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Abstract of the Dissertation

Soft Radiation Theorems at All Loop Order in Quantum Field Theory

by

Hualong Gervais

Doctor of Philosophy

in

Physics

Stony Brook University

2017

We study the emission of soft photons and soft gravitons coupling to high energy fixed
angle scattering processes at first order in the electromagnetic coupling and in Newton’s
constant, respectively, but to all loop orders in a class of theories without soft divergences,
including massive and massless Yukawa and scalar theories. We adapt a method introduced
by del Duca for quantum electrodynamics to show that subleading corrections to the soft
photon and soft graviton theorems are sensitive to the structure of nonleading external jets
of collinear lines. Our techniques are based on a power counting analysis of loop integrals,
an application of jet Ward identities, and hard-soft-collinear factorization. We also apply
Grammer and Yennie’s decomposition to isolate separately gauge invariant contributions to
the soft expansion. These are interpreted as infrared sensitive matrix elements coupling to a
field strength tensor in the case of photons, and to the linearized Riemann curvature tensor
in the case of gravitons.
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1 Introduction to Soft Theorems

1.1 Introduction

The subject of the emission of soft particles in quantum field theory has a long history dating
back to the classic theorems of Low, Burnett and Kroll, and Weinberg [1–3]. The leading
term in the soft particle energy, q0, universally behaves as 1/q0 and comes from dressing an
external line with a tree level vertex. The form of a soft theorem is strongly influenced by
the underlying symmetries of the theory. In QED, Low’s classic result shows that the next to
leading term is fixed by gauge invariance, implemented through the use of Ward identities.
More recently, it has been shown that soft graviton theorems can be realized as the Ward
identities of a symmetry of the gravitational S-matrix [4, 5]. This observation is part of a
renewed interest in soft theorems in both gauge and gravitational theories. In particular,
Ref. [6] has used the BCFW relation [7, 8] to not only derive Weinberg’s leading term for
soft graviton emission but also determine the next and next to next to leading terms at
tree level. While it was later confirmed that these higher order terms in the soft graviton
theorem can be understood from the gravitational Ward identity [9] following a treatment
similar to Low’s analysis [10, 11], the role of loop corrections, especially in the high-energy
and massless limits has received a lot of further study [12–18].

In the case of gauge theories, the resummation of logarithms associated with soft and
collinear gluon emissions has been applied to numerous collider observables [19–27] and loop
corrections to the subleading term in soft theorems are important for applications to precision
studies of the Standard Model [28–30].

Soft theorems in gravity and gauge theories have also been studied from several other
viewpoints, including scattering equations [31–33], string theory techniques [34–37], the one
particle irreducible e↵ective action [38,39], path integral and diagrammatic methods [40–47],
and e↵ective field theory [18]. In particular, Ref. [18] stresses the importance of matrix
elements involving higher dimension operators, which we will derive from an independent
point of view.

In this dissertation, we focus on loop corrections to the soft photon and soft graviton
theorems, specifically for the emission of a single soft photon or graviton from scalar and
Yukawa theories in four dimensions. In particular, we will consider how loop corrections
alter proofs of soft radiation theorems based on Low’s analysis. Our final forms of the
soft photon and graviton theorems consider the case where all external hard particles are
outgoing fermions or antifermions. The extension of our results to the cases where the scalars
are charged and allowed to appear as external particles is straightforward but involves more
terms in our final formulas.

We couple the electromagnetic field to massive fermions interacting with massless scalars
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through Yukawa interactions in four dimensions. The scalars are allowed to interact via a
quartic potential but will be kept neutral for simplicity. Our results will hold to first order
in the electric charge but to all orders in the Yukawa and �4 couplings.

Gravitons are coupled to fermions and scalars through the stress tensor operator. The
full dynamics of the graviton field is given by the Einstein-Hilbert action. We will, however,
not consider graviton loops in this work. Yukawa and �4 theories provide a nontrivial testing
ground for our ideas, which are also applicable to soft quanta emission from gauge theories
and gravity. It will be convenient to use the term elastic here and below to refer only to the
absence of energy loss to the electromagnetic and gravitational fields.

We are primarily interested in the high energy limit, studied by Del Duca [14] in the
context of soft photon emission in the wide-angle scattering of charged particles, although
we will also briefly consider low energies. Ref. [14] pointed out that the original form of
Low’s theorem holds only for photon energies below the scale m2/E, with m the mass scale
of virtual lines and E the typical center-of-mass energy of the nonradiative amplitude. Del
Duca showed that for E� > m2/E, corrections to Low’s theorem appear in the first power
correction, and that they can be interpreted in terms of infrared-sensitive matrix elements
involving the field strength, associated with the collinear singularities in the massless limit.
These contributions are not determined directly by the Ward identities. They remain uni-
versal, however, depending only on the charge, spin, and momentum of the external lines.
This universality is a generalization and variant of the factorization theorems that play
such a large role in applications of gauge invariance in perturbative quantum chromodynam-
ics [28, 48]. In the case of gravity, we will find analogous corrections where the role of Del
Duca’s field strength is played by the Riemann tensor of linearized gravity, both at high and
low energies – see Eq. (161) below.1

Our approach to loop corrections at high energies is based on Refs. [12,13], which revisit
the problem of photon and graviton emission at high energies. Ref. [12] focuses on photon
emission in Yukawa and scalar theories in the regime where the soft momentum q is of the
order O(m2/E). Ref. [13] treats soft graviton emission at both high and low energies.

In Ref [12], it was pointed out that in the result of loop integration over regions neighbor-
ing pinch surfaces, there arise contributions with branch cuts within O(m2/E) of the point
q = 0. Following Ref. [12], we will refer to such contributions as nonanalytic. Branch cuts
of nonanalytic contributions are associated with particle production thresholds and make an
expansion of the nonradiative amplitude (henceforth referred to as the “elastic” amplitude)
to a fixed power of q inaccurate when q = O(m2/E). This phenomenon can be traced back
to invariants involving q being of the same order as terms not involving q in denominators of
the loop integrand [12,14]. Expanding the elastic amplitude, however, is a key step in Low’s

1
After this work was completed, Ref. [39] appeared, which also derives corrections that we identify as the

linearized Riemann tensor.
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original analysis – see [1, 10] for details.
A solution to this problem is to factorize the elastic amplitude into jet functions, a soft

cloud, and a hard part. The jet functions gather all collinear lines of the diagram, the
soft cloud gathers all the soft lines, and the hard part includes all hard, short distance,
exchanges. Such a factorization is reminiscent of the soft collinear e↵ective theory approach
to soft radiation [18]. The hard part is analogous to the matching coe�cients of SCET
and the jet functions correspond to the higher dimension operators of the e↵ective theory.
Refs. [12, 13] applied power counting techniques to provide a systematic way of classifying
factorized contributions to the radiative amplitude according to their order of magnitude.
This allowed for a complete list of all nonleading loop corrections to the soft photon and soft
graviton theorems, carefully taking into account the analytic structure of the loop integrals
in all regions. Further, we will also provide a decomposition of the radiative jet functions
inspired from Grammer and Yennie’s decomposition [49], and find that loop corrections
sensitive to the collinear region couple to the photon through a field strength tensor, and to
the graviton through a linearized Riemann tensor, both at high and low energies.

In the remainder of this introduction, we will review the soft theorems of Low, Burnett
and Kroll, and Cachazo and Strominger. For each theorem, we will emphasize their original
formulation and derivation, while paying close attention to their region of validity. We will
also take this opportunity to introduce the importance of a careful treatment of the analytic
structure of loop integrals.

1.2 Review of Low, Burnett, and Kroll’s theorem

In the high energy regime where q ⇠ m2/E and E � m, we will see that a complete
treatment of Low’s theorem requires a study of the analytic structure of loop integrals. To
introduce the need for this analysis, we begin by reviewing Low’s classic approach to soft
photon radiation in this section. The original treatment of Low appears in [1] and his analysis
was also adapted to non-Abelian gauge theory and gravity in [10]. While reviewing Low’s
theorem, we will discuss the issue of retaining momentum conservation when transitioning
between the kinematics with and without an external photon. This point is often neglected
in the literature, but we believe it is relevant if one is to apply Low’s theorem to realistic
scenarios.

Low’s theorem is traditionally stated as the expansion of a radiative amplitude M(q) in
powers of q up to order q0,

M(q) =
1

q
��2 + �0 , (1)

where the coe�cients ��2 and �0 are built from the quantities at hand in the problem,
such as m and E. However, since we are considering the region where q ⇠ m2/E, the soft
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momentum q is no longer the only “small” quantity in the problem. For example, a quantity
scaling as qE/m2 would be of the same order as the first subleading term �0.

To get a complete soft photon expansion, it is important to identify carefully all contri-
butions to the radiative amplitude that are of the same order of magnitude as the leading
and subleading terms in Eq. (1). This requires us to define a common “small” scale in terms
of which all orders of magnitude will be expressed. With that objective in mind, we treat
the total center of mass energy E as the scale of hard processes. We are interested in the
high energy regime where the dimensionless parameter � ⌘ m

E is much less than 1, and use
it to quantify what we mean by “small”. Using this notation, we then have that q ⇠ �2E
and m ⇠ �E. Further, given an arbitrary quantity a, the notation a = O(��) will mean that
there exists some constant A such that |a|  A��. The constant A can be constructed with
the appropriate power of E to have the same dimension as a but may not depend on q or m.
For instance, we have q = O(�2) and m = O(�). Low’s theorem is then an expansion going
from O(��2) to O(�0). With these definitions established, we proceed to reviewing Low’s
theorem.

It is enough to consider Low’s original case of scalar Compton scattering to illustrate our
points on the importance of the infrared behavior of loop integrals. Therefore, consider a
radiative Compton scattering process

f(p1) + s(k1) ! f(p2) + s(k2) + �(q) , (2)

where a charged fermion and a neutral scalar of respective momenta p1 and k1 scatter into a
fermion and scalar of momenta p2 and k2 while a soft photon of momentum q is emitted. As
defined above, the corresponding elastic amplitude is the same process without the emission
of the soft photon. Naturally, the momenta p1, p2, k1, and k2 are all on-shell and

p1 + k1 = p2 + k2 + q , (3)

as required by momentum conservation.
The Feynman diagrams contributing to the radiative amplitude are generated by attach-

ing an external soft photon line to the diagrams contributing to the elastic amplitude. We
distinguish between two types of radiative emission amplitudes. Those where the soft photon
is attached to an external fermion line are called “external” radiative amplitudes while those
where the soft photon is attached to an internal fermion line are called “internal” radiative
amplitudes. These two types of amplitudes are illustrated in Fig. 1. In Chapters 3 and 4,
we will adapt these definitions to a factorized form of the radiative amplitude.

The explicit forms of the external radiative amplitudes from Fig. 1 are

M ext,µ
a (p1, p2, k1, k2, q) = ū(p2)(�ie�µ)

i

/p2 + /q �m
M̃el(p1, p2 + q, k1, k2)u(p1) ,

4
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p2+ q
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p1 − q
q

(b)

p2

1kp1

2k

q

(c)

p2

Figure 1: Diagrams (a) and (b) represent the external amplitudes. Diagram (c) is the internal
amplitude where the soft photon is attached to an internal fermion propagator.

M ext,µ
b (p1, p2, k1, k2, q) = ū(p2)M̃el(p1 � q, p2, k1, k2)

i

/p1 � /q �m
(�ie�µ)u(p1) . (4)

In the above, we denote the elastic amplitude stripped of the external spinors by M̃el(. . . ).
The internal radiative amplitude is denoted with the symbol M int,µ(p1, p2, k1, k2, q). This
notation allows us to express the QED Ward identity in a form that corresponds to the
separation of the photon emission amplitude into emission from external or internal legs,

qµM
ext,µ
a + qµM

ext,µ
b + qµM

int,µ = 0 . (5)

Substituting the explicit forms for the external amplitudes of Eq. (4) into Eq. (5), we find
that the Ward identity becomes

e ū(p2)M̃el(p1, p2 + q, k1, k2)u(p1) + (�e) ū(p2)M̃el(p1 � q, p2, k1, k2)u(p1) + qµM
int,µ = 0 .

(6)

This Ward identity is illustrated in Fig. 2.
Equation (6) allows us to solve for the internal amplitude M int,µ in terms of derivatives

of the elastic amplitude. We assume, following Low, that it is consistent to expand the
stripped elastic amplitude M̃el(. . . ) in powers of q about the point (p1, k1, p2, k2). Using
charge conservation, one then finds

qµM
int,µ =� e qµ ū(p2)

@

@p1,µ
M̃el(p1, p2, k1, k2) u(p1)

� e qµ ū(p2)
@

@p2,µ
M̃el(p1, p2, k1, k2) u(p1) +O(�4) . (7)

5



=
1kp1

2k

q

−e

p2

+
1kp1

2k

q e

p2

q

1k
p1

2k
p2

Figure 2: The Ward identity relates the internal radiative amplitude to the elastic amplitude
with external momenta shifted by q. The arrow at the end of the photon line on the left hand
side indicates that the current operator corresponding to the emitted photon is contracted
with the photon momentum q. On the right, the photon momentum q is pictured as exiting
the diagram through a composite scalar-fermion-photon vertex.

A possible problem with this procedure, as discussed by Burnett and Kroll in [2], is that
we are left with a formula where the elastic amplitude is evaluated at a point outside the
locus of momentum conservation. This unphysical formula could be ambiguous in realistic
applications and thus an alternative would be preferrable.

Following Burnett and Kroll, we define an elastic momentum configuration {p01, k0
1, p

0
2, k

0
2}

where p01 and k0
1 are the respective momenta of the incoming fermion and scalar while p02 and

k0
2 are the momenta of the outgoing fermion and scalar – see Fig. 3. These elastic momenta

are all on-shell and obey momentum conservation in the absence of the soft photon,

p01 + k0
1 = p02 + k0

2 . (8)

We want the elastic momenta to be shifted slightly away from the radiative configuration.
Hence, we introduce the small deviations ⇠1(q), ⇠2(q), ⌘1(q), and ⌘2(q) satisfying

pi = p0i(q) + ⇠i(q) for i = 1, 2,

ki = k0
i(q) + ⌘i(q) for i = 1, 2. (9)

We also want that when q = 0, the radiative fermion and scalar momenta coincide with the
elastic ones. This motivates the requirement that the ⇠i’s and ⌘i’s be polynomials in q whose
leading term is linear in q, and in particular, ⇠i, ⌘i = O(�2), as for qµ.

Now, insisting on preserving momentum conservation and having on-shell particles in the
elastic amplitude induces the following constraints on the ⇠i’s and ⌘i’s,

⇠1 + ⌘1 � ⇠2 � ⌘2 = q ,

6



p’2

p’1 1k’

2k’

Figure 3: The elastic fs ! fs amplitude involves no photon emission. The external mo-
menta are on-shell and obey momentum conservation.

2pi · ⇠i = ⇠2i for i = 1, 2,

2ki · ⌘i = ⌘2i for i = 1, 2. (10)

To leading order in �, the latter two equations in (10) above become

pi · ⇠i = ki · ⌘i = 0 for i = 1, 2. (11)

To construct the ⇠i’s and ⌘i’s at leading order in �, it is convenient to introduce an or-
thonormal frame about each external fermion and scalar momentum. About the fermion
momenta ~p1 and ~p2, we introduce the three dimensional vectors ~npi , ~̄npi , and ~epi . The vector
~epi = ~pi/|~pi| points in the direction parallel to ~pi while the vectors ~npi and ~̄npi span the

plane orthonormal to ~pi. Likewise, to each scalar’s momentum ~ki, we associate the orthonor-
mal frame ~nki , ~̄nki , and ~eki . We then decompose the ~⇠i’s and ~⌘i’s in their corresponding
orthonormal bases

~⇠i = ↵pi~npi + �pi~̄npi + �pi~epi for i = 1, 2,

~⌘i = ↵ki~nki + �ki~̄nki + �ki~eki for i = 1, 2, (12)

where all coe�cients ↵⇤, �⇤, and �⇤ are O(�2).
Since the pi’s and ki’s are on-shell, we have

p0i =
p

|~pi|2 +m2 for i = 1, 2,

k0
i = |~ki| for i = 1, 2. (13)

Combining this with (11) and (12), we find that

⇠0i = �pivpi for i = 1, 2,

7



⌘0i = �ki for i = 1, 2, (14)

where we have defined the velocities vpi ⌘ |~pi|/
p|~pi|2 +m2 for i = 1, 2. This fully charac-

terizes the components ⇠0i and ⌘0i , and takes care of ensuring that the elastic momenta are
on-shell to leading order in �. We still need to solve for momentum conservation in Eqs.
(10). This requirement is most conveniently written in matrix notation,

✓
0 0 vp1 0 0 1 0 0 �vp2 0 0 �1
~np1

~̄np1 ~ep1 ~nk1
~̄nk1 ~ek1 �~np2 �~̄np2 �~ep2 �~nk2 �~̄nk2 �~ek2

◆

0

BBBBBBBBBBBBBBBBBB@

↵p1

�p1
�p1
↵k1

�k1
�k1
↵p2

�p2
�p2
↵k2

�k2
�k2

1

CCCCCCCCCCCCCCCCCCA

=

✓
q0

~q

◆
.

(15)

The columns of the leftmost matrix above are made of the components of the orthonormal
frame vectors relative to some fixed common frame. Assuming the rank of the resulting
matrix to be maximal, we can determine the four coe�cients ↵p1 , �p1 , �p1 , and ↵k1 in terms
of the remaining ↵⇤, �⇤, �⇤, and q. If we choose the undetermined components to be O(�2),
then the solution for ↵p1 , �p1 , �p1 , and ↵k1 will also be O(�2). Therefore, the construction
we have outlined allows us to derive ⇠i’s and ⌘i’s that are of the same order of magnitude
as the soft momentum q. It is then clear that one must include these deviations from the
elastic configuration in a complete expansion of the radiative amplitude.

Returning to Eq. (6), we proceed with the expansion of M̃el(. . . ) toO(�2) about (p01, p
0
2, k

0
1, k

0
2),

taking the ⇠i’s and ⌘i’s into account,

qµM
int,µ(p1, p2, k1, k2, q) =

e ū(p2)

 
M̃el(p

0
1, . . . ) +

X

i=1,2

✓
⇠µi

@

@p0µi
+ ⌘µi

@

@k0µ
i

◆
M̃el(p

0
1, . . . )� qµ

@

@p0µ1
M̃el(p

0
1, . . . )

!
u(p1)

� e ū(p2)

 
M̃el(p

0
1, . . . ) +

X

i=1,2

✓
⇠µi

@

@p0µi
+ ⌘µi

@

@k0µ
i

◆
M̃el(p

0
1, . . . ) + qµ

@

@p0µ2
M̃el(p

0
1, . . . )

!
u(p1)

+O(�4) . (16)
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When taking derivatives in the above, we first treat the momenta p01, p02, k0
1, and k0

2 as
variables upon which the elastic amplitude M̃el depends. The di↵erentiated amplitude is then
evaluated at the elastic configuration (p01, p

0
2, k

0
1, k

0
2) that we constructed. Charge conservation

reduces (16) to

qµM
int,µ(p1, p2, k1, k2, q) =� e qµ ū(p2)

@

@p0µ1
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

� e qµ ū(p2)
@

@p0µ2
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1) +O(�4) . (17)

We see that the ⇠i and ⌘i terms have cancelled because of charge conservation. This means
that the way we choose to transition from radiative to elastic kinematics does not a↵ect the
essence of Low’s theorem, which is the determination of the internal radiative amplitude in
terms of the external one. To obtain a full expansion of the radiative amplitude however,
we also need to expand the external amplitudes in Eq. (4) to O(�2). As we shall see, the ⇠i
and ⌘i terms no longer cancel in the expansion of these external amplitudes.

Note that the elastic configuration p01, p
0
2, k

0
1, k

0
2 is not unique. If we were to solve Eq. (15)

by making a di↵erent choice for the undetermined coe�cients, we would obtain a di↵erent
set of ⇠i’s and ⌘i’s. However, as long as we choose coe�cients that are O(�2), the di↵erence
in the elastic configuration we obtain will also be O(�2). This would induce corrections
to the internal radiative amplitude that are beyond O(�0), and hence beyond our order of
accuracy in Low’s theorem.

The obvious particular solution to Eq. (17) is derived by simply “factoring out” the soft
photon momentum qµ,

M int,µ(p1, p2, k1, k2, q) =� e ū(p2)
@

@p01,µ
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

� e ū(p2)
@

@p02,µ
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1) +O(�2) . (18)

However, one may inquire about the possibility of separately gauge invariant contributions
to M int,µ. These have the generic form

Bµ(l, q) =
X

l2S

f1,l(S, q) (l · q qµ � q2lµ) ū(p2)u(p1)

+
X

l2S

f2,l(S, q) (l · q qµ � q2lµ) ū(p2)�5u(p1)

+ f3(S, q) ū(p2)[�
µ, /q]u(p1) , (19)
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where S = {p1, p2, k1, k2} is the set of external momenta excluding the soft photon mo-
mentum. The tensor structures corresponding to f1, f2, and f3 are of order �4, �4, and
�2 respectively. Accordingly, to have contributions of order �0, f1, f2, and f3 must have
enhancements of orders ��4, ��4, and ��2. Such enhancements do not appear in the low
energy regime E ⇠ m where the classic form of Low’s theorem holds. At high energies
E � m however, these enhancements are intimately linked to the infrared behavior of loop
integrals and the need to generalize the classic form of Low’s theorem, as we will see in Secs.
2.1, 3.1, and 3.3.

We conclude this section by showing the full radiative amplitude deduced from the classic
form of Low’s argument,

Mµ = ū(p2)(�ie�µ)
i

/p2 + /q �m
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

+ ū(p2)M̃el(p
0
1, p

0
2, k

0
1, k

0
2)

i

/p1 � /q �m
(�ie�µ) u(p1)

+ ū(p2)

"
X

i=1,2

✓
⇠↵i

@

@p0↵i
+ ⌘↵i

@

@k0↵
i

◆
� q↵

@

@p0↵1

#
M̃el(p

0
1, p

0
2, k

0
1, k

0
2)

i

/p1 � /q �m
(�ie�µ) u(p1)

+ ū(p2)(�ie�µ)
i

/p2 + /q �m

"
X

i=1,2

✓
⇠↵i

@

@p0↵i
+ ⌘↵i

@

@k0↵
i

◆
+ q↵

@

@p0↵2

#
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

� e ū(p2)
@

@p01,µ
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

� e ū(p2)
@

@p02,µ
M̃el(p

0
1, p

0
2, k

0
1, k

0
2) u(p1)

+O(�2) , (20)

where we retain the necessary ⇠i and ⌘i dependence for the external connections, which enter
with di↵erent Dirac structure, and hence do not cancel in general. In the next chapter,
we show precisely why the classic form of Low’s theorem we have just described requires
generalization in the regime q = O(�2).

1.3 Review of Cachazo and Strominger’s soft graviton theorem

The full soft graviton theorem [3,6,10] applies to an n+1-point amplitude Mn+1(p1, ..., pn, q)
where the p1, ..., pn are hard momenta with pi ·pj >> p2i , p

2
j for all i, j, and q is a soft graviton

momentum. In the limit that qµ vanishes in all components relative to all pi · pj, we can
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expand in q, starting with the leading, 1/q, behavior

Mn+1(p1, ..., pn, q) = (S0 + S1 + S2)Mn(p1, ..., pn) + O(q2) , (21)

where the Si specify in closed form the leading and the first two subleading power corrections
in the graviton momentum, qµ,

S0 =
nX

i=1

Eµ⌫p
µ
i p

⌫
i

pi · q

S1 =
nX

i=1

Eµ⌫p
µ
i (q⇢J ⇢⌫

i )

pi · q

S2 =
1

2

nX

i=1

Eµ⌫(q⇢J ⇢µ
i )(q�J �⌫

i )

pi · q . (22)

Here Eµ⌫ is the soft graviton polarization tensor and J µ⌫
i is the angular momentum tensor

of the ith external particle, of the form

J µ⌫
i ⌘ pµi

@

@pi⌫
� p⌫i

@

@piµ
+ ⌃µ⌫

i , (23)

with ⌃µ⌫ a spin term. Newton’s constant, , has been normalized so that /2 = 1, and we
will also make this choice whenever convenient.

In [6], Cachazo and Strominger proved that Eqs. (21)-(23) apply for arbitrary n at tree
level using the BCFW construction [7,8]. We will refer to their result as “CS” below. Subse-
quently, the CS result was rederived from the gravitational Ward identity [9] that decouples
scalar-polarized gravitational radiation [10], following the analysis of Low [1] for soft photon
radiation in Quantum Electrodynamics. References [10, 15] discussed modifications associ-
ated with loop corrections and soft singularities, both for pure gravity and for gravitational
radiation associated with massive and massless matter fields.

As in the problem of soft photon emission at high energies, the soft graviton theorem
can be thought of as an expansion of the graviton radiative amplitude in powers of the small
parameter �,

Mµ⌫(k1, . . . , kn, q) = �µ⌫
�2 + �µ⌫

�1 + �µ⌫
0 + �µ⌫

1 + �µ⌫
2 , (24)

where �µ⌫
� = O(��). Note that in the CS result, only even � terms are present. As we will

demonstrate, this is no longer the case when we consider loop corrections at high energies.

11



2 Analytic Structure of the Radiative and Elastic Am-
plitude

This chapter studies the analytic properties of the radiative and elastic amplitudes in the
q = O(�2) region, both for the emission of a soft photon, and a soft graviton. In Sec. 2.1,
we begin with a demonstration of why an expansion of the elastic amplitude to linear order
in q is inaccurate. To circumvent this obstacle to the application of a Low type analysis
as presented in Sec. 1.2, we first find all sources of nonanalyticity in the elastic amplitude
and classify them by their order of magnitude using power counting techniques. In Sec. 2.3,
we then introduce factorized amplitudes that isolate these nonanalyticities and provide an
adequate formalism for applying Ward identities to the derivation of soft theorems.

2.1 Failure of the linear expansion

In Sec. 1.2, our ability to deduce M int,µ from the Ward identity (5) depends on being able
to expand the elastic amplitude M̃el(. . . ) in (6) to linear order in q. The accuracy of this
expansion is intimately tied to the infrared behavior of the loop integrals contributing to the
radiative and elastic amplitude.

Once all loop integrals contributing to the radiative and elastic amplitudes have been
carried out, some regions of the loop integration will have yielded functions of q that are
either singular at q = 0, or are analytic with a “very small” radius of convergence. Examples
of the former include pole terms such as 1/pi · q. The latter category includes logarithmic
terms such as f(q) ⌘ log(1 + api · q/m2) where a = O(1) is some constant. The Taylor
series for this logarithmic function of q has radius of convergence R ⇠ m2/E = O(�2) since
there is a branch cut within a distance of order O(�2) of q = 0. When expanding f(q) to
linear order, the remainder has a small upper bound only in the vanishingly small region
q << m2/E. It is convenient here to apply the term “nonanalytic” to functions whose power
series have radius of convergence R = O(�2). Our claim is then that in general, loop integrals
have singular and nonanalytic contributions that either cannot be Taylor expanded about
q = 0 altogether, or whose linear expansion in q is accurate only for vanishingly small photon
momenta q << O(�2). Either way, in our region of interest, such contributions prevent us
from carrying out Low’s argument as described in Sec. 1.2.

To extend Low’s theorem to high energy scattering, it is necessary first to identify singular
and nonanalytic contributions, and then factorize them from terms that can be legitimately
expanded to linear order in q. Fortunately, identifying these contributions can be done by
studying the loop integrand rather than fully evaluating the loop integral [48, 50–55]. We
introduce these methods through an example.

Consider a triangle integral where two massive on-shell particles of mass m and momenta
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p1 and p2 exchange a massless scalar,

I ⌘
Z

d4k
1

(k2 + i✏)((k + p1)2 �m2 + i✏)((k + p2)2 �m2 + i✏)
, (25)

with p21 = p22 = m2 and (p1 � p2)2 < 0. Although they would have to be included in general,
we ignore numerator factors in this illustrative example. Our goal is to locate regions of
the d4k integration that may result in singular or nonanalytic terms. At high energy, the
coordinates best suited to this goal are light cone coordinates. An arbitrary vector v is
defined by its components (v+, v�, vT ) with the standard definitions

v± ⌘ 1p
2
(v0 ± v3) ,

vT ⌘ (v1, v2) . (26)

Scalar products take the form

v · w = v+w� + v�w+ � vT · wT . (27)

Collinear and soft momenta are defined by the scaling of their light cone coordinates. Suppose
that p1 is moving in the z direction. The components of a momentum k collinear to p1 scale
as (1,�2,�)E. Those of a soft momentum, on the other hand, scale as (�2,�2,�2)E . An
arbitrary hard momentum scales as (1, 1, 1)E. Note that in our example, p2 is hard relative
to p1. Focusing on the region where k is collinear to p1 in our example, it is straightforward
to see that

k2 = O(�2) ,

k2 + 2p1 · k = O(�2) ,

k2 + 2p2 · k = 2p�2 k
+ +O(�) = O(�0) . (28)

We can now explain why it is inaccurate to expand M̃el(p1 � q, p2, k1, k2) to linear order
in q by studying the integrand. Consider Eq. (25) with the external momentum p1 replaced
with p1 � q similarly to M̃el(p1 � q, p2, k1, k2) in (6),

I 0 ⌘
Z

d4k
1

(k2 + i✏)(k2 + 2(p1 � q) · k + q2 � 2p1 · q + i✏)(k2 + 2p2 · k + i✏)
. (29)

The sum of the invariants with a factor of q in the middle denominator is

q2 � 2p1 · q � 2k · q = O(�2) ,
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which is of the same order of magnitude as k2+2p1 ·k in region (28). Therefore, when q flows
through a momentum collinear to p1, we may not treat terms in propagator denominators
with factors of q as small quantities in which we can expand using a power series. Further,
the scaling k2 + 2p1 · k = O(�2) implies that k + p1 is very close to the mass shell. Similar
conclusions apply when k is collinear to p2 rather than p1.

It turns out that internal momenta going on-shell are a necessary condition for having
singular or nonanalytic terms. To see this, consider the generic multiloop integral

F̃ (p1, . . . , pn) =

Z LY

l=1

d4kl

Z MY

j=1

d↵j �

 
1�

MX

j=1

↵j

!
N ({pi, kl,↵j})

hPM
j=1 ↵j(l2j ({pi, kl})�m2

j) + i✏
iPM

j=1 �j
,

(30)

where the Feynman parameters ↵1, . . . ,↵M have been introduced. The numerator factor
N ({pi, kl,↵j}) gathers all vertex factors, propagator numerators, and external spinors in
the amplitude. The exponents �i are the powers of the original propagator denominators.
As in our previous example, introducing a q dependence in the integral by shifting one of
the pi’s will result in a function depending on q through invariants of order O(�2) in the
denominator,

F̃ (p1, . . . , pi0 + q, . . . , pn) =

Z LY

l=1

d4kl

Z MY

j=1

d↵j �

 
1�

MX

j=1

↵j

!
⇥

⇥ N ({pi, kl,↵j}, q)
hPM

j=1 ↵j(l2j ({pi, kl})�m2
j) +G({pi · q, kl · q,↵j}, q2) + i✏

iPM
j=1 �j

, (31)

with G({pi · q, kl · q,↵j}, q2) = O(�2). If we have

MX

j=1

↵j(l
2
j (pi, kl)�m2

j) = O(�2) , (32)

then a power series expansion in q of the denominator becomes inaccurate. Regions in loop
variables space where (32) holds are close to submanifolds where the denominator of the
loop integrand in (30) vanishes. The latter can be thought of as “singular submanifolds”.
If the integration contour in (30) can be deformed away from a singular submanifold by a
deviation larger than O(�2), then a power series expansion in q is possible. This can be
achieved as long as the singular submanifold does not coincide with the endpoint of one of
the integration contours or is not pinched between pairs of coallescing singularities in the
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complex plane. Therefore, a necessary condition for having singular or nonanalytic terms in
q in our loop integrals is the presence of pinch surfaces.

To summarize, to extend Low’s theorem to soft photon and graviton emission in the high
energy regime, we need to find all pinch surfaces of the loop integrand for the elastic ampli-
tude. These pinch surfaces may yield singular or nonanalytic terms in the elastic amplitude
which prevent us from performing the expansion in q that is crucial to the classic form of
Low’s argument. To derive a soft radiation expansion at high energies using an argument
similar to Low’s, it is therefore necessary to factorize the elastic amplitude into components
that may legitimately be expanded to linear order in q, and nonanalytic components. This
will be achieved by defining matrix elements that capture the dependence of the radiative
and elastic amplitudes on the infrared regions. These will be the jet functions and soft func-
tions that will appear in Sec. 2.3. The full elastic or radiative amplitude is then matched
onto the factorized amplitude by the hard functions. These hard functions can be accurately
expanded to linear order in q and are reminiscent of the matching coe�cients of soft collinear
e↵ective theory [18]. We will, however, think of them as being constructed by a series of
nested subtractions similar to [56, 57].

For reasons that will become clear in Sec. 2.4, the extension of the soft photon theorem
will require us to consider all factorized contributions to the elastic amplitude of order up
to O(�2). The soft graviton theorem, on the other hand, will require us to identify all
factorized terms of order up to O(�4). These factorized contributions will be identified
by first locating all pinch surfaces of the elastic amplitude, and then defining jet and soft
functions that capture the analytic structure of the loop integral in the neighborhood of those
pinch surfaces. Pinch surfaces are found by solving the Landau equations [50]. Solutions to
these equations can be visualized as physical processes with classical propagation of particles,
following an observation first made by Coleman and Norton [51]. Physical propagation of
on-shell particles is represented using “reduced diagrams” where all o↵-shell lines are shrunk
to a point. In general, loop integration over a neighborhood of a pinch surface will yield
nonanalytic logarithmic dependence on the soft momentum q which must be factorized as
described below. Not all pinch surfaces result in singular terms however, and in the majority
of cases, integration about a given pinch surface will yield a contribution of order higher
than is relevant for the soft photon or the soft graviton theorem. In the next section, we
will use power counting techniques [52] to determine the order of magnitude of integrals over
regions neighboring pinch surfaces, and also to determine if the resulting term is singular or
not.
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2.2 Application of power counting to the elastic amplitude

Following Akhoury and Sen [58, 59], finding pinch surfaces using the reduced diagrams of
Coleman and Norton is straightforward. Once we have found a pinch surface, we will use
power counting techniques to put an upper bound on the loop integral over a region close to
that pinch surface. This will allow us to determine whether this pinch surface corresponds
to a factorized contribution of order up to O(�4).

Power counting techniques also allow us to determine if the integral about a pinch surface
is singular and in fact, these were first introduced to search for infrared singularities in higher
loop integrals. We will begin with a brief review of this technology. More detailed treatments
are given in [48,53–55].

2.2.1 Review of power counting

Arbitrary multiloop Feynman diagrams have infrared singularities associated with various
limits in their loop integration momenta [60, 61]. These singularities come from singular
submanifolds where propagator denominators vanish. A necessary condition for a singular
submanifold to result in a singularity is that it must be a pinch surface. However, a pinch
surface need not yield a divergent integral. To determine whether that is the case or not
requires the use of power counting techniques [52]. Power counting allows us to determine
the order of growth of a loop integral over a region close to a pinch surface. This procedure
is best explained by studying a concrete example.

Consider again the triangle integral in (25). We consider the pinch surface arising from
the limit where k becomes collinear with p1. To capture how singular this pinch surface is,
we need to change the loop integration variables to “intrinsic” and “normal” coordinates.
Normal coordinates are the variables that vanish as we approach the singular submanifold.
Intrinsic coordinates, on the other hand, are variables whose variation moves a point along
the submanifold without leaving it.

The scalings in (28) tell us that as we approach the collinear region by taking the limit
� ! 0, two denominators vanish as O(�2), as is required for a singularity. Further, the
collinear region is approached by making k� and kT small, which leads us to identify these
as the normal variables. The remaining large component k+ of k is the intrinsic component.
Changing integration variables to the normal and intrinsic coordinates, (25) becomes

I = ⇡

Z b+

c+
dk+

Z b��2

c��2

dk�
Z bT�2

cT�2

dk2
T

1

2k+k� � k2
T + i✏

⇥ 1

2k+k� � k2
T + 2p+1 k

� + 2p�1 k
+ + i✏
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⇥ 1

2k+k� � k2
T + 2p+2 k

� + 2p�2 k
+ � 2kT · p2T + i✏

.

(33)

In the bounds of integration, we have introduced the numbers b⇤ and c⇤ which are all O(1).
The bounds include an appropriate power of � since we are interested in the order of magni-
tude of the loop integral over a region of integration that borders the collinear pinch surface
where k� and kT vanish. To obtain an estimate of the order of the loop integral about the
collinear region, we then perform the changes of variables

k+ = +

k� = �2�

kT = �T . (34)

Eq. (33) becomes

I = ⇡

Z b+

c+
d+

Z b�

c�
�2d�

Z bT

cT

�2d2T
1

�2(2+� � 2T + i✏)

⇥ 1

�2(2+� � 2T + 2p+1 
� + 2p�1 

+/�2 + i✏)

⇥ 1

2�2+� � �22T + 2�2p+2 
� + 2p�2 

+ � 2�T · p2T + i✏
. (35)

Factoring out the leading powers of � in the numerator and denominators, we are left with
an overall scaling of �0 times an integral where all three denominators are O(1) and whose
domain of integration is well separated from the pinch surface, since its bounds are all O(1).
This is the case even though the integration volume vanishes as a power of �. Note that the
term 2p�1 

+/�2 in the second line is O(1) since the component p�1 scales as �2 = m2

2p+1
. An

overall scaling for the integral of �0 indicates the potential for a logarithmic term. In fact,
any scaling as a power of � is valid up to multiplication by a logarithmic function of �.

The procedure we have just employed to find the potential for a logarithmic divergence
without going through a full calculation of a loop integral can be systematized and applied
as above to any higher order multiloop diagram for Mel({pi}) whenever none of the pi
are parallel. The key points are the identification of candidate pinch surfaces, the proper
definition of normal variables and their scaling, and finally power counting to put bounds
on the order of growth of the integral. The final step will tell us that the loop integral
scales as some power �� of the small parameter �. This power � is called the infrared degree
of divergence of the pinch surface, in analogy with the ultraviolet degree of divergence of
renormalization theory. A strictly positive degree of divergence � > 0 means that we have
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a nonsingular integral. Conversely, a degree of divergence �  0 indicates that we have an
infrared divergence in the loop integration when � ! 0 i.e. in the massless limit. More
specifically, � < 0 tells us that the pinch surface leads to a power divergence while � = 0
indicates the presence of a logarithmic divergence. In our analysis of soft photon emission, we
are interested in retaining a finite mass for the fermion, but we can still apply power counting
techniques, as we have described, to determine the order of magnitude of contributions from
pinch surfaces to loop integrals. To derive an expansion of the elastic amplitude in powers
of �, one can, therefore, separate the whole range of a loop integral into regions surrounding
the pinch surfaces of the integrand, with each pinch surface yielding a factorized contribution
of order O(��).

2.2.2 Power counting analysis of n particle scattering

Armed with the tools we have described, we begin our study of the infrared structure of
the elastic amplitude through the search for pinch surfaces that correspond to factorized
contributions of order up toO(�4). Although we will only consider outgoing external fermions
and antifermions in the interest of conciseness, extending our analysis to include external
scalars is straightforward. To classify pinch surfaces based on the order of magnitude of
their contribution as a power of �, we introduce a separate set of light cone coordinates for
each external particle p1, . . . , pn. As in the example we studied, the normal variables are
the transverse and “minus” components for a collinear loop momentum, or all momentum
components for a soft loop momentum. These definitions of the scaling of momenta in
singular regions result in the power counting rules listed in Table 1. When analyzing a
reduced diagram that represents a given pinch surface, we use the rules in the table to
determine the contribution to the infrared degree of divergence from all components of the
reduced diagram – i.e. collinear fermion lines, soft fermion lines, etc. Using the Euler
identity, it is possible to obtain a general formula for the degree of divergence of the most
general reduced diagram [54]. Although we will not review the details of such a treatment,
we will outline the main intermediate results for convenience.

As shown in Refs. [58,59], the application of the Coleman-Norton analysis [51] gives the
most general reduced diagram for the elastic scattering of n particles, which is shown in Fig.
4. The hard part labelled H has several jets of collinear particles emerging from it. In our
notation, the jet of lines collinear to the ith external particle is linked to the hard part by
N i

f collinear fermion lines and N i
s collinear scalar lines. Each jet can also have soft particles

emerging from it; for the ith jet, we denote the number of such soft fermions by ni
f and the

number of soft scalars by ni
s. The number ni

f + N i
f is odd in the case we study, when the

ith external particle is a fermion, and would be even if the external particle were a scalar.
The soft fermions and scalars emerge from the n jets and combine at a soft cloud denoted
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S. Finally, there are mf soft fermions and ms soft scalars connecting the soft cloud to the
hard part.

The ith jet’s contribution to the degree of divergence of Fig. 4 is denoted by �Ji and the
contribution from the soft cloud S will be denoted by �S. Then using the rules from Table
1 and the Euler identity, one can derive the following,

�Ji = N i
f +N i

s � ni
f � ni

s � 1

�S = 4
X

i

ni
f + 2

X

i

ni
s + If + 4mf + 2ms , (36)

where we have introduced the symbol If to stand for the number of soft fermion lines internal
to the soft cloud S. The suppression associated with a Yukawa vertex in Table 1 enters in the
derivation of �Ji , and follows from the relation (��)2 = 0 and the Dirac equation. The above
formulas remain valid whether the ith external particle is a fermion or a scalar. Combining
the formulas in (36), we obtain that the degree of divergence of the most general reduced
diagram is

� =
X

i

(N i
f +N i

s + 3ni
f + ni

s � 1) + If + 4mf + 2mS . (37)

From this result, one sees immediately that there are no diagrams with � < 0, meaning that
the elastic amplitude is at most logarithmically singular in the limit �! 0. This conclusion
was derived long ago by Akhoury in the fully massless case [58].

It is convenient to define the quantities

�̃ ⌘ � � If � 4mf � 2mS

=
X

i

(N i
f +N i

s + 3ni
f + ni

s � 1) ⌘
X

i

�i . (38)

One can think of �i as an e↵ective contribution to the degree of divergence from the ith jet
after the e↵ect of the soft cloud has been taken into account. Finding all diagrams with
0  �  4 can be accomplished by first searching for all reduced diagrams with 0  �̃  4
and then enforcing the necessary constraints on If , mf , and mS.

The first step in identifying all reduced diagrams with 0  �̃  4 is to determine all jets
with �i = 0, 1, 2, 3, or 4. The results follow from an inspection of the �i, defined in (38) and
are shown in Figs. 5, 6, and 7.

From the definition �̃ =
P

i �i, it is then clear that to find all reduced diagrams with a
given value of �̃, we need to find first all distinct partitions of that value into a sum of positive
integers. Then, for each of the summands, we need to choose one jet with matching �i. For
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Table 1: The power counting rules below define how much each component of a reduced
diagram contributes to the degree of divergence of the corresponding pinch surface. These
rules are for Yukawa and scalar theories where the fermions are massive and the scalars are
massless. In the case of massless fermions, soft fermions yield an enhancement of �2 rather
than �1.

Enhancement Suppression
Collinear fermion line -2
Collinear scalar line -2
Soft fermion line -1
Soft scalar line -4

Collinear loop integral +4
Soft loop integral +8

Yukawa vertex on collinear fermion line +1

example, suppose we want to find a reduced diagram with �̃ = 4. One of the partitions of 4
is 4 = 2 + 1 + 1. We then need one jet with �i = 2 and two jets with �i = 1 from Fig. 5.

To find all reduced diagrams with �̃ = 4, we first write down all partitions of 4,

�̃ = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1 . (39)

The classes of diagrams with �̃ = 4 corresponding to each partition are shown in Figs. 9 to
13. Note that we have not shown diagrams where the soft cloud attaches to a single jet, such
as in Fig. 8. We opt to combine the jet in Fig. 8 with the class of jets having three collinear
fermions attached to the hard part from Fig. 17. This will be justified in Sec. 2.4 when we
show that soft photon and graviton emission from the soft cloud does not contribute any
enhancement.

The same approach yields all diagrams with �̃ = 3. These are labelled by their corre-
sponding partition of 3 and shown in Figs. 14, 15, and 16. Likewise, by considering the
trivial partitions of �̃ = 2 and �̃ = 1, we find that the diagrams with �̃  2 belong to the
classes shown in Figs. 17 and 18.

We may now return to the original definition of the degree of divergence � ⌘ �̃ + If +
4mf +2ms. When restricting ourselves to �  2, as is required for the soft photon theorem,
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Ji

Jj

H
S

mf

mS

n S
i

n f
i

n f
j

n S
j

N i
f

N j
f

N i
S

N j
S

Figure 4: The most general reduced diagram incorporating the hard vertex, the soft function,
and well separated jets.

we may set mf = 0. In that case, setting If to 1 or 2 forces us to have �̃ = 1 or 0 respectively.
Either way, we are left with a soft vacuum bubble disconnected form the rest of the diagram.
This disconnected piece may be set to vanish by renormalization and need not be considered
further. Similarly, setting mS = 1 requires �̃ = 0 and results in our having a tadpole soft
diagram attached to the hard part by one scalar. Such a diagram vanishes in �4 theory.
Therefore, we find that the elastic diagrams required for an analysis of loop corrections to
the soft photon theorem are precisely those from Figs. 17 and 18.

In gravity, the need to consider diagrams with degree of divergence up to � = 4 brings
about the possibility of having soft lines connecting the soft cloud to the hard part. Suppose
we consider a diagram with �̃ = 4, then the constraint �  4 forces us to have If = mf =
mS = 0 and � = �̃ = 4 in this case. If �̃ = 3, then mf = mS = 0, but we may have If = 0 or
1. The former case gives us diagrams with � = 3, which are identical to those shown in Figs.
14, 15, and 16. The latter case allows us to have exactly one fermion ring with no scalars
attaching to it. This disconnected piece can be renormalized to 0 and therefore we ignore it.
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γi = 0 γi = 1

γi = 2

Figure 5: These jets have e↵ective degree of divergence �i  2.

γi = 3

Figure 6: These jets have e↵ective degree of divergence �i = 3.

The situations where �̃ = 0, 1, or 2 give us the freedom to have soft fermions internal
to the soft cloud, or soft fermions and scalars connecting the soft cloud to the hard part.
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γi = 4

Figure 7: These jets have e↵ective degree of divergence �i = 4.

S

Figure 8: This class of diagrams has � = 2 but will be combined with the leading jet class.

For example, if �̃ = 1, we may have � = 3 and mS = 1. The resulting diagram is shown
in Fig. 19 (a). The other possibilities are also shown in Fig. 19 and we will refer to these
diagrams as “exceptional” diagrams. Of course, when If = mf = mS = 0, we have that
� = �̃. Consequently, the diagrams shown in Figs. 9 to 18 all have a degree of divergence
that matches their �̃ value. Finally, we remark that diagrams containing a soft cloud with
an odd number of external soft scalars vanish in �4 theory and, therefore, may be ignored
in our analysis.

The class of diagrams in Fig. 17(a) corresponds to the logarithmic leading term of
Akhoury [58]. This class consists only of the hard part attached by single fermions to
several jets of virtual on-shell lines collinear to the external particles. Since jets attached to
the hard part by a single fermion line give the leading term in the elastic amplitude, we will
henceforth refer to such jets as “leading jets”.

In order to have a comprehensive naming convention for nonleading jets, we introduce the
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* 4 = 4

H H

(a) (b)

Figure 9: These diagrams have �̃ = 4 and correspond to the trivial partition 4 = 4.

* 4 = 3 + 1

H

S

H

S

H

S

H

S

H

H

(a) (b) (c)

(d) (e) (f)

Figure 10: These diagrams have �̃ = 4 and correspond to the partition 4 = 3 + 1. Diagram
(d) vanishes in �4 theory since the soft cloud has three scalars emerging from it.

labels f and s to refer to the particle contents of the jets. These labels indicate whether the
collinear particles connecting the jets to the hard part are scalars (s) or fermions/antifermions
(f). We underline the labels f and s whenever we need to indicate that a particle coming
out of a jet is soft, rather than collinear. Thus, the jets with �i = 2 from Fig. 5 are fss, fss,
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* 4 = 2 + 2

H H H

H

S

H

S

(a) (b) (c)

(d) (e) (f)

H

S

Figure 11: These diagrams have �̃ = 4 and correspond to the partition 4 = 2 + 2. Diagram
(e) vanishes in �4 theory since the soft cloud has three scalars emerging from it.

* 4 = 2 + 1 + 1

H

H

H S

H

S

H

S

H

S

H

S

SH

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: These diagrams have �̃ = 4 and correspond to the partition 4 = 2 + 1 + 1.
Diagrams (g) and (h) vanish in �4 theory since their soft clouds have three scalars emerging
from them.

fss, and fff -jets, from left to right.
Having found all pinch surfaces corresponding to loop corrections to Low’s theorem and
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* 4 = 1 + 1 + 1 + 1

H

S

H

S

H

S

H

(a) (b) (c) (d)

Figure 13: These diagrams have �̃ = 4 and correspond to the partition 4 = 1 + 1 + 1 + 1.
Diagram (c) vanishes in �4 theory since the soft cloud has three scalars emerging from it.

* 3 = 3

(a) (b)

H H

Figure 14: These diagrams have �̃ = 3 and correspond to the trivial partition 3 = 3.

* 3 = 2 + 1

H H H

S

H

S

(a) (b) (c) (d)

Figure 15: These diagrams have �̃ = 3 and correspond to the partition 3 = 2 + 1. Diagram
(d) vanishes in �4 theory since the soft cloud has three scalars emerging from it.

the CS formula at high energies, we need to factorize their contributions into jet functions.
This will allow us to factor the radiative and elastic amplitude into parts that can or cannot
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*3 = 1 + 1 + 1

H

S

H

S

H

(a) (b) (c)

Figure 16: These diagrams have �̃ = 3 and correspond to the partition 3 = 1 + 1 + 1.
Diagram (b) vanishes in �4 theory since the soft cloud has three scalars emerging from it.

(a) (b) (c) (d)

Figure 17: Four of the classes of elastic amplitude diagrams that we need to include when
attaching a photon for performing Low’s analysis. These are the only ones contributing to
the soft photon theorem in the massless limit – see the opening remarks of Chapter 3 for a
discussion of this limit. The diagrams in (a) are the leading terms with � = 0. Diagrams in
(b) have � = 1 in the massive case and � = 2 in the massless case. The classes of diagrams
in (c) and (d) always have � = 2.

be expanded in a power series in q. We turn to this task in Sec. 2.3.

2.3 Factorization of nonanalytic contributions

Our approach to extending Low’s analysis will rely on factorization. The e↵ect of the pinches
producing jet-like momentum configurations can be captured by universal “jet functions”
having the same pinch surfaces and singularities as the original Feynman diagrams. The
product of jet functions is then matched onto the full amplitude by a “hard function” or “hard
part”. The hard part gets its leading contribution from exchanges of hard virtual particles.
We assume it can be constructed from an algorithm consisting of nested subtractions similar
to the procedure described in [55–57]. The jet functions have matrix element definitions,
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(a) (b)

S

Figure 18: In the massive case, these diagrams have � = 2 and contribute to the soft photon
theorem. The soft two-point function in (b) includes only soft scalars.

H

S

H

S

H

S

H

S

H

S
γ  = 4:

γ  = 3:

(b) (c) (d)

(a)

(e)

Figure 19: The “exceptional” diagrams with a soft scalar connecting the soft cloud to the
hard part. Diagrams (b) and (e) vanish in �4 theory since their soft clouds have three scalars
emerging from them.

which are closely related to the soft collinear e↵ective theory approach to soft radiation
theorems [18] and the treatment of bound states in [62–64]. In the soft collinear e↵ective
theory approach, the role of our hard part is played by the matching coe�cients.

To set the stage for our adaptation of Low’s analysis, we need to introduce a unifying
notation for jet functions. For Akhoury’s leading jets, we use the notation Jf (pi). The
superscript f represents the single fermion or antifermion emerging from the hard part and
attaching to the collinear lines comprising the jet. The corresponding hard part is simply
denoted H(p1, . . . , pn). Since leading jets are attached to the hard part by a single fermion
line, Jf (pi) is essentially a reduced on-shell self energy. For example, for an outgoing fermion,
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Jf (pi) has the matrix element definition

Jf (pi) = hpi| (0)|0i . (40)

We now introduce a standard notation appropriate for the factorized amplitude. As is
customary when using light cone coordinates, we define the vectors nµ

i and n̄µ
i by

~ni =
~pip
2 |~pi|

= �~̄ni ,

n2
i = n̄2

i = 0 ,

ni · n̄i = 1 . (41)

The vector ni points in the direction collinear to pi, while the vector n̄i points in the anti-
collinear direction.

The hard part H with which the jets are combined is only sensitive to the collinear
components of the external momenta pi. These collinear components are defined by

p̂i = p+i ni . (42)

This collinear vector is the natural argument for the hard part. In the case of a jet loop
momentum k collinear to pi, we proceed analogously and define k̂ ⌘ k+ni. In hard parts, the
other components of jet loop momenta are set to zero, or expanded about zero (see below).

In the notation just introduced, the leading term in the expansion of the elastic amplitude
is

M leading
el =

 
nY

i=1

Jf (pi)

!
⌦H(p̂1, . . . , p̂n) . (43)

Each jet function and hard part carries implicit Dirac spinor indices. The tensor product
symbol “⌦” will stand for a product of Dirac spinors contracted with matching indices in
the jet functions and the hard part.

The nonleading jet function in Fig. 17(b) is denoted by Jfs(pi � k̂, k̂). The fs super-
script indicates that the first momentum in the argument belongs to the collinear fermion
connecting the hard part to the jet and the second momentum to the collinear scalar. The
corresponding hard part is then denoted Hfs

i (p̂1, . . . ; p̂i � k̂, k̂; . . . , p̂n). The subscript i and
superscript fs indicate that the ith outgoing momentum pi is split between the collinear
fermion momentum pi� k and the collinear scalar momentum k that are shown between the
semicolons for clarity. This fs-jet function has the matrix element definition

Jfs(pi � k̂, k̂) =

Z 1

�1
d⇠ e�ik̂·(⇠n̄i)hpi|�(⇠n̄i) (0)|0i , (44)
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for an outgoing fermion, and the subleading amplitude formed from this jet and hard part
has the expression

M fs =
nX

i=1

 
Y

j 6=i

Jf (pi)

!Z p+i

0

dk+ Jfs(pi � k̂, k̂) ⌦Hfs
i (p̂1, . . . ; p̂i � k̂, k̂; . . . , p̂n) . (45)

In (44), the argument of the field � is ⇠n̄i because we integrate over all noncollinear compo-
nents of the loop momentum k. Therefore, ⇠ is the “�” component of the original position
space argument of the field �, conjugate to the collinear component k+.

Since fs-jets scale as O(�), it is possible to obtain a contribution of order O(�2) by
expanding the hard part Hfs to first order in the transverse loop momentum kT before it
is integrated over. This results in contributions captured by a derivative operator and a
separate corresponding hard part. The derivative fs-jet is denoted Jf@s and given by the
operator definition

Jf@s =

Z 1

�1
d⇠ e�ik̂·(⇠n̄i)hpi|(@T�)(⇠n̄i) (0)|0i . (46)

The transverse index in the derivative is suppressed. It is contracted with a corresponding
index in the matching hard part, which will be denoted by Hf@s. Analogously to (45), we
have

M f@s =
nX

i=1

 
Y

j 6=i

Jf (pj)

!Z p+i

0

dk+ Jf@s(pi � k̂, k̂) ⌦Hf@s
i (p̂1, . . . ; p̂i � k̂, k̂; . . . , p̂n) , (47)

for the amplitude with an f@s-jet, where the symbol⌦ now includes a sum over the transverse
index of the derivative, just as for the implicit Dirac indices.

For Fig. 17(c), the symbol Jfss(pi�k̂1�k̂2, k̂1, k̂2) represents the fss-jet where two scalars
and a fermion merge at the hard part from a bundle of collinear lines. The momenta k1 and
k2 are the momenta of the collinear scalars and pi�k1�k2 is the momentum of the collinear
fermion. This jet has the matrix element definition

Jfss(pi � k̂1 � k̂2, k̂1, k̂2) =

Z 1

�1
d⇠1 e

�ik̂1·(⇠1n̄i)

Z 1

�1
d⇠2 e

�ik̂2·(⇠2n̄i)hpi|�(⇠1n̄i)�(⇠2n̄i) (0)|0i .
(48)

Following the same logic as in the previous case, the corresponding hard part isHfss
i (p̂1, . . . ; p̂i�

k̂1 � k̂2, k̂1, k̂2; . . . , p̂n) and the expression for the amplitude with a single fss-jet is

M fss =
nX

i=1

 
Y

j 6=i

Jf (pj)

!Z p+i

0

dk+
1

Z p+i

0

dk+
2 ✓(p

+
i � k+

1 � k+
2 )
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⇥ Jfss(pi � k̂1 � k̂2, k̂1, k̂2)⌦Hfss
i (p̂1, . . . ; p̂i � k̂1 � k̂2, k̂1, k̂2; . . . , p̂n) . (49)

Finally, the fff -jet function in Fig. 17(d) is denoted Jfff (pi � k̂1 � k̂2, k̂1, k̂2) and its
corresponding hard part is Hfff

i (p̂1, . . . ; p̂i � k̂1 � k̂2, k̂1, k̂2; . . . , p̂n). Similarly to the above,
this jet has matrix element definition

Jfff (pi � k̂1 � k̂2, k̂1, k̂2) =

Z 1

�1
d⇠1 e

�ik̂1·(⇠1n̄i)

Z 1

�1
d⇠2 e

�ik̂2·(⇠2n̄i)hpi| (⇠1n̄i) (⇠2n̄i) (0)|0i ,
(50)

and the amplitude involving a single fff -jet is

M fff =
nX

i=1

 
Y

j 6=i

Jf (pj)

!Z p+i

0

dk+
1

Z p+i

0

dk+
2 ✓(p

+
i � k+

1 � k+
2 )

⇥ Jfff (pi � k̂1 � k̂2, k̂1, k̂2)⌦Hfff
i (p̂1, . . . ; p̂i � k̂1 � k̂2, k̂1, k̂2; . . . , p̂n) . (51)

Here, the symbol ⌦ includes the contraction of three implicit Dirac indices.
It should be clear at this point that we could generalize our notation to jets with an

arbitrary number of particles merging into a jet of collinear lines. It will be convenient to
use the same notation for jets of collinear lines in reduced diagrams and the jet functions
themselves. Just like the jets themselves, Jfs, Jfss, and Jfff will also be referred to as
fs-jets, fss-jets, and fff -jets respectively. We will also sometimes include convolution over
the collinear component of loop momenta in the tensor product symbol “⌦” and omit the full
momentum arguments of jet functions and hard parts when they are clear from the context.

It is interesting to remark that the power-suppressed contributions we have identified are
closely related to exclusive amplitudes for bound states [62–64] and next-to-leading power
inclusive cross sections for pair production [65,66].

With our notation set up, we can also write down the contribution to the elastic amplitude
involving two fs-jets,

M fsfs =
X

1i<jn

 
Y

l 6=i,j

Jf (pl)

!Z p+i

0

dk+
1

Z p+j

0

dk+
2 Jfs(pi � k̂1, k̂1)

⇥ Jfs(pj � k̂2, k̂2)⌦Hfsfs
ij (p̂1, . . . ; p̂i � k̂1, k̂1; . . . ; p̂j � k̂2, k̂2; . . . , p̂n) . (52)

As to the fs-jets from diagrams in Fig. 18(b), we use the label Jfs(pi + k, k) with the
understanding that the momentum argument corresponding to the label s is soft rather than
collinear. Accordingly, the contribution to the elastic amplitude from diagrams where two
fs-jets are connected by a single soft scalar two-point function Sij(k) is

M fsfs =
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X

1i<jn

 
Y

l 6=i,j

Jf (pl)

!Z
d4k Sij(k)J

fs(pi + k, k) Jfs(pj � k,�k)⌦Hfsfs
ij (p̂1, . . . , p̂n) .

(53)

The hard part has no scalars emerging from it in this case. As we mentioned previously, Eq.
(37) implies that S(k) only contains soft internal scalars and cannot radiate any photon at
O(�0). It can, however, emit a soft graviton and yield a contribution of O(�2), as we will
see in Sec. 2.4. The matrix element definition of the fs-jet in Eq. (53) is

Jfs(pi + k, k) =

Z
d4y eik·yhpi| �SI

��(y)
 (0)|0i , (54)

where SI =
R
d4xLI . In Yukawa theory, LI(x) = g �(x) (x) (x) + g0

4!
�4(x), where g is the

Yukawa coupling and g0 is the four-scalar coupling. No component of the soft momentum k
is integrated out. Also, the loop momentum k bears no hat in the above because it is a soft
rather than a collinear momentum.

Combining the above definitions allows us to write the fully factorized elastic amplitude
expanded to O(�2),
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+O(�3) . (55)

When we derive the small q expansion of the soft photon radiative amplitude, we will have
to consider emission from each factor in each term: the leading jets, the nonleading jets, and
the hard part.

In (55), the soft function Sij is a two-point function with soft external scalar momenta
connecting to jets i and j. It is useful to extend this notation in a straightforward way, so
that for example, Siikl stands for a four-point function with soft external scalar momenta,
two of which connect to jet i, and with the two others connecting to jets k and l. In the
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notation for the hard parts, the superscripts indicate which nonleading jets are present,
separated by semicolons. The subscripts indicate which external particle is coming from the
corresponding nonleading jet in the superscript. For example, the hard part Hfff ;fs

ij has an
fff -jet at the ith external particle and an fs-jet at the jth external particle.

To include all loop corrections to the soft graviton theorem, it is necessary to expand the
elastic amplitude as in (55), but all the way up to O(�4) rather than O(�2). In the interest
of space, we will not write the O(�3) and O(�4) terms in equation format. The O(�3) terms
derive from the diagrams shown in Figs. 14, 15, and 16. The associated factorized terms
are listed in Table 2. The O(�4) terms correspond to the reduced diagrams shown in Figs.
9, 10, 11, 12, and 13. The associated factors are displayed in Table 3. Finally, we also
need to consider the “exceptional contributions” whose diagrams appear in Fig. 19, with
the associated factorized contributions listed in Table 4. To generate the explicit O(�3) and
O(�4) terms, one would need to contract the factors found in these tables analogously to
(55).

It should be mentioned that additional derivative jet functions need to be defined at
O(�3) and O(�4). These arise when one expands the hard parts of lower order terms in the
transverse components of the loop momenta of the collinear particles connecting hard parts
to jets. Although we will not list these explicitly, their construction is entirely analogous to
(46).

Table 2: The factors corresponding to the diagrams with � = 3. A horizontal line separates
factorized forms corresponding to distinct partitions of � = 3. These factorized contributions
are associated with the diagrams shown in Figs. 14, 15, and 16.

Nonleading jets Soft function Hard part

Jfsss
i 1 Hfsss

i

Jfffs
i 1 Hfffs

i

Jfss
i Jfs

j 1 Hfss;fs
ij

Jfff
i Jfs

j 1 Hfff ;fs
ij

Jfss
i Jfs

j Sij Hfs
i

Jfs
i Jfs

j Jfs
k Sij Hfs

k

Jfs
i Jfs

j Jfs
k 1 Hfs;fs;fs

ijk
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Table 3: The factors corresponding to the diagrams with � = 4. A horizontal line separates
factorized forms corresponding to distinct partitions of � = 4. These factorized contributions
are associated with the diagrams shown in Figs. 9, 10, 11, 12, and 13.

Non leading jets Soft function Hard part

Jfffss
i 1 Hfffss

i

Jfssss
i 1 Hfssss

i

Jfsss
i Jfs

j Sij Hfss;f
ij

Jfffs
i Jfs

j Sij Hfff ;f
ij

Jfffs
i Jfs

j 1 Hfffs;fs
ij

Jfsss
i Jfs

j Siiij H
Jfsss
i Jfs

j Sij Hfsss;fs
ij

Jfss
i Jfss

j 1 Hfss;fss
ij

Jfff
i Jfff

j 1 Hfff ;fff
ij

Jfff
i Jfss

j 1 Hfff ;fss
ij

Jfss
i Jfss

j Sij Hfs;fs
ij

Jfss
i Jfss

j Siijj H

Jfss
i Jfs

j Jfs
k 1 Hfss;fs;fs

ijk

Jfss
i Jfs

j Jfs
k Sjk Hfss

i

Jfss
i Jfs

j Jfs
k Sij Hfs;fs

ik

Jfss
i Jfs

j Jfs
k Siijk H

Jfff
i Jfs

j Jfs
k 1 Hfff ;fs;fs

ijk

Jfff
i Jfs

j Jfs
k Sjk Hfff

i

Jfs
i Jfs

j Jfs
k Jfs

l Sijkl H

Jfs
i Jfs

j Jfs
k Jfs

l Sij Hfs;fs
kl

Jfs
i Jfs

j Jfs
k Jfs

l 1 Hfs;fs;fs;fs
ijkl

2.4 Modification of power counting from photon and graviton
emission

Having obtained an expansion of the elastic amplitude in powers of �, with each term factored
into jet functions, a soft cloud, and a hard part, we now move on to understanding how the
radiative amplitudes are derived from these factorized forms. Recall the expansions of the
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Table 4: The exceptional factorized terms contributing to the elastic amplitude. In the soft
function subscript, the label H indicates that a soft scalar is attaching the soft cloud to the
hard part. Likewise, in the hard part superscript, the label S indicates that a soft scalar
connects the hard part to the soft cloud. These factorized contributions are associated with
the diagrams shown in Fig. 19.

Order Non leading jets Soft function Hard part

�3 Jfs
i SiH HS

�4 Jfs
i Jfs

j SiH Hfs;S
j

�4 Jfss
i SiH Hfs;S

i

radiative amplitude for the emission of a soft photon, and a soft graviton,

Mµ(q) = �µ
�2 + �µ

�1 + �µ
0 for a soft photon,

Mµ⌫(q) = �µ⌫
�2 + �µ⌫

�1 + �µ⌫
0 + �µ⌫

1 + �µ⌫
2 for a soft graviton, (56)

where �� = O(��). One approach to deriving the coe�cients � is to identify all pinch
surfaces of the radiative amplitude, analogously to the elastic amplitude, and construct the
radiative hard parts by brute force. The radiative jet functions are universal, but the nested
subtractions required to derive the hard parts di↵er for every process, and, therefore, such an
approach would not be practical. A better alternative, following Low, is to take advantage
of the fact that every diagram contributing to the radiative amplitude can be generated
from the elastic amplitude by considering all points of attachment of the soft photon or soft
graviton. One can then apply an argument similar to Low’s by considering separately photon,
or graviton, emission from the external jets, the soft cloud, and the hard part. To carry out
this approach, we need, however, to determine how the infrared degree of divergence � of a
radiative diagram is related to the degree of divergence of an elastic diagram when a soft
photon, or graviton, is attached to obtain the former from the latter.

We will focus on gravitons, since the case of photons is simpler. The amplitude for
soft graviton emission from a jet is generated by inserting a matter-graviton vertex into the
matrix element definition of the corresponding jet function. For instance, in the case of a
leading jet, we obtain the following radiative jet function,

Jµ⌫(pi, q) =

Z
d4x e�iq·x hpi |T ⇤ (iTµ⌫(x)�i(0))| 0i , (57)

where Tµ⌫ is the stress tensor through which we assume gravity couples to matter. This
stress tensor is defined by taking the variational derivative of the matter action, as shown in

35



the following equation [67, 68],

�Smatter ⌘ 1

2

Z
d4xT µ⌫(x) �gµ⌫(x). (58)

The dynamics of the graviton field is dictated by the full Einstein-Hilbert action. We will,
however, not be concerned with graviton loops, and thus, our prescription for coupling matter
to gravity is to make insertions of the operator iTµ⌫ to generate a matter graviton vertex.

We now analyze the e↵ect of emitting a graviton from one of the lines, or vertices, in the
reduced diagrams that give the terms of order O(�0) up to O(�4) identified in Sec. 2.2.2.
In doing this, we need to take into account the possibility of emitting the graviton from a
collinear line, a soft line, or directly from the vertices of Yukawa and scalar theory.

We begin by considering graviton emission from a fermion line. The graviton-fermion
vertex is given by

V µ⌫
ffG = � i

2


1

4
(�µ(p+ p0)⌫ + �⌫(p+ p0)µ)� ⌘µ⌫

✓
1

2
(/p+ /p

0)�m

◆�
, (59)

where  is Newton’s constant, and p and p0 are the incoming and outgoing fermion momenta
– see Fig. 20(a).

p p’

q

(a)

p p’

(b)

q

Figure 20: The fermion-graviton (↵G) and scalar-graviton (ssG) vertices.

Starting from a fermion line carrying momentum p, emitting a graviton from this line
changes the propagator according to

i

/p�m
7! i

8


/p+m

p2 �m2
(�µ(2p+ q)⌫ + �⌫(2p+ q)µ)

/p+ /q +m

(p+ q)2 �m2
� 2⌘µ⌫

/p+ /q �m
� 2⌘µ⌫

/p�m

�
.

(60)

Suppose we had started with a collinear fermion line. On the right hand side of the
arrow, the leading term is the first on the left. It has two collinear denominators, each of
which scales as �2, and a numerator whose leading term scales as �0 when µ⌫ = ++. Since
we started with only one collinear denominator scaling as �2, we conclude that the net e↵ect
of adding a graviton is to reduce the degree of divergence � of the whole diagram by 2.
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On the other hand, suppose we had started with a soft fermion. Then we begin with a
propagator where the numerator and denominator are dominated by the mass term. There-
fore, this soft fermion propagator scales as ��1 and, as seen from (60), emitting the graviton
from this line either introduces an additional soft fermion propagator and a numerator that
scales as �2, or does not introduce any new factor as in the rightmost two terms. The net
e↵ect is therefore to leave the scaling power � unchanged.

Consider now emitting the soft graviton from a scalar line as in Fig. 20 (b). The scalar-
graviton vertex is given by

V µ⌫
ssG =

�i

2
(pµp0⌫ + p⌫p0µ � ⌘µ⌫(p · p0 �m2)) . (61)

The starting massless scalar propagator is therefore replaced according to

i

p2
7! i

2

1

p2
1

(p+ q)2
(2pµp⌫ + pµq⌫ + p⌫qµ � ⌘µ⌫(p2 + p · q)) . (62)

If the original scalar is collinear, then as before we have added a denominator scaling as �2

and a numerator scaling as 1 when µ⌫ = ++, for a net change of � 7! � � 2. If, however,
the scalar is soft, then the addition of a denominator scaling as �4 is entirely compensated
by the numerator scaling as �4 as well. Hence, emitting a soft graviton from a soft scalar
does not alter the degree of divergence of the whole diagram.

It remains to analyze the e↵ect of emitting a graviton directly from the interaction vertices
of Yukawa and scalar theory – see Fig. 21. Let g be the Yukawa coupling and g0 be the
four-scalar coupling. Then, emitting the graviton from the Yukawa vertex introduces a
factor of � ig

2
⌘µ⌫ into the diagram and nothing else. This does not alter the degree of

divergence. Similarly, emitting the soft graviton from the four-scalar vertex introduces a
factor of � ig0

2
⌘µ⌫ and does not alter the degree of divergence.

Consider now emitting a soft graviton from a hard line internal to the hard part. Our
notation for radiative hard parts is derived from the elastic hard parts by simply adding
µ⌫ indices, where µ and ⌫ couple to the spacetime indices of the graviton polarization
tensor Eµ⌫ . We thereby obtain the radiative hard parts Hµ⌫(p̂1, . . . , p̂n, q), H

fs
i,µ⌫(p̂1, . . . ; p̂i �

k̂, k̂; . . . , p̂n, q), H
fss
i,µ⌫(p̂1, . . . ; p̂i� k̂1� k̂2, k̂1, k̂2; . . . , p̂n, q), and so on. Soft graviton insertions

into hard lines will only result in the addition of another hard line to the diagram, since a
soft momentum cannot possibly alter the scaling of a hard momentum. Hence, the degree
of divergence of a radiative diagram obtained by inserting a soft graviton into the hard part
of an elastic diagram is the same as the degree of divergence of the original elastic diagram.

The e↵ects of emitting a soft graviton from a reduced diagram of the elastic amplitude
are gathered in Table 5. We see that the greatest enhancement occurs when the graviton is
emitted from a collinear fermion or scalar line. Further, in this case, the infrared degree of
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(a) (b)

Figure 21: The scalar-two-fermion-graviton (s↵G) and the four-scalar-graviton (ssssG) ver-
tices.

divergence of the newly obtained radiative diagram is equal to the degree of divergence of
the original elastic amplitude diagram minus 2.

Table 5: This table describes how to obtain the degree of divergence of a radiative diagram
from the degree of divergence of the corresponding elastic diagram. The e↵ect of graviton
emission depends on which component of the elastic diagram the graviton is emitted from.

Component emitting the soft graviton Net e↵ect on degree of divergence of elastic diagram
Collinear fermion line -2
Collinear scalar line -2
Soft fermion line +0
Soft scalar line +0
Yukawa vertex +0

Four-scalar vertex +0
Hard part +0

In Eq. (24), we noted that the soft graviton theorem can be thought of as an expansion
of the radiative amplitude in power of the small scale �. Any diagram contributing to this
expansion can be derived by attaching a soft graviton to a diagram contributing to the elastic
amplitude. Further, we have just shown that the resulting radiative diagram will be of order
O(���2), where we assume that the original elastic amplitude diagram was of order O(��).
Therefore, to get all contributions to the radiative amplitude between O(��2) and O(�2), we
need to begin our construction with all elastic diagrams of orders between O(�0) and O(�4),
as we claimed in Sec. 2.1.

Graviton emission from the hard part or the soft cloud needs to be considered only for
elastic diagrams with scaling power � between 0 and 2. Indeed, emitting a graviton from
the hard part or the soft cloud has no e↵ect on the degree of divergence, and hence we need
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to start from an elastic diagram with �  2 to remain within the order of accuracy of the
soft graviton theorem.

The photon emission amplitudes are described by the radiative jet functions Jf
i,µ(pl+q, q),

Jfs
i,µ(pi + q � k̂, k̂, q), etc., and the radiative hard parts Hµ(p̂1, . . . , p̂n, q), Hfs

i,µ(p̂1, ..., p̂i �
k̂, k̂, ..., p̂n, q), etc. The notation is the same as for nonradiative jet functions and hard parts,
with the photon index µ coupling to the polarization of the emitted photon. The radiative
jet functions are derived from the matrix element definitions of Sec. 2.3 by inserting an
electromagnetic current operator [14]. For example, the elastic jet function in (40) becomes
the radiative leading jet

Jf,µ(pi, q) =

Z
d4x eiq·xhpi|jµ(x) (0)|0i , (63)

where jµ(x) is the electromagnetic current operator and q is the photon momentum.
Following a similar line of reasoning as for gravitons, we find that the regions of integration

about the pinch surfaces with 0  �  2 are precisely the ones we need to consider for
extending the soft photon theorem. The soft photon momentum q scales as (�2,�2,�2)E,
and, hence, attaching a soft photon to a collinear or soft fermion line will not alter the scaling
of the pre-existing fermion line. The net e↵ect as far as our power counting procedure is
concerned will be the addition of a supplementary collinear or soft fermion line. Therefore,
following the rules in Table 1, attaching an external soft photon to an elastic amplitude
diagram will reduce its degree of divergence by 2 if the photon is attached to a collinear
fermion line, or 1 if it is attached to a soft fermion line. If we start from diagrams with
0  �  2, this will leave us with radiative diagrams of order between O(��2) and O(�0),
which is precisely the range of magnitudes relevant to Low’s theorem. We mention that in
both the photon and graviton cases, the leading order O(��2) term in the radiative amplitude
is generated by attaching the soft external particle to a leading jet.
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3 Loop Corrections to the Soft Photon Theorem

The objective of this chapter is to show how to derive a soft photon theorem that fully
takes loop corrections and infrared behavior into account. Our approach will start from the
factorized amplitude (55), and apply Ward identities similarly to Low’s argument. Before
tackling this task, however, we make a few more comments on the power counting results of
Chapter 2, and also illustrate our general conclusions with two examples in Sec. 3.1.

As we mentioned in Sec. 2.4, attaching a soft photon to a leading jet yields the leading
O(��2) term in the radiative amplitude. The diagrams (c) and (d) of Fig. 17 have � = 2
and inserting a photon into them produces diagrams that are O(�0) up to multiplication by
a logarithmic term in q. When the fermions have nonzero mass m, the diagrams in 17(b)
have � = 1 and inserting a soft photon into them produces a term scaling as ��1, thereby
yielding a contribution of the same order as m/q.

One can take the limit where m ! 0 and retain the definitions of collinear and soft
scaling provided another suitable small scale � is identified. We will assume this has been
done when discussing the fully “massless limit” here and below. In this case, the fs-jets
scale as �2, unlike the � scaling predicted by power counting in the massive case. This makes
the whole class of diagrams in Fig. 17(b) scale as �2. Hence, the term of intermediate order
of magnitude ��1 disappears in the massless limit. The O(�) contribution is absent from
fs-jets in the massless limit because the denominator of the loop integrand is symmetric
under simultaneous reflection of all transverse loop momenta while the leading term in the
numerator is odd under such a transformation. Consequently, the term that would scale
as �, and thereby conform to the power counting rules of Table 1, actually vanishes. This
vanishing of the would-be leading term pushes the scaling of fs-jets back to the next available
order, namely �2. We illustrate how this happens explicitly in Sec. 3.1.1.

In Fig. 18, we show two additional classes of diagrams that only contribute in the massive
case. Both of these have � = 2. Diagram 18(a) contains two distinct nonleading jets but can
be treated similarly to diagrams appearing in Fig. 17. Diagram 18(b) includes a two-point
function of soft particles connected to two distinct jets. From the requirement �  2 with
� given by Eq. (37), we find that this two-point function consists only of soft scalars and
therefore no photon is emitted from it.

The disappearance of contributions from diagrams 18(a) in the massless limit takes place
because with massless fermions, fs-jets scale as �2 rather than �, as we mentioned when
discussing Fig. 17(b). This makes the diagrams of Fig. 18(a) scale as �4 rather than �2. As
for contributions from diagrams 18(b), the fs-jets will scale as �0 rather than ��1 in the
massless case, making the whole diagram scale as �4. As in the case of fs-jets, the scaling
of fs-jets in the massless limit is due to the leading term in the integrand being odd under
simultaneous reflection of all transverse loop momenta.
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Figure 22: Lowest order fs-jet after the application of the Ward identity. The photon
momentum exits the jet at a composite scalar-photon-fermion vertex as in the Ward identity
shown in Fig. 2.

3.1 Examples

Our discussion of the soft photon theorem above relies on a treatment of the analytic struc-
ture of soft photon radiation. In particular, we have used a power counting analysis to
determine that nonleading jets do contribute to Low’s theorem. It is instructive to verify
our claims by studying explicit examples. To this end, we study the lowest order fs-jet, and
a diagram with two one-loop fs-jets. We will consider a massless pseudoscalar coupled to
massive fermions in this section. A pseudoscalar coupling lets us use the Dirac equation to
obtain more compact formulas for the jet functions but still obeys our power counting rules
shown in Sec. 2.2.2.

3.1.1 Lowest order fs-jet

Consider first the lowest order fs-jet in a pseudoscalar theory, shown in Fig. 22. In the classic
form of Low’s argument, we would encounter this jet when deducing the internal emission
amplitude from the external amplitude as in Eq. (6) – see Fig. 2. In Eq. (6), the elastic
amplitude is given a q dependence by shifting one of the external momentum arguments p
to p+ q. We have introduced such a q dependence in our fs-jet as well, and in doing so aim
at exhibiting the logarithmic dependence on q that we described in Sec. 2.1.

The loop integral for the elastic amplitude with a single fs-jet takes the form

M fs(p+ q) =

Z 1

0

dx

Z
ddl

(2⇡)d
ū(p)

(�igµ✏�5)i(/p+ /q � /l +m)

((p+ q � l)2 �m2 + i✏)
Hfs(x)

i

l2 + i✏
p+�(l+ � xp+) .

(64)
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We work in dimension d = 4 � 2✏. Our coupling constant for Yukawa theory is gµ✏, where
we introduce the mass scale µ to retain a dimensionless coupling.

The hard part as we have presented it in Sec. 2.3 depends on the collinear components of
the fermion and pseudoscalar momenta: Hfs = Hfs(p̂� l̂, l̂). We can choose our coordinates
such that the collinear parts of p and l coincide with their + components. Then, through
the delta function �(x� l+/p+) = p+�(l+ � xp+), we introduce the new integration variable
x. This is the fraction of the collinear component of the fermion momentum p taken by
the collinear scalar. Since the hard part is only sensitive to the collinear components of its
arguments, Hfs is a function of x only. Introducing x allows us to integrate over the whole
range of loop momenta l while leaving the x integration undone.

The loop integral for M fs can be evaluated analytically without making any simplifying
assumption. However, for our purposes, it is convenient to use the frame chosen above with
pT = 0. The result of the integration over loop momenta l after retaining the leading term
only is then

M fs(p+ q) =
�gmµ�✏

(4⇡)2�✏
�(✏)

Z 1

0

dx x ū(p)�5H
fs(x)

✓
x2m

2

µ2
� 2x(1� x)

p+q�

µ2

◆�✏

, (65)

which is of order � for ✏ = 0, as predicted by the power counting rules of Sec. 2.2.2. The
presence of the factor �(✏) indicates that there is an ultraviolet divergence coming from
the loop integral in the definition of the jet function. Therefore, the jet function must be
renormalized and thereby becomes a scale dependent quantity. However, the hard part must
also be renormalized so that the factorized amplitude matches the original amplitude. This
induces evolution equations for the jet functions and the hard parts, as for the treatment of
bound states [62–64] and in soft collinear e↵ective theory [18].

If we apply an on-shell renormalization scheme and subtract the q = 0 part of the
nonradiative fs-jet in (65), we obtain at order ✏0

M fs(p+ q) =
gm

(4⇡)2

Z 1

0

dx x ū(p)�5H
fs(x) log

✓
1� 2

✓
1� x

x

◆
p+q�

m2

◆
, (66)

which exhibits the logarithmic dependence on q that we predicted in Sec. 2.1. A standard
analysis following Low would treat radiative fs-jets as part of the internal emission amplitude
and deduce their values by expanding (66) to linear order in q. This is inaccurate for a
photon momentum in the region q ⇠ �2E since we then have p+q�

m2 ⇠ 1, thereby precluding

an expansion of log
⇣
1� 2

�
1�x
x

�
p+q�

m2

⌘
in powers of q. We therefore confirm that we are

required to include radiative fs-jets in the external amplitude.
Another prediction of our power counting rules is that adding a photon to the internal

collinear fermion line of the nonradiative fs-jet reduces its degree of divergence by 2. We may
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Figure 23: Lowest order radiative fs-jet.

verify this expectation by considering the radiative fs-jet shown in Fig. 23. The expression
we need to calculate the radiative fs-jet function is

M fs,µ
ext =

Z 1

0

dx

Z
ddl

(2⇡)d
ū(p)(�igµ✏�5)

i(/p� /l +m)

(p� l)2 �m2 + i✏
(�ieµ✏�µ)⇥

⇥ i(/p� /l + /q +m)

(p� l + q)2 �m2 + i✏
Hfs(x)

i

l2 + i✏
p+�(l+ � xp+) . (67)

This can also be evaluated analytically without making any simplifying assumption. How-
ever, we do not need to go into that amount of detail to confirm the results of power counting
and will, as before, keep the fermion moving in the + direction. Retaining only the leading
term yields the expression

M fs,µ
ext = � egm

32⇡2q�

Z 1

0

dx x ū(p)�5�
µ��Hfs(x) log

✓
1� 2

✓
1� x

x

◆
p+q�

m2

◆
. (68)

The order of the radiative fs-jet is ��1 as predicted by power counting. This is qualitatively
new since there are no terms of order O(��1) in the classic form of Low’s theorem. The
factor of magnitude O(��1) appears as m/q� in our example.

We conclude our study of the lowest order fs-jet by confirming that in the fully massless
case, m = 0, the nonradiative fs-jet is pushed back to O(�2). To see this, we consider the
lowest order fs-jet loop integral after the massless condition has been implemented,

M fs(p) =

Z 1

0

dx

Z
dl+dl�dd�2lT

(2⇡)d
ū(p)(�igµ✏�5)i(�l+�� � l��+ + �T · lT )Hfs(x)

l2 � 2p · l + i✏

⇥ i

l2 + i✏
p+�(l+ � xp+) . (69)
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Figure 24: Diagram (a) shows the leading order (in g) case where a soft pseudoscalar connects
two leading jets. This diagram is too suppressed to a↵ect our extension of Low’s theorem
but diagram (b) is not.

Since pT = 0, the denominator of the integrand is even in lT and therefore the transverse term
in the numerator can be ignored. Further, from the massless Dirac equation, ū(p)�� = 0
when pT = 0, which implies that the leading term in the numerator is O(�2) since �+l� =
O(�2). It is then a simple matter to finish estimating the magnitude of the integral and
conclude that it is O(�2). This result can be extended to arbitrary order fs-jets by proving
that any term in the integrand scaling as an odd power of �must be odd under simultaneously
reversing the sign of every transverse momentum integration variable.

3.1.2 One-loop jets with soft line

The next example we study belongs to the class of diagrams where two fs- jets are connected
by a two-point function of soft scalars such as in Fig. 18(b). In pseudoscalar theories, the
leading order diagram in the Yukawa coupling g with two fs-jets shown in Fig. 24(a) has
degree of divergence � > 2 and hence does not contribute to Low’s theorem when a soft
photon is attached to it. However, this does not extend to higher loop diagrams, as we
demonstrate through this section’s example.

Consider then the diagram shown in Fig. 24(b). This diagram has a single soft scalar
connecting two one-loop fs-jets. We consider each fs-jet individually – see Fig. 25. The
expression for a single fs-jet is

Jfs(p, s) =
Z

ddk

(2⇡)d
ū(p)(�igµ✏�5)i(/p+ /k +m)(�igµ✏�5)i(/p+ /k + /s +m)(�igµ✏�5)i(/p+ /s +m)

((p+ k)2 �m2)((p+ k + s)2 �m2)((p+ s)2 �m2)

i

k2
.

(70)

The momentum s is the connecting soft pseudoscalar momentum. The loop momentum
k is the collinear pseudoscalar momentum. The leading term of this jet function in four
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s

Figure 25: The momenta assignments for the one-loop jet with soft scalar emission that we
are considering.

dimensions is

Jfs(p, s) =
g3

32⇡2

m

p · s ū(p)�5

Li2(1 + 2a) +

2a

1 + 2a
log(�2a)� ⇡2

6

� ����
a= p·s

m2

, (71)

which is O(��1). Returning to Fig. 24(b), the expression for the full diagram is

M fsfs(p1, p2) =

Z
d4s

i

s2 + i✏
Jfs(p̂1, s) J

fs(�p̂2,�s)⌦H(p̂1 + s,�p̂2 � s) . (72)

Bearing in mind that when calculating the degree of divergence, a soft loop integration
measure contributes a suppression of +8 while a soft pseudoscalar propagator supplies an
enhancement of �4, we find that the entire amplitude in (72) has degree of divergence
� = 8⇥1�1⇥2�4⇥1 = 2. This result is the same as if we had proceeded by applying power
counting rules to the diagram directly without going through an explicit calculation of the fs-
jet function. Consequently, attaching a soft photon to diagram 24(b) will yield a correction to
the soft theorem of order O(�0) possibly multiplied by nonanalytic polylogarithms. Finally,
as in the case of fs-jets, the leading term of fs-jets vanishes in the massless fermion limit
because its integrand is odd under reflection of all transverse loop momenta.

3.2 Adapting Low’s argument to the factorized amplitude

In this section, we will show a preliminary version of our extension of Low’s theorem and see
that to order O(�0), we need only consider photon emission from the hard part corresponding
to diagrams with leading jets. Photon emission from hard parts connecting to nonleading
jets will also be derived for completeness. This treatment adapts Low’s argument to our
factorized elastic amplitude (55).
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3.2.1 Preliminary form of Low’s theorem

To set the stage for the appearance of our preliminary version of Low’s theorem, we first
represent the full radiative amplitude in the generic form

Mµ =
nX

i=1

 
Y

j 6=i

Jf
j

!
Jf
i,µ ⌦H +

 
nY

i=1

Jf
i

!
⌦Hµ

+
X

✓2⇥1

nX

i=1

" 
Y

j 6=i

Jf
j
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J✓
i,µ ⌦H✓

i +
X

l 6=i

 
Y
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j
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Jf
l,µJ

✓
i ⌦H✓

i
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+
X
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X

i 6=j

" 
Y

l 6=i,j

Jf
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!
J✓
i,µJ

✓
j S
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h 6=i,j

 
Y

l 6=i,j,h

Jf
l

!
J✓
i J

✓
j J

f
h,µ S

✓ ⌦H✓✓
ij

#

+O(�) , (73)

where S✓ = 1 if ✓ = fs and S✓ = Sij if ✓ = fs. The symbols ⇥1 and ⇥2 stand for the sets
of labels {fs, f@s, fss, fff} and {fs, fs} respectively. Comparing with Eq. (55), one sees
that each term corresponds to a factorized form describing photon emission from a leading
jet, a nonleading jet, or a hard part – as illustrated in Fig. 26. Notice, however, that we
have omitted the following radiative contributions,

Eµ ⌘
X

✓2⇥1

nX

i=1

 
Y

j 6=i

Jf
j

!
J✓
i ⌦H✓

i,µ +
1

2

X

✓2⇥2

X

i 6=j

 
Y

l 6=i,j

Jf
l

!
J✓
i J

✓
j S

✓ ⌦H✓✓
ij,µ . (74)

These correspond to attaching a photon to the hard parts of the diagrams from Figs. 17 (b),
(c), (d), and 18, all of which have � > 0. Attaching a photon to a hard line does not modify
the degree of divergence of the diagram. Therefore, the radiative contributions in (74) are of
order higher than O(�0) and do not need to be included in our extension of Low’s theorem.

The only radiative hard part contributing at our order in � is the one corresponding to
the diagram with leading jets only. We adapt Low’s analysis to this diagram by introducing
new notation for the external and internal amplitudes,

M ext,µ
ldg =

 
Y

j 6=i

Jf
j

!
Jf,µ
i ⌦H ,

M int,µ
ldg =

 
nY

i=1

Jf
i

!
⌦Hµ . (75)

As in Sec. 1.2, these are related by the Ward identity,

qµM
ext,µ
ldg + qµM

int,µ
ldg = 0 , (76)
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(a) (b) (c)

Figure 26: In applying Low’s argument, the radiative amplitude diagrams are split between
those with external photon emission as in (a) and (b), and those with internal photon
emission as in (c).

which we can use to deduce the radiative hard part Hµ. Indeed, once the jets have been
factorized as in Eqs. (73) and (74), the nonradiative and radiative hard parts can be reliably
expanded in powers of q even in the regime q ⇠ �2E. We emphasize that it is possible to
expand the hard parts because the jet functions are engineered to contain all the leading
and nonleading pinch surfaces of the original Feynman diagrams. All the infrared singularity
structure of the radiative amplitude is contained within the jet functions. As noted above,
the hard parts correspond to the matching coe�cients of soft collinear e↵ective theory [18]
and are assumed to be constructible by nested subtractions similar to [55–57]. Hence, hard
parts get their leading contributions from o↵-shell lines and are dominated by hard momenta
in the factorized form. Adding a q dependence to hard lines will produce only subleading
behavior. This subleading behavior can be represented by higher order terms in an expansion
of the hard line propagators in q.

It is important to bear in mind that the Ward identity holds not only diagram by diagram,
but also at fixed loop momenta, and therefore pinch surface by pinch surface. By this we
mean that given a single reduced diagram contributing to an elastic scattering amplitude,
the Ward identity will apply to this diagram by itself if we sum over all points of photon
insertion [54]. The only exception arises in fermion loops where a shift of the loop momentum
by the photon momentum q is required. Therefore, in (76), it is not necessary to include
the contributions from all reduced diagrams at once. Rather, we can focus on each class of
diagrams individually.

In the case of nonleading jets, say an fs-jet for definiteness, the internal radiative ampli-
tude M int,µ

fs is of order O(�). The external amplitude M ext,µ
fs , on the other hand, is of order

O(��1), and the Ward identity has the form

qµM ext,µ
fs = �qµM int,µ

fs . (77)

A naive estimate tells us that the left hand side is O(�) while the right hand side is O(�3).

47



= + ... + − ... −Σ

Figure 27: The general diagrammatic form of the Ward identity for jet functions. Each
fermion line that does not form a closed loop has a term corresponding to the photon exiting
the jet at the end of the line and a term for the photon exiting at the beginning of the
line. The exception to this rule is the through going fermion line that becomes the outgoing
fermion – this line only has a term with the soft photon exiting the diagram from the
beginning and not at the on-shell external line. The terms with the photon exiting at the
beginning of a fermion line appear in the identity with a relative + sign whereas those where
the photon exits at the end of fermion line carry a � sign.

Therefore, leading terms in the external amplitudes must cancel each other in the Ward
identity. In Sec. 3.2.2, we will see that this necessary cancellation also follows from charge
conservation – see the discussion below (89).

If we were to try and calculate the internal radiative amplitude Mµ
int directly, we would

need to delve into the construction of the hard part at each order and find all ways of inserting
a soft photon, thereby making the calculation di↵erent for each process. The alternative,
following Low, is to calculate the contraction of the soft momentum q with the universal
external radiative amplitudes and then use the Ward identity to extract Mµ

int. However, to
detemine qµM

µ
ext , we still need to express the quantity qµJ

f,µ
i in a form that also does not

depend on the details of the radiative jet function. To this end, we introduce the jet Ward
identities. In their most general form, these are expressed diagrammatically as in Fig. 27.

The jet QED Ward identity for photon emission is derived straightforwardly using dia-
grammatic or path integral techniques [54,69]. The special case we need involves the leading
jet,

qµJ
f,µ(pi + q, q) = eiJ

f (pi) . (78)

It is then straightforward to extend Low’s argument and obtain

Hµ(p̂1, . . . , p̂n, q) = �
nX

l=1

el
@

@p̂0lµ
H(p̂01, . . . , p̂

0
n) +O(�2) , (79)
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for the radiative hard part. The momentum arguments p̂0i indicate that we have performed
the construction described in Sec. 1.2 to transition to an elastic set of momenta.

With (79), we can write the preliminary form of our extension of Low’s theorem to high
energies. Incorporating the radiative hard part (79) into the generic radiative amplitude
(73), we find

Mµ = �
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+O(�) . (80)

We use the P0 symbol to denote that after the momentum derivatives have acted on the
nonradiative hard part, we evaluate the resulting expression at an elastic set of momenta
close to the starting radiative configuration, as described in Sec. 1.2. The first term gathers
all internal emission at O(�0). It is remarkable that even at this level, summing over all
insertions of a soft photon into the hard part results in the action of a di↵erential operator
acting on its external momenta. On the other hand, as has been mentioned in Sec. 1.2, this
formula does not yet fully clarify the structure of the radiative jet functions. In contrast to
the internal emission, these are universal, and for soft q, their structure can be probed using
Grammer and Yennie’s KG decomposition. We will turn to this task in Sec. 3.3.

For completeness, we show next how we can adapt Low’s insight to analyze the nonleading
radiative amplitude Eµ in (74). This amplitude could in fact be included in a higher power
treatment of Low’s theorem, which would include higher order jets such as the radiative
fsss-jet shown in Fig. 28, and also depend on the higher order subleading terms in the hard
part.

3.2.2 Photon emission beyond O(�0)

Consider first the class of diagrams with a single fs-jet. For the diagrams in Fig. 17(b), the
factorized amplitude consists in the fs-jet, the leading jets, and the hard part. As shown
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Figure 28: An example of a higher order jet required for a consistent treatment of the
radiative amplitude Eµ in (74).

in Eqs. (73) and (74), a soft photon can be emitted from any of those components. The
corresponding radiative amplitudes from Eqs. (73) and (74) have the expressions

M ext:fs,µ
fs =

nX

i=1

 
Y

j 6=i

Jf (pj)

!
Jfs,µ(pi + q � k̂, k̂, q)⌦Hfs

i (p̂1, ...; p̂i + q � k̂, k̂; ..., p̂n) , (81)

when radiating a photon from the fs-jet, and

M ext:f,µ
fs =

nX

i=1

X

l 6=i

 
Y

j 6=i,l

Jf (pj)

!
Jf,µ(pl + q, q)Jfs(pi � k̂, k̂)⌦Hfs

i (p̂1, ..., p̂l + q, ...; p̂i � k̂, k̂; ..., p̂n) ,

(82)

when radiating from a leading jet, and finally

M int,µ
fs =

nX

i=1

 
Y

j 6=i

Jf (pj)

!
Jfs(pi � k̂, k̂)⌦Hfs,µ

i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n, q) (83)

when radiating from the hard part. This factorization of photon emission is illustrated in
Fig. 26.

The three radiative amplitudes we have identified are related by the Ward identity, which
takes the form

qµM
ext:fs,µ
fs + qµM

ext:f,µ
fs + qµM

int,µ
fs = 0 . (84)

We recall that this Ward identity applies to each diagram represented in Fig. 26 individually
and there is no need to consider all diagrams contributing to an amplitude at once.

50



The three special cases of the jet Ward identity from Fig. 27 that will be of use to us can
be stated as follows using our notation

qµJ
fs,µ(pi + q � k̂, k̂, q) = eiJ

fs(pi � k̂, k̂) ,

qµJ
fss,µ(pi + q � k̂1 � k̂2, k̂1, k̂2, q) = eiJ

fss(pi � k̂1 � k̂2, k̂1, k̂2) ,

qµJ
fff,µ(pi + q � k̂1 � k̂2, k̂1, k̂2, q) = eiJ

fff (pi � k̂1 � k̂2, k̂1, k̂2)

+ eiJ
fff (pi + q � k̂1 � k̂2, k̂1 � q, k̂2)

� eiJ
fff (pi + q � k̂1 � k̂2, k̂1, k̂2 � q) , (85)

with ei the charge of the ith scattering fermion or antifermion. On the left hand side in each
case, we choose to route the photon momentum q into the hard function via the through-
going fermion line that becomes the external particle. The momenta k, k1, and k2 are
collinear momenta that become part of a loop once the jet is attached to its corresponding
hard part. These Ward identities apply whether the scalars, which are neutral, are soft or
collinear.

Considering an fs-jet, the jet Ward identities allow us to expand (84) and cast it into
the explicit form

nX

i=1

 
Y

j 6=i

Jf (pj)

!
Jfs(pi � k̂, k̂)⌦ qµH

fs,µ
i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n, q)

= �
nX

i=1

 
Y

j 6=i

Jf (pj)

!
eiJ

fs(pi � k̂, k̂)⌦Hfs
i (p̂1, ...; p̂i + q � k̂, k̂; ..., p̂n)

�
nX

i=1

X

l 6=i

 
Y

j 6=i,l

Jf (pj)

!
elJ

f (pl)J
fs(pi � k̂, k̂)⌦Hfs

i (p̂1, ..., p̂l + q, ...; p̂i � k̂, k̂; ..., p̂n) .

(86)

The next step is to Taylor expand the nonradiative hard parts to O(�2) in order to deduce
the radiative hard part Hfs,µ

i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n, q) to O(�0). We will suppress any con-
sideration of the transition from the radiative kinematics to an elastic configuration such as
the one we considered in detail in Sec. 1.2. Our analysis has shown that the ⇠i’s of Burnett
and Kroll can be constructed in general and will not a↵ect the formula we obtain for the
internal amplitude. The expansion of the hard part then, is

Hfs
i (p̂1, ...; p̂i + q � k̂, k̂; ..., p̂n) =

Hfs
i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n) + qµ

@

@p̂µi
Hfs

i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n) +O(�4) , (87)
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for the photon attached to the fs-jet i, and,

Hfs
i (p̂1, ..., p̂l + q, ...; p̂i � k̂, k̂; ..., p̂n) =

Hfs
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Hfs

i (p̂1, ..., p̂l, ...; p̂i � k̂, k̂; ..., p̂n) +O(�4) , (88)

when l 6= i is a leading power jet. The derivative above acts on all the components of each
p̂i for i = 1, . . . , n. These are treated as variables pµi that the hard part depends upon for
the sake of the di↵erentiation. Once the di↵erentiation has been performed, the vectors pµi
are evaluated at the collinear configurations p̂µi of the corresponding pi’s.

Substituting the expansions (87) and (88) into (86), we obtain
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+O(�4) . (89)

After summing over the index l, the first term in the square brackets above vanishes by charge
conservation, as in the standard Low analysis. This cancellation confirms that contributions
from the hard part associated with fs-jets are higher order in �, and decouple from the use
of the Ward identity for the leading jets. The natural solution to Eq. (89) for the radiative
hard part is

Hfs,µ
i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n, q) = �

nX

l=1

el
@

@p̂lµ
Hfs

i (p̂1, ...; p̂i � k̂, k̂; ..., p̂n) +O(�2) . (90)

In fact, (90) is the full solution to Eq. (89). Additional gauge invariant terms would require
the radiative hard part to have enhancements in � – see the discussion of Eq. (19). These
are not allowed since any dependence of the hard part on q or m comes as a subleading
correction to the hard exchanges.

Since f@s-jets correspond to higher order contributions to fs-jet amplitudes, they are
treated using the same steps. Similarly, the analysis for photon emission from diagrams with
a single fss-jet is virtually unchanged. We need only include two collinear scalar momenta
k1 and k2 rather than a single one. The final result is

Hfss,µ
i (p̂1, ...;p̂i � k̂1 � k̂2, k̂1, k̂2; ..., p̂n, q)
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For diagrams with fff -jets, the analysis involves one additional step because the corre-
sponding jet Ward identity has three terms as shown in Eq. (85) and Fig. 27. The momentum
flow through the jets enables us to shift the collinear loop integration momenta, after which
we obtain

Hfff,µ
i (p̂1, ...; p̂1 � k̂1 � k̂2, k̂1, k̂2; ..., p̂n, q) =

�
nX
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In the above, the partial derivatives @
@k̂lµ

only act on the explicit dependence of Hfff
i on k̂1

and k̂2. That is, there is no contribution to the derivative from the implicit dependence of
Hfff

i on k̂1 and k̂2 through p̂i � k̂1 � k̂2.
This concludes our description of photon emission at orders beyond O(�0). In the next

section, we return to Eq. (80) and analyze the external amplitude using the KG decompo-
sition.

3.3 The KG decomposition

By making use of the jet Ward identities once again, it is possible to unravel some structure
in the small q expansion of the radiative jet functions. Following del Duca [14], who drew
inspiration from Grammer and Yennie [49], we consider the two tensors

K ⌫
i µ ⌘ (2pi + q)µ q⌫

2pi · q + q2
,

G ⌫
i µ ⌘ g ⌫

µ �K ⌫
i µ . (93)

We will use the K and G tensors to decompose the soft photon polarization ✏µ(q) into
two complementary polarizations. It will turn out that the K polarized photon emission
amplitude contains all the leading O(��2) terms while the G polarized photon amplitude
supplies transverse corrections that begin at O(��1). Note that transversality of G polarized
photons, qµ G ⌫

i µ = 0, follows immediately from (93).
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So far, we have only been considering the stripped amplitude Mµ, that is, we have derived
the photon emission amplitude with the photon polarization tensor ✏µ(q) stripped away. For
the purposes of applying the KG decomposition, it is useful to reintroduce this polarization
tensor.

Consider first the emission of a K polarized photon. For definiteness, we will illustrate
our argument using fss-jets, although the same conclusion applies to any type of jet. The
relevant identity is

✏µ(q)K ⌫
i µ Jfss

i,⌫ (pi + q � k̂1 � k̂2, k̂1, k̂2)⌦Hfss
i (p̂i + q � k̂1 � k̂2, k̂1, k̂2)

= ei
✏ · (2pi + q)

2pi · q + q2
Jfss
i (pi � k̂1 � k̂2, k̂1, k̂2)⌦Hfss

i (p̂i + q � k̂1 � k̂2, k̂1, k̂2) . (94)

This result follows immediately from the application of the jet Ward identity for fss-jets, as
shown in (85). Since the infrared degree of divergence of a nonradiative fss-jet is � = 2, the
above formula confirms that the emission of a K polarized photon starts at O(�0). The same
conclusion holds when attaching the soft photon to an f@s-jet, an fff -jet, or to any jet in
diagrams containing either two fs -jets or two fs-jets as these all have degree of divergence
� = 2 prior to the soft photon insertion. For a diagram with a single fs-jet, the emission of
a K polarized photon is O(��1) since fs-jets have degree of divergence � = 1 in the massive
case. Finally, following the same reasoning, the emission of a K photon from a leading jet
is O(��2). Therefore, the K polarization tensor does contain a leading order term, which is
derived purely from the application of the jet Ward identity. The question is then whether
a leading term also appears in the complimentary polarization.

A G polarized photon is connected to the radiative jet function through the insertion of
a field strength tensor operator,

✏µ(q)G ⌫
i µ =

(2pi + q)µ
2pi · q + q2

F µ⌫(q, ✏) , (95)

where F µ⌫(q, ✏) = qµ✏⌫(q) � q⌫✏µ(q). An important property of the G polarization tensor
following from this form is that it annihilates the scalar photon vertex,

✏µ(q)G ⌫
i µ (2pi + q)⌫ = 0 . (96)

In particular, this implies that ✏µ(q)G ⌫
i µ pi⌫ = O(q). An analysis of the general loop inte-

grand for jet functions shows that their leading term is always proportional to pi⌫ , where pi
is the external momentum of the jet. The first subleading term is suppressed by at least one
power of � in the massive fermion case. Since contracting pi⌫ with the G polarization tensor
yields a suppression of �2, we find that the emission of a G polarized photon is suppressed
by at least one power of � relative to the corresponding K polarized emission [14].
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Using the techniques of Sec. 2.2.2, we found that attaching a soft photon to a nonradiative
diagram with an f@s, fss, or fff -jet, as well as to a diagram with two nonradiative fs or
fs-jets makes the diagram at most logarithmic in q. Hence, emission of a G photon starts
at O(�) when attaching a soft photon to any of those diagrams, which is beyond the order
of accurary of our extension of Low’s theorem to high energies. When a diagram only has
a single fs-jet, the emission of a G photon will start at O(�0). Finally, for leading jets, G
photon emission begins at O(��1) when considering massive fermions.

We mention that using an on-shell renormalization scheme further simplifies external
emission amplitudes. It is straightforward to verify that in the tree level radiative leading
jet, G photon emission starts at O(�0), and the leading O(��2) term is entirely contained
within the K photon emission amplitude. By definition, an on-shell scheme eliminates the
q ! 0 limit of the radiative loop diagrams. Consequently, all leading O(��2) behavior is
contained in the tree level diagram and fully accounted for by K photon emission. Further,
G photon emission begins at O(�0) in this scheme.

We now have all the required pieces to apply the KG decomposition to all external
radiative terms in (80) and thereby complete the derivation of the final form of our extension
of Low’s theorem. It is useful to separate the soft photon amplitude into three contributions:
the internal emission amplitude, the external emission amplitude for K polarized photons,
and the external emission amplitude for G polarized photons,

✏ ·M = ✏ ·Mint + ✏ ·MK
ext + ✏ ·MG

ext . (97)

The internal emission amplitude simply follows from contracting the photon polarization
tensor with the first term in (80),

✏ ·Mint = �
 

nY

i=1

Jf
i

!
⌦

nX

l=1

el ✏
µ @

@p̂0µl
H

����
P0

+O(�) , (98)

where as above, P0 indicates that we are evaluating the derivative at a set of momenta
constructed from the procedure described in Sec. 1.2.

The KG decomposition allows us to extract the leading O(��2) term from the radiative
jet functions. This leading term is contained within the complete K polarized emission
amplitude, which is

✏ ·MK
ext =

nX

i=1

 
nY

j=1

Jf
j

!
⌦ ei

✏ · (2pi + q)

2pi · q + q2
H(p̂i + q)

+
nX

i=1

X

✓2⇥1

 
Y

j 6=i

Jf
j

!
J✓
i ⌦

nX

h=1

eh
✏ · (2ph + q)

2ph · q + q2
H✓

i (p̂h + q)
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+
1

2

X

i 6=j

X

✓2⇥2

 
Y

l 6=i,j

Jf
l

!
J✓
i J

✓
j S

✓ ⌦
nX

h=1

eh
✏ · (2ph + q)

2ph · q + q2
H✓✓

ij (p̂h + q)

+O(�) , (99)

where again ⇥1 = {fs, f@s, fss, fff} and ⇥2 = {fs, fs}, and S✓ = 1 if ✓ = fs and S✓ = S
if ✓ = fs. In each term, the soft photon polarization is coupled to a tree level leading factor
reminiscent of early treatments of the soft theorem [1–3]. We have indicated which argument
of the hard parts is shifted by q. One could extend the construction of the ⇠i’s and ⌘i’s of Sec.
1.2 and expand the hard parts. However, corrections of order O(�2) would only be required
for the hard part corresponding to the leading jets, H(. . . , p̂i + q, . . . ).

Corrections to the soft theorem also appear as separately transverse emission amplitudes
which couple to a tree level leading order factor through the field strength tensor in mo-
mentum space. These are always suppressed by at least one power of � relative to the
corresponding K polarized photon emission amplitude. Therefore, at our order in �, only
leading and fs-jets are relevant for these corrections, which are given by

✏ ·MG
ext =

nX

i=1

X

l 6=i

 
Y

j 6=i,l

Jf
j

!
(2pl + q)µ
2pl · q + q2

F µ⌫(q, ✏) Jf
l,⌫J

fs
i ⌦Hfs

i (p̂l + q)

+
nX

i=1

 
Y

j 6=i

Jf
j

!
(2pi + q)µ
2pi · q + q2

F µ⌫(q, ✏)
⇣
Jf
i,⌫ + Jfs

i,⌫

⌘
⌦Hfs

i (p̂i + q)

+O(�) . (100)

Equations (97)-(100) taken together make up our final version of Low’s theorem.
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4 Loop Corrections to the Soft Graviton Theorem

In this Chapter, we use the gravitational Ward identity [9] to derive an extension of the
soft graviton theorem at high energies that incorporates loop corrections to arbitrary order
in Yukawa and scalar theory. Just like for photons, we build the radiative amplitude by
considering all points of insertion of the soft graviton into an elastic amplitude diagram.
Our starting point is the expansion of the elastic amplitude into factorized contributions of
order going up to O(�4). Because the graviton polarization tensor has two spacetime indices,
we will find that the deduction of the radiative hard part from the external amplitude is
more involved. We will also, as in Sec. 1.2, provide a careful treatment of the transition
between radiative and elastic external kinematics.

Before delving into the proof of our soft graviton theorem, however, we take the time
to derive the gravitational o↵-shell Ward identity, which is analogous to the o↵-shell Ward
identity shown in Fig. 27 for photons, and will be an important tool in our proof.

4.1 Diagrammatic derivation of the o↵-shell gravitational Ward
identity in scalar and Yukawa theory

Diagrammatically, the o↵-shell Ward identity can be expressed as in Fig. 29 [70–73]. The
box vertices represent the emission of a “ghost” graviton – see Fig. 30. Their corresponding
expressions are given by

W ⌫
fG =



2

✓
p⌫ � 1

2
qµ�

µ⌫

◆
,

W ⌫
sG =



2
p⌫ , (101)

where �µ⌫ = 1
4
[�µ, �⌫ ]. The vertex WfG acts on the left of a string of fermion propagators if

the fermion arrows point towards the box in the corresponding diagram. Conversely, WfG

will act to the right of a string of fermionic propagators if the fermion arrow points away
from the box in the diagram.

We give a sketch of how the o↵-shell Ward identity is derived diagrammatically. This
proof clearly shows why the Ward identity holds at fixed loop momenta. The key identity
we use is the simplest example of the Feynman identity,

qµV
µ⌫
ffG =

✓
i

4

◆✓
1

2
�⌫(p2 � (p+ q)2)

+
1

2
p⌫((1� A)(/p�m)� (1 + A)(/p+ /q �m))
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= + −+ − −

Figure 29: The general o↵-shell gravitational Ward identity. This identity holds regardless
of whether the external particles are collinear, hard, or soft.

p

q

p

q

p

q

p

q

(a) (b) (c) (d)

Figure 30: The box vertices represent the emission of a ghost graviton after the graviton
momentum q is contracted with the radiative amplitude. Vertices (a) and (b) are denoted
W µ

fG and have the same expression. In (a), WfG acts to the left of the fermion propagators,
whereas in (b), WfG acts on the right. Likewise, vertices (c) and (d) also have the same
value, and are both denoted W µ

sG.

+
1

2
(p+ q)⌫((1 + A)(/p�m)� (1� A)(/p+ /q �m))

◆
, (102)

for a fermion emitting a graviton, and

qµV
µ⌫
ssG =

✓
i

2

◆�
(p+ q)⌫p2 � p⌫(p+ q)2

�
, (103)

for a scalar emitting a graviton. The incoming fermion/scalar momentum is taken to be p+q
while the outgoing momentum is p – in Fig. 20, this corresponds to making the replacements
p 7! p+ q and p0 7! p. The parameter A can take the value 1 if we normalize our Lagrangian
with the square root of the determinant of the vierbein field

p
e, or 2 if we opt for

p
g, where

g is the determinant of the metric. The change in the normalization of the Lagrangian is
compensated by a change in the normalization of the fermion field [67,68].

To illustrate how these identities are used to prove the o↵-shell Ward identity, we evaluate
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the four amplitudes shown in Fig. 31. Note that the ends of the external particle lines are
not reduced.

q

p p + k + q

k

p + k

q

p p + k + q

k

p + q

q

p p + k + q

k

k + q

q

p p + k + q

k

(a) (b) (c) (d)

Figure 31: The amplitudes in (a), (b), (c), and (d) will be denoted by qµMµ⌫
a , qµM

µ⌫
b , qµMµ⌫

c

and qµM
µ⌫
d , respectively.

The amplitudes appearing in Fig. 31 have the expressions,

qµM
µ⌫
a =

i

/p�m

⇥
✓
i
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2
�⌫(p2 � (p+ q)2)
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, (104)

qµM
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i
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i
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i
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✓
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�⌫((p+ k)2 � (p+ k + q)2)

+
1
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, (105)
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qµM
µ⌫
c =

i

/p�m
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✓
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, (106)

and

qµM
µ⌫
d =
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/p�m

✓�ig
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Aq⌫

i

/p+ /k + /q �m

i

k2
. (107)

Summing qµMµ⌫
a , qµM

µ⌫
b , qµMµ⌫

c , and qµM
µ⌫
d , and performing some routine algebra, we
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Using the relation

(/p+m)�⌫ + �⌫(/p+ /q �m) = (2p+ q)⌫ +
1

2
[�⌫ , /q] , (109)

and defining �µ⌫ ⌘ 1
4
[�µ, �⌫ ], we find
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where we have set A = 2. This is exactly the result we expect from the o↵-shell Ward
identity.

To extend our approach to all diagrams, including those with arbitrarily many loops, we
need to apply (102) successively to adjacent graviton insertions along a fermion line. The
resulting cancellations along each fermion line will give us two terms, one with a + sign
and an operator WfG acting to the right of the corresponding series of fermion propagators,
and one with a � sign and a WfG operator acting to the left of the corresponding series
of fermion propagators. If we need to capture nested cancellations along a fermion loop, a
shift in loop momentum by q is required. The treatment of scalars is entirely analogous.
This diagrammatic argument shows that the Ward identity holds separately for each pinch
surface, since we are working at fixed loop momenta, except in the occurrence of a fermion
or scalar loop. Note that a shift of the loop momentum by O(q) does not mix collinear and
soft loop momenta.

4.2 Adapting Low’s analysis to factorized amplitudes

Our goal is to extend Low’s analysis to gravity for a factorized amplitude. Since the pinch
surfaces of the radiative amplitude are in correspondence with the reduced diagrams of
the elastic amplitude, it will be enough to show how this is done by considering the reduced
diagram with n external leading jets. The extension of Low’s analysis to diagrams containing
nonleading jets involves repeated use of the o↵-shell Ward identity discussed in Sec. 4.1, and
follows the lines of the argument we are about to present.

As in our treatment of Low’s theorem in Sec. 1.2, we emphasize the necessity of using
the construction of Burnett and Kroll [2] to transition between the radiative and elastic
kinematics. This point has mostly been overlooked in the litterature on the soft graviton
theorem [12]. Recall that the issue resides in the expansion of the elastic amplitude in powers
of q,

Mel(p1, . . . , pi + q, . . . , pn) =

Mel(p1, . . . , pn) + q↵
@Mel

@p↵i
(p1, . . . , pn) +

1

2
q↵q�

@2Mel

@p↵i @p
�
i

(p1, . . . , pn) +O(q3) . (111)

The momenta p1, . . . , pn satisfy momentum conservation in the form

p1 + · · ·+ pn = �q , (112)

assuming all external momenta are outgoing. The elastic amplitude Mel in (111), however,
is defined on the locus of momenta p01, . . . , p

0
n satisfying the constraint

p01 + · · ·+ p0n = 0 . (113)
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It thus appears that (111) is ill defined. The solution, following [2, 12], is to define a set
of elastic momenta p01, . . . , p

0
n that are shifted from the radiative configuration p1, . . . , pn by

deviation vectors ⇠i(q) according to

pi = p0i + ⇠i for i = 1, . . . , n . (114)

Momentum conservation imposes the requirement that

nX

i=1

⇠i = �q . (115)

Additionally, we demand that ⇠i(q) = O(q) for all i = 1, . . . , n and that the p0i be on-shell.
In Sec. 1.2, we show explicitly how to construct the ⇠i’s to O(q). The extension of this
construction to O(q2) is straightforward.

The crux of Low’s argument is the use of the on-shell gravitational Ward identity [9],

qµMµ⌫ = qµ(Mext
µ⌫ +Mint

µ⌫ ) = 0 , (116)

to relate the external emission amplitude to the internal amplitude. In the context of factor-
ized diagrams, the external amplitude is defined as the amplitude to emit a graviton from a
jet, whether leading or nonleading. The internal emission, on the other hand, consists in the
amplitude to emit the graviton from the hard part, or the soft cloud, if it is present in the
diagram at hand. It is important to bear in mind that the Ward identity holds separately
for each reduced diagram – see Sec. 4.1. This property of the Ward identity ensures that it
is legitimate to consider individually each of the factorized amplitudes identified in Sec. 2.3.

We will also use the o↵-shell Ward identity for jet functions that we derived in Sec. 4.1.
The result is spin-dependent in the external line, and is given for leading jets by [70–73]

qµJs
µ⌫(pi, q) = Js(pi) pi,⌫ for scalars, and

qµJf
µ⌫(pi, q) = Jf (pi)

✓
pi,⌫ � 1

2
qµ�(i)

µ⌫

◆
for fermions, (117)

where the spinor indices of the matrix �(i)
µ⌫ = 1

4
[�µ, �⌫ ] are summed with those of the ith jet

function Jf (pi) and the corresponding indices in the hard part. This form is valid for the
case of an outgoing graviton and requires an overall minus sign for an incoming graviton.

We begin with the case of external scalars. In the case of diagrams with leading jets only,
the basic factorization we use as a starting point is

Mel =

 
nY

i=1

Js(pi)

!
⌦H(p1, . . . , pn) ,
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Mµ⌫
ext =

nX

i=1

 
Y

j 6=i

Js(pj)

!
Js,µ⌫(pi, q)⌦H(p1, . . . , pi + q, . . . , pn) ,

Mµ⌫
int =

 
nY

i=1

Js(pi)

!
⌦Hµ⌫(p1, . . . , pn, q) . (118)

This factorization is illustrated in Fig. 32. Since bothH(p1 . . . pi+q . . . pn) andHµ⌫(p1 . . . pn, q)
are fully infrared finite, we can safely expand them in powers of q at fixed values of the pi,
so long as the internal lines are o↵-shell by a scale set by the invariants formed by the pi · pj,
i 6= j, and all loop integrals converge independently of q. We recall that this condition fails
in the external jet subdiagrams in general, where, when loop momenta become collinear to
pi, we cannot expand around qµ = 0. Once the jets are factored, however, the remaining
hard subdiagrams can be expanded in powers of q since the soft graviton insertion will not
alter the power behavior of their loop integrals – see the discussion in Sec. 2.4.

extM intM

q

q

Figure 32: The radiated graviton can be emitted either from an outgoing jet or the internal
hard function.

The objective is to solve the two constraints qµMµ⌫
int = �qµMµ⌫

ext and q⌫Mµ⌫
int = �q⌫Mµ⌫

ext

for the radiative hard part Hµ⌫ . Our approach is motivated by the elementary methods for
solving linear equations. Namely, we first find a particular solution Hµ⌫ that solves both
constraints simultaneously. This will be done by solving one constraint and demanding that
Hµ⌫ be symmetric. Any other simultaneous solution to the two constraints must di↵er from
Hµ⌫ by a gauge invariant quantity Bµ⌫ obeying qµBµ⌫ = 0 and q⌫Bµ⌫ = 0. We will then
show that, under the condition that the hard part may not contain any singularity in q, such
a Bµ⌫ must vanish to O(q).
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We now write out each term in the Ward identity (116) explicitly using (117),

qµMµ⌫
ext =
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and see that

qµH
µ⌫(p1, . . . , pn, q) = �

nX
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p⌫iH(p1, . . . , pi + q, . . . , pn) , (120)

with H the hard function of the elastic amplitude as in (118).
Next, we may proceed with the expansion about the elastic configuration following (114)

and (115). Consequently, the hard part is no longer expanded only in q, but also in the ⇠i’s,
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(121)

Substituting this into (120), we find

qµH
µ⌫(p1, . . . , pn, q) = q⌫
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(122)

where we have used the kinematics relations (113) to (115). The “·” notation stands for a
contraction between matching Minkowski indices, with the understanding that q is always
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contracted with @
@pi

and ⇠j is always paired with @
@pj

. For example, (q⇠j)· @H
@pi@pj

= q↵⇠�j · @H
@p↵i @p

�
j

.

Factoring out qµ from (122), we obtain a solution to the Ward identity (122),

H̃µ⌫ = ⌘µ⌫
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. (123)

It is not yet clear, however, whether H̃µ⌫ gives the full radiative hard part. We could,
for instance, be missing a separately gauge invariant contribution. Further, we require the
radiative hard part to be symmetric under interchange of µ and ⌫, which is not immediately
obvious from (123). We will return to the issue of separately gauge invariant contributions
below and focus on the question of symmetry first.

For scalars, angular momentum conservation implies

nX
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Ji,↵�H =
nX

i=1
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!
H = 0 , (124)

so that the second term in (123) is actually symmetric under interchange of µ and ⌫. The
operator Ji is the angular momentum operator from (23). The clearest symmetrization of
the ⇠i-independent O(q) term is
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, (125)

where, when contracting with qµ, the second and third terms cancel and, hence, we recover
(122). We reiterate that we are enforcing the symmetry of Hµ⌫ in order to construct a
particular simultaneous solution to both qµMµ⌫

int = �qµMµ⌫
ext and q⌫Mµ⌫

int = �q⌫Mµ⌫
ext. The

uniqueness of this solution will be shown at the end of this subsection. This leaves us with
the O(�2) ⇠i-dependent terms,
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which can also be symmetrized using Eq. (124).
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In summary, we find that the extension of the soft graviton theorem including the ⇠i’s of
Burnett and Kroll is

Hµ⌫ = ⌘µ⌫
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(127)

where, again, (124) ensures the symmetry in µ and ⌫.
In the case of fermions, the relevant jet Ward identity is given in (117),

qµJ
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. (128)

Applying this Ward identity to the factorized form of the radiative amplitude with leading
fermionic jets only, we find that compared with the scalar case, the radiative hard part
contracted with qµ has only the following additional terms,
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, (129)

which are 1
2
qµ�

µ⌫
i times the terms in (121) of order up to O(q).

Working first at O(q) in the fermionic version of (122),
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From angular momentum conservation, we now have the relation
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where Ji is the angular momentum operator from (23). This allows us to rewrite (130) as
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Factoring out qµ yields the symmetric combination
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which is the same as in the scalar case (127).
Consider next the O(q2) terms in qµHµ⌫ ,
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Using angular momentum conservation, it is possible to reorganize the ⇠i-dependent terms
using steps similar to those in the scalar case. The result is that the O(q2) terms above
become
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Factoring out qµ from this expression, we may finally write down the full radiative hard part
when all external particles are fermions,

Hµ⌫ = ⌘µ⌫
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where the ⇠i-dependent terms have been symmetrized using (131). We will address the
relation of this result to the CS formula (21)-(23) in Sec. 4.4.

In order to complete our derivation of the radiative hard parts (127) and (136), we show
that any supplementary contributions Bµ⌫ to Hµ⌫ statisfying qµBµ⌫ = 0 and q⌫Bµ⌫ = 0 must
vanish to this order. This is equivalent to showing the uniqueness of our solution Hµ⌫ to the
equations qµMµ⌫

int = �qµMµ⌫
ext and q⌫Mµ⌫

int = �q⌫Mµ⌫
ext.

The most general symmetric tensor structure for Bµ⌫ takes the form
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The p01, . . . , p
0
n dependence of Cij(q), Di(q), and E(q) are left implicit. There are no singu-

larities in q since we are assuming Hµ⌫ contains only hard exchanges, which enables us to
Taylor expand it in powers of q.

Taylor expanding Bµ⌫ in powers of q, we obtain
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µ⌫ , (138)

where
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Bµ⌫ must be gauge invariant at each order in q. Therefore,
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Since B(0)
µ⌫ has no q dependence, this implies that B(0)

µ⌫ = 0. On the other hand, B(1)
µ⌫ does

depend on q, so the implication is not immediate. We can, however, rewrite B(1)
µ⌫ as follows
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with
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Notice that unlike B(1)
µ⌫ , B

(1)
↵µ⌫ is independent of q. Now, by gauge invariance, we know that

q↵qµB(1)
↵µ⌫ = 0 . (143)

Considering each value of ⌫ independently, the above condition implies that B(1)
↵µ⌫ is anti-

symmetric in its first two indices, that is

B(1)
↵µ⌫ = �B(1)

µ↵⌫ . (144)

Of course, the same argument yields the analogous antisymmetry property in the first and
third indices. Further, we recall that Bµ⌫ is symmetric in µ and ⌫, a property which necessar-

ily makes B(1)
↵µ⌫ symmetric in its second and third indices. Combining all of these properties,

we obtain the following chain of interchanges of indices

B(1)
↵µ⌫ = �B(1)

µ↵⌫ = �B(1)
µ⌫↵ = B(1)

⌫µ↵ = �B(1)
↵µ⌫ , (145)

from which we deduce that B(1)
↵µ⌫ = 0 and hence Bµ⌫ vanishes up to order O(q1). Our results

Eqs. (127) and (136) are therefore the full graviton emission amplitudes from the hard parts
with external scalars and fermions respectively, even in the o↵-shell scenario. Note that the
entire graviton emission amplitude is gauge invariant, but the presence of singular terms in
q prevents the argument we have just described from showing it has to vanish as well.

4.3 Graviton emission from nonleading Jets

Having discussed the derivation of the radiative hard part for diagrams with leading jets
only, we move on to graviton emission from nonleading jets. Up to O(�2), the nonleading
factorized contributions to the elastic amplitude, as well as the leading term, are all gathered
in Eq. (55). The factorized contributions to the elastic amplitude at O(�3) and O(�4) are
listed in Tables 2, 3, and 4.

Consider the contributions appearing in Eq. (55). To generate radiative contributions
from these factorized terms, we need to consider attaching a graviton to each factor sep-
arately: the jet functions, the soft cloud, and the hard part. This results in the generic
radiative amplitude,
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where ⇥1 = {fs, fss, fff, f@s} and ⇥2 = {fs, fs} are two sets of jet labels. We define
S✓ ⌘ 1 if ✓ = fs, and S✓ ⌘ Sij if ✓ = fs. Also, we set S✓

µ⌫ ⌘ 0 if ✓ = fs, and S✓
µ⌫ = Sij,µ⌫

if ✓ = fs. As in Sec. 2.3, in the jet labels, the superscripts f , s, and s stand for a collinear
fermion/antifermion, a collinear scalar, and a soft scalar respectively. The @ symbol in a jet
label refers to the higher dimensional jet function obtained when expanding the hard part
in the transverse component of a loop momentum.

To derive the radiative hard parts, we need to apply the general o↵-shell Ward identity
expressed diagrammatically in Fig. 29 of Sec. 4.1. This was done in Sec. 3.2.2 in the case of
photons. The main di↵erence in this case is that gravitons can also couple to scalars, and
in particular, it is possible to emit a graviton from the soft cloud, as shown in Fig. 33. This
diagram is, in fact, the only instance of graviton emission from a soft cloud to O(q). All
other diagrams with a soft cloud identified in Sec. 2.2.2 are of order O(�3) or O(�4). Since
attaching a soft graviton to the soft cloud does not lower the scaling power � of the diagram
(see Sec. 2.4), emitting a graviton from the soft cloud of these diagrams would not generate
a diagram of order O(�2) or less, as is required to contribute to the soft graviton theorem.
The possibility of emitting a graviton from a soft cloud makes contact with the emission of
soft gluons in gauge theory, which is the subject of ongoing work, some of which is presented
in [28–30,46, 47].

Applying the o↵-shell Ward identity to (146) in order to deduce the radiative hard parts
yields formulas of the form

H✓
µ⌫ = O@,�µ⌫H✓ , (147)

where O@,�µ⌫ is an operator built from �µ⌫ and derivatives with respect to external momenta.
This is similar to Eqs. (127) and (136), although the number of terms will be greater due to
the increased number of collinear and soft legs in nonleading jets.

For factorized contributions of order higher than O(�2), as those listed in Tables 2 to 4,
one need only consider graviton emission from the jets, since emitting a graviton from the
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Figure 33: Since the graviton can couple to scalars, it is possible to emit a graviton from the
soft cloud at O(�2).

soft cloud or hard part would leave the scaling power of the diagram unchanged, and hence
yield a contribution of order too high to correct the soft graviton theorem.

4.4 Low energy limit

Suppose that we are interested in graviton emission in the regime where Low’s theorem
applies. Specifically, we consider the case of external fermions of mass m 6= 0 and take the
limit q ⌧ m2

E , where E is the center of mass energy. Then the elastic amplitude may be
expanded in q when applying Low’s original analysis and there is no need to consider graviton
emission from the jets J i(pi). We can simply split the amplitude Mµ⌫(p1 . . . pn, q) into the
emission from the external and the internal lines. In (118), this corresponds to making the
replacement H 7! Mel(p1 . . . pn). Because we have massless scalars, however, the vertex
function through which gravity couples to matter has a branch cut starting at q = 0. This
branch cut is associated with the annihilation of the graviton into two soft scalars and will
be shown explicitly in Sec. 4.5.2. The result of these prescriptions, then, is the expansion
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in which all q-dependence is explicit to O(q) and the ⇠j’s have been omitted for brevity.
In the external emission, the function VffG

µ⌫ combines the external spinor, the fully dressed
fermion-graviton vertex, and the numerator of the external fermion propagator. At low
energies, we have that � = m/E ⇠ 1 and thus a new small scale lambda must be identified
if we are to retain the soft scaling q = O(�2). In this case, q << m2/E and the conditions
for applying Low’s original analysis are met.

Recalling the definition of the angular momentum operator, (23), we can rewrite Eq. (148)
as the basic CS result, Eqs. (21)-(23), provided we replace the external emission function
VffG
µ⌫ by its tree level expression and consider an on-shell physical graviton. In particular,

the CS formula does receive loop corrections even in the low energy regime. Note that for
fermions, to obtain the “double J ” form at O(q) explicitly, we require a term of the form

q⇢q��(i)
⇢µ�

(i)
�⌫Mel which is both gauge invariant and nonsingular. We have shown that such

terms cannot be part of Hµ⌫ . A simple exercise, however, shows that
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which we will see occurs as a gauge invariant contribution to the external amplitude. This
allows us to make contact with the CS result shown in Eqs. (21)-(23).

4.5 External emission

4.5.1 KG decomposition

Having investigated the low energy region and the relation of our results (127) and (136) to
the CS formula (21)-(23), we now return to the high energy region. In this section, we will
be specifically interested in the structure of graviton emission from the jet functions.

Following Del Duca [14] and drawing inspiration from Grammer and Yennie’s decompo-
sition [49], it is possible to separate the radiative jet functions into a gauge invariant piece
and a leading part that obeys the o↵-shell Ward identity (117). For the purpose of analysis,
we introduce the notation

Jf,µ⌫(p, q) = Jf,µ⌫
L (p, q) + Jf,µ⌫

T (p, q) , (150)
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where for simplicity we have made the replacement pi 7! p and opted to use the leading
fermionic jet as an illustrative example. The extension of our analysis to other jets follows
the same line of reasoning. The jet functions Jf,µ⌫

L and Jf,µ⌫
T satisfy,
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Now, in the spirit of Del Duca’s analysis [14], we introduce projection operators K⇢�
µ⌫ and
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L and Jµ⌫
T . Explicitly, this translates into the requirements
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Of course, this definition is ambiguous as one could always add a transverse piece to Jf,µ⌫
L

while maintaining these conditions.
To identify K and G, we first observe that they must add to a product of Kronecker

deltas,
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Drawing inspiration from our work on photons in Sec. 3.3, we define the tensor
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Expanding the above product invites us to define
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Notice that since qµG⇢
µ = 0, we necessarily have thatG⇢�

µ⌫ is transverse to q when contracted

with the free indices of Jf
T,µ⌫ from Eq. (152). Thus, G⇢�

µ⌫ has the right property for isolating
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a transverse component of the jet function Jf
µ⌫ . For completeness, we should also verify that
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from which it immediately follows that
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Suppose now that we have another set of tensors K̃⇢�
µ⌫ and G̃⇢�

µ⌫ that split Jf
µ⌫(p, q)

into a piece obeying the o↵-shell Ward identity and another piece transverse to qµ. Then we
have
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and therefore the di↵erence between K⇢�
µ⌫ and K̃⇢�

µ⌫ can be absorbed into G⇢�
µ⌫ . Hence,

the tensors K⇢�
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µ⌫ are unique up to the addition of a transverse piece to Jf,µ⌫
L and

Jf,µ⌫
T .
The application of parity to Jf,µ⌫(p, q) shows that the only gamma matrix structures

that can be used in its construction are 1, �µ, and �µ⌫ . The most general expression for the
transverse radiative jet function is then
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Each of the coe�cients F1, . . . , F6 multiplies one of the allowed independent symmetric trans-
verse structures that we can build from ⌘µ⌫ , pµ, qµ, �µ, and �µ⌫ . Although this is a relatively
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long list, we are only interested in those terms that vanish no faster than O(q). The dimen-
sions of the form factors Fi vary from term to term, but, combined with their corresponding
tensors, they can have at worst a single algebraic pole, 1/(p · q), and no pole in q2. These
restrictions follow immediately from the presence of divergences that are at worst logarithmic
for the nonradiative jet functions in the limit of zero masses. Dimensional analysis of the
terms in Eq. (160) shows that for q2 = 0, none of these contributions can appear at order q.
For the o↵-shell case, q2 6= 0, the F1 term may appear, and we will give a one-loop example
of how it occurs below.

It is possible to rewrite the transverse contributions in an interesting way if we contract
them with an arbitrary graviton polarization tensor h̃µ⌫ . The result is

Jf
⇢�(p, q)G

⇢�
µ⌫ h̃

µ⌫ =
pµp⌫
(q · p)2J

f
⇢�(p, q)(q

µq⌫ h̃⇢� � qµq�h̃⇢⌫ � q⌫q⇢h̃µ� + q⇢q�h̃µ⌫) . (161)

We recognize the quantity between brackets on the right hand side as the Riemann curvature
tensor (as has also recently been found in [39]) of a plane gravitational wave with polarization
vector h̃µ⌫ ,

R⇢µ�⌫(h̃, q) ⌘ qµq⌫ h̃⇢� � qµq�h̃⇢⌫ � q⌫q⇢h̃µ� + q⇢q�h̃µ⌫ . (162)

The Riemann tensor term of (161) is unique among high energy power corrections. It is the
only high energy correction that is sensitive to the analytic structure of leading jets. The
corrections associated with nonleading jets are given by the K projection and factor from
the leading jets as in Eq. (147).
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Combining Eqs. (136), (157), (161), and (162) enables us to rewrite the soft graviton
theorem for fermions, with only leading fermionic jets taken into account, as

h̃µ⌫Mµ⌫

=
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!
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The first three factorized sums in our result depend only on the nonradiative jet functions
and the hard subamplitude. This dependence is completely dictated by the o↵-shell Ward
identity, and is consistent with the CS result, Eqs. (21)-(23) [6]. The fourth sum organizes
contributions that are transverse, and do not follow directly from the Ward identities (117).
These contributions correspond to the result found by Del Duca for Low’s theorem in QED
[14]. When the polarization tensor describes the radiation of an external background field
by some source, as will be illustrated in the forthcoming example, these contributions couple
the scattering process to the Riemann tensor of the background field. Note that the q and ⇠i
dependence have been left implicit in the external amplitudes. At low energies, the Riemann
tensor correction remains and couples to the fully dressed graviton-fermion external vertex.

4.5.2 Example of o↵-shell emission

We begin with a few remarks about the case of a physical on-shell graviton. The polarization
tensor of the external graviton takes the form h̃⇢� = ✏⇢✏�, giving

R⇢µ�⌫ = (q⇢✏µ � qµ✏⇢)(q�✏⌫ � q⌫✏�) . (164)
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In the case of scalar theory, the jet function Jf
⇢� can only be built from pi⇢, q⇢, and ⌘⇢�,

all of which are annihilated when contracted with R⇢µ�⌫piµpi⌫ – this critically depends on
the graviton being on-shell. Therefore, we conclude that transverse loop corrections are not
present in the case of gravity coupled to scalars when emitting an on-shell graviton.

In the case of Yukawa theories, if the outgoing particle is a scalar, then our previous
argument for scalar theories still holds. If the outgoing particle is a fermion, then we can de-
compose the jet function appearing in the product piµpi⌫Jf

⇢�R
⇢µ�⌫ into the components Jf

L,⇢�

and Jf
T,⇢� from Eq. (151). The component Jf

L,⇢� is shown in Eq. (157), while the transverse

piece Jf
T,⇢� can be decomposed as in equation (160). Once again, the product R⇢µ�⌫piµpi⌫

annihilates all terms contributing to Jf
⇢�(p, q) and there are no transverse corrections to the

soft theorem.
One wonders if we can find instances where loop corrections are not annihilated by

the Riemann tensor of linearized gravity. From our discussion we know that, at least for
Yukawa and scalar theories, we have to consider an o↵-shell emitted graviton to find such
an occurence. This study is the object of the rest of this section.

The most natural setting for the study of o↵-shell graviton emission is in the scenario
where a scattering amplitude takes place in the viscinity of a strong classical source of
background gravitational field. We imagine that this source influences the scattering process
by exchanging a single soft graviton, as classical fields are made up of highly occupied soft
radiation modes. The emission amplitude of a soft graviton by this classical source is denoted
S⇢�. We further imagine that this classical source is very heavy and graviton emission from
it is thus described by the following amplitude, which is really just the stress tensor of a very
heavy object whose recoil we neglect,

S↵�
HEAVY = M2�↵0 �

�
0 . (165)

The classical source is coupled to the scattering amplitude through an intermediate prop-
agator

Pµ⌫
↵� =

i

2

�µ↵�
⌫
� + �µ��

⌫
↵ � ⌘µ⌫⌘↵�

q2
. (166)

The gravitational field polarization tensor h̃µ⌫ from which we built the Riemann tensor then
takes the form

h̃µ⌫ ⌘ Pµ⌫
↵�S

↵�
HEAVY . (167)

The result of ourKG decomposition instructs us to use the above polarization tensor as input
for the Riemann tensor which appears in our formula for the transverse loop corrections to
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external graviton emission (161). For concreteness, we focus on the amplitude where a scalar
jet exchanges a single graviton with the heavy classical source,

Mex ⌘ Js
⇢�(p, q)G

⇢�
µ⌫ h̃

µ⌫ =
pµp⌫
(p · q)2J

s
⇢�(p, q)R

⇢µ�⌫ , (168)

and simply ignore the hard part and other jets since they play no role in this discussion.
The right hand side completely separates information about the scattered particle contained
in pµp⌫

(p·q)2J
s
⇢�(p, q) from the external gravitational field. It will be convenient to introduce a

scalar mass ms, which may be thought of as being O(�2) in the high energy limit, but is
otherwise of arbitrary size. Note that in the high energy region, this choice does not alter
our power counting rules listed in Table 1.

To illustrate how transverse corrections to external emission can be nonvanishing for o↵-
shell gravitons, we will calculate the contribution to Mex from the diagram shown in Fig.
34. The amplitude for graviton emission from the jet function in this specific example is
found to be

Js,⇢�(p, q) = (⌘⇢�q2 � q⇢q�)⇥(p, q) , (169)

with

⇥(p, q) =
ig0µ�2✏
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◆�✏ i

2p · q + q2
, (170)

and where we have opted to carry out the calculation in D = 4� 2✏ spacetime dimensions.
The constant g0 is the coupling of �4 theory.

We can then couple this loop correction to the massive object in (165), as illustrated in
Fig. 34. This results in the following expression for the single graviton exchange amplitude,

Mex =
iM2

2q2
[(3�D)q2 � 2(q0)

2]⇥(p, q) , (171)

which is nonvanishing in general.
Consider first the region where Low’s analysis is applicable, q ⌧ ms. Working with the

integral representation of the jet function (170) provides a more transparent analysis of this
region. The integrand can be expanded in powers of q2 using the binomial theorem since
q2 ⌧ m2

s, yielding

⇥(p, q) =
ig0µ�2✏

(4⇡)2�✏
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m2

s
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. (172)
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Figure 34: The soft graviton is absorbed by a very massive object whose recoil we neglect.
This allows us to identify a lowest order correction to the soft graviton theorem in the case
of an o↵-shell soft graviton.

In an on-shell renormalization scheme, one removes the full correction at q2 = 0. Imple-
menting this scheme leaves us with the following contribution to the jet function,

⇥R(p, q) =
ig0

(4⇡)2
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1
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s
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�
i
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. (173)

We thus obtain a correction of order q/m2
s.

If we return to the region q = O(ms), then we resort to fully evaluating the integral in
(170), obtaining the result
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where we have expanded in ✏ before performing the integral while avoiding any expansion
in q. Proceeding with an on-shell renormalization scheme as we did before, we expand the
counterterm in powers of ✏, thereby obtaining
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Subtracting this counterterm from (174) results in the correction,
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(176)

The leading term of this expression is of order O(q�1). It is worth noting that all of the
apparent poles in this expression cancel.

It is also interesting to take the limit q � ms so that the graviton momentum is no longer
soft. Retaining the leading term only, we obtain

⇥R(p, q) =
ig0

(4⇡)2
1

6
log

✓
m2

s

�q2

◆
i

2p · q + q2
. (177)

In this case, the soft graviton theorem receives a logarithmic correction from the external
jet functions. In all cases, we find that the Riemann tensor is coupled to nonvanishing loop
corrections from the jet, whether we are in the high or low energy regime. We conclude by
mentioning that the Riemann tensor corrections we have identified can be viewed as quantum
corrections to the Newtonian potential [67, 74–78].
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5 Conclusion

Inspired by the renewed interest in soft theorems, we have set out to investigate the role
of loop corrections in soft radiation theorems. In the context of Low’s theorem, work on
this subject had already been carried out by del Duca [14] who showed that in the limit of
high center of mass energy E, Low’s argument only applies in the vanishingly small region
q ⌧ m2/E, where q is the soft momentum. In the regime where q ⇠ m2/E, del Duca
identified loop corrections that take the form of universal infrared sensitive matrix elements,
the jet functions. To identify these loop corrections, he needed to adapt Low’s analysis by
factorizing the elastic amplitude into jet functions and a hard part, and then to consider
separately photon emission from each factor. More recently, an analysis of soft theorems in
e↵ective field theory has been given in [18].

Following Refs. [12,13], we have applied power counting techniques to derive an extension
of soft radiation theorems to Yukawa and scalar theories at all loop orders in both the high
energy and low energy regions. Our strategy at high energies is to apply Low’s original
analysis [1] to a radiative amplitude factorized into jets, a soft cloud, and a hard part. This
factorization is a solution to the obstacle arising when, in the high energy region, invariants
built with the soft photon or graviton momentum become of the same order of magnitude
as the other invariants in denominators of the loop integral. This phenomenon occurs in the
vicinity of pinch surfaces and prevents us from expanding the elastic amplitude in powers
of q, as is typically done in an argument à la Low. Factorizing the amplitude isolates these
nonanalytic contributions and encapsulates them into the jet functions and the soft cloud.
The hard parts, on the other hand, get their leading contribution from hard exchanges and
can legitimately be expanded in powers of q.

In the high energy region, the total center of mass energy E is very large compared to the
mass m of the fermions. This led us to identify the parameter � ⌘ m/E as a small quantity
suitable for expressing the orders of magnitude of the various quantities in the problem. In
particular, soft radiation theorems were recast as expansions in � rather than q. We have
designed, in Refs. [12,13], a power counting technique that allows us to determine the order
of magnitude of any factorized contribution corresponding to a given reduced diagram. As
we have reviewed in Sec. 2.2.1, singular regions of loop space are classified according to their
degree of divergence �, which indicates an overall scaling of ��. Del Duca’s analysis considers
attaching a soft photon to the pinch surface with minimal �. However, in the region q ⇠ �2E,
the soft photon theorem is an expansion going from order ��2 to �0. Since attaching a soft
photon to a collinear fermion line reduces the degree of divergence of a nonradiative diagram
by 2, it is clear that to obtain all contributions to the radiative amplitude up to O(�0), one
needs to attach the soft photons to nonradiative diagrams with a scaling up to �2. Del Duca
was concerned with QED, and therefore, we may not directly compare our results with his.
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However, it is natural to suspect that, compared to Ref. [14], additional terms may occur
from matrix elements with � = �1 and � = 0 in certain amplitudes in gauge as well as
Yukawa theories [18].

We showed that reduced diagrams contributing to soft theorems are in one-to-one corre-
spondence with the reduced diagrams of the elastic amplitude of orders ranging from O(�0)
to O(�2) for photons, and up to O(�4) for gravitons. This allowed us to determine all fac-
torized contributions to the radiative amplitude from an analysis of the pinch surfaces of the
elastic amplitude. The reduced diagrams resulting from this analysis are shown in Figs. 9 to
19. The jet functions identified using power counting are reminiscent of the higher dimen-
sion operators of the SCET approach to soft theorems [18]. The jets are also analogous to
final state wave functions in bound state scattering [62–64]. The hard parts, on the other
hand, play a role similar to the matching coe�cients of e↵ective field theory. A systematic
algorithm for computing them would involve a series of nested subtractions similar to the
“garden and tulip” construction of [56]. This is also closely related to the nested subtractions
of [57].

New terms in the soft photon theorem originate from the nonleading fs, fss, and fff -
jets. As we have seen, there are also contributions from diagrams with soft two-point func-
tions, which is qualitatively new. The reduced diagrams corresponding to the new sources
of terms in the soft photon theorem were shown in Figs. 17 and 18. We emphasize that
our treatment takes into account all infrared sensitive behavior of the radiative amplitude
at all loop orders in the region q ⇠ m2/E. In particular, we do not restrict ourselves to the
massless case, although our results are easily adapted to this limit. The full list of contribu-
tions to the soft photon theorem from nonleading jets is generated by attaching a photon to
the diagrams of Figs. 17 and 18. Factorizing the radiative amplitude into emission from all
components identified in such a list gives rise to the formula shown in Eq. (146).

Having derived the proper factorization of the radiative amplitude, we obtained the final
form of our extension of Low’s theorem by applying del Duca’s technique. This involves the
application of the jet Ward identities (85) to derive the radiative hard part, followed by an
application of the KG decomposition to isolate the leading term from subleading corrections.
The end result of this procedure is given in formulas (97), (98), (99), and (100). Of course,
the leading term retains its form as in Low’s classic result.

In gravity, we have found that, as in electromagnetism, the soft expansion is altered by jet
functions, both leading and nonleading. Further, at O(�2), graviton emission from the soft
cloud is also significant, which makes contact with the problem of gluon emission in gauge
theories. The jet functions give rise to separately transverse contributions to the external
amplitude, as shown in (100). In gravity, we found that jet functions supply loop corrections
to the soft graviton theorem that are coupled to a Riemann curvature tensor for linearized
gravity at low and high energies. In low energy scattering, the Riemann tensor contribution
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is the only correction to the CS tree level theorem.
Although we have not touched upon the problems of double photon or graviton emission,

and virtual corrections, these can be addressed using our methods. Our results in Yukawa
and scalar theories are interesting in their own right because of their potential applications
to nonlinear sigma models and pion scattering. However, they can also be viewed as a testing
ground for gauge theories. One theory of particular interest to us is of course QCD. Work
in this direction has already been undertaken in Refs. [18, 28–30,46,47].
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