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We study the qqcc JPC = 1−− isospin 0 systems using a quark hadron hybrid model, where the 14
relevant two-meson channels are coupled, while the quark degrees of freedom appear in the short
range region. We find a pole near the ωχc1, DD1 and DD′1 thresholds with a very small width. We
further estimate the effects of the coupling between this two-meson hadronic molecular state and the
the ψ(3S ) and ψ(4S ) states and find it reduces the molecule mass a little. Although the calculated
mass of this molecular state is still considerably higher than the observed Y(4260), we argue that it
can be a part of the Y(4260) components.
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1. Introduction

The Y(4260) (or ψ(4260)) state was first observed by BABAR in the initial state radiation (ISR)
process of e+e− collision at B factory with the invariant mass of π+π−J/ψ [2]. It was confirmed by the
CLEO [3] and Belle [4] collaborations in the same process. Recently, BESIII measured the e+e− →
π+π−J/ψ cross section at center-of-mass energies from 3.77 to 4.60 GeV precisely and reported two
clear resonance structures at (4222.0±3.1±1.4) MeV and (4320.0±10.4±7.0) MeV [5]. The former
resonance agrees with the Y(4260) though the mass is lighter than that of the previous experiments.
The latter one agrees with Y(4360), which had been observed only in the π+π−ψ(2S ) final state. Since
it is produced from the e+e− annihilation, the quantum number of the Y states is JPC = 1−−. The world
average of the mass and width of the Y(4260) are (4230±8) MeV and (55±19) MeV, respectively [6].
As for the decay mode, there are three noteworthy features: (1) the open charm decay modes have not
been observed so far, even the Y(4260) mass is well above the open charm threshold, (2) the exotic
candidate Zc(3900)± has been observed in the decay, Y(4260) → Zc(3900)±π∓, (3) it has a radiative
decay mode to another exotic candidate X(3872).

Since there is always J/ψ (or ηc) found in the decay products, the Y(4260) is considered to contain
a charm-anti-charm quark pair. Simple cc charmonium states have been studied in the quark poten-
tial models theoretically [7]. They assigned the 1−− charmonia as J/ψ(3097) (13S 1), ψ(3686) (23S 1),
ψ(3770) (13D1), ψ(4040) (33S 1), ψ(4160) (23D1) and ψ(4415) (43S 1). The Y(4260) and Y(4360) are
sitting in between ψ(4160) (23D1) and ψ(4415) (43S 1), where no corresponding charmonium state
exists. This situation suggests that the Y states are not simple charmonia but exotic meson candidates
[8]. Not that, the observed ψ states assigned above are not a pure cc states either. One has to consider
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the mixing to the exotic states and those ψ states.
Since the charmonium in the potential model does not fit to the Y(4260), the natural extension is

to introduce a light quark pair into the system. Introducing additional light quark pairs changes the
parity, which can reduce the orbital angular momentum by one. We have applied this approach to
the the LHCb pentaquarks, Pc, and found that the color octet uud in the uudcc configuration gives
rise to resonances around Σ(∗)

c D
∗

thresholds [9]. When one restricts the quark degrees of freedom at
the short range of the two hadrons, the model becomes a hadron model [10]. Here we investigate the
JPC=1−− qqcc systems, employing a quark hadron hybrid model [1]. In this model, the asymptotic
states are two mesons. In the short-range region, where the two mesons are close to each other, the
quark degrees of freedom appears with the rearrangement between the qq-cc and the qc-cq channels.
These quark effects can be expressed as a two-hadron interaction in this model, which enables us to
solve rather complicated systems. As we will show later, we have found this model can produce a
resonance for the JPC=1−− qqcc system. We further studied the effects of the mixing of the qqcc and
the cc, which is found to be important for the X(3872) [11, 12].

2. Quark Hadron Hybrid Model

First we classify the qqcc JPC = 1−− systems with the orbital (0s)20p configuration by mapping
them onto two-meson states. The two-meson states we consider here consist of the L = 0 and 1
quark-antiquark mesons: those of 1S 0(JPC = 0−+), 3S 1(1−−), 1P1(1+−), and 3PJ(J++). Combining
the qq and the cc states of the above quantum numbers, one can make ten qqcc (0s)20p 1−− states as
listed in Table I.

Table I. qqcc spin flavor orbital classification. S is the meson spin, and Lr is the relative meson orbital
angular momentum.

qq cc S Lr JPC mesons qq↔ cc
1S 0

1P1 1 0 1−− η hc1 h1 ηc
3S 1

3PJ 1 0 1−− ωχcJ fJ J/ψ
1S 0

3S 1 1 1 1−− η J/ψ ω ηc

There are two independent color configurations for the totally color-singlet qqcc system. One is
the configuration in which both of the qq and cc are color-singlet, which we denote (qq)1(cc)1. The
other is the one where both of them are color-octet, (qq)8(cc)8. The former can be mapped onto the
two-meson states directly, but the latter cannot. It is necessary to apply a quark rearrangement in the
color spin orbital space in order to map it onto the two-meson states:

(qq)8(cc)8 =

√
9
8

T−1(qc)1(cq)1 −
√

1
8

(qq)1(cc)1 , (1)

where T is the transfer matrix of the ten channels in the spin orbital space. There are also ten
(qc)1(cq)1 states for 1−− systems:

[DD1]−, [DD′1]+, [D
∗
D0]+, [D

∗
D1]−, [D

∗
D′1]+, [D

∗
D2]+ for relative S wave

DD, [DD∗]−, (D
∗
D∗)|S=0,2 for relative P wave (2)

where [ĀB]± stands for (ĀB ± B̄A)/
√

2. Here we would like to emphasize that, suppose one of the
(qq)8(cc)8 states plays an important role, it is necessary to take many two-meson channels into ac-
count in order to see the effects. Let us point out also that these 20 1−− two-meson states are indepen-
dent but not orthogonal to each other as seen from eq. (1). The DD1 state is orthogonal to the DD′1,
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for example. The DD1 and ωχc1 states, for example, however, are independent but not orthogonal to
each other due to the quark degrees of freedom.

We employ a quark Hamiltonian which has the kinetic term and the two-body interaction terms:
the central, the spin-spin, the spin-orbit, and the tensor terms. They are considered to come from
the confinement force and one-gluon exchange force as those in the conventional quark model. We
assume that all the interaction terms of the present model have the color factor, λ · λ. Since we
only consider the quark degrees of freedom within the orbital (0s)20p configuration, it is enough to
determine the size of the matrix elements of the interaction with respect to the 0s or 0p configurations;
we do not have to assume the potential function shape in the orbital space. So, let us just consider the
matrix elements of the quark Hamiltonian with respect to the 0ℓ qq or qq state:

⟨Hq⟩ =
∑

i

(mq + ⟨Kq⟩) +
∑
i< j

λi · λ j(cc
0ℓ + cσσ0ℓ σi · σ j + cLS

0ℓ O
LS
i j + cALS

0ℓ O
ALS
i j + cT

0ℓOT
i j), (3)

where c0ℓ’s are the matrix elements, and O’s are the noncentral operators of the quarks.
We obtain the c’s from the hadron mass spectra assuming that the orbital part of the qq mesons

or q3 baryons can also be approximated by the 0s or 0p configuration of the same size parameters as
those in the above (0s)20p configuration. This assumption is valid when one takes the size parameter

to be bred =

√
x2

0/mred, where x0 is a constant (∼ 0.6 fm1/2) and mred is the reduced mass of the
relevant quarks [9]. The bred between uu, cu, or cc is 0.69, 0.53, or 0.29 fm, respectively.

The matrix elements for the interaction between c and c, cO0ℓ(cc), can be determined from the cc
meson masses straightforwardly. We use not all the light hadron masses as they are, however, in order
to determine the c’s because some of the light mesons are not regarded as a simple qq meson. We
take (mω +

64
3 cσσ0s (uu)) for the uu(1S 0) mass with cσσ0s (uu) = − 1

32 (2mΣ∗c +mΣc − 3mΛc) = −19.70 MeV.
As for the qc or qs interaction, we use the same c’s for the ones between qc or qs except for the cσσ0s ,
which we obtain from the baryon mass spectra: we use cσσ0s (us) = − 1

16 (mΣ∗ − mΣ) = −11.96 MeV.
Using − 3

32 (2mΞ∗c − mΞ′c − mΞc) = cσσ0s (us) + cσσ0s (uc) + cσσ0s (sc) and assuming cσσ0s (uc) = cσσ0s (sc), we
have cσσ0s (uc) = −5.47 MeV. Moreover, we assume that D1(2420) [D′1(2430)] corresponds to the cq
state where the light quark spin with the angular momentum, jq̄ = sq̄ + ℓ, is 3

2 [ 1
2 ].

Now let us define the two-meson interaction arising from the quark degrees of freedom, by taking
the matrix elements of the quark Hamiltonian with respect to the quark configuration. Nonzero values
appear only in the off-diagonal part where the rearrangement of quarks occurs, from which we define
the two-meson potential as:⟨

(qq)1(cc)1(α); (0s)20p
∣∣∣∣(Hq − E)

∣∣∣∣(qc)1(cq)1(β); (0s)20p
⟩
= Vαβ(E) (4)

The potential Vαβ(E) depends on the energy because the overlapping term which proportional to E
survives due to the rearrangement.

So, we have the Hamiltonian for the two meson systems as:

Hαβ
h = (Mα

1 + Mα
2 + Kα)δαβ + |0ℓ⟩Vαβ(E)⟨0ℓ| (5)

Here, the Mα
1 and Mα

2 are the mass of each of the two mesons and the Kα term comes from the relative
meson kinetic energy. The |0ℓ⟩ is a projection operator to the orbital 0ℓ configuration.

This Hamiltonian can be used also for the long range region, where the system is free. There
is no interaction among the cc-qq channels, nor among the DD channels. The Hamiltonian has the
interaction of a range of the hadron size, which appears only between the cc-qq and the DD channels.
In this work, we further restrict ourselves to use the channels whose relative orbital momentum is S -
wave: we take the channels where 0ℓ = 0s in eq. (5). The above meson interaction becomes a simple
gaussian separable potential, which enables us to solve the many-channel coupled systems rather
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easily. Let us remark that we replace the reduced mass in the denominator with that of the real meson
masses in the kinetic term of the above equation, Kα, in order to make the kinematics of the system
realistic. Let us also note that we ignore the kinetic term which operates over the rearrangement part
of the normalization in eq. (5).

In the ccqq 1−− systems, we have found a pole with an energy of 4293.37−0.23i MeV. The width
of this resonance is very small, 0.5 MeV, and the real part of the energy is very close to the two-meson
thresholds: the D

+
D−1 threshold, 4292.85 MeV, the ωχc1, 4293.32 MeV, and the D

+
D′−1 , 4296.65

MeV. Since the resonance is close to the thresholds, the components of this resonance are mostly
these three two-meson states. The resonance does not correspond directly to the observed Y(4260),
because it requires an additional attraction to reduce the mass by about 60 MeV. It, however, strongly
suggests that this resonance, or the quark rearrangement, induces the exotic mesons like Y(4260).

There is a model ambiguities which comes from the meson assignments, or level mixing of the
mesons, in the process of obtaining the matrix elements c’s. The decay widths of some of the mesons
which construct the two-meson states, e.g., the D1 or D′1 mesons, are large, and should be included
when one performs more realistic calculation. Moreover, it is probably necessary to include the pion
exchange effects in the DD channels. It is also interesting to see the effects from the coupling to the
cc mesons, such as ψ(3S ) or ψ(4S ), with an annihilation of the light quark pair.

Since Y(4260) is produced by the e+e− experiments, it should have an cc component. So, We
estimate the effect of the mixing of ψ(3S ) and ψ(4S ), the energetically closest two charmonia, into
the DD1 hadronic molecule by a separable potential in the same manner as in [11]. We assume that
the coupling strength of the ψ(3S ) and the DD1 is the same as that of the ψ(4S ) and the DD1. The
size of the coupling strength is chosen so that this mixing alone reproduces the observed ψ(4S ) width.
Since the DD1 threshold is located in the middle of ψ(3S ) and ψ(4S ) masses, the mixing effect on
the molecular pole is rather small due to the cancellation. We found that the mixing of the ψ states
reduces the pole energy by less than 10 MeV.

3. Summary

In this work, we investigate the qqcc JPC = 1−− system by employing a quark hadron hybrid
model. We introduce the 14 relevant two-meson channels, whose short range includes the quark
degrees of freedom. We find a pole just around the ωχc1, DD1, and DD′1 thresholds with a very
narrow width. The results strongly suggest that the qqcc configuration contribute largely to form the
observed exotic mesons like Y(4260). The method employed in the present work can be applied to
the charged multiquark system, such as udcc, or to the system with different flavors, such as sscc,
which we are now working on.
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