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We obtain the black brane solution in arbitrary dimensional Gauss–Bonnet-axions (GBA) gravity theory. 
And then the thermal conductivity of the boundary theory dual to this neutral black brane is explored. 
We find that the momentum dissipation suppresses the DC thermal conductivity while it is enhanced 
by larger GB parameter. The analytical and numerical results of DC thermal conductivity match very 
well. Also we study the effect of the momentum dissipation and the GB coupling on the AC thermal 
conductivity and fit the results by Drude-like behavior for low frequency. Finally, we analytical compute 
the quasi-normal modes (QNM) frequency of the perturbative master field in large dimensions limit. Our 
analytical QNM frequencies agree well with the numerical results in large enough finite dimensions.
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1. Introduction

The powerful holographic method, gauge/gravity duality [1–3], 
provides remarkable tools to explore diversity of strongly cor-
related systems in condensed matter physics through studying 
weakly coupled bulk gravitational theory [4–6]. More recently, to 
produce features of real materials, such as finite DC conductivity, 
we can introduce the momentum dissipation mechanism. There 
are several methods involved in to achieve the goal. One way 
is to introduce the so-called scalar lattice or ionic lattice, which 
is implemented by periodic scalar source or chemical potential 
[7–10]. Also, we can implement the momentum dissipation in the 
holographic massive gravity framework, which breaks the bulk dif-
feomorphism invariance and so that the momentum dissipates in 
the dual boundary field theory [11–17]. Another is holographic Q-
lattice model in which the global phase of the complex scalar field 
breaks translational invariance [18–20]. Next but not the last is the 
models with massless scalar fields being linear dependent on the 
spatial directions, which is also named as linear axions [21–25].

In this paper, we shall construct the black brane solution in 
the framework of Gauss–Bonnet-axions (GBA). And then we nu-

* Corresponding author at: Institute of Gravitation and Cosmology, Department 
of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013, 
China.

E-mail addresses: xmeikuang@gmail.com (X.-M. Kuang), 
jianpinwu@mail.bnu.edu.cn (J.-P. Wu).
http://dx.doi.org/10.1016/j.physletb.2017.04.045
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
merically solve a gauge-invariant master field equation and obtain 
the thermal conductivity in five dimensional GBA theory. Also, we 
study the quasi-normal modes (QNM) spectrum by using the large 
spacetime dimension (large D) techniques. For a review on QNM, 
please refer to [26].

The large D techniques, which is proposed in Ref. [27], is an 
efficient analytical tool to approximate finite D results of the equa-
tions in General Relativity as a perturbative calculation in expan-
sion 1/D . The main idea of the construction is that the large D
limit localizes the gravitational field of the black hole in a near 
horizon region where the gravitational potential is very steep. This 
well-defined near horizon region splits the QNM spectrum into 
two different sets, decoupling modes and non-decoupling modes. 
The former modes squeezing only in the near horizon region, are 
normalizable states to all orders of 1/D and are sensitive to dif-
ferent black holes and capture specific properties. While the latter 
modes shared by many black holes can survive in the whole region 
and they are non-normalizable near horizon [28–30], so people are 
usually not interesting in the non-decoupled modes. The large D
method has been applied to study the (in)stability of black holes 
[31–33]. In holographic framework, the large D method was used 
in [34] to pioneer to explore the analytical Drude behavior beyond 
the hydrodynamic regime. The authors focused on the normaliz-
able decoupling modes to analytically compute the QNM of the 
master filed and AC thermal conductivity which agree well with 
the numerical results in the large D dimensional neutral black hole 
in Einstein-Axion theory.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The remaining of the paper is organized as follows. In section 2, 
we solve the equations of motion derived from the GBA action 
and present the black brane solutions in D = n + 3(n � 2) grav-
itational theory. Then we show the fluctuation equations of the 
neutral black hole in section 3. In section 4, we study the thermal 
conductivity in GBA theory. Finally, in section 5, we apply the large 
D method to analytically compute the QNM of the master pertur-
bative field and compare the result with numerical one. The last 
section is our conclusion and discussion.

2. Gauss–Bonnet-axions theory

We are interested in a specific thermal state, which holograph-
ically dual to the Gauss–Bonnet-axions (GBA) theory

S = 1

2κ2

∫
dn+3x

√−g
(

R − 2� + α

2
LG B − 1

2

n+1∑
I=1

(∂ψI )
2
)
, (1)

where ψI are a set of axionic fields, 2κ2 = 16πGn+3 is the n + 3
dimensional gravitational coupling constant and � = −(n + 1)(n +
2)/2L2 is the cosmological constant. α is the GB coupling constant 
and

LG B =
(

Rμνρσ Rμνρσ − 4Rμν Rμν + R2
)

. (2)

In what follows, we shall set L = 1.
With the action, the equations of motion are easily obtained as

∇μ∇μψI = 0,

Rμν − 1

2
gμν

(
R + (n + 1)(n + 2)

+ α

2
(R2 − 4Rρσ Rρσ + Rλρστ Rλρστ )

)
+ α

2

(
2R Rμν − 4Rμρ Rν

ρ − 4Rμρνσ Rρσ + 2RμρσλRν
ρσλ

)

−
n+1∑
I=1

(
1

2
∂μψI∂νψI − gμν

4
(∂ψI )

2
)

= 0. (3)

We take the form of the scalar fields linearly depending on the 
n + 1 spatial direction xa as1

ψI = βδIaxa, (4)

which is responsible for the momentum dissipation in the dual 
field theory. And then, a homogeneous and isotropic neutral black 
brane solution is admitted

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

L2
e

dxadxa, (5)

where, after defining α̂ = n(n − 1)α/2,

f (r) = r2

2α̂

⎛
⎝1 −

√√√√1 − 4α̂

(
1 − rn+2

h

rn+2

)
+ 2α̂

r2

L2
eβ

2

n

(
1 − rn

h

rn

)⎞
⎠ .

(6)

1 In general, the linear combination form of the scalar fields is ψI = βIaxa . Then 
defining a constant β2 ≡ 1

n+1 (
∑n+1

a=1
∑n+1

I=1 βIaβIa) with the coefficients satisfying 
the condition ∑n+1

I=1 βIaβIb = β2δab , we will get the same black hole solution. Since 
there is rotational symmetry on the xa space, we can choose βIa = βδIa without 
loss of generality.
Here rh satisfying f (rh) = 0 is the black brane horizon. The GB 
coupling parameter α̂ is constrained by no negative energy fluxes 
condition and causality of the dual CFT into the range [35–37]2

−n(3n + 8)

4(n + 4)2
� α̂ � n(n − 1)(n2 + 3n + 8)

4(n2 + n + 4)2
. (7)

Note that this result is given in the case without the axionic fields. 
It may become more complicate due to the introduction of axionic 
fields [40] and we shall address these problems in future. In this 
paper, we will take the constraint (7).

Then, via the standard method, the Hawking temperature of the 
black brane is

T = f ′(rh)

4π
= 1

4π

(
(n + 2)rh − L2

eβ
2

2rh

)
. (8)

And the entropy density of horizon is

s = rn+1
h

4Gn+3
. (9)

Near the UV boundary r → ∞,

f (r) ∼ 1 − √
1 − 4α̂

2α̂
r2. (10)

So the effective asymptotic AdS radius is

L2
e = 2α̂

1 − √
1 − 4α̂

→
{

1 , for α̂ → 0
1
2 , for α̂ → 1

4

. (11)

The Einstein limit is obtained by taking α̂ → 0, in which the grav-
itational background recovers the solution addressed in [21]. In 
addition, it is worth to point out that at zero temperature, the near 
horizon geometry is AdS2 ×R

n+1 with the AdS2 radius L2 = 1
n+2 . 

Note that to have a unit velocity of light, the metric component 
gii in Eqs. (5) and (6) are dependent of GB coupling parameter α̂. 
They are somewhat different from one presented in [23] where 
gii = r2/L2 is independent of GB coupling α̂. This requirement 
shall result in different conclusion as we see later.

3. Linearized perturbative equations

To study the heat transport, we turn on the following consistent 
linearized perturbation about the background (5) as

δgtx = e−iωtr2htx(r), δψ1 = e−iωt S(r)/β. (12)

And then the equations of motion can be evaluated as

iω

(
2α̂ − r2

f

)
h′

tx + S ′ = 0, (13)

S ′′ +
(

n + 1

r
+ f ′

f

)
S ′ + ω2

f 2
S − iωL2

eβ
2

f 2
htx = 0, (14)

which govern the dynamics of the perturbations. The prime in 
equations above denotes the derivative to the radius coordinate r. 
Near the boundary r → ∞, the behavior of these fields is

2 It was shown in [38] that the constraint in the higher derivative coupling com-
ing from causality issues is much more severe, especially in a weakly coupled the-
ory. And later in [39], the authors pointed out that the causality violations can be 
cured by considering the Regge behavior. The preciser causality constraint of higher 
correction coupling is worthy further investigated.
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htx = h(0)
tx + h(n+2)

tx

rn+2
+ · · ·, (15)

S = S(0) + (ω2 S(0) − iωL2
e β

2h(0)
tx )/2n

r2
+ · · ·. (16)

Note that for even n, the above behaviors should have extra log-
arithms terms due to the Weyl anomaly appearing in the even 
boundary dimensions. To solve the equations of motion (13) and 
(14), the purely ingoing conditions for the perturbations shall be 
imposed near the horizon as

htx ∼ h1(r − rh)
−iω/4π T , (17)

S ∼ S1(r − rh)
−iω/4π T . (18)

It is convenient to package the linearized equations (13) and 
(14) into a gauge invariant mast field equation

�′′ +
(

f ′

f
+ n − 1

r

)
�′

+
(

ω2

f 2
+

(
nf ′

r f
− 2n

r2

)
− L2

e β
2

f (r2 − 2α̂ f )

)
� = 0 , (19)

where

�(r) = r f (r)S ′(r)
iω

. (20)

Near the horizon, the master equation satisfies the ingoing condi-
tions

� ∼ (r − rh)
−iω/4π T (21)

where we set the regular coefficient to be unit. Near the boundary, 
we have

� =
{

�(0) + �(n)

rn + · · ·, , for n = odd

�(0) + �(n)

rn + L2n
e ωn�(0)

Nrn log r + · · · , for n = even
(22)

where the dots denote the higher order terms and N depends on 
the dimension n. Thus, �(0) and �(n) can be treated as the source 
and thermal current function of the master field �, respectively. 
And the Green function which is related with the thermal conduc-
tivity κ(ω) is

κ(ω) = iG(ω)

ωT
=

⎧⎨
⎩

1
iωT

n�(n)

Ln+1
e �(0)

, for n = odd

1
iωT

(
n�(n)

Ln+1
e �(0)

− Ln−1
e ωn

N

)
, for n = even

.

(23)

Compared with the asymptotic behaviors of fields htx and S ((15)
and (16)) and (20), we have

�(0) = iωS(0) + L2
e β

2h(0)
tx

nL2
e

, �(n) =
√

1 − 4α̂(n + 2)h(n+2)
tx . (24)

And then the thermal conductivity can also read off from the 
boundary behavior of the perturbation htx and S .

Before proceeding, to simplify our problems, we shall redefine 
the bulk parameters as

α̃ = nα̂, β̃ = β√
n
. (25)

Furthermore, in the calculation of thermal conductivity, we shall 
use β̂ ≡ β̃/T , which is the only one scaling-invariant quantity of 
the black brane (5) with (6) for a given GB parameter. Also we set 
rh = 1 in numerical calculation.
Fig. 1. DC thermal conductivity κ0 as a function of the GB parameter α̃ with fixed 
n = 2 and β̃ = 1.

4. Thermal conductivity

4.1. DC thermal conductivity

In this subsection, we study the DC thermal conductivity. Fol-
lowing the method outlined in [23,41], we analytically derive the 
dimensionless DC thermal conductivity as

κ0/T = (4π)2rn+1
h

nL2
e β̃

2
. (26)

Now we set rh = 1 and summarize its features as follows. The 
mathematical details can be found in Appendix A.

• Form Eq. (26), it is easily observed that when β̃ goes to zero, 
κ0 is divergent, which originates from the translational invari-
ance and the momentum is conserved. When the momentum 
dissipates, i.e., β̃ is finite, κ0/T becomes finite. In particular, 
for fixed geometry parameters n and α̃, κ0/T decreases as β̃
increases.

• Fig. 1 exhibits κ0/T as a function of the GB parameter α̃ for 
fixed β̃ and n. It indicates that the DC thermal conductivity is 
enhanced by positive GB gravity while is suppressed by nega-
tive GB coupling. It is worthwhile to note that, our observation 
is different from that shown in [23] where the κ0 is indepen-
dent of the GB coupling. The reason is the same as we have 
emphasized that to have unite speed of light, our metric com-
ponent should be gii = r2/L2

e , which depend on α̃.
• κ0/T decreases with the increase of the spacetime dimensions.

Next we turn to the study of AC thermal conductivity.

4.2. AC thermal conductivity

In this subsection, we study the AC thermal conductivity in five 
dimensional GBA gravity theory, i.e., n = 2, in which α̃ is −7/18 �
α̃ � 9/50. Fig. 2 shows the dissipation effect (β̂) on the thermal 
conductivity in GBA gravity theory, while Fig. 3 exhibits the GB 
coupling effect on the thermal conductivity for small momentum 
dissipation (left plot in Fig. 3) and large momentum dissipation 
(right plot in Fig. 3) respectively.

Firstly, as a quick check on the consistency of our numerics, 
we denote the DC thermal conductivity analytically calculated by 
Eq. (26) (red dots) in Fig. 2 and Fig. 3. They match very well with 
the numerical results.

And then, we focus on the momentum dissipation effect. Since 
the momentum dissipates, we have finite DC thermal conductivity 
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Fig. 2. AC thermal conductivity κ(ω) with fixed α̃ = 9/50 for different β̂ . The red dots at zero frequency in left plot are the analytic DC values calculated by (26). Right plot: 
The dots are the numerical results while the solid lines are fitted by (27). (For interpretation of the references to color in this figure, the reader is referred to the web version 
of this article.)

Fig. 3. AC thermal conductivity κ(ω) with different α̃ for fixed β̂ . Left plot is for β̂ = 2, in which the dots are the numerical results while the solid lines are fitted by (27). 
Right plot is for β̂ = 10. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
Table 1
Fitting parameters for different β̂ with fixed n = 2 and α̃ = 9/50.

β̂ 2 2.5 3 4 5

K 155.296 165.737 178.74 213.90 271.15
τ 1.630 1.053 0.737 0.414 0.251

Table 2
Fitting parameters for different α̃ with fixed n = 2 and β̂ = 2.

α̃ 9/50 0 −7/18

K 155.28 143.28 127.76
τ 1.629 1.614 1.589

in GBA gravity theory as one in Schwarzschild-axions (SA) theory 
[34,42]. For small momentum dissipation, the AC thermal con-
ductivity exhibits a Drude-like peak at low frequency. With the 
increase of β̂ , the peak gradually becomes a valley, which indicates 
a crossover from coherent to incoherent phase. Quantitatively, for 
small β̂ , we can fit the low frequency AC thermal conductivity in 
terms of the Drude-like formula (right plot in Fig. 2),

κ(ω) = Kτ

1 − iωτ
(27)

where K is a constant and τ is the relaxation time. The corre-
sponding fitting results of K and τ with n = 2 and α̃ = 9/50 are 
listed in Table 1.

Moreover, we explore the effect of GB parameter on the AC 
thermal conductivity (Fig. 3). For small β̂ , the peak at low fre-
quency conductivity decreases with the decrease of GB coupling 
parameter α̃ and the relaxation time τ decrease (Table 2). While 
for large β̂ , with the decrease of the GB coupling, the valley in low 
frequency conductivity becomes deeper. Nonetheless, for fixed β̂
we cannot have a crossover from coherent to incoherent phase (or 
vice versa) by only changing α̃ in the allowed region of α̃.
Note that in [34], by matching the solutions near and far zone 
of bulk geometry, the authors approximately calculated the AC 
thermal conductivity in large dimension limit. The Large n tech-
nics, which is proposed and extensively studied in [28–30], pro-
vides an analytical method to perturbatively solve the above mas-
ter equation by treating 1/n as a small parameter. Their analytical 
results of AC thermal conductivity agree well with the numerical 
results in large dimension geometry. Here since the GB coupling 
complex our background solution, it is difficult to apply their skills 
to analytically solve our master equation in any dimension even 
in the lowest order. New skills and technics are called for and 
we shall explore them in future. However, we find that the quasi-
normal modes of the master field in GBA theory can be analytically 
studied by the large dimension method. And so in next section we 
shall work out the quasi-normal modes by large dimension method 
and compare it with the numerical one.

5. Quasi-normal modes

We turn to study the QNM spectrum of the master field of the 
perturbation. Testing the perturbation by QNM to study the (in)sta-
bility of various black holes in Gauss–Bonnet theory has been ad-
dressed in [43–45] and they were studied via numerical methods. 
Here we will investigate the QNM spectrum by the Large n method 
[28–30]. Via the method, the spectrum of QNM in the large n limit 
can be split into decoupled modes and non-decoupled modes, of 
which the former are always normalisable in the near horizon ge-
ometry and unique for different black hole, while the latter are 
not normalisable and have common features for many black holes. 
In [34], the authors claimed that the decoupled modes indeed 
controlled the ‘Drude poles’ of the conductivity in the boundary 
theory dual to the Einstein–Maxwell-axion gravity. In this subsec-
tion, we will use the Large n method to analytically calculate the 
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Fig. 4. The effective potential for different samples of bulk parameters.

decoupled QNM for the master field � and then compare them 
with the numerical results.

To this end, we rewrite the master equation (19) with the tor-
toise coordinate dr∗ = dr

f (r)(
d2

dr2∗
+ ω2 − V

)
� = 0 , (28)

where we rescale � = r
1−n

2 � and the potential is

V = (n + 1) f (2r f ′ − (n + 3) f )(r2 − 2α̂ f ) + 4L2
e β

2r2 f

4r2(r2 − 2α̂ f )
. (29)

To guarantee the existence of the decoupled QNM, the effective 
potential should have a negative minima [28–30]. Fig. 4 shows the 
profile of the potential for some parameters. We see it presents 
a negative minima, which means that there exists the decoupled 
QNM of the master field.

To calculate the QNM of the decoupled mode in large n limit, 
we introduce

ρ = (r/rh)
n, (30)

and expand the master field and the frequency as

� =
∑
k�0

�k

nk
, ω =

∑
k�0

ωk

nk
. (31)

Then, we put (30) and (31) into the master equation (19) and by 
holding α̃ and β̃ fixed, expand the equation in the power of the 
small quantity 1/n. Subsequently, we can obtain series equations 
of motion for �k .

Before solving the equations for each order �k , we have to fix 
their boundary conditions. In order to get the behavior of each 
order �k near the horizon, we insert the expansion (31) into the 
condition (21), then solve behavior at each order

�0(ρ → 1) → 1,

�1(ρ → 1) → −2i log(ρ − 1)ω0

2 − L2
e β̃

2
,

�2(ρ → 1)

→ 2i log(ρ − 1)(4ω0 + i log(ρ − 1)ω2
0 − (2 − L2

e β̃
2)ω1)

(2 − L2
e β̃

2)2
,

· · · · · · · · · · · · (32)

Near AdS boundary, the decoupled mode is normalisable, so 
that we have the behavior
�k(ρ → ∞) → 0. (33)

Integrating the series equation of motion order by order and con-
sidering the boundary conditions (32) and (33), we can get the 
exact solution of �0, �1 and �2 and the frequency to the first 
order

ω0 = −iL2
e β̃

2,

ω1 = 2iL2
e β̃

2 − iα̃L2
e β̃

2(2 − L2
e β̃

2)

2
. (34)

So that to the order n−1, the decoupled QNM frequency for � is

ω = −iL2
e β̃

2

(
1 + 1

n

α̃(2 − L2
e β̃

2) − 4

2
+ O (n−2)

)
. (35)

Note that in the Einstein limit α̃ = 0, this result recovers that 
shown in [34]. Due to the complex of our metric, we can only ob-
tain the solution of �k up to the second order. Correspondingly the 
frequency mode we can obtained here is up to the order of n−1.

Now we move on to compare our analytical QNM frequency 
(35) with the numerical results to see how well the lange-n re-
sults match with the numerical results. In Fig. 5, we fix the scaled 
GB coupling α̃ (α̃ = 0 in the upper panel and α̃ = 9/50 in the bot-
tom panel) and study the effect of the scaled axion momentum β̃
on the imaginary part of QNM frequency. From the left to right 
plot, we increase the dimension of the background. We see that 
in the low dimension case, the analytical results (dashed) have 
a wide difference from the numerical results (solid), while as n
increases (n � 11), the analytical and numerical results match bet-
ter and better. Fig. 6 shows the imaginary part of QNM frequency 
as a function of the scaled GB coupling α̃ = nα̂ with fixed non-
vanishing axion β̃ = 1. It is also obvious that the analytical and 
numerical results are almost consistent for large enough dimen-
sion.

6. Conclusion and discussion

In this paper, we construct a new neutral black brane solution 
from the GBA gravity theory in any dimensional AdS spacetimes. 
The thermal conductivity of the dual theory of this black brane ge-
ometry is explored. For small momentum dissipation, the optical 
conductivity exhibits a Drude-like peak at low frequency region. 
With the increase of the momentum dissipation, a transition from 
coherent to incoherent phase happens as has been revealed in (SA) 
theory [34,42]. However, we can not observe an apparent tran-
sition from coherent to incoherent phase when we tune the GB 
coupling parameter only in the allowed region but fix the momen-
tum dissipation parameter.

Also, via the large dimension technique, we analytically study 
the QNM of the master field which control heat transport of the 
dual system. The analytical frequency of QNM agrees well with the 
numerical one when the dimension is large enough. However, we 
would like to point out that here we only obtain the solution of 
mast field up to the second order as well as the frequency mode 
up to the order of n−1 and we can not observe the breakdown of 
the perturbative expansion, which can be seen as a signature of the 
coherent/incoherent transition as pointed out in [34]. It would be 
very interesting to improve the computation skill to solve higher 
order equation of the master field so that we can test the robust-
ness observed in [34].

In addition, we can also study the electric and heat transport 
by adding a gauge field term SM = 1

2κ2

∫
dn+3x

√−g
(

− 1
4 Fμν F μν

)
into the action (1). An analytical charged black brane solution can 
be obtained as following
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Fig. 5. Imaginary part of QNM frequency as a function of β̃ with fixed GB coupling α̃ = nα̂. In each plot, solid line are numerical result, while the dashed line denotes 
analytical result drawn via the formular (35).

Fig. 6. Imaginary part of QNM frequency as a function of the GB coupling α̃ = nα̂ with fixed axion β̃ . Solid lines are numerical results, while the dashed lines are analytical 
results drawn via the formular (35).
At(r) = μ

(
1 − rn

h

rn

)
, (36)

f (r) = r2

2α̂

×
(

1 −
√

1 − 4α̂
(

1 − rn+2
h

rn+2

)
+ 2α̂

r2

(
nμ2rn

h
(n+1)rn + L2

e β2

n

)(
1 − rn

h
rn

))
,

(37)

where μ is understood as the chemical potential of the dual field 
theory on the boundary. The properties of transport of this charged 
black brane geometry and it related QNM shall be addressed some-
where else.
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Appendix A. Calculation of DC thermal conductivity in GBA 
theory

In order to compute the DC thermal conductivity of our back-
ground, we closely follow the method proposed in [41] and extend 
the result of [23] to that in any dimensional background. We con-
sider the perturbations of the metric (5)
gtx → tδh(r) + δgtx(r),

grx → r2δgrx(r),

ψ1 → ψ1 + δψ1(r). (A.1)

Then, the linearized rx component of Einstein equations is

δgrx = (r2 − 2α̂ f )(rδh′ − 2δh)

r3L2
eβ

2 f
+ δψ ′

1

L2
eβ

(A.2)

and the tx component is

(rn−1 f − 2α̂rn−3 f 2)(δgtx + tδh)′′ + [(n − 1)rn−2 f

− 2(n − 3)α̂rn−4 f 2 − 2α̂rn−3 f f ′](δgtx + tδh)′

+ [2α̂rn−3 f f ′′ + 2(n − 3)α̂rn−4 f f ′ − (n − 1)rn−2 f ′

+ 2α̂rn−3 f ′ 2 − rn−1 f ′′](δgtx + tδh) = 0. (A.3)

The Einstein equation (A.3) can be written as a total derivation, so 
that we can define the conserved heat current

Q = (rn−1 − 2α̂rn−3 f )[ f (δgtx + tδh)′ − f ′(δgtx + tδh)]. (A.4)

By setting δh(r) = −ζ f (r), we can simplify the conserved heat cur-
rent as

Q = (rn−1 − 2α̂rn−3 f )( f δg′
tx − f ′δgtx), (A.5)

which is time-independent.
In order to make the metric regular at the horizon, we should 

require the perturbation to satisfy

δgtx ∼ r2 f δgrx|r→rh − ζ f

4π T
log(r − rh) + · · · (A.6)

and δψ1 to be constant at the horizon. Since the heat current is 
constant in r direction, we can calculate Q at the horizon which 
gives
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Q = Q |r→rh = −rn−1 f ′δgtx|r→rh = ζ(4π T )2rn+1
h

L2
eβ

2
(A.7)

where we have used the formulas (A.6) and (A.2) in the third 
equality. Furthermore, the DC thermal conductivity in x1 direction 
is

κ0 = ∂ Q

T ∂ζ
= (4π)2T rn+1

h

L2
e β

2
. (A.8)

And then, the dimensionless DC thermal conductivity can be writ-
ten as

κ0/T = (4π)2rn+1
h

nL2
e β̃

2
, (A.9)

where we have used Eq. (25).
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