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Reduction of some wave and heat equations by means of ansatzes in special coordinate
systems results in PDEs with additional symmetry operators compared to original ones.
Such operators will allow constructing sets of conditional symmetry operators that represent
hidden symmetry of the equations. Classes of generalised wave and heat equations possessing
these symmetry properties are described, and families of respective nonclassical solutions
are listed.

1 Example 1: Linear wave equation

Let us consider the linear wave equation

�u = ku (1)

for the real-valued function u = u(x0, x1, x2, x3), x0 = t is the time variable, x1, x2, x3 are space
variables. � is the d’Alembert operator
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The maximal invariance algebra (without trivial operators u∂u, f(x)∂u (�f = 0) taken into
account) of the equation (1), k �= 0, is the Poincaré algebra AP (1, 3) with the basis operators

pµ = igµν
∂

∂xν
, Jµν = xµpν − xνpµ,

where µ, ν take the values 0, 1, 2, 3; gµν = diag (1,−1,−1,−1).
Similarity solutions for the equation (1) can be found by means of symmetry reduction by

non-equivalent subalgebras of the algebra AP (1, 3) [1–4]. In such a way it is possible to obtain
solutions in the form u = φ(ω), where ω is an invariant of some subalgebra of the Poincaré
algebra AP (1, 3).

Here we will look for solutions of the equation (1) in the form u = f(x)φ(ω), with f and ω
being some functions on x. Ansatzes of such form are usually obtained in the process of reduction
of wave equations having scale invariance under subalgebras containing scale transformations
D = xνpν + λiu∂u. However, we can obtain a solution with such ansatzes for the equation (1)
that is not invariant scale transformations.

We can reduce the equation (1) by means of the ansatz

u = f(r)φ(ω), r =
(
x2

1 + x2
2 + x2

3

)1/2
, ω = r + vx0.

The general form of the reduced equation will be
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and the reduction conditions (when f �= 0 and φ �= 0) are as follows: when v is an arbitrary
parameter, v2 − 1 �= 0, then

f ′ +
1
r
f = λf, f ′′ +

2
r
f ′ = γf,

with λ, γ being arbitrary constants. This system is compatible if and only if γ = λ2, and the
ansatz takes the form

u =
c expλr

r
φ(ω), (3)

where ω = r + vx0; c, λ, v �= ±1, v �= 0 are arbitrary constants. The reduced equation has the
form

(
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)
φ′′ − 2λφ′ − (λ2 + k

)
φ = 0.

When v = ±1, there may be several types of the reduction conditions.
1. With
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2
r
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the reduction condition will have the form
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and the corresponding ansatzes are

u =
1
r

exp
αr

2
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the reduced equation for φ will be φ′ + αφ = 0 and its solution φ = c exp
(−αω

2

)
gives exact

solutions for the equation (1).
2. With

f ′ +
1
r
f = 0, f ′′ +

2
r
f ′ + kf = 0,

φ may be an arbitrary function. It is evident that f = 0 if k �= 0. If k = 0, f = c
r , and we obtain

the well-known Euler solution for the wave equation �u = 0:

u =
c

r
φ(r ± t),

where φ is an arbitrary function. This solution is obtained from the degenerate case of the
reduced equation (2) with all coefficients at and functions vanishing, so the solution of the
resulting reduced equation is an arbitrary function. This solution corresponds to the hidden
symmetry of the wave equation, represented by Lie infinite-dimensional symmetry algebra of
the reduced equation φtt − φrr = 0, u = c

rφ(r, t).
3. With

f ′ +
1
r
f �= 0, f ′′ +

2
r
f ′ + kf = 0,

φ′ = 0, φ = const. The resulting solutions have the form u = u(r) and are similarity solutions
that may be obtained from the Lie symmetry of the equation (1).
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It is quite obvious that ansatzes of the form (3)–(6) cannot be obtained by reduction of the
equation (1) by subalgebras of the Poincaré algebra AP (1, 3)

The ansatz (3) corresponds to the set of operators Q1, Jab, where a, b = 1, 2, 3 and Q1 has
the form

Q1 = xa∂a − r

v
∂0 + (λr − 1)u∂u. (7)

This set of operators determines conditional invariance of the equation (1), and the ansatz (3)
allows to obtain new solutions compared to those that may be obtained by means of Lie sym-
metry operators. Note that these operators do not form an algebra.

We present other such operators Q(1,i) determining conditional invariance of the equation (1):

Q(1,1) = xa∂a + r∂0 + k1/2ru∂u;
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These operators generate scale-type transformations of the space variables.
We adduce here some of the families of exact solutions for the equation (1):

u =
c expλr

r
[c1 exp(λ + α)lω + c2 exp(λ − α)lω], 0 < v2(k + λ2) − k = α2;

u =
c exp(λr + λlω)

r
[c1 cos lαω + c2 sin lαω], 0 > v2(k + λ2) − k = −α2;

u =
c exp(λr + λlω)

r
[c1ω + c2], v2(k + λ2) − k = 0,

l = 1/(v2 − 1); c1, c2 are arbitrary constants.

2 Example 2: Generalised heat equation

We consider a nonlinear generalised heat equation in the form

u0 + u11 + u22 + u33 = F (x0, x1, x2, x3, u), (8)

where uµ = ∂u
∂xµ

, uµµ = ∂2u
∂x2

µ
; µ = 0, 1, 2, 3.

Classical Lie symmetries with two and three spatial variables with F not depending on xµ

were described in [5].
We consider reductions of the equation (8) to an ODE by means of an ansatz of the form

u =
c

r
φ(ω), r =

(
x2

1 + x2
2 + x2

3

)1/2
, ω = r + vx0, (9)

where v is an arbitrary parameter, when F = 1
rΦ(ω, ur). The reduced equation will then have

the form φ′′ + vφ′ = Φ(ω, φ).
The maximal invariance algebra of the equation (8) for the general form of F = 1

rΦ(ω, ur)
is the three-dimensional algebra of rotation operators with a basis Jab, a, b = 1, 2, 3, and the
ansatz (9) corresponds to the set of operators {Q2, Jab}, where a, b = 1, 2, 3 and Q2 has the form

Q2 = xa∂a − r

v
∂0 + u∂u. (10)
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This set of operators determines conditional invariance of the equation (8), and the ansatz (9)
allows to obtain new solutions compared to those that may be obtained by means of Lie sym-
metry operators. We will discuss the reduced equation for (8) by means of the ansatz (9) with
F = λrk−1uk that has the form

φ′′ + vφ′ = λφk.

This equation may be transformed to the second-type Abel equation

p′p + vp = λyk (11)

with substitution φ′ = p, φ = y, p = p(y).
1. If k = 1

2 then the equation (11) by means of the transformation s′
s = y1/2, − 1

vp = − z
2A ,

A = λ
v2 reduces to the Bessel equation

s′′ − z

2A
s = 0.

2. If k = −1 then the equation (11) is the Liouville equation p′p + vp = λy−1. By means of
the substitution − 1

vp = y + z, y = 1
u it is reduced to a linear one with respect to the function

u = u(z)

λ

v2
uz + zu + 1 = 0.

3. If k = −2 then the equation (11) by means of the substitution − 1
vp = y + z, 1

y = u − z2

2
may be transformed to the Riccati equation for the function z = z(u)

λ

v2
zu + u − z2

2
= 0,

whose solution may be expressed via the Bessel function.

3 Definitions and discussion

The concept of non-classical, or conditional symmetry, originated in its various facets in the
papers [6–11], and later it was developed by numerous authors into the theory and a number
of algorithms for studying symmetry properties of equations of mathematical physics and for
construction of their exact solutions (see e.g. [12]). Here we will use the following definition of
the conditional symmetry:

Definition 1. The equation Φ(x, u, u
1
, . . . , u

l
) = 0, where u

k
is the set of all kth-order partial

derivatives of the function u = (u1, u2, . . . , um), is called conditionally invariant [3] under the
operator

Q = ξi(x, u)∂xi + ηr(x, u)∂ur

if there is an additional condition

G(x, u, u
1
, . . . , u

l1
) = 0, (12)

such that the system of two equations Φ = 0, G = O is invariant (according to the Lie definition,
see e.g. [13]) under the operator Q.
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If (12) has the form G = Q[u], Q[u] designates Q[u] = ηr(x, u) − ξi(x, u)uxi , then the
equation Φ = 0 is called Q-conditionally invariant under the operator Q [3]. These definitions
of the conditional invariance of some equation are based on what is in reality Lie symmetry (see
e.g. the classical texts [13–15]) of the same equation with a certain additional condition.

In this paper we develop results previously obtained by the authors in [16–18]. Our examples
may be used to illustrate a generalisation of this definition to conditional invariance with a set
of conditions Gm = 0. We may speak about 〈Qm〉-conditional invariance where additional
conditions have the form

Gm(x, u, u
1
, . . . , u

l1
) = Qm[u] = 0.

However, we see that these examples contain features of two different types of non-classical
invariance – hidden symmetry (see [30]) and Q-conditional symmetry.

Definition 2. An equation is said to have hidden conditional invariance if a reduced equation
is conditionally invariant under some additional condition.

The equation (1) possesses hidden Q-conditional symmetry with respect to the operators
Q1, Q1,i, and the equation (8) possesses hidden Q-conditional symmetry with respect to the
operator Q2, under conditions Jabu = 0, a, b = 1, 2, 3.

The conditional symmetry of the Klein–Gordon equation was studied in [19,20]. The condi-
tional symmetry of the nonlinear heat equations with one space variable was extensively studied
by numerous authors [6, 21–27, 29]. In [28] all conditional symmetries for an n-dimensional
homogeneous linear heat equation were described.

The operators of the hidden conditional symmetry presented in this paper do not belong to
sets of operators described in the above-mentioned papers, and they are not obtainable from
conditional symmetry of equations with one space dimension. However, the operators we found
are linked to the conditional symmetry of the respective radial wave and heat equations

utt − urr − n − 1
r

ur = F1(u),

ut + urr +
n − 1

r
ur = F2(u)

(n is the number of spatial variables, here n = 3) that present considerable interest by themselves.
See e.g. [31, 32], where exact solutions for a n-dimensional radial wave equation with a general
power nonlinearity are derived and studied, and [33] for discussion of the linear radial heat
equation.
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