξc + it

θ = iρ

â2(t) = ia(ξc + it). (6.13)
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Both â1 and â2 obey the Lorentzian FRW equations of motion

φ̈+ (d− 1)
˙̂a

â
φ̇+ V ′(φ) = 0(

˙̂a

â

)2

=
1

â2
+

16πG

(d− 1)(d− 2)

(
1

2
φ̇2 + V (φ)

)
. (6.14)

The metric and scalar produced by these continuations are guaranteed to be real

because they obey equations of motion and boundary conditions that are real. In

particular the simple Euclidean solutions with constant φ become various patches of

Minkowski, de Sitter, or Anti de Sitter space. The late time behaviour inside of the

bubble depends on the nature of the “true” minimum. If the minimum is infinitely

far away in field space then there are many possibilities, but if the minimum is at

some finite φ there are only three. These are Minkowski space2

â1(t)→ t, (6.15)

de Sitter

â1(t) ∼ et/`1 , (6.16)

and Anti de Sitter3

â1(t) ∼ sin(t/`1). (6.17)

If the false vacuum has positive energy and is at finite field value then we also expect

â2(t) ∼ et/`2 . (6.18)

The full analytic continuation is illustrated in Figure 6.1.

2We use “→” here instead of “∼” to indicate a(t) = t(1 + o(t0)), i.e. unlike the dS and AdS cases
the prefactor must go to one.

3In this case late time does not make so much sense, since we expect the geometry to crunch in
time of order `1 and there isn’t really a good asymptotic limit.
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a(ξ)

1a (t)
2a (t)

ξ

ξc

Figure 6.1: On the left we have the three regions of interest in the ξ plane for the
Lorentzian continuation of a compact CDL geometry. The red line gives â1(t), the
blue line gives a(ξ), and the green line gives â2(t). On the right we show the regions
of the CDL Penrose diagram that are described by these different continuations. If
the geometry is noncompact then the blue line extends to infinity and the â2 region
doesn’t exist.

6.2.3 Constraints and a Definition

For a given potential the boundary conditions are sufficient to determine a unique

solution of the equations of motion (6.3). What we will do in this section is to identify

the constraints that a real and positive function a(ξ) must obey in addition to the

boundary conditions to ensure that a potential exists which has this a(ξ) (and some

φ(ξ)) as a solution, and also that its analytic continuation describes a Lorentzian

bubble geometry of true vacuum surrounded by false vacuum.

We begin by writing expressions for φ and V in terms of a:

8πG

d− 2
φ′2 =

(
a′

a

)2

− 1

a2
− a′′

a

16πG

(d− 2)2
V (φ) =

1

a2
−
(
a′

a

)2

− 1

d− 2

a′′

a
. (6.19)

The first of these make it clear that throughout the physical range of ξ we must have

a′2 − aa′′ − 1 ≥ 0. (6.20)
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In fact if this inequality is satisfied then we can integrate the first equation in (6.19)

to find φ(ξ), which we can then invert and insert into the second equation to find

V (φ).4 This inequality may appear unusual, but we show in Appendix 6.A that it

is equivalent to the null energy condition in the region produced by the continuation

(6.11).

Additional constraints come from the Lorentzian continuation. We want â1(t) to

be real and positive for all t > 0, and also to obey (6.15), (6.16), or (6.17), with the

caveat that in the last case (6.17) â1(t) need only be positive before the crunch. If

the false vacuum is dS then we want â2(t) to be real and positive for all t > 0 and

to obey (6.18). By continuing (6.19) we see that to reconstruct the scalar field and

potential we need both â1 and â2 to obey

˙̂a2 − â¨̂a− 1 ≥ 0. (6.21)

This inequality is again equivalent to the null energy condition in these two regions.

We claim that these are all of the constraints that a proposed a(ξ) needs to obey to

be considered a CDL geometry.

The condition that â1(t) is real can be rewritten in a nice way by observing that

in a neighborhood around ξ = 0 we can see from the Taylor expansion for a(ξ) that

it is equivalent to

a(−ξ) = −a(ξ). (6.22)

By analytic continuation this equation must hold in any simply-connected region

containing ξ = 0 in which a(ξ) is analytic. Conversely, (6.22) (together with the

reality and positivity of a(ξ) on (0, ξc)) implies that â1(t) is real and positive for

small positive t, and by analytic continuation must be so for all t > 0 unless we

encounter a zero or singularity. Similarly the condition that â2(t) is real is equivalent

to

a(ξc − ξ) = −a(ξc + ξ). (6.23)

4If there are places where the inequality is saturated and φ comes to a rest, this inversion is
slightly more subtle. This happens for example inside the bubble if the field oscillates about the
true minimum before settling down, as in reheating. This subtlety does not affect our ability to find
the potential since the scalar traverses all relevant parts of the potential at least once.
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A final condition we would like to have is that the vacua involved are at least

metastable and not unstable. If the geometry is compact then the late time behaviour

(6.15-6.18) of â1,2 ensures that the scalar field is rolling down to a minimum in both

asymptotic regions. But if the geometry is noncompact then the false vacuum is

reached already in the Euclidean geometry as ξ →∞, and there is no â2. So if we do

not impose an additional condition, then the constraints we have stated so far allow

situations where there is an unstable Minkowski or AdS maximum that the field rolls

down from, which we feel does not deserve the name of a CDL geometry since it is

not a tunnelling process. If the false vacuum is Minkowski we thus need to demand

that V ′′(φ(ξ)) > 0 as ξ → ∞. The simplest way to achieve this is to demand that

the potential is decreasing as ξ →∞, which from (6.19) means that(
1

a2
−
(
a′

a

)2

− 1

d− 2

a′′

a

)′
< 0 as ξ →∞. (6.24)

Note that unlike our other restrictions, this one depends on the dimension d. If the

false vacuum is AdS, then a maximum should be allowed if its negative mass-squared

obeys the Breitenlohner-Freedman bound [243]

V ′′(φ(ξ)) > −(d− 1)2

4(`2)2
as ξ →∞. (6.25)

The potential in this inequality is written in terms of a by using (6.19). Examples of

potentials with metastable maxima of this type were given in [244, 148].

We can now gather the results of this section into a definition; a function a(ξ) is

a “CDL Geometry” if:

(a) It is real and positive on a real interval ξ ∈ (0, ξc), possibly with ξc →∞.

(b) Near ξ = 0 it obeys (6.7), and if ξc is finite then it obeys (6.8). If ξc is infinite

then as ξ → ∞ either a(ξ) ∼ eξ/`2 (“tunnelling from AdS”) or a(ξ) → ξ

(“tunnelling from Minkowski”).

(c) It is analytic in a simply connected region D containing the real interval [0, ξc],
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the positive imaginary axis,5 and if ξc is finite the ray R defined by ξ = ξc + it

with t > 0.

(d) There are no zeros of a on the positive imaginary axis or on R if ξc is finite, and

throughout D we have a(−ξ) = −a(ξ). If ξc is finite we also have a(ξc − ξ) =

−a(ξc + ξ) and the dS asymptotic (6.18).

(e) On the real interval [0, ξc] we have the null energy condition (6.20). On the

positive imaginary axis and onR if ξc is finite, we have the null energy condition

(6.21).

(f) If ξc is infinite then for “tunnelling from Minkowski” the inequality (6.24) is

satisfied, while for “tunnelling from AdS” we have (6.25).

In this definition we assumed that the false vacuum was at a finite point in field space.

If we wish to restrict to cases where the true vacuum is also at a finite point in field

space then we can introduce an additional requirement:

(g) For large purely imaginary ξ we have the asymptotic geometry (6.15), (6.16),

or (6.17).

6.2.4 Compact Coleman-De Luccia Geometries

Before presenting our examples of CDL geometries, we will make some special obser-

vations about the compact case. We first note that the reality conditions (6.22) and

(6.23) allow continuation of a(ξ) to a neighborhood of the full real axis and together

imply the periodicity

a(ξ + 2ξc) = a(ξ). (6.26)

Thus for the compact case we have Fourier Analysis at our disposal. We will hence-

forth choose units where ξc = π, after which we see that we may write

a(ξ) =
∞∑
n=1

cn sin(nξ). (6.27)

5For tunnelling to (crunching) AdS we only include the open interval between the origin and the
first zero of a on the positive imaginary axis. This also applies to constraints (d) and (e).
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There are no cosines because the function is odd. This form is not the most useful

however because the boundary conditions (6.7) and (6.8) imply nontrivial constraints

on the cn’s. We can reorganize the series using trigonometric identities to take the

form

a(ξ) = sin(ξ) [1 + f(sin ξ) + cos(ξ)g(sin ξ)] , (6.28)

where f(·) and g(·) are even functions which go to zero as their argument goes to zero,

and which are analytic in a region containing the real interval (0, 1] and also the pure

imaginary axis. This form is completely general; any compact CDL geometry must

have it. It is convenient because it automatically incorporates the reality conditions

and boundary conditions at 0 and π, so the only remaining things to check are that

the scale factor is nonvanishing, the null energy condition is satisfied, and that at late

times outside the bubble we have (6.18). The cosine term has a simple interpretation

in that it breaks the symmetry between the two minima. In particular, the analytic

continuations (6.9) and (6.13) give

â1,2(t) = sinh(t) [1 + f(i sinh t)± cosh(t)g(i sinh t)] , (6.29)

which are real because f and g are even functions. Here â1 (or â2) takes the plus (or

minus) sign. Depending on the desired nature of the true vacuum we might also like

to impose (6.15), (6.16), or (6.17).

6.3 Examples

In this section, we first derive some general results that illustrate the difficulty of

constructing geometries that satisfy our definition. In the following subsections we

then give a series of explicit examples.

In writing down functions a(ξ) that obey our constraints (a)–(g), the biggest

challenge is the null energy conditions (6.20) and (6.21). We first consider the case

where a(ξ) (or â(t)) is linear with unit coefficient both at ξ = 0 and ξ →∞. This is
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appropriate for tunnelling to or from Minkowski space. We parametrize this as

a(ξ) = ξ(1 + δ(ξ)). (6.30)

Here δ(ξ) must go to zero both at ξ = 0 and ξ = ∞, and we must have δ > −1 to

avoid collapse. If there is a point where −1 < δ < 0, then by continuity δ must have

a minimum ξmin with −1 < δ(ξmin) < 0. The null energy condition however takes

the form

δ(2 + δ) + ξ2δ′2 − δ′′ξ2(1 + δ) ≥ 0, (6.31)

and it is easy to check that a local minimum with −1 < δ < 0 necessarily violates it.

Thus we must have

δ ≥ 0. (6.32)

We can use this observation to constrain the behaviour of a near ξ = 0. We can

expand δ(ξ) = Aξn + O(ξn+2), with n some even integer greater than 1. Inserting

this into (6.31) we find that if n > 2 then we must have A < 0, which is not allowed

because then near ξ = 0 we would have δ < 0. So δ(ξ) must start out like Aξ2 with

A > 0. We can also rule out the possibility that δ is a rational function. If δ were

rational then at large ξ it would scale like ξ−n for some positive integer n. From

(6.31), we find the restriction n(n+ 1) ≤ 2. The only possibility is n = 1, but if δ is

rational then this is impossible since (6.22) requires δ to be an even function of ξ. In

our examples below we overcome this by including radicals.

Another constraint of this type is that when the false vacuum is de Sitter, its

radius must be greater than 1 in the units where ξc = π:

`2 >
ξc
π
. (6.33)

In the thin-wall limit, this is the statement that if we draw the Euclidean CDL

instanton as a piece of a sphere glued to a piece of flat space, the hyperbolic plane, or

a larger sphere, the radius of the sphere corresponding to the metastable dS vacuum

is always larger than the “size” ξc of the instanton divided by π.6 We show this is

6One can also think of this as a bound on the proper length ξc of the warped de Sitter region
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generally true in Appendix 6.B. Note that when the “true” vacuum is also dS this

also implies that `1 > 1 since `1 > `2 by definition. This constraint implies that the

even functions f(·) and g(·) in equation (6.28) cannot both be rational, as this would

lead to scaling (6.18) with `−1
2 = (n+ 1) and n ∈ Z (we are now setting ξc = π). This

is clearly impossible if `2 > 1. So again in the compact case we will include radicals

to avoid this problem.

6.3.1 De Sitter Domain Walls

Our simplest example of a CDL geometry describes a one-parameter family of (thick)

domain walls interpolating between two degenerate dS minima. Geometries that

describe genuine decays are given later, as they are in general more complicated. The

domain walls are simple because in these cases a(ξ) is symmetric under ξ ↔ π − ξ
and therefore only involves sin ξ when written in the form (6.28). Our domain walls

are given by

a(ξ) = c

√
1−

√
1− 2

c2
sin2 ξ, (6.34)

where c is any constant greater than
√

2, as required by the reality of the inner

square root. As ξ approaches 0 or π we may expand the inner square root and check

the smoothness conditions (6.7) and (6.8). We also need to check the null energy

condition (6.20), which reads

a′2 − aa′′ − 1 =
(c2 − 2)(c−

√
c2 − 2 sin2 ξ)

(c2 − 2 sin2 ξ)3/2
sin2 ξ ≥ 0, (6.35)

which is manifestly satisfied for any c ≥
√

2.

Next, we analytically continue (6.34) to Lorentzian signature by applying (6.9).

The resulting scale factor is

â1(t) = c

√√
1 +

2

c2
sinh2 t− 1, (6.36)

(6.12).
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whose late time behavior is

â1(t)→
√

c√
2
et/2 as t→∞. (6.37)

Matching this to (6.16), we find an asymptotically dS space with radius `1 = 2. This

agrees with the bound `2 > 1 mentioned earlier and proven in Appendix 6.B (here

`1 = `2). We still need to check the null energy condition (6.21), which is simply the

analytic continuation of (6.35):

˙̂a2
1 − â1

¨̂a1 − 1 =
(c2 − 2)(

√
c2 + 2 sinh2 t− c)

(c2 + 2 sinh2 t)3/2
sinh2 t ≥ 0. (6.38)

By symmetry the second analytic continuation (6.13) gives exactly the same â2(t) =

â1(t).

We have verified that (6.34) satisfies all conditions (a)–(g) to be a CDL geometry.

We may then use (6.19) to solve for φ(ξ) and V (φ). Their analytic forms are not very

illuminating, as φ(ξ) involves a hypergeometric function and V (φ) is written in terms

of the inverse of φ(ξ). However, in many applications of CDL (such as calculating the

correlation functions) it is a(ξ) that we would like to be simple, not V (φ).

6.3.2 Decays from dS to dS

In Sec. 6.3.1 we discussed domain walls interpolating between two degenerate dS

minima. When this degeneracy is broken, we arrive at the phenomenologically inter-

esting case [245] of decays from one dS space to another with a smaller cosmological

constant. We give analytic examples of such geometries in this subsection.

In order to interpolate between two dS minima with different cosmological con-

stants, it is necessary to break the symmetry of a(ξ) under ξ ↔ π − ξ. In the form

(6.28) this means that a(ξ) has to depend on cos ξ in addition to sin ξ. Under the

analytic continuations (6.9) and (6.13), cos ξ becomes cosh t and − cosh t respectively

as we see in (6.29). This minus sign is crucial in making the late time behaviors of

â1(t) and â2(t) different, which is necessary for them to describe asymptotically dS
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spaces with different cosmological constants.

One of the simplest examples that we found is

a(ξ) =

 1 + 101/4

1 +
[
10− sin2 ξ

(√
2− sin2 ξ + cos ξ

)]1/4


1/2

sin ξ. (6.39)

One can show that this is of the form (6.28) by first writing out its Taylor expansion

in terms of sin ξ and cos ξ, and then eliminating all quadratic or higher order terms in

cos ξ by applying cos2 ξ = 1− sin2 ξ. One can check the null energy conditions (6.20)

and (6.21). Upon analytic continuation we have

â1,2(t) =

 1 + 101/4

1 +
[
10 + sinh2 t

(√
2 + sinh2 t± cosh t

)]1/4


1/2

sinh t, (6.40)

where â1(t) takes the plus sign and asymptotes to

â1(t)→
√

1 + 101/4

23/4
e5t/8 as t→∞, (6.41)

and â2(t) takes the minus sign and asymptotes to

â2(t)→
√

1 + 101/4

23/4
e7t/8 as t→∞. (6.42)

The radii of the two dS vacua are `1 = 8/5 and `2 = 8/7, which again obey the bound

of Appendix 6.B. We show this geometry in d = 4 in Figure 6.2, together with the

scalar potential that gives rise to it.

A family of geometries of this type can be found by varying the parameters in

(6.39) (subject to the smoothness and null energy conditions). We will not give the

exact parameter space here, but we note that it is quite large. For instance, one can

verify that all constraints are still satisfied if we change both constants “10” in (6.39)

to any number larger than 4.2, or if we change the power 1/4 to any number between

0 and 1/4.
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Figure 6.2: A CDL geometry describing the decay from dS to dS. We have the
Euclidean geometry a(ξ) on the top left, the first FRW geometry â1(t) that asymptotes
to the true dS vacuum on the top right, the second FRW geometry â2(t) describing the
parent dS on the bottom left, and the scalar potential V (φ) on the bottom right. The
blue, red, and green segments are traversed by the scalar field in the three regions of
the CDL geometry as depicted in Figure 6.1. The black dashed lines are “conjectures”
from what we expect qualitatively – the potential there cannot be solved numerically
from the CDL geometry because the field never goes there. If one could solve the
potential analytically between the two minima, it can then be continued to the dashed
region.
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6.3.3 Decays from dS to Minkowski Space

In this subsection we consider decays from dS to asymptotically Minkowski space.

These are potentially interesting for conceptual reasons, as explained in [246, 78, 247].

A “simple” geometry of this type is

a(ξ) =
3
2

sin ξ

1 +
[
8− sin2 ξ

(√
2− sin2 ξ + cos ξ

)]1/3
+ arcsin

(
sin ξ

2

)
. (6.43)

One can check that it satisfies the smoothness conditions (6.7), (6.8) and the null

energy conditions (6.20), (6.21). Upon analytic continuation we have

â1,2(t) =
3
2

sinh t

1 +
[
8 + sinh2 t

(√
2 + sinh2 t± cosh t

)]1/3
+ arcsinh

(
sinh t

2

)
, (6.44)

where â1(t) takes the plus sign and the exponentially growing terms cancel, leading

to

â1(t)→ t as t→∞, (6.45)

and â2(t) takes the minus sign and asymptotes to

â2(t)→ 3

24/3
e2t/3 as t→∞. (6.46)

The radius of the parent dS space is therefore `2 = 3/2, again satisfying the bound

of Appendix 6.B. We show this geometry and its potential in d = 4 in Figure 6.3.

As before, a family of geometries of this type can be found by varying the param-

eters in (6.43). Additionally, we could get CDL geometries that describe decays from

dS to FRW which has a zero cosmological constant but does not have the asymptotic

behavior (6.15). As discussed above (6.15) this means that the scalar field is rolling

off to infinity in the FRW. A particular class of interesting FRW solutions of this type

was studied in [9] and conjectured to have holographic duals. They are characterized
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Figure 6.3: The geometry and potential describing a decay from dS to asymptotically
Minkowski space. See the caption of Figure 6.2 for detailed explanations.
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by the following late time behavior:

â1(t)→ ct as t→∞. (6.47)

We give analytic CDL geometries of this type by multiplying the “arcsin” term in

(6.43) by a constant c > 1, and multiplying the first term by (2− c) to preserve the

smoothness conditions.7 Over a range of c the null energy conditions are satisfied,

and we get an asymptotically linear scale factor â1(t)→ ct with c > 1.

6.3.4 Noncompact Examples

Noncompact examples have simpler functional forms, but have the added complica-

tion of the conditions (6.24) or (6.25). These decays are arguably the least interesting,

since exactly Minkowski spaces are expected to be supersymmetric and stable, and

metastable AdS is inherently ill-defined [248, 249, 250]. A candidate example for a

decay of Minkowski space to a crunch is

a(ξ) = ξ

(
1 +

ξ2

(1 + ξ2)3/2

)
. (6.48)

The radical is still necessary because of the argument given below equation (6.32).

This obeys the null energy conditions (6.20) and (6.21), and crunches inside the bubble

at finite time. For d = 4 however it corresponds to rolling down from a maximum,

and we find we need to set d = 3 to satisfy (6.24). This can be checked analytically

by expanding (6.24) to order 1/ξ6 at large ξ.8 An improved example that works in

d = 4 is

a(ξ) = ξ

(
1 +

ξ2√
1 + ξ6

)
. (6.49)

7The lower limit c > 1 is required by the null energy condition (6.21). The apparent upper limit
c < 2 is superficial and can be relaxed by changing the “2” inside the arcsin in (6.43).

8Note that for the compact examples in the previous subsections the dimension was irrelevant.
It is only for noncompact geometries that we have the inequalities (6.24) or (6.25) which depend on
dimension.
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We can show that the potential leading to this geometry has a metastable minimum

by expanding (6.24) to order 1/ξ10. This potential is shown in Figure 6.4.
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Figure 6.4: The potential V (φ) leading to a CDL geometry (6.49) describing the
decay from Minkowski space to a crunching AdS. On the right we zoom in on the
same potential at φc (the asymptotic field value) and see that it is a local minimum
with a very shallow barrier.

A candidate family of decays of AdS to a crunch is

a(ξ) = (1 + c) sinh ξ − 2c sinh
ξ

2
. (6.50)

This example is simple enough that we can check the null energy conditions (6.20)

and (6.21) analytically, finding that any c > 0 is allowed. It is also not hard to check

that the BF bound (6.25) is satisfied for d ≥ 3. This geometry and its potential are

shown in Figure 6.5 for c = 1, d = 4.
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Figure 6.5: The geometry and potential for a decay from AdS to a crunch
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6.A Null Energy Condition

In this appendix we show the equivalence of the inequalities (6.20) and (6.21) to the

null energy condition

Tµνk
µkν ≥ 0, (6.51)

for any null kµ. We first apply this to the “warped de Sitter” geometry (6.12), which

we rewrite as

ds2 = dξ2 + a(ξ)2γijdx
idxj. (6.52)

The Ricci tensor is

Rξξ = −(d− 1)
a′′

a

Rij = −
[
aa′′ + (d− 2)(a′2 − 1)

]
γij

Rξi = Riξ = 0, (6.53)

so the Einstein tensor is

Gξξ =
(d− 1)(d− 2)

2

[(
a′

a

)2

− 1

a2

]

Gij =

[
(d− 2)

a′′

a
+

(d− 2)(d− 3)

2

((
a′

a

)2

− 1

a2

)]
a2γij

Gξi = Giξ = 0. (6.54)

To check the null energy condition, consider the radial null vector k = ∂ξ + 1
a
∂ω.9

Contracting this with Gµν we find (6.51) is satisfied if

(
a′

a

)2

− 1

a2
− a′′

a
≥ 0, (6.55)

9Any nonradial vector can be boosted into a radial one unless it lies entirely within the dS slice,
but in that case the Null Energy Condition is trivially saturated since the dS Einstein tensor is
proportional to the metric.
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which agrees with (6.20). We can easily continue this Einstein tensor to find the

Einstein tensor for the open FRW metric (6.10), and a similar computation confirms

(6.21).

6.B A Bound on Parent dS Radius

In this appendix we show that for any compact CDL geometry describing the decay

of dS space, the parent dS radius (which is `2 according to (6.18)) must be greater

than ξc/π. In the convenient units proposed in Sec. 6.2.4 where ξc = π, this means

`2 > 1. We will not need to know what kind of space the parent dS decays into,

whether it is dS, AdS, Minkowski space, or even something else.

We prove this by using the null energy conditions (6.20) and (6.21). First, we

note that it is impossible for a(ξ) or â(t) to have a local minimum within their

physical domains. Clearly if for example a(ξ) had a local minimum, we would have

a′(ξ) = 0 and a′′(ξ) ≥ 0 there, manifestly violating the null energy condition (6.20).

Therefore it is impossible to have a contracting phase followed by an expanding

phase. Combining this with the boundary conditions (6.7) and (6.8), we find that a(ξ)

must monotonically increase to a maximum at some ξm and after that monotonically

decrease to 0. For â2(t) there has to an expanding phase (6.18) at late times, so â2(t)

must be a monotonically increasing function for all t ≥ 0.

Let us define an “energy function” E ≡ (a′2 − 1)/a2 and take its derivative

dE

dξ
=

d

dξ

(
a′2 − 1

a2

)
= −2a′(a′2 − aa′′ − 1)

a3
. (6.56)

Using the null energy condition (6.20), we find that E never increases in an expanding

phase and never decreases in a contracting phase. For a more physical argument, we

note that E is equal to the total energy up to a constant coefficient, as we can see

from the second equation in (6.3).10 The total energy is drained by friction during an

expanding phase and replenished by anti-friction during a contracting phase. Exactly

10The Euclidean equations of motion (6.3) are completely the same as the Lorentzian equations
(6.14) with the inverted potential−V (φ), so we may use our usual intuition about real-time evolution.
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the same statements hold for Ê2 ≡ ( ˙̂a2
2 − 1)/â2

2.

It is therefore clear that E(ξ) reaches an absolute minimum exactly as a(ξ) reaches

its maximum at ξm:

E(ξ) ≥ E(ξm) = − 1

a(ξm)2
for ∀ξ ∈ [0, ξc]. (6.57)

Let us abbreviate a(ξm) as am. For the expanding phase 0 ≤ ξ ≤ ξm we rewrite the

above inequality as
a′√

1− a2/a2
m

≥ 1 (6.58)

and integrate both sides from ξ = 0 to ξ = ξm, which gives

π

2
am ≥ ξm. (6.59)

For the contracting phase ξm ≤ ξ ≤ ξc there is a minus sign on the left hand side of

(6.58). After integrating from ξm to ξc we find

π

2
am ≥ ξc − ξm. (6.60)

Combining this with (6.59) we arrive at

πam ≥ ξc. (6.61)

Finally, we argue that am is bounded from above by `2. From the analytic con-

tinuation (6.13) we find

E|ξ=ξc =
a′2 − 1

a2

∣∣∣∣
ξ=ξc

= −
˙̂a2
2 − 1

â2
2

∣∣∣∣∣
t=0

= −Ê2|t=0. (6.62)

Physically, the field is at rest when ξ = ξc or t = 0, so the total “Euclidean en-

ergy” −V (φc) is just minus the “Lorentzian energy”. From this we have a chain of



194 CHAPTER 6. ANALYTIC COLEMAN-DE LUCCIA GEOMETRIES

(in)equalities

− 1

a2
m

= E|ξ=ξm ≤ E|ξ=ξc = −Ê2|t=0 ≤ −Ê2|t→∞ = − 1

`2
2

, (6.63)

where we have the first inequality because E never decreases in a contracting phase,

and the second inequality because Ê2 never increases in an expanding phase. The

last equality comes from the asymptotically dS condition (6.18). Therefore we have

am ≤ `2. (6.64)

Combining this with (6.61), we have shown the bound on the parent dS radius

`2 >
ξc
π
. (6.65)

This inequality cannot be saturated without saturating all the above inequalities. In

particular, saturating (6.57) and (6.64) leads to a(ξ) = `2 sin(ξ/`2) which describes a

pure dS geometry rather than a CDL decay.
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