Compilation of coupling constants and low-energy parameters

(selected from recent publications, June 1969)

G. EBEL, H. PILKUHN AND F. STEINER University of Karlsruhe, Germany

1. π N-scattering

(units $\hbar = c = m_{\pi}^{+} = 1, M \equiv m_{p} = 6.722$) Review: Hamilton and Woolcock, RMP 35, 737 (63) Partial waves, $S_{l\pm}^{I} = \eta_{l\pm}^{I} e^{2i\delta_{l\pm}^{I}} = 1 + 2iq f_{l\pm}^{I}$ for $J = l\pm \frac{1}{2}$.

a) S-wave scattering lengths

 $a_{2I} = f_{0\pm}^{I} (q=0);$ coupling constant, $\frac{G^2}{4\pi} = 4M^2 f^2.$

a ₁ - a ₃	$a_1 + 2a_3$	$f^2 imes 10^3$	$\frac{G^2}{4\pi}$	Reference
0.271	-0.002			Hamilton, PL 20, 687 (66)
± 0.007	± 0.008			
0.263	0.069			Lovelace, Heidelberg Conf. (Sept. 67)
0.266	0.056			Lovelace, Irvine Conf. (Dec. 67)
0.288	0.039	2		Lovelace, Heidelberg Conf., extrap. by Steiner (method of Hamilton, PL 20)
0.297		for 81	14.64	Höhler, Baacke & Steiner, Z. Phys. 214, 381 (68)
0.271		for 76	13.74	
	0.045			Zovko, NP B 10, 231 (69)
0.288	-0.021	80 ± 5	14.46	Höhler, Schlaile & Strauß, Lund Conf. 69
± 0.010	± 0.010			
0.277	-0.026	81.5 ± 1.6	14.73	Samaranayake & Woolcock, Lund Conf. 69
± 0.009	± 0.008			

Attention: for charge exchange, 0.5% isoscalar admixture to π° coupling changes the Born term in the forward dispersion relation at threshold by 6 % ($f^{2}_{ch.ex.} = 0.076$).

b) P-wave scattering lengths

 $a_{2I, 2J} = \lim_{q^2 \to 0} f_{1\pm}^I / q^2.$

a ₁₁ - a ₃₁	a ₁₃ - a ₃₃	$a_{11} + 2a_{31}$	$a_{13} + 2a_{33}$	Reference
-0.045	-0.245	fo	or $f^2 = 0.081$	Baacke, Höhler & Steiner
-0.039	-0.237	fo	or $f^2 = 0.077$	Z. Phys. 221, 134 (69)
-0.051	-0.243	-0.168	0.396	Höhler et al., Lund Conf. 69
-0.049	-0.250	-0.160	0.431	Collins, Samaranayake & Woolcock, Lund Conf. 69

c) ρ -couplings

("universality" normalization: $G_{\rho}\tau/2$ between nucleons) 2.8 ± 0.2 Sakurai, PRL 17, 1021 (66)

 4π

 $\frac{G_{\rho\pi\pi} G_{\rho\Psi}}{1} = 2.85 \pm 0.3$ Hamilton, in "High Energy Physics I",

p. 282 (Acad. Press 1967, ed. Burhop) (2.19)Höhler et al., Z. Phys. 214, 381 (68), criticize the method.

2. $K^{\pm}N$, $\pi\Sigma$ and $\pi\Lambda$ channels (*units* h=c=fm=1)

a) K^+p scattering

 $q^{2l+1} \cot \delta_l = \frac{1}{a} + \frac{r}{2} q^2$

$a_s =32 \pm .01$	$r_{\theta} = .31 \pm .15$	A. D. Martin & Perrin, NP B10, 125 (69)
$2a_{p3} + a_{p1} =01 \pm .01$		}
$a_{s} =28 \pm .01$		Lea, B. R. Martin & Oades, Lund Conf. 69

b) K-p scattering

Review: Pilkuhn, The Interactions of Hadrons, North-Holland 1967.

Partial waves, $S_{l\pm}^{I} = 1 + 2i\sqrt[]{q} T_{l\pm}^{I}\sqrt[]{q}$, q = diagonal matrix of cms momenta.

s-waves, K-matrix, $T^{I} - i T^{I}q K^{I} = K^{I}$.

<i>K</i> ¹	Κ̈́N	$\pi\Sigma$	πA
ĒΝ	0.222	0.781	0.381
$\pi\Sigma$	0.781	0.919	-0.174
$\pi \Lambda$	0.381	-0.174	0.463

B. R. Martin & Sakitt, Lund Conf. 69

Inverse K-matrix,
$$(K^{-1})_{ij}^{I} = M_{ij}^{I} + \frac{r_{i}^{I}}{2} \delta_{it} (q_{i}^{2} - q_{i}^{2}(0))$$

 $q_{\overline{I}(N)}^{8}(0) \equiv 0, \quad q_{\pi}^{2} \circ_{\Sigma} \circ (0) = .0328 \text{ GeV}^{2} = .843/fm^{2},$ $q_{\pi}^{2} \circ_{\Lambda} (0) = .0647 \text{ GeV}^{2} = 1.661/fm^{2}.$

M^1	$\overline{K}N$	πΣ	πA
ĒΝ	$-3.60 \pm .02$	$-2.86 \pm .03$	2.08 ± .07
$\pi\Sigma$	$-2.86 \pm .03$	$-1.40 \pm .06$	$1.81~\pm~.04$
πA	$2.08 \pm .07$	$1.81 \pm .04$	$-2.31 \pm .11$
r ¹	$-0.13 \pm .07$	$-$.78 \pm .23	$-1.22 \pm .45$

M^0	$\overline{K}N$	$\pi\Sigma$
ĒΝ	$0 \pm .02$	$-1.11 \pm .04$
$\pi\Sigma$	$-1.11 \pm .04$	$2.04 \pm .10$
r ⁰	$.54 \pm .08$	$-$.89 \pm .31

Kim, PRL 19, 1074 (67).

Scattering lengths, $T^{I} = A^{I}(1 - iq A^{I})^{-1}$, $A^{I} = a^{I} + i b^{I}$.

$A^0_{\vec{K}N}$	$A_{\overline{K}N}^1$	$A_{\pi A}$	$A^0_{\pi \Sigma}$	$A^1_{\pi \Sigma}$	Reference
$-1.57 \pm .04$ + i(.54 ± .06)	$24 \pm .05$ + i(.43 ± .05)				Kittel, Otter & Wacek, PL 21, 349 (66)
-1.65 ± .04 + i(.73 ± .02)	$13 \pm .02$ + i(.51 ± .03)	~ 1.7	$1.09\pm.23$.39±.07 +i(.14±.03)	von Hippel & Kim, PRL 20, 1303 (68)
$-1.66 \pm .02$ + i(.69 ± .02	$09 \pm .03$ + i(.54 ± .02)	$.13 \pm .07$.42±.03	.28 ± .03 + i(.16 ± .02)	B. R. Martin & Sakitt, Lund Conf. 69

c) Coupling constants, $G^2/4\pi$

Review and conventions: Queen, Restignoli & Violini, Fortschr. Phys. 17, 467 (69).

<i>K</i> ⁰	$\overline{K}N$	$\pi\Sigma$
ĒΝ	-1.879	0.919
$\pi\Sigma$	0.919	-0.315
	0.717	0.51

Kim, PRL 19, 1074 (67).

ΛΣπ	$\Sigma\Sigma\pi$	Reference
21.5±7.0	11.4 ± 5.0	Chan & Meiere, PL 28B, 125 (68)
$10.7 \pm 0.9*$	4.0 ± 2.0	for $a_{ys} = D_{ys}/(D_{ys} + F_{ys}) = 0.74$ (ps SU ₃)
	10.0 ± 2.0	for $a_{pv} = D_{pv}/(D_{pv} + F_{pv}) = 0.60 \text{ (pv SU}_3)$

* From Goldb.-Treiman rel. for $\Sigma \to \Lambda l \bar{\nu}$ decays, see sect. 6.

р∕ІК	$p\Sigma K$	Reference	KN parametriz.
4.9±0.9	< 3.0	Carter, PRL 18, 801 (67)	CSL
5.0 ± 1.7	< 3.0	Davis et al., NP B3, 616 (67)	CSL
4.0 ± 0.9	< 2.4	Kin DDI 10 1070 (67)	(CSL
13.5 ± 2.1	0.2 ± 0.4	$\int \text{Kim, PRL 19, 1079 (67)}$	ί κm
~ 4.1	<u>14</u>	A. D. Martin & Poole, PL 25B, 343 (67)	CSL
6.2 ± 1.0		Rood, NC 50A, 493 (67)	KM
3.9 ± 0.6	< 3.1		(CSL
11.9 ± 2.7 0.4 ± 0.6		$\left\{ \begin{array}{l} \text{Queen et al., NP } B (69) \end{array} \right\}$	ĺ κm
5.9 ± 1.3	< 1.3	Granovskii & Starikov, SJNP 6, 444 (68)	CSL
13 ± 3	0 ± 1	Chan & Meiere, PRL 20, 568 (68)	KM
5.0 ± 1.9	<2	B. R. Martin & Sakitt, Lund Conf. 69	EFR

 $(pAK) + .847(p\Sigma K) = 12.35 \pm 2.8$ $(pAK) + (p\Sigma K) = 15^{+6}_{-4}$ A. D. Martin & Ross, PL 26B, 527 (68) (from K Perrin & Woolcook, NP B4, 671 (68) Cutkosky & Deo, PRL 20, 1272 (68) (from K⁺p)

CSL=constant scattering length, KM=K-Matrix, EFR=effective-range (consistency tests: A. D. Martin et al., NP. B10, 481 and PL 29B, 311 (69)).

3. NN scattering

a) Scattering lengths and effective ranges

(units fm=	$1), k\cot\delta = +\frac{1}{a} + \frac{1}{2}rk^2$	
рр	$a = 7.786 \pm .008$ $r = 2.840 \pm .009$	Slobodrian, PRL 21, 438 (68)
nn	$a = 18.42 \pm 1.53$ $a = 13.1 \pm \frac{3 \cdot 4}{2 \cdot 4}$ $a = 16.1 \pm 1.0$ $r = 3.2 \pm 1.6$	Haddock et al., PRL <i>14</i> , 318 (65), corr. by Nygren Butler et al., PRL <i>21</i> , 470 (68) Baumgartner et al., PL <i>16</i> , 105 (66)
np	$a_t = -5.425 \pm .004 a_s = 23.714 \pm .013 r_s = 2.704 \pm .087 r_t = 1.749 \pm .008$	Houk & Wilson, RMP 40, 672 (68), Err. Wilson, Comments Nucl. Part. Phys. 2, 141 (68) (quotes Houk)

Deuteron binding energy: 2.224644±0.000034 MeV.

b) Meson-nucleon coupling constants

G_{π}^2	$G^2_{\rho V}$	$G_{\rho T}$	$G^2_{\omega} \gamma$	Deferrence
4π	4π	$\overline{G_{\rho V}}$	4π	Kererence
14.4	$\textbf{4.8} \pm \textbf{0.8}$	1.68	4.7 ± 2.1	Köpp & Söding, PL 23, 494 (66)
14.01	3.12	2.38	8.02	Ueda & Green, PR 174, 1304 (68)
14.02	3.12	2.39	7.97	Ueda & Green, NP B10, 289 (69)
$4.1^{+1.4}_{-0.8}$	-		-	Cutkosky & Deo, PRL 20, 1272 (68)
$14.72 \pm .83$	1000		-	Mac Gregor et al., PR 169, 1128 (68)
$14.73 \pm .3$	7.53 ± 4 .	2.5 ± 1	13.5 ± 1.7	Bugg, NP B 5, 29 (68)

Note: Köpp & Söding take $G_{\rho T}/G_{\rho V}$ from a nucleon form factor fit. $G_{\omega T}$ and G_{η} are not well determined.

4. Photon couplings

$$J_{\mu}^{em}(x) = -\left\{ \frac{m_{\rho}^2}{f_{\rho}} \rho_{\mu}(x) + \frac{m_{\omega}^2}{f_{\omega}} \omega_{\mu}(x) + \frac{m_{\phi}^2}{f_{\phi}} \varphi_{\mu}(x) \right\}$$

a) Vector meson-photon couplings $(a^{-1}=137.036)$

Review: Ting, Proc. Vienna Conf. 1968 ($f_V = 2\gamma_V$ of Ting). Vector meson dominance:

$$\Gamma(V \to e^+e^-) = \frac{1}{3} a^2 m_V \left(\frac{f_V^2}{4\pi}\right)^{-1}; \quad V = \rho, \ \omega, \ \varphi.$$

$f_{\rho}^2/4\pi$	$f_{\omega}^2/4\pi$	$\mathrm{f}_{arphi}^2/4\pi$	Reference		
2.08+0.28	$18.76^{+4.96}_{-3.24}$	$12.16^{+4.28}_{-2.64}$	Ting, Vienna Conf. 68		
1.86 ± 0.18	14.8 ± 2.8	11.0 ± 1.6	A		
$\pmb{2.10 \pm 0.11}$	(from $\rho \rightarrow 2\pi$ width)		Augustin et al, PL $28B$, 503 (69)		
2.00 ± 0.28	16.0 ± 3.6	12.4 ± 2.8	Lohrmann, Lund Conf. 69		

Note: All values refer to vector meson V on the mass shell; for the photon on the mass shell Ting gives $f_{\rho}^{2}/4\pi = 2.12 \pm 0.16$.

b) Pion form factor

From π^+ electroproduction [Mistretta et al., PRL 20, 1523(68)]:

$$F_{\pi}(t) = \left[1 - \frac{t}{(0.56 \pm .08)^2 \text{ GeV}^2}\right]^{-1} \quad (t < 0 \text{ only})$$

From e^+e^- colliding beams [Roos and Pisút, NP *B10*, 563 (69)]:

$$F_{\pi}(t) = \frac{t_{1}+t}{t_{1}} \frac{\omega_{r}^{2} - \omega_{r} \left(\frac{q}{q_{r}}\right)^{3} \Gamma_{0}}{\omega_{r}^{2} - t - i\omega_{r} \left(\frac{q}{q_{r}}\right)^{3} \Gamma_{0}};$$

$$t_{1} = 4\{|\omega_{r}^{3} - \omega^{2} - i\omega_{r} \left(\frac{q}{q_{r}}\right)^{3} \Gamma_{0}| + \mu^{2}\}$$

$$\omega_{r} = 770 \pm 4 \text{ MeV}; \quad \Gamma_{0} = 122 \frac{+7}{-6} \text{ MeV}; \quad \omega^{2} \equiv t = 4 (q^{2} + \mu^{2}).$$

c) Nucleon form factors

Weber, Proc. Stanford Conf. 1967:

Scaling law:
$$G_{E_{p}}(t) = \frac{G_{M_{p}}(t)}{\mu_{p}} = G(t)$$
 for $-t \le 4$ (GeV/c)²
 $\frac{G_{M_{n}}(t)}{\mu_{n}} = G(t)$ for $-t \le 1.2$ GeV², $G_{E_{n}}(t) \le 0.2$ but $\ne 0$.
Dipole fit: $G(t) = \left(1 - \frac{t}{M_{D}^{2}}\right)^{-2}$; $M_{D}^{2} = 0.71$ GeV².

Deviations at larger t values:

from dipole fit for 2 < -t < 25.0 (GeV/c)², Coward et al. PRL 20, 292 (68); from scaling law for 0.6 < -t < 2 (GeV/c)²: $G_{E_p}(t) = \frac{G_{M_p}(t)}{\mu_p}$ [1+(0.066±0.023)t], Berger et al., PL 28B, 276 (68).

d) Radiative decays
$$\pi^0 \rightarrow \gamma\gamma$$
 and $\eta \rightarrow \gamma\gamma$

 $\Gamma_{\gamma\gamma} = \frac{1}{16} a^2 m^3 \frac{g^2}{4\pi}$

	π^0	η		
Γ _{νν} [eV]	8.0	1000		
$g^2/4\pi$ [GeV ⁻²]	976	1820		

We use $\tau(\pi^0) = 0.82 \times 10^{-16}$ sec and take $\Gamma_{\gamma\gamma}(\eta)$ from Particle Data Group, RMP 41, 109 (69).

5. Pion photoproduction

a) Multipoles at threshold $(h = c = m_{\pi} = 1)$.

Notation: CGLN, PR 106, 1345 (57)

100 $E_{o+}(\pi^+) = + 2.853 \pm 0$.016 Adamovich et al., SJNP 7, 643 (68)
$100 E_{o+}(\pi^{-}) = -3.15 \pm 0.00$	06 Adamovich et al., SJNP 2, 95 (66)
$100 E_{o+}(\pi^0) = -0.18 \pm 0.00$	09 Govorkov et al., SJNP 4, 265 (67)

b) γNN^* magnetic dipole moment

Review: Rollnik, Hercegnovi lectures 1967 (to be published).

μ^* [in units of $\mu_{\rm proton}$]	Reference		
1.21 ± 0.02	Dalitz and Sutherland, PR 146, 1180 (66)		
1.17 ± 0.04	Donnachie and Shaw, NP 87, 556 (67)		
1.16 ± 0.03	Grilli et al., NC 49, 326 (67)		
1.07 ± 0.01	Ash et al., PL 24 B, 165 (67)		
1.18 ± 0.11	Pfeil, Thesis, Bonn Univ. (68)		
1.23	Schwela and Weizel, Z. Phys. 221, 71 (69)		

6. Weak interactions

(units $c=\hbar=1=6.58218\times10^{-25}$ GeV sec). See Parker et al., RMP 41, 375 (69).)

Review: Brene, Roos & Sirlin, NP B6, 255 (68).

a) µ-decay

 $\Gamma_{\mu} = (2.9944 \pm .0011) \ 10^{-10} \text{ eV.}$ $g_{\mu} = (192\pi^{3} \ \Gamma_{\mu} \ m_{\mu}^{-5})^{1/2} = (1.1635 \pm .0002) \ 10^{-5}/\text{GeV}^{2}.$ rad. correction, $g_{\mu, \text{ cor.}} = g_{\mu} \left(1 + \frac{a}{4\pi} \left(\pi^{2} - \frac{25}{4} \right) \right) =$ $= (1.1659 \pm .0002) \ 10^{-5}/\text{GeV}^{2}.$

b) β -decay

$g_V = (1.140 \pm .002)10^{-5}/\text{GeV}^2$	Brene et al., NP B 6, 255 (68)
$(1.144 \pm .002)10^{-5}/\text{GeV}^2$	Freeman et al., PL 27 B, 156 (68)
-54	(rad. corr. included, but model-
$g_{\mathcal{A}} = (1.23 \pm .01)g_{\mathcal{V}}$	dependent)
$= (1.40 \pm .01)10^{-5}/\text{GeV}^2$	Christensen et al., PL 26 B, 11 (67)

c) π -decay

 $\Gamma(\pi \to \mu \nu) = (2.527 \pm .007) \, 10^{-8} \, \text{eV}.$

 $|g_{\pi}| = (4\pi\Gamma(\pi \to \mu\nu)m_{\pi})^{1/2} m_{\pi}/m_{\mu}(m_{\pi}^{2} - m_{\mu}^{2}) = = (1.057 \pm .002) 10^{-6}/\text{GeV}$

 $f_{\pi} \equiv \sqrt{2} g_{\pi}/g_{V} = 130.9 \text{ MeV} = 0.938 m_{\pi+}.$

d) Goldberger-Treiman relation

 $-g_{\pi}(t=0) \ G(t=0) = \frac{1}{2}(m_{p}+m_{n})g_{A}$ $g_{\pi}(t=0) \ G(t=0)/g_{\pi}G = 0.917 \pm .03 \quad \text{for} \quad G = \sqrt{4\pi \times 14.73}$ $\Sigma \to \Lambda \text{ decays}, \quad -g_{\pi}(t_{\Sigma A}) \cdot G_{A\Sigma\pi}(t_{\Sigma A}) = \frac{1}{2}(m_{A}+m_{\Sigma})g_{A, A\Sigma\pi}(t)$ $pv\text{-coupling}, \quad f_{A\Sigma\pi} = -\sqrt{\frac{4}{3}} \ a_{pv}f, \quad a \equiv D/(D+F)$ $a_{pv} = .613 \pm .023 \text{ Brene, Roos & Sirlin, NP B6, 255 (68), and pr. comm.}$

ps-coupling, $G_{A\Sigma\pi} = -\sqrt[]{\frac{1}{8}} a_{ps} G$, $a_{ps} = a_{pv} \frac{m_A + m_E}{m_p + m_n} = 1.23 a_{pv}$ $a_{ps} = .75 \pm .03$ Pilkuhn & Swoboda, Lett. NC. 1, 854 (69)

e) Cabibbo angles from leptonic hyperon decays

 $\theta_V = .233 \pm .012$, $\theta_A = .238 \pm .018$ Filthuth, CERN 69—7 (Proc. Top. Conf. on Weak Int.) $a_{vv} = .60 \pm .04$.

f) Pionic hyperon decays

$$\Gamma = p \frac{(M+M')^2 - m_{\pi+}^2}{8\pi M^2} \left(|A|^2 + \frac{(M-M')^2 - m_{\pi+}^2}{(M+M')^2 - m_{\pi+}^2} |B|^2 \right)$$

	Λ_	Λ_	$\Sigma \Xi$	Σ_{\pm}^{\pm}	Σ	Σ_0^+		Ξ_0^0	
				$\gamma > 0$	$\gamma < 0$				
A×10 ⁷	3.30	4.06	0.04	3.32	2.50	4.05	3.32	×	
	± .04	± .07	± .09	± .30	± .39	± .07	± .11		
B×107	22.67	-1.19	41.43	-25.02	- 33.35	-16.11	-9.86		
	± .71	± .93	± .76	± 4.02	± 3.04	± 1.41	± 2.21		

Filthuth, CERN 69–7. Note: our A and B are dimensionless. For dimension $10^5/\sqrt{\text{sec}}$, Γ contains an additional $1/m_{\pi+}$. The conversion factor to dimensionless A and B is 2.1715×10^{-7} .