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Abstract We prove that sufficiently regular solutions to the wave equation �gφ =

0 on the exterior of the Schwarzschild black hole obey the estimates |φ | ≤Cδ v
− 3

2 +δ

+
and |∂tφ | ≤ Cδ v−2+δ

+ on a compact region of r, including inside the black hole
region. This is proved with the help of a new vector field commutator that is anal-
ogous to the scaling vector field on Minkowski spacetime. This result improves
the known decay rates in the region of finite r and along the event horizon.

1 Introduction

A major open problem in general relativity is that of the nonlinear stability of
Kerr spacetimes. These spacetimes are stationary axisymmetric asymptotically flat
black hole solutions to the vacuum Einstein equations

Rµν = 0

in 3 + 1 dimensions. They are parametrized by two parameters (M,a), represent-
ing, respectively, the mass and the angular momentum of a black hole. It is conjec-
tured that Kerr spacetimes are stable. In the framework of the initial value prob-
lem, the stability of Kerr would mean that for any solution to the vacuum Einstein
equations with initial data close to the initial data of a Kerr spacetime, its maximal
Cauchy development has an exterior region that approaches a nearby, but possibly
different, Kerr spacetime.

Kerr spacetimes have a one-parameter subfamily of spacetimes known as Schwarzschild
spacetimes for which a = 0. The Schwarzschild metric in the so-called exterior
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region can be expressed as

g =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dσS2 ,

where dσS2 denotes the standard metric on the unit sphere. In view of the non-
linear problem, it is conjectured that a spacetime that is close to Schwarzschild
initially will approach a Kerr spacetime that is also close to Schwarzschild, i.e.,
a�M. In other words, we can consider the stability of Schwarzschild spacetimes
within Kerr spacetimes. (Notice that the Schwarzschild family itself is not asymp-
totically stable since a Kerr spacetime with small a can be considered as a small
perturbation of a Schwarzschild spacetime.)

To tackle the nonlinear stability of Schwarzschild spacetimes within the Kerr
family, it is important to first understand the linear waves

�gφ = 0

on the exterior region of Schwarzschild spacetimes. This can be compared with the
nonlinear stability of Minkowski spacetime whose proof requires a robust under-
standing of the quantitative decay of the solutions to the linear wave equation
(5; 20).

The pointwise decay of the solutions to the linear wave equation on Schwarzschild
background is proved in (4; 11). In particular, Dafermos–
Rodnianski proved a decay rate of |φ | ≤C (max{1,v})−1 everywhere in the exte-
rior region, including along the event horizon (11). The subject of this paper is
to improve this decay rate. In particular, we will prove that for arbitrarily small
δ > 0, |φ | ≤Cδ ,R (max{1,v})−

3
2 +δ in the region {rb ≤ r ≤ R} for any rb > 0 and

R > 2M. This includes the decay rate along the event horizon and inside the black
hole region.

Our proof applies a new vector field commutator S that is analogous to the
scaling vector field in Minkowski spacetime. We will show that for solutions
to �gφ = 0, �g (Sφ) decays sufficiently towards spatial infinity and only grows
mildly towards event horizon. We then prove energy estimates for Sφ with the
help of (a slightly modified version of) the energy estimates of φ in (11). This will
enable us to prove the decay of Sφ . With this decay, we follow Klainerman and
Sideris (16) to improve the decay rate for ∂tφ . We also introduce a novel method
to improve the decay rates for φ and its spatial derivatives.

We hope that this improved decay will be relevant for nonlinear problems. We
recall for example the wave map equation from R3,1 to S2 given by:

�mφ = φ

(
(∂tφ)2−|∇φ |2

)
.

To prove the global existence for small data for this equation, it is insufficient to
have |∂φ | ≤C (1+ |t|)−1. One needs an improved decay |∂φ | ≤C (1+ |t + r|)−1 (1+ |t− r|)−δ .
Moreover, one needs the nonlinearity to satisfy the so-called null condition (see
(14)). In a future work, we will use the improved decay rate we prove in this paper
and study the global well-posedness of small data for a nonlinear wave equation
satisfying a null condition on a fixed Schwarzschild background.
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Fig. 1 Schwarzschild spacetime

In Sects. 1.1 and 1.2, we will introduce the Schwarzschild spacetime and the
class of solutions that we consider. This will introduce the terminologies necessary
to state the main theorem in Sect. 1.3. We will motivate our proof with a compar-
ison with the linear waves on Minkowski spacetime (Sect. 1.4). We then mention
some known results on linear waves on Schwarzschild spacetime (Sect. 1.5). We
especially discuss the work (11) whose techniques are important for this paper.
We will then provide some heuristics for our proof of the main theorem in the
final subsection of the introduction (Sect. 1.6).

1.1 Schwarzschild Spacetime

Schwarzschild spacetime is the spherically symmetric asymptotically flat solution
to the vacuum Einstein equations. The Schwarzschild metric in the exterior region
is

g =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dσS2 ,

where dσS2 denotes the standard metric on the unit sphere. It is easy to observe
from the metric that the vector field ∂t is Killing and it is orthogonal to the hyper-
surfaces t = constant. Spacetimes with this property are called static. It is also
manifestly spherically symmetry and, therefore, has a basis of Killing vector fields
Ωi generating the symmetry. Moreover, Schwarzschild spacetimes are asymptoti-
cally flat. This means that the metric approaches the flat metric as we go to spatial
infinity (r → ∞).

Synge (24) and Kruskal (18) showed that the Schwarzschild metric can be
extended past r = 2M as a solution to the vacuum Einstein equations. Its maximal
development is usually described by a Penrose diagram, which depicts a confor-
mal compactification of the 4D manifold quotiented out by spherical symmetry
(Fig. 1). In this diagram, the coordinate system

(
t,r > 2M,ω ∈ S2

)
with the met-

ric described above represents the region I, which we will call from now on the
exterior region. In the nonlinear stability problem, it is this region that is conjec-
tured to be stable. Extended beyond r = 2M, the Schwarzschild spacetime contains
a black hole (region II in the diagram). Physically, an observer outside the black
hole region cannot receive signals emitted inside the black hole. The null hyper-
surface r = 2M separating the exterior region I and the black hole is known as the
event horizon H +.

We return to the discussion of the exterior region of the Schwarzschild black
hole. For notational convenience, we let

µ =
2M
r

.

We denote as r∗ the Regge–Wheeler tortoise coordinate

r∗ = r +2M log(r−2M)−3M−2M logM.
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In these coordinates, the Schwarzschild metric in the exterior region is given by

g =−(1−µ) dt2 +(1−µ) dr∗2 + r2 dσS2 .

Notice that in the above equation we have used both r∗ and r. Here, and below, we

think of r∗ as the coordinate and r as a function on Q, with r (q) =
√

Area(q)
4π

,
i.e., the physical radius of the 2-sphere under which the metric is symmetric.
The coordinate r∗ is +∞ at spatial and null infinity; −∞ at the event horizon
and 0 at r = 3M. The set {r = 3M} is known as the photon sphere. On this set
trapping occurs: there exist null geodesics that lie in this set. In particular, these
geodesics neither cross the event horizon nor approach null infinity. This suggests,
via geometrical optics considerations, that one has to lose derivatives while prov-
ing energy estimates. We will return to this point when we discuss the vector field
X .

We notice that as in the coordinates (t,r,ω), ∂t and Ω are Killing in the
(t,r∗,ω) coordinates.

We also define the retarded and advanced Eddington–Finkelstein coordinates
u and v by

t = v+u, r∗ = v−u.

At the event horizon H +,u = +∞. At future null infinity I +,v = +∞. Notice
that in these coordinates, the metric is given by

−4(1−µ) dudv+ r2 dσS2 .

In particular, this shows that ∂u,∂v in this coordinate system are null.
In the following, we are also going to consider the coordinate system (v,r,ω),

where v and r are defined as above. We will only use this coordinate system when
considering the region near the event horizon or inside the black hole. When there
is no confusion, we will not specify the coordinate system when we use the nota-
tion ∂v. In the (v,r,ω) coordinate system the metric is

g =−(1−µ)dv2 +2dr dv+ r2 dσS2 .

Notice that the coordinate v is originally defined only for r > 2M. However, as
the metric in the (r,v) coordinate system is non-singularity, we can extend the
v coordinate to r > 0. We will also refer to u inside the black hole region with
u = v− 2r− 4M log(r−2M) defined as it is in the exterior region. Notice that u
is not defined on the event horizon.

1.2 Wave Equation and Class of Solutions

We would like to study the solutions to �gφ = 0 in Schwarzschild spacetimes.
Written in the local coordinates of the exterior region,

�gφ =−(1−µ)−1
∂

2
t φ +(1−µ)−1 r−2

∂r∗
(
r2

∂r∗φ
)
+∆/φ ,

where ∆/ denotes the Laplace–Beltrami operator on the standard 2-sphere with
radius r.
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We notice that �g commutes with Killing vector fields. In particular, �gφ = 0
implies �g∂tφ = 0 and �gΩφ = 0.

The decay result that we prove apply to solutions to the wave equation that is in
some energy class initially. We define the energy classes using currents of vector
fields. We will briefly introduce the relevant concepts here in order to present the
energy classes. A more detailed description of the vector fields will be presented
in the next section.

Define the energy–momentum tensor

Tµν = ∂µ φ∂ν φ − 1
2

gµν ∂
α

φ∂α φ .

Given a vector field V µ , we define the associated current

JV
µ (φ) = V ν Tµν (φ)

and the modified current

JV,w
µ (φ) = JV

µ (φ)+
1
8
(
w∂µ φ

2−∂µ wφ
2) .

To define the energy classes we need two vector fields:

N = ∂t +
y1 (r)
1−µ

∂u + y2 (r)∂v,

Z = u2
∂u + v2

∂v,

where y1,y2 > 0 are supported near the event horizon with y1 = 1,y2 = 0 at the
event horizon. The precise form of y1,y2 will be defined later. Notice that we can
also write N in the (v,r,ω) coordinates as

N =
(

1
2

+ y2(r)
)

∂v− (y1(r)− y2(r)(1−µ))∂r.

This indicates that N is regular and can be defined across the event horizon. We
will define it inside the black hole so that it is smooth and timelike, future-directed.
We also define a modifying function for the associated current of Z:

wZ =
2tr∗ (1−µ)

r
.

We note here that∫
JN

µ (φ)nµ

t0 dVolt0 ∼
∫

∞

−∞

∫
S2

(
(∂uφ)2

1−µ
+(∂vφ)2 + |∇/φ |2

)
r2 dAdr∗,

∫
JZ,wZ

µ (φ)nµ

t0 dVolt0 ∼
∫

∞

−∞

∫
S2

(
u2 (∂uφ)2 + v2 (∂vφ)2 +(1−µ)

×

((
u2 + v2) |∇/φ |2 +

t2 +(r∗)2

r2 φ
2

))
r2 dAdr∗,
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where dVolt0 is the volume form of the slice {t = t0} (see Sect. 2).
Let S = t∂t + r∗∂r∗ .
Define

E0 (φ) =
∫
{r≥2M}

(
3

∑
k=0

JN
µ

(
Ω

k
φ

)
nµ

t0 +
2

∑
k=0

JZ,wZ

µ

(
Ω

k
φ

)
nµ

t0

)
dVolt0

+
∫
{rb≤r≤r0}

3

∑
k=0

JN
µ

(
Ω

k
φ

)
nµ

v0
dVolv0 , where r0 >2M is to be picked,

E1 (φ) = E0 (Sφ)+
1

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
,

E2 (φ) =
2

∑
m=0

2−m

∑
k=0

E1

(
∂

m
t Ω

k
φ

)
,

E3 (φ) =
1

∑
m=0

1

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+E1 (φ),

E4 (φ) =
2

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

2

∑
m=0

2−m

∑
k=0

E1

(
∂tΩ

k
φ

)
.

We notice that the boundedness of these quantities should be thought of as require-
ments of regularity and decay. In the above, E0,E1,E2,E3 and E4 requires 4, 8, 10,
8 and 10 derivatives respectively. In terms of spatial decay, all the energy classes
require decay of φ at spatial infinity. However, we note that φ is not required to
decay toward the bifurcate sphere (H +∩H − in Fig. 1). In the following, we will
work as if φ is smooth and supported away from spatial infinity. This assumption
can be removed by a standard approximation argument.

1.3 Statement of the Main Theorem

We prove both pointwise decay and energy decay for solutions of �gφ = 0. From
this point onwards, we assume t∗ > 1,v∗ > 1.
Main Theorem 1 Suppose φ is a solution to the wave equation on the
Schwarzschild spacetime, i.e., �gφ = 0. Then for any δ > 0 and any 0 ≤ rb ≤
2M ≤ R < ∞

1. Pointwise decay of φ

|φ (v∗,r) | ≤Cδ ,rb,Rv
− 3

2 +δ

∗ E
1
2

2 (φ) for rb ≤ r ≤ R.

2. Pointwise decay of derivatives of φ

|∇φ (v∗,r) | ≤Cδ ,rb,Rv
− 3

2 +δ

∗ ∑
k+m≤1

E
1
2

2

(
∂

m
t Ω

k
φ

)
for rb ≤ r ≤ R,

where ∇ denotes any derivatives.
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3. Decay of nondegenerate energy in the region 2M ≤ r ≤ R∫ R

r∗1

(
φ(t∗)2 +(∇φ (t∗))

2
)

dVolt∗

+
∫
{−∞<r∗≤r∗1}

(
1

1−µ
(∂uφ)2 +(1−µ) |∇/φ |2

)
dAdu{v=v∗}

≤Cδ ,r∗1 ,R min{t∗,v∗}−3+δ
∑

k+m≤1
E1

(
∂

m
t Ω

k
φ

)
,

for any r1 satisfying r∗1 ≤ R∗.
4. Decay of nondegenerate energy in the region rb ≤ r ≤ 2M in (v,r,ω) coordi-

nates ∫ v∗+1

v∗

(
φ

2 +(∇φ)2
)

dAdvr ≤Cδ ,rb
v−3+δ
∗ ∑

k+m≤1
E1

(
∂

m
t Ω

k
φ

)
,

for any rb ≤ r ≤ 2M.

Remark 1 The integral in statement 3 represents the part of nondegenerate energy
restricted to the region r ≤ R (See Sect. 3.5). It should be compared with the
corresponding part of the (degenerate) energy generated by the vector field T = ∂

∂ t∫ R∗

r∗1
(∇φ (t∗))

2 dVolt∗ +
∫
{2M≤r∗≤r∗1}

(
(∂uφ)2 +(1−µ) |∇/φ |2

)
dAdu{v=v∗}.

The nondegeneracy is more apparent if we write the second integral in the (v,r,ω)
coordinates, which up to some constant is:∫

{2M≤r∗≤r∗1}

(
(∂rφ)2 + |∇/φ |2

)
dAdr{v=v∗}.

For the time derivatives, we have better decay estimates both in the sense that
we have a better decay rate and have a larger region of spacetime on which the
estimates hold.
Main Theorem 2 Suppose φ is a solution to the wave equation on the Schwarzschild
spacetime, i.e., �gφ = 0. Then for any δ > 0 and rb > 0

1. Pointwise decay of ∂tφ

|∂tφ (v∗) | ≤Cδ ,rb
v−2+δ
∗ E

1
2

4 (φ) for rb ≤ r ≤ 2M or r∗ ≤ t∗
2

.

2. Decay of nondegenerate energy of ∂tφ in the Region r∗ ≤ t∗
2∫ t∗

2

r1∗

(
(∂tφ(t∗))

2 +(∇∂tφ (t∗))
2
)

dVolt∗

+
∫
{−∞<r∗≤r∗1}

(
1

1−µ
(∂u∂tφ)2 +(1−µ) |∇/∂tφ |2

)
dAdu{v=v∗}

≤Cδ ,r∗ min{t∗,v∗}−4+δ E3 (φ) .

for any r∗1.
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3. Decay of nondegenerate energy of ∂tφ in the region rb ≤ r ≤ 2M in (v,r,ω)
coordinates∫ v∗+1

v∗

(
(∂tφ)2 +(∇∂tφ)2

)
dAdvr ≤Cδ ,rb

v−4+δ
∗ E3 (φ),

for any rb ≤ r ≤ 2M.

We would like to point out that the pointwise decay rates in both theorems
apply to region of finite r including inside the black hole.

1.4 The Case of Minkowski Spacetime

At this point, we would like to discuss some decay results for the linear wave
equation on Minkowski spacetimes. We would like to especially highlight tech-
niques that are relevant to our result. In Minkowski space R3,1, the solutions to the
wave equation with initial conditions φ (t = 0,x) = φ0 and ∂tφ (t = 0,x) = φ1 can
be written as

φ (t,x) =
1

4πt2

(
∂t

∫
S2

tφ0 (x+ ty) dA(y)+
∫

S2
tφ1 (x+ ty) dA(y)

)
. (1)

This formula implies immediately that |φ (t,x) | ≤ C
t+

, where t+ = max{t,1}. This
decay is optimal in the variable t. However, improved decay can be seen in the null
coordinates v = 1

2 (t + r) and u = 1
2 (t− r), where r2 = ∑

3
i=0 x2

i . In particular, (1)
implies the strong Huygens’ Principle, asserting that φ with compactly supported
initial data is compactly supported in the variable u. Therefore, denoting v+ =
max{v,1}, u+ = max{u,1}, we have in particular

|φ | ≤ CN

v+uN
+

, ∀N ≥ 0.

If we just focus on the region {r ≤ t
2}, where t ∼ v ∼ u, the decay can be written

as

|φ | ≤ CN

tN
+

, ∀N ≥ 0.

However, the use of the representation formula (1) is not available on pertur-
bations of the Minkowski spacetime. In (5; 20), a more robust understanding of
the decay of the linear waves was necessary. This was achieved by the vector field
method. Let φ be a solution to the linear wave equation on Minkowski spacetime,
�mφ = 0. Define the energy–momentum tensor

Tµν = ∂µ φ∂ν φ − 1
2

mµν ∂
α

φ∂α φ .

Notice that the wave equation implies that the energy–momentum tensor is diver-
gence free, i.e.,

∇
µ Tµν = 0.
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Given a vector field V µ , we define the associated currents

JV
µ (φ) = V ν Tµν (φ) ,

KV (φ) =
1
2

Tµν (∇µV ν +∇
νV µ) ;

and the modified currents

JV,wV

µ (φ) = JV
µ (φ)+

1
8
(
wV

∂µ φ
2−∂µ wV

φ
2) ,

KV,wV
(φ) = KV (φ)+

1
4

wV
∂

ν
φ∂ν φ − 1

8
�gwV

φ
2,

where wV is some scalar function associated to the vector field V . Since the
energy–momentum tensor is divergence free, it is easy to check that

∇
µ JV

µ (φ) = KV (φ),

∇
µ JV,wV

µ (φ) = KV,wV
(φ).

Notice that KV (φ) = 0 whenever V is Killing. In this case JV
µ (φ) is divergence

free. Therefore, for any solution φ and Killing vector field V , there is a conserva-
tion law ∫

t=t1
JV

0 (φ) dxt1 =
∫

t=t0
JV

0 (φ) dxt0 .

This is a manifestation of Noether’s Theorem, which states that a differentiable
one-parameter family of symmetries gives rise to a conservation law. We call
the vector field V in this application a multiplier because we “multiply” it to the
energy–momentum tensor. An example of this is to take the Killing vector field ∂t
and derive the energy conservation law∫ (

(∂tφ)2 +
3

∑
i=1

(∂xiφ)

)
dxt =

∫ (
(∂tφ)2 +

3

∑
i=1

(∂xiφ)2

)
dxt0 . (2)

Besides being multipliers, vector fields can also be used as commutators. This
means that we commute the vector fields with �m. For example, since ∂ ∈{∂t ,∂xi}
is Killing, [�m,∂ ] = 0 and, therefore, �m (∂φ) = 0. Then the energy conserva-
tion law (2) can be applied to ∂φ and we can control the L2 norm of the deriva-
tives of φ of orders 1 and 2. Then using a Sobolev-type inequality ||φ ||L∞(R3) ≤

C||φ ||
1
2
Ḣ1(R3)||φ ||

1
2
Ḣ2(R3) (which holds for compactly supported functions), uniform

boundedness of the solutions to the wave equation can be proved. The Killing vec-
tor fields Ωi generating the spherical symmetry can also be used as commutators.
This is especially useful because compared to the angular derivatives, Ωi has an
extra factor of r, i.e., Ω ∼ r∇/ . This allows one to prove in (15) that for φ decaying
sufficiently fast at spatial infinity:

|φ | ≤ C
r

2

∑
m=1

2

∑
k=0

||∂ m
r Ω

k
φ ||L2(R3),
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which implies a decay in the region {r > t
2}:

|φ | ≤ C
r
≤ C

v+

after applying (2) to Ω kφ .
To achieve decay of φ in {r ≤ t

2}, one can use the conformally Killing vector
field Z =

(
t2 + r2

)
∂t +2tr∂r introduced by Morawetz (23). In this case, KZ (φ) 6=

0. Nevertheless, by defining wZ = 2t, KZ,wZ
(φ) = 0 and, therefore,

∫
JZ,wZ

0 (φ)dxt
is a conserved quantity. Moreover, some algebraic manipulation would show∫

JZ,wZ

0 (φ) dxt

≥ c
∫ (

v2 (∂vφ)2 +u2 (∂uφ)2 +
(
v2 +u2)(φ 2

r2 + |∇/φ |2
))

dx,

where ∇/ denotes the angular derivatives. The conserved nonnegative quantity
∫

JZ,wZ

0 (φ)dxt
is known as the conformal energy. For the region {r ≤ t

2}, notice that the bound-
edness of the conformal energy implies a local energy decay∫

{r≤ t
2 }

(
φ 2

r2 +(∂vφ)2 +(∂uφ)+ |∇/φ |2
)

dxt ≤
C
t+

.

After considering the equations �m
(
∂ kφ

)
= 0, Sobolev embedding would imply

the pointwise decay |φ | ≤ C
t+

, for r≤ t
2 . Notice that in this region t+ is comparable

to v+. Therefore, we have in the whole of Minkowski spacetime

|φ | ≤ C
v+

.

Klainerman and Sideris (16) showed that more decay can be achieved in the
interior region {r ≤ t

2} for the derivatives of φ . They used the scaling vector field
S = t∂t + r∂r as a commutator. Notice that S is conformally Killing and [�m,S] =
2�m. In particular, if one has �mφ = 0, then �m (Sφ) = S�mφ + 2�mφ = 0.
Therefore, any decay results that hold for φ also hold for Sφ . Klainerman and
Sideris (16) showed that

∑
∂∈{∂t ,∂xi}

||u+∂∂tφ ||L2(R3)

≤C ∑
∂∈{∂t ,∂xi}

(
||∂Sφ ||L2(R3) + ||∂φ ||L2(R3) + ||∂ 2

φ ||L2(R3) + ||∂Ωφ ||L2(R3)

)
.

By cutting off appropriately and using the local energy decay estimates,

||∂∂tφ ||L2({r≤ t
2 }) ≤

C
t2
+

in
{

r ≤ t
2

}
since 1

u+
≤ C

t+
in this region. Again, using the Sobolev-type inequality above, one

shows that |∂tφ | ≤ C
t2
+

in {r ≤ t
2}. The other derivatives can also be estimated
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first by elliptic estimates and then the Sobolev inequality, since ||u+∂ 2
t φ ||L2(R2) =

||u+∆φ ||L2(R2) by the linear wave equation. Therefore,

|∂φ | ≤ C
t2
+

in
{

r ≤ t
2

}
.

We remark that in (16), the improved decay in {r ≤ t
2} can also be proved for the

function φ itself by inverting the Laplacian. As we proceed to prove the analogous
decay on Schwarzschild spacetimes, we will avoid doing so. This is because on
Schwarzschild spacetimes, it is impossible to invert the Laplacian for functions
that do not vanish on the bifurcate sphere (H +∩H − in Fig. 1).

1.5 Some Known Results on the Wave Equation on Schwarzschild Spacetimes

We now turn to the corresponding problem for linear waves on Schwarzschild
spacetimes. The problem of the uniform boundedness of solutions to �gφ = 0
on the exterior of Schwarzschild occupied the physics community for some time.
The first mathematically rigorous result was obtained by Wald (25) for solutions
vanishing on the bifurcate sphere (H +∩H − in Fig. 1). Kay and Wald (13) later
removed this restriction and proved the uniform boundedness of a more general
class of solutions. They used the energy conservation law given by using ∂t as a
multiplier as well as the Killing fields {∂t ,Ωi} as commutators. The decay rates

|φ | ≤ Cv−1
+ , ∀r ≥ 2M,

(3)
|rφ | ≤ CRu

− 1
2

+ , ∀r ≥ R,

where v+ = max{v,1},u+ = max{u,1} and CR depends only on an appropri-
ate norm of the initial data, for sufficiently regular solutions to �gφ = 0, were
proved by Dafermos and Rodnianski (11). We note that the decay rate (3) holds in
the entire exterior region of Schwarzschild spacetimes, including along the event
horizon. In addition to the vector fields in (13; 25), their approach employed sev-
eral other (non-Killing!) vector fields. One is an analog of the Morawetz vec-
tor field Z in Minkowski spacetime. It has an associated nonnegative quantity
which we will call the conformal energy. It has weights similar to that of the
conformal energy on Minkowski spacetime so that its boundedness would imply
a local energy decay. Another is a vector field of the form X = f (r∗)∂r∗ . The con-
struction of this vector field was motivated by Laba and Soffer (19). Unlike other
multipliers, X is constructed so that KX ,wX

(φ) (instead of JX ,wX
(φ)) can be con-

trolled. This is used to estimate some energy quantity integrated over spacetime,
in particular error terms from the “conservation law” of the conformal energy.
The estimates of X are iterated together with that of Z to achieve the bound-
edness of the conformal energy. This then implies the decay of φ away from
the event horizon. The estimate associated to X can be thought of as an inte-
grated in time local energy decay. It was extensively studied in
(1; 2; 4; 8; 11; 22).

In addition, (11) introduced a new, red shift vector field, which takes advan-
tage of the geometry of the event horizon and is used crucially in proving the
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decay rate close to and along the event horizon. This vector field is one of the few
stable features of the Schwarzschild spacetime. In particular, it can be used to give
a more robust proof of boundedness of the solutions to the linear wave equation
on Schwarzschild spacetimes. It also plays key roles in the boundedness results
for the linear wave equation on small axisymmetric stationary perturbations of
Schwarzschild spacetimes and in the decay result for the linear wave equation on
slowly rotating Kerr spacetimes (9; 10). As we will see later, it will make a cru-
cial appearance in this article to achieve the improved decay rate along the event
horizon.

The study of pointwise decay was carried out independently by Blue and Ster-
benz (4). They showed a similar quantitative decay result for initial data vanish-
ing on the bifurcate sphere, with a decay rate that is weaker than (11) along the
event horizon. In the proof they used analogues of the vector fields Z and X but
not the vector field Y . Strichartz estimates for solutions of the wave equation on
Schwarzschild background were shown in (22). We refer the readers to Sects. 3
and 4 in (10) for further references on this problem.

Considerable attention has also been given to the problem of decay of solutions
of the wave equations on the Schwarzschild spacetime restricted to a fixed spher-
ical harmonic φ` arising in the decomposition φ(t,r,ω) = ∑` φ`(r, t)Y`(ω),ω ∈
S2. Such results for a fixed spherical harmonic have been obtained in (7; 12;
17; 21). We refer the readers to Sect. 4.6 in (10) for a more detailed discus-
sion.

1.6 Outline
of the Proof

Our proof uses ideas from Dafermos and Rodnianski (11) and Klainerman and
Sideris (16). In addition to the arguments used in (11), we introduce a vector field
S = t∂t + r∗∂r∗ which is analogous to the scaling vector field in Minkowski space-
time. Since Schwarzschild spacetimes are asymptotically flat, S is still an “asymp-
totic conformal symmetry” generating an “asymptotic almost conservation law”.
However, the error terms away from spacelike infinity are in general large. To see
this more concretely, we recall that on Minkowski spacetimes, �mφ = 0 implies
�m (Sφ) = 0. This does not hold in Schwarzschild spacetimes. Nevertheless, for
�gφ = 0, we still have a (schematic) equation �g (Sφ) = h(r)

(
∇φ +∇2φ

)
with

h→ 0 as r →∞. The strategy is then to go through the argument in Dafermos and
Rodnianski (11) and control the error terms that arise from �g (Sφ) 6= 0. To do so,
we use a slightly modified version of the energy estimates that are available from
the proof in (11).

As in later parts of the paper, we define ψ = Sφ . We would like to prove energy
estimates for ψ similar to those for φ that are established in (11), except for a loss
of an arbitrarily small power of t. A key estimate that will be used to prove the
main theorem is∫ t2

t1

∫ t
2

− t
2

∫
S2

(
ψ

2 +(∇ψ)2
)

χ (r∗) dVol≤Cδ t−2+δ

1 , (4)

where χ is some weight and t1 ≤ t2 ≤ (1.1) t1. A similar estimate is available with
ψ replaced by φ from (11) using the X vector field. In order to prove this, we
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argue in a similar fashion. We want to show, using the vector field X , that for t1, t2
as above∫ t2

t1

∫ t
2

− t
2

∫
S2

(
ψ

2 +(∇ψ)2
)

χ (r∗) dVol≤Cδ t−2+δ

1 {conf. energy(ψ)},

where the conformal energy is the current of the vector field Z on the boundary
{t = ti}. We then hope to show

{conf. energy(ψ) at t2}

≤C
(
{conf. energy(ψ) at t1}+

∫ t2

t1

∫ t
2

− t
2

∫
S2

(
ψ

2 +(∇ψ)2
)

χ (r∗)dVol
)

.

We then iterate two inequalities to obtain (4) as in (11).
The main difficulty in actually carrying out the above procedure is that each

step is only true modulo some error terms that need not be small. These are error
terms arising from the fact that ψ does not satisfy the homogeneous wave equa-
tion, but only satisfies an inhomogeneous wave equation, which schematically can
be thought of as �gψ = h(r∗)

(
∇φ +∇2φ

)
. If one applies the vector field method

to this equation, one would generate an error term of the form∫ t2

t1

∫
∞

−∞

∫
S2

V µ
∂µ ψh(r∗)

(
∇φ +∇

2
φ
)

dVol, (5)

for the vector fields V ∈ {∂t ,X = f (r)∂r∗ ,Z =
(

t2 +(r∗)2
)

∂t +2tr∗∂ ∗r }. (In prac-
tice there is still another error term if one uses the modified current, but since it
can be controlled similarly, we omit the technicalities here.) Applying Cauchy–
Schwarz, we can control (5) by(∫ t2

t1

∫
∞

−∞

∫
S2

(∇ψ)2 dVol
) 1

2
(∫ t2

t1

∫
∞

−∞

∫
S2

h̃(r∗)((∇φ)2 +(∇2
φ)2)dVol

) 1
2

(6)

We control the first factor by some energy quantities of ψ which we are in the
process of proving. They are set up so that we can estimate them with a bootstrap
argument. In order that the bootstrap can close, we would need to show that the
second factor decays or does not grow as t1, t2 →∞ (for example with t2 = (1.1)t1).
The precise rate of decay that is necessary depends on the vector field V under con-
sideration and is ultimately dictated by what the bootstrap argument requires. To
achieve this, we recall the energy estimates derived from the X vector field in (11).
In particular, we have ∫ t2

t1

∫
∞

−∞

∫
S2

(∇φ)2
χ (r∗) dVol≤C, (7)∫ t2

t1

∫ t
2

− t
2

∫
S2

(∇φ)2
χ (r∗) dVol≤Ct−2

1 , (8)

where χ is a weight that decays at spatial infinity, (8) gives good control for the
second factor in (6) for the region {− t

2 ≤ r∗ ≤ t
2} as long as h̃ and χ behaves

appropriately. We will slightly improve the weight χ from (11) so that we have,
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loosely speaking, h̃(r∗) ≤ C (1+ |r∗|)−2
χ (r∗). This would give control for the

second factor in (6) for the region {− t
2 ≤ r∗ ≤ t

2}. For the regions {r∗ ≤− t
2} and

{r∗ ≥ t
2}, h̃(r∗) ≤C (1+ |r∗|)−2

χ (r∗) ≤C (1+ t)−2
χ (r∗). Then we can control

the second factor in (6) in this region with (7) and the extra factor of (1 + t)−2.
The reader should keep in mind that these are only heuristics and are not true
if directly applied. The actual estimates for these error terms are slightly more
involved considering first that V µ might grow t; and second that we do not have
energy estimates that control every derivatives of ψ; and thirdly that some error
terms would tend to infinity as r approaches the event horizon. The relevant esti-
mates will be proved in Sect. 5.

In (16), the estimates for ψ are used to prove the decay for ∂tφ in Minkowski
spacetime. We show that it is possible to argue similarly to prove the decay for
∂tφ in Schwarzschild spacetimes (Sect. 7.2). Recall that in (16), one then pro-
ceeds with elliptic estimates to prove the decay for other derivatives. However, on
Schwarzschild spacetimes, if we are to prove an L2 elliptic estimate, we are bound
to have some lower order terms involving only one derivative of φ . These terms
cannot be controlled by the estimates of ψ and, therefore, we are unable to use a
similar method to prove the decay of the spatial derivatives of φ .

Therefore, we introduce in this paper a new method, based on a novel applica-
tion of S,to prove the decay for the function φ as well as its derivatives in spatial
directions (Sect. 7.1). We notice that by (8),∫ t2

t1

∫ r∗2

r∗1

(
φ

2 +(∂r∗φ)2
)

dVol≤Ct−2
1 ,

for t1 ≤ t2 ≤ (1.1) t1. Therefore, there exists a time t̃ ∈ [t1, t2] such that∫ r∗2

r∗1

(
φ

2 +(∂r∗φ)2
)

dVolt̃ ≤Ct̃−3.

In order to show that the same holds for any t, we note that S is strictly timelike on
a compact set of r∗. Therefore, we can integrate in the direction of S from the slice
t̃ to a generic slice t. This integration would not give an extra factor of t precisely
because we already have the estimates for ψ = Sφ . After controlling the spacetime
terms by (4) and (8), we show that for any t,∫ r∗2

r∗1

(
φ

2 +(∂r∗φ)2
)

dVolt ≤Cδ t−3+δ .

We use Sobolev Embedding to get the pointwise decay estimate for φ and its
derivatives (for r∗1 ≤ r∗ ≤ r∗2) after commuting with an appropriate number of
Killing vector fields. We note in particular that in this proof, it is unnecessary to
invert the Laplacian on Schwarzschild spacetime to prove the decay of φ .

The argument above gives the decay of φ and its derivatives in a compact
region of r∗, i.e., a compact region of space that is also away from the event hori-
zon. (Recall r∗ is defined so that r∗ =−∞ at the event horizon.) In order to prove
that φ also decays along the event horizon, we use the red-shift vector field intro-
duced in (11). This vector field was used in (11) to show that in some (explicitly
identified) neighborhood of the event horizon, some energy quantity on an initial
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slice can control some similar energy quantity in a spacetime slab provided that
the error terms that are supported in a compact region of r∗ can be controlled. It
is then used to propagate the decay of φ from a compact region of r∗ to the event
horizon. In this article, we show along these lines that any decay estimate proved
on a compact region of r∗ can be propagated to the event horizon, giving rise to
a decay estimate of the same rate. This will be carried out in Sect. 5. Moreover,
using an identical argument with the red-shift vector field, which we also include
for the sake of completeness, the decay estimate can be propagated to slightly
beyond the event horizon into the black hole region. Once we have an estimate
slightly beyond the event horizon, we can easily prove the same decay estimate
anywhere inside the black hole region by taking advantage of the geometry of the
region. This strategy for controlling the scalar field inside the black hole region
was first used in (6) and (7) in the nonlinear setting, see also subsequent (22) in
the linear setting. This will be carried out in Sect. 6 and will give the full improved
decay result.

2 Notations

Before proceeding, we would like to first define the notations used for the coordi-
nates and volume form.

For the r,r∗ coordinates, we always use ∗ to denote the Regge–Wheeler tortoise
coordinate of the same point.

For the t coordinates:

t0 denotes the time slice on which the initial data is posed.
t∗ denotes the time slice on which we would like to control the
solution.
ti denotes dyadic time slices (which will be defined in Sect. 4).
t denotes a generic time slice.
We assume t0, t∗, ti, t > 0.

For volume forms:

dVol denotes the spacetime volume form, dVol = r2 (1−µ) dAdr∗dt.
dVolt denotes the volume form on a time slice, dVolt = r2√1−µ dAdr∗.
dVolv denotes a volume form on a v slice, dVolv = r2√1−µ dAdu.1
dA denotes the volume form on the standard sphere of radius 1.

Whenever we write
∫

without integration limits, it denotes the integration over
“whole space” that is appropriate for the volume form.

1 Most of the time it is clear from context whether we are integrating over a t or v slice. We
will specify in the case of possible ambiguity, for example dVol{t=2v−r∗} is the volume form on
a t slice, where t has the specified value.
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3 Vector
Fields

3.1 Conservation
Laws

We consider the conservation laws for φ satisfying �gφ = 0. Define the energy–
momentum tensor

Tµν = ∂µ φ∂ν φ − 1
2

gµν ∂
α

φ∂α φ .

We note that Tµν is symmetric and the wave equation implies that

∇
µ Tµν = 0.

Given a vector field V µ , we define the associated currents

JV
µ (φ) = V ν Tµν (φ) ,

KV (φ) = π
V
µν T µν (φ) ,

where πV
µν is the deformation tensor defined by

π
V
µν =

1
2
(
∇µVν +∇νVµ

)
.

In particular, KV (φ) = πV
µν = 0 if V is Killing. Since the energy-momentum tensor

is divergence-free,

∇
µ JV

µ (φ) = KV (φ) .

We also define the modified current

JV,w
µ (φ) = JV

µ (φ)+
1
8
(
w∂µ φ

2−∂µ wφ
2) .

Define KV,w (φ) = KV (φ)+ 1
4 w∂ ν φ∂ν φ − 1

8�gwφ 2.
Then

∇
µ JV,w

µ (φ) = KV,w (φ) .

We integrate by parts with this in a region B bounded to the future by Σ1 and
to the past by Σ0. The region B should have no other boundary. Denoting the
future-directed normal to Σ0 and Σ1 by nµ

Σ0
and nµ

Σ1
, respectively, we have

Proposition 1∫
Σ1

JV
µ (φ)nµ

Σ1
dVolΣ1 +

∫
B

KV (φ) dVol =
∫

Σ0

JV
µ (φ)nµ

Σ0
dVolΣ0 .∫

Σ1

JV,w
µ (φ)nµ

Σ1
dVolΣ1 +

∫
B

KV,w (φ) dVol =
∫

Σ0

JV,w
µ (φ)nµ

Σ0
dVolΣ0 .
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Fig. 2 Regions of integration

In this paper, there are two choices of Σi that we will use. The first is to
choose Σi to be t = constant slices. The second choice is for estimates near the
event horizon. In this case, B = {v0 ≤ v ≤ v1, t ≥ t0},Σ0 = {v = v0, t ≥ t0} ∪
{v0 ≤ v ≤ v1, t = t0} and Σ1 = {v = v1, t ≥ t0} ∪ {v0 ≤ v ≤ v1,u = ∞} (See
Fig. 2).

One can similarly define the above quantities for the inhomogeneous wave
equation �gψ = F . In this case, the energy-momentum is no longer divergence
free. Instead, we have

∇
µ Tµν = F∂ν ψ.

In this case,

∇
µ JV

µ (ψ) = KV (ψ)+FV ν
∂ν ψ.

For the modified current,

∇
µ JV,w

µ (ψ) = KV,w (ψ)− 1
4

Fwψ +FV ν
∂ν ψ.

Proposition 2∫
Σ1

JV
µ (ψ)nµ

Σ1
dVolΣ1 +

∫
B

KV (ψ) dVol+
∫

B
FV ν

∂ν ψ

=
∫

Σ0

JV
µ (ψ)nµ

Σ0
dVolΣ0 .∫

Σ1

JV,w
µ (ψ)nµ

Σ1
dVolΣ1 +

∫
B

KV,w (ψ) dVol

+
∫

B

(
−1

4
Fwψ +FV ν

∂ν ψ

)
dVol =

∫
Σ0

JV,w
µ (ψ)nµ

Σ0
dVolΣ0 .

In the case of wave equation on Schwarzschild background, we can com-
pute the energy–momentum tensor explicitly in local coordinates (t,r∗,xA,xB) or
equivalently (u,v,xA,xB), where xA,xB is an orthonormal basis on S2.

Tuu (φ) = (∂uφ)2 ,

Tvv (φ) = (∂vφ)2 ,

Tuv (φ) = (1−µ) |∇/φ |2,
TAA (φ)+TBB (φ) = |∇/φ |2−∂

α
φ∂α φ .

As a result,

KV (φ) =
1

4(1−µ)

(
(∂uφ)2

∂v

(
Vv (1−µ)−1

)
+(∂vφ)2

∂u

(
Vu (1−µ)−1

)
+|∇/φ |2 (∂uVv +∂vVu)

)
− 1

2r
(Vu−Vv)

(
|∇/φ |2−∂

α
φ∂α φ

)
.
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3.2 Vector
Field Multiplier T

Define T = ∂t . Recall that T is Killing. Therefore,

KT (φ) = 0.
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In the following, we will consider this current on a constant t-slice.
One computes that in local coordinates

JT
µ (φ)nµ

t =
1

2
√

1−µ

(
(∂tφ)2 +(∂r∗φ)2 +(1−µ) |∇/φ |2

)
,

where nµ

t is the normal to a t-slice.

3.3 Vector
Field Multiplier X

Define X = f (r∗)∂r∗ . In the following we will use different functions f . One com-
putes that

KX (φ) =
f ′ (r∗)(∂r∗φ)2

1−µ
+

1
2
|∇/φ |2

(
2−3µ

r

)
f (r∗)

−1
4

(
2 f ′ (r∗)+

4(1−µ)
r

f (r∗)
)

∂
α

φ∂α φ .

We consider the modified current using wX = 2 f ′ (r∗)+ 4(1−µ)
r f (r∗). Then

KX ,wX
=

f ′ (r∗)(∂r∗φ)2

1−µ
+

1
2
|∇/φ |2

(
2−3µ

r

)
f (r∗)− 1

8
�gwX

φ
2

=
f ′ (r∗)(∂r∗φ)2

1−µ
+

1
2
|∇/φ |2

(
2−3µ

r

)
f (r∗)

−1
4

(
1

1−µ
f ′′′ (r∗)+

4
r

f ′′ (r∗)+
µ

r2 f ′ (r∗)−2µ

r3 (3−4µ) f (r∗)
)

φ
2,

JX ,wX

µ nµ

t =
1√

1−µ
f (r∗)∂tφ∂r∗φ

+
1

2
√

1−µ

(
f ′ (r∗)+

2(1−µ)
r

f (r∗)
)

(∂tφ)φ , (9)

where nµ

t is the normal to a t-slice.
The vector field X is constructed to control a spacetime integral by the bound-

ary terms, i.e., one hopes to control the integral of KX ,wX
(φ) by the integral of

JX ,wX

µ (φ)nµ

t . In order for this to be useful, we need KX (φ) to be everywhere pos-
itive. Such vector fields are constructed in (11) using spherical harmonic decom-
position. In particular, it was shown in (11) that there exists a family of vector
fields Xl = fl (r∗)∂r∗ for l ≥ 0 such that for any function φ (not necessarily sat-
isfying the wave equation), if we write out the spherical harmonic decomposition
φ = ∑

∞
l=0 φl ,KXl ,w

Xl (φl)≥ 0.
Moreover, one has∫
S2

(
(∂r∗φl)

2

(1+ |r∗|)2 (1−µ)
+

φ 2
l

(1+ |r∗|)4 (1−µ)

)
dA≤C

∫
S2

KXl ,w
Xl (φl) dA

(10)
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for l ≥ 1, where C can be picked to be independent of l, and∫
S2

(∂r∗φ0)
2

(1+ |r∗|)1+δ r2 (1−µ)
dA≤C

∫
S2

KXl ,w
Xl (φ0)dA.

Moreover for this choice of Xl , the boundary terms are also controllable as shown
in (11): ∫

KXl ,w
Xl (φl) dVol≤C

∫
JT

µ (φ)nµ

t0 dVolt0 .

Remark 2 We note that although KXl ,w
Xl (φ) is shown to be nonnegative every-

where, it has a weight in front of |∇/φ |2 that degenerates at r = 3M. Therefore,
we cannot directly estimate the integral of |∇/φ |2 by that of
KXl ,w

Xl (φ). Instead, we will consider the equation �g (Ωφ) = 0 and estimate the
relevant quantities with

∫
KXl ,w

Xl (Ωφ)dVol. This loss of derivative is related to
the trapping phenomenon that we mentioned in Sect. 1.1.

In Sect. 3, we will construct two more vector fields of this form. One will be a
modified X0 to control a weighted L2-norm of the zeroth spherical harmonic and
the other will be used to control the behavior at infinity.

3.4 Vector
Field Multiplier Z

Define Z = u2∂u + v2∂v. This is the analogue of the conformal vector field in
Minkowski spacetime. Like the case in Minkowski spacetime, it is used to show
decay for the solution to the wave equation. One computes that

KZ =−t|∇/φ |2
(

1
2

+
µr∗

4r
− r∗ (1−µ)

2r

)
− 1

4
2tr∗ (1−µ)

r
∂

α
φ∂α φ .

We consider the modified current using wZ = 2tr∗(1−µ)
r . Then

KZ,wZ
= −t|∇/φ |2

(
1
2

+
µr∗

4r
− r∗ (1−µ)

2r

)
− 1

8
�gwZ

φ
2

= −t|∇/φ |2
(

1
2

+
µr∗

4r
− r∗ (1−µ)

2r

)
− t

4
µr−2

φ
2
(
2+

r∗ (4µ−3)
r

)
,

JZ,wZ

µ nµ

t =
1

4
√

1−µ

(
u2 (∂uφ)2 + v2 (∂vφ)2 +(1−µ)

(
u2 + v2) |∇/φ |2

+
2tr∗ (1−µ)

r
φ∂tφ −

r∗ (1−µ)
r

φ
2
)

.

where nµ

t is the normal to a t-slice.
It is shown in (11) that there exist r∗1,r

∗
2 such that for r∗≤r∗1 or r∗≥r∗2,

KZ,wZ ≥ 0.
Moreover, it is shown that

∫
JZ,wZ

µ nµ

t dVolt is everywhere non-negative.
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More specifically, if we define S = u∂u + v∂v and S =−u∂u + v∂v,∫
JZ,wZ

µ nµ

t dVolt

=
∫ 1

8
√

1−µ

(
µ
(
(Sφ)2 +(Sφ)2)+(1−µ)

((
Sφ +

r∗

r
φ

)2

+
(

Sφ +
t
r

φ

)2
)

+2(1−µ)(u2 + v2)|∇/φ |2
)

dVolt .

3.5 Vector
Field Multipliers Y ′,Y and N

Define Y ′ = y1(r∗)
1−µ

∂u + y2 (r∗)∂v, where y1,y2 > 0 are supported in r ≤ (1.2)r0,
with y1 = 1,y2 = 0 at the event horizon and y′1 (r∗) ∼ y2 (r∗) ∼ C (1−µ) for
2M ≤ r ≤ r0.

Here we want to choose r0 small enough so that

1. Y ′ is supported on r < 3M (i.e., (1.2)r0 < 3M),
2. KY ′ (φ)≥ 0 on 2M ≤ r ≤ r0,
3. CKY ′ (φ)≥ 1√

1−µ
JY ′

µ (φ)nµ

{v=const.} on 2M ≤ r ≤ r0.

The vector field Y ′ is designed to capture the red-shift effect at the event horizon
(11). Using the current JY ′ , we will not only produce estimates on constant t-
slices, but also on constant v-slices. We will, therefore, record here all the relevant
computations.

We have

KY ′ =
(∂uφ)2

2(1−µ)2

(y1µ

r
− y′1

)
+

(∂vφ)2

2(1−µ)
y′2 +

1
2
|∇/φ |2

×
(

y′1
1−µ

− (y2 (1−µ))′

1−µ

)
− 1

r

(
y1

1−µ
− y2

)
∂uφ∂vφ ,

JY ′
µ (φ)nµ

{v=const.} =
1

2
√

1−µ

(
y1

1−µ
(∂uφ)2 +(1−µ)y2|∇/φ |2

)
,

JY ′
µ (φ)nµ

{t=const.} =
1

2
√

1−µ

×
(

y1

1−µ
(∂uφ)2 + y2 (∂vφ)2 +(y1 +(1−µ)y2) |∇/φ |2

)
.

From this we see that if r0 is chosen to be close enough to 2M, requirements 2 and
3 can be satisfied.

We modify this vector field so that it has better bounds on constant
t- slices.

Define Y =Y ′+χ (r)T , where χ (r) is a cutoff function with χ (r)=
{

1 r ≤ r0
0 r ≥ (1.2)r0

.

Y has the following properties:

1. Y is supported on r < (1.2)r0,
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2. KY = KY ′ on r < r0,
3. CKY (φ)≥ 1√

1−µ
JY

µ (φ)nµ

{v=const.} on 2M ≤ r ≤ r0.

On the region 2M ≤ r ≤ r0, we have

JY
µ (φ)nµ

{v=const.}

=
1

2
√

1−µ

((
y1

1−µ
+

1
2

)
(∂uφ)2 +(1−µ)(y2 +1) |∇/φ |2

)
,

JY
µ (φ)nµ

{t=const.} =
1

2
√

1−µ

((
y1

1−µ
+

1
2

)
(∂uφ)2

+
(

y2 +
1
2

)
(∂vφ)2 +(y1 +(1−µ)(y2 +1)) |∇/φ |2

)
.

We argue without computation that for r0 ≤ r ≤ (1.2)r0,

|KY | ≤ C
1√

1−µ
JT

µ (φ)nµ

{t=const.},

JY
µ (φ)nµ

{v=const.} ≤ CJT
µ (φ)nµ

{v=const.},

JY
µ (φ)nµ

{t=const.} ≤ CJT
µ (φ)nµ

{t=const.}.

This is true because JT
µ (φ)nµ

{t=const.} controls every derivative of φ while the terms

in JT
µ (φ)nµ

{v=const.} and JY ′
µ (φ)nµ

{t=const.} contain only derivatives ∂u and ∇/ . Thus
the only difference is the weights, which are functions of r and are harmless since
r is bounded on this region. Extend Y to inside the black hole smoothly by the
requirement that N is future directed and causal.

Define N = T +Y for r ≥ 2M. N is future directed and causal everywhere,
thus JN

µ (φ)nµ

{t=const.}≥ 0. Away from the horizon, namely when r≥ 1.2r0,JN
µ (φ)nµ

{t=const.} =

JT
µ (φ)nµ

{t=const.}. However, as we approach the horizon, JN
µ (φ)nµ

{t=const.}∼ JY
µ (φ)nµ

{t=const.}
and thus JN

µ (φ)nµ

{t=const.} gives a much stronger bound. We assume for our energy

classes that the integral of JN
µ (φ)nµ

{t=const.} is bounded initially and this clearly
implies the boundedness for the corresponding integrals for JT and JY initially.
The flux corresponding to JN should be thought of as a nondegenerate energy,
which does not degenerate at the event horizon. This allows us to prove decay
results along the event horizon.

Before introducing the vector field commutator S, we end this part on vector
field multipliers by explicitly noting what each of the positive quantities bounds.
Most of these are direct consequences of the expressions of the currents, except
that for JZ,wZ

, which requires some manipulation and is proved in (11).
Proposition 3 1. 1√

1−µ

(
(∂r∗φ)2 +(∂tφ)2 +(1−µ) |∇/φ |2

)
≤CJT

µ (φ)nµ

t ,

2.
∫

∞

−∞

∫
S2

1√
1−µ

(
u2 (∂uφ)2 + v2 (∂vφ)2 +(1−µ)

(
u2 + v2

)
|∇/φ |2

)
dVolt ≤

C
∫

∞

−∞

∫
S2 JZ,wZ

µ (φ)nµ

t dVolt ,

3.
∫

∞

−∞

∫
S2

1√
1−µ

(
(1−µ) (r∗)2+t2

r2 φ 2
)

dVolt ≤C
∫

∞

−∞

∫
S2 JZ,wZ

µ (φ)nµ

t dVolt ,
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4.
∫
S2

(∂r∗φ)2

(1+|r∗|)2r1+δ (1−µ)
dA≤C

∫
S2 ∑l KXl ,w

Xl (φ)dA,

5.
∫
S2

|∇/φ |2

(1+|r∗|)4(1−µ)
dA≤C

∫
S2 ∑l KXl ,w

Xl (Ωφ)dA.

3.6 Vector
Field Commutator S

Define S = t∂t + r∗∂r∗ = v∂v +u∂u.
This vector field, together with the usual Killing fields, will be commuted with

�g. We note that the vector field t∂t + r∂r is conformally Killing on Minkowski
with [�m, t∂t + r∂r] = 2�m. Therefore, the commutator [�g,S] is expected to
approach 2�g towards spatial infinity, where the spacetime approaches Minkowski.

We set ψ = Sφ and derive an equation for ψ .
Proposition 4 1. [�g,S] =

(
2+ r∗µ

r

)
�g + 2

r

(
r∗
r −1− 2r∗µ

r

)
∂r∗ +

2
((

r∗
r −1

)
− 3r∗µ

2r

)
∆/ .

2. �gψ = g1 (r∗)∂r∗φ + g2 (r∗)∆/φ , where |g1 (r∗) |, |g2(r∗)|
r ∼{

(logr)+
r2 r >> 2M
|r∗| r ∼ 2M

, (logr)+ = max{logr,1}.

Remark 3 Equivalently, we write |g1 (r∗) |, |g2(r∗)|
r ∼ (1+|r∗|)(logr)+

r3 .

Proof

[−(1−µ)−1
∂

2
t ,S] = −2(1−µ)−1

∂
2
t + r∗∂r∗ (1−µ)−1

∂
2
t

= −2(1−µ)−1
∂

2
t −

r∗µ

r (1−µ)
∂

2
t ,[

(1−µ)−1
∂

2
r∗ ,S

]
= 2(1−µ)−1

∂
2
r∗ − r∗∂r∗ (1−µ)−1

∂
2
r∗

= 2(1−µ)−1
∂

2
r∗ +

r∗µ

r (1−µ)
∂

2
r∗ ,[

2
r

∂r∗ ,S
]

=
2
r

∂r∗ +
2r∗ (1−µ)

r2 ∂r∗

=
4
r

∂r∗ +
(

2r∗ (1−µ)
r2 − 2

r

)
∂r∗ ,

[∆/,S] =
2r∗ (1−µ)

r
∆/,

[�g,S] =
(

2+
r∗µ

r

)
�g +

(
2r∗ (1−µ)

r2 − 2
r
− 2r∗µ

r2

)
∂r∗

+
(

2r∗ (1−µ)
r

−2− r∗µ

r

)
∆/
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=
(

2+
r∗µ

r

)
�g +

2
r

(
r∗

r
−1− 2r∗µ

r

)
∂r∗

+2
((

r∗

r
−1
)
− 3r∗µ

2r

)
∆/.

2. is immediate from 1. if we let g1 (r∗)= 2
r

(
r∗
r −1− 2r∗µ

r

)
and g2 (r∗)= 2

((
r∗
r −1

)
− 3r∗µ

2r

)
.

4 Estimates
for φ

The following has been proved in (11) and is collected for later use.
Theorem 5 (Dafermos–Rodnianski).

1.
∫

JT
µ (φ)nµ

t∗ dVolt∗ =
∫

JT
µ (φ)nµ

t0 dVolt0 ,

2.
∫

∑l KXl ,w
Xl (φ)dVol≤C

∫
JT

µ (φ)nµ

t0dVolt0 ,
3.

∫
JZ

µ (φ)nµ

t∗dVolt∗ ≤CE0 (φ),

4.
∫ t∗

2
− t∗

2
JT

µ (φ)nµ

t∗dVolt∗ ≤CE0 (φ) t−2
∗ ,

5.
∫ t2

t1

∫ t
2
− t

2
∑l KXl ,w

Xl (φ)dVol≤CE0 (φ) t−2
1 , where t1 ≤ t2 ≤ (1.1) t1.

The following Hardy type inequality is also proved in (11) and will be used
throughout this paper.
Lemma 6∫

(1+ |r∗|)−2
φ

2 (1−µ)−
1
2 dVolt0 ≤C

∫
(∂r∗φ)2 (1−µ)−

1
2 dVolt0 .

Remark 4 This can be written equivalently in local coordinates as

∫
∞

−∞

∫
S2

φ 2

(1+ |r∗|)2 r2 dAdr∗ ≤C
∫

∞

−∞

∫
S2

(∂r∗φ)2 r2 dAdr∗.

We construct a vector field X0 to control the spacetime integral of φ 2 itself.
Proposition 7

∫
φ 2

(1+ |r∗|)4 dVol≤C
∫

JT
µ (φ)nµ

t0 dVolt0 .

Proof We first notice that we already have control of a weighted L2-norm of the
non-zeroth spherical harmonics. This is because by (10),

∫
S2

φ 2
l

(1+ |r∗|)4 (1−µ)
dA≤C

∫
S2

KXl ,w
Xl (φl) dA
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for l ≥ 1. This together with Theorem 5.2 would give

∫
φ 2

l

(1+ |r∗|)4 (1−µ)
dVol≤C

∫
JT

µ (φ)nµ

t0dVolt0

for l ≥ 1. So it suffices to consider the zeroth spherical harmonic.
Define X0 = f0∂r∗ , with f0 (r∗) = f0 (r) =− M3

(1+4µ−2) =− µ3r3

8(1+4µ−2) .

Suppose we act with X0 on the zeroth spherical harmonic of φ0.
Using (9),

KX0,wX0 (φ0) =
f ′0 (r∗)(∂r∗φ0)

2

1−µ
+

1
2
|∇/φ0|2

(
2−3µ

r

)
f0 (r∗)

−1
4

(
1

1−µ
f ′′′0 (r∗)+

4
r

f ′′0 (r∗)+
µ

r2 f ′0 (r∗)

−2µ

r3 (3−4µ) f0 (r∗)
)

φ
2
0

=
f ′0 (r∗)(∂r∗φ0)

2

1−µ
− 1

4

(
1

1−µ
f ′′′0 (r∗)+

4
r

f ′′0 (r∗)+
µ

r2 f ′0 (r∗)

−2µ

r3 (3−4µ) f0 (r∗)
)

φ
2
0 ,

JX0,wX0
µ (φ0)nµ

t =
1√

1−µ
f0 (r∗)∂tφ0∂r∗φ0

+
1

2
√

1−µ

(
f ′0 (r∗)+

2(1−µ)
r

f0 (r∗)
)

(∂tφ0)φ0,

where we have used ∇/φ0 = 0.
We would have to show first that KX0,wX0 (φ0)≥ 0 and controls φ 2, and second

that JX0,wX0
µ (φ0)nµ is controllable by JT

µ (φ0)nµ . We first compute the derivatives
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of f0:

f ′0 (r∗) = (1−µ)∂r f0 (r)

=
µr2 (1−µ)

(1+4µ−2)2 ≥ 0

f ′′0 (r∗) = (1−µ)2
∂

2
r f0 +

µ (1−µ)
r

∂r f0

= (1−µ)2

(
− 16r

µ (1+4µ−2)3 +
2µr

(1+4µ−2)2

)
+

µ2r (1−µ)

(1+4µ−2)2

f ′′′0 (r∗) = (1−µ)3
∂

3
r f0 +

3µ (1−µ)2

r
∂

2
r f0 +

µ2 (1−µ)
r2 ∂r f0−

2µ (1−µ)2

r2 ∂r f0

= (1−µ)3

(
384

µ3 (1+4µ−2)4 −
48

µ (1+4µ−2)3

)
+

3µ (1−µ)2

r

×

(
− 16r

µ (1+4µ−2)3 +
µr

(1+4µ−2)2

)
+

µ2 (1−µ)(3µ−2)

(1+4µ−2)2 .

A computation shows that

1
1−µ

f ′′′0 +
4
r

f ′′0 +
µ

r2 f ′0−
2µ

r3 (3−4µ) f0

=−µ6(192+ µ(128+ µ(−784+ µ(464+ µ(−28+ µ(52+ µ(−3+4µ)))))))
4(4+ µ2)4 .

We need to show that 192+µ(128+µ(−784+µ(464+µ(−28+µ(52+µ(−3+
4µ))))))≥ 0 for 0≤ µ ≤ 1.

Case 1 11
20 ≤ µ ≤ 1

192+128µ−784µ2 +464µ3 = 16(−12−20µ +29µ2)(µ−1)≥ 0.
52−3µ +4µ2 reaches its minimum at 3

8 . Hence, 52−3µ +4µ2 ≥ 823
16 .

−28+ µ(52−3µ +4µ2)≥−28+ 11
20

823
16 ≥ 0.

Case 2 0≤ µ ≤ 11
20

464−28µ + 823
16 µ2 has negative discriminant, hence ≥ 0.

Also, for this range of µ,192+128µ−784µ2 ≥ 0.
Therefore, KX0,wX0 (φ0)≥ 0. Moreover, φ 2

0 ≤CKX0,wX0 (φ0).
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It now remains only to control the boundary terms. Using Lemma 6 and
Cauchy–Schwarz,∫

JX0,wX0
µ (φ0)nµ dVolt

=
∫ 1√

1−µ
f0 (r∗)∂tφ0∂r∗φ0

+
1

2
√

1−µ

(
f ′0 (r∗)+

2(1−µ)
r

f0 (r∗)
)

(∂tφ0)φ0 dVolt0

≤C
∫ 1√

1−µ

(
(∂tφ0)

2 +(∂r∗φ0)
2 +

1

(1+ |r∗|)2 φ
2
0

)
dVolt0

≤C
∫ 1√

1−µ
((∂tφ0)

2 +
(
∂r∗φ0)2) dVolt0

≤C
∫

JT
µ (φ0)nµ

t0 dVolt0 .

We would like to construct a vector field X̃ = f̃ (r∗)∂r∗ so as to improve the
weights in r of the spacetime integral that can be controlled. More precisely, we
have the following:
Proposition 8

∫ t∗

t0

∫
∞

1

∫
S2

(
r−1−δ (∂r∗φ)2 + r−3−δ

φ
2
)

dVol ≤ C
∫

JT
µ (φ)nµ

t0 dVolt0 ,∫ t∗

t0

∫
∞

1

∫
S2

r−1|∇/φ |2 dVol ≤ C
1

∑
k=0

∫
JT

µ

(
Ω

k
φ

)
nµ

t0 dVolt0 ,

for 0 < δ < 1
2 .
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Remark 5 The loss of derivative above is unnecessary because we are considering
only a subregion of {r∗ > 0}. One can construct yet another variant of the vector
field X to achieve the above estimate without any loss of derivatives. However,
since this would not improve the regularity in our final result, it is not pursued
here.

Proof Let X̃ = f̃ (r∗)∂r∗ , where f̃ = χ(r∗)(1− 1
(1+r∗)δ

) and χ is a cutoff function
satisfying

χ =
{

0 r∗ ≤ 1
1 r∗ ≥max{100,100M} .

We recall (9):

KX̃ ,wX̃
(φ) =

f̃ ′ (r∗)(∂r∗φ)2

1−µ
+

1
2
|∇/φ |2

(
2−3µ

r

)
f̃ (r∗)

−1
4

(
1

1−µ
f̃ ′′′ (r∗)+

4
r

f̃ ′′ (r∗)+
µ

r2 f̃ ′ (r∗)

−2µ

r3 (3−4µ) f̃ (r∗)
)

φ
2,

JX̃ ,wX̃

µ (φ)nµ

t =
1√

1−µ
f̃ (r∗)∂tφ∂r∗φ

+
1

2
√

1−µ

(
f̃ ′ (r∗)+

2(1−µ)
r

f̃ (r∗)
)

(∂tφ)φ ,

Since we already have control of the spacetime integrals on a compact set
using Theorem 5 and Proposition 7, we only have to show that KX̃ ,wX̃

(φ)≥ 0 for
r∗ ≥max{100,100M}. For r∗ ≥max{100,100M}, we have

f̃ ′ (r∗) =
δ

(1+ r∗)1+δ

f̃ ′′ (r∗) = − δ (1+δ )

(1+ r∗)2+δ

f̃ ′′′ (r∗) =
δ (1+δ )(2+δ )

(1+ r∗)3+δ
.

Clearly, the coefficient of (∂r∗φ)2 and |∇/φ |2 in KX̃ ,wX̃
(φ) is positive for r∗ ≥

max{100,100M}. We now study the coefficient of φ 2 in KX̃ ,wX̃
(φ) for r∗≥max{100,100M}:

1
1−µ

f̃ ′′′+
4
r

f̃ ′′+
µ

r2 f̃ ′− 2µ

r3 (3−4µ) f̃

=
1

1−µ

δ (1+δ )(2+δ )

(1+ r∗)3+δ
− 4δ (1+δ )

r (1+ r∗)2+δ
+

2Mδ

r2 (1+ r∗)1+δ

− 12M

r3 (1+ r∗)δ
+

32M2

r5 (1+ r∗)δ
− 2µ

r3 (3−4µ)
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≤ 3δ (1+δ )(2+δ )

2(1+ r∗)3+δ
− 4δ (1+δ )

r (1+ r∗)2+δ
+

2Mδ

r2 (1+ r∗)1+δ

− 12M

r3 (1+ r∗)δ
+

32M2

r5 (1+ r∗)δ

≤ δ (1+δ )

r (1+ r∗)2+δ

(
3δ

2
−1
)

+
M

r3 (1+ r∗)δ

(
2δ −12+

32
100

)
< 0.

Hence KX̃ ,wX̃
(φ)≥ 0 for r∗ ≥max{100,100M}.

Moreover, on this region of r∗,
(

r−1−δ (∂r∗φ)2 + r−3−δ φ 2 + r−1|∇/φ |2
)
≤

CKX̃ ,wX̃
(φ).

Finally, we have
∫

JX̃ ,wX̃

µ (φ)nµ dVolt ≤ CJT
µ (φ)nµ dVolt using Lemma 6 and

Cauchy–Schwarz exactly as in Proposition 7.

Remark 6 The weights in the Proposition are the same as those for
Minkowski space. Since Schwarzschild is asymptotically flat, they are the expected
weights.
Corollary 9 In local coordinates, Theorem 5, Propositions 7 and 8 imply via
Proposition 3 the following bounds:

1.
∫ 1√

1−µ
((∂r∗φ)2 +(∂tφ)2 +(1−µ)|∇/φ |2)dVolt∗ ≤C

∫
JT

µ (φ)nµ

t0dVolt0 ,

2.
∫ 1√

1−µ

(
u2 (∂uφ)2 + v2 (∂vφ)2 +(1−µ) |∇/φ |2

)
dVolt∗ ≤CE0 (φ),

3.
∫ √

1−µ
(r∗)2+t2

r2 φ 2dVolt∗ ≤CE0 (φ) t−2
∗ ,

4.
∫ t2

t1

∫ t
2
− t

2

r1−δ (∂r∗φ)2

(1+|r∗|)2(1−µ)
+ r1−δ φ2

(1+|r∗|)4 dVol≤CE0 (φ) t−2
1 , where t1≤ t2≤(1.1) t1,

5.
∫ t2

t1

∫ t
2
− t

2

r3|∇/φ |2

(1+|r∗|)4(1−µ)
dVol≤C ∑

1
k=0 E0

(
Ω kφ

)
t−2
1 , where t1≤ t2≤(1.1) t1.

5 Estimates
for ψ

In this section, we would like to imitate (11) and prove an analogue of Theorem
5. For technical reasons, however, we will need to lose an arbitrarily small power
of t.
Theorem 10 1.

∫
JT

µ (ψ)nµ

t∗dVolt∗ ≤C
(∫

JT
µ (ψ)nµ

t0dVolt0 +E1 (φ)
)
,

2.
∫

JZ
µ (ψ)nµ

t∗dVolt∗ ≤Ctδ
∗ E1 (φ),

3.
∫
{− t∗

2 ≤r∗≤ t∗
2 }

JT
µ (ψ)nµ

t∗dVolt∗ ≤CE1 (φ) t−2+δ
∗ ,

4.
∫ t2

t1

∫ t
2
− t

2
∑l KXl ,w

Xl (ψ)dVol≤CE1 (φ) t−2+δ

1 , where t1 ≤ t2 ≤ (1.1) t1,
The general strategy is as follows. We follow the argument in (11) but now

in the conservation law for each of the vector fields, there is an extra error term
which is a spacetime integral that looks like

∫ t∗
t0 V µ ∂µ ψ�gψdVol (as well as an

extra term − 1
4
∫ t∗

t0 wψ�gψdVol for the modified currents). Very often, we need to
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show that this integral decays (or does not grow) with t∗, thus we need to “pro-
duce” some decay in t. We do this by splitting the domain of integration into three
regions and estimating them separately:

1. For the region { t
2 ≤ r∗≤∞}, we use the fact that �gψ contains negative powers

of r∗, (which is a consequence of the asymptotic flatness of Schwarzschild).
In this region, negative powers of r∗ can be estimated by negative powers of
t.

2. For the region {− t
2 ≤ r∗ ≤ t

2}, we note that we have decay in the spacetime
integral of φ for each dyadic slab by Corollary 9.4 and 9.5. We, therefore, esti-
mate the integral on this region by that of KX (φ). Here, it is essential that we
use the improved X estimates given by Proposition 8.

3. For the region {−∞ ≤ r∗ ≤ − t
2}, we make use of the fact that there is an

extra factor of (1−µ)
1
2 in the spacetime volume form compared to the vol-

ume form on a time-slice (see Sect. 1.5). From the definition of r∗, we have
(1−µ) ≤ Cecr∗ , thus the factor of (1−µ)

1
2 gives exponential decay in r∗,

which translates to exponential decay in t in this region. Therefore, on this
region, we first estimate on each time slice, and then carry out the integration
in t.

Since we will often perform integration dyadically, we first set up the notation. We
define a dyadic partition of [t0, t∗] by t0 ≤ t1 ≤ ·· · ≤ tn = t∗, where ti ≤ (1.1) ti−1
and n is the minimal integer such that this can be done. In particular, log(t∗− t0)∼
n.

We begin with the T estimate.
Proposition 11

∫
JT

µ (ψ)nµ

t∗ dVolt∗ ≤C
∫

JT
µ (ψ)nµ

t0dVolt0 +C
2

∑
k=0

E0

(
Ω

k
φ

)
.

Proof The conservation law gives

∫
JT

µ (ψ)nµ

t∗ dVolt∗ =
∫

JT
µ (ψ)nµ

t0 dVolt0 +
∫

∂tψ�gψ dVol.

We split the error term into three parts and estimate them separately.
By Corollary 9.1,

∣∣∣∣∫ ∞

t
2

∂tψ�gψ dVol
∣∣∣∣ ≤ C

∫ t∗

t0

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

(∫
∞

t
2

∫
S2

(logr)2
+

r4

(
(∂r∗φ)2 + |∇/Ωφ |2

)
dVolt

) 1
2

dt
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≤ C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

(
1

∑
k=0

∫
∞

−∞

∫
S2

JT
µ

(
Ω

k
φ

)
nµ

t0 dVolt0

) 1
2 ∫ t∗

t0
t−

3
2 dt

≤ C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

(
1

∑
k=0

∫
∞

−∞

∫
S2

JT
µ

(
Ω

k
φ

)
nµ

t0 dVolt0

) 1
2

For the middle region, we observe that by Corollaries 9.4 and 9.5,

∣∣∣∣∫ t
2

− t
2

∂tψ�gψ dVol
∣∣∣∣

≤C
∫ t∗

t0

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

(∫ t
2

− t
2

∫
S2

(1+ |r∗|)2 (logr)2
+ (1−µ)

3
2

r6

(
(∂r∗φ)2 + |∇/Ωφ |2

)
dVolt

) 1
2

dt

≤C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

 2

∑
k=0

n−1

∑
i=0

∫ ti+1

ti

(∫ t
2

− t
2
∑

l
KXl ,w

Xl
(

Ω
k
φ

)
(1−µ) dVolt

) 1
2

dt


≤C sup

t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×

 2

∑
k=0

n−1

∑
i=0

t
1
2

i

(∫ ti+1

ti

∫ t
2

− t
2
∑

l
KXl ,w

Xl
(

Ω
k
φ

)
dVol

) 1
2


≤C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2
(

2

∑
k=0

E0

(
Ω

k
φ

)) 1
2
(

n−1

∑
i=0

t
− 1

2
i

)

≤C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2
(

2

∑
k=0

E0

(
Ω

k
φ

)) 1
2
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By Corollary 9.1,∣∣∣∣∫ − t
2

−∞

∂tψ�gψ dVol
∣∣∣∣≤C

∫ t∗

t0

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2

×
(∫ − t

2

−∞

∫
S2

(1+ |r∗|)2 (1−µ)
3
2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
dVolt

) 1
2

dt

≤C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

∫
∞

−∞

∫
S2

JT
µ

(
Ω

k
ψ

)
nµ

t dVolt

) 1
2

×
∫ t∗

t0
e−ct dt

≤C sup
t0≤t≤t∗

(∫
∞

−∞

∫
S2

JT
µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

∫
∞

−∞

∫
S2

JT
µ

(
Ω

k
ψ

)
nµ

t dVolt

) 1
2

These together show that∫
JT

µ (ψ)nµ

t∗ dVolt∗

≤
∫

JT
µ (ψ)nµ

t0 dVolt0 +C sup
t0≤t≤t∗

(∫
JT

µ (ψ)nµ

t dVolt

) 1
2
(

2

∑
k=0

E0(Ω k
φ)

) 1
2

,

which implies the proposition with the following lemma, taking h1 (t) = 0 and
h2 (t) = ∑

2
k=0 E0

(
Ω kφ

)
.

Lemma 12 Suppose f (t) is continuous, h1 (t), h2 (t) are increasing and we have

f (t∗)≤C

(
f (t0)+h1 (t∗)+ sup

t0≤t≤t∗
f (t)

1
2 h2 (t∗)

1
2

)
,

for all t∗ ≥ t0.
Then

f (t∗)≤C( f (t0)+h1 (t∗)+h2 (t∗)) .

Proof Suppose supt0≤t≤t∗ f (t) is achieved by f (t̃) for some t0 ≤ t̃ ≤ t∗. Then

f (t̃)≤C
(

f (t0)+h1 (t̃)+ f (t̃)
1
2 h2 (t̃)

1
2

)
.

h1 (t) ,h2 (t) increasing implies,

f (t̃)≤C
(

f (t0)+h1 (t∗)+ f (t̃)
1
2 h2 (t∗)

1
2

)
.

Using Cauchy–Schwarz and subtracting 1
2 f (t̃) from both sides,

f (t̃)≤C( f (t0)+h1 (t∗)+h2 (t∗)) .

Clearly, f (t∗)≤ supt0≤t≤t∗ f (t) = f (t̃). Hence we have the lemma.
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We then derive an X estimate. Here unlike in the case for φ , in which the X̃
estimate was used to improve the already known estimate from Xl , we need to
consider both of them at the same time.
Proposition 13∫ t∗

t0
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl) dVol

≤C
(∫

JT
µ (ψ)nµ

t∗ dVolt∗ +
∫

JT
µ (ψ)nµ

t0 dVolt0

)
+Ct−2+δ

0

2

∑
k=0

E0

(
Ω

k
φ

)
Remark 7 The reader may ask why this Proposition gives decay for the error term
while the statement of Proposition 11 does not. In fact, the proof of Proposition 11
is sufficient to show that the error term decays. However, we do not pursue this as
it is unnecessary for later use.

Proof Decompose ψ = ∑l ψl into spherical harmonics.
Since Schwarzschild spacetimes are spherically symmetric, �gψl = g1 (r∗)

∂r∗φl +g2 (r∗)∇/ (Ωφl).
Notice that KX̃ ,wX̃

(ψ) is not everywhere positive. It is identically zero for
r∗ ≤ 1 and as we have shown in the proof of Proposition 8, KX̃ ,wX̃ ≥ 0 for r∗ ≥
max{100,100M}. On the remaining (not necessarily positive) region 1 ≤ r∗ ≤
max{100,100M}, we have |KX̃ ,wX̃

(ψl) | ≤ CKXl ,w
Xl (ψl). (Notice that we have

avoided the region around r = 3M where this inequality is potentially problem-
atic.)

In particular, applying Proposition 2 for the vector field X , we have∫
|KX̃ ,wX

(ψl) |dVol+
∫

KXl ,w
Xl (ψl) dVol

≤
∫

KX̃ ,wX̃
(ψl) dVol+(C +1)

∫
KXl ,w

Xl (ψl) dVol

=
∫

JX̃ ,wX̃

µ (ψl)nµ

t∗ dVolt∗ −
∫

JX̃ ,wX̃

µ (ψl)nµ

t0 dVolt0

+(C +1)
(∫

JXl ,w
Xl

µ (ψl)nµ

t∗ dVolt∗ −
∫

JXl ,w
Xl

µ (ψl)nµ

t0 dVolt0

)

+
1
4

∫ (
f̃ ′+

2(1−µ)
r

f̃
)

ψl�ψl dVol−
∫ (

f̃ ∂r∗ψl
)
�ψl dVol

+(C +1)
(

1
4

∫ (
f ′l +

2(1−µ)
r

fl

)
ψl�ψldVol−

∫
( fl∂r∗ψl)�ψldVol

)

≤C
(∫

JT
µ (ψl)nµ

t∗ dVolt∗ +
∫

JT
µ (ψl)nµ

t0 dVolt0

+
∫
|
(
r−1

ψl +∂r∗ψl
)
�ψl |dVol

)
.
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We split the last term into three integrals and estimate them separately.
By Theorem 5.2,∫ t∗

t0

∫
∞

t
2

∫
S2
|
(
r−1

ψl +∂r∗ψl
)
�ψl |dVol

≤C
∫ t∗

t0

∫
∞

t
2

∫
S2

r−1+ δ
2 (logr)+

(
r−

3
2−

δ
4 |ψl |+ r−

1
2−

δ
4 |∂r∗ψl |

)
×
(

r−
1
2−

δ
4 (|∂r∗φ |+ |∇/Ωφ |)

)
dVol

≤Ct
−1+ δ

2
0

(∫ t∗

t0

∫
∞

t
2

∫
S2
|KX̃ ,wX̃

(ψl) |dVol
) 1

2

×

(
1

∑
k=0

∫ t∗

t0

∫
∞

t
2

∫
S2
|KX̃ ,wX̃

(
Ω

k
φl

)
|dVol

) 1
2

≤Ct
−1+ δ

2
0

(∫ t∗

t0

∫
∞

−∞

∫
S2
|KX̃ ,wX̃

(ψl) |dVol
) 1

2

×

(
1

∑
k=0

∫ t∗

t0

∫
∞

−∞

∫
S2
|KX̃ ,wX̃

(
Ω

k
φl

)
|dVol

) 1
2

≤ 1
4

∫ t∗

t0

∫
∞

−∞

∫
S2
|KX̃ ,wX̃

(ψl) |dVol

+Ct−2+δ

0

1

∑
k=0

∫
∞

−∞

∫
S2

JT
µ

(
Ω

k
φl

)
nµ

0 dVolt0 .

By Theorem 5.5,∫ t∗

t0

∫ t
2

− t
2

∫
S2
|
(
r−1

ψl +∂r∗ψl
)
�ψl |dVol

≤C
∫ t∗

t0

∫ t
2

− t
2

∫
S2

(
r−

3
2−

δ
4 |ψl |+ r−

1
2−

δ
4 |∂r∗ψl |

)
×
(

r−
1
2−

δ
4 (|∂r∗φ |+ |∇/Ωφ |)

)
dVol

≤C
(∫ t∗

t0

∫ t
2

− t
2

∫
S2

(
|KX̃ ,wX̃

(ψl) |+KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
2

∑
k=0

∫ t∗

t0

∫ t
2

− t
2

∫
S2
|KX̃ ,wX̃

(
Ω

k
φl

)
|dVol

) 1
2

≤ 1
4

∫ t∗

t0

∫
∞

−∞

∫
S2

(
|KX̃ ,wX̃

(ψl) |+KXl ,w
Xl (ψl)

)
dVol

+C
n−1

∑
i=0

2

∑
k=0

t−2
i E0

(
Ω

k
φl

)
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≤ 1
4

∫ t∗

t0

∫
∞

−∞

∫
S2

(
|KX̃ ,wX̃

(ψl) |+KXl ,w
Xl (ψl)

)
dVol

+Ct−2
0

1

∑
k=0

E0

(
Ω

k
φl

)
.

By Theorem 5.1, Proposition 11 and Lemma 6,

∫ t∗

t0

∫ − t
2

−∞

∫
S2
|
(
r−1

ψl +∂r∗ψl
)
�ψl |dVol

≤C
∫ t∗

t0

∫ − t
2

−∞

∫
S2
|r∗|(|ψl |+ |∂r∗ψl |)(|∂r∗φl |+ |∇/Ωφl |) dVol

≤C
∫ t∗

t0

(∫
∞

−∞

(
1

(1+ |r∗|)2 ψ
2
l +(∂r∗ψl)

2

)
dAdr∗

) 1
2

×
(∫ − t

2

−∞

(r∗)4 (1−µ)
(

(∂r∗φl)
2 +(1−µ) |∇/Ωφl |2

)
dAdr∗

) 1
2

dt

≤C
∫ t∗

t0

(∫
∞

−∞

(∂r∗ψl)2 dAdr∗
) 1

2

×
(∫

∞

−∞

(
(∂r∗φl)2 +(1−µ)|∇/Ωφl |2

)
dAdr∗

) 1
2

e−ct dt

≤C sup
t0≤t≤t∗

(∫
∞

−∞

JT
µ (ψl)nµ

t dVolt

) 1
2

×

(
2

∑
k=0

∫
∞

−∞

JT
µ

(
Ω

k
φl

)
nµ

t dVolt0

) 1
2

e−ct0

≤C
∫

JT
µ (ψl)nµ

t0 dVolt0 +Ct−2
0

2

∑
k=0

E0

(
Ω

k
φl

)
,

Subtract the terms with K from both sides and get

∫ t∗

t0
|KX̃ ,wX̃

(ψl) |+KXl ,wX
(ψl) dVol

≤C
(∫

JT
µ (ψl)nµ

t∗ dVolt∗+
∫

JT
µ (ψl)nµ

t0 dVolt0

)
+Ct−2+δ

0

2

∑
k=0

E0

(
Ω

k
φl

)
.

Sum over l ≥ 0 to get the Proposition.

We localize the estimates in the above Proposition to obtain decay as in (11).
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Proposition 14 Let t0 ≤ t1 ≤ (1.1) t0, |r∗1|+ |r∗2| ≤
t0
2 . Then∫

P
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl) dVol

≤C

(
t−2
0

∫
JZ

µ (ψ)nµ

0 dVolt0 + t−2+δ

0

2

∑
k=0

1

∑
m=0

E0

(
∂

m
t Ω

k
φ

))
,

where P = {t0 ≤ t ≤ t1,− t
2 ≤ r∗ ≤ t

2} or P = {t0 ≤ t ≤ t1,r∗1 − (t1− t) ≤ r∗ ≤
r∗2 +(t1− t)}.

Proof Let χ =
{

1 |x| ≤ 1
0 |x| ≥ 1.1 . On t = t0, let φ̃ = χ

(
r∗

0.65t0

)
φ , ∂t φ̃ = χ

(
r∗

0.65t0

)
∂tφ

and solve for �gφ̃ = 0 for t ≥ t0.
Following (11), we have∫ 0.715t0

−0.715t0

1√
1−µ

φ
2 dVolt0 ≤

∫
JZ

µ (φ)nµ

t0 dVolt0 .

This is true because of Propositions 3.2, 3.3 and an elementary one-dimensional
estimate: ∫ a

−a
| f (x) |2 dx ≤Ca2

(∫ a

−a
|∂x f (x) |2 +

∫ 1

−1
| f (x) |2 dx

)
,

for a≥ 1.2
Using this, we can estimate the current of φ̃ :∫

JT
µ

(
φ̃
)

nµ

t0 dVolt0

≤
∫ 0.715t0

−0.715t0
JT

µ (φ)nµ

t0 dVolt0 +Ct−2
0

∫ 0.715t0

−0.715t0

1√
1−µ

φ
2dVolt0

≤Ct−2
0

∫
JZ

µ (φ)nµ

t0 dVolt0 .

Similarly, ∫
JT

µ

(
Ωφ̃
)

nµ

t0 dVolt0 ≤Ct−2
0

∫
JZ

µ (Ωφ)nµ

t0 dVolt0 .

Define ψ̃ = Sφ̃ . By Proposition 13,∫
P

∣∣∣KX̃ ,wX̃
(ψ̃)
∣∣∣+∑

l
KXl ,w

Xl (ψ̃l) dVol

≤C
(∫

JT
µ (ψ̃)nµ

t1 dVolt1 +
∫

JT
µ (ψ̃)nµ

t0 dVolt0

)
+Ct−2+δ

0

2

∑
k=0

E0

(
Ω

k
φ̃

)
.

2 One can prove this one-dimensional estimate by first considering g = 0 on [− 1
2 , 1

2 ] and the
trivial bound

∫ a
−a |g(x) |dx ≤ Ca

∫ a
−a |∂xg(x) |dx. Then one sets g(x) = f (x)2 and use Cauchy–

Schwarz to get
∫ a
−a | f (x) |2dx≤Ca2 ∫ a

−a |∂x f (x) |2dx.. Finally, one cuts off f (x) to be identically
zero in [− 1

2 , 1
2 ].
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The left-hand side equals
∫
P |KX̃ ,wX̃

(ψ) |+ ∑l KXl ,w
Xl (ψl)dVol by finite speed

of propagation.
∫

JT
µ (ψ̃)nµ

t0dVolt0 can be estimated in a similar way as
∫

JT
µ

(
φ̃
)

nµ

t0dVolt0 .
More specifically, we claim that

∫
JT

µ (ψ̃)nµ

t0 dVolt0 ≤Ct−2
0

(∫
JZ

µ (ψ)nµ

t0 dVolt0 +E0 (φ)
)

.

To see this, we first note that

ψ̃ = χ

(
r∗

0.65t0

)
ψ +

r∗

0.65t0
χ
′
(

r∗

0.65t0

)
φ .

Also note that on the support of ψ̃ , |r
∗|

t0
≤C. Therefore,

∫
JT

µ (ψ̃)nµ

t0 dVolt0

≤
∫ 0.715t0

−0.715t0
JT

µ (ψ)nµ

t0 dVolt0 +Ct−2
0

∫ 0.715t0

−0.715t0

1√
1−µ

ψ
2 dVolt0

+C
∫ 0.715t0

−0.715t0
JT

µ (φ)nµ

t0 dVolt0 +Ct−2
0

∫ 0.715t0

−0.715t0

1√
1−µ

φ
2 dVolt0

≤Ct−2
0

(∫
JZ

µ (ψ)nµ

t0 dVolt0 +
∫

JZ
µ (φ)nµ

t0 dVolt0

)
≤Ct−2

0

(∫
JZ

µ (ψ)nµ

t0 dVolt0 +E0 (φ)
)

.

We would now want to control
∫

JT
µ (ψ̃)nµ

t1dVolt1 . Using the conservation law for
T and an integration by parts in t,

∫
JT

µ (ψ̃)nµ

t1dVolt1

=
∫

JT
µ (ψ̃)nµ

t0dVolt0 −
∫

∂tψ̃�gψ̃dVol

≤
∫

JT
µ (ψ̃)nµ

t0 dVolt0 +

∣∣∣∣∣
∫

ψ̃�g (∂tψ̃) dVol

∣∣∣∣∣+
∣∣∣∣∣
∫

ψ̃�gψ̃
√

1−µ dVolt0

∣∣∣∣∣
+

∣∣∣∣∣
∫

ψ̃�gψ̃
√

1−µ dVolt1

∣∣∣∣∣.
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We first estimate the spacetime error term in this expression. Using Proposition 3,
7, and 8,∫ ∣∣ψ̃�g (∂tψ̃) dVol

∣∣≤ ∫ ∣∣ψ̃�g
(
S
(
∂t φ̃
))∣∣ dVol+

∫ ∣∣ψ̃�g
(
∂t φ̃
)∣∣ dVol

≤C
∫ (1+ |r∗|)(logr)+

r3 |ψ̃|
(∣∣∂r∗∂t φ̃

∣∣+ ∣∣∇/ (∂tΩφ̃
)∣∣) dVol

≤C

(∫
rδ r1− δ

4 ψ̃2

(1+ |r∗|)4 dVol

) 1
2

×

∫ (1+ |r∗|)6
((

∂t∂r∗ φ̃
)2 +

∣∣∇/ (Ω∂t φ̃
)∣∣2)

r7+ δ
4

dVol


1
2

≤Ct
δ
2

0

(∫ ∣∣∣KX̃ ,wX̃
(ψ̃)
∣∣∣+∑

l
KXl (ψ̃l) dVol

) 1
2

×

(
2

∑
k=0

∫ ∣∣∣KX̃ ,wX̃
(

∂tΩ
k
φ̃

)∣∣∣+∑
l

KXl ,w
Xl
(

∂tΩ
k
φ̃l

)
dVol

) 1
2

≤Ct
δ
2

0

(∫
JT

µ (ψ̃)nµ

t1 dVolt1 +
∫

JT
µ (ψ̃)nµ

t0 dVolt0

+ t−2+δ

0

2

∑
k=0

E0

(
Ω

k
φ̃

)) 1
2

×

(
2

∑
k=0

∫
JT

µ

(
∂tΩ

k
φ̃

)
nµ

t0 dVolt0

) 1
2

≤ 1
4

∫
JT

µ (ψ̃)nµ

t1 dVolt1 +C
∫

JT
µ (ψ̃)nµ

t0 dVolt0 +Ct−2+δ

0

2

∑
k=0

E0

(
Ω

k
φ̃

)
+Ct−2+δ

0

(
2

∑
k=0

∫
JZ,wZ

µ

(
∂tΩ

k
φ̃

)
nµ

t0 dVolt0

)

≤ 1
4

∫
JT

µ (ψ̃)nµ

t1 dVolt1 +C
∫

JT
µ (ψ̃)nµ

t0 dVolt0

+Ct−2+δ

0

1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ̃

)
where at the third to last step we again used Proposition 13.

We estimate the boundary terms using Lemma 6 and Corollary 9.1∣∣∣∣∣
∫

ψ̃�gψ̃
√

1−µ dVolt0

∣∣∣∣∣
≤C

∫
(1+ |r∗|)r−3 (logr)+

√
1−µ|ψ̃|

(
|∂r∗ φ̃ |+ |∇/Ωφ̃ |

)
dVolt0

≤C
(∫

(1+ |r∗|)−2
ψ̃

2 (1−µ)−
1
2 dVolt0

) 1
2
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(∫ ((
∂r∗ φ̃

)2 + |∇/Ωφ̃ |2
)√

1−µ dVolt0

) 1
2

≤C
∫

JT
µ (ψ̃)nµ

t0 dVolt0 +C
∫ (

JT
µ

(
φ̃
)
+ JT

µ

(
Ωφ̃
))

nµ

t0 dVolt0 .

The term for t = t1 is done analogously, but with a more careful choice of con-
stant.

∣∣∣∣∫ ψ̃�gψ̃
√

1−µ dVolt1

∣∣∣∣
≤C

∫
(1+ |r∗|)r−3 (logr)+

√
1−µ|ψ̃|

(
|∂r∗ φ̃ |+ |∇/Ωφ̃ |

)
dVolt1

≤C
(∫

(1+ |r∗|)−2
ψ̃

2 (1−µ)−
1
2 dVolt1

) 1
2

×
(∫ ((

∂r∗ φ̃
)2 + |∇/Ωφ̃ |2

)√
1−µ dVolt1

) 1
2

≤ 1
4

∫
JT

µ (ψ̃)nµ

t1 dVolt1 +C
∫ (

JT
µ

(
φ̃
)
+ JT

µ

(
Ωφ̃
))

nµ

t1 dVolt1

=
1
4

∫
JT

µ (ψ̃)nµ

t1 dVolt1 +C
∫ (

JT
µ

(
φ̃
)
+ JT

µ

(
Ωφ̃
))

nµ

t0 dVolt0 .

Combining these estimates and subtracting 1
2
∫

JT
µ (ψ̃)nµ

t1 dVolt1 on both sides, we
get

∫
JT

µ (ψ̃)nµ

t1 dVolt1

≤Ct−2
0

∫
JZ

µ (ψ)nµ

t0 dVolt0 +Ct−2+δ

0

1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ̃

)
.

It remains to control ∑
1
m=0 ∑

2
k=0 E0

(
Ω k∂ m

t φ̃
)
.

1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ̃

)
≤C

∫ 0.715t0

−0.715t0

(
1

∑
m=0

5

∑
k=0

JN
µ

(
∂

m
t Ω

k
φ̃

)
nµ

t0 +
1

∑
m=0

4

∑
k=0

JZ
µ

(
∂

m
t Ω

k
φ̃

)
nµ

t0

)
dVol{t=t0}
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≤C
∫ 0.715t0

−0.715t0

(
1

∑
m=0

5

∑
k=0

JN
µ

(
∂

m
t Ω

k
φ

)
nµ

t0 +
1

∑
m=0

4

∑
k=0

JZ
µ

(
∂

m
t Ω

k
φ

)
nµ

t0

)
dVol{t=t0}

+Ct−2
0

∫ 0.715t0

−0.715t0

(
1

∑
m=0

5

∑
k=0

(
∂

m
t Ω

k
φ

)2
+

1

∑
m=0

4

∑
k=0

t2
0

(
∂

m
t Ω

k
φ

)2
)

r2 dAdr∗

≤C
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
.

After establishing the X estimates, we turn to the Z estimates for ψ .
Proposition 15

∫
JZ,wZ

µ (ψ)nµ

t∗ dVolt∗

≤C
∫

JZ,wZ

µ (ψ)nµ

t0dVolt0 +C
1

∑
k=0

∫ t∗

t0

∫ r∗2

r∗1
t ∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol

+C

(∫ t∗

t0

∫ t
2

− t
2

t2+2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

+Ctδ
∗

2

∑
k=0

E0

(
Ω

k
φ

)
.

Proof By Proposition 2 applied to the vector field Z,

∫
JZ,wZ

µ (ψ)nµ

t∗ dVol{t=t∗}

=
∫

JZ,wZ

µ (ψ)nµ

t0 dVol{t=t0}+
∫

KZ,wZ
(ψ) dVol−

∫ tr∗ (1−µ)
2r

�gψ dVol

+
∫ (

u2
∂uψ + v2

∂vψ
)
�gψ dVol.

As remarked before, there exists r∗1,r
∗
2 with r∗1 < r∗2 such that KZ,wZ

(ψ) is non-
positive for r∗ ≤ r∗1 or r∗ ≥ r∗2. Therefore,
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∫
KZ,wZ

(ψ) dVol ≤
∫ r∗2

r∗1
KZ,wZ

(ψ) dVol

≤ C
∫ t∗

t0

∫ r∗2

r∗1
t
(
ψ

2 + |∇/ψ|2
)

dVol

≤ C
1

∑
k=0

∫ t∗

t0

∫ r∗2

r∗1
t ∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol.

For the first error term, we again estimate by looking at three separate regions.
By Proposition 3.3 and Corollary 9.1,∣∣∣∣∫ t∗

t0

∫
∞

t
2

tr∗ (1−µ)
2r

ψ�gψ dVol
∣∣∣∣

≤C
∫ t∗

t0

(∫
∞

t
2

∫
S2

t2

r2 ψ
2r2 (1−µ) dAdr∗

) 1
2

×

(∫
∞

t
2

∫
S2

(logr)2
+

r2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2 dAdr∗

) 1
2

dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

∫
JT

µ

(
Ω

k
φ

)
nµ

t0 dVol{t=t0}

) 1
2

×
∫ t∗

t0
t−1+ δ

2 dt

≤Ct
δ
2∗ sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.

By Proposition 3.3, Corollary 9.4 and Corollary 9.5,∣∣∣∣∫ t∗

t0

∫ t
2

− t
2

tr∗ (1−µ)
2r

ψ�gψ dVol
∣∣∣∣

≤C
∫ t∗

t0

(∫ t
2

− t
2

∫
S2

t2

r2 ψ
2r2 (1−µ) dAdr∗

) 1
2

×
(∫ t

2

− t
2

∫
S2

(1+ |r∗|)2(logr)2
+(1−µ)2

r4

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2dAdr∗

) 1
2

dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2

∫ t∗

t0

(∫ t
2

− t
2

∫
S2

(logr)2
+

r2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2(1−µ)dAdr∗

) 1
2

dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
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×

n−1

∑
i=0

t
1
2

i

(∫ ti+1

ti

∫ t
2

− t
2

(logr)2
+

r2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2(1−µ)dAdr∗dt

)1
2


≤C sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

n−1

∑
i=0

2

∑
k=0

t
− 1

2
i E0

(
Ω

k
φ

)) 1
2

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

2

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.

By Proposition 3.3 and Corollary 9.1 and using the fact that (1−µ)≤Cecr∗ ,∣∣∣∣∫ t∗

t0

∫ − t
2

−∞

tr∗(1−µ)
2r

ψ�gψ dVol
∣∣∣∣

≤C
∫ t∗

t0

(∫ − t
2

−∞

∫
S2

t2

r2 ψ
2r2 (1−µ) dAdr∗

) 1
2

×
(∫ − t

2

−∞

∫
S2

(r∗)4 ((∂r∗φ)2 +(1−µ)|∇/Ωφ |2
)

r2(1−µ)dAdr∗
) 1

2

dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

)1
2 ∫ t∗

t0
e−ct

(
1

∑
k=0

∫
JT

µ (Ω k
φ)nµ

t dVolt

)1
2

dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.

The estimation of the second error term is slightly more involved because there
is a factor of t2 in the integrand. In particular, even near spacelike infinity, one
needs to use estimates for the spacetime integral for φ . We intend to estimate
this term separately in three regions as above. However, for technical reasons, we
will divide the regions slightly differently. Divide as usual the interval into t0 ≤
t1 ≤ ·· · ≤ tn = t∗. We then set the three regions to be

⋃n−1
i=0 {ti ≤ t ≤ ti+1,r∗ > ti

2},⋃n−1
i=0 {ti ≤ t ≤ ti+1,− ti

2 ≤ r∗ ≤ ti
2},
⋃n−1

i=0 {ti ≤ t ≤ ti+1,r∗ <− ti
2}.

In the region
⋃n−1

i=0 {ti ≤ t ≤ ti+1,r∗ > ti
2}, we estimate one power of t by that

in JZ,wZ
(φ) and the other is canceled with the decay in r. To achieve this we use

Proposition 3.3, Theorem 5.1, 5.2 and Proposition 8,∣∣∣∣∣n−1

∑
i=0

∫ ti+1

ti

∫
∞

ti
2

(
u2

∂uψ + v2
∂vψ

)
�gψ dVol

∣∣∣∣∣
≤C

n−1

∑
i=0

∫ ti+1

ti

(∫
∞

ti
2

∫
S2

(
u2 (∂uψ)2 + v2 (∂vψ)2

)
r2 dAdr∗

) 1
2

×

(∫
∞

t
2

∫
S2

(logr)2
+

r2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2 dAdr∗

) 1
2

dt
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≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2

×

n−1

∑
i=0

∫ ti+1

ti

(∫
∞

ti
2

∫
S2

(logr)2
+

r2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2 dAdr∗

) 1
2

dt


≤C sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2

×

(
n−1

∑
i=0

t
1
2

i

∫ ti+1

ti

∫
∞

ti
2

∫
S2

1

r2− δ
2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2 dAdr∗ dt

) 1
2

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2

×

(
n−1

∑
i=0

t
1
2

i t
− 1

2 + δ
2

i

∫ ti+1

ti

∫
∞

ti
2

∫
S2

1

r1+ δ
2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
r2 dAdr∗ dt

) 1
2

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2

×

(
n−1

∑
i=0

t
δ
2

i

(∫
JT

µ (φ)nµ

ti dVolti +
∫

JT
µ (φ)nµ

ti+1
dVolti+1

) 1
2
)

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(∫

JT
µ (φ)nµ

t0 dVolt0

) 1
2
(

n−1

∑
i=0

t
δ
2

i

)

≤Ct
δ
2∗ sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(∫

JT
µ (φ)nµ

t0 dVolt0

) 1
2
.

For the region
⋃n−1

i=0 {ti ≤ t ≤ ti+1,− ti
2 ≤ r∗ ≤ ti

2}, we first rewrite into (t,r∗)-
coordinates and then perform an integration by parts in t. It is to avoid extra
boundary terms during this integration by parts that we have divided our regions
differently from before. The reason that we perform this integration by parts is
that instead of a spacetime integral term with ∂tψ , we would prefer a term with ψ ,
which can then be controlled by the integral of |KX̃ ,wX̃ |+∑l KXl ,w

Xl .∣∣∣∣∣n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

(
u2

∂uψ + v2
∂vψ

)
�gψ dVol

∣∣∣∣∣
≤C

n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

∫
S2
|tr∗∂r∗ψ�gψ|r2 (1−µ) dAdr∗ dt

+C

∣∣∣∣∣n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

∫
S2

(
t2 +(r∗)2

)
∂tψ�gψr2 (1−µ) dAdr∗ dt

∣∣∣∣∣
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≤C
n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

∫
S2
|tr∗∂r∗ψ�gψ|r2 (1−µ) dAdr∗ dt

+C
n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

∫
S2

t2|ψ�g (∂tψ) |r2 (1−µ) dAdr∗ dt

+C
n−1

∑
i=0

∫ ti+1

ti

∫ ti
2

− ti
2

∫
S2

t|ψ�gψ|r2 (1−µ) dAdr∗ dt

+C
n−1

∑
i=0

∫ ti
2

− ti
2

t2|ψ�gψ|
√

1−µ dVolti

+C
n−1

∑
i=0

∫ ti
2

− ti
2

t2|ψ�gψ|
√

1−µ dVolti+1

≤C
∫ t∗

t0

∫ t
2

− t
2

∫
S2
|tr∗∂r∗ψ�gψ|r2 (1−µ) dAdr∗ dt

+C
∫ t∗

t0

∫ t
2

− t
2

∫
S2

t2|ψ�g (∂tψ) |r2 (1−µ) dAdr∗ dt

+C
∫ t∗

t0

∫ t
2

− t
2

∫
S2

t|ψ�gψ|r2 (1−µ) dAdr∗ dt

+C
n

∑
i=0

∫ ti
2

− ti
2

t2
i |ψ�gψ|

√
1−µ dVolti .

We now group this into three parts: first, the spacetime term that grows like t2;
second, the spacetime terms that grow like t; and finally, the boundary terms.

By Proposition 7, 8, Proposition 3.4, 3.5, Theorem 5.1 and 5.2,

∫ t∗

t0

∫ t
2

− t
2

∫
S2

t2|ψ�g (∂tψ) |r2 (1−µ) dAdr∗ dt

≤C
∫ t∗

t0

∫ t
2

− t
2

t2 (logr)+ (1+ |r∗|) |ψ|(|∂r∗φt |+ |∇/Ωφt |)
r3

≤C

(∫ t∗

t0

∫ t
2

− t
2

t2+δ rδ r1− δ
4 ψ2

(1+ |r∗|)4 dVol

) 1
2

×

n−1

∑
i=0

t
1− δ

2
i

∫ ti+1

ti

∫ t
2

− t
2

(1+ |r∗|)6
(
(∂r∗φt)

2 + |∇/Ωφt |2
)

r7+ δ
4

dVol


1
2


≤C

(∫ t∗

t0

∫ t
2

− t
2

t2+δ rδ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2
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×

(
n−1

∑
i=0

t
− δ

2
i

)(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

≤C

(∫ t∗

t0

∫ t
2

− t
2

t2+2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

.

By Proposition 7, 8, Proposition 3.4, 3.5, Corollaries 9.4 and 9.5,

∫ t∗

t0

∫ t
2

− t
2

∫
S2
|tr∗∂r∗ψ�gψ|r2 (1−µ) dAdr∗ dt

+
∫ t∗

t0

∫ t
2

− t
2

∫
t|ψ�gψ|r2 (1−µ) dAdr∗ dt

≤C
(∫ t∗

t0

∫ t
2

− t
2

t (logr)+ (1+ |r∗|)(|r∗∂r∗ψ|+ |ψ|)(|∂r∗φ |+ |∇/Ωφ |)
r3 dVol

)

≤C

(∫ t∗

t0

∫ t
2

− t
2

tδ rδ

(
r1− δ

4 ψ2

(1+ |r∗|)4 +
(∂r∗ψ)2

r1+ δ
4

)
dVol

) 1
2

×

n−1

∑
i=0

t
1− δ

2
i

∫ ti+1

ti

∫ t
2

− t
2

(1+ |r∗|)6
(
(∂r∗φ)2 + |∇/Ωφ |2

)
r7+ δ

4
dVol


1
2


≤C

(∫ t∗

t0

∫ t
2

− t
2

tδ rδ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
2

∑
k=0

E0

(
Ω

k
φ

)) 1
2
(

n−1

∑
i=0

t
− δ

2
i

)

≤C

(∫ t∗

t0

∫ t
2

− t
2

t2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
2

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.
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By Propositions 3.1, 3.3 and Theorem 5.4,

n

∑
i=0

∫ ti
2

− ti
2

t2
i |ψ�gψ|

√
1−µ dVolti

≤C

 n

∑
i=0

ti

(∫
JZ,wZ

µ (ψ)nµ

ti dVolti

) 1
2
(

1

∑
k=0

∫ ti
2

− ti
2

JT
µ

(
Ω

k
φ

)
nµ

ti dVolti

) 1
2


≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

E0

(
Ω

k
φ

)) 1
2
(

n

∑
i=0

1

)

≤Ct
δ
2∗ sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

1

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.

These together give∣∣∣∣∣
∫ t∗

t0

∫ t
2

− t
2

(
u2

∂uψ + v2
∂vψ

)
�ψ dVol

∣∣∣∣∣
≤C

(∫ t∗

t0
t2+2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2 1

∑
m=0

2

∑
k=0

×E0

(
∂

m
t Ω

k
φ

) 1
2 +Ct

δ
2∗ sup

t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

)1
2
(

1

∑
k=0

E0

(
Ω

k
φ

))1
2

.

We finally look at the third region,
⋃n−1

i=0 {ti ≤ t ≤ ti+1,r∗ < − ti
2}, for the second

error term. By Propositions 3.1, 3.3 and Theorem 5.1.∣∣∣∣∣
∫ t∗

t0

∫ − t
2

−∞

(
u2

∂uψ + v2
∂vψ

)
�ψ dVol

∣∣∣∣∣
≤C

∫ t∗

t0

(∫ − t
2

−∞

(
u2 (∂uψ)2 + v2 (∂vψ)2

)
(1−µ)−

1
2 dVolt

)

×
(∫ − t

2

−∞

(r∗)2 (1−µ)
3
2

(
(∂r∗φ)2 + |∇/Ωφ |2

)
dVolt

)
dt

≤C
∫ t∗

t0
e−ct

(∫ − t
2

−∞

JZ
µ (ψ)nµ

t dVolt

)( 1

∑
k=0

∫ − t
2

−∞

JT
µ

(
Ω

k
φ

)
nµ

t dVolt

)
dt

≤C sup
t0≤t≤t∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(E0 (φ))

1
2 .
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Therefore,∫
JZ,wZ

µ (ψ)nµ

t∗ dVol{t=t∗}

≤C
∫

JZ,wZ

µ (ψ)nµ

t0 dVolt0 +
1

∑
k=0

∫ t∗

t0

∫ r∗2

r∗1
t ∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol

+C

(∫ t∗

t0

∫ t
2

− t
2

t2+2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

+C sup
t0≤t≤t∗

t
δ
2∗

(∫
JZ,wZ

µ (ψ)nµ

t dVolt

) 1
2
(

2

∑
k=0

E0

(
Ω

k
φ

)) 1
2

.

The proof concludes with Lemma 12, taking

h1 (t∗) =
1

∑
k=0

∫ t∗

t0

∫ r∗2

r∗1
t ∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol

+

(∫ t∗

t0

∫ t
2

− t
2

t2+2δ

(
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,w
Xl (ψl)

)
dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

,

h2 (t∗) = tδ
∗

(
2

∑
k=0

E0

(
Ω

k
φ

))
.

We notice that h1 (t) and h2 (t) are increasing.
We now combine Propositions 11, 13, 14 and 15 to prove Theorem 10.2. This

will then imply the other parts of Theorem 10.
Proposition 16 ∫

JZ,wZ

µ (ψ)nµ

t∗ dVolt∗ ≤CE1 (φ) tδ
∗

Proof We first show that
∫

JZ,wZ

µ (ψ)nµ

t∗dVolt∗ grows only like t1+δ
∗ . Using Propo-

sitions 13 and 11,∫ t∗

t0
|KX̃ ,wX̃

(ψ) |+∑
l

KXl ,wX
(ψl) dVol

≤C
(∫

JT
µ (ψ)nµ

t∗ dVolt∗ +
∫

JT
µ (ψ)nµ

t0 dVolt0

)
+Ct−2+δ

0

2

∑
k=0

E0

(
Ω

k
φ

)
≤C

∫
JT

µ (ψ)nµ

t0 dVolt0 +C
2

∑
k=0

E0

(
Ω

k
φ

)
.
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Similarly, ∫ t∗

t0
|KX̃ ,wX̃

(Ωψ) |+∑
l

KXl ,wX
(Ωψl) dVol

≤C
∫

JT
µ (Ωψ)nµ

t0 dVolt0 +C
3

∑
k=0

E0

(
Ω

k
φ

)
.

Apply Proposition 15 to get∫
JZ,wZ

µ (ψ)nµ

t∗ dVolt∗

≤C
∫

JZ,wZ

µ (ψ)nµ

t0 dVolt0 +Ct∗
1

∑
k=0

∫ t∗

t0

∫ r∗2

r∗1
∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol

+Ct1+δ
∗

(∫ t∗

t0

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ) |+∑

l
KXl ,w

Xl (ψl) dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

+Ctδ
∗

2

∑
k=0

E0

(
Ω

k
φ

)
≤C

∫
JZ,wZ

µ (ψ)nµ

t0 dVolt0

+Ct∗
1

∑
k=0

∫
JT

µ

(
Ω

k
ψ

)
nµ

t0 dVolt0 +Ct∗
3

∑
k=0

E0

(
Ω

k
φ

)

+Ct1+δ
∗

(∫
JT

µ (ψ)nµ

t0 dVolt0

) 1
2
(

1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

+Ct1+δ
∗

1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)

≤C
(∫

JZ,wZ

µ (ψ)nµ

t0 dVolt0 + t1+δ
∗

×

(
1

∑
k=0

∫
JT

µ

(
Ω

k
ψ

)
nµ

t0 dVolt0 +
1

∑
m=0

3−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)))
.

We now have some control over
∫

JZ,wZ

µ (ψ)nµ

t∗dVolt∗ and we will use Proposi-
tion 14 to estimate the spacetime integral terms by integrating dyadically.

By Proposition 14 and 11,∫ ti+1

ti

∫ r∗2

r∗1
∑

l
KXl ,w

Xl (ψl) dVol
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≤C

(
t−2
i

∫
JZ

µ (ψ)nµ

ti dVolti + t−2+δ

i

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)))

≤C

(
t−2
i

∫
JZ

µ (ψ)nµ

t0dVolt0 + t−1+δ

i

×

(
1

∑
k=0

∫
JT

µ

(
Ω

k
ψ

)
nµ

t0 dVolt0 +
1

∑
m=0

3−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)))
,

where here we have not kept track of the constant factor in front of δ , but just note
that it can be chosen to be arbitrarily small.

We can apply the same argument to
∫ ti+1

ti
∫ r∗2

r∗1
∑l KXl ,w

Xl (Ωψl)dVol to get

∫ ti+1

ti

∫ r∗2

r∗1
∑

l
KXl ,w

Xl (Ωψl) dVol

≤C

(
t−2
i

∫
JZ

µ (Ωψ)nµ

t0 dVolt0 + t−1+δ

i

×

(
2

∑
k=0

∫
JT

µ

(
Ω

k
ψ

)
nµ

t0 dVolt0 +
1

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)))
.

This in turn provides more control on
∫

JZ,wZ

µ (ψ)nµ

t∗dVolt∗ by Proposition 15:∫
JZ,wZ

µ (ψ)nµ

t∗ dVolt∗

≤C
∫

JZ,wZ

µ (ψ)nµ

t0 dVolt0 +C
1

∑
k=0

n−1

∑
i=0

ti
∫ ti+1

ti

∫ r∗2

r∗1
∑

l
KXl ,w

Xl
(

Ω
k
ψl

)
dVol

+C
n−1

∑
i=0

t1+δ

i

(∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ)|+∑

l
KXl ,w

Xl (ψl)dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

+Ctδ
∗

2

∑
k=0

E0

(
Ω

k
φ

)
≤C

1

∑
k=0

∫
JZ,wZ

µ

(
Ω

k
ψ

)
nµ

t0 dVolt0 +Ctδ
∗

(
E0 (ψ)+

1

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

))

+C
n−1

∑
i=0

t1+δ

i

(∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ) |+∑

l
KXl ,w

Xl (ψl) dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

≤CE1(φ)tδ
∗ +C

n−1

∑
i=0

t1+δ

i

(∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ)|+∑

l
KXl ,w

Xl (ψl)dVol

) 1
2
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×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

.

Here, we recall that we have defined E1 (φ)= E0 (ψ)+ ∑
1
m=0 ∑

4−m
k=0 E0

(
∂ m

t Ω kφ
)

in
Sect. 1.3.

Clearly, we can replace δ by ε with a different constant C which depends only
on ε: ∫

JZ,wZ

µ (ψ)nµ

t∗ dVolt∗ ≤CE1 (φ) tε
∗

+C
n−1

∑
i=0

t1+ε

i

(∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ) |+∑

l
KXl ,w

Xl (ψl) dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

. (11)

Notice that at this point, the only term that exhibits more growth than expected
is

n−1

∑
i=0

t1+ε

i

(∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ) |+∑

l
KXl ,w

Xl (ψl) dVol

) 1
2

×

(
1

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)) 1
2

.

We will close the argument with a bootstrap.
For notational purposes, we define

It∗ =
∫

JZ,wZ

µ (ψ)nµ

t∗ dVolt∗ ,

IIti =
∫ ti+1

ti

∫ t
2

− t
2

|KX̃ ,wX̃
(ψ) |+∑

l
KXl ,w

Xl (ψl) dVol,

(11) is equivalent to

It∗ ≤C

(
tε
∗E1 (φ)+

n−1

∑
i=0

t1+ε

i (IIti)
1
2 E

1
2

1 (φ)

)
. (12)

On the other hand, Proposition 14 gives

IIti ≤C
(

t−2
i Iti + t−2+δ

i E1 (φ)
)

. (13)

Assume It ≤ Atδ E1 (φ), where A ≥ 4C. We want to show that It ≤ A
2 tδ E1 (φ) for

all t ≥

 400C
1
2

(
A

1
2 +1

)
A


4
δ

. From the assumption and (13) we have

IIti ≤C
(

At−2+δ

i E1 (φ)+ t−2+δ

i E1 (φ)
)

.
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Hence, by picking ε = δ

4 in (12),

It ≤ Ct
δ
4 E1 (φ)+100C

1
2

(
A

1
2 +1

)
t

3δ
4 E1 (φ)

≤ Ctδ E1 (φ)+100C
1
2

(
A

1
2 +1

)
t

3δ
4 E1 (φ)

≤ A
2

tδ E1 (φ) ,

since A≥ 4C and t ≥

 400C
1
2

(
A

1
2 +1

)
A


4
δ

.

Remark 8 We would like to note that the number of derivatives used in the above
argument is highly wasteful (we used a total of 8 derivatives!). Blue and Soffer (3)
constructed a vector field to control trapping with only ε derivatives. Therefore,
we can, at least in principle, repeat the above argument noting the unnecessary
loss of derivatives. The details, however, have not been pursued. It is likely that
with this vector field, Theorem 5 holds with E0 (φ) only having 1+ ε derivatives.
Moreover, in Propositions 11–15, instead of having two Ω derivatives on φ , one
only needs 1 + ε of them. One can then go to the proof of Proposition 16 and
reprove it assuming only that φ is in H2+ε initially with suitable decay.

Now Theorem 10 follows directly from Propositions 16 and 14.

6 Estimates
near the Event Horizon

In this section, we will use the vector field Y to prove that any decay estimates
that can be proved on a suitable compact set holds also along the horizon. We will
also show that these estimates control enough derivatives to give pointwise decay
estimate.
Proposition 17 Suppose∫ 2((1.2)r0)∗−r∗0

r∗0
JT

µ (φ)nµ

t dVolt ≤ Bt−α for all t, for some α ≥ 0.

Then ∫
{r≤r0}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}

+
∫
{ 1

2 (t∗+r∗0)≤v≤ 1
2 (t∗+1+r∗0)}

JY
µ (φ)nµ

∞ dVol{u=∞}

≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
t−α
∗ .

Remark 9 The reader should think of B as some energy quantity of the initial
data. For example, as we will show later, the hypothesis of this proposition holds
for B = C ∑m+k≤1 E1

(
∂ m

t Ω kφ
)
.
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Proof Apply Proposition 1 for Y , on the region R = { 1
2 (t1 + r∗0)≤ v≤ 1

2 (t∗+ r∗0) , t ≥
t1} as in the Fig. 3, we get

∫
{t≥t1}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}

+
∫
{ 1

2 (t1+r∗0)≤v≤ 1
2 (t∗+r∗0)}

JY
µ (φ)nµ

∞ dVol{u=∞}+
∫

R
KY (φ) dVol
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Fig. 3 The region R

=
∫
{t≥t1}

JY
µ (φ)nµ

1
2 (t1+r∗0)

dVol{v= 1
2 (t1+r∗0)}

+
∫
{ 1

2 (t1+r∗0)≤v≤ 1
2 (t∗+r∗0)}

JY
µ (φ)nµ

t1 dVolt1 . (14)

We split up the integrals into r ≤ r0 and r > r0 parts.
Notice that the domain of integration of

∫
{t≥t1} JY

µ (φ)nµ

1
2 (t1+r∗0)

dVol{v= 1
2 (t1+r∗0)} lies

inside {r ≤ r0}. Moreover, we note that
∫
{ 1

2 (t1+r∗0)≤v≤ 1
2 (t∗+r∗0)} JY

µ (φ)nµ
∞

dVol{u=∞} ≥ 0. Hence

∫
{r≤r0}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}+

∫
R∩{r≤r0}

KY (φ)dVol

≤
∫
{r≤r0}

JY
µ (φ)nµ

1
2 (t1+r∗0)

dVol{v= 1
2 (t1+r∗0)}

+
∫
{ 1

2 (t1+r∗0)≤v≤ 1
2 (t∗+r∗0)}

JY
µ (φ)nµ

t1 dVolt1

+
∫
{r≥r0}∩{t≥t1}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}

+
∫

R∩{r≥r0}
|KY (φ)|dVol.

We estimate three terms on the right hand side. Notice that Y is constructed to be
supported in {r ≤ (1.2)r0}.
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∫
{ 1

2 (t1+r∗0)≤v≤ 1
2 (t∗+r∗0)}

JY
µ (φ)nµ

t1 dVolt1

≤C
∫ ((1.2)r0)∗

r∗0
JT

µ (φ)nµ

t1 dVolt1

≤CBt−α

1 ,

For the second and third term, we first use the compact support of Y and then
apply the conservation law associated to the Killing vector T .∫

{r≥r0}∩{u≥ 1
2 (t1−r∗0)}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}

≤C
∫
{r0≤r≤(1.2)r0}∩{u≥ 1

2 (t1−r∗0)}
JT

µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)}

≤C
∫
{r∗0≤r∗≤2((1.2)r0)∗−r∗0}

JT
µ (φ)nµ

t1 dVolt∗

≤CBt−α
∗

≤CBt−α

1 ,∫
R∩{r≥r0}

|KY (φ) |dVol ≤ C
∫ t∗

t1

∫ ((1.2)r0)∗

r∗0
|KY (φ) |dVol

≤ C
∫ t∗

t1

∫ ((1.2)r0)∗

r∗0
JT

µ (φ)nµ

t dVolt dt

≤ CB
∫ t∗

t1
t−α dt

≤ CB(t∗− t1) t−α

1 ,

since α ≥ 0.
Write f (t) =

∫
{r≤r0} JY

µ (φ)nµ

1
2 (t+r∗0)

dVol{v= 1
2 (t+r∗0)}

. Then we have

f (t∗)+
∫ t∗

t1
f (τ) dτ ≤C

(
f (t1)+Bmax{t∗− t1,1}t−α

1
)
. (15)

We take C to be fixed from this point on. We clearly can assume the C > 1.
From this, we will prove the Proposition by a bootstrap argument. Assume

f (t) ≤ At−α for some large A that is to be determined. We want to show that
f (t)≤ A

2 t−α .
Let t1 = t∗−8C2. Since we are only concerned with t∗ large, we assume with-

out loss of generality that t∗ > 8
(

1−2−
1
α

)−1
C2 so that t∗ < 2

1
α t1. Then

f (t∗)+
∫ t∗

t∗−8C2
f (τ)dτ ≤ C

(
At−α

1 +8C2Bt−α

1
)

≤ 2C
(
A+8C2B

)
t−α
∗ .
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There exists t̃ with t∗−8C2 ≤ t̃ ≤ t∗ such that

f (t̃) ≤ 1
8C2

∫ t∗

t∗−8C2
f (τ) dτ

≤
(
A+8C2B

)
4C

t−α
∗ .

Now we let t1 = t̃. Notice that t∗ < 2
1
α t̃. Then

f (t∗)+
∫ t∗

t̃
f (τ)dτ ≤ C

(
f (t̃)+8C2Bt̃−α

)
≤ A

4
t−α
∗ +2C2Bt−α

∗ +16C3Bt−α
∗

≤ A
2

t−α
∗ ,

if A≥ 72C3B.
Of course to have f (t) ≤ At−α for all t, we also need it to hold initially, i.e.,

A≥ f (t0). Therefore, we have∫
{r≤r0}

JY
µ (φ)nµ

1
2 (t∗+r∗0)

dVol{v= 1
2 (t∗+r∗0)} ≤C

(
B+

∫
JN

µ (φ)nµ

t0 dVolt0

)
t−α
∗ ,

where C is a universal constant different from the one above. Finally, we can
also get the decay estimate along the event horizon (i.e., on u = −∞) by plug-
ging in the decay rate of f into (14) and replacing the t interval by [t∗, t∗ +
1].

Using Proposition 17, we claim that a similar estimate holds on t-slices.

Proposition 18 Suppose
∫ 2((1.2)r0)∗−r∗0

r∗0
JT

µ (φ)nµ

t dVolt ≤ Bt−α for all t, for some
α > 1. Then∫

{v∗≤v≤v∗+1}
JY

µ (φ)nµ

τ dVolτ ≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
v−α
∗ ,

for v∗ ≥ 1.

Proof We prove this using the conservation law for Y on the region R = {v∗ ≤
v≤ v∗+1,2v∗− r∗0 ≤ t ≤ τ}.∫

{t≥2v∗−r∗0}
JY

µ (φ)nµ

v∗+1 dVol{v=v∗+1}

+
∫
{v∗≤v≤v∗+1}

JY
µ (φ)nµ

τ dVolτ +
∫

R
KY (φ)dVol

=
∫
{t≥2v∗−r∗0}

JY
µ (φ)nµ

v∗dVolv∗ +
∫
{v∗≤v≤v∗+1}

JY
µ (φ)nµ

2v∗−r∗0
dVol{t=2v∗−r∗0}.

We split up the integrals into r ≤ r0 and r > r0 parts.
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Notice that the domain of integration of
∫
{t≥2v∗−r∗0}

JY
µ (φ)nµ

v∗dVolv∗ lies inside
{r ≤ r0}. Notice also that∫

{t≥2v∗−r∗0}∩{r≤r0}
JY

µ (φ)nµ

v∗+1dVol{v=v∗+1}+
∫

R∩{r≤r0}
KY (φ)dVol≥ 0.

Hence∫
{v∗≤v≤v∗+1}

JY
µ (φ)nµ

τ dVolτ

≤
∫
{t≥2v∗−r∗0}

JY
µ (φ)nµ

v∗dVolv∗ +
∫
{v∗≤v≤v∗+1}

JY
µ (φ)nµ

2v∗−r∗0
dVol{t=2v∗−r∗0}

+
∫
{t≥2v∗−r∗0}∩{r≥r0}

JY
µ (φ)nµ

v∗+1dVol{v=v∗+1}+
∫

R∩{r≥r0}
|KY (φ)|dVol.

We show that each term has the correct bound. The first term is bounded using
Proposition 17, ∫

{t≥2v∗−r∗0}
JY

µ (φ)nµ
v∗ dVolv∗

=
∫
{r≤r0}

JY
µ (φ)nµ

v∗ dVolv∗

≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
(2v∗− r∗0)

−α

≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
v−α
∗ .

The second term is controlled by assumption∫
{v∗≤v≤v∗+1}

JY
µ (φ)nµ

2v∗−r∗0
dVol{t=2v∗−r∗0}

≤C
∫
{v∗≤v≤v∗+1}

JT
µ (φ)nµ

2v∗−r∗0
dVol{t=2v∗−r∗0}

≤CB(2v∗− r∗0)
−α

≤CBv−α
∗ .

The last two terms are bounded by noting that Y is supported in r ≤ (1.2)r0. The
details are identical to the proof of Proposition 17. Therefore,∫

{v∗≤v≤v∗+1}
JY

µ (φ)nµ

τ dVolτC
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
v−α
∗ .

This, and Sobolev embedding, is sufficient to show pointwise decay of the
derivatives of φ along the horizon. We show further that if on a compact set, we
have both energy decay and L2 decay, then we have pointwise decay along the
event horizon. More precisely, we have
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Proposition 19 There exist r̃ very close to 2M such that if

1

∑
m=0

3−m

∑
k=0

∫ 2((1.2)r0)∗−r∗0

r̃∗

(
JT

µ

(
∂

m
t Ω

k
φ

)
nµ

t +φ
2
)

dVolt ≤ Bt−α

for all t, for some α ≥ 0, then

|φ (v∗,r) |2 ≤ C

(
B+

2

∑
k=0

∫
JN

µ

(
Ω

k
φ

)
nµ

t0 dVolt0

)
v−α
∗ ,

|∂r∗φ (v∗,r) |2 ≤ C

(
B+

1

∑
m=0

3−m

∑
k=0

∫
JN

µ

(
∂

m
t Ω

k
φ

)
nµ

t0 dVolt0

)
v−α
∗ ,

for v∗ ≥ 1,r ≤ r̃.

Proof We first take r̃ to be small enough to apply Y , i.e., r̃ < r0. The exact condi-
tion on r̃ will be determined later.

For decay of φ (v∗,r), we want to show that on any time-slice, say t = τ ,

2

∑
k=0

∫
{v∗≤v≤v∗+1}

(
|∇/ k

φ |2 + |∇/ k
∂r∗φ |2

)
dAdr∗τ ≤Cv−α

∗ .

For decay of ∂r∗φ (v∗,r), we want to show that on any time-slice, say t = τ ,

2

∑
k=0

∫
{v∗≤v≤v∗+1}

(
|∇/ k

∂r∗φ |2 + |∇/ k
∂

2
r∗φ |2

)
dAdr∗τ ≤Cv−α

∗ .

Proposition 18 gives∫
{v∗≤v≤v∗+1}

(
(∂r∗φ)2 + |∇/φ |2

)
dAdr∗τ ≤C

(
B+

∫
JN

µ (φ)nµ

t0 dVolt0

)
v−α
∗ .

After commuting with an appropriate number of Ω , Proposition 18 gives∫
{v∗≤v≤v∗+1}

(
|∇/∂r∗φ |2 + |∇/∇/∂r∗φ |2

)
dAdr∗τ

≤C

(
B+

2

∑
k=1

∫
JN

µ

(
Ω

k
φ

)
nµ

t0 dVolt0

)
v−α
∗ .

After commuting with ∂t and using the equation, Proposition 18 gives∫
{v∗≤v≤v∗+1}

((
∂

2
r∗φ
)2

+ |∇/∂
2
r∗φ |2 + |∇/ 2

∂
2
r∗φ |2

)
dAdr∗τ

≤C

(
B+

1

∑
m=0

3−m

∑
k=0

∫
JN

µ

(
∂

m
t Ω

k
φ

)
nµ

t0 dVolt0

)
v−α
∗ .

Therefore, it remains to show∫
{v∗≤v≤v∗+1}

φ
2 dAdr∗τ ≤Cv−α

∗ .
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We rewrite ∫
{v∗≤v≤v∗+1}

φ
2 dAdr∗τ =

∫ 2v∗−τ+2

2v∗−τ

φ
2 dAdr∗τ .

To achieve decay, we integrate in the u-direction and use the estimates we have on
the compact set.∫ 2v∗−τ+2

2v∗−τ

φ
2dAdr∗τ

≤
∫ r̃∗+2

r̃∗
φ

2 dAdr∗{t=2v∗−r̃∗}+
∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t
φ (∂uφ) dAdr∗dt

≤
∫ r̃∗+2

r̃∗
φ

2 dAdr∗{t=2v∗−r̃∗}+
∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t

(∂uφ)2

1−µ
dAdr∗dt

+
∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t
φ

2 (1−µ) dAdr∗dt

≤ B(2v∗− r̃∗)−α +
∫

τ

2v∗−r̃

∫ 2v∗−t+2

2v∗−t
KY (φ) dVol

+
∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t
φ

2 (1−µ) dAdr∗ dt.

Using the conservation law for Y , and controlling all the terms on the region
{r ≥ r̃} with the assumption, we have∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t
KY (φ)dVol

≤
∫
{r≤r̃}

JN
µ (φ)nµ

v∗ dVolv∗ +CBv−α
∗

≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
(v∗− r̃∗)−α +CBv−α

∗ ,

where in the last step we have used Proposition 17.
Therefore,∫ 2v∗−τ+2

2v∗−τ

φ
2 dAdr∗τ ≤ C

(
B+

∫
JN

µ (φ)nµ

t0 dVolt0

)
v−α
∗

+
∫

τ

2v∗−r̃∗

∫ 2v∗−t+2

2v∗−t
φ

2 (1−µ) dAdr∗ dt.

The decay from the last term comes from the exponentially decaying (towards
r∗ =−∞) factor (1−µ). To use this decay, we use a bootstrap argument. Assume
the decay

∫ v∗−t+1
v∗−t φ 2 dAdr∗{t=t} ≤ Av−α

∗ , independent of t (Note that we can do
this initially (in v) independent of t because after we fix v, the region of integra-
tion is a bounded set of the manifold. The apparent infiniteness is just an arti-
fact of the choice of coordinates). We want to show that

∫ v∗−t+1
v∗−t φ 2 dAdr∗{t=t} ≤

A
2 v−α

∗ .
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From the above, and using that (1−µ)≤Cecr∗ we have

∫ 2v∗−τ+2

2v∗−τ

φ
2 dAdr∗τ

≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
v−α
∗ +

∫
∞

v∗−r̃∗
ACec(2v∗−t+2)v−α

∗ dt
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≤C
(

B+
∫

JN
µ (φ)nµ

t0 dVolt0

)
v−α
∗ + c−1ACec(r̃∗+2)v−α

∗

≤ A
2

v−α
∗ ,

if we choose A≥ 4C
(
B+

∫
JN

µ (φ)nµ

t0 dVolt0
)

and r̃∗ ≤−2+ 1
c log c

4C .

The above is already sufficient to prove the full decay rate in the exterior
region. While Proposition 17 implies the L2 control of the derivatives of φ along
the event horizon, it is useful to prove the L2 control of φ along the event hori-
zon.
Proposition 20 Suppose∫ 2((1.2)r0)∗−r∗0

r∗0

(
JT

µ (φ)nµ

t +φ
2) dVolt ≤ Bt−α

for all t, for some α ≥ 0,, then along the event horizon r = 2M,∫ v∗+1

v∗

∫
S2

φ(2M)2 dAdv≤C
(

B+
∫
{2M≤r≤r0}

JN
µ (φ)nµ

v0
dVolv0

)
v−α
∗ ,

for v∗ ≥ 1.

Proof We note that when changing from the (v,u) coordinates to the (v,r) coordi-
nates, we have

1
1−µ

∂u =−∂r.

Hence, written in the (v,r) coordinates, we have∫
{2M≤r≤r0}

JY
µ (φ)nµ

v dVolv ≥ c
∫ r0

2M

∫
S2

(∂rφ)2 dAdrv.

By Proposition 17, ∫
{2M≤r≤r0}

JY
µ (φ)nµ

v∗ dVolv∗ ≤Cv−α
∗ .

Therefore, we can take the L2 control from the compact region of r∗ as in the
assumption and integrate it to the horizon using the control of ∂rφ , giving the
conclusion.

7 Estimates
in the Black Hole Region

In this section, we will prove that any decay rate that can be proved along the
event horizon can then be proved inside the black hole region. Combining this
with the result of the previous section, we can show that any decay rate that is
obtained in a compact region of r∗ can also be proved in the black hole region.
We will achieve this in two steps: First, we show that any decay rate along the
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event horizon can be propagated slightly inside the black hole region, say, to the
timelike slice r = 2M − ε for some ε > 0. This step uses an argument that is
identical to that in the previous section, which we include here for the sake of
completeness. The proof uses the fact that the deformation of the red-shift vec-
tor field KY has a favorable sign (similar to the case 2M ≤ r ≤ r0) if ε is cho-
sen to be small enough. Then, we show that a decay estimate on r = 2M − ε

for any ε > 0 would imply the same decay rate further inside the black hole.
This part is considerably easier because of the geometry of the region in ques-
tion. In this region we take advantage of the spacelike character of the Killing
vector field ∂t , the nondegeneracy of ∂r and the finiteness of r, which varies
between 2M− ε and rb > 0, as well as the fact that along constant u slices the
r and the v distances are comparable. In the context of the nonlinear spherically
symmetric Einstein–Maxwell-scalar field model, such black hole interior esti-
mates were obtained in (6). All the computations in this section will be done
in the (r,v,ω) coordinates, as it is the most convenient inside the black hole
region.
Proposition 21 Suppose on the event horizon that∫ v+1

v
JY

µ (φ)nµ
r dVolr=2M ≤ Bv−α for all v, for some α ≥ 0.

Then, for some ε > 0, and for all r ∈ [2M− ε,2M],∫ v∗+1

v∗
JY

µ (φ)nµ
r dVolr ≤C

(
B+

∫
{2M−ε≤r≤r0}

JN
µ (φ)nµ

v0
dVolv0

)
v−α
∗ .

Remark 10 As in Proposition 17, the reader should think of B as some energy
quantity of the initial data. For example, as we will show later, the hypothesis of
this Proposition holds for B = C ∑m+k≤1 E1

(
∂ m

t Ω kφ
)
. Moreover, note that if the

conclusion of Proposition 17 implies the hypothesis of this Proposition.

Proof Applying Proposition 1 for Y , on the region R = {v1 ≤ v ≤ v∗,2M− ε ≤
r ≤ 2M} , we get∫

{2M−ε≤r≤2M}
JY

µ (φ)nµ
v∗ dVolv∗ +

∫
{v1≤v≤v∗}

JY
µ (φ)nµ

r dVol{r=2M−ε}

+
∫

R
KY (φ) dVol

=
∫
{2M−ε≤r≤2M}

JY
µ (φ)nµ

v1
dVolv1 +

∫
{v1≤v≤v∗}

JY
µ (φ)nµ

r dVolVol{r=2M}.

Notice that
∫
{v1≤v≤v∗} JY

µ (φ)nµ
r dVol{r=2M−ε} ≥ 0 since {r = 2M− ε} is time-

like for any ε > 0 and Y is timelike for ε sufficiently small. Hence∫
{2M−ε≤r≤2M}

JY
µ (φ)nµ

v∗ dVolv∗ +
∫

R
KY (φ) dVol

≤
∫
{2M−ε≤r≤2M}

JY
µ (φ)nµ

v1
dVolv1 +

∫
{v1≤v≤v∗}

JY
µ (φ)nµ

r dVol{r=2M}.

(16)
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First, notice that by the assumption of the Proposition∫
{v1≤v≤v∗}

JY
µ (φ)nµ

r dVol{r=2M} ≤ Bmax{v∗− v1,1}v−α

1 .

Second, since ε is small we have

KY (φ)≥ cJY
µ (φ)nµ

v∗ .

Let f (v) =
∫
{2M−ε≤r≤2M} JY

µ (φ)nµ
v dVolv. Then we have

f (v)+
∫ v∗

v1

f (ν)dν ≤C
(

f (v1)+Bmax{v∗− v1,1}v−α

1
)
.

This identity resembles (15) and an identical bootstrap would lead to expected
decay rate of f . The conclusion of the proposition then follows from plugging this
decay rate back into (16).

As before, we would then like to prove the L2 decay of φ . We will show that
any decay rate in L2 along the event horizon also holds inside the black hole
region. More precisely, we have the following:
Proposition 22 Suppose on the event horizon that∫ v+1

v

(
JY

µ (φ)nµ
r +φ

2) dVolr=2M ≤ B1v−α for all v, for some α ≥ 0.

and
1

∑
m=0

3−m

∑
k=0

∫ v+1

v

(
JY

µ

(
∂

m
t Ω

k
φ

)
nµ

r +φ
2
)

dVolr=2M ≤ Bt−α

for all v, for some α ≥ 0.

Then, for some ε > 0, and for all r ∈ [2M− ε,2M],∫ v∗+1

v∗

∫
S2(r)

φ(r)2 dAdvr ≤ C
(

B1 +
∫
{2M−ε≤r≤r0}

JN
µ (φ)nµ

v0
dVolv0

)
v−α
∗ ,

(17)

|φ (v∗,r) |2 ≤ C

(
B+

2

∑
k=0

∫
{2M−ε≤r≤r0}

JN
µ

(
Ω

k
φ

)
nµ

v0
dVolv0

)
v−α
∗ ,

(18)

and

|∂r∗φ(v∗,r)|2 ≤C

(
B+

1

∑
m=0

3−m

∑
k=0

∫
{2M−ε≤r≤r0}

JN
µ (∂ m

t Ω
k
φ)nµ

v0
dVolv0

)
v−α
∗ ,

(19)

for v∗ ≥ 1,r ≤ r̃.
Remark 11 The conclusions of Propositions 17 and 20 together imply the hypoth-
esis of this Proposition.
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Proof By Proposition 21 and Sobolev Embedding, (17) would imply (18) and
(19).

We note that when changing from the (v,u) coordinates to the (v,r) coordi-
nates, we have

1
1−µ

∂u =−∂r.

Hence, written in the (v,r) coordinates, we have∫
{2M−ε≤r≤r0}

JY
µ (φ)nµ

v dVolv ≥ c
∫ r0

2M−ε

∫
S2

(∂rφ)2 dAdrv.

By Proposition 21, the assumption of this proposition implies that∫
{2M−ε≤r≤r0}

JY
µ (φ)nµ

v dVolv

≤C
(

B1 +
∫
{2M−ε≤r≤r0}

JN
µ (φ)nµ

v0
dVolv0

)
v−α .

By integrating in the ∂r direction, we have that for any 2M− ε ≤ r ≤ 2M,∫ v∗+1

v∗

∫
S2(r)

φ(r)2 dAdv

≤C
(∫ v∗+1

v∗

∫
S2

φ(2M)2dAdvr=2M +
∫ v∗+1

v∗

∫ 2M

2M−ε

∫
S2

(∂rφ)2 dAdr dv
)

≤CB1v−α
∗ +C

(
B1 +

∫
{2M−ε≤r≤r0}

JN
µ (φ)nµ

v0
dVolv0

)
v−α
∗ .

Once we have the improved decay estimates slightly into the black hole region,
we can propagate them to anywhere in the black hole region. As noted before, the
problem becomes considerably easier due to the geometry inside the black hole.
We will use the facts that −∂r is timelike and nondegenerate and that the energy
associated to−∂r would control its deformation K−∂r . The fact that ∂r controls the
deformation is in turn implied by the fact that ∂t is Killing. Since we would like to
prove an estimate in a finite region of r, these facts would allow us to prove esti-
mates in the whole black hole region (with a constant that degenerates as rb → 0)
easily with Gronwall inequality.
Proposition 23 Fix rb > 0. Suppose for some r̃ with rb ≤ r̃ < 2M we have∫ v+1

v

∫
S2(r̃)

(
JY

µ (φ)nµ

r̃ +φ(r̃)2)dAdvr̃ ≤ B1v−α ,

and

1

∑
m=0

3−m

∑
k=0

∫ v+1

v

∫
S2(r̃)

(
JY

µ

(
∂

m
t Ω

k
φ

)
nµ

r̃ +φ(r̃)2
)

dAdvr̃ ≤ Bv−α
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Then we have ∫ v∗+1

v∗

(
φ

2 +(∇φ)2
)

dAdvr ≤CrbB1v−α
∗ ,

and

|φ |2 ≤CrbBv−α
∗ for rb ≤ r ≤ r̃

with ∇ understood as the coordinate derivatives in the regular coordinates (r,v,ω).
Remark 12 The hypothesis is implied by the conclusion of Propositions 21 and 22
with the appropriate B and B1 and with tilder = 2M− ε . Note that the following
argument requires r < 2M strictly and, therefore, we need Propositions 21 and 22
to push the estimates at the horizon to slightly inside.

Proof Consider the region F = {(rb,v) : v∗ ≤ v ≤ v∗ + 1} which is the part of
the r = rb spacelike hypersurface between v∗ and v∗+ 1. We would like to deter-
mine the domain of dependence D(v∗) of this region. To do so, we notice that the
hypersurfaces v = constant and u = v− 2r− 4M log(r−2M) = constant are the
boundary of the past of this region. Hence D(v∗)∩{rb ≤ r ≤ r̃} ⊂ {|v− v∗| ≤
C}∩ {rb ≤ r ≤ r̃}. Now consider the energy with respect to the timelike vector
field −∂r together with an L2 term (which is different from the energy we con-
sider above)

Eb(φ ;r,v∗) =
∫

D(v∗)∩{r}

(
φ

2 + J−∂r
µ (φ)nµ

r

)
dVolr,

where −∂r is taken in the (r,v) coordinate and is future-directed and time-like in
this region. Thus Eb(φ ;r,v∗) ≥

∫
D(v∗)(φ

2 +(∇φ)2)dVolr ≥ 0, with ∇ understood
as the coordinate derivatives in the regular coordinates (r,v,ω). We have,∫

D(v∗)∩{r}
K−∂r(φ)dVolr ≤C

∫
D(v∗)∩{r}

J−∂r
µ (φ)nµ

r dVolr ≤CEb(φ ;r,v∗)

with the constant C = C(rb) is independent of v∗ and r as long as rb ≤ r ≤ r̃.
This is, first, because ∂r is invariant under the spacelike Killing vector field ∂t and
hence the coefficients in both K−∂r(φ) and J−∂r

µ (φ)nµ
r are independent of t. The

constant can also be chosen to be uniform in r because we are in a finite region of
r. Moreover,

−∂r

∫
D

φ
2 dVolr ≤CEb(φ ;r).

Hence,

Eb(φ ;r)≤C
(

Eb(φ ; r̃)+
∫ r̃

r
Eb(φ ;r′)dr′

)
.

Gronwall inequality implies, since we are in a finite range of r, that

Eb(φ ;r) ≤ CEb(φ ; r̃)
≤ CB1v−α

∗ .
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Fig. 4 The region P

Therefore, for every rb ≤ r ≤ r̃,∫ v∗+1

v∗

(
φ

2 +(∇φ)2
)

dAdvr ≤CB1v−α
∗

since {(r,v) : rb ≤ r ≤ r̃,v∗ ≤ v≤ v∗+1} ⊂D . The pointwise decay follows from
commuting the equation with ∂t and Ω and Sobolev Embedding.

8 Proof
of the Main Theorems

8.1 Improved
Decay for φ (Proof of Main Theorem 1)

To prove Main Theorem 1, we proceed in two steps. First, we show that for
every t∗, there exist t1 < t∗, t ∼ t∗ such that a weighted L2-norm of φ on the
slice {t = t1} has the desired decay of t−3+δ

∗ . We then use the estimates for
ψ to upgrade this to decay estimates for a weighted L2-norm of φ on the slice
{t = t∗}.

We first set up some notation. Fix r∗1,r
∗
2. These are the r∗1 and r∗2 in the state-

ment of Main Theorem 1. In other words, we would like to prove a decay estimate
on the fixed compact region r∗1 ≤ r ≤ r∗2. Let t∗ ≥ 2(|r∗1|+ |r∗2|) be the time slice
on which we want to show the decay estimate. Let t̃ = (1.1)−1 t∗ and P = {t̃ ≤
t ≤ t∗,r∗1 − t∗+ t ≤ r∗ ≤ r∗2 + t∗− t} (Fig. 4).
Proposition 24 There exist a t1 with t̃ ≤ t1 ≤ t∗ such that∫

P∩{t=t1}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗ ≤Ct−3
∗ E0 (φ) .

Proof By Theorem 5,∫
P

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗ dt

≤C
∫

P
|KX̃ ,wX̃

(φ) |+∑
l

KXl ,w
Xl (φl) dVol

≤Ct̃−2E0 (φ)

≤Ct−2
∗ E0 (φ) .

Now take t1 such that∫
P∩{t=t1}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗

= inf
t̃≤t≤t∗

∫
P∩{t=t}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗,
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which exists since we are taking the infimum over a compact interval, and note
that

inf
t̃≤t≤t∗

∫
P∩{t=t}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗

≤ (t∗− t̃)−1
∫

P

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗dt

≤Ct−1
∗

∫
P

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗dt

≤Ct−3
∗ E0 (φ) .

To upgrade this to an estimate for a generic t, we make two observations about
S. First, S is timelike away from the event horizon. Second, S has a weight ∼ t.
We can, therefore, integrate from the “good slice” t = t1 to the slice t = t∗ and get
the same decay estimate. This is done using integration by parts in the following
Proposition. We prove a more general form but the reader should keep in mind
that we will use f = φ 2 +(∂r∗φ)2, g = r−2 (1−µ)2.
Proposition 25 Let f = f

(
r∗, t,ω ∈ S2

)
, g = g(r∗) ,P = {t1 ≤ t ≤ t∗,r∗1 − t∗ +

t ≤ r∗ ≤ r∗2 + t∗− t}. Then

t∗
∫

P∩{t=t∗}
f gdAdr∗+

∫
P∩{v= 1

2 (t∗+r∗2)}
v f gdAdr∗

+
∫

P∩{u= 1
2 (t∗−r∗1)}

u f gdAdr∗

= t1
∫

P∩{t=t1}
f gdAdr∗+2

∫
P

f gdAdt dr∗+
∫

P
r∗ f g′ dAdt dr∗

+
∫

P
(S f )gdAdt dr∗.

Proof We change to the variables u,v and integrate by parts,∫
P

v(∂v f )gdAdt dr∗ =
∫ 1

2 (t∗−r∗1)
1
2 (t∗−r∗2)

∫ t∗−u

t1−u
v(∂v f )gdAdvdu+

∫ 1
2 (t∗−r∗2)

1
2 (2t1−t∗−r∗2)∫ 1

2 (t∗+r∗2)

t1−u
v(∂v f )gdAdvdu

=−
∫

P
f gdAdt dr∗−

∫
P

v f ∂r∗gdAdt dr∗+
∫

P∩{t=t∗}
v f gdAdr∗

+
∫

P∩{v=t∗+r∗2}
v f gdAdr∗−

∫
P∩{t=t1}

v f gdAdr∗,

∫
P

u(∂u f )gdAdt dr∗ =
∫ 1

2 (t∗+r∗1)
1
2 (2t1−t∗+r∗1)

∫ 1
2 (t∗−r∗1)

t1−v
u(∂u f )gdAdudv

+
∫ 1

2 (t∗+r∗2)
1
2 (t∗+r∗1)

∫ t∗−v

t1−v
u(∂u f )gdAdudv

=−
∫

P
f gdAdt dr∗+

∫
P

u f ∂r∗gdAdt dr∗+
∫

P∩{t=t∗}
u f gdAdr∗
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+
∫

P∩{u=t∗−r∗1}
u f gdAdr∗−

∫
P∩{t=t1}

u f gdAdr∗.

The proposition is proved by adding these two equations.

To prove the main theorem, we use the above identity using f = φ 2 +(∂r∗φ)2,
g = r−2 (1−µ)2.

We notice that since f ,g ≥ 0 by definition and u,v ≥ 0 in P = {t1 ≤ t ≤
t∗,r∗1 − t∗+ t ≤ r∗ ≤ r∗2 + t∗− t}.

Therefore,∫
P∩{v= 1

2 (t∗+r∗2)}
v f gdAdr∗+

∫
P∩{u= 1

2 (t∗−r∗1)}
u f gdAdr∗ ≥ 0.

Thus Proposition 23 would imply

t∗
∫

P∩{t=t∗}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗

≤ t1
∫

P∩{t=t1}

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗

+2
∫

P

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdr∗ dt

+2
∫

P
|r∗
(

φ
2 +(∂r∗φ)2

)(
r−2 (1−µ)2

)′
|dt dr∗

+
∫

P
(|ψφ |+ |∂r∗ψ∂r∗φ |)r−2 (1−µ)2 dAdt dr∗

≤Ct−2
∗ E0 (φ)+

∫
P

(
ψ

2 +(∂r∗ψ)2
)

r−2 (1−µ)2 dAdt dr∗

+
∫

P

(
φ

2 +(∂r∗φ)2
)

r−2 (1−µ)2 dAdt dr∗

≤Ct−2+δ
∗ E1 (φ) ,

where we have used Proposition 22 at the second to last step and Theorems 5 and
10 at the last step.

Therefore,∫ r∗2

r∗1

(
φ (t∗)

2 +(∂r∗φ (t∗))
2
)

dAdr∗ ≤Ct−3+δ
∗ E1 (φ) .

Since ∂t ,Ω are Killing, it follows immediately that

1

∑
l=0

∫ r∗2

r∗1

((
∂

m
t ∂

l
r∗φ (t∗)

)2
+ |∇/ k

∂
l
r∗φ (t∗) |2

)
dAdr∗ ≤Ct−3+δ

∗ E1

(
∂

m
t Ω

k
φ

)
,

for any k,m.
Using the equation �gφ = 0, we get∫ r∗2

r∗1

(
∇

l
φ (t∗)

)2
dVol≤Ct−3+δ

∗ ∑
k+m≤l

E1

(
∂

m
t Ω

k
φ

)
.
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We have thus established the decay of the nondegenerate energy in the exterior
region away from the event horizon. The full decay of nondegenerate energy part
of Main Theorem 1 follows from Propositions 17 and 20–23. The pointwise decay
part of Main Theorem 1 follows form the standard Sobolev Embedding Theo-
rem for the part of the exterior region away from the event horizon and from
Propositions 17, 20–23 for the region near the event horizon and inside the black
hole.

8.2 Improved
Decay for ∂tφ (Proof of Main Theorem 2)

To estimate the time derivatives of φ , we follow an idea of Klainerman and Sideris
(16). The key observation is that the first derivatives of ∂tφ are controlled with a
weight of 1

t−r∗ by a linear combination of first derivatives of φ and ψ . This extra
weight would give extra decay to ∂tφ .
Proposition 26 Suppose t + r∗ ≥ max{ t

2 , |r
∗|
2 }. (This is true for example when r∗

is bounded below and t is sufficiently large.)

1. |(t− r∗)∂ 2
t φ | ≤C(|∂tψ|+ |∂r∗ψ|+ |∂tφ |+ |∂r∗φ |+(1−µ)|r∗||∆/φ |),

2. |(t− r∗)∂r∗∂tφ | ≤C(|∂tψ|+ |∂r∗ψ|+ |∂tφ |+ |∂r∗φ |+(1−µ)|r∗||∆/φ |),
3. |t(1−µ)∇/∂tφ | ≤C((1−µ)|∇/ψ|+ |∂r∗Ωφ |.

Proof Define ∆gφ =(1−µ)−1
∂r∗φ + 2

r ∂r∗φ +∆/φ . Then �gφ = 0 reads (1−µ)∂ 2
t φ =

∆gφ .
Recall that

ψ = t∂tφ + r∗∂r∗φ .

Therefore,

∂tψ−∂tφ = t∂ 2
t φ + r∗∂r∗∂tφ ,

∂r∗ψ−∂r∗φ = r∗∂ 2
r∗φ + t∂r∗∂tφ .

Hence,

t (∂tψ−∂tφ)− r∗ (∂r∗ψ−∂r∗φ)

= t2
∂

2
t φ − (r∗)2

∂
2
r∗φ

=
(

t2− (r∗)2
)

∂
2
t φ +(r∗)2 ((1−µ)∆gφ −∂

2
r∗φ
)

=
(

t2− (r∗)2
)

∂
2
t φ +(r∗)2

(
2(1−µ)

r
∂r∗φ +(1−µ)∆/φ

)
.
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Therefore, by re-arranging and dividing by (t + r∗),

|(t− r∗)∂
2
t φ |

=

∣∣∣∣∣ 1
t + r∗

(t (∂tψ−∂tφ)− r∗ (∂r∗ψ−∂r∗φ)

−(r∗)2
(

2(1−µ)
r

∂r∗φ +(1−µ)∆/φ)
)∣∣∣∣∣

≤C (|∂tψ|+ |∂r∗ψ|+ |∂tφ |+ |∂r∗φ |+(1−µ) |r∗||∆/φ |) .

We have thus proved 1. On the other hand, using again the above equality, we also
have

(t− r∗)∂r∗∂tφ

=−∂tψ +∂r∗ψ +∂tφ −∂r∗φ + t∂ 2
t φ − r∗∂ 2

r∗φ

=−∂tψ +∂r∗ψ +∂tφ −∂r∗φ +(t− r∗)∂
2
t φ + r∗

(
(1−µ)∆gφ −∂

2
r∗φ
)

=−∂tψ +∂r∗ψ +∂tφ −∂r∗φ +(t− r∗)∂ 2
t φ

+
2r∗(1−µ)

r
∂r∗φ +(1−µ)|r∗|∆/φ .

This, together with 1, implies 2.
The proof of 3 is more direct. Using the definition of S, and that Ω is indepen-

dent of t and r∗,

Ωψ = r∗∂r∗Ωφ + t∂tΩφ .

Thus, by noting that Ω and r∇/ differ only by constant,

|t (1−µ)∇/∂tφ |

≤ |(1−µ)∇/ψ|+ |(1−µ)
r∗

r
∂r∗Ωφ |

≤C ((1−µ) |∇/ψ|+ |∂r∗Ωφ |) .

This would easily imply Main Theorem 2.2:
Corollary 27

∫ ct∗

r̃∗
JT

µ (∂tφ)nµ

t∗ dVolt∗ ≤Ct−4+δ
∗

(
1

∑
m=0

1

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+E1 (φ)

)
,

for all c < 1 and r̃. In particular, r̃ can be chosen as that given by Proposi-
tion 19.
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Proof We can consider t∗ large enough so that first, the assumption of Proposi-
tion 24 holds and second, on the domain of integration, (t∗− r∗)∼ t∗.∫ ct∗

r̃∗
JT

µ (∂tφ)nµ

t∗ dVolt∗

=
∫ ct∗

r̃∗

(
(∂r∗∂tφ)2 +

(
∂

2
t φ
)2

+(1−µ) |∇/∂tφ |2
)

dVolt∗

≤Ct−2
∗

∫ ct∗

r̃∗

(
(∂tψ)2 +(∂r∗ψ)2 +(1−µ) |∇/ψ|2 +(∂tφ)2 +(∂r∗φ)2

+(1−µ) |∇/Ω∂tφ |2 +(∂r∗Ωφ)2
)

dVolt∗

≤Ct−2
∗

∫ ct∗

r̃∗
JT (ψ)+ JT (φ)+ JT (Ωφ)+ JT (∂tΩφ) dVolt∗ .

The corollary follows from Theorems 5 and 10.

Finally, we proceed to the proof of Main Theorems 2.1 and 2.3:
Corollary 28 We have∫ v∗+1

v∗

(
(∂tφ)2 +(∇∂tφ)2

)
dAdvr ≤Cδ ,rb

v−4+δ
∗ E3 (φ) , for any r ≥ rb.

and

|∂tφ (v∗) |2 ≤ Cv−4+δ
∗

(
2

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

2

∑
m=0

2−m

∑
k=0

E1

(
∂

m
t Ω

k
φ

))
,

if rb ≤ r ≤ 2M or r∗ ≤ t∗
2

.

Proof We prove a Sobolev-type inequality. We first work on R3. We claim that for
u ∈C∞

c
(
R3
)
,

||u||L∞(R3) ≤C||u||
1
2
Ḣ1(R3)||u||

1
2
Ḣ2(R3).

We give a simple proof using Littlewood–Paley theory. Let N ∈ 2Z be a dyadic
number, χ (ξ ) be a radial cutoff function which is supported in {|ξ | < 2} and is
identically 1 in {|ξ | < 1}. Define the Littlewood–Paley operators PN by P̂Nu =(

χ

(
ξ

N

)
−χ

(
2ξ

N

))
û.

Since the inequality claimed is invariant under scaling u(x) → λu(x) and
u(x)→ u(λx), we can assume that ||u||Ḣ1(R3) = ||u||Ḣ2(R3) = 1. Then, by Bern-
stein inequality,

||PNu||L2(R3) ≤min{CN−1,CN−2}.

Therefore, by Bernstein inequality again,

||u||L∞(R3) ≤C∑
N

N
3
2 ||PNu||L2(R3) ≤C

(
∑

N≥N0

N− 1
2 + ∑

N<N0

N
1
2

)
≤C.
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We note that a variant of this is true. We have for u ∈C∞
c
(
R3
)
,

||u||L∞(R3\Br(0)) ≤C||u||
1
2
Ḣ1(R3\Br(0))||u||

1
2
Ḣ2(R3\Br(0)).

This is true because one can extend u into Br (0) without increasing the Ḣ1 or Ḣ2

norm.
We now apply this to a cutoff version of ∂tφ .

Let χ =
{

1 |x| ≤ 1
0 |x| ≥ 1.1 . On t = t∗, let φ̃ = χ

(
r∗

0.5t∗

)
φ for r ≥ r̃, where r̃ is as

in Proposition 19.
The Ḣ1 norm is controlled with Corollary 23 and Theorem 5.4.

||∂t φ̃ ||Ḣ1(R3\Br̃(0))

≤C
∫ 0.55t∗

2

r̃∗
JT

µ (∂tφ)nµ

t∗dVolt∗ +Ct−2
∗

∫ 0.55t∗
2

r̃∗
(∂tφ)2 r2 (1−µ) dAdr∗

≤Ct−4+δ
∗

(
1

∑
m=0

1

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+E1 (φ)

)
.

The Ḣ2 norm can be controlled similarly once we note that using the equation, we
have for r ≥ r̃,

|∂ 2
r∗∂tφ | ≤ C

(
|∂ 3

t φ |+ 1
r
|∂r∗∂tφ |+ |∇/ 2

∂tφ |
)

≤ C
(
|∂ 3

t φ |+ |∂r∗∂tφ |+ |∇/Ω∂tφ |
)
.

Therefore, for t = t∗,

||∂t φ̃ ||Ḣ2(R3\Br̃(0))

≤C
∫ 0.55t∗

2

r̃∗

(
JT

µ

(
∂

2
t φ
)
+ JT

µ (∂tΩφ)+ JT
µ (∂tφ)

)
nµ

t∗dVolt∗

+Ct−2
∗

∫ 0.55t∗
2

r̃∗

((
∂

2
t φ
)2

+(∂tΩφ)2 +(∂tφ)2
)

r2 (1−µ) dAdr∗

≤Ct−4+δ
∗

(
2

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

1

∑
m=0

1

∑
k=0

E1

(
∂

m
t Ω

k
φ

))
.

Therefore,

||∂tφ ||L∞({r̃∗≤r∗≤ t∗
2 })

≤ ||∂t φ̃ ||L∞(R3\Br̃(0))

≤C||∂t φ̃ ||
1
2
Ḣ1(R3\Br̃(0))||∂t φ̃ ||

1
2
Ḣ2(R3\Br̃(0))

≤Ct−4+δ
∗

(
2

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

1

∑
m=0

1

∑
k=0

E1

(
∂

m
t Ω

k
φ

))
.
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In particular, for t sufficiently large, this L∞ estimate holds on sets of compact r∗.
Noting that the L∞ norm controls the L2 norm on compact sets, we have∫ ((1.2)r0)∗

r̃
(∂tφ)2 dVolt∗

≤Ct−4+δ
∗

(
2

∑
m=0

2

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

1

∑
m=0

1

∑
k=0

E1

(
∂

m
t Ω

k
φ

))
.

We also have, by Corollary 23,

1

∑
m=0

3−m

∑
k=0

∫ ((1.2)r0)∗

r̃
JT

µ

(
∂

m
t Ω

k (∂tφ)
)

nµ

t dVolt∗

≤Ct−4+δ
∗

(
2

∑
m=0

4−m

∑
k=0

E0

(
∂

m
t Ω

k
φ

)
+

1

∑
m=0

4−m

∑
k=0

E1

(
∂

m
t Ω

k
φ

))
.

The corollary then follows from the Sobolev Embedding Theorem and Proposi-
tions 17, 19, 20, 21, 22 and 23.
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