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Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other 
forces of nature. An extension of the standard model with all possible terms that violate Lorentz and 
CPT symmetries are included. Here a CPT-even non-minimal coupling term is added to the covariant 
derivative. This leads to a new interaction term that breaks the Lorentz symmetry. Our main objective is 
to calculate the cross section for the e− + e+ → μ− + μ+ scattering in order to investigate any violation 
of Lorentz and/or CPT symmetry at finite temperature. Thermo Field Dynamics formalism is used to 
consider finite temperature effects.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The Standard Model (SM) is a successful field theory that de-
scribes fundamental particles and their interactions with high 
precision. The SM is a gauge theory with the symmetry group 
U(1) × SU(2) × SU(3) [1,2]. The SM is a fundamental theory. How-
ever it does not include the theory of gravitation in its framework, 
that includes three fundamental forces of nature: the electromag-
netic, weak and strong forces. There are several attempts to unify 
all interactions of nature in a unique fundamental theory. Among 
various candidates for a unified theory the most famous is the 
string theory [3]. In addition this model does not explain in a sat-
isfactory way some problems such as, the hierarchy problem [4], 
the neutrino oscillation [5], cosmic particles at high energies [6,7], 
among others. Including these issues leads to a physics well be-
yond the standard model.

It is anticipated that a fundamental theory would emerge at 
very high energies (≈ 1019 GeV). At sufficiently high energies, the 
possibility of small violation of the Lorentz and CPT symmetries 
may be present. Some models, such as string theory [8], lead to 
spontaneous breaking of Lorentz symmetry. It is interesting to note 
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that a quantum theory of gravitation may be anticipated to vio-
late the Lorentz symmetry. These ideas lead to the Standard Model 
Extension (SME) that violates Lorentz and CPT symmetry. Such 
models have been developed [9–11]. The SME consists of models 
of well known physics of the SM plus all possible terms that vio-
late Lorentz and CPT symmetry. In addition, it is divided into two 
parts: (i) the minimal version restricted to power counting renor-
malizable operators and (ii) the non-minimal version which also 
includes operators of higher dimensions.

The structure of SME is a way to investigate the Lorentz viola-
tion. However, there is another interesting way to investigate the 
Lorentz violation that modifies the interaction between fermions 
and photons, i.e., a new non-minimal coupling term added to the 
covariant derivative [12]. The non-minimal coupling term may be 
CPT-odd or CPT-even that have been considered for various ap-
plications [12–22]. Here a CPT-even non-minimal coupling term 
will be included to analyze the e− + e+ → μ− + μ+ scattering, 
a well-known quantum electrodynamics process, at finite temper-
ature. The Thermo Field Dynamics (TFD) formalism will be used to 
introduce temperature effects.

TFD is a real time finite temperature formalism [23–28]. It in-
cludes the statistical average of an observable A expressed as a 
thermal vacuum expectation value i.e., 〈A〉 = 〈0(β)|A|0(β)〉, where 
|0(β)〉 is the thermal vacuum, β = 1

kB T , with T being the temper-
ature and kB is the Boltzmann constant (we use kB = h̄ = c = 1). 
This formalism is composed of two ingredients, the doubling of 
the Hilbert space and the Bogoliubov transformation. This doubling 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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consists of the Hilbert space composed of the original space, S , 
and a fictitious space (tilde space), S̃ . The map between the tilde 
and non-tilde operators is defined by the tilde (or dual) conjuga-
tion rules. The temperature effect is implemented in the doubled 
Hilbert space by a Bogoliubov transformation which introduces a 
rotation of the tilde and non-tilde variables.

This paper is organized as follows. In section 2, an introduction 
to the TFD formalism is developed. In the section 3, the model is 
presented. The transition amplitude and the cross section for three 
different vertices are calculated. In section 4, some concluding re-
marks are presented.

2. TFD formalism

TFD is a thermal quantum field theory with a thermal vacuum 
|0(β)〉. It is composed by two fundamental ingredients: (1) dou-
bling the degrees of freedom in a Hilbert space and (2) the Bo-
goliubov transformation. The expanded Hilbert space is defined as 
ST = S ⊗ S̃ , with S being the standard Hilbert space and S̃ the fic-
titious Hilbert space. The map between the tilde B̃ i and non-tilde 
Bi operators is defined by the following tilde conjugation rules:

(Bi B j)
∼ = B̃ i B̃ j, (cBi + B j)

∼ = c∗ B̃ i + B̃ j,

(B†
i )
∼ = B̃ i

†
, (B̃ i)

∼ = −ξ Bi, (1)

with ξ = −1 for bosons and ξ = +1 for fermions. The Bogoliubov 
transformation introduces a rotation in the tilde and non-tilde 
Hilbert space with thermal dependence. The Bogoliubov transfor-
mation is different for fermions and bosons. Here our interest is in 
fermions. Then the Bogoliubov transformation for fermions is

cp = u(β)cp(β) + v(β)c̃†
p(β),

c†
p = u(β)c†

p(β) + v(β)c̃p(β), (2)

c̃p = u(β)c̃p(β) − v(β)c†
p(β),

c̃†
p = u(β)c̃†

p(β) − v(β)cp(β),

where cp and c†
p are the annihilation and creation operators. The 

factors u(β) and v(β) are given as

u(β) = cos(θ(β)) = (e−β|κ0| + 1)−1, (3)

v(β) = sin(θ(β)) = (eβ|κ0| + 1)−1.

Algebraic rules for thermal operators are

{cp(β), c†
q(β)} = δ3(p − q), (4)

{c̃p(β), c̃†
q(β)} = δ3(p − q), (5)

and other anti-commutation relations are null.
In the framework of the TFD formalism the transition amplitude 

for any QED process is given as

Ŝ f i(β) =
〈

f , β
∣∣∣ Ŝ

∣∣∣i, β〉
, (6)

where the thermal states are defined as

|i, β〉 = c†
p1(β, s1)d

†
p2(β, s2)|0(β)〉, (7)

| f , β〉 = c†
p3(β, s3)d

†
p4(β, s4)|0(β)〉, (8)

with si being the spin variable (i = 1, 2, 3, 4) and Ŝ-matrix is de-
fined as

Ŝ =
∞∑ (−ı)n

n!
∫

dx1dx2...dxn : [Ĥ I (x1)Ĥ I (x2)...Ĥ I (xn)] : , (9)

n=0
where ĤI(x) = HI(x) − H̃I(x) is the interaction hamiltonian. Here 
up to the second order term is considered and has the form

Ŝ(2) = (−ı)2

2

∫
d4xd4 y : [Ĥ I (x1)Ĥ I (x2)] := S(2) − S̃(2). (10)

Then the transition amplitude becomes

S f i(β) =
〈

f , β
∣∣∣S(2)|i, β

〉

= (−ı)2

2!
∫

d4xd4 y
〈

f , β
∣∣∣ : [LI (x)LI (y)] :

∣∣∣i, β〉
. (11)

It is important to note that, there is a similar equation for the tilde 
part. As the physical quantities are given by non-tilde part, only 
this part is considered.

Using the transition amplitude, the cross section for any scat-
tering process at finite temperature is considered. The cross section 
is defined as
dσ(β)

d�
= 1

64π2

1

4s

∑
Spin

∣∣∣S f i(β)

∣∣∣2
, (12)

where 
√

s = 2E = EC M and EC M is the center of mass (CM) energy. 
In addition an average over the spin of the incoming particles and 
summing over the spin of outgoing particles is included.

In the next section the transition amplitude will be calculated. 
Then the cross section for the e− + e+ → μ− + μ+ scattering at 
finite temperature is calculated.

3. Cross section of the e− + e+ −→ μ− + μ+ scattering

Here the cross section for the e− + e+ −→ μ− + μ+ scattering 
at finite temperature is calculated. In addition Lorentz-violating ef-
fects are included. The Lorentz violation is using a non-minimal 
coupling term that is added to the covariant derivative, i.e.,

Dμ = Dμ + λ

2
Kμνθργ ν F θρ, (13)

with Dμ = ∂μ + ie Aμ . Here λ is the coupling constant for Lorentz 
violation term. The tensor Kμνθρ belongs to the CPT-even gauge 
sector of the SME. It has the same symmetries as that of the 
Riemann tensor and it possesses double null trace. Thus the in-
teraction part of the Dirac Lagrangian becomes

LI
D = −e�γ μ�Aμ + λ

2
Kμνθρ��μν�F θρ, (14)

where �μν = i
2 [γμ , γν ] is used. The first term describes the 

usual QED vertex and the second term is a new vertex that im-
plies violation of Lorentz symmetries due to the CPT-even tensor. 
The tensor Kμνθρ may be decomposed into birefringent and non-
birefringent components. Here our investigation is restricted to the 
non-birefringent components that is represented by a symmetric 
and traceless rank-2 tensor Kμν [29], i.e.,

Kμναβ = 1

2

[
gμα Kσβ − gνα Kμβ + gνβ Kμα − gμβ Kνα

]
, (15)

where Kμν is defined by the contraction Kμν ≡ K ρ
μρν . Then the 

interaction Lagrangian becomes

LI
D = −e�γ μ�Aμ + λ�

(
�βν K νμ − �μν Kνβ

)
κβ Aμ�, (16)

with κμ being the 4-momentum of the photon. This interaction 
Lagrangian implies the following vertices:

• → Vμ
(0) = −ieγ μ, (17)

⊗ → Vμ
(1) = −iλκβ

(
�βν K νμ − �μν Kνβ

)
. (18)
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Fig. 1. Tree-level Feynman diagrams with different vertices.
The Feynman diagrams that describe this scattering process are 
given in Fig. 1.

To analyze this process, consider the center of mass frame (CM) 
such that

p1 = (E, pi), p3 = (E, p′ i),

p2 = (E,−pi), p4 = (E,−p′ i),

κ = (p1 + p2) = (
√

s,0), (19)

with p1, p2, p3 and p4 being the 4-momentum of the electron, 
positron, muon and anti-muon, respectively. The new vertex com-
ponents are

V0
(1) = 0, (20)

Vi
(1) = Vi

+is + Vi+an + Vi− (21)

where the part associated with the parity-even isotropic coefficient 
is

Vi
+is = −ı

√
sK00�

0i, (22)

the anisotropic parity-even part is

Vi+an = ı
√

sK ij�0j, (23)

and the parity-odd component is

Vi− = −ı
√

sK j�
ij. (24)

Then the transition amplitude is written as

S f i λ(β) = 1

2

∫
d4xd4y

×
∑
a,b

〈
f , β

∣∣∣ : �(x)Vμ
(a)�(x)�(y)Vν

(b)�(y)Aμ(x)Aν(y) :
∣∣∣i, β〉

,

(25)

with a, b = 0, 1. Considering that the wave function of the fermion 
field is

�(x) =
∫

dp
[

cp(s)u(p, s)e−ıpx + d†
p(s)v(p, s)eıpx

]
, (26)
with cp and dp being annihilation operators for electrons and 
positrons, respectively with u(p, s) and v(p, s) being Dirac spinors, 
then eq. (25) becomes

S f iλ(β) =
∫

d4 p

(2π)4

∫
d4xd4ye−ıx(p1−p3)−ıy(p2−p4)

×
∑
a,b

[
v(p2, s2)Vμ

(a)u(p1, s1)
][

u(p3, s3)Vν
(b)v(p4, s4)

]

×
〈
0(β)

∣∣∣ : Aμ(x)Aν(y) :
∣∣∣0(β)

〉
, (27)

where the Bogoliubov transformation and the anti-commutation 
relation between the annihilation and creation operators have been 
used. The photon propagator at finite temperature [24,28,30] is 
given as〈
0(β)

∣∣∣ : Aμ(x)Aν(y) :
∣∣∣0(β)

〉

= i

∫
d4κ

(2π)4
e−iκ(x−y)

[
�

f
0 (κ) − �

f
β(κ)

]
ημν, (28)

where

�
f
0 (κ) = 1

κ2

(
1 0
0 −1

)
, (29)

is the zero temperature part of the photon propagator and

�
f
β(κ) = 2π iδ(κ2)

eβ|κ0| − 1

(
1 eβ|κ0|/2

eβ|κ0|/2 −1

)
, (30)

is the finite temperature part. Using the definition of the four-
dimensional delta function and carrying out the κ integral, the 
matrix element becomes

S f i λ(β) = i
(
u2(β) − v2(β)

)2[
�

f
0 (κ) − �

f
β(κ)

]
S f i λ, (31)

with

S f i λ = 1

κ2

1∑
a,b=0

[
v(p2, s2)V μ

(a)u(p1, s1)
]

×
[

u(p3, s3)V (b)μv(p4, s4)
]
, (32)
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being the matrix element at zero temperature. The remaining delta 
function that expresses overall four-momentum conservation is ig-
nored. Using the relation

[v2Vμ
a u1][u1Vbμv2] = tr[Vμ

a u1u1Vμ
b v2 v2] (33)

and the eq. (3) for the functions u(β) and v(β), the square of the 
transition amplitude is found as∑
spin

|S f i λ(β)|2 = B(β)

s2

∑
a,b

∑
c,d

E
μν
(a,b)

M(c,d) μν ,

where

B(β) = tanh4
(

βEC M

2

)[
1 + (2π)2δ2(s)

(eβEC M − 1)2

]
. (34)

Here only the physical component of the photon propagator is con-
sidered

E
μν
(a,b)

= Vμ
(a)

∑
s1

u(p1, s1)u(p1, s1)V
ν
(b)

∑
s2

v(p2, s2)v(p2, s2)

= tr
[

Vμ
(a)(/p1 + me )V

ν
(b)(/p2 − me )

]
, (35)

M
μν
(a,b)

= Vμ
(a)

∑
s3

u(p3, s3)u(p3, s3)V
ν
(b)

∑
s4

v(p3, s4)v(p4, s4)

= tr
[

V(c),μ(/p3 + mμ )V(d) ν(/p4 − mμ )
]
, (36)

where the relations,∑
s

u(p, s)u(p, s) = /p + m (37)

∑
s

v(p, s)v(p, s) = /p − m, (38)

are used. The propagator at finite temperature introduces product 
of delta functions with identical arguments (34). This problem is 
avoided by working with the regularized form of delta-functions 
and their derivatives [31]:

2π iδn(x) =
(

− 1

x + iε

)n+1

−
(

− 1

x − iε

)n+1

. (39)

Thus the differential cross section at finite temperature for this 
scattering is

dσλ(β)

d�
= B(β)

dσλ

d�
, (40)

where

dσλ

d�
= 1

(8π)24s3

∑
a,b

∑
c,d

E
μν
(a,b)

M(c,d) μν, (41)

is the differential cross section at zero temperature. Then the cross 
section at finite temperature has the form

σλ(β) = B(β)σλ, (42)

with

σλ = 1

64π2

1

4s3

∑
a,b

∑
c,d

E
μν
(a,b)

∫
d�M(c,d)μν, (43)

where the integration is only on angular variables of scattered par-
ticles.

Now let us consider the contribution of each vertex given in 
eqs. (22), (23) and (24) in the ultra-relativistic limit. In this limit 
assume me = mμ = 0, then the electronic and muonic contribu-
tions become

E
μν
(a,b)

= tr
[

Vμ
(a) /p1V

ν
(b) /p2

]
, (44)

M
μν
(a,b)

= tr
[

Vμ
(c) /p3V

ν
(d) /p4

]
. (45)

It is important to note that, the non-null components are those 
with a = b. When a �= b there are an odd number of Dirac matrices 
and their trace is zero. They are also null when μ = 0 or ν = 0, 
since this implies that V0

(1)
= 0 and then, E0i

(ab)
= E

i0
(ab)

= M
0i
(ab)

=
M

i0
(ab)

= 0. Therefore the non-zero components are

E
ij
(0,0) = tr[Vi

(0)/p1Vj
(0)/p2], (46)

E
ij
(1,1) = tr[Vi

(1)/p1Vj
(1)/p2], (47)

M
ij
(0,0) = tr[Vi

(0)/p4Vj
(0)/p3], (48)

M
ij
(1,1) = tr[Vi

(1)/p4Vj
(1)/p3]. (49)

Using these results the cross section becomes

σλ = 1

64π2

1

4s3

(
E

i j
(0,0)

∫
d�M(0,0) i j +E

i j
(0,0)

∫
d�M(1,1) i j

+ E
i j
(1,1)

∫
d�M(0,0) i j +E

i j
(1,1)

∫
d�M(1,1) i j

)
. (50)

3.1. Isotropic parity-even contribution

In this case the vertex is given by eq. (22) and then the non-
zero components of eqs. (46)-(49) are

E
ij
(0,0) = 2e2(sδ ij − 4pi pj), (51)

E
ij
(1,1) = 8λ2sK 2

00 pi pj. (52)

M
ij
(0,0) = 2e2(sδ ij − 4p′ i p′ j), (53)

M
ij
(1,1) = 8λ2sK 2

00 p′ i p′ j. (54)

Then the integrals in eq. (50) become

E
ij
(0,0)

∫
d�M(0,0) ij = 16π

3
4s2e4, (55)

E
ij
(0,0)

∫
d�M(1,1) ij = E

ij
(1,1)

∫
d�M(0,0) ij

= 16π

3
2s3e2λ2 K 2

00. (56)

Here the term E i j
(1,1)

∫
d� M(1,1) i j is ignored, since it is of the 

fourth order in Lorentz-violating parameter. Thus the cross section 
at finite temperature (up to second order in Lorentz-violating pa-
rameter) is

σ i+λ(β) = B(β)σQED

[
1 +

(
λ
√

sK00

e

)2
]

, (57)

with σQED = 64π s2e4/3 and B(β) is defined in eq. (34). When 
temperature effects go to zero B(β) → 1, the result is the same 
as in [19].
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3.2. Anisotropic parity-even contribution

Here the vertex is given in eq. (23). Then electronic factors are 
given as

E
ij
(0,0) = 2e2(sδij − 4p i p j), (58)

E
ij
(1,1) = 8λ2sK ik K j l p l p k, (59)

with components of the tensor Mμν
(a,b)

being same if p is changed 
to p′ . Then the integrals in eq. (50) are

E
ij
(0,0)

∫
d�M(0,0) ij = 16π

3
4s2e4, (60)

E
ij
(0,0)

∫
d�M(1,1) ij = 16π

3
s2e2λ2

(
s|K|2 − 4( pi K ij )

2
)

, (61)

E(1,1) ij

∫
d�M(0,0) ij = 16π

3
4e2s2λ2( pi K ij )

2 (62)

where |K|2 = K ij K ij . Therefore the cross section at finite tempera-
ture is

σ a+λ(β) = B(β)σQ E D

[
1 +

(
λ

e

)2 ( (√
s|K|/2

)2 + ( pi K ij )
2
)]

.

(63)

3.3. Parity-odd contribution

To calculate parity-odd contributions the vertex given in eq. (24)
is considered. Then

E
ij
(0,0) = 2e2(sδ ij − 4pi pj), (64)

E
ij
(1,1) = 8λ2sεiklεjm n Kk K l pm pn, (65)

and the muons contributions are obtained in a similar way. The 
relevant integrals are

E
ij
(0,0)

∫
d�M(0,0) ij = 16π

3
4s2e4, (66)

E
ij
(0,0)

∫
d�M(1,1) ij = 16π

3
e2λ2

(
s|K|2 + 4(p · K )2

)
, (67)

E(1,1) ij

∫
d�M(0,0) ij = 16π

3
e2λ2

(
s|K|2 − 8(p · K )2

)
, (68)

with (p · K) = pi K j . Then the cross section is

σ−(β) = B(β)σQ E D

[
1 +

(
λ

2e

)2 (
3s|K| − 4(|p||K| cos(θ))2

)]
,

(69)

where θ is the angle between the particle beam and the field K.
The results obtained are general and show that the temperature 

effects modify the cross section of the scattering process for any 
chosen vertex. In the limit of zero temperature the standard result 
for the QED modified by Lorentz-violating parameters are recov-
ered, in all cases. These results also indicate that the temperature 
effects may improve constraints on Lorentz-violating parameter.
4. Conclusion

The SME is a framework to study Lorentz and CPT violation that 
includes the SM, general relativity and all possible terms that vio-
late the Lorentz and CPT symmetries. Another interesting way is to 
modify the interaction vertex between fermions and photons, i.e., 
a new non-minimal coupling term added to the covariant deriva-
tive. Here a Lorentz violating CPT-even term is chosen to study 
the e− + e+ → μ− +μ+ scattering at finite temperature. This new 
coupling has mass dimension equal to −1, which leads to a non-
renormalizable theory at power counting. However in the present 
case this does not pose any problem since our interest is in ana-
lyzing the tree-level scattering process. The temperature effects are 
introduced using the TFD formalism. Three different vertices which 
introduce the Lorentz violation are considered. Then the cross sec-
tion at finite temperature is calculated. Our results show that the 
temperature effects modify the cross section. Then new constraints 
on Lorentz-violating parameter may be imposed by the tempera-
ture effects. In addition astrophysical processes may be studied if 
the temperature is very high.
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