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ABSTRACT
Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys
are likely to exceed statistical uncertainties of current and future LSS data sets, potentially
limiting the extraction of cosmological information. Here we present a general framework
(Principal Component Analysis – PCA – marginalization) to consistently incorporate sys-
tematic effects into a likelihood analysis. This technique naturally accounts for degeneracies
between nuisance parameters and can substantially reduce the dimension of the parameter
space that needs to be sampled. As a practical application, we apply PCA marginalization to
account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we
use COSMOLIKE to run simulated likelihood analyses on three independent sets of numerical
simulations, each covering a wide range of baryonic scenarios differing in cooling, star forma-
tion, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV
(Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological
constraints if baryonic physics is not accounted for. We then show that PCA marginalization
(employing at most three to four nuisance parameters) removes this bias. Our study demon-
strates that it is possible to obtain robust, precise constraints on the dark energy equation of
state even in the presence of large levels of systematic uncertainty in astrophysical processes.
We conclude that the PCA marginalization technique is a powerful, general tool for addressing
many of the challenges facing the precision cosmology programme.
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1 IN T RO D U C T I O N

The increased quality and size of data sets from ongoing wide-
field imaging surveys, such as Kilo-Degree Survey (KiDS 1), Hyper
Suprime Cam (HSC 2), and Dark Energy Survey (DES 3), will shift
the focus of cosmological analyses from the statistical precision
with which a signal is measured to the robustness of the cosmolog-

� E-mail: tim.eifler@jpl.nasa.gov
1 http://www.astro-wise.org/projects/KIDS/
2 http://www.naoj.org/Projects/HSC/HSCProject.html
3 www.darkenergysurvey.org/

ical constraints that are derived from the measurements. Our ability
to understand, constrain, and model systematics will play a key role
in removing biases and reducing the error bars on cosmological
parameters; this will be even more crucial for the success of future
ground- and space-based endeavours such as the Large Synoptic
Survey Telescope (LSST 4), Euclid 5, and the Wide-Field Infrared
Survey Telescope (WFIRST 6).

4 http://www.lsst.org/lsst
5 sci.esa.int/euclid/
6 http://wfirst.gsfc.nasa.gov/
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Cosmological analyses of imaging surveys are affected by a va-
riety of systematic uncertainties. The most important systematics
for contemporary and next generation (Stage III and IV according
to Albrecht et al. 2006; Weinberg et al. 2013) surveys are pho-
tometric redshift errors, shear calibration, galaxy bias, baryonic
physics, intrinsic alignments, and modelling the non-linear evo-
lution of the density field. Uncertainties from these sources are
generally expressed through so-called nuisance parameters over
which one marginalizes in a likelihood analysis. The term nuisance
parameter refers to any parameter in a likelihood analysis except
those one aims to constrain. Many of the aforementioned sources
of systematics are interesting astrophysical phenomena in and of
themselves, and constraining these phenomena will henceforth go
hand in hand with any successful cosmological analysis.

In the literature, the topic of nuisance parameters has been cov-
ered extensively. Most of the work to date has considered one or
at most two particular systematics, outlining methods to incorpo-
rate them into a likelihood analysis. Prominent examples are Ma,
Hu & Huterer (2006), Bernstein & Huterer (2010), Hearin et al.
(2010) for photo-z uncertainty, Hirata & Seljak (2003) or Huterer,
Keeton & Ma (2005) for shear calibration, Hirata & Seljak (2004)
or Joachimi et al. (2011) for intrinsic alignment, Jing et al. (2006),
Zentner, Rudd & Hu (2008), Semboloni et al. (2011), Zentner et al.
(2013), and Semboloni, Hoekstra & Schaye (2013) for the impact of
baryonic physics (a topic of immediate interest for the present pa-
per), Zehavi et al. (2011), Cacciato et al. (2012), Krause et al. (2013),
Zentner, Hearin & van den Bosch (2014), Fedeli (2014), and Red-
dick et al. (2014) for galaxy bias/halo occupation distribution mod-
elling. This list is far from complete; defining and constraining
nuisance parameters is an active research topic.

Some of these parametrizations are physically motivated and
address specific effects (e.g. halo concentration for baryons, red-
shift scaling and power spectrum amplitude for intrinsic alignment,
multiplicative and additive shear bias, etc.). In the absence of in-
formation on the functional form of the nuisance parametrization
one must rely on introducing distinct nuisance parameters in bins
of redshift and scale (Bernstein 2009; Joachimi & Bridle 2010), so
as to absorb a variety of possible systematic errors, and rely on the
data to calibrate these nuisance parameters. When carrying out a
combined probes analysis (as in Eifler et al. 2014, for example),
where not one but all of these nuisance parameters must be con-
sidered simultaneously, the shear number of nuisance parameters
challenges the limit of computationally feasibility.

In this paper, we develop a Principal Component Analysis (PCA)
marginalization framework that poses an efficient method to incor-
porate many nuisance parameters and many systematic errors within
a likelihood analysis. This framework identifies the principal com-
ponents (PCs) that capture the impact of nuisance parameters on
the quantity that enters the likelihood analysis (e.g. power spectra,
correlation functions, etc.). The marginalization procedure can then
be carried out efficiently in the PC basis.

We apply this framework to a specific example, namely the im-
pact of various baryonic scenarios on cosmological constraints from
weak lensing tomography. Weak lensing tomography is one of the
core cosmological probes of photometric surveys; independent of
any assumptions about the relationship between dark and lumi-
nous matter, weak lensing tomography provides valuable infor-
mation about the geometry and structure growth of the Universe
and thereby allows us to constrain cosmology (Hoekstra, Yee &
Gladders 2002; van Waerbeke, Mellier & Hoekstra 2005; Jarvis
et al. 2006; Schrabback et al. 2010; Heymans et al. 2012; Lin et al.
2012; Huff et al. 2014). In combination with accurate redshift infor-

mation, weak lensing tomography has been identified as one of the
most powerful tools to constrain the dark energy equation of state
and thereby reveal the nature of the acceleration of the expansion of
the Universe (Albrecht et al. 2006; Peacock et al. 2006; Weinberg
et al. 2013).

A potentially significant source of systematic error for weak lens-
ing tomography is theoretical uncertainty in the role of baryonic
physics in our Universe. Baryonic processes can redistribute matter
within the Universe to a degree that is large enough to induce signif-
icant systematic errors in cosmological parameters (Zentner et al.
2008, 2013; Hearin & Zentner 2009; Semboloni et al. 2011, 2013;
Natarajan et al. 2014), yet the baryonic processes that drive galaxy
formation and evolution remain poorly understood and poorly con-
strained. Different treatments of baryonic gas cooling, star forma-
tion, and feedback mechanisms can dramatically alter the predic-
tions for shear measurements (especially on small angular scales),
and this effect introduces an intolerable bias in the cosmological
parameter estimation.

In this paper, we examine different baryonic scenarios from
three independent hydrodynamical simulation efforts: the OWLS
(OverWhelmingly Large Simulations) project (Schaye et al. 2010;
van Daalen et al. 2011), the simulations used in Rudd, Zentner &
Kravtsov (2008), and a yet unpublished set of hydro-simulations fur-
ther described in Section 3.1. We simulate a DES and LSST/Euclid
likelihood analysis in a seven-dimensional cosmological parame-
ter space using the PCA marginalization scheme to take baryonic
uncertainties into account.

2 M A R G I NA L I Z AT I O N O F BA RYO N I C
EFFECTS

2.1 Likelihood analysis basics

Given a data vector D we calculate the posterior probability for a
point in the joint parameter space of cosmological parameters pco

and nuisance parameters pnu via Bayes’ theorem:

P ( pco, pnu|D) ∝ Pr ( pco, pnu) L(D| pco, pnu), (1)

where Pr ( pco, pnu) denotes the prior probability and L(D| pco, pnu)
is the likelihood. The data vector includes, for example, two-point
functions in the form of power spectra, which depend on both scale
and redshift. The likelihood is often assumed to be Gaussian so
that

L(D| pco, pnu)

= N × exp

(
− 1

2

[
(D − M)t C−1 (D − M)

]︸ ︷︷ ︸
χ2( pco, pnu)

)
. (2)

We abbreviate M = M( pco, pnu), i.e. the model vector M is a
function of cosmology and nuisance parameters. The normalization
constant N = (2π )−

n
2 |C|− 1

2 in equation (2) can be neglected under
the assumption that the covariance is constant in parameter space.
We note that assuming a constant, known covariance matrix C is an
approximation to the correct approach of a cosmology-dependent
or estimated covariance (see Eifler, Schneider & Hartlap 2009, for
further details). The impact of this assumption on cosmological
constraints is more severe for deep, small surveys and less important
for wide, shallow surveys.
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2.2 Mode removal – PCA marginalization

Consider an experiment that provides a data vector D, which in our
case is the set of all auto- and cross-spectra C

ij
l of cosmic shear

across redshift bins with indices i, j. For any set of cosmological
parameters, dissipationless N-body simulations are sufficient to pro-
duce an accurate prediction for this data vector if dark matter (DM)
alone were responsible for the lensing. Let us call this prediction,
M0( pco), where again M is a vector with all auto- and cross-spectra
and the subscript denotes that the prediction is generated assuming
the Universe contained only DM and no baryons; the prediction, of
course, would depend on the set of cosmological parameters pco.

The true prediction for this set of cosmological parameters in-
cluding the effects of baryons is far more challenging to make. In
principle, such a prediction involves a whole new suite of parame-
ters, pnu, that encode the effects of baryons on large-scale structure.
If it were possible to specify those parameters and easily generate
a prediction for weak lensing power spectra for each parameter set,
then we could calculate the likelihood function for the cosmological
parameters by marginalizing over the nuisance parameters:

L(D| pco) =
∫

d pnu

× exp

(
−1

2
(D − M( pco, pnu))tC−1(D − M( pco, pnu))

)
, (3)

where C is the covariance matrix (which we approximate to be
independent of any of the parameters). Several groups have tried to
implement this idea, most successfully by parametrizing baryonic
effects with several halo model parameters (Zentner et al. 2008,
2013; Semboloni et al. 2011, 2013).

We introduce an alternative way to carry out the marginalization,
which does not require detailed understanding of the underlying
phenomenology, nor an analytical model associated with the pa-
rameters encoding the effects. Rather, this marginalization is over
the linear combinations of observables that are most strongly influ-
enced by the baryonic effects (or, more generally, by the systematic
of interest). If these modes can be identified, they can easily be
integrated out. So, even without any explicit parametrization of the
underlying physics, one can account for the associated systematic
effects.

To identify the offending modes, we start with a suite of hydrody-
namic simulations, each of which generates a prediction Mα( pco).
The subscript α refers to the considered numerical simulation and
ranges up to the total number of baryonic scenarios Nsce, which is of
order 15 in our analysis. There is also a DM-only simulation which,
as mentioned above, is identified by α = 0. The components of the
difference matrix � between the hydrodynamical simulations and
the DM-only simulation are obtained as

�kα ≡ Mkα − Mk0, (4)

where the index k covers all l for all auto- and cross-spectra (that
is, k runs over all observables). The difference between the para-
metric and non-parametric approach is beginning to emerge. In the
parametric approach, �kα would be a function of the nuisance pa-
rameters; here it is simply a number that captures the uncertainties
due to baryonic effects.

Before proceeding to the general procedure we propose here,
consider first a trivial, but instructive example. Suppose that all
the hydro-simulations predict that all the spectra are identical to the
DM-only spectrum except at a single value of C

ij
l , so that �kα = 0 for

all α and all k except for k = 1 (so �kα ∝ δ1α and this first observable
corresponds to, say C11

l=100). A very simple way to deal with the

systematic would simply be to remove that single measurement.
This is equivalent to setting M( pco, pnu) = M0( pco) + δ1αA, where
A is an arbitrary amplitude, and integrating over all possible values
of A.

In other words, we replace the integration over parameters pnu

with an integration over amplitudes of offending modes, where a
mode is a linear combination of all the C

ij
l (all the observables). In

this simple example, there is only one mode and the coefficients in
the linear combination that define that mode are all zero except for
one. More generally, a given mode will depend on all the elements
of the auto- and cross-spectra, and there could be more than one
mode that is marginalized over.

The only remaining difficulty is to identify the modes that
are most damaging. There are several ways to approach this.
Here we choose to remove modes that have the largest variance
in the simulations. To identify the modes with the largest variance,
we collect the �αs from all the simulations into a single matrix �.
To be concrete, we consider 14 (for DES) and 12 (for LSST/Euclid)
simulations so � has 14 (12) columns. We assume five redshift bins
so that the total number of auto- and cross-spectra is 5 × 6/2 = 15.
We bin so that each spectrum is sampled at 20 values of l, meaning
that there are a total of 300 data points. So the matrix � has 14 (12
for LSST/Euclid) columns and 300 rows.

The matrix product ��t is proportional to the covariance
of the observables among all of the different baryonic simulations
(the Mkα) with respect to the DM-only simulation (Mk0). Identifying
the linear combinations of observables most susceptible to contami-
nation from baryonic processes amounts to diagonalizing the matrix
��t and choosing the eigenvectors (which are linear combinations
of observables) with the largest eigenvalues (the largest variances).
The matrix we aim to diagonalize is the product ��t and we will
need to project observables on to the eigenvectors of this matrix, so
it is convenient to proceed using the (full) singular value decompo-
sition (SVD) of �,

� = U�Vt . (5)

The PCs of � are the columns of the orthogonal matrix U, which
in our example is 300 × 300. The mean squared deviations of the
observables from the DM-only predictions are

Cov� = 1

Nsce − 1
� �t = 1

Nsce − 1
U� �t Ut = UEUt , (6)

where E = 1
Nsce−1 ��t is a diagonal matrix whose (300) entries are

the eigenvalues of Cov�.
We can project the observables on to the PCs in U. We can then

identify the linear combinations (or ‘modes’) most susceptible to
baryonic effects as those with the largest entries Ek in E and remove
them from the analysis (equivalent to marginalizing over a free
amplitude for them). In this way, we simply discard the information
contained within these modes just as we discarded the information
in the observable k = 1 (C11

l=100) in our pedagogical example above.
Proceeding further requires a bit of care, because the mode must

be removed from both the data and the model, so we explicitly walk
through our algorithm. At each point in cosmology sampled by
the MCMC (Markov Chain Monte Carlo) we compute the matrix
� and obtain the corresponding projection matrix Ut via SVD as
in equation (5). Since U is an orthogonal matrix, which implies
1 = UUt = UtU, we rewrite χ2( pco, pnu) as

χ2( pco, pnu) = (D − M)tUUtC−1UUt(D − M). (7)

We can then insert a projection matrix P = P2 into equation (7)
to restrict attention to a subset of the observables, yielding a
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Table 1. Survey parameters.

Survey Area (deg2) σ ε ngal zmax zmean zmed

DES 5000 0.26 10 2.0 0.84 0.63
LSST/Euclid 15 000 0.26 31 3.5 1.37 0.93

new χ2( pco, pnu),

χ ′2( pco, pnu) = (PUt D − PUt M)t(PUtCUP)−1

× (PUt D − PUt M) . (8)

If P = 1 we recover χ ′2( pco, pnu) = χ2( pco, pnu) as defined in
equation (2); setting some of the diagonal elements in P to zero
projects on to a subspace of the PCs. Below, we experiment with
the number of modes that need to be removed such that the nui-
sance parameters need no longer be accounted for explicitly in the
model: we will see that very few are needed in order to eliminate
the systematic of baryonic effects.

Before showing our results, we make two general remarks. First,
our choice of which modes to remove is not necessarily the optimal
choice. Another well-motivated choice would result if one were to
weigh the covariance in equation (6) with the inverse of the data
covariance matrix C. Returning to our simple example of a single
observable (C11

l=100) comprising a mode, if the noise in a particular
survey at that mode were very large, it would not make sense (or
be necessary) to remove the mode. That is, the large variation of a
mode alone does not guarantee that it will produce parameter bias.
If the mode is not well measured, it is not necessary to remove the
mode. Yet another example would be to choose to remove modes
that most affect the inferred cosmological parameters of interest.
Some modes may exhibit little degeneracy with the parameters of
interest and consequently, removing those modes should be a lower
priority.

The second comment is that, while we focus here on the system-
atic of baryonic effects on the lensing spectrum, the PCA marginal-
ization approach can be applied generally to any probe and any
number of systematics. We will address both issues in Section 6.

3 U N C E RTA I N T I E S IN BA RYO N I C PH Y S I C S

In the following we consider the uncertainties in modelling bary-
onic physics in weak lensing. We examine various baryonic scenar-
ios from different sets of simulations and calculate shear tomog-
raphy power spectra for each scenario considering a DES and an
LSST/Euclid like survey (see Table 1 for details). The values for
DES stem from DES documents and internal communication within
the DES collaboration; for LSST/Euclid we rely on specifications
outlined in Chang et al. (2013). Although Chang et al. (2013) aims
at LSST only, Euclid survey parameters are similar (15 000 deg2,
30 ngal, according to Laureijs et al. 2011).

The main difference between Euclid and LSST (aside from obser-
vational systematics) is the redshift distribution of source galaxies,
where Euclid is shallower compared to LSST. It is however unlikely
that this difference qualitatively affects the outcome of the analysis
presented here, hence we believe that the LSST scenario very well
resembles the Euclid survey as well.

3.1 Simulation Set

OWLS simulations: from the OWLS project we obtain matter power
spectra for nine different scenarios corresponding to various hydro-
dynamical recipes that differ in their treatment of cooling, SN- and

Table 2. Summary of the baryonic physics in the OWLS simulations.

Simulation Description

DM No baryons, CDM only
REF Chabrier (2003) IMF, wind mass loading η = 2,

vw = 600 km s−1

AGN Includes AGN (in addition to SN feedback)
NOSN No SN energy feedback
NOSN NOZCOOL No SN energy feedback and cooling assumes

primordial abundance
NOZCOOL Cooling assumes primordial abundance
WDENS Wind mass loading and velocity depend on gas

density (SN energy as REF)
WML1V848 Wind mass loading η = 1, velocity

vw = 848 km s−1 (SN energy as REF)
WML4 Wind mass loading η = 4 (SN energy as REF)
DBLIMFV1618 Top-heavy IMF at high pressure, extra SN

energy in wind velocity

AGN feedback. Please see Table 2 for a brief summary and Schaye
et al. (2010), and van Daalen et al. (2011) for a detailed description
of the implemented physics and the observations that motivated
these recipes. The OWLS simulations were conducted in cubic
simulation volumes with sides of length L = 100 h−1 Mpc and the
simulation power spectra have been tabulated by van Daalen et al.
(2011) and are valid for wave numbers 0.314 ≤ k/h Mpc−1 ≤ 10.
These simulations were analysed for a similar application using a
different technique in Zentner et al. (2013) and Semboloni et al.
(2013).

Rudd simulations: the simulations of Rudd et al. (2008) track the
formation of structure in a cubic volume 60 h−1 Mpc on a side in a
flat, �CDM cosmological model with �M = 0.3, �Bh2 = 0.021,
h = 0.7, and σ 8 = 0.9. The simulation set consists of three simula-
tions all starting from the same initial conditions. The first simula-
tion (labelled ‘DMO’ in Rudd et al. 2008) is purely dissipationless
and includes a collisionless DM component only. The second sim-
ulation (labelled ‘DMO_NR’) follows both DM and baryons. How-
ever, the baryonic component is not permitted to cool radiatively in
DMG_NR. The baryonic component in DMG_NR is treated in the
non-radiative (or ‘adiabatic’) regime and neither stars nor galax-
ies form in DMG_NR. The third simulation (labelled ‘DMG_SF’)
treats the baryonic component including radiative cooling and heat-
ing, star formation, and feedback from supernovae. The inclusion
of these processes in DMG_SF allows for the formation of galax-
ies in the DMG_SF simulation. The cool gas forms a condensed
component, a fraction of which is converted into stars according
to a relatively standard, observationally-motivated star formation
recipe.

The dissipationless DMO simulation is performed using the
Adaptive Refinement Tree (ART) N-body code (Kravtsov, Klypin &
Khokhlov 1997; Kravtsov 1999). In the DMG_NR and DMG_SF
simulations, the gaseous baryonic component is simulated using a
Eulerian hydrodynamics solver on the same adaptive mesh of the N-
body ART code using the techniques described by Kravtsov, Klypin
& Hoffman (2002). However, the two simulations that included
baryons are performed with the new, distributed-memory version of
the N-body+gas dynamics ART code.

A common problem in studies of this kind is that simulations
that resolve galaxy formation necessarily model fairly small vol-
umes. The Rudd et al. (2008) simulations are among the smaller
simulations (computational cube with a side length of 60 h−1 Mpc)
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Accounting for baryonic effects in cosmic shear tomography 2455

used for these purposes. Consequently, cosmic variance and finite
volume effects are significant at scales of k � 0.11 hMpc−1.

Gnedin simulations:7 four new sets of simulations are performed
with the ART code (the same code used for Rudd simulations). Each
set includes three different random realizations with different val-
ues for the DC mode (Gnedin, Kravtsov & Rudd 2011) of a 200h−1

comoving Mpc box with 5123 DM particles and a factor of several
larger number of adaptively refined cells (which are dynamically
created and destroyed in the course of the simulation to maintain
required spatial resolution). Spatial resolution (the size of the most
refined cells) of all simulations is set to 3h−1 comoving kpc. The
first set of simulations is dissipationless and treats DM only. The
second set (AD) includes only ‘adiabatic’ (i.e. non-radiative) hydro-
dynamic processes. The third set (CW) includes radiative cooling
(but no radiative heating) with primordial abundances of hydrogen
and helium. The fourth set (CX) includes radiative cooling with
the cooling function that corresponds to solar-metallicity gas; that
cooling function is applied to all gas in the simulation, even to
the deepest voids, and, hence, is physically unrealistic. The CX set
should, therefore, be considered as an extreme limit of gas cooling.

3.2 Projected shear power spectra from the baryonic scenarios

The three sets of simulations described in Section 3.1 have different
input cosmologies. In order to create a coherent set of baryonic
scenarios we assume that the cosmology dependence enters through
the DM power spectrum only and ‘renormalize’ the 3D density
power spectra for each baryonic scenario via

P
bary,theory
δ (k, z) = P

bary,sim
δ (k, z)

P DM,sim
δ (k, z)

P
DM,theory
δ (k, z), (9)

where P
bary,sim
δ (k, z) denotes the joint dark+baryonic power spec-

trum from a given simulation, P DM,sim
δ is the corresponding DM-

only power spectrum, and P
DM,theory
δ is the DM power spectrum

calculated from COSMOLIKE (see Section 4.1 for details) assuming a
Planck+WMAP polarization best-fitting cosmology.

Note that the simulations have insufficient volumes, hence the
simulated spectra alone do not suffice to cover the entire range
of wave numbers needed. As such, it is necessary to extrapolate
simulation results using a particular theoretical model. The Rudd
et al. (2008) simulations pose the most stringent constraints on the
range of k and z, i.e. matter power spectra are accurate over a range
of k ∈ [0.3; 10] hMpc−1 (where the lower k-limit is a consequence
of simulation size) and over a range of z ∈ [0.0; 2.0]. Outside the
k-ranges we extrapolate Pδ with a theoretical DM power spectrum
that is matched to the amplitude of the total (baryonic+DM) power
spectrum. We hence implicitly assume that on these larger scales
the shape of the total power spectrum follows approximately that of
the DM power spectrum, but has a different overall amplitude. Note
that the limited redshift range of the Rudd et al. (2008) simulations
prohibits us from computing LSST shear power spectra because the
LSST redshift range extends to z = 3.5. Overall this gives us 14
baryonic scenarios for the DES survey and 12 for LSST.

Having obtained the density power spectra we calculate the shear
power spectra as

Cij (l) = 9H 4
0 �2

m

4c4

∫ χh

0
dχ

gi(χ )gj (χ )

a2(χ )
Pδ

(
l

fK (χ )
, χ

)
, (10)

7 Publicly available at http://astro.uchicago.edu/∼gnedin/WL/.

Figure 1. The assumed redshift distribution with five tomography bins for
DES (top) and LSST/Euclid (bottom).

with l being the 2D wavevector perpendicular to the line of sight, χ
denoting the comoving coordinate, χh is the comoving coordinate
of the horizon, a(χ ) is the scale factor, and fK(χ ) the comoving
angular diameter distance (throughout set to χ since we assume
a flat Universe). The lens efficiency gi is defined as an integral
over the redshift distribution of source galaxies n(χ (z)) in the ith
tomographic interval:

gi(χ ) =
∫ χh

χ

dχ ′ni(χ ′)
fK (χ ′ − χ )

fK (χ ′)
. (11)

In this analysis we use two different redshift distributions mim-
icking a DES and an LSST/Euclid-like survey and divide each
redshift range into five bins (see Fig. 1 and Table 1). For LSST we
adopt the redshift distribution suggested in Chang et al. (2013) and
the DES redshift distribution is modelled by a modified Canada-
France-Hawaii Telescope Legacy Survey redshift distribution (see
Benjamin et al. 2007, adjusted for the slightly lower mean redshift
of DES). The exact parametrization for the latter reads

n(z) = N

(
z

z0

)α

exp

[
−

(
z

z0

)β
]

, (12)

with α = 2.0, β = 1.0, z0 = 0.5.
Since we chose five tomographic bins, the resulting data vector

which enters the likelihood analysis consists of 15 tomographic
shear power spectra, each with 20 logarithmically spaced bins
(l ∈ [30; 5000]), hence 300 data points overall. The limits of the
tomographic z-bins are chosen such that each bin contains a similar
number of galaxies.

In Fig. 2 we show the uncertainty range spanned by the baryonic
scenarios (grey shaded area) with respect to the DM-only scenario
(black line) for the five auto-correlation redshift shear power spectra.
In Fig. 3 we further show the ratio of baryonic to DM C11(l) shear
power spectrum for a subset of the scenarios. One can clearly see
that at different l the range is bracketed by different scenarios, with
the strong AGN-feedback scenario being the lower extreme starting
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Figure 2. The shear tomography power spectra for the five auto z-bins
computed at the fiducial cosmological model. The black line corresponds
to the DM scenario, the shaded area spans the range of uncertainty from
baryonic physics.

Figure 3. The ratio of shear tomography power spectra of different bary-
onic scenarios with respect to the DM-only scenario for the lowest auto-
correlation tomography bin.

from l ∼ 400 and the extreme cooling scenario (CX) being upper
limit for l > 2000.

4 L I K E L I H O O D A NA LY S I S : N E G L E C T I N G
BA RYO N S

We first carry out likelihood analyses with shear tomography power
spectra from the various baryonic scenarios as the input data vectors

without accounting for baryons, i.e. using the DM power spectrum
in the model vector only.

4.1 Modelling cosmological quantities

Shear tomography power spectra: all simulated likelihood analyses
in this paper are computed using the weak lensing modules of
COSMOLIKE (see Eifler et al. 2014). We compute the linear power
spectrum using the Eisenstein & Hu (1999) transfer function and
model the non-linear evolution of the density field as described
in Takahashi et al. (2012). Time-dependent dark energy models
(w = w0 + (1 − a) wa) are incorporated following the recipe
of ICOSMO (Refregier et al. 2011), which in the non-linear regime
interpolates Halofit between flat and open cosmological models
(also see Schrabback et al. 2010, for more details). From the density
power spectrum we compute the shear power spectrum as described
in Section 3.2.

Shear covariances: under the assumption that the 4pt-function
of the shear field can be expressed in terms of 2pt-functions (so-
called Gaussian shear field) the covariance of projected shear power
spectra can be calculated as in (Hu & Jain 2004)

CovG

(
Cij (l1)Ckl(l2)

) = 〈�Cij (l1) �Ckl(l2)〉

= δl1l2

2fskyl1�l1

[
C̄ik(l1)C̄jl(l1) + C̄il(l1)C̄jk(l1)

]
, (13)

with

C̄ij (l1) = Cij (l1) + δij

σ 2
ε

ni
gal

, (14)

where the superscripts indicate the redshift bin; ni
gal is the density

of source galaxies in the ith redshift bin; and σ ε is the rms of the
shape noise.

Since non-linear structure growth at late time induces signifi-
cant non-Gaussianities in the shear field, using the covariance of
equation (13) in a likelihood analysis results in underestimates of
the errors on cosmological parameters. Therefore, the covariance
must be amended by an additional term, i.e. Cov = CovG + CovNG.
The non-Gaussian covariance is calculated from the convergence
trispectrum Tκ (Cooray & Hu 2001; Takada & Jain 2009), and we
include a sample variance term Tκ,HSV that describes scatter in power
spectrum measurements due to large-scale density modes (Takada
& Bridle 2007; Sato et al. 2009):

CovNG(Cij (l1), Ckl(l2)) =
∫

|l|∈l1

d2l
A(l1)

∫
|l ′ |∈l2

d2l ′

A(l2)

×
[

1

�s
T

ijkl
κ,0 (l, −l, l ′, −l ′) + T

ijkl
κ,HSV(l, −l, l ′, −l ′)

]
, (15)

with A(li) = ∫
|l|∈li

d2l ≈ 2πli�li the integration area associated
with a power spectrum bin centred at li and width �li.

The convergence trispectrum T
ijkl
κ,0 is, in the absence of finite

volume effects, defined as

T
ijkl
κ,0 (l1, l2, l3, l4) =

(
3

2

H 2
0

c2
�m

)4 ∫ χh

0
dχ

(
χ

a(χ )

)4

gigjgkgl

× χ−6 Tδ,0

(
l1

χ
,

l2

χ
,

l3

χ
,

l4

χ
, z(χ )

)
, (16)

with Tδ, 0 the matter trispectrum (again, not including finite volume
effects), and where we abbreviated gi = gi(χ ).
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Table 3. Fiducial cosmology, minimum and maximum of the flat prior on cosmological parameters, and Planck
prior information used in the analysis.

�m σ 8 ns w0 wa �b h0

Fiducial 0.315 0.829 0.9603 − 1.0 0.0 0.049 0.673
Min 0.1 0.6 0.85 − 2.0 − 2.5 0.04 0.6
Max 0.6 0.95 1.06 0.0 2.5 0.055 0.76
Planck+WP 1σ +0.016

−0.018 ±0.012 ±0.0073 – – ±0.000 62 ±0.012

We model the matter trispectrum using the halo model (Seljak
2000; Cooray & Sheth 2002), which assumes that all matter is
bound in virialized structures that are modelled as biased tracers of
the density field. Within this model the statistics of the density field
can be described by the DM distribution within haloes on small
scales, and is dominated by the clustering properties of haloes and
their abundance on large scales. In this model, the trispectrum splits
into five terms describing the 4-point correlation within one halo
(the one-halo term T1h), between two and four haloes (two-, three-,
four-halo term), and a so-called halo sample variance term THSV,
caused by fluctuations in the number of massive haloes within the
survey area,

T = T0 + THSV = [T1h + T2h + T3h + T4h] + THSV . (17)

The two-halo term is split into two parts, representing correlations
between two or three points in the first halo and two or one point in
the second halo. As haloes are the building blocks of the density field
in the halo approach, we need to choose models for their internal
structure, abundance and clustering in order to build a model for the
trispectrum.

Our implementation of the one-, two- and four-halo term contri-
butions to the matter trispectrum follows Cooray & Hu (2001), and
we neglect the three-halo term as it is subdominant compared to the
other terms at the scales of interest for this analysis. Specifically,
we assume NFW halo profiles (Navarro, Frenk & White 1997)
with the Bhattacharya et al. (2011) fitting formula for the halo
mass–concentration relation c(M, z), and the Tinker et al. (2010) fit
functions for the halo mass function dn

dM
and linear halo bias b(M)

(all evaluated at � = 200), neglecting terms involving higher order
halo biasing.

Within the halo model framework, the halo sample variance term
is described by the change of the number of massive haloes within
the survey area due to survey-scale density modes; following Sato
et al. (2009) it is calculated as

T
ijkl
κ,HSV(l1, −l1, l2, −l2) =

(
3

2

H 2
0

c2
�m

)4

×
∫ χh

0
dχ

(
d2V

dχd�

)2 (
χ

a(χ )

)4

gigjgkgl

×
∫

dM
dn

dM
b(M)

(
M

ρ̄

)2

|ũ(l1/χ, c(M, z(χ ))|2

×
∫

dM ′ dn

dM ′ b(M ′)
(

M ′

ρ̄

)2

|ũ(l2/χ, c(M ′, z(χ ))|2

×
∫ ∞

0

kdk

2π
P lin

δ (k, z(χ )) |W̃ (kχ�s)|2, (18)

where W̃ (kχ�s) = 2J1(kχ�s)/(kχ�s) is the Fourier transform of
the survey window function (�s = √

�s/π) and ũ is the angular
Fourier transform of the convergence field for a halo with mass M.

4.2 Likelihood analysis without PCA mitigation of baryons

We have introduced the mathematical basics of likelihood analyses
in Section 2.2 and the COSMOLIKE internal calculation of our data
vectors, model vectors, and covariances in Sections 3.2 and 4.1.
COSMOLIKE samples the parameter space using a parallel MCMC
of Goodman & Weare (2010) algorithm implemented through the
PYTHON emcee package 8 (Foreman-Mackey et al. 2013). Altogether
we present results of 52 simulated likelihood analyses in this paper;
each analysis consists of 108 000 MCMC steps (after discarding
12 000 steps as burn-in phase) in a seven-dimensional cosmological
parameter space with flat priors at the boundaries of the parameter
range (see Table 3). We check for convergence by running several
shorter chains for all scenarios and 10 chains with 480 000 MCMC
steps and find no qualitative change in the contours.

We have analysed all baryonic scenarios described in Section 3.1,
but confine our detailed results to two extreme scenarios (AGN,
CX) and two moderate scenarios (AD, CW). We run analyses for
a DES and LSST/Euclid survey without prior information (except
for the flat priors at the limits of our parameter space); results for
the same analysis with prior information from the Planck mission
can be found in Appendix A. All contour plots are marginalized over
five cosmological parameters; in addition to the ones mentioned in
the plots we marginalize over �b and H0. The first row of all figures
with contour plots show the posterior probability distribution of
a given cosmological parameter marginalized over the other six
cosmological parameters.

Figs 4 and 5 compare the impact of strong AGN feedback (AGN,
dashed red), extreme cooling (CX, dash–dotted blue), moderate
cooling (CW, long-dashed green), to the DM scenario (black solid)
for DES and LSST/Euclid, respectively. 9 When baryons are not
accounted for, the parameter estimates are severely biased. We
quantify these biases by showing the marginalized 1D best-fitting
cosmological parameters and their 1σ error bars in Tables 5 and 6
(see rows with PCA order = 0).

Note the extremely large biases in Fig. 5. For example, the best-
fitting value of w0 if the baryons behaved as in the CX scenario
would be −0.573, differing from the ‘true’ value of w = −1 by
0.427, or almost 5σ . This effect is even more significant for the
AGN scenario. As a side-note we point out that quoting a bias as
multiples of σ assumes the posterior probability to be Gaussian,
which is done implicitly in all Fisher analyses of previous papers.
Looking at the 1D posterior probabilities in Figs 4, 5, A1, and A4,
this is hardly justified; all posteriors show a substantial skewness or
kurtosis. As a consequence a quantitative comparison to previous,
similar analyses that are based on Fisher matrices is not meaningful.

In any case, Fisher matrix or MCMC, it has become clear that
neglecting the effects of baryons would lead to a catastrophic

8 http://dan.iel.fm/emcee/current/user/pt/
9 All contours shown in this paper indicate the 68 per cent confidence re-
gions.
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2458 T. Eifler et al.

Figure 4. Cosmological constraints for a DES survey assuming different underlying baryonic scenarios for our Universe, i.e. pure DM (black/solid), strong
AGN feedback (red/dashed), extreme cooling (blue/dot–dashed), and moderate cooling (green/long-dashed), which are unaccounted for in the likelihood
analysis. The scenarios are detailed in Section 3.1. The characters ‘np’ labelling each model indicate that the analysis is performed with no priors on the
parameters.

misinterpretation of the data and a mitigation strategy is essen-
tial for Stage IV surveys. Given the significantly larger statistical
error bars expected in DES, the resulting bias in Fig. 4 is less severe
than for the LSST case; nevertheless, even for DES a mitigation
scheme for baryons is necessary.

5 PC A M A R G I NA L I Z AT I O N OV E R BA RYO N I C
U N C E RTA I N T I E S

5.1 Identifying the PCs

Recall that the PCA marginalization scheme as outlined in Sec-
tion 2.2 starts with creating a set of model vectors at each point in
cosmology that spans the variation under nuisance parameters. This
ideal case corresponds to having a representative set of simulated
baryonic scenarios at each point in cosmology, which unfortunately
is computationally unfeasible. Here we rely on the approximation
we already detailed in Section 3.2, namely that the cosmology enters
through the DM power spectrum only.

Following equations (9) and (10), we compute the baryonic shear
power spectrum at any given cosmology pco from the set of baryonic

shear power spectra we computed in Section 3.2 for the fiducial
cosmology pfid

co as

C
ij
bary(l, pco) = C

ij
bary(l, pfid

co )

C
ij
DM(l, pfid

co )
C

ij
DM(l, pco), (19)

where C
ij
DM(l, pco) is computed from COSMOLIKE.

For each point in parameter space sampled in the MCMC, we
use equation (19) to compute 14 (12) baryonic shear power spectra
for DES (LSST/Euclid). We concatenate the shear power spectra to
a 300 × 14 (300 × 12 for LSST/Euclid) matrix, which defines the
set of model vectors Mα that is assumed to span the uncertainty
due to baryons. We can now define the difference matrix � as in
equation (4) and perform a (full) SVD on this matrix using equa-
tion (5), which gives the transformation matrix U, with the PCs as
columns. One at a time, we remove the PCs with the largest singular
values.

This gives us the necessary ingredients to continue with the pro-
cedure outlined in Section 2.2. Fig. 6 shows the envelope of the dif-
ferent baryonic simulations for three different auto-redshift power
spectra (corresponding to the three rows), and each column depicts
the result of removing more modes. The first column shows the
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Accounting for baryonic effects in cosmic shear tomography 2459

Figure 5. Cosmological constraints for an LSST/Euclid survey assuming different underlying baryonic scenarios for our Universe, i.e. pure DM (black/solid),
strong AGN feedback (red/dashed), extreme cooling (blue/dot–dashed), and moderate cooling (green/long-dashed), which are unaccounted for in the likelihood
analysis. The scenarios are detailed in Section 3.1.

uncertainties from baryonic physics if no modes were removed.
The second column shows that even by removing only a single
mode, we are able to reduce the baryonic uncertainties by a signifi-
cant amount. Removing four modes seems to remove any lingering
ambiguity associated with the baryons. This is a striking result: by
throwing away only less than 2 per cent of the data (4 modes out of
300), we have created a ‘baryon-free’ subset that can be analysed
with the DM power spectrum.

In addition to the analysis in Fig. 6 we determine the number of
PCs by examining the projections of difference vectors �α on to the
PC subspaces. Recall that for each baryonic scenario α we calculate
a difference vector �α . We can project each of these vectors on to
the subspace spanned by the PC modes that are removed. In partic-
ular we compute the absolute value of the cosine of the projection
angle

cos θα
i = �α · PC i

|�α||PC i | , (20)

between the αth difference vector and ith PC. The corresponding
PC captures all baryonic uncertainty of scenario α if | cos θα

i | = 1
and none if | cos θα

i | = 0. When removing n PCs we can define the

fraction of the difference vector that falls into the space spanned by
the PCs as

Vn =
√√√√ n∑

i

cos2 θα
i . (21)

Table 4 show θα
i and Vn for all the simulations. Even removing two

modes seems almost sufficient to remove the differences caused by
baryonic effects. This analysis shows impressively that the baryonic
scenarios for both DES and LSST/Euclid are almost completely
captured within PCA subspaces of relatively low dimensionality;
when using a four-dimensional PC space the worst scenarios is still
to 99.5 per cent per cent within the PCA-volume.

5.2 Results of the likelihood analyses

From Fig. 6 and Table 4 we expect that removing three or four PCs
is sufficient to remove any bias from baryonic physics. We now test
this by running the likelihood analyses with differing numbers of
modes removed.

It is important to note that all likelihood analyses with PCA
marginalization are blind to the baryonic scenario that serves as
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Figure 6. This plot shows the uncertainty range spanned by the baryonic scenarios, centralized around the DM scenario, when excluding one (second panel)
two (third panel), and four (fourth panel) PCs compared to the original uncertainty range (left-hand panel). The three panel rows show three tomographic
autocorrelation power spectra for LSST/Euclid.

Table 4. Projection angle of the difference vectors (Cij
bary(l) − C

ij
DM(l)) on to the PCs (see equation 20) and fraction of this difference vector that is captured

by the PC subspace (see equation 21).

DES LSST/Euclid
Scenario |cos θ1| V1 |cos θ2| V2 |cos θ3| V3 |cos θ4| V4 |cos θ1| V1 |cos θ2| V2 |cos θ3| V3 |cos θ4| V4

AGN 0.98 0.98 0.17 1 0.002 1 0.0097 1 0.95 0.95 0.31 1 0.026 1 0.000 56 1
NOSN 0.87 0.87 0.47 0.99 0.11 1 0.047 1 0.97 0.97 0.1 0.98 0.052 0.98 0.21 1
NOSN N. 0.88 0.88 0.46 1 0.087 1 0.04 1 0.96 0.96 0.18 0.98 0.06 0.98 0.18 1
NOZC. 0.43 0.43 0.86 0.96 0.001 0.96 0.27 1 0.99 0.99 0.085 0.99 0.078 1 0.051 1
REF 0.63 0.63 0.77 1 0.09 1 0.03 1 0.99 0.99 0.097 1 0.05 1 0.048 1
WDENS 0.99 0.99 0.12 1 0.018 1 0.024 1 0.88 0.88 0.44 0.99 0.14 1 0.0074 1
DBLIM. 0.99 0.99 0.13 1 0.003 1 0.0065 1 0.95 0.95 0.31 1 0.031 1 0.0058 1
WML4 0.61 0.61 0.78 0.99 0.05 0.99 0.14 1 0.99 0.99 0.069 1 0.06 1 0.037 1
WML1V. 0.98 0.98 0.21 1 0.012 1 0.025 1 0.97 0.97 0.26 1 0.025 1 0.005 1
AD 0.98 0.98 0.21 1 0.056 1 0.013 1 0.3 0.3 0.95 0.99 0.002 0.99 0.086 1
CX 0.76 0.76 0.64 1 0.015 1 0.00035 1 0.99 0.99 0.16 1 0.0015 1 0.000 77 1
CW 0.97 0.97 0.23 1 0.014 1 0.0078 1 0.87 0.87 0.49 1 0.03 1 0.031 1
A 1 1 0.079 1 0.036 1 0.026 1 – – – – – – – –
CSF 0.98 0.98 0.2 1 0.032 1 0.006 1 – – – – – – – –

input data vector. More precisely, this means that we exclude the
data vector’s baryonic scenario from the matrix � in order not to
have an unfair advantage over reality.

Figs 7 and 9 show the results of the likelihood analyses after
removing zero (red, dashed), three (blue, dot–dashed), and four
(green, long-dashed) modes for a DES and LSST/Euclid-like sur-
vey, respectively. In comparison we show a pure DM input scenario
analysed with a DM prediction code (black, solid). All contour plots
are marginalized over five cosmological parameters; in addition to
the ones mentioned in the plots we marginalize over �b and H0. The
first row of Figs 7 and 9 show the posterior probability distribution
of a given cosmological parameter marginalized over the other six
cosmological parameters. In each case, the ‘data’ are taken to be
the spectra from the AGN simulation, which – as depicted in Figs 4
and 5 and by the red dashed curves – led to the largest biases if

baryons were not accounted for. The LSST/Euclid plot shows that,
after removing three or four modes, the bias vanishes.

One typically expects that a mitigation scheme that removes the
bias will loosen constraints (e.g. adding extra nuisance parameters
to capture the effects of the systematic will inevitably degrade the
marginalized constraints on the cosmological parameters). In our
mitigation scheme, we are removing some of the data so we similarly
expect some degradation in the constraints. Figs 7 and 9 show that
this degradation is minimal, affecting only the spectral index ns.
Again, this is an exciting result: the mitigation scheme can be used
with little cost to the overall extraction. It is perhaps not surprising
that the one parameter that is affected, ns, is the one that requires
information from both large and small scales. By removing some of
the small-scale information, we are necessarily losing information
about ns.
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Accounting for baryonic effects in cosmic shear tomography 2461

Table 5. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
DES survey (no priors). The last column contains the �χ2 distance (see equation 22) between best fit and fiducial parameter point.

Scenario PCA order �m σ 8 ns w0 wa �b h0 �χ2

DM 0 0.316+0.0278
−0.0274 0.828+0.0324

−0.0321 0.963+0.0379
−0.0369 −1.02+0.382

−0.389 −0.0962+1.43
−1.41 0.0477+0.0049

−0.005 15 0.677+0.109
−0.105 0.836

AD 0 0.306+0.0254
−0.0256 0.847+0.0308

−0.0311 0.935+0.0402
−0.0401 −0.958+0.355

−0.367 0.0714+1.31
−1.3 0.0475+0.004 99

−0.004 95 0.695+0.116
−0.113 3.53

AD 3 0.316+0.0279
−0.0286 0.818+0.0445

−0.0429 0.943+0.0726
−0.0697 −1.05+0.346

−0.357 −0.125+1.42
−1.51 0.0476+0.005 12

−0.005 16 0.677+0.0758
−0.075 0.689

AD 4 0.309+0.0324
−0.0315 0.838+0.0699

−0.0612 0.953+0.0739
−0.0733 −1.05+0.356

−0.352 0.0796+1.41
−1.49 0.0478+0.005 12

−0.0053 0.68+0.103
−0.101 0.71

AGN 0 0.279+0.0238
−0.0236 0.879+0.0355

−0.0355 0.871+0.0267
−0.0254 −1.05+0.32

−0.313 0.772+1.11
−1.11 0.0471+0.005

−0.004 91 0.624+0.0895
−0.0914 75.2

AGN 3 0.31+0.0294
−0.0307 0.839+0.0536

−0.0521 0.945+0.0716
−0.0696 −1.01+0.359

−0.36 0.12+1.34
−1.4 0.0477+0.005 17

−0.005 24 0.689+0.0836
−0.0834 0.784

AGN 4 0.324+0.0283
−0.0283 0.807+0.0551

−0.055 0.945+0.0751
−0.0734 −1+0.36

−0.369 −0.42+1.42
−1.43 0.0475+0.005 05

−0.0051 0.666+0.113
−0.107 0.69

CW 0 0.331+0.0249
−0.0248 0.794+0.0259

−0.0254 1.01+0.0314
−0.0312 −1.1+0.361

−0.371 −0.615+1.37
−1.34 0.0477+0.005 07

−0.005 15 0.648+0.087
−0.0866 14.9

CW 3 0.318+0.0278
−0.0264 0.817+0.0426

−0.0434 0.945+0.072
−0.0723 −1.03+0.349

−0.345 −0.128+1.4
−1.45 0.0476+0.0051

−0.005 16 0.675+0.0891
−0.0885 0.539

CW 4 0.316+0.0283
−0.0288 0.826+0.0577

−0.0571 0.952+0.0738
−0.076 −0.996+0.368

−0.382 −0.198+1.4
−1.43 0.0476+0.005 17

−0.005 22 0.667+0.0948
−0.0929 0.57

CX 0 0.337+0.0245
−0.0248 0.758+0.0224

−0.0227 1.02+0.0279
−0.0282 −1.37+0.348

−0.361 −0.873+1.23
−1.2 0.0475+0.0051

−0.005 08 0.633+0.0823
−0.0823 41.9

CX 3 0.313+0.0283
−0.028 0.823+0.0464

−0.0467 0.943+0.0719
−0.0691 −1.08+0.355

−0.351 −0.0403+1.54
−1.53 0.0475+0.005 09

−0.005 16 0.69+0.0914
−0.0889 0.93

CX 4 0.314+0.0296
−0.03 0.822+0.0646

−0.0565 0.953+0.0693
−0.0717 −1.07+0.357

−0.349 −0.132+1.46
−1.46 0.0473+0.005 08

−0.004 92 0.674+0.103
−0.0968 0.643

Table 6. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for an
LSST/Euclid survey (no priors). The last column contains the �χ2 distance (see equation 22) between best fit and fiducial parameter point.

Scenario PCA order �m σ 8 ns w0 wa �b h0 �χ2

DM 0 0.316+0.007 27
−0.0073 0.828+0.008 03

−0.0081 0.96+0.007 66
−0.007 69 −0.993+0.0793

−0.0796 −0.0373+0.288
−0.285 0.0476+0.004 99

−0.0051 0.67+0.0259
−0.0261 0.231

AD 0 0.299+0.006 81
−0.006 87 0.852+0.008 21

−0.007 88 0.929+0.007 84
−0.008 33 −1.12+0.0726

−0.0733 0.678+0.238
−0.22 0.0478+0.004 94

−0.004 97 0.716+0.0322
−0.0329 87.7

AD 3 0.317+0.0102
−0.0102 0.819+0.0136

−0.0136 0.924+0.0504
−0.0549 −0.975+0.108

−0.108 −0.139+0.462
−0.465 0.048+0.004 91

−0.005 12 0.697+0.0544
−0.0539 2.15

AD 4 0.315+0.0104
−0.0104 0.824+0.0158

−0.0166 0.939+0.0524
−0.0544 −0.986+0.106

−0.108 −0.0791+0.473
−0.482 0.048+0.004 95

−0.005 07 0.69+0.0527
−0.0536 2.35

AGN 0 0.271+0.005 39
−0.005 93 0.877+0.0087

−0.006 47 0.844+0.0017
−0.004 19 −1.23+0.059

−0.064 1.25+0.214
−0.129 0.0439+0.003 51

−0.003 17 0.705+0.022
−0.0216 253

AGN 4 0.32+0.0125
−0.0122 0.822+0.0189

−0.0192 0.949+0.0526
−0.055 −0.968+0.123

−0.115 −0.117+0.543
−0.564 0.0474+0.005 05

−0.005 03 0.674+0.0556
−0.0533 2.22

AGN 3 0.315+0.0103
−0.009 89 0.83+0.0135

−0.0137 0.943+0.0548
−0.0585 −1.01+0.0985

−0.1 0.125+0.404
−0.41 0.0478+0.004 82

−0.005 04 0.696+0.0577
−0.0563 2.99

CW 0 0.346+0.009 21
−0.008 78 0.791+0.007 89

−0.008 35 1.02+0.009 37
−0.007 57 −0.655+0.12

−0.107 −1.76+0.391
−0.464 0.0474+0.004 95

−0.004 98 0.577+0.0229
−0.0266 98.1

CW 3 0.317+0.009 52
−0.009 15 0.826+0.012

−0.0123 0.952+0.0516
−0.0522 −0.977+0.0956

−0.0911 −0.0536+0.439
−0.447 0.0476+0.005 06

−0.0051 0.672+0.0567
−0.0575 0.316

CW 4 0.316+0.0115
−0.0116 0.828+0.0209

−0.0201 0.959+0.0555
−0.0542 −0.986+0.117

−0.113 −0.0503+0.524
−0.531 0.0477+0.004 86

−0.005 05 0.67+0.0506
−0.0518 0.327

CX 0 0.36+0.007 73
−0.005 63 0.763+0.004 09

−0.006 13 1.04+0.0109
−0.007 38 −0.573+0.0775

−0.0367 −2.27+0.0378
−0.213 0.0469+0.004 94

−0.004 95 0.519+0.0174
−0.0284 166

CX 3 0.319+0.0102
−0.009 57 0.817+0.0122

−0.0126 0.932+0.0401
−0.0431 −0.956+0.113

−0.109 −0.287+0.478
−0.503 0.0478+0.004 97

−0.005 18 0.696+0.0531
−0.0501 5.49

CX 4 0.322+0.0107
−0.0109 0.81+0.016

−0.0164 0.919+0.0453
−0.0471 −0.934+0.116

−0.118 −0.377+0.53
−0.526 0.0477+0.005

−0.005 16 0.694+0.047
−0.0484 6.44

We can quantify the extent to which the bias is removed and the
amount by which the allowed region in parameter space is broad-
ened by the mitigation scheme. If there were only one parameter, this
would be straightforward: simply report the difference between the
best value of the parameter emerging from the likelihood analysis
and the ‘true’ value used to generate the spectra. This would be the
bias, and it would be compared to the statistical uncertainty emerg-
ing from the likelihood analysis. Bias significantly smaller than this
uncertainty would be fine, while one larger would be a problem.
That is, the relevant quantity would be (pbest fit − pfid)2/σ 2. Under
the assumption that this �χ2 is drawn from a chi-squared distribu-
tion, a value larger than 1 would indicate a problem at 68 per cent;
larger than 4 at 95 per cent; and larger than 9 at 99.7 per cent.

For our seven parameter case, we generalize to

�χ2 = ( pfid
co − pbary,best fit

co )t C−1
pco

( pfid
co − pbary,best fit

co ), (22)

where the covariance matrix is determined via

Cij
pco

= 1

N − 1

N∑
k=0

(〈 pi
co〉 − pik

co

) (〈 pj
co〉 − pjk

co

)
, (23)

with 〈 pi
co〉 indicating the mean of the ith cosmological parameter (i,

j ∈ [1, 7]), and k ∈ [1, N] being the index running over all steps in
the MCMC chain. Again assuming this is distributed in the seven-
dimensional cosmological parameter space as a χ2 distribution with
seven degrees of freedom, we find the critical �χ2 values that
correspond to 68, 95, and 99 per cent confidence regions are 8.14,
14.07, and 18.48, respectively.

In Tables 5 and 6 (also see Figs 8 and 10), we show the best-fitting
values of the individual parameters with the marginalized error bars
and the �χ2 as defined in equation (22). This analysis illustrates
the severe biases in cosmological constraints for DES if the extreme
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2462 T. Eifler et al.

Figure 7. Cosmological constraints for a DES survey when using the PCA mitigation technique. The results shown assume that the baryonic physics of
the Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashed and green/long-dashed,
respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).

baryonic scenarios are analysed. For example, when analysing the
AGN feedback scenario the probability of the fiducial cosmology
is outside the α = 99.999 9998 per cent confidence interval. For
scenarios that only slightly differ from a pure DM Universe, such
as the adiabatic (AD) scenario the bias is substantially less severe
(within the 68 per cent region) but still noteworthy.

As expected the impact of baryonic physics is more important
for Stage IV surveys. For example, the analysis of the AD scenario
for an LSST/Euclid-like experiment places the fiducial cosmology
outside the α = 99.999 9999 per cent confidence interval, more than
the AGN scenario does for DES. When analysing the AGN scenario
for an LSST/Euclid survey, the fiducial cosmology is outside the
α = exp (−5 × 10−27) (a number that is considered 1 by almost any
calculator) interval.

Focusing on the LSST/Euclid case, we see that – in accord with
the 2D projections shown in the figures – the biases are extremely
large for all baryonic scenarios if no mitigation scheme is used.
As more modes are removed, the fits get significantly better, e.g.
�χ2 drops from 87.7 to 2.15 and 2.35 for the AD scenario when
removing three and four PCs, respectively. For the AGN scenario
we find a similar behaviour for �χ2, i.e. it drops from 253 to

2.22, 2.99 when removing three and four PCs, respectively. For
all considered scenarios the bias is well within the 1σ error bars;
hence, we conclude that the mitigation scheme effectively removes
the baryonic bias even for Stage IV surveys such as LSST and
Euclid. This is in distinct contrast to phenomenological models,
such as those studied in Zentner et al. (2013) and Semboloni et al.
(2013), which are adequate for Stage III surveys such as DES,
but leave significant systematic error in the inferred cosmological
parameters from Stage IV experiments.

In Appendix A, we rerun all likelihood analyses described in
this section and in Section 4 but include prior information from the
Planck mission. Figures to compare are Figs 4 and 5 to Figs A1
and A4 for the impact of baryonic physics on constraints without
any mitigation and Figs 7 and 9 to Figs A2 and A5 for the likelihood
analyses with PCA marginalization. We also repeat the analyses of
Tables 5, 6 and Figs 8, 10, which are mirrored in Tables A1, A2 and
Figs A3, A6, respectively.

The inclusion of Planck information (which in our implementa-
tion does not act on w0, wa) mitigates the magnitude of the bias from
the cosmic shear tomography analysis; however, it also substan-
tially reduces the statistical errors on cosmological parameters, and
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Accounting for baryonic effects in cosmic shear tomography 2463

Figure 8. The marginalized 1D constraints on cosmological parameters for a DES-like survey without priors (see Table 5 for exact numbers). The notation
refers to the various simulation scenarios (DM, AD, AGN, CW, CX) and the number of PCs that have been removed from the data, either ‘P3’ for removal of
the three most significant modes or ‘P4’ for removal of the four most significant modes.

this places stronger demands on the performance of any mitigation
scheme. Qualitatively, the results with and without Planck infor-
mation are similar: First, we find significant biases in cosmological
constraints if baryonic physics is not accounted for; the biases are
severe for DES and catastrophic for LSST/Euclid. Secondly, PCA
marginalization is able to remove these biases efficiently. One major
difference between both analyses is that the information loss on ns

is insignificant when including Planck information. In this case, the
Planck prior determines the constraint on ns entirely.

5.3 Degeneracy with cosmological parameters

As shown in Figs 7–10 the PCA removal technique substantially
reduces the information on the spectral index ns indicating a strong
degeneracy of baryonic scenarios and this particular cosmologi-
cal parameter. In order to investigate this degeneracy further we
perform a similar analysis as in Table 4 but replacing the �α in
equations (20) and (21) with the difference of DM data vectors that
vary in their underlying cosmology (see Tables 7 and 8).

Specifically, we compute the difference vectors between the DM
fiducial model and the 68 per cent intervals for each of the seven
cosmological parameters considered in our likelihood analysis. A
second difference to the analysis in Table 4 is the inclusion of
the covariance matrix of the Cij(l) when deriving the PCs. As we
will further outline in Section 6 (see equation 25) this accounts for
correlation and different error bars on the individual Cij(l).

A sufficient but not a necessary condition for the removal of the
information on ns would be V4 ∼ 1, which however is not reflected in
Tables 7 (DES) and 8 (LSST/Euclid). Whereas for the DES case one
might argue that V4 of ns has the largest value of all cosmological
parameters, the other values are too close to draw any conclusions

from this analysis. Especially since for the LSST/Euclid analysis
we find that the volume of �m and σ 8 is more prominently mapped
on to the PC-space than ns.

Our explanation for this is that ns is only degenerate with the PCs
if additional cosmological parameters are at least allowed to vary
slightly as well. We motivate this statement as follows. Suppose ns

were the only parameter of interest. Under variation of ns the power
spectrum gets tilted; hence, the difference vector has contributions
from small and large scales. However, baryonic scenarios only act
on small scales; hence, when all other parameters are fixed (or have
strong priors), the removal of baryons will not void the information
on ns. Given some freedom in especially �m, σ 8, and w0, the spectral
index ns can indeed account for the tilts that are seen in most
baryonic scenarios. We have examined some combinations of the
aforementioned parameters, finding indeed that V4 for ns strongly
increases already when giving only little freedom to σ 8 and �m.
We however postpone a more thorough study of the cosmological
parameter space degeneracies to a future paper.

6 G E N E R A L I T Y A N D D I S C U S S I O N
O F T H E M E T H O D

The PCA mitigation technique introduced in Section 2.2 is com-
pletely general and can be applied to any quantity that enters a
likelihood analysis and any (combinations of) systematic(s) that af-
fect said quantity. In this section we formalize and discuss a general
PCA marginalization scheme; the main differences to the method
outlined in Section 2.2 are that we require the method to be (i)
agnostic about the DM scenario (ii) account for multiple systemat-
ics, (iii) account for correlation and different errors of observables,
and (iv) to be able to process prior information on a systematics
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2464 T. Eifler et al.

Figure 9. Cosmological constraints for an LSST/Euclid survey when using the PCA mitigation technique. The results shown assume that the baryonic physics
of the Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashed and green/long-dashed,
respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).

scenario (e.g. the AGN scenario being more likely to resemble the
true baryonic physics compare to the AD scenario).

The first requirement is motivated by the fact that even if one can
reference to a DM power spectrum, non-linear density evolution
models of the DM power spectrum itself are affected by uncer-
tainties that need to be marginalized over. For example, even the
latest Coyote Universe emulator (Heitmann et al. 2014) has up to
5 per cent uncertainties in the DM power spectrum and Eifler (2011)
showed that this can substantially impact weak lensing observables.
The COSMOLIKE weak lensing module employed in this paper (i.e.
Takahashi et al. 2012, with a modification to include time-dependent
dark energy models) is likely to exceed the 5 per cent uncertainty
threshold at small k-modes. This uncertainty should be accounted
for; hence, we conclude that referencing to the (weighted) mean of
all models is a more objective choice.

Consequentially, we define the components of the difference ma-
trix not with respect to a DM scenario (as in equation 4) but to the
mean of all models:

�kα = Mkα − M̄k with M̄k = 1

Nsce − 1

Nsce∑
α

Mkα , (24)

where k again labels the model vector bin in (l, z), and α refers to
the various systematic scenarios.

The difference matrix is again computed at every point of the
MCMC and the Mαs resemble uncertainties from systematics at
any given point in cosmology, i.e. M( pnu| pco). In order to account
for requirements (iii) and (iv) we have to modify the M( pnu| pco)
and define the Mαs as

Mα = wα L M( pnu| pco), (25)

where the wαs allow the analyst to weigh the different nuisance
parameter scenarios relative to each other and L is computed from
the inverse data covariance matrix C−1 = LLt in order to account
for correlation and different error bars of data points. We note that
strictly speaking the covariance is a function of pnu and pco and that
this dependency should be incorporated in a high precision analysis.

In order to fulfil requirement (ii), it must be possible to com-
pute the effect of the systematic under a wide range of possible
circumstances. This computation involves information from obser-
vations, simulations, and theoretical considerations; it is necessary
for our calculations to span the range of reasonable realizations of
the systematic effect. PCA mitigation does not eliminate the need to
produce simulations of the systematics that one aims to remove. The
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Accounting for baryonic effects in cosmic shear tomography 2465

Figure 10. The marginalized 1D constraints on cosmological parameters for an LSST-like survey without priors (see Table 6 for exact numbers). The notation
refers to the various simulation scenarios (DM, AD, AGN, CW, CX) and the number of PCs that have been removed from the data, either ‘P3’ for removal of
the three most significant modes or ‘P4’ for removal of the four most significant modes.

Table 7. Projection angle of the DM difference vectors on to the PCs (see equation 20) and fraction of the difference
vector contained by the PC subspace (see equation 21). Results shown are for the DES case.

Cosmology |cos θ1| V1 |cos θ2| V2 |cos θ3| V3 |cos θ4| V4

�m = 0.313+0.0341
−0.0395 0.32 0.32 0.45 0.55 0.017 0.55 0.22 0.6

σ 8 = 0.83+0.0335
−0.0318 0.18 0.18 0.49 0.52 0.14 0.54 0.2 0.58

ns = 0.964+0.033
−0.0337 0.26 0.26 0.55 0.61 0.5 0.79 0.044 0.79

w0 = −0.972+0.353
−0.532 0.14 0.14 0.61 0.62 0.28 0.68 0.14 0.7

wa = 0.372+1.55
−1.18 0.22 0.22 0.61 0.65 0.3 0.72 0.14 0.73

�b = 0.041+0.0116
−0.001 31 0.36 0.36 0.38 0.53 0.52 0.74 0.029 0.75

h0 = 0.672+0.0974
−0.0575 0.37 0.37 0.41 0.55 0.52 0.76 0.043 0.76

Table 8. Projection angle of the DM difference vectors on to the PCs (see equation 20) and fraction of the difference
vector contained by the PC subspace (see equation 21). Results shown are for the LSST/Euclid case.

Cosmology |cos θ1| V1 |cos θ2| V2 |cos θ3| V3 |cos θ4| V4

�m = 0.315+0.0102
−0.009 61 0.099 0.099 0.59 0.59 0.32 0.67 0.13 0.69

σ 8 = 0.829+0.009 01
−0.008 62 0.15 0.15 0.49 0.51 0.15 0.53 0.28 0.6

ns = 0.961+0.007 71
−0.007 93 0.13 0.13 0.063 0.15 0.15 0.21 0.4 0.45

w0 = −1.01+0.11
−0.0776 0.14 0.14 0.37 0.4 0.081 0.41 0.32 0.52

wa = 0.0402+0.232
−0.412 0.14 0.14 0.44 0.46 0.12 0.48 0.19 0.52

�b = 0.0486+0.003 74
−0.005 93 0.13 0.13 0.054 0.14 0.26 0.3 0.43 0.52

h0 = 0.673+0.0232
−0.0319 0.13 0.13 0.038 0.14 0.24 0.28 0.43 0.51

procedure also requires that the systematic not be largely degener-
ate with the parameters we aim to infer from the data; however,
this same requirement must be met for more commonplace ‘self-
calibration’ exercises to be effective (e.g. such as Huterer et al.

2006; Zentner et al. 2008, 2013; Bernstein 2009; Semboloni et al.
2013).

There are substantial advantages of this technique over other
nuisance parameter approaches. First and foremost, the process is
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bound to effectively incorporate degeneracies between models of
systematic uncertainties. This is not true if independently devel-
oped nuisance parameter models, e.g. baryons as in Zentner et al.
(2013) and intrinsic alignment as in Joachimi et al. (2011) are com-
bined in an analysis. Secondly, if systematics can be calibrated
against DM-only simulation, this procedure enables one to perform
a cosmological analysis using phenomenological models that re-
quire relatively little computational effort. This advantage should
not be underestimated. The computational expense of e.g. explic-
itly including baryonic effects in simulations for a wide range of
cosmological models, is so prohibitive as to be entirely infeasible.
Thirdly, the technique to remove contaminated modes substantially
reduces the dimensionality of the parameter space that needs to be
sampled. Instead of sampling a high-dimensional nuisance param-
eter space at every step of the MCMC, mode removal allows the
analyst to sample cosmological parameters only.

In the presence of strong degeneracies between PCs and cos-
mology the mode removal technique might need to be replaced by
marginalizing over the PCs with priors (recall that mode removal
is equivalent to marginalizing without priors). This changes the
formalism outlined in Section 2.2. Instead of removing the con-
taminated modes as in equation (8) we have to carry out a full
marginalization in PC space.

Defining data and model vector and covariance in the nuisance
parameter sensitive PC space, i.e. Dpc = Ut D, Mpc = Ut M, and
C−1

pc = UtC−1U, we can define the marginalization integral that
needs to be solved/computed at every step of the MCMC as

L(D| pco) =
∫

dnpci P r(pci)

× exp

(
−1

2

[
(Dpc − Mpc)tC−1

pc (Dpc − Mpc)
])

, (26)

where Pr(pci) accounts for prior information on the ith PC. Such
information can be obtained from the eigenvalues of the covariance
matrix in equation (6) or from the so-called signals of the extreme
Mαs, i.e. their projection on to the PCs. These extreme signals can
serve as upper and lower integration limit of the marginalization
integral.

We note however that even in this scenario the PC mitigation
technique has substantial advantages: (i) the degeneracy between
nuisance parameters is automatically accounted for and (ii) the
number of nuisance parameters and hence the dimensionality of the
integral is greatly reduced.

7 C O N C L U S I O N S

We analyse cosmic shear tomography power spectra obtained from
14 hydro-simulations with different underlying baryonic processes
(e.g. AGN feedback, SN feedback, different cooling mechanisms,
and combinations thereof). These simulations span the range of
modelling uncertainties in the matter density field which, if not
accounted for, severely impact cosmological constraints.

Using the covariance and weak lensing module of the COSMOLIKE

analysis framework, we simulate Stage III (DES) and Stage IV
(LSST/Euclid) likelihood analyses for each of the 14 scenarios.
The quantity of interest is the bias in the inferred parameter (e.g.
w0, wa, σ 8) caused by baryonic effects compared to the statistical
uncertainties in the inferred parameter. In agreement with previous,
similar analyses (e.g. Semboloni et al. 2011, 2013; Zentner et al.
2013), we find severe biases in cosmological constraints inferred
from cosmic shear measurements of DES if the true Universe is

described by one of the extreme baryonic scenarios and baryonic
effects are neglected in the analysis. For scenarios that differ only
slightly from a pure DM Universe, such as the adiabatic (AD)
scenario the bias is substantially less severe (within the 68 per cent
region) but still non-negligible. Unfortunately, detailed studies of
the OWLS simulations analysed here suggest that some of the more
extreme scenarios best describe observed galaxy properties (e.g.
McCarthy et al. 2010).

The Stage IV experiments LSST and Euclid will measure cos-
mic shear spectra with smaller statistical error bars and so the
requirement to reduce systematics is significantly more stringent
than for DES. In our analyses in which we use baryonic simula-
tions to simulate an observed LSST/Euclid cosmic shear data set,
but do not account for baryonic effects, the systematic errors on
inferred cosmological parameters are always severe. In these anal-
yses, biases in dark energy equation of state parameters could be
as large as ∼7σ , while biases in other parameters could be even
larger. In the AD scenario, in which the baryons are treated non-
radiatively and in which the alterations of cosmic shear spectra
are mild, our analysis that does not include specific mitigation of
baryonic effects places the true, fiducial cosmology outside the
α = 99.999 9999 per cent confidence interval. When analysing the
AGN scenario for an LSST/Euclid survey the probability to ac-
cept the fiducial cosmology is basically zero. We repeat all likeli-
hood analyses including prior information from the Planck mission
and find no qualitative change in the severity of the effect (see
Appendix A). There is no doubt then that a mitigation scheme
will be necessary to analyse both Stage III and certainly Stage IV
data.

As a potential remedy we present PCA marginalization which
aims to mitigate biases on parameters inferred from observables
that may be partly compromised by poorly understood systematic
errors. The technique consists of: (i) identifying a range of possible
effects that the systematic may have on the observable of interest;
(ii) determining linear combinations of observables, using a PCA,
that are most compromised by the systematic according to the tem-
plates identified in step (i); projecting the data on to a subspace that
removes the linear combinations of observables that are most af-
fected by the systematic; and (iii) performing a likelihood analysis
on this data subspace.

We apply PCA marginalization to the simulation data and re-
peat the likelihood analyses for all baryonic scenarios. We find
that removing three to four PCs is sufficient to account fully for
biases from baryonic physics, even for the most extreme bary-
onic scenarios, and even for the Stage IV LSST/Euclid surveys.
This is a clear improvement over phenomenological models (as in
Semboloni et al. 2013; Zentner et al. 2013), which remove biases
from baryonic physics for Stage III, but leave significant system-
atic error in the inferred cosmological parameters from Stage IV
experiments.

As a consequence of the PCA mode removal, our constraining
power on cosmology is only slightly reduced, with only the con-
straints on the spectral index ns noticeably degraded. Even this loss
in cosmological information is recaptured if Planck priors are in-
cluded. Accounting for both the statistical and systematic errors on
inferred cosmological parameters (such as w0 and wa), it is clear
that mitigation is strongly preferred over neglecting baryonic pro-
cesses. For example, in the LSST/Euclid AGN scenario in which
the baryonic systematic is not explicitly mitigated, the systematic
error on w0 is δw0 ≈ 0.5, while the statistical error is σ (w0) ≈ 0.08
(see Table 6). Upon applying PCA mitigation to this scenario and
removing the three most important modes, the systematic error is
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reduced to δw0 ≈ 0.03 and the statistical error increased to only
σ (w0) ≈ 0.09.

It is our hope that these techniques will be adopted and applied
to mitigate systematic errors, not only in cosmic shear cosmology,
but in a variety of future data analyses.
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APPENDI X A : R ESULTS WI TH Planck P R I O R S

In this appendix we repeat all likelihood analysis described in
the text but include external information from the Planck satel-
lite (Planck Collaboration XVI 2014). There are good reasons to
look at the no-prior likelihoods first. Before combining results, we
would need to see whether they are consistent, and – were baryons
neglected – the Planck results would not be consistent with the lens-
ing results. There is also the danger that including external results
would force the likelihood to the correct region, thereby understat-
ing the magnitude of the problem and the need to fix it.

The analysis methods used in this appendix are exactly the same
as in the main text; the results are described in Section 5.2.
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Figure A1. Cosmological constraints for a DES survey assuming different underlying baryonic scenarios for our Universe, i.e. pure DM (black, solid), strong
AGN feedback (red, dashed), extreme cooling (blue, dot–dashed), and moderate cooling (green, long-dashed). The scenarios are detailed in Section 3.1. Results
shown here include priors front the Planck mission.

Figure A2. Cosmological constraints for a DES survey with Planck priors when using the PCA mitigation technique. The results shown assume that the
baryonic physics of the Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashed and
green/long-dashed, respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).
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Accounting for baryonic effects in cosmic shear tomography 2469

Figure A3. The best fit and marginalized 1D error bars on cosmological parameters for a DES survey with Planck priors (see Table A1 for exact numbers).

Figure A4. Cosmological constraints for an LSST/Euclid survey assuming different underlying baryonic scenarios for our Universe, i.e. pure DM (black,
solid), strong AGN feedback (red, dashed), extreme cooling (blue, dot–dashed), and moderate cooling (green, long-dashed). The scenarios are detailed in
Section 3.1. Results shown here include priors from the Planck mission.
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Figure A5. Cosmological constraints for an LSST/Euclid survey with Planck priors when using the PCA mitigation technique. The results shown assume that
the baryonic physics of the Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashed
and green/long-dashed, respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).

Figure A6. The best-fitting value and marginalized 1D error bars on cosmological parameters for an LSST/Euclid survey with Planck priors (see Tables A2
for exact numbers).

MNRAS 454, 2451–2471 (2015)

 at Ferm
ilab on January 21, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Accounting for baryonic effects in cosmic shear tomography 2471

Table A1. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
DES survey (with Planck priors). The last column contains the �χ2 distance (see equation 22) between best fit and fiducial parameter point.

Scenario PCA order �m σ 8 ns w0 wa �b h0 �χ2

DM 0 0.315+0.008 14
−0.008 14 0.828+0.0101

−0.01 0.96+0.006 89
−0.006 79 −1.01+0.249

−0.248 −0.0745+0.926
−0.954 0.0487+0.000 634

−0.000 626 0.673+0.0117
−0.0116 0.087

AD 0 0.308+0.008 24
−0.008 19 0.832+0.0101

−0.0102 0.957+0.006 68
−0.006 84 −1.03+0.252

−0.255 −0.165+0.977
−0.977 0.0487+0.000 62

−0.000 606 0.671+0.0118
−0.0119 4.23

AD 3 0.313+0.008 93
−0.009 0.828+0.008 01

−0.008 13 0.96+0.004 93
−0.004 99 −1.05+0.23

−0.233 0.0703+0.745
−0.739 0.0487+0.000 438

−0.000 442 0.673+0.008 56
−0.008 59 0.144

AD 4 0.314+0.009 73
−0.009 74 0.828+0.007 92

−0.007 86 0.96+0.005 11
−0.005 14 −1.03+0.26

−0.263 0.0402+0.824
−0.818 0.0487+0.000 445

−0.000 436 0.673+0.008 15
−0.008 33 0.258

AGN 0 0.273+0.007 75
−0.008 26 0.829+0.0108

−0.0108 0.945+0.006 88
−0.006 83 −1.54+0.252

−0.26 −0.293+1.25
−1.32 0.0488+0.000 631

−0.000 632 0.663+0.012
−0.0121 104

AGN 3 0.315+0.009 88
−0.009 89 0.828+0.008 05

−0.008 13 0.96+0.005 05
−0.0051 −1.02+0.263

−0.264 0.0773+0.836
−0.841 0.0487+0.000 453

−0.000 447 0.673+0.008 32
−0.008 31 1.14

AGN 4 0.315+0.0098
−0.009 88 0.829+0.008 31

−0.008 18 0.96+0.005 07
−0.005 15 −1.02+0.259

−0.267 0.12+0.803
−0.787 0.0487+0.000 437

−0.000 44 0.673+0.008 37
−0.008 26 0.31

CW 0 0.324+0.008 59
−0.008 68 0.82+0.009 92

−0.009 79 0.968+0.006 79
−0.006 84 −0.996+0.248

−0.252 0.14+0.913
−0.919 0.0486+0.000 618

−0.000 61 0.678+0.0116
−0.0119 7.25

CW 3 0.314+0.008 85
−0.0089 0.828+0.0081

−0.008 09 0.96+0.005 05
−0.0051 −1.04+0.24

−0.241 0.0959+0.773
−0.766 0.0487+0.000 447

−0.000 449 0.673+0.008 45
−0.008 43 0.0614

CW 4 0.315+0.009 47
−0.009 48 0.828+0.0081

−0.0082 0.96+0.004 99
−0.005 03 −1.02+0.245

−0.244 0.0676+0.767
−0.768 0.0487+0.000 443

−0.000 448 0.673+0.008 52
−0.008 47 0.0131

CX 0 0.314+0.0087
−0.008 65 0.806+0.0102

−0.0102 0.969+0.006 99
−0.006 95 −1.32+0.27

−0.265 0.829+0.987
−0.961 0.0487+0.000 61

−0.000 609 0.678+0.0118
−0.0117 27.3

CX 3 0.313+0.008 57
−0.008 65 0.828+0.008 15

−0.008 12 0.96+0.005 01
−0.004 96 −1.03+0.226

−0.227 −0.0189+0.734
−0.745 0.0487+0.000 432

−0.000 428 0.673+0.008 22
−0.008 28 0.323

CX 4 0.313+0.009 21
−0.009 44 0.828+0.008 12

−0.008 18 0.96+0.0052
−0.005 21 −1.03+0.254

−0.255 −0.001 75+0.805
−0.795 0.0487+0.000 435

−0.000 44 0.673+0.008 38
−0.008 33 0.536

Table A2. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for
an LSST/Euclid survey (with Planck priors). The last column contains the �χ2 distance (see equation 22) between best fit and fiducial parameter point.

Scenario PCA order �m σ 8 ns w0 wa �b h0 �χ2
BA

DM 0 0.315+0.005 44
−0.005 37 0.829+0.0062

−0.006 17 0.96+0.0045
−0.004 49 −0.996+0.0618

−0.0617 −0.0242+0.239
−0.239 0.0487+0.000 617

−0.000 611 0.673+0.009 79
−0.0097 0.0656

AD 0 0.3+0.004 98
−0.005 06 0.85+0.006 24

−0.006 08 0.944+0.004 51
−0.0047 −1.08+0.0537

−0.0545 0.475+0.196
−0.192 0.0486+0.000 603

−0.000 606 0.676+0.009 47
−0.009 55 99.8

AD 3 0.313+0.004 36
−0.004 37 0.827+0.005 69

−0.005 75 0.959+0.0047
−0.004 66 −1.02+0.0493

−0.0496 −0.0306+0.176
−0.178 0.0487+0.000 426

−0.000 43 0.671+0.0066
−0.006 63 2.22

AD 4 0.315+0.004 38
−0.004 37 0.828+0.005 73

−0.005 74 0.96+0.004 88
−0.004 88 −0.999+0.0532

−0.053 −0.0619+0.172
−0.174 0.0487+0.000 439

−0.000 45 0.673+0.007 42
−0.007 36 3.64

AGN 0 0.273+0.004 94
−0.005 75 0.871+0.009 37

−0.006 33 0.873+0.003 12
−0.007 32 −1.22+0.0527

−0.0573 0.993+0.258
−0.107 0.0486+0.000 658

−0.000 682 0.663+0.0109
−0.011 230

AGN 3 0.318+0.004 56
−0.004 55 0.828+0.005 62

−0.0057 0.961+0.004 73
−0.004 71 −0.978+0.0496

−0.049 −0.0144+0.165
−0.169 0.0486+0.000 435

−0.000 434 0.676+0.0068
−0.006 75 3.34

AGN 4 0.317+0.004 47
−0.004 45 0.827+0.005 89

−0.005 87 0.96+0.004 86
−0.004 83 −1+0.0557

−0.055 0.0231+0.17
−0.168 0.0487+0.000 431

−0.000 432 0.673+0.007 15
−0.007 14 8.74

CW 0 0.338+0.006 31
−0.006 17 0.795+0.005 96

−0.006 56 0.992+0.004 73
−0.004 27 −0.834+0.0808

−0.0812 −0.979+0.308
−0.329 0.0489+0.000 623

−0.000 651 0.663+0.009 94
−0.0097 100

CW 3 0.314+0.004 15
−0.004 21 0.83+0.00575

−0.005 74 0.96+0.004 61
−0.004 65 −1.01+0.0459

−0.0459 0.0494+0.168
−0.165 0.0487+0.000 441

−0.000 436 0.671+0.006 73
−0.006 66 1.91

CW 4 0.315+0.004 36
−0.004 52 0.83+0.006 05

−0.005 94 0.96+0.004 83
−0.004 86 −0.997+0.0504

−0.0507 0.0104+0.163
−0.16 0.0487+0.000 428

−0.000 425 0.672+0.007 28
−0.007 23 0.251

CX 0 0.349+0.007 18
−0.0064 0.765+0.005 09

−0.006 95 0.995+0.005 15
−0.004 31 −0.752+0.094

−0.0888 −1.75+0.327
−0.391 0.049+0.000 624

−0.000 639 0.647+0.0102
−0.0104 183

CX 3 0.315+0.004 51
−0.004 52 0.825+0.005 83

−0.0059 0.96+0.004 46
−0.004 41 −1+0.052

−0.0529 −0.165+0.191
−0.196 0.0487+0.000 437

−0.000 437 0.674+0.006 87
−0.006 87 4.6

CX 4 0.315+0.004 61
−0.004 61 0.825+0.0057

−0.005 72 0.96+0.004 84
−0.0049 −1.01+0.0564

−0.0556 −0.101+0.181
−0.18 0.0487+0.000 426

−0.000 428 0.674+0.007 36
−0.007 51 6.53

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 454, 2451–2471 (2015)

 at Ferm
ilab on January 21, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

