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Abstract. We study possible observational effects from the Wheeler–DeWitt equation of quantum
geometrodynamics. For this purpose, we perform a semiclassical expansion and derive quantum-
gravitational correction terms that are inversely proportional to the Planck mass squared. We apply these
results to cosmology and calculate the resulting modification of the CMB power spectrum. Although the
correction terms are too small to be currently observable, they could provide the key for future tests of
quantum gravity.

1. Introduction
The construction of a consistent theory of quantum gravity is among the major open problems of
fundamental physics. In addition to conceptual and mathematical difficulties, the main obstacle is the
lack of empirical tests so far. It is thus not surprising that many different approaches to quantum gravity
exist, which all possess their strengths and weaknesses [1]. A decision between these approaches can
eventually be made only on the basis of experiments or observations. For this reason, it is important to
calculate as many concrete predictions as possible, even if they are currently too small to be tested.

One example for a concrete prediction is the quantum-gravitational correction to the Newtonian
potential between two masses m1 and m2. This was calculated at the one-loop level of quantum gravity
as defined by the path integral [2]. The result for the potential is

V (r) = −Gm1m2

r

(
1 + 3

G(m1 +m2)

rc2
+

41

10π

G~
r2c3

)
.

The first correction term is a well-known correction from classical general relativity, while the second
term is proportional to ~ and is thus a genuine quantum gravity correction term. One can, of course, not
measure this correction in the laboratory, because this would require that the two masses approach each
other down to the Planck length. The main merit of this result (and others) is that a concrete prediction
can be made.

Predictions can also be made from other approaches to quantum gravity. Here, I will discuss the case
of canonical quantum gravity in geometrodynamical variables, on which I have worked myself. The
central equation of this approach is the Wheeler–DeWitt equation, which is of the form [1]

ĤΨ = 0, (1)

where Ĥ denotes the full Hamiltonian of gravity and non-gravitational fields, and Ψ depends on the
three-dimensional metric and matter variables.
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In the following, I shall first briefly review the semiclassical approximation, on which the derivation of
the quantum-gravitational effects is based. I then discuss the quantum-gravitational correction terms that
lead to the modification of the power spectrum for the anisotropies of the cosmic microwave background
(CMB). So far, the observations only lead to upper limits for these terms and I quote some of these limits
using the most recent data from the PLANCK satellite mission. These results are based on the research
articles [3] and [4], to which I refer the reader for more details.

2. Semiclassical approximation
In the semiclassical approximation to the Wheeler–DeWitt equation, one starts with the ansatz

|Ψ[hab]〉 = C[hab]e
im2

PS[hab]|ψ[hab]〉 (2)

and performs an expansion with respect to the inverse Planck mass squaredm−2
P . This is inserted into (1),

and consecutive orders in this expansion are considered [5, 6]. This is close to the Born–Oppenheimer
(BO) approximation scheme in molecular physics. One may also employ the direct BO scheme, which
leads to analogous, but not equivalent results [7]. We shall here restrict ourselves to the m2

P-expansion
scheme. In (2), hab denotes the three-metric, and the Dirac bra-ket notation refers to the non-gravitational
fields, for which the usual Hilbert-space structure is assumed [6].

The highest orders of the BO scheme lead to the following picture. One evaluates |ψ[hab]〉 along
a solution of the classical Einstein equations, hab(x, t), which corresponds to a solution S[hab] of the
Hamilton–Jacobi equations. One can then define

ḣab = NGabcd
δS

δhcd
+ 2D(aNb),

whereN is the lapse function andNa is the shift vector. In this way, one can recover a classical spacetime
as an approximation, a spacetime that satisfies Einstein’s equations in this limit. The time derivative of
the matter wave function is then defined by

∂

∂t
|ψ(t)〉 :=

∫
d3x ḣab(x, t)

δ

δhab(x)
|ψ[hab]〉.

This leads to a functional Schrödinger equation for quantized matter fields in the chosen external classical
gravitational field,

i~
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉, (3)

Ĥm :=

∫
d3x

{
N(x)Ĥm

⊥(x) +Na(x)Ĥm
a (x)

}
, (4)

where Ĥm denotes the matter-field Hamiltonian in the Schrödinger picture, which depends
parametrically on the (generally non-static) metric coefficients of the curved space–time background
recovered from S[hab]. The ‘WKB time’ t controls the dynamics in this approximation.

3. Quantum-gravitational corrections
The next order in the m−2

P -expansion yields quantum-gravitational correction terms [5, 6]. In this way,
one finds a ‘corrected’ Schrödinger equation (3) in which the matter Hamiltonian is replaced according
to

Ĥm → Ĥm +
1

m2
P

× (various terms) .
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The general correction terms can be found in explicit form in [6]. We shall specify them below for the
case of our cosmological model. As an example, I mention the quantum-gravitational corrections to the
trace anomaly in de Sitter space as calculated in [8],

δε ≈ −
2G~2H6

dS

3(1440)2π3c8
,

whereHdS denotes the constant Hubble parameter of de Sitter space. Again, one recognizes that concrete
effects can be calculated, even if they are too tiny to be currently observable.

We shall now review the calculations that lead to the quantum-gravitational corrections for the CMB
anisotropy power spectrum [3, 4]. We consider the Wheeler–DeWitt equation for small fluctuations in a
flat Friedmann–Lemaı̂tre universe with scale factor a ≡ exp(α) and inflaton field φ. In fact, we assume
the presence of an inflationary regime in the semiclassical limit.

For the inflaton, we choose the simplest potential given by

V(φ) =
1

2
m2φ2 ;

however, any other potential obeying at the classical level the slow-roll condition φ̇2 � |V(φ)| should
lead to similar results.

The Wheeler–DeWitt equation for the Friedmann–Lemaı̂tre (‘minisuperspace’) background reads

H0Ψ0(α, φ) ≡ e−3α

2

[
1

m2
P

∂2

∂α2
− ∂2

∂φ2
+ e6αm2φ2

]
Ψ0(α, φ) = 0. (5)

In the following, we choose units with ~ = c = 1 and a modified Planck mass defined by mP :=√
3π/2G ≈ 2.65× 1019 GeV. The scalar field is redefined for convenience by φ→ φ/

√
2π.

To implement the slow-roll condition at the quantum level, we assume in the following that
∂2Ψ0/∂φ

2 � e6αm2φ2Ψ0, and we substitutemφ bymPH , whereH is the quasistatic Hubble parameter
of inflation (this holds in the Born–Oppenheimer approximation). Many investigations in quantum
cosmology make use of this quantum slow-roll condition [1].

We now introduce inhomogeneities for the scalar field according to

φ→ φ(t) + δφ(x, t)

and perform a decomposition into Fourier modes with wave vector k, k ≡ |k|,

δφ(x, t) =
∑
k

fk(t) eik·x .

A full treatment of the problem should make use of the gauge-invariant variables of cosmological
perturbation theory, but this is not required for our purpose.

The Wheeler–DeWitt equation including the fluctuation modes then reads [9][
H0 +

∞∑
k=1

Hk

]
Ψ(α, φ, {fk}

∞

k=1
) = 0, (6)

with

Hk =
1

2
e−3α

[
− ∂2

∂f2
k

+
(
k2 e4α +m2 e6α

)
f2
k

]
. (7)
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Since the fluctuations are small, they do not interact among each other, but only with the background.
One can thus make the ansatz

Ψ(α, φ, {fk}
∞

k=1
) = Ψ0(α, φ)

∞∏
k=1

Ψ̃k(α, φ, fk).

The components Ψk(α, φ, fk) := Ψ0(α, φ)Ψ̃k(α, φ, fk) then obey the equation

1

2
e−3α

[
1

m2
P

∂2

∂α2
+ e6αm2

PH
2 − ∂2

∂f2
k

+Wk(α)f2
k

]
Ψk(α, φ, fk) = 0 (8)

with
Wk(α) := k2 e4α +m2 e6α.

Following the general scheme outlined above, we make the ansatz

Ψk(α, fk) = eiS(α,fk)

and expand S(α, fk) in terms of powers of m2
P,

S(α, fk) = m2
P S0 +m0

P S1 +m−2
P S2 + . . . .

We insert this ansatz into the full Wheeler–DeWitt equation (6) and compare consecutive orders of m2
P.

The highest order isO(m4
P) and leads to S0 being independent of the fk. The orderO(m2

P) then demands
that S0 must obey the Hamilton–Jacobi equation[

∂S0

∂α

]2

− V (α) = 0 , V (α) := e6αH2,

which is easily solved by S0(α) = ±e3αH/3. At order O(m0
P), we write ψ(0)

k (α, fk) ≡ γ(α) eiS1(α,fk)

and impose a condition on γ(α) that makes it equal to the standard WKB prefactor. After introducing
the ‘WKB time’ according to

∂

∂t
:= − e−3α∂S0

∂α

∂

∂α
, (9)

one finds that each ψ(0)
k obeys a Schrödinger equation,

i
∂

∂t
ψ

(0)
k = Hkψ

(0)
k . (10)

This corresponds to the general case (3) above as specialized to our model.
The next order O(m−2

P ) then leads to the quantum-gravitational correction terms. We decompose for
this purpose S2(α, fk) as

S2(α, fk) ≡ ς(α) + η(α, fk)

and demand that ς(α) be the standard second-order WKB correction. The wave functions

ψ
(1)
k (α, fk) := ψ

(0)
k (α, fk) eim−2

P η(α,fk)

then obey the quantum-gravitationally corrected Schrödinger equation

i
∂

∂t
ψ

(1)
k = Hkψ

(1)
k −

e3α

2m2
Pψ

(0)
k

[
(Hk)2

V
ψ

(0)
k + i

∂

∂t

(
Hk
V

)
ψ

(0)
k

]
ψ

(1)
k . (11)

The second correction term leads to a possible unitarity violation, which either may be neglected because
it is small or may be absorbed into a redefinition of the wave function [4]. We can now calculate from
(3) the modifications to the CMB power spectrum.
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4. Modification of the CMB power spectrum
We look for a solution of the uncorrected Schrödinger equation of the Gaussian form

ψ
(0)
k (t, fk) = N (0)

k (t) e−
1
2

Ω
(0)
k (t) f2k , (12)

which corresponds to the assumption that the fluctuations fk are initially in their ground state. From this,
one finds the usual power spectrum which is approximately given by

P(0)(k) :=
k3

2π2
|δk(tenter)|2 ∝

H4

|φ̇(t)|2texit,
(13)

where ‘exit’ and ‘enter’ refer to the times when a particular modes leaves and re-enters the Hubble scale,
respectively. One thus recovers also in this framework the (approximate) scale-invariant power spectrum
following from inflation.

For the solution of the corrected Schrödinger equation (11), we make again a Gaussian ansatz and
consider corrections in the exponent and in the normalization. The technical details are somewhat lengthy
and can be found in [3, 4]. As a boundary condition, we assume that the corrections to (12) vanish for
late times, corresponding to the idea that quantum-gravitational effects become negligible for the present
universe.

When solving the corrected Schrödinger equation with this boundary condition, one encounters a
subtlety [4]. There exist two solutions with the same asymptotics, one approaching the value zero for the
corrections continuously, the other making a jump on the imaginary axis when approaching zero. The
formal origin of this difference is the choice in the definition of the exponential integral that occurs in
the solution of this equation. We shall give below the consequences for the power spectrum from both
solutions.

The quantum-gravitational corrections to the power spectrum can be described by the ansatz

P(1)(k) = P(0)(k)C2
k . (14)

Following [10], we can write

C2
k = 1 + δ±WDW(k) +

1

k6
O

((
H

mP

)4
)
, (15)

where δ±WDW(k) either takes the form

δ+
WDW(k) =

179.09

k3

(
H

mP

)2

, (16)

which follows from the continuous solution, or the form

δ−WDW(k) = − 247.68

k3

(
H

mP

)2

, (17)

which follows from the discontinuous solution. One thus recognizes that the continuous solution leads
to an enhancement of the power at large scales (small k), whereas the discontinuous solution leads to a
suppression of power at large scales. One also recognizes that the power spectrum is no longer scale-
invariant, but exhibits a characteristic k−3-dependence.

Let us now consider the spectral index and its running. These parameters are defined by

ns − 1 :=
d logP
d log k

≈ 2η − 4ε− 3δ±WDW (18)
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and
αs :=

dns
d log k

≈ 2(5εη − 4ε2 − Ξ2) + 9δ±WDW, (19)

where we have introduced the slow-roll parameters

ε = − Ḣ

H2
=

4πG |φ̇(t)|2texit
H2

(20)

and

η := − φ̈

Hφ̇
, Ξ2 :=

1

H2

d

dt

φ̈

φ̇
. (21)

So far, we have treated the scale k as dimensionless. For the comparison with observations,
we introduce a reference wavenumber, which can either correspond to the largest observable scale,
kmin ∼ 1.4 × 10−4 Mpc−1 , or to the pivot scale used in the WMAP9 analysis, k0 = 0.002 Mpc−1

[11]. We now write k/kmin or k/k0 instead of k. Since H/mP has to be smaller than about 3.5× 10−6

because of the observational bound on the tensor-to-scalar ratio r < 0.11 for k0 = 0.002 Mpc−1 from
the Planck 2013 results [12], we find that for k → k/k0 the absolute value of the quantum-gravitational
corrections is bounded by [4]∣∣δ+

WDW(k0)
∣∣ . 2.2× 10−9,

∣∣δ−WDW(k0)
∣∣ . 3.0× 10−9, (22)

while with k → k/kmin this limit becomes even more stringent,∣∣δ+
WDW(k0)

∣∣ . 7.5× 10−13,
∣∣δ−WDW(k0)

∣∣ . 1.0× 10−12. (23)

These values are too tiny to be currently observable.

5. Outlook
In my contribution, I have tried to emphasize that one must derive concrete predictions from approaches
to quantum gravity and compare them with observations. I have limited myself here to one approach:
quantum geometrodynamics with the Wheeler–DeWitt equation as its central equation. From this,
one can derive quantum-gravitational corrections to the CMB anisotropy power spectrum. Assuming
a scenario with an inflationary regime in the early universe, these corrections depend on the ratio
(H/MP)2, where H is the quasi-static Hubble parameter of inflation.

Given the known limits on this ratio, the corrections turn out to be too small to be observable. The
situation will also not change with the release of further data from the PLANCK mission, since the main
source of uncertainty for large scales comes from cosmic variance, which is a fundamental limit. One
might, of course, speculate that the quantum-gravitational correction terms can be seen in other situations,
such as the galaxy-galaxy correlation functions.

If one did not have the limit on (H/MP)2, the situation would be different. From the non-observation
of the correction terms, one would then get a constraint that H/MP must be smaller than a value of the
order of 1017 GeV. It is evident that the quantum-gravitational effects would be stronger if the inflationary
scale were closer to the Planck scale. If one attributed the power suppression at large scales, as reported
in [12], to the quantum-gravitational corrections, one would predict for H/MP a value of this order.

Other approaches to quantum gravity have also been applied to this situation. Investigations in loop
quantum cosmology, for example, lead to a prediction that the power at large scales is enhanced [10, 13].
The observation of small effects may thus eventually provide the key for the correct quantum theory of
gravity [14].
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[4] Bini D, Esposito G, Kiefer C, Krämer M and Pessina F 2013 Preprint arXiv:1303.0531 [gr-qc]
[5] Kiefer C and Singh T P 1991 Phys. Rev. D 44 1067
[6] Barvinsky A O and Kiefer C 1998 Nucl. Phys. B 526 509
[7] Bertoni C, Finelli F and Venturi G 1996 Class. Quantum Grav. 13 2375
[8] Kiefer C 1996 New frontiers in gravitation ed G A Sardanashvily (Palm Harbor: Hadronic Press) pp 203–214
[9] Halliwell J J and Hawking S W 1985 Phys. Rev. D 31 1777

[10] Calcagni G 2012 Preprint arXiv:1209.0473 [gr-qc]
[11] Hinshaw G et al. 2012 Preprint arXiv:1212.5226v2 [astro-ph.CO]
[12] Planck Collaboration 2013 Preprint arXiv:1303.5076v1 [astro-ph.CO]
[13] Bojowald M, Calcagni G and Tsujikawa S 2011 Phys. Rev. Lett. 107 211302
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