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Abstract

This note describes the analysis of the soft electrons and related b-tagging in the Higgs
boson associated production (W H) events. The simulation, reconstruction and analysis
are done in the framework of the ATLAS Data Challenge 1 including the simulation of
pile-up. Two analysis tools, the likelihood and the neural network methods are studied.
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1 Introduction

The identification of the low transverse momentum (pr < 20 GeV/c) electrons inside
jets was studied in [1] with the first implementation of the algorithm within the ATHENA
framework. This note aims to provide a realistic evaluation of the soft electron iden-
tification and b-tagging performance. The data used include pile-up at low and high
luminosities. Different analysis tools, the likelihood ratio and the neural network method,
are used.

The note is organised as follows. Data samples used in this analysis are described
in section 2. Performance of the electron identification procedures is given in section 3.
Finally the soft electron b-tagging performance is given in section 4.

2 Data samples

2.1 Simulation

The samples contain events from Higgs-boson associated production, WH with W' — puv.
The signal sample consists of H — bb events and background samples of H — c¢, ut
events. The mass of the Higgs boson is set to mg = 120 GeV /c?.

Process | dataset Nb of events
no pile-up | low lumi | high lumi
H — bb | 002055 20,000
H — ce | 002057 20,000
H — uu | 002056 50,000 ‘ 25,000

Table 1: Data samples used in this study: the process, the dataset number for DC1, and
the available number of events for the different luminosity scenarios.

The Monte Carlo events were generated for DC1 [2] with PyTHIA 6.203 [3] under
the ATHENA framework and stored in ROOT format [4]. Those events were simulated in
the ATLAS detector with GEANT 3 [5] based on ATLSIM /DICE program [6], version
3.2.1. The inputs were the event kinematics from RooT-format files and the output was
the detector hits and digits in ZEBRA-format files. Pile-up is added to study these
events for the low luminosity (2 x 10%* cm 2 s !) and the high luminosity (103 cm 2 s71)
scenarios. The number of pile-up events per bunch crossing follows a Poisson distribution
with an average of 4.6 at low and 23 at high luminosities.

2.2 Reconstruction

These DC1 data were reconstructed using ATHENA release 7.8.0. In particular following
parameters were used:

- tracks in the Inner Detector were reconstructed using xKalman. All options were
set to the default values, and the correction for internal bremsstrahlung losses was
enabled;

- jets were reconstructed using the cone algorithm with the default options (cone size
0.7);

- electronics noise in the calorimeters was included.



Only tracks with transverse momentum py > 2 GeV/c and |n| < 2.4 are kept for the
analysis. In order to reject contribution from badly reconstructed, fake or pile-up tracks
the following quantities are used to select good quality tracks:

- at least two hits in the pixel detector, one of them in the B-layer;

at least nine precision hits (pixels + SCT);

impact parameter of the track in the transverse plane |Ag| < 1 mm;

track fit quality x2, < 3;

- |20 = Zvertex|sin @ < 0.15 cm. This cut is used against tracks from pile-up;

no shared hit in the pixel detector, no more than one hit in the SCT;

no ambiguity in the first pixel wafer.

As the TRT transition radiation information is crucial for the studies presented two further
selection criteria are applied:

- at least 20 hits in the TRT detector along the track;

- at least one high energy hit (TR hit) in the TRT detector along the track.

2.3 Sources of electrons

Low momentum electrons can originate from the decays of particles from the hadronic
cascade or from the interaction of particles with the detector material. The signal electrons
come from direct and cascade semileptonic decays of b-hadrons, leptonic decays of J/¥
coming from b and decays of b-hadrons to 7-leptons with subsequent decays into electrons.
The background electrons arise from 7° Dalitz decays, y-conversions and decays of light
hadrons.

<pr> (GeV/c) < Nyrack >

signal electrons | background electrons pions
H—bb | 10.8/11.0/11.1 43/4.4/43 5.3/4.9/48 | 9.3/9.4/10.7
H — uu 5.1/5.6/5.8 4.8/4.6/5.1 6.1/6.2/6.0 | 8.9/9.0/10.5
H—cc | 82/81/8.0 4.0/4.2/3.7 5.2/5.1/5.0 | 9.1/9.2/10.7

Table 2: The mean pr of signal and background electrons, pions and the mean track mul-
tiplicity, < Nyrack >, 0 an event in various data samples. All numbers are given for no
pile-up/low/high luminosity.

In Fig. 1 normalised distributions of the transverse momentum pr and pseudorapidity
In| for signal electrons from H — bb, and background electrons from background samples
are presented. For comparison, distributions for pions from background samples are also
shown. The background electrons have softer transverse momentum spectrum compared
to the signal ones. Since 7y-conversions are the main source of background electrons,
they are concentrated mainly in the higher pseudorapidity region due to the increase
of material in front of the electromagnetic calorimeter. In Tab. 2 the mean values of
transverse momentum pr of signal electrons, background electrons and pions in all data
samples are shown for different luminosities.
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Figure 1: Normalised distributions of pr and |n| for signal electrons in H — bb (solid
line), background electrons (dashed line) and pions (hatched histograms) in background
samples, low luminosity data.

As can be noticed from Fig. 1 and Tab. 2, the kinematics of electrons and pions is
almost not changed in the different luminosity scenarios. The presence of pile-up events
makes the pattern recognition more difficult. It increases the track multiplicity and the
probability of selecting fake or lower quality track. The tracks will be also less isolated.
All of these will render the electron identification more difficult in presence of pile-up.

3 Electron identification

3.1 Overview of the soft electron identification

All the good quality tracks are extrapolated to the subsequent calorimeter samplings. The
cell with the maximum deposit is searched in the vicinity of the extrapolated position.
The following n and ¢ windows are used: 3 x 3 in the presampler, 3 x 1 in the strip
compartment, 3x 3 in the middle sampling, 3 x 1 in the back sampling. In each sampling of
the calorimeter the list of cells around the impact point is established in following windows:
3 X 5 in the presampler, 19 X 5 in the strip compartment, 9 x 13 in the middle sampling,
5% 13 in the back sampling. Then a cluster is created and a set of discriminating variables
is defined basing on transverse and longitudinal shapes of electromagnetic showers, track
information in the Inner Detector (ID), ID-Calo matching in position and energy and
transition radiation information. All variables are in the standard combined ntuple. The
analysis is then performed with a set of ROOT macros/PAw kumacs.

3.2 Discriminating variables

The variables used to identify reconstructed tracks as electrons and to reject other tracks
can be classified as follows:



- Variables using ID information only:
e nrgr — number of high energy hits in the TRT detector on the track;

e A, — transverse impact parameter.
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Figure 2: Distributions of the discriminating variables obtained with low luminosity data.
Hatched histograms - signal electrons from H — bb, empty histograms - pions from back-
ground samples.

-Variables using combined information from the ID and the LArEM:

e Er(core)/pr — the ratio of the transverse energy reconstructed in the LArEM, to
the transverse momentum reconstructed in the ID;

i=im+7 i=im+7
e POS= > E;x(i—i,)/ >, E;—difference between the track and the shower
i=im—T7 i=im—T7

positions measured in units of distance between the strips, where i,, is the impact
cell for the track reconstructed in the ID and FE; is the energy reconstructed in the
i-th cell in the 7 direction for constant ¢ given by the track parameters.

- Variables using LATEM information only:
e FE,/FE —fraction of the energy reconstructed in the first compartment of the LArEM;
e F3/F —fraction of the energy reconstructed in the third compartment of the LArEM;

e /SO =1 — Ej43/FE5.7 — shower isolation in the LATEM from the ratio of energy
reconstructed around the extrapolation in a 3 X 3 and 3 X 7 clusters;



i=im+1 =i +1
e WIDTH = S Eix(i—im)’/ Y. E; - calculated using the highest ener-
i=im—1 i=im—1

getic strip and its neighbour on each side.

More details on the presented variables can be found in [1]. Distributions of each variable
for signal electrons from H — bb and pions from background samples are shown in Fig. 2.

Fig. 3 and 4 show the distributions of the mean values of each discriminating variable,
for signal electrons and pions from low luminosity data, as a function of || or pr. The
variables show a significant dependence on the pseudorapidity and a less pronounced
one on the transverse momentum. In 7 the changes correspond to varying granularities,
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Figure 3: Mean values of the discriminating variables for the signal electrons (circles) and
pions (triangles) in function of |n|. Dependencies are shown for samples at low luminosity.

lead thickness and material in front of the electromagnetic calorimeter. The separation
between the distributions obtained for electrons and pions can vary also with n. Thus,
the discriminating power of each variable varies.
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Figure 4: Mean values of the discriminating variables for signal electrons (circles) and
pions (triangles) in function of pr. Dependencies are shown for samples at low luminosity.

Separation variable In order to estimate the discriminating power of each variable,
an estimator called raw separation is defined [11][12]:

: | (@0, "

w225 ] oaT e

2
where z is the variable for which the separation is calculated. This definition assumes
that p*(z), the probability that the track originates from a signal electron, and p°(z), the
probability that the track originates from non-signal hadron, are normalised to the unity.
Tab. 3 shows the raw separation values, ranked by decreasing order, obtained for each
discriminating variable. The most discriminating is the number of TRT high threshold
hits nrg. It is the only variable which shows significant drop of its separation value in
the presence of pile-up. It is in good agreement with statements presented in [13]. At
high luminosity, other particles, including electrons from ~-conversions, deposit energy
in the straws crossed by the particles of interest. This causes an increase in the number
of high threshold hits for both pions and electrons. The average number of TR hits per
reconstructed track increases by 1.4 for pions and by 1.2 for electrons. The pion rejection

<s
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no pile-up | low-lumi | high-lumi

nrR 0.75 0.69 0.53
E/p 0.47 0.45 0.43
E,\/E 0.49 0.49 0.44
Ag 0.32 0.32 0.31
POS 0.23 0.22 0.22
E3/E 0.21 0.21 0.21
WIDTH 0.15 0.15 0.13
150 0.15 0.14 0.14

Table 3: The raw separation of each discriminating variable.

is determined by the size of the regions of overlap in Fig. 5 for the low and the high
luminosity scenarios. The loss of separation corresponds to a loss of the discriminating
power of this variable at high luminosity.

The variables describing the energy deposit in each sampling do not have the same
separation. The FE3/FE variable is less discriminating than the E;/E. This is due to the
fact that the ratio F3/FE is equal to 0 for about a third of electrons and pions. When
there is energy deposit in the third sampling, its discriminating power is similar to the
one of the E)/F variable.
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Figure 5: The number of the TRT high threshold hits for signal electrons (hatched his-
tograms) and for pions in background sample (empty histograms). Distributions are shown
for data with the low luminosity (left) and the high luminosity (right) conditions.

Correlation between variables The discriminating variables could be correlated. The
linear correlation coefficient between variables u and v is given by:

1 (@ — B (@ — 7))
SN el )

the indices p and v run over all discriminating variables, z is the mean value of the dis-
tribution of the variable z and o(x) its rms. All details concerning correlation coefficients
can be found in Tab. 10 and 11 in appendix A.
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The variables nrr and Ay obtained from the ID only are, as expected, not correlated
with those obtained from the LArEM. For other variables, the correlation coefficients are
rather low, never exceeding ~ 30%. These low values do not exclude the more complicated,
non-linear dependencies between variables, different for signal and background, which can
be exploited by non-linear techniques. It can be also noticed that variables dealing with
energy reconstructed in the LArEM show larger correlation for signal events than for
background ones.

It should be stressed that two highly correlated variables, when combined, can be
more discriminating than two other variables which are not correlated, if the correlation
coefficient for signal and background is different enough.

3.3 Results with a ratio of likelihood

3.3.1 Construction of the discriminating function

The distributions of the discriminating variables are treated as probability density func-
tions (PDFs). As already seen in section 3.2, these PDFs show a significant dependence
on the pseudorapidity. In previous study [1] a dedicated data sample of H — bb filtered
for electrons from semileptonic decays has been produced. The statistics was high enough
to obtain PDFs in five pseudorapidity bins (but still not enough to optimise PDFs also
in pr). No pile-up has been added on this filtered sample. It is thus not possible to
optimise PDF's with the pseudorapidity, for all luminosity scenarios, as they would have
to be determined on typically few tens of events.

A simple method is based on the use of relative likelihood and constructed from the
distribution of the discriminating variables for the two classes of events (s for signal and
b for background) which should be disentangled. Ideally, for N discriminating variables,
the ratio of likelihood can be written as:

ES(.Tl, .Y,'N)

ES(.Tl, .TN) + ,Cb(.Tl, .TN)

XRL = y (3)

where £° = ¢*(zy, ...xx) is the N dimensional density distribution (or likelihood) for signal
hypothesis, and £® = ¢°(z1, ...z ) for background hypothesis. Obtaining the distributions
from a histogram in N dimension being a difficult task, the following approximation is
usually made:

L. i ()
XRL = s — 3 (4)
[L; P} (i) + I, P2 (w:)
where pf(z;) (resp. pl(z;)) is the one dimensional density distribution of the variable z;
for events of signal hypothesis (resp. background). Several points should be underlined:

- Xpr tends to 1 for signal events and tends to 0 for background events;

- if a discriminating variable z; is not useful (pf(z;) ~ pl(x;)) over all the range
considered for z;, it does not dilute the information from the other discriminating
variables;

- if there is no correlation between the different discriminating variables, the combined
variable Xgy is optimal;

- in case of correlations between the discriminating variables, some information is
lost. Nevertheless, the use of Xy as a new discriminating variable insures that no

9



bias is introduced in the analysis. However, care should be taken not to incorporate
too many correlated variables to avoid a dilution of the discriminating power.
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Figure 6: Normalised distributions of the discriminating function Xgr, for signal electron
tracks in H — bb (hashed) and pions in H — ut (empty). Low luminosity data.

To avoid any bias of performance the samples to estimate this discriminating function
has to be different from the ones which provided the PDFs. For the PDFs preparation
we used half of available H — bb, H — ut and H — c¢ samples.

Distributions of Xpg; obtained for signal electron and background pion tracks are
shown in Fig. 6. The ratio of likelihood does not take into account correlations between
the variables. It is reflected in the the distributions obtained for electrons and pions which
overlap and present large tails.

3.3.2 Performance

The identification of a candidate track as originating from a signal electron is based on the
value of the discriminating function Xg; assigned to the given track. The identification
efficiency versus the rejection power of the algorithm is obtained by varying the value of
the threshold on Xg;.
To quantify the performance of the identification procedure, the following quantities
are defined:
Nt
- electron identification efficiency: Ee = ﬁe, (5)
€

where N, is the number of good quality signal electron tracks in the signal samples and N!

is the number of good quality signal electron tracks identified as a signal electrons track;
o Ny

- charged pion rejection: R, = N (6)

where N, is the number of good quality pion tracks, and N! is the number of good quality
pion tracks misidentified as a signal electron track. The pion rejection factors obtained
for various electron identification efficiency e, are presented in Tab. 4 and in Fig. 7 for

10



Ry
luminosity | e, H—b | H—uu H — cc
0% | 71+3 129 +4 121 +£6
no 80 % | 245+ 17| 561435 508 + 54
70 % | 514 £ 51 | 1439 4 142 | 1040 + 158
0% | 39+1 66+ 1 60 + 2
low 80 % | 180+ 11 | 420+ 21 345 + 28
70 % | 455+ 43 | 1312 4+116 | 862 4 109
90 % | 20+1 30+1 28+1
high 80 % | 73L3 133+£5 117+£5
70 % | 171 £10 | 405426 308 £+ 22

Table 4: Rejection of pions in various samples for varying identification efficiency €. and
different luminosities using likelihood.

the various types of samples. For no pile-up data and ¢, = 80% the rejection of pion
tracks in H — bb is 245 + 17, in H — ui@ is 561 + 35 and in H — cc is 508 &+ 54.
Differences between pion rejection in different jets are due to the Ay variable which is
the most discriminating in case of pions from wu-jets. Compared to previous study [1]
performance is higher by about 40% (this number can vary with the efficiency) as the
analysis code was improved and some bugs fixed. The same figure and table show also
performance obtained at low and high luminosity. For the low luminosity case, pion
rejection is lower by about 30%. As shown in Tab. 3 the number of TRT high threshold
hits variable is less discriminating when taking into account pile-up events. Appendix B
shows performance obtained without using the nrg variable, and clearly demonstrates,
that the loss of efficiency is due to this particular variable. The effect is even more
pronounced at high luminosity, where the rejection of pions in bb sample is 70% lower
than in the case of no pile-up, or 60% compared to the low luminosity case. Once again
the loss is essentially due to the nrg variable.

3.4 Results with a neural network
3.4.1 Construction of the discriminating function

The neural network is a non-linear discriminating method (a detailed description of the
neural network techniques can be found in [8]). The Stuttgart Neural Network Simula-
tor [9] was used in the analysis. The architecture of the network is optimized to give
the proper classification of signal and background and to avoid over-training at the same
time. The neural network is built as follows (Fig. 8):

- an input layer with 8 input nodes corresponding to 8 discriminating variables;
- two internal hidden layers, each containing 16 nodes;

- an output layer containing a single neuron, since the output is a single discriminating
variable.

To each neuron j in the hidden layer n inputs xx,k = 1,..,n and one output variable
(the answer of the neuron) z; are associated. For the first hidden layer the inputs are the
discriminating variables, for next layers the inputs are the outputs of the preceding layer.
All input variables are normalized to be within the range [—1,1].

11
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Figure 7: Rejection of pions, R;, in various samples as a function of the efficiency for
identifying signal electrons, €., for data with no pile-up (circles), low luminosity (squares)
and high luminosity (triangles) using using likelihood method.

The neuron sums up the input variables y;, weighted by a factor w;i, plus a threshold
6;. This defines the signal Z;:

N
Zj = ijkyk + Qj. (7)
k=1

The output of the neuron is a function of Z: z; = a(Z;), where a is called the activation
function, and is chosen to be of the form a(x) = 1/2(1 + tanh(x)). The training phase of
the neural network consists in determining the weighting factors w;; and the thresholds
6. This is done by minimizing the following error function:
1¢ i i)2
EZEZ(XNN_tl) ) (8)
i=1

where ¢! is the expected output (0 for background, 1 for signal), X%, the actual value
returned by the network and n is a number of events used for training. The training is

12
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Figure 8: Schematic view of the neural network (left) and the error function E as a
function of the training cycles for the training and verification samples (right). The
training was stopped after 350 training cycles to avoid network over-training.

Figure 9: Normalized distributions of the discriminating function Xnn for signal electron
tracks in H — bb (empty) and pions in H — utu (hashed).

performed using half of the available signal data (electrons from H — bb process) and half
of the H — wu and H — cc samples. The remaining data are used to obtain the signal
detection efficiency and background rejection. It is also used as a verification sample to
check, whether the values E obtained for training and verification samples are similar.
This gives a useful information when to interrupt the network training (see Fig. 8). The
training is stopped after about 350 training cycles to avoid over-learning. Since majority of
the background part of the training sample are pions from the H — uu process the network
is tuned to reject most efficiently this type of background. The results obtained using a
network optimized to reject pions from H — bb are shown in Appendix C. Distributions of
the neural network output Xy obtained for signal electron and background pion tracks
are shown in Fig 9.
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3.4.2 Performance

The pion rejection factors obtained for various electron identification efficiency e, are
presented in Tab. 5 and in Fig. 10 for various background types and for no-pileup, low
luminosity and high luminosity data. For no pile-up data and e, = 80% the rejection of

Ry

luminosity | e, H — bb H — uu H — cc

90 % | 96+4 320 £ 15 277+ 16

no 80 % | 268 +19 | 1245+ 114 | 877+ 181
70 % | 519+ 51 | 2850 4+ 395 | 2032 + 835

90 % | 7T7+3 206 + 7 177+9

low 80 % | 2056+ 13 | 854 +61 523 + 85
70 % | 364+ 30 | 1915 4+ 205 | 1068 + 296

90 % | 29+1 66 + 2 54+ 2
high 80 % | 99+4 261 £ 14 214 £ 20
70 % | 196 =11 | 586 +47 401 £ 85

Table 5: Rejection of pions in various samples for varying identification efficiency €. and
different luminosities using a neural network.

[ 104 E
e i
T s —
102 | T e TS

Pion rejection in H—>cc ge

Figure 10: Rejection of pions in various samples as a function of the efficiency for no pile-
up (circles), low (squares) and high (triangles) luminosity data using a neural network.
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pion tracks in H — bb is 268 £ 19, in H — i is 1245+ 114 and in H — c¢ is 877 + 181.
The use of neural network gives ~ 120% gain in the pion rejection in H — uu sample and
~ T70% in H — cc sample comparing to the ratio of likelihood method. In the Fig. 11 and
Tab. 6 results obtained with a neural network are compared with the ones obtained using
the ratio of likelihood (for H — u sample). It can be clearly seen that the neural network
approach gives significantly better rejection for the same signal identification efficiency.

R,
luminosity | ¢ | H—bb | H—uu | H— cc
no 80% | 8% 122% [ 2%
[ low  [80%[ 14% [ 103% | 52% |
| high [80%] 36% | 96% | 83% |

Table 6: Gain in the pion rejection in various samples for identification efficiency 80% and
different luminosities when using the neural network comparing to the likelihood method.
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=
(1t~ 3000
2000
1000
0
0.6 0.7 0.8 0.9
Low luminosity, H—>uu 5@
£1500
e
1000
500
0
0.6 0.7 0.8 0.9
High luminosity, H—>uu Se

Figure 11: Comparison of pions rejection R for tracks from H — wuu sample using a
neural network (circles) and a ratio of likelihood (squares).

15



4 Soft electron b-tagging

The soft electron b-tagging method complements the secondary vertex tagging [10] via its
sensitivity to the leptonic b-decays. The branching ratio of B-meson decays to leptons is
about 10.5% per lepton family.

4.1 Overview of the soft electron b-tagging
The soft electron b-tagging method is based on the electron identification procedure:

- for each track in the jet the value of the discriminating function Dy, is calculated
using one of two methods:

D | Xrgrr likelihood method
track =\ Xyny Neural Network method

- for each jet the track with the highest value of Dy, .. is chosen and its value of the
discriminating function is taken as the value of the discriminating function for the
jet, Djer = max(Dirack);

- for a given threshold D2 a jet with Dj,, > D is tagged as a b-jet.

Jets are reconstructed with the standard cone algorithm and labeled as originating
from a b-quark, if a quark with p} > 5 GeV/c (after FSR) is found in a cone AR =

\/[An(e, b)]* + [Ad(e, b)]* < 0.2 around the jet axis. The labeling for ¢- and u-jets is done
in the same way.

The mean multiplicity of tracks inside jets with at least one reconstructed track with
pr > 2 GeV/c inside a cone AR < 0.4 around the jet axis increase from the low to the
high luminosity scenario: for b-jets from 3.7 to 4.3, for u-jets from 3.4 to 3.8 and for c-jets
from 3.5 to 4.0. This will make b-tagging more difficult in the high luminosity samples.

The fraction of labeled jets containing electron tracks with pr > 2 GeV/c is given in
Tab. 7 for all types of jets and for different luminosity scenarios. The dominant source
of electrons in b-jets are electrons from semileptonic decays of b-hadrons and d-hadrons.
The semileptonic decays of d-hadrons occur frequently in c-jets. The u-jets are almost
free from signal electrons.

Jet type | b-hadrons | d-hadrons | y-conversions and 7% Dalitz | Other sources
b-jets | 6.6/6.7/6.5 | 4.2/4.3]4.2 1.5/1.6/2.0 0.4/0.4/0.4
ujets | —/—/— —/—/- 1.6/1.7/2.4 0.1/0.1/0.1
cjets | —/—/— | 4.8/47/46 1.4/1.4/14 0.1/0.1/0.1

Table 7: Fraction of jets with electrons (in %) of a given origin Numbers are given for no
pile-up/low luminosity/high luminosity events.

In wu-jets the main sources of electrons are ~-conversions and Dalitz decays. The
presence of any electron in the background jets makes their rejection difficult (as the
method uses electrons as tagging particles). As can be concluded from Tab. 7 the best
rejection factor can be achieved for u-jets and the worst for c-jets. For events with pile-up
the fraction of jets with signal electrons does not change, but the fraction of jets with
background electrons increases in case of H — u#@ and bb events making b-tagging less
effective.
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The efficiency of the b-tagging algorithm is defined as:

ag Ny
Eblg = Fia (9)
b

where N} is number of the tagged b-jets and Nf is the number of labeled b-jets with at
least one electron with pr > 2 GeV/c after good quality cuts.
The jet rejection factor is calculated as following:

N.

Rjer = ﬁjp (10)
j
where j is a given jet type (u,c), N; is the number of labeled jets of type j in the H — jj
sample with at least one good quality track with p; > 2 GeV/c inside the jet cone, and
N; is the number of labeled j-type jets tagged as b-jets.

The fraction of reconstructed b-jets with an electron track within a cone AR < 0.4
around the jet axis is defined as the effective branching ratio BR and dependents on the
performance of the detector. This value is normalised to the total number of reconstructed
b-labeled jets, with at least one good quality tracks with pr > 2 GeV/c inside the jet
cone. For the sample of H — bb, this fraction is BR ~ 13%. The soft electron b-tagging
efficiency, ezof ! can be calculated by multiplying the efficiency of the b—tagging algorithm,
szlg , by the obtained branching ratio BR. Thus, 60% efficiency of the b-tagging algorithm

with pirack > 2 GeV /c, corresponds to Ezoﬁ ~ 7.8%.

4.2 Performance

Fig. 12 shows the rejection factors for u- and c-jets as a function of the b-tagging algorithm
efficiency for different luminosity scenarios and for both methods, the ratio of likelihood
and the neural network. The achieved rejection factors for non-b jets are presented in
Tab. 8. For a b-tagging efficiency of 60%, the rejection of u-jets is 151 £ 11 for the

method | no pile-up low lumi high lumi

RL 151+ 11 136 +£9 104 £11

R, NN 166 =13 144 £ 10 123 £ 15
RL 35+ 2 36 + 2 33+3
R, NN 35+ 2 35+ 2 33+3

Table 8: Jet rejection factors for efficiencies of b-tagging algorithm 5 = 60 % obtained
with the ratio of likelihood (RL) and the neural network (NN) methods for different lumi-
nosity scenartos.

likelihood and 66 4+ 13 for the neural network method when no pile-up is taken into
account. It decreases by ~ 10% for the low luminosity case and by ~ 30% for the high
luminosity scenario. As already explained in section 3.3.2 and detailed in annexe B, this
loss is due to the high threshold hits in the TRT variable which is less discriminating
when pile-up is important. The rejection of c-jets shows only small degradation in the
high luminosity events. The gain from using a neural network can be seen only for high
efficiencies of b-tagging (see Fig. 12) when background jets are tagged mainly by pions.
For low efficiencies of the algorithm where jets are tagged mainly by background electrons
there is no improvement from a method giving better pion rejection and both methods,
the likelihood and the neural network, give similar results.
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Figure 12: Jet rejection, Rje, for u- and c-jets as a function of the b-tagging algorithm
efficiency, ezlg , obtained with the likelihood (triangles) and the neural network (squares)
methods. Plots for events from no-pile up samples (top panel), the low luminosity samples
(middle panel) and the high luminosity samples (bottom panel).

Tab. 9 shows the fraction of jets tagged by a given type of track for £f" = 60%. Most
of the jets are tagged by true electron tracks, independently of the jet type. It indicates,
that the electron identification procedure works with a high efficiency and good purity.
Most of the electron tracks which tag jets, except for u-jets, are signal electron tracks
(from b- or d-hadron decays). For the b-jet sample, these tracks tag 89.9% of all tagged
jets. The sample of u-jets almost does not contain electrons from b and d, but these jets
are tagged, in 65.7%, by the electron tracks from ~y-conversions and Dalitz decays.

5 Conclusion

In this note the soft electron identification and b-tagging results are discussed. The
performance is detailed on samples WH, H — bb, c¢ and ut produced during the ATLAS
Data Challenge 1. Compared to previous study, the emphasis of the note is put on
performance obtained for the low and high luminosity scenarios. Performance obtained
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Fraction of jets tagged by a specified track [%)]
Jet type
alle | efromb | efromd | e from* | othere | 7 | others
b 99.4 61.5 28.4 6.6 2.9 0.3 0.3
U 69.1 0.0 0.0 65.7 3.4 16.9 | 14.0
c 82.4 0.0 58.2 13.5 0.7 7.7 9.9

Table 9: Fraction of jets tagged by a specified track for ep' = 60%. The e from * denotes
electron tracks from conversions and Dalitz decays. Results obtained with the likelihood
method on the low luminosity data.

are similar for the low luminosity scenario and for no pile-up events. On the contrary
performance decreases by 70% for the high luminosity case for rejection of pions and by
30% for rejection of u-jets. The loss is due to the number of high threshold hits in the
TRT which becomes less discriminating in presence of pile-up.

To deal with non-linear dependencies between discriminating variables the neural net-
work method is used to obtain the optimal performance. It gives ~ 100% improvement in
the pion rejection. Using this method for b-tagging purpose a gain can be observed only
for high b-tagging algorithm efficiencies.
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A Correlation between discriminating variables

Tables 10 and 11 show the correlation matrix between the discriminating variables used
to identify the soft electrons, as detailed in section 3.2, for the signal electrons and the
pions from background. The matrices are obtained on the samples at low luminosity.

nrRr

nNrr 1.000
Ap 0.005
POS —0.041
E\/E  —0.071
E;/E  0.044
150 —0.091

\ WIDTH —0.078

Ao
0.005
1.000
0.124
0.046
0.049
0.038
0.136
0.002

Er/pr
0.094
0.124
1.000
0.183

—0.308
0.216
0.225
0.022

POS
—0.041
0.046
0.183
1.000
—0.158
0.041
0.146
—0.030

E\/E
~0.071
0.049
—0.308
—0.158
1.000
—0.154
0.053
0.129

Es/E
0.044
0.038
0.216
0.041
—0.154
1.000
0.123
0.015

1SO WIDTH \

—0.091 —0.078
0.136 0.002
0.225 0.022
0.146 —0.030
0.053 0.129
0.123 0.015
1.000 0.256
0.256 1.000

Table 10: Correlation matriz of the discriminating variables of the signal electrons at low

luminosity.
nrr
nrr 1.000
Ag —0.084
POS  —0.020
E,/E  —0.079
E3/E 0.010
150 —0.052
\ WIDTH 0127

Ao
—0.084
1.000
—0.021
—0.032
0.089
0.000
—0.001
—0.003

ET/pT
0.208
—0.021
1.000
—0.075
—0.178
—0.066
0.030
0.246

POS
—0.020
—0.032
—0.075

1.000
—0.058

0.082

0.089
—0.143

E\/E
—0.079
0.089
—0.178
—0.058
1.000
—0.254
0.256
0.053

Es/E
0.010
0.000
—0.066
0.082
—0.254
1.000
—0.057
—0.160

I1SO WIDTH \

—0.052  0.127

—0.001  —0.003
0.030  0.246
0.089  —0.143
0.256  0.053

—0.057  —0.160
1.000  0.040
0.040 1.000

Table 11: Correlation matriz of the discriminating variables of the pions from background
events at low luminosity.
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B Effect of TRT on performance

This section is devoted on the individual effect of the high threshold hits variable nrg on
the performance of the algorithm. The likelihood method is used.

As described in Tab. 3 the nypg variable is the most discriminating variable used by
the algorithm. Fig. 13 shows the pion rejection as a function of the electron identification
efficiency, €., without the use of the nyp variable. In the H — bb sample, for low
luminosity case and e, = 80 %, the pion rejection is 30, about 5 times smaller than
when using it. The second observation, is that rejection is then similar for the different
luminosity scenarios. Thus, the difference of performance observed in Fig. 7 and Tab. 4 for
the different luminosity scenarios, in particular for the high luminosity case, is essentially
due to the loss of rejection power of the nygr variable.

Fig. 14 shows performance of the algorithm in terms of rejection of u-jets (left panel)
and c-jets (right panel) as a function of the b-tagging algorithm efficiency ezlg , for different
luminosity scenarios.

D:|:10 4
10°

102

0.6 0.7 08 0.9

Pion rejection in H-bb e

Pion rejection in H-cc e

Figure 13: Rejection of pions, R,, in various samples as a function of the efficiency for
identifying signal electrons, €., for data with no pile-up (circles), low luminosity (squares)
and high luminosity (triangles). The nrg variable is not used.
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Figure 14: Jet rejection, Rjet, for u-jets (left panel) and c-jets (right panel) as a function
of the b-tagging algorithm efficiency ezlg . Results presented are shown for events with no

pile-up (circles), for the low (squares) and the high (triangles) luminosity scenario.
The nrr variable is not used.

22



C Neural network trained to equally reject pions
from H — bb H — wu and H — c¢ processes.

For the neural network training the equal numbers of events from the processes H — bb,
H — wu and H — c¢ were used. The network achitecture remains unchanged. The
network therefore is no longer specially optimised against pions from H — wu#. The
resulting network suppresses better pions from H — bb than the network described in
section 3.4. Fig. 15 and Tab. 12 show the results for various luminosities. Tab. 13
compares the rejection for 80% efficiency between networks trained on different data
samples.
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Figure 15: Rejection of pions R, for tracks in various samples as a function of the effi-
ciency, €., for data with no pile-up (circles), low luminosity (squares) and high luminosity
(triangles) using a neural network. The network is trained on equal samples of H — bb,
H — uu and H — cc.
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Table 12: Rejection of pions in various samples for varying identification efficiency e,

R,

luminosity | e, H — bb H — uu H —cc
90 % | 148+ 11 268 £11 263 £ 26
no 80 % | 3890+46 | 851 +64 757 £ 315
70 % | 895+ 163 | 2429 + 311 | 1863 + 2340
90 % | 838+5 165 £5 156 £ 13
low 80 % | 254+25 | 653 +41 472 + 156
70 % | 558 82 | 1683 169 | 1068 4+ 490
90 % | 3241 57+ 1 50+ 3
high 80 % | 100+5 214+ 10 174+ 19
70 % | 246 £22 | 554 +42 447 + 124

and different luminosities using o neural network trained on equal samples of H — bb,
H — vwu and H — cc .

Rﬂ'

luminosity training sample Ee H—b | H—uu H — cc
standard 80 % | 268 £19 | 1245+ 114 | 877+ 181

no H —bb, H—uu, H—cc | 80 % | 380+46 | 851 +64 | 757+ 315
standard 80 % | 206+ 13 | 854+61 | 523+ 85

low H—bb, H—>uti, H—cc |8 % | 254+25| 65341 |472+156
standard 80 % | 99+4 261 + 14 214 4+ 20

high H—bb, H—uu, H—cc |80 % | 100+5 | 214+10 | 174+ 19

Table 13: Rejection of pions in various samples for different luminosities using a neural
network trained on a standard sample (mostly H — ut and some H — c¢) and on equal

samples of H — bb, H — uii and H — c¢ .
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