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Abstract
Gravitational radiation is well-understood in spacetimes that are asymptotically
flat. However, our Universe is currently expanding at an accelerated rate, which
is best described by including a positive cosmological constant, Λ, in Einstein’s
equations. Consequently, no matter how far one recedes from sources generating
gravitational waves, spacetime curvature never dies and is not asymptotically flat.
This dissertation provides first steps to incorporate Λ in the study of gravitational
radiation by analyzing linearized gravitational waves on a de Sitter background.

Since the asymptotic structure of de Sitter is very different from that of
Minkowski spacetime, many conceptual and technical difficulties arise. The limit
Λ → 0 can be discontinuous: Although energy carried by gravitational waves is
always positive in Minkowski spacetime, it can be arbitrarily negative in de Sitter
spacetime. Additionally, many of the standard techniques, including 1/r expansions,
are no longer applicable.

We generalize Einstein’s celebrated quadrupole formula describing the power
radiated on a flat background to de Sitter spacetime. Even a tiny Λ brings in
qualitatively new features such as contributions from pressure quadrupole moments.
Nonetheless, corrections induced by Λ are O(

√
Λtc) with tc the characteristic time

scale of the source and are negligible for current gravitational wave observatories.
We demonstrate this explicitly for a binary system in a circular orbit.

Radiative modes are encoded in the transverse-traceless part of the spatial
components of a gravitational perturbation. When Λ = 0, one typically extracts
these modes in the wave zone by projecting the gravitational perturbation onto the
two-sphere orthogonal to the radial direction. We show that this method for waves
emitted by spatially compact sources on Minkowski spacetime generically does not
yield the transverse-traceless modes; not even infinitely far away. However, the
difference between the transverse-traceless and projected modes is non-dynamical
and disappears from all physical observables. When one is interested in ‘Coulombic’
information not captured by the radiative modes, the projection method does
not suffice. This is, for example, important for angular momentum carried by
gravitational waves. This result relies on Bondi-type expansions for asymptotically
flat spacetimes. Therefore, the projection method is not applicable to de Sitter
spacetimes.
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Preamble

“At this point we must say a few words about the famous lambda.
The field-equations, in their most general form, contain a term multiplied
by a constant, which is denoted by the Greek letter λ (lambda), and
which is sometimes called the “cosmological constant”. This is a name
without any meaning, which was only conferred upon because it was
thought appropriate that it should have a name, and because it appeared
to have something to do with the constitution of the universe; but it
must not be inferred that, since we have given it a name, we know
what it means. We have, in fact, not the slightest inkling of what
its real significance is. It is put in the equations in order to give the
greatest possible degree of mathematical generality, but, so far as its
mathematical function is concerned, it is entirely undetermined: it may
be positive or negative, it might also be zero. Purely mathematical
symbols have no meaning by themselves; its is the privilege of pure
mathematician, to quote Bertrand Russell, not to know what they
are talking about. They — the symbols — only get a meaning by
the interpretation that is put on the equations when they are applied
to the solution of physical problems. It is the physicist, and not the
mathematician, who must know what he is talking about. ”

Willem de Sitter, in Kosmos, a course of six lectures on the development of
our insight into the structure of the Universe delivered for the Lowell Institute in
Boston in November 1931 [1]
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Chapter 1 |
Introduction

1.1 Gravitational waves in our expanding Universe

We live in exciting times: the recent gravitational wave detections by LIGO mark
the beginning of the era of gravitational wave astronomy [2–4]. LIGO’s first
observation of gravitational waves took place on September 14, 2015. The observed
gravitational waves are believed to have been emitted during the coalescence of two
back holes that took place 1.34 billion years ago. This observation was not just
the first direct detection of gravitational waves, but was also the first observation
of two black holes orbiting each other, the first observation of the merger of two
black holes and the first observation of a black hole with a mass of 62M� (which is
much heavier than the masses of stellar-mass black holes determined using X-ray
observations, which all fall in the range 5− 30M� [5]). The second and third events
LIGO detected were also a result of the coalescence of two stellar-mass black holes.
As the number of gravitational wave observations resulting from the merger of
two black holes increases, we will gain valuable insights about the astrophysical
formation process of black holes, the progenitors of (stellar-mass) black hole binaries
and their abundance in our Universe [6, 7]. The expectation is that gravitational
wave observations are not limited to those produced during a black hole binary
coalescence. The merger of two neutron stars or a neutron star with a black
hole also fall within the observable range of LIGO and future gravitational wave
detectors. Once these events are observed, they will likely inform us about various
interesting properties of neutron stars such as its equation of state [8–12]. This
in turn will provide insight on how matter behaves under extreme densities and
pressures. Furthermore, other events such as supernovae and events not yet known
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to us may potentially be observed with gravitational waves. Thus, gravitational
wave observations will contribute to our understanding of the Universe we inhabit.

Given the recent detections, it is difficult to believe that the reality of gravi-
tational waves was debated over several decades! A year after Einstein published
the equations of general relativity [13], he provided the first relativistic description
of gravitational waves by linearizing these equations off a Minkowski background
in the presence of an external, time-changing source [14].1 However, about twenty
years later, Einstein wrote to Max Born that gravitational waves are artifacts of
the linear approximation and do not exist in full, non-linear general relativity:

“Together with a young collaborator [Nathan Rosen], I arrived at
the interesting result that gravitational waves do not exist, though they
had been assumed a certainty to the first approximation. This shows
that the non-linear general relativistic field equations can tell us more
or, rather, limit us more than we have believed up to now.” [16]

Einstein came to this conclusion based on work he had done with Rosen in which
they thought that they had shown that for some gravitational waves that are exact
solutions in general relativity, one was always faced with singularities. However,
Einstein and Rosen had made a mistake. The ‘singularities’ they found were
coordinate artifacts and disappeared once the appropriate coordinates were used.
Although this mistake was pointed out by a referee and the claim that gravitational
waves do not exist did not appear in the final published version of the paper,
confusion persisted. Indeed Rosen continued to believe that gravitational waves do
not exist for several more decades. This confusion was finally removed by the work
of Bondi and Sachs in the early 1960s and the community reached a consensus
on the reality of gravitational waves [17–21]. Bondi, Sachs and others developed
rigorous mathematical methods to show that gravitational wave are indeed physical
as they radiate energy out to infinity. Their key insight was to use an expansion
along null directions. Some fifteen years after their seminal work, gravitational
waves were observed, albeit indirectly. Hulse and Taylor measured the orbital decay
rate of the period of a binary system composed of a pulsar (i.e., a highly magnetized
neutron star) and a neutron star orbiting a common center of mass [22]. The

1The idea of gravitational waves was explored before by Lagrange and Poincaré among others
(for a review, see [15]).
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observed orbital decay rate matched very accurately the prediction from general
relativity based on the emission of gravitational radiation (today the agreement is
to an accuracy of 0.3 %! [23]). The recent direct detections by LIGO completely
settles the issue and unequivocally shows that gravitational waves are physical.

This is not just an exciting time for gravitational wave science. In the last century,
many revolutionary ideas replaced incorrect preconceptions about our Universe
as technology advanced and cosmological observations became possible. Until the
early 1950s, the steady state model – in which the observable Universe remains
unchanged – was popular among many leading physicists. However, observations
of quasars, abundances of light elements and the cosmic microwave background
refuted the steady state model and instead favored the hot Big Bang model, which
describes the Universe as continuously expanding. In fact, in 1998, supernovae
measurements showed that today the Universe is even expanding in an accelerated
fashion [24,25]. The current accelerated expansion has now also been supported by
cosmic microwave background observations [26]. The simplest and most successful
explanation of this acceleration is to assume that there is a positive but small
cosmological constant Λ, which in geometrized units is given by Λ ∼ 10−52 m−2.
This is potentially problematic for gravitational wave science as current gravitational
wave theory is based on a framework with Λ = 0. Given the smallness of Λ, one
may expect that the Λ = 0 framework should suffice and that Λ only introduces
small corrections. However, the rich structure of the Λ = 0 framework is lost
when Λ is no longer zero, irrespective of how small Λ is! For instance, there is
no analog of the Bondi news tensor [27–29] that describes gravitational radiation
in a gauge invariant way in full, non-linear general relativity with Λ = 0 [30, 31].
Additionally, the radiation field Ψ0

4 that is heavily used in both analytical discussions
of gravitational radiation and numerical simulations in the Λ = 0 context acquires
an ambiguity in the Λ > 0 case, called the ‘origin dependence’ by Penrose [32, 33]
and ‘direction-dependence’ by Krtouš and Podolský [34]. Furthermore, the peeling
theorem that describes the asymptotic behavior of the Weyl tensor for a large class
of solutions to Einstein’s equations with Λ = 0 does not apply when Λ > 0. Thus, a
new theoretical platform to study gravitational radiation in spacetimes with Λ > 0
is needed.

The extension of the framework to study gravitational radiation with Λ = 0
to Λ > 0 is the main theme of this dissertation. In view of the smallness of the
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observed value of Λ – despite the dramatic conceptual differences and the lack
of the rich structure of the Λ = 0 framework – the effect of Λ is expected to be
small for gravitational wave observations. For instance, the expectation is that Λ
does not significantly alter the radiation emitted by the Hulse-Taylor system and
thereby its orbital decay rate because of a natural separation of scales: Its orbital
period is small (7.75 hours) compared to the time scale associated with Λ (1021

hours) and at a luminosity distance of 6.4 kpc, it is nearby from a cosmological
perspective. But a clean framework is needed to say with confidence how small the
corrections are that Λ introduces, especially, when the sources are at cosmological
separations and gravitational waves have been traveling distances of the order of a
Gpc before reaching us. Much of the work that addresses the inclusion of Λ > 0 in
the study of gravitational radiation has already been published in a series of papers
with my advisor, Professor Abhay Ashtekar, and Dr. Aruna Kesavan [31,35–37]
as well as in Dr. Kesavan’s dissertation [38]. In this dissertation, we only discuss
the third paper of this series in detail.2 The main results from the first two papers
will be summarized in the remaining part of this introduction. The third paper
appears in Chapter 2 and describes at the linearized level gravitational radiation
generated by a time-varying source using a multipole expansion for Λ > 0. Various
new techniques are needed: the standard 1/r expansion does not apply when Λ is
no longer zero nor can one extract the radiative degrees of freedom by projecting
the gravitational wave onto the two-sphere orthogonal to the radial direction, as
is typically done in gravitational wave theory. Using newly developed methods,
we also derive a general formula for power radiated by an arbitrary source. This
general formula for power radiated is applied to a concrete physical example in
Chapter 3, where we study the power radiated by a binary system in a circular orbit.
The power radiated by this system on a de Sitter background is the same in the
high-frequency limit as the power radiated in Minkowski spacetime, despite the fact
that the two notions of power refer to different Killing vector fields. This chapter
is based on work in collaboration with Dr. Jeffrey Hazboun [39]. In Chapter 4, we
discuss why in the context of linearized perturbations on a Minkowski background
one is able to extract the radiative degrees of freedom very far away from the source
by projecting the gravitational perturbation onto the two-sphere. A priori, there

2One extra section, Section 2.3.3, has been added to the published version that includes
additional insights regarding the tail term that have not been published before.
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is no reason why this method should work: The radiative degrees of freedom are
encoded in the gauge-invariant part of the gravitational perturbation, which is the
transverse-traceless part of the spatial components of the gravitational perturbation
and not just the components on the spatial two-sphere. This is easily understood
by realizing that taking the transverse-traceless part of any spatial tensor is a local
operation in momentum space, but global in real space. Projecting the gravitational
perturbation on the two-sphere orthogonal to the radial direction, on the other
hand, is a local operation in real space. Nonetheless, this method has been used
in the literature repeatedly while a proof of the validity of this method existed
only for plane waves. Waves emitted by astrophysical sources such as neutron stars
or binary systems composed of two black holes, are not plane waves. Thus, this
specific equivalence of the two notions of transversality is not physically relevant.
For waves emitted by compact sources, we show in fact that the two notions of
transversality in general do not agree – not even very far away from the sources! In
particular, this is true for the radiative modes extracted by both methods. However,
these radiative modes only differ by a function on the 2-sphere far away from the
sources and thus they contain the same dynamical information. As a result, all
physical quantities extracted from only the radiative modes using either notion of
transversality agree in the limit that one is infinitely far away from the sources. Yet
there is one surprising feature that arises due to the presence of sources. Angular
momentum carried by gravitational waves cannot be expressed using merely the
radiative modes; additional ‘Coulombic information’ is needed. Since projecting
the gravitational perturbation onto the two-sphere only captures the two radiative
degrees of freedom, this projection method is not sufficient to determine angular
momentum radiated. On the other hand, the transverse-traceless part of the spatial
components of the gravitational perturbation provides additional fields that carry
the relevant information needed to determine angular momentum radiated. We will
also comment why the two notions of transversality do not agree for spacetimes
with a positive Λ. This is based on joint work with Prof. Ashtekar [40]. This
dissertation concludes with a summary and outlook in Chapter 5. In Appendix A
and B, some of the details of the calculations are provided.

During my PhD, I have also worked on several issues in early Universe cosmology.
The publications that resulted from these projects address an entirely different
class of issues and are not included in this dissertation. A summary of these papers
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is provided in Appendix C. For a list of all publications during my PhD, see the
vita attached at the end of this dissertation.

We use the following conventions. Throughout we assume that the underlying
spacetime is 4-dimensional and set c=1. The spacetime metric has signature -
,+,+,+. The curvature tensors are defined via: 2∇[a∇b]kc = Rabc

dkd, Rac = Rabc
b

and R = gabRab. We use Penrose’s abstract index notation [33, 41]: a, b, . . . will be
the abstract indices labeling tensors while indices ā, b̄, . . . will be numerical indices.
In particular, components of a tensor field Tab (in a specified chart) are denoted by
Tāb̄.

1.2 Even a tiny Λ can cast a long shadow

The influential work by Bondi, Sachs and collaborators used a systematic expansion
of the metric as one moves in null directions away from the sources generating
gravitational waves [17–21]. The idea being that as one moves far away spacetime
becomes approximately flat and one can disentangle gravitational radiation from
the background curvature. One cannot make this distinction between radiation
and background curvature near the source(s), as general relativity does not pro-
vide a canonical decomposition of spacetime into a background and a dynamical
perturbation. This interplay between geometry and the gravitational field makes
general relativity both the challenging and interesting theory that it is. It is also
one of the main reasons for the long standing confusion on whether gravitational
waves are true physical phenomena or mere coordinate artifacts that can be gotten
rid off by a coordinate transformation.

For a large class of spacetimes with Λ = 0 satisfying boundary conditions that
capture the idea that sources decay, the metric gab approaches a flat Minkowski
metric ηab as one recedes from the sources along null directions:

gab = ηab +O
(1
r

)
(1.1)

where the fall-off behavior is with respect to the Cartesian chart of the flat metric
ηab. However, this ηab is not canonical in the presence of gravitational waves. In
fact, there are infinitely many Minkowskian metrics that gab approaches to. For
instance, instead of eq. (1.1), as one moves far away from the sources along a null
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direction, gab could also be written as

gab = η′ab +O
( 1
r′

)
(1.2)

where η′ab 6= ηab. The two Minkowski metrics are not the same, but differ only by
O(1

r
) (or equivalently, O( 1

r′
)). To make this explicit, let us label the Cartesian

coordinates of ηab by (t, x, y, z) and those of η′ab by (t′, x′, y′, z′). A possible relation
between the two coordinate systems is: t′ = t+ a(θ, ϕ) with a(θ, ϕ) an arbitrary
function on the two-sphere and x′ = x, y′ = y and z′ = z. For instance, take
a(θ, ϕ) = cos θ. Then a straightforward calculation shows that ηab = η′ab +O( 1

r′
).

Spacetimes with this fall-off behavior are called asymptotically flat spacetimes.
When Λ is no longer zero, but positive, no matter how far one moves away from the
source, the spacetime curvature never dies off. Ergo, the metric does not approach
a Minkowski metric. Instead it seems natural to assume that far away from the
source the metric approaches a de Sitter metric (which is the maximally symmetric
vacuum solution of Einstein’s equations when Λ > 0, just as the Minkowski metric
is the maximally symmetric vacuum solution when Λ = 0). However, using a
Bondi-type expansion for axi-symmetric solutions to Einstein’s equations, it was
shown in [42] that the metric only approaches the de Sitter metric in the absence
of gravitational radiation. Thus, if we allow gravitational waves, the metric differs
from the de Sitter metric far away from the sources already at leading order in
the Bondi-type expansion! This illustrates how drastically different the study of
gravitational radiation in the presence of a positive Λ is in comparison to when
Λ = 0.

Penrose removed the coordinate dependent description of Bondi et al by refor-
mulating the metric expansions along null directions in more geometrical terms
using conformal techniques [43]. He showed that by rescaling the physical metric
gab by a conformal factor Ω such that the rescaled metric is g̃ab = Ω2gab, one can
attach a boundary to spacetime. This boundary is the surface on which Ω = 0
and is denoted by I (pronounced as ‘scri’). Physically, it is the place where all
null geodesics end and it is the natural arena to study gravitational radiation. On
I, gravitational radiation can be extracted unambiguously in a gauge-invariant
manner and one cannot confuse the ‘background’ with gravitational waves. For
asymptotically flat spacetimes, Einstein’s equations tell us that the normal vector
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to I, given by na := ∇aΩ, has a vanishing norm. Hence, I is a null surface in this
scenario. However, for asymptotically de Sitter spacetimes (the analog of asymptot-
ically flat spacetimes but with Λ > 0), one finds that I is not a null boundary, but
a spatial boundary. This changes the standard framework of gravitational radiation
with Λ = 0 drastically when incorporating a positive cosmological constant.

Most importantly, since I of asymptotically de Sitter spacetimes is space-like, its
normal vector is time-like and does not induce any structure on this surface. This
is in contrast to asymptotically flat spacetimes for which I is ruled by its normal
vector na that endows I with additional structure (for null surfaces, its normal
vector is also tangential to the surface). The null normal is one of the two key
players in the universal structure of asymtotically flat spacetimes. The other being
the induced metric on I. To be precise, the universal structure of any asymptotically
flat spacetime is given by a conformal class of 3-dimensional, null metrics on I, qab,
and its normal: {qab, na} = {ω2qab, ω

−1na}. A transformation that preserves this
universal structure is considered an asymptotic symmetry. The group of all these
transformations is the asymptotic symmetry group. In other words, the asymptotic
symmetry group is the quotient of the group of diffeomorphisms on the physical
spacetime that preserve the boundary conditions by its subgroup of diffeomorphisms
that are asymptotically identity. If I had no special structure, this group would
simply be the infinite-dimensional group of all diffeomorphisms on I, Diff(I). Due
to the structure induced by the normal vector na for asymptotically flat spacetimes,
its asymptotic symmetry group is not Diff(I) but the Bondi-Metzner-Sachs (BMS)
group.3 The BMS group mimics the structure of the Poincaré group: The Poincaré
group is the semi-direct product of the group of translations with the Lorentz group
and the BMS group is the semi-direct product of the group of supertranslations
with the Lorentz group. Supertranslations can be thought of as angle dependent
translations. Thus, the BMS group is larger than the Poincaré group. This
enlargement of the group is due to the non-linearities of Einstein’s equations and
does not appear if one would work with the linearized approximation. This is closely
related to the fact that there is no canonical flat metric ηab on I. The BMS group
has a four-dimensional normal subgroup and therefore admits a unique translation
subgroup [21]. Asymptotic symmetries play a crucial role in general relativity

3If a spacetime possesses a Killing vector field, this Killing vector field naturally extends to a
BMS vector field on I.
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because they give a physical interpretation to certain conserved quantities on I.
For instance, the conserved quantities associated with the translation subgroup of
the BMS group correspond to energy and momentum radiated by gravitational
waves. An application of the calculation of momentum radiated, for instance, is
black hole kicks that have been studied in detail in numerical relativity and are of
astrophysical interest [44,45].

When considering asymptotically de Sitter spacetimes, the loss of the additional
structure provided by the normal to I is severe. The asymptotic symmetry group
is no longer reduced from Diff(I) to a smaller group like the BMS group. Instead,
the asymptotic symmetry group remains the infinite-dimensional group of all dif-
feomorphisms on I. Consequently, one cannot extract physics from the asymptotic
behavior of the gravitational field at I in the same way as for asymptotically flat
spacetimes. It is unclear which fluxes to interpret as energy (or momentum or
angular momentum) as there are no special vector fields. A natural solution to this
problem would be to strengthen the boundary conditions to remedy this lack of
structure. This approach has been applied successfully for asymptotically anti-de
Sitter spacetimes (for which Λ < 0). For asymptotically anti-de Sitter spacetimes, in
addition to the standard boundary conditions that mimic those for asymptotically
flat spacetimes, one also requires the intrinsic metric on I to be conformally flat.
This reduces the asymptotic symmetry group from Diff(I) to the anti-de Sitter
group. Implementing the same condition for asymptotically de Sitter spacetimes,
seems promising at first as this nicely reduces the asymptotic symmetry group to
the de Sitter group SO(1, 4).4 In addition, various exact solutions with a positive
Λ satisfy this condition such as Kerr-de Sitter and Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetimes. However, this strengthening of the boundary condition
throws out the baby with the bath water. If the intrinsic metric on I is conformally
flat, then the leading order part of the magnetic part of the Weyl tensor, Bab,
vanishes on I. We showed that the vanishing of Bab implies that all fluxes across I
vanish as well. Thus, this extra boundary condition does not rule out gravitational
radiation entirely, but severely restricts it as the radiation that reaches I does not
carry any flux of energy, momentum or angular momentum.5 Thus, this condition

4Or a subgroup of SO(1, 4) depending on the topology of I. For details on this technical point,
see Section 4.3 in [31].

5This is explicitly illustrated by studying the solutions homogeneous perturbations on a de
Sitter background. These solutions have two independent modes that are, in the cosmology
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is not viable as it does not allow one to study properties of the gravitational field
on I.

Why is this condition that is so advantageous for asymptotically anti-de Sitter
spacetimes not useful for asymptotically de Sitter spacetimes? The answer has
(again) to do with the nature of I. Asymptotically anti-de Sitter spacetimes have a
time-like I. Therefore, to make the evolution well-defined additional input on I is
needed. Requiring the intrinsic metric on I to be conformally flat, or equivalently
Bab to be zero on I, makes the evolution well-defined. It can be regarded as a
reflective boundary condition. (Gravitational waves in this case also do not carry
away energy-momentum or angular momentum across I, which is not surprising
given the reflective nature of this boundary condition.) Thus, the space-like nature
of I is what makes asymptotically de Sitter spacetimes so unique. This point is also
illustrated by evolving Maxwell’s equations on a de Sitter background. Requiring
that the magnetic field Ba vanishes on any arbitrary space-like slice (including I)
is a severe restriction on the set of solutions: It cuts the set of allowable solutions
in half. In contrast, setting Ba to zero on a time-like slice is a mild condition.

In summary, at this point, the study of gravitational radiation with a positive Λ
in full, non-linear general relativity is at an impasse. Not imposing any additional
structure on I leaves one with an asymptotic symmetry group that is so large that
one cannot extract any physics from it. Whereas imposing a natural extra boundary
condition, which also has successfully been used for asymptotically anti-de Sitter
spacetimes, is so strong that it rules out any fluxes across I. A new framework is
being constructed to overcome this difficulty and an overview of the main ideas
can be found in [46]. Especially given the past controversy regarding the physical
reality of gravitational waves, a thorough understanding of gravitational radiation
when Λ > 0 in non-linear general relativity is important.

1.2.1 Linearized gravity off de Sitter spacetime

The issue regarding the lack of a special group on I is naturally circumvented
in the linearized approximation. In this case, one can use the isometries of the
de Sitter background metric and introduce gravitational waves as perturbations
literature, often referred to as the ‘decaying’ and ‘growing’ mode. The decaying mode vanishes on
I, while the growing mode is non-zero on I. The magnetic part of the Weyl tensor vanishes on I
only if the growing mode is set to zero. This demonstrates the gravity of this condition: half the
degrees of freedom of the gravitational perturbation are killed by fiat!
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Figure 1.1. On the left, the conformal diagram representing a star when Λ = 0 is
illustrated. The right diagram shows a spacetime with a star when Λ > 0. It is immediate
from these diagrams that when Λ = 0, I is null and when Λ > 0, I is space-like.

on this background metric. Therefore, we have analyzed linearized fields on a
de Sitter background in detail. The lessons learned from this analysis serve as
important checks in the final construction of the framework that allows the study of
gravitational radiation when Λ > 0. This is a similar approach to the development
of the framework of asymptotically flat spacetimes that was only built after one had
a strong intuition from working with linearized fields on a Minkowski background.
Here, I will summarize the results from our study of linearized homogeneous
gravitational perturbations on a de Sitter background. The rest of this dissertation
is (mainly) dedicated to the study of gravitational waves generated by a source.

First, before studying perturbations on a de Sitter background, let us contrast
the causal structure of Minkowski with de Sitter spacetime. The ultimate aim is
to develop a framework to study gravitational radiation emitted by an isolated
system such as a single star or binary system. Therefore, let us focus on contrasting
an isolated system, confined to a spatially bounded world tube for all time, in
spacetimes with Λ = 0 and Λ > 0. The conformal diagram of both these spacetimes
is depicted in Figure 1.1. The matter world tube has future and past end-points in
both situations, denoted by i±. However, while the future of i− in the Λ = 0 case
is the entire Minkowski spacetime, for Λ > 0, it is only the future Poincaré patch
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of de Sitter. Thus, the causal future of this source covers only the future Poincaré
patch, M+

P . No observer whose world line is confined to the past Poincaré patch
can see the isolated system or detect the radiation it emits. Therefore, to study
this system, it suffices to restrict oneself to the future Poincaré patch M+

P rather
than the full de Sitter spacetime. In conformal coordinates (η, x, y, z) adapted to
this patch, the de Sitter metric ḡab takes the form

ḡab = a2(η)̊gab with g̊āb̄dxādxb̄ = (−dη2 + d~x2) , (1.3)

where the scale factor is a(η) = −(Hη)−1 and the Hubble parameter H is related
to the cosmological constant Λ by H :=

√
Λ/3. The comoving spatial coordinates

span the entire real line (−∞, ∞), while the conformal time coordinate η takes
values in (−∞, 0). From this form, it is obvious that the de Sitter spacetime is
locally conformally related to Minkowski spacetime with the scale factor playing the
role of the conformal factor. Hence, locally the null cone structure is in the same
in both spacetimes. Globally, the two spacetimes are very different as is evident
from their conformal diagrams.

One of the important lessons from our study of gravitational perturbations
is that the limit Λ → 0 is subtle. This subtlety can already be illustrated by
examining the de Sitter background metric: Taking Λ→ 0 of the metric in (1.3)
is not well-defined. One needs to use the differential structure induced on the
Poincaré patch M+

P by the (t, ~x) coordinates rather than the (η, ~x) coordinates,
where the proper time t is related to the conformal time η via Hη = −e−Ht.6 In
the (t, ~x) chart, we obtain in the limit Λ→ 0

ḡāb̄dxādxb̄ = −dt2 + e2Ht d~x2 → −dt2 + d~x2 =: η̊āb̄dxādxb̄ . (1.4)

Note that the Minkowski metric η̊ab is distinct from g̊ab in (1.3), which is also flat,
because each of the Cartesian coordinates of η̊ab takes the full range of values, while
η in g̊ab is restricted to the (negative) half plane.

In addition, gravitational perturbations on a de Sitter background acquire a
6The (t, ~x) chart is not the only chart in which the limit Λ→ 0 is well-defined. In fact, any de

Sitter coordinate system that is smoothly related to the (t, ~x) chart in the limit Λ→ 0 is a valid
chart to take the limit. The differentiable structure of the coordinates determines whether the
limit is well-defined. For instance, the well-known static coordinate chart is another example in
which the limit Λ→ 0 is well-defined.
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hereditary term and propagate not only sharply along the null cone but also inside
the null cone. This is different from linearized perturbations on a Minkowski
background, which propagate strictly along the null cone. How does this come
about? Although the de Sitter metric is conformally flat, the equation satisfied by
the metric perturbation is not conformally invariant. As a result, the expression
for gravitational perturbations obtains a tail term due to the backscattering off the
de Sitter curvature.7

Furthermore, we derived formulas for energy-momentum and angular momentum
carried by gravitational waves on a de Sitter background. Conserved quantities for
test matter, such as scalar, Maxwell or Yang-Mills fields, can be readily constructed
using their stress-energy tensor. Linearized gravitational fields, on the other hand,
do not have a gauge invariant, local stress-energy tensor because in general relativity
gravity is absorbed into spacetime geometry. Therefore, a new strategy is needed.
A convenient route is provided by the covariant Hamiltonian framework. The
Hamiltonian framework has also been used effectively for gravitational waves in full,
non-linear general relativity with Λ = 0, where it leads to flux integrals associated
with the BMS asymptotic symmetries [47]. Here, the covariant phase space ΓCov –
that forms the foundation of this framework – consists of the gauge fixed solutions
γab to the linearized Einstein’s equations in the presence of a positive Λ. Each Killing
vector field K on M+

P naturally defines a vector field K on ΓCov via K := LKγab.8

The flow generated by the vector field K preserves the natural symplectic structure
ω of ΓCov and thus generates a one-parameter family of canonical transformations
on (ΓCov, ω). The associated Hamiltonian is given by

HK := −1
2ω(γ,LKγ) (1.5)

where the overall factor −1
2 is a normalization constant (chosen such that the

Hamiltonian generated by a de Sitter time translation reduces to the flat space result
in the limit Λ→ 0). The Hamiltonian can be evaluated on any constant time slice,
including I. When K is a translation or rotation Killing vector field, respectively,
HK is interpreted as the flux of energy-momentum or angular momentum carried

7The linearized Weyl tensor, on the other hand, satisfies conformally invariant equations and
consequently its propagation is sharp.

8Since γab satisfies the linearized Einstein’s equations and gauge conditions that all only refer
to the background de Sitter metric ḡab, LKγab is also in ΓCov.
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Figure 1.2. The red vectors in this conformal diagram show the integral curves of the
time translation Killing field T a in the Poincaré patch. T a is future directed and time-like
in static patch (region I) and space-like near I (region II). It is future directed and null on
the portion of the event horizon E−(i+) to the future of the cross-over 2-sphere (bifurcate
horizon) C and on the portion of the null event horizon E+(i−) to the past of C. It is
past directed and null on the portion of E+(i−) to the future of C.

by gravitational waves. These expressions are particularly useful to ask physical
questions such as how much energy-momentum and angular momentum in the
form of gravitational waves is radiated in a given process. These expressions form
the foundation for Chapter 2 and 3. We also showed that all fluxes vanish on I
if the magnetic part of the linearized Weyl tensor is set to zero on I (which is
the linearized analog of the condition Bab=̂0). This explicitly illustrates that the
strengthening of the boundary conditions by requiring conformal flatness of the
metric on I is not practicable in the study of gravitational radiation.

Finally, the de Sitter metric admits 10 Killing vector fields. However, since
the Poincaré patch is only part of de Sitter spacetime, only those isometries are
permissible that map this patch to itself. The subgroup of the 10-dimensional de
Sitter group that leaves the Poincaré patch invariant is 7-dimensional, consisting of
4 (de Sitter) translations and 3 rotations. All these de Sitter Killing vector fields
are space-like on I. One can check this explicitly for each vector field individually,
but it also follows from the following, more general statement: If Ka is a Killing
vector field on any asymptotically de Sitter spacetime (M, gab), then Ka must admit
an extension to I which makes it tangential. The proof is simple. Rewriting the
defining property of the Killing vector field, LKgab = 0, in terms of quantities that
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have a well-defined limit to I, we obtain

LKgab = LK̃
(
Ω−2g̃ab

)
= −2Ω−3 (LK̃Ω) g̃ab + Ω−2LK̃ g̃ab = 0 , (1.6)

where we used that the Killing vector field on M is identified with the vector
field K̃a on I, that is, Ka = K̃a. Multiplying both sides by Ω3 and evaluating
this equation on I yields Ka∇aΩ =̂ 0. Consequently, Ka is tangential to I as it is
orthogonal to its normal ∇aΩ. Thus, any Killing vector field of an asymptotically de
Sitter spacetime yields an asymptotic symmetry vector field on I that is space-like.
This also means that the vector generating time translations in de Sitter spacetime
is space-like on I (even though it is time-like in the static patch, see region I in
Figure 1.2). Nonetheless, we will refer to this vector as a ‘time translation’ because
(i) it is the limit of the time translation Killing field of the Schwarzschild-de Sitter
spacetime as the Schwarzschild mass goes to zero, and (ii) it reduces to a time
translation of Minkowski spacetime in the limit Λ→ 0. In conformal and proper
time coordinates, respectively, the time translation vector field T a is

T = T a∂a = −H
[
η
∂

∂η
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

]
(1.7)

= ∂

∂t
−H

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
. (1.8)

Recall, the limit Λ→ 0 should not be taken in conformal coordinates (in which T
would vanish), but one should use the proper time coordinates. Using the latter
set of coordinates, it is immediate that in this limit T a goes to the Minkowski
time translation Killing vector field t̊a = η̊ab∇̊bt. Given that T a is space-like on I,
in principle, the energy can be negative on I. In fact, the energy obtained from
the Hamiltonian defined by T a, HT , is unbounded below. (Unboundedness from
below of HT is not limited to linearized gravitational fields, but is also true for
matter fields in de Sitter spacetime.) Thus, there exist gravitational waves on
de Sitter spacetime which carry arbitrarily negative energy, no matter how small
the positive Λ is! This is in striking contrast with the Λ = 0 situation, where
the corresponding waves carry strictly positive energy. This yields the following
conundrum: if gravitational waves can carry arbitrarily negative energy, what
happens to the limit Λ → 0 that should recover positive energy in Minkowski
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spacetime? In other words, what happens to the infinitely many solutions with
negative energy in the limit Λ → 0? A careful analysis shows that the limit is
onto: the solutions with negative energy all get mapped to zero. Geometrically,
this occurs because while the Killing field T a of de Sitter metric for every Λ > 0
is space-like near I (region II in Figure 1.2), its limit is the time-like Killing field
t̊a of η̊ab. This comes about as follows. The cosmological horizon E−(i+), which
bounds the static patch, is at r = H−1e−Ht (with r2 = ~x · ~x). In the limit Λ→ 0,
the static patch in which T a is time-like fills out the whole Minkowski space. Thus,
although HT is unbounded below – no matter how small the positive Λ is, the
limiting H̊t is strictly positive. This is another nice illustration of the subtlety of
the Λ→ 0 limit and illuminates that even for physical observable quantities the
limit can be discontinuous. Thus, it is a priori not necessarily obvious that the
effects of positive Λ will be negligible for all gravitational wave observations.
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Chapter 2 |
General formula for power emitted in
de Sitter spacetimes

2.1 Introduction

One of the first predictions of general relativity came from Einstein’s calculations
that demonstrated the existence of gravitational waves in the weak field approxi-
mation. Although the idea of gravitational waves was already explored by others
including Lagrange and Poincaré (see [15] for a review), Einstein’s 1916 paper
provided a relativistic description by linearizing field equations of general relativity
off Minkowski background, in the presence of an external, time-changing source [14].
Two years later, he also calculated the energy carried by these waves far away from
the source. He found that the leading order contribution to the emitted power
is proportional to the square of the third time derivative of the mass quadrupole
moment [48].

This prediction was first confirmed by the high precision measurements of the
orbital period of the Hulse-Taylor binary [22]. These measurements allowed a
direct comparison between the loss of orbital energy and the energy emitted by
gravitational waves. Today, observational evidence yields a confirmation of the
existence of gravitational quadrupolar radiation to an accuracy of 3 parts in 103 [23].
Einstein’s calculations and its subsequent refinements and generalizations (due to
Eddington [49], Landau and Lifshitz [50], Fock [51], Blanchet and Damour [52]
and others), as well as the Bondi-Sachs framework in full general relativity [27, 43],
use field equations with a vanishing cosmological constant, Λ. Since the value of
Λ is so small, at a practical level it seems natural to just ignore it and use the
well-developed Λ = 0 framework. However, as we discussed in Chapter 1, there are
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some qualitative differences between the Λ = 0 and Λ > 0 cases, making the limit
Λ → 0 quite subtle.1 In particular, the limit of observable quantities associated
with gravitational waves can be discontinuous, whence smallness of Λ does not
always translate to smallness of corrections to the Λ = 0 results. The question
then is whether one can reliably justify one’s first instinct that Einstein’s Λ = 0
quadrupole formula can receive only negligible corrections, given the smallness of
Λ.

To make this concern concrete, let us consider a few illustrations of the qualitative
differences. First, while wavelengths of linear fields are constant in Minkowski
spacetime, they increase as waves propagate on de Sitter spacetime, and exceed the
curvature radius in the asymptotic region of interest. Therefore, the commonly used
high-frequency approximation also known as the geometric optics approximation
fails in the asymptotic region. Also, one cannot carry over the standard techniques
to specify ‘near and far wave zones’ from the Λ = 0 case. Second, in Minkowski
spacetime one can approach I+ – the arena on which properties of gravitational
waves can be analyzed unambiguously – using r = r0 surfaces with larger and larger
values of r0. Therefore, it is standard practice to use 1/r expansions of fields in
the analysis of gravitational waves (see, e.g., [53–55]). By contrast, in de Sitter
spacetime, such time-like surfaces approach a past cosmological horizon across
which there is no flux of energy or momentum for retarded solutions. I+ is now
approached by a family of space-like surfaces (on which time is constant) whence
one cannot use the 1/r expansions that dominate the literature on gravitational
waves. Third, while I+ is null in the asymptotically flat case, it is space-like if Λ is
positive [43]. Consequently, unfamiliar features can arise as we move from Λ = 0
to a tiny positive value both in full general relativity and in the linearized limit.
In particular, as we saw in Section 1.2.1, energy carried by electromagnetic and
linearized gravitational waves can be negative and of arbitrarily large magnitude
if Λ > 0 [35]. Since this holds for every Λ > 0, however tiny, the lower bound
on energy carried by these waves has an infinite discontinuity at Λ = 0. Now,
if electromagnetic or gravitational waves produced in realistic physical processes

1The origin of these subtleties lies in the fact that the observed accelerated expansion makes
the asymptotic spacetime geometry in the distant future drastically different from that of
asymptotically Minkowski spacetimes. Therefore, although for concreteness and simplicity we
will refer to a cosmological constant, as in [31, 35], our main results will not change if instead one
has an unknown form of ‘dark energy’.
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could carry negative energy, we would be faced with a fundamental instability: the
source could gain arbitrarily high energy simply by letting the emitted waves carry
away negative energy. Thus a positive Λ, however small, opens up an unforeseen
possibility, with potential to drastically change gravitational dynamics.2 Finally,
yet another difference is that in the transverse (i.e., Lorenz) traceless gauge the
linearized 4-metric field satisfies the massive Klein-Gordon equation where the
mass is proportional to

√
Λ. While the mass is tiny, a priori it is possible that over

cosmological distances the difference from the propagation in the Λ = 0 case could
accumulate, creating an O(1) difference in the linearized metric in the asymptotic
region, far way from sources. Since Einstein’s quadrupole formula is based on the
form of the metric perturbation in this asymptotic region, secular accumulation
could then lead to O(1) departures from that formula, even when Λ is tiny.

These considerations bring out the necessity of a systematic analysis to determine
whether the Einstein’s quadrupole formula continues to be valid even though many
of the key intermediate steps cannot be repeated for the de Sitter background.
The goal of this chapter is to complete this task for linearized gravitational waves
created by time changing (first order) sources on de Sitter background.

As in the Λ = 0 case, the calculation involves two steps:
(i) expressing metric perturbations far away from the source in terms of the
quadrupole moments of the source, and,
(ii) finding the energy and power radiated by this source in the form of gravitational
waves.
However, the extension of the Λ = 0 analysis introduces unforeseen issues in both
steps. In step (i), since the background spacetime is no longer flat, the meaning of
‘quadrupole moment’ is not immediately clear. The second subtlety concerns both
steps. Specifically, due to the curvature of the de Sitter spacetime, the gravitational
waves back-scatter. This backscattering introduces a tail term in the solutions to
the linearized Einstein’s equation already in the first post-Newtonian order. That
in and of itself is not problematic. However, if a tail term persisted in the formula
for energy loss, one would need to know the history of the source throughout its

2As discussed in Chapter 1, we suggested that this possibility will not be realized for realistic
sources because the fields they induce on I+ would be constrained just in the right way for the
waves to carry positive energy. However, that argument was meant only as an indication, based
on properties of source-free gravitational waves. A detailed analysis of the quadrupole formula for
Λ > 0 is needed to settle this issue in the weak field limit.
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evolution in order to determine the flux of energy emitted at any given retarded
instant of time.3 Third, as discussed above, the energy calculated in step (ii) could,
in principle, be arbitrarily negative, in which case self-gravitating systems would
be drastically unstable to emission of gravitational waves.

Thus, from a conceptual standpoint, the generalization of the quadrupole
formula to include a positive Λ is both interesting and subtle. For example, the
presence of the tail term opens a door to a new contribution to the ‘memory effects’
associated with gravitational waves [29,56,57]. In addition, as in the asymptotically
flat case, it offers guidance in the development of the full, nonlinear framework.
Finally, as we will see, this generalization also provides detailed control on the
approximations involved in setting Λ to zero.

This chapter is organized as follows. In Section 2.2, we introduce our notation
and recall the linearized Einstein’s equation on de Sitter background as well as
their retarded solutions sourced by a (first order) stress-energy tensor. In Section
2.3, we introduce the late time and post-Newtonian approximations and express
the leading terms of solutions in terms of the quadrupole moments of sources. We
also discuss in detail the tail term and some of its properties. In Section 2.4, we use
these expressions to calculate the energy emitted by the source using Hamiltonian
methods on the covariant phase space of the linearized solutions introduced in [35],
and then discuss in some detail the novel features that arise because of the presence
of a positive Λ. We find that the energy carried away by the gravitational waves
produced by a time changing source is necessarily positive. Detailed expressions
bear out the expectation that, for sources of gravitational radiation currently under
consideration by gravitational wave observatories, the primary modification to
Einstein’s formula can be incorporated by taking into account the expansion of the
Universe and the resulting gravitational redshift. Section 2.5 contains a summary.

2.2 Preliminaries

The isolated system of interest is depicted in the left panel of Figure 2.1 (and
specified in greater detail at the beginning of Section 2.3). It represents a matter

3In the Λ = 0 case, backscattering occurs only at higher post-Newtonian orders. These higher
order corrections to the quadrupole formula are not needed to compare theory with observations
for the Hulse-Taylor pulsar so far because the current observational accuracy is at the 10−3 level
rather than 10−4.
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Figure 2.1. Left Panel: A time changing quadrupole emitting gravitational waves whose
spatial size is uniformly bounded in time. The causal future of such a source covers
only the future Poincaré patch M+

P (the upper, red triangle of the figure). There is no
incoming radiation across the past boundary E+(i−) of M+

P because we use retarded
solutions. The light gray shaded region represents a convenient neighborhood of I+ in
which perturbations satisfy a homogeneous equation and the approximation, discussed
below, holds everywhere. Right Panel: The rate of change of the quadrupole moment
at the point (−|~x|,~0) on the source creates the retarded field at the point (0, ~x) on I+.
The figure also shows the cosmological foliation η = const and the time-like surfaces
r := |~x| = const. As r goes to infinity, the r = const surfaces approach E+(i−). Therefore,
in contrast with the situation in Minkowski spacetime, for sufficiently large values of r,
there is no flux of energy across the r = const surfaces.

source in de Sitter spacetime whose spatial size is uniformly bounded in time. Such
a source intersects I± at single points i±. Examples are provided by isolated stars
and coalescing binary systems. As discussed in Chapter 1, the causal future of such
a source covers only the future Poincaré patch, M+

P . Therefore, we restrict ourselves
to M+

P , which can be coordinatized by the conformal coordinates (η, x, y, z). To
study the gravitational radiation emitted by this isolated system in the presence
of positive Λ, we consider first order perturbations off the de Sitter background
metric ḡab. The perturbed metric is denoted by gab,

gab = ḡab + ε γab =: a2(η)(̊gab + ε hab) , (2.1)
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where ε is a smallness parameter, a(η) = −(Hη)−1 the scale factor and g̊ab the flat
metric. While γab are the physical first order perturbations off de Sitter spacetime, it
is convenient – as will be clear shortly – to use the conformally related mathematical
field while solving the linearized Einstein’s equation.

In terms of the trace-reversed metric perturbation γab := γab − 1
2 ḡabγ, the

linearized Einstein’s equation in the presence of a (first order) linearized source Tab
can be written as

�γab − 2∇(a∇
c
γb)c + ḡab∇

c∇d
γcd −

2
3Λ(γab − ḡabγ) = −16πGTab (2.2)

where ∇ and � denote the derivative operator and the d’Alembertian defined by
the de Sitter metric ḡab. The solutions to the linearized equation above with sources
on the future Poincaré patch (M+

P , ḡab) are discussed in detail by de Vega et al.
in [58] (see also [59] for a recent discussion). Here we will summarize their results,
comment on the physical interpretation, and discuss the limit Λ→ 0.

Denote by ηa the vector field normal to the cosmological slices η = const
satisfying ηa∇aη = 1 and let na := −Hη ηa denote the future pointing unit normal
to these slices. Then, it is convenient to solve (2.2) using the following gauge
condition:

∇a
γab = 2H na γab . (2.3)

This is a generalization of the more familiar Lorenz gauge condition and, as with
the Lorenz condition, it does not exhaust the gauge freedom. Nonetheless, in this
gauge the linearized Einstein’s equation (2.2) simplifies significantly when it is
rewritten in terms of the field χ̄ab which is related to the trace-reversed metric
perturbations γab via χ̄ab := a−2γab = hab − 1

2 g̊ab g̊
cdhcd. Finally, it is easiest to

obtain solutions to (2.2) by performing a decomposition of χ̄ab and Tab, adapted to
the cosmological η = const slices:

χ̃ := (ηaηb + q̊ab) χ̄ab, χa := ηc q̊a
b χ̄bc, χab := q̊a

m q̊b
n χ̄mn, (2.4)

T̃ := (ηaηb + q̊ab)Tab, Ta := ηc q̊a
b Tbc, Tab := q̊a

m q̊b
n Tmn, (2.5)

where q̊ab is the (contravariant) spatial metric on a η = const slice induced by the
flat metric g̊ab, i.e., q̊ab = g̊ab+ηaηb. (Note that unlike χ̄ab in (2.4), the stress energy
tensor Tab in (2.5) has neither been rescaled by a−2 nor has it been trace-reversed.)
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In the chart (η, ~x), −(1/4Hη)χ̃ is the perturbed lapse function and (Hη)−2 q̊abχb is
the perturbed shift field. Thus, as in the linearized theory off Minkowski spacetime,
the physical degrees of freedom associated with radiation are encoded in the totally
spatial projection χab.

It is convenient to regard the fields χ̃, χa and χab, as living in the flat spacetime
(M+

P , g̊ab) because: (i) the gauge condition and field equations have a simple form
in terms of the derivative operators defined by g̊ab; and (ii) these gauge conditions
and field equations are well-defined also at I+ because, as we will see in Section
2.4, the metric g̊ab turns out to provide a viable conformal rescaling of ḡab that is
well-defined at I+. The gauge conditions (2.3) become

D̊aχab = ∂ηχb −
2
η
χb, and D̊aχa = ∂η(χ̃− χ) − 1

η
χ̃ , (2.6)

where D̊ is the derivative operator of the spatial metric q̊ab and χ = q̊abχab. In this
gauge, the linearized Einstein’s equation (2.2) is split into three as follows

�̊
(1
η
χ̃
)

= −16πG
η
T̃ , (2.7)

�̊
(1
η
χa

)
= −16πG

η
Ta, (2.8)

(�̊ +2
η
∂η)χab = −16πG Tab. (2.9)

where �̊ is the d’Alembertian operator of the flat metric g̊ab. Using the conservation
of the first order stress-energy tensor, ∇̄aTab = 0, it is easy to directly verify that
the gauge conditions and the field equations are consistent, as they must be.

Since we wish to impose the ‘no incoming radiation’ boundary conditions, we
will seek retarded solutions to these equations. The first two equations, (2.7) and
(2.8), can be solved using the scalar retarded Green’s function of �̊:

G
(M)
R (x, x′) = 1

4π|~x− ~x′| δ(η − η
′ − |~x− ~x′|) (2.10)

to yield

χ̃(η, ~x) = 4Gη
∫ d3~x′

|~x− ~x′|
1
ηRet

T̃ (ηRet, ~x
′), and
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χā(η, ~x) = 4Gη
∫ d3~x′

|~x− ~x′|
1
ηRet
Tā(ηRet, ~x

′), (2.11)

where ηRet is the retarded time related to η and ~x by ηRet := η − |~x − ~x′|. We
could use the scalar Green’s function of �̊ also in the second equation because χā
refers to the Cartesian components of the vector perturbation. While we will use
the solutions (2.11) in an intermediate step, the fluxes of energy, momentum and
angular momentum turn out to depend only on χab because, as we noted above,
the other components correspond to linearized lapse and shift fields.

One can use a scalar Green’s function also for the Cartesian components of the
spatial tensor field χab. However, since the operator on the left hand side of (2.9)
has the extra term, (2/η)∂η, we cannot use the Green’s function of the flat space
wave operator �̊. Instead, [58] provides the retarded Green’s function satisfying

(�̊+ 2
η
∂η)GR(x, x′) = −(H2η2) δ(x, x′). (2.12)

In contrast to the flat space scalar Green’s function, the solution to this equation
has an additional term that extends its support to the region in which x, x′ are
time-like related:

GR(x, x′) = H2 η η′

4π|~x− ~x′| δ(η − η
′ − |~x− ~x′|) + H2

4π θ(η − η′ − |~x− ~x′|) (2.13)

where θ(x) is the step function which is 1 when x ≥ 0 and 0 otherwise. Therefore,
the solution χab is given by

χāb̄(η, ~x) = 16πG
∫

d3~x′
∫

dη′ GR(x, x′)
( 1
H2η′2

)
Tāb̄(x′) . (2.14)

To simplify the solution, one uses the identity

(
1

|~x−~x′|
η
η′

)
δ(η − η′ − |~x− ~x′) + 1

η′2
θ(η − η′ − |~x− ~x′|)

= 1
|~x−~x′| δ(η − η

′ − |~x− ~x′|) − ∂
∂η′

(
1
η′
θ(η − η′ − |~x− ~x′|)

)
, (2.15)

in (2.14), integrates by parts with respect to η′, and shows that the boundary terms
do not contribute for any given (η, ~x). Then everywhere on M+

P the solution is
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given by

χāb̄(η, ~x) = 4G
∫ d3~x′

|~x− ~x′|
Tāb̄(ηRet, ~x

′)

+ 4G
∫

d3~x′
∫ ηRet

−∞
dη′ 1

η′
∂η′Tāb̄(η′, ~x′) (2.16)

≡ ]āb̄ (η, ~x) + [āb̄ (η, ~x) , (2.17)

where ]āb̄ (η, ~x) denotes the sharp propagation term and [āb̄ (η, ~x) the hereditary
term also known as the tail term. Note that this solution relates the Cartesian
components of χab to those of Tab. Therefore, throughout the rest of the chapter,
whenever we use this solution, we will restrict ourselves to components in the
Cartesian chart.

The retarded solution (2.16) has an interesting feature. The first term ]ab in this
expression is identical to the solution for the trace-reversed perturbations which
satisfy the linearized Einstein equation (with a first order source Tab) w.r.t. the
Minkowski metric g̊ab. The second term [ab, which is absent in the Minkowski case,
depends on the entire history of the behavior of the source up to time ηRet. It
results from the backscattering of the perturbation by curvature in the de Sitter
background. Thus, in contrast to the Λ = 0 case, the propagation of the metric
perturbation fails to be sharp already at this order.4 (Although as we shall explicitly
show in Section 2.3.3, at first post-Newtonian order, the dynamical part of this
tail term does propagate along the null cone.) The retarded solutions (2.11) and
(2.16) satisfy the equations of motion (2.7) - (2.9) by construction. However, to
obtain a solution to the physical problem at hand, we need to make sure that they
also satisfy the gauge conditions (2.6). One can verify that this is the case using
conservation of the stress-energy tensor.

Finally, let us discuss the limit Λ→ 0. From the solution (2.16) it is not obvious
that the tail term will disappear in this limit. However, as discussed in Chapter 1,
to study this limit one needs to use the differential structure given not by the (η, ~x)
chart, but by the (t, ~x) chart in which the de Sitter metric ḡab admits a well-defined

4Since the propagation of the linearized Weyl curvature is sharp, one might wonder if the tail
term in the retarded solution (2.16) is a gauge artifact. It is not. Since the gauge invariant part
χTT
ab of the metric perturbation satisfies (�̊+ (2/η)∂η)χTT

ab = 16πGT TT
ab – i.e., the same equation

as χab but with Tab on the right hand side replaced by its TT-part – it follows that χTT
ab is given

by replacing Tab with T TT
ab in (2.16). Therefore it also has a non-trivial tail term.
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limit to the Minkowski metric η̊ab as Λ → 0. Using the (t, ~x) chart, it is easy to
show that the gauge condition (2.3) and the linearized Einstein’s equation (2.2)
reduce to the familiar Lorenz gauge condition and linearized Einstein’s equation in
Minkowski spacetime, respectively,

∇̊bγ̊ab = 0, and �̊γ̊ab = −16πGTab, (2.18)

where for notational coherence the metric perturbations off the Minkowski spacetime
metric η̊ab are denoted by γ̊ab. Note that, while in the de Sitter case different
components of the perturbation satisfy different equations, (2.7)-(2.9), in the Λ→ 0
limit these distinct equations collapse to a single flat space scalar wave equation for
all Cartesian components of γ̊ab. Consequently, the Green’s functions (2.10) and
(2.13) used to solve for various components of the de Sitter perturbations, reduce
to the scalar Green’s function of the flat d’Alembertian operator �̊ of η̊ab,

G
(M)
R (x, x′) = 1

4π|~x− ~x′| δ(t− t
′ − |~x− ~x′|). (2.19)

Therefore in the (t, ~x) chart the retarded solutions of (2.18) are given by

γ̊āb̄(t, ~x) = 4G
∫ d3~x′

|~x− ~x′|
Tāb̄(t− |~x− ~x′|, ~x′). (2.20)

This also follows directly by first expressing the final solutions (2.11) and (2.16) in
the (t, ~x) chart and then taking the Λ→ 0 limit, as it must. Thus, our expectation
that the tail term should disappear in the limit Λ→ 0 is explicitly borne out.

2.3 The retarded solution and quadrupole moments

In full general relativity with positive Λ, spacetimes describing isolated gravitating
systems are asymptotically de Sitter. To compute the energy emitted in the form of
gravitational waves, one would (numerically) solve Einstein’s equations by imposing
an appropriate ‘no-incoming radiation’ boundary condition, find the gravitational
fields on I+, and extract the energy radiated by gravitational waves from these
fields. Since at the moment it is unclear how to extract energy in full, non-linear
general relativity when Λ > 0, this dissertation restricts itself to a simplified version
of this problem using the first post-de Sitter approximation. This is the same
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approach Einstein took before gravitational waves were understood in full general
relativity in the Λ = 0 case. We have already incorporated the ‘no incoming
radiation’ boundary condition through retarded Green’s functions and our task
now is to extract physical information from the emitted gravitational waves by
examining these solutions at I+.

As explained in Section 2.1, the calculation will be performed in two steps. In
the first, carried out in this section, we use physically motivated approximations to
simplify the retarded solution (2.16) in the asymptotic region near I+ and relate
the leading term to the time variation of the source quadrupole moment. The
second step in which we calculate the energy and power will be carried out in
Section 2.4.

2.3.1 The late time and post-Newtonian approximations

To extract physical information from eq. (2.16), we need to examine this solution in
the asymptotic region near I+. In linearized gravity off Minkowski spacetime, one
can approach I̊+ using a family of time-like tubes r = ro, with ever increasing values
of the constant ro. Therefore, one focuses on the form of the retarded solutions at
large distances from the source, keeping the leading order 1/r contribution, and
ignoring terms that fall-off as 1/r2. Since the conformal factor used to complete
Minkowski spacetime in order to attach the null boundary I+ falls-off as 1/r,
this approximation is sufficient to recover the asymptotic perturbation on I+ and
extract energy, momentum and angular momentum carried by gravitational waves.
In de Sitter spacetime, by contrast, as mentioned in Section 2.1, the r = ro time-like
surfaces approach the cosmological horizon E+(i−), rather than I+ (see the right
panel of Figure 2.1). And the flux of energy, momentum or angular momentum
across E+(i−) vanishes identically for retarded solutions! Indeed, this is precisely
the ‘no incoming radiation condition’. Thus, E+(i−) is analogous to I̊− rather than
I̊+ in Minkowski spacetime. Therefore, contrary to the strong intuition derived
from Minkowski spacetime [53–55], the 1/r-expansions are now ill-suited to study
gravitational waves. In particular, one cannot blindly take over well-understood
notions such as the ‘wave zone’ and the approximation schemes associated with
this region. (All these differences occur also for test electromagnetic fields on de
Sitter spacetime.)

As explained in [31], I+ of de Sitter spacetime is space-like and corresponds
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to the surface η = 0 (see also Section 2.4.1). Therefore, it can be approached
by a family of space-like surfaces. The first natural candidate is provided by the
cosmological slices η = const used in Section 2.2. Another possibility is to use
the family of space-like 3-surfaces which lie in the shaded region of the left panel
of Figure 2.1 to which T a and the three rotational Killing fields of (M+

P , ḡab) are
everywhere tangential. In this section we will use the cosmological slices and in the
next section, the 3-surfaces in the shaded region. To summarize, to approach I+ and
extract the radiative part of the solution, we now need a late time approximation
in place of the Minkowskian ‘far field’ approximation.

To introduce this approximation, we first need to sharpen our restrictions on the
spatial support of the matter source. These conditions will capture the idea that
the system under consideration is isolated, e.g., an oscillating star or a compact
binary. First, we will assume that the physical size D(η) of the system is uniformly
bounded by Do on all η = const slices. A particular consequence of this requirement
is that the source punctures I+ at a single point i+, and I− at a single point i−,
as depicted in Figure 2.1. Physically, this assumption will ensure that a binary, for
example, remains compact in spite of the expansion of the Universe. We further
sharpen the ‘compactness’ restriction through a second requirement: Do � `Λ,
where `Λ(= 1/H) is the cosmological radius.5 Finally, for simplicity, we assume
that the system is stationary in the distant past and distant future, i.e., LTTab = 0
outside a finite η-interval. Such a system is dynamically active only for a finite time
interval (η1, η2). This simplifying assumption can be weakened substantially to
allow LTTab to fall-off at a suitable rate in the approach to i±. We use the stronger
assumption just to ensure finiteness of various integrals without having to consider
the fall-off conditions in detail at each intermediate step. Furthermore, given that
we are primarily interested in calculating radiated power at a retarded instant of
time, the assumption is not really restrictive.

With these restrictions, we can now obtain an approximate form of the solution
(2.16) which is valid near I+. Consider, then, a cosmological slice, η = const, and
choose the Cartesian coordinates ~x such that the center of mass of the source lies
at the origin. The right side of (2.17) expresses χab as a sum of a sharp term and
tail term. Let us first simplify the sharp term. As in the standard linearized theory

5Given that `Λ is about 5 Gpc, the condition is easily met by sources of physical interest, such
as an isolated oscillating star or a compact binary.
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off Minkowski spacetime [53], we first write it as

]āb̄ (η, ~x) = 4G
∫

d3x′
∫

d3y′
Tāb̄(ηRet, ~y

′)
|~x− ~x′|

δ(~x′, ~y′) , (2.21)

and Taylor expand the |~x− ~x′| dependence of the integrand around ~x′ = 0 (recall
that the integral over ~x′ is over a compact region around the origin, the support of
Tāb̄). In the Taylor expansion, each derivative ∂/∂x′ā can be replaced by −∂/∂xā

because the ~x′-dependence of the integrand of the last integral comes entirely from
|~x′ − ~x|. The first few terms then become

]āb̄ (η, ~x) = 4G
∫

d3x′
∫

d3y δ(~x′, ~y)
[
Tāb̄(ηret, ~y)

r
− ~x′i ∂

∂xi
Tāb̄(ηRet, ~y)
|~x− ~x′|

∣∣∣∣∣
~x′=0

+ 1
2~x
′i~x′j

∂

∂xi
∂

∂xj
Tāb̄(ηRet, ~y)
|~x− ~x′|

∣∣∣∣∣
~x′=0

+ . . .

]

= 4G
∫

d3x′
∫

d3y δ(~x′, ~y)
[
Tāb̄(ηret, ~y)

r
− ~x′i ∂

∂xi
Tāb̄(ηret, ~y)

r

+ 1
2~x
′i~x′j

∂

∂xi
∂

∂xj
Tāb̄(ηret, ~y)

r
+ . . .

]
,

where the . . . denote higher order terms in the Taylor expansion. Note that in the
second line we have replaced

ηRet = η − |~x− ~x′| by ηret = η − r (2.22)

because the coefficients of the Taylor expansion are evaluated at ~x′ = 0. Next, we
carry out the integral over ~y′ and focus only on the first order terms in the Taylor
expansion

]āb̄ (η, ~x) = 4G
r

[ ∫
d3x′

(
Tāb̄(ηret, ~x

′) + x′cr̂c
r
Tāb̄(ηret, ~x

′)

+ (x′cr̂c) ∂ηret Tāb̄(ηret, ~x
′) + . . .

) ]
(2.23)

= 4G
r

[ ∫
d3x′Tāb̄(ηret, ~x

′) + (x
′c
1 r̂c
r

)
∫

d3x′ Tāb̄(ηret, ~x
′)

+ (x′c2 r̂c)
∫

d3x′ ∂ηret Tāb̄(ηret, ~x
′) + . . .

]
. (2.24)

In the second step we have used the mean value theorem where ~x′1 and ~x′2 are the
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points in the support of Tāb̄ determined by this theorem. Next, using the fact that
each of |x′c1 r̂c/r| and |x

′c
2 r̂c/r| is bounded by the coordinate radius of the source at

η = ηret,
d(ηret) := D(ηret)/a(ηret) , (2.25)

we conclude

]āb̄ (η, ~x) = 4G
r

∫
d3x′ Tāb̄(ηret, ~x

′)
[

1 + O(d(ηret))
r

+ O(d(ηret))
∆ηret

]
, (2.26)

where ∆ηret is the dynamical time scale (measured in the η coordinate) in which
the change in the source is of O(1). It will be clear from Section 2.3.2 that this
is the time scale in which the change in the quadrupole moments of the source is
O(1).

Up to this point, the mathematical manipulations are essentially the same as
those in the linear theory off Minkowski spacetime [53]. The difference lies in the
underlying assumptions and the physical meaning of the approximation scheme.
A straightforward calculation relates the second and third terms in the square
brackets in (2.26) to physical properties of the source. First, we have

d(ηret)
r

= D(ηret)
`Λ

(−ηret)
r

≤ Do

`Λ
(1− η

r
) . (2.27)

Note that to study the asymptotic form of the solution on I+, unlike in the
calculation off Minkowski spacetime, we cannot use a large r approximation. Indeed,
in the calculation of the radiated energy in Section 2.4, we will need to integrate
over a finite range of r.6 While (1− η/r) can be large, given any ro 6= 0, we can
choose a cosmological slice η = const sufficiently close to I+ such that for all r > ro,
(1−η/r) is arbitrarily close to 1, whence d(ηret)/r is negligible. This is the late-time
approximation.7 In particular, on I+ (where η = 0) we can ignore the second term

6On I+ the energy flux will be non-zero in the interval −η2 < r < −η1, where (η1, η2) is the
interval where the source is dynamical, i.e., LTTab 6= 0.

7The term ‘late-time’ approximation should not be confused to mean ‘only valid at late times’.
On any constant time slice one can find a radius ro such that for r > ro the approximations used
to calculate χab are valid. However, at early times this region of validity can be very restricted.
At later times, the approximation automatically becomes valid for larger parts of the constant
time slice under consideration. Hence, the name ‘late-time’ approximation.
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in the square bracket in (2.26) for all r > 0. The third term can be re-expressed as

d(ηret)
∆ηret

= D(ηret)
∆tret

≈ v (2.28)

where D is the physical length scale of the source and ∆t the interval in proper
time in which the source changes by O(1), and where we have used the standard
reasoning from Minkowski spacetime to conclude that the ratio D(ηret)/∆tret can
be identified with the velocity v of the source. We now use the slow motion
approximation in which v � 1 (in our c = 1 units). Thus, within our assumptions
the sharp term is given by

]āb̄ (η, ~x) = 4G
r

∫
d3x′ Tāb̄(ηret, ~x

′) . (2.29)

For the tail term [āb̄ (η, ~x) in (2.17), this procedure only replaces ηRet by ηret.
By adding the two contributions ]āb̄ and [āb̄, we can express χab as follows:

χāb̄(η, ~x) = 4G
r

∫
d3~x′ Tāb̄(ηret, ~x

′)
[

1 +O
(Do

`Λ

(
1− η

r

))
+O(v)

]
+ 4G

∫ ηret

−∞
dη′ 1

η′
∂η′

∫
d3~x′ Tāb̄(η′, ~x′) . (2.30)

(The error term arising from ηRet → ηret in the tail term is included in the square
bracket in the first term.) On any η = ηo slice, the second term in the square
bracket can be neglected, in particular, for all r > −ηo, i.e., beyond the intersection
of that slice with the cosmological horizon E−(i+). On I+, it can be neglected for
all r > 0.

Let us conclude by summarizing all the approximations that were made. First,
in Section 2.2, we presented the retarded solution to Einstein’s equations in the first
post-de Sitter approximation. We then assumed that the source is compact in the
sense that the physical size D(η) of the support of the stress-energy tensor Tab is
uniformly bounded by Do, with Do � `Λ. Finally, we used the first post-Newtonian
approximation to set v � 1. Note that to obtain (2.31), we did not have to make
any assumption relating the dynamical time scale ∆tret of the system with the
Hubble time tH = 1/H. Astrophysical sources of greatest interest to the current
gravitational wave observatories satisfy ∆tret � tH (this is the condition that
specifies the high-frequency approximation). We will simplify the final results using
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this approximation in Section 2.4.2, however, throughout the main body of this
chapter this assumption is not made and the results are true also for sources that
do not satisfy ∆tret � tH .

To avoid proliferation of symbols, from now on χab(η, ~x) will stand for the
approximate solution obtained by ignoring the O

(
(Do/`Λ)(1 − η/r)

)
and O(v)

terms relative to the O(1) terms in (2.30). Thus, we will set

χāb̄(η, ~x) = 4G
r

∫
d3~x′ Tāb̄(ηret, ~x

′) + 4G
∫ ηret

−∞
dη′ 1

η′
∂η′

∫
d3~x′ Tāb̄(η′, ~x′) . (2.31)

and again denote the sharp and the tail terms by ]ab and [ab respectively.

2.3.2 Expressing the approximate solutions in terms of quadrupole moments

To make the relation between the energy carried by the gravitational perturbations
and the behavior of the source transparent, we will now express the approximate
solution in terms of multipole moments of the source. Both terms on the right side
of (2.31) involve the integral

∫
d3~x′ Tāb̄ of spatial components of the stress energy

tensor of the source. We can rewrite this integral in terms of time derivatives of
other components, using the conservation of Tab. Recall that this strategy is used in
the Λ = 0 case to express the integral entirely in terms of the second time derivative
of the time-time component of Tab, that is, the energy density. Consequently, for
perturbations off flat space, only the mass quadrupole moment is relevant in the
far-field approximation. As we will now show, the situation is more complicated in
the Λ > 0 case because the conservation equation, ∇a

Tab = 0, has additional terms
due to the expansion of the scale factor of the de Sitter background.

In the (t, ~x) coordinates, projection of the conservation equation along ta (where,
as usual, ta∂a := ∂/∂t) and q̊ ba yield, respectively,

∂tρ− e−3Ht D̊aTa +H (3ρ+ p1 + p2 + p3) = 0, (2.32)

∂tTa − e−HtD̊bTab + 2H Ta = 0, (2.33)

where the matter density and pressure are defined via

ρ = Tabn
anb ≡ H2η2 Tab η

aηb, and pī = T ab ∂axī ∂bxī, (2.34)
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and where D̊a is the derivative operator compatible with the flat spatial metric q̊ab.
(In the last equation, there is no sum over ī.) In this (t, ~x) chart it is manifest that
when Λ→ 0 (i.e., H → 0), these equations reduce to the time and space projections
of the conservation equation with respect to the Minkowski metric η̊ab. Extra terms
proportional to H arise in de Sitter spacetime due to the expansion of the scale
factor. These, in particular, include all the pressure terms which appear more
generally in any spatially homogeneous and isotropic spacetime. Consequently,
it will turn out that

∫
d3~x Tāb̄ is related not just to the second time derivative of

the mass quadrupole moment of the source as in flat spacetime, but also to the
analogous pressure quadrupole moment. The exact dependence on the pressure
terms will be derived below. But because they are multiplied by H, it is already
clear that these terms will have fewer time derivatives than the corresponding terms
involving density.

To recast
∫

d3~x Tāb̄ in the desired form, our first task is to introduce the notion
of mass and pressure quadrupole moments on the de Sitter background. Being a
physical attribute of the source, the quadrupole moment at any instant of time
should only depend on the physical geometry and coordinate invariant properties
of the source. Therefore, we define the mass quadrupole moment as follows:

Q
(ρ)
āb̄

(η) :=
∫

Σ
d3V ρ(η) x̄ā x̄b̄, (2.35)

where Σ denotes any η = const surface with proper volume element d3V (which in
Cartesian coordinates is a3(η) dx dy dz) and x̄ā := a(η)xā is the physical separation
of the point ~x from the origin. The pressure quadrupole moment is defined similarly:

Q
(p)
āb̄

(η) :=
∫

Σ
d3V (p1(η) + p2(η) + p3(η)) x̄ā x̄b̄ . (2.36)

We can now use the conservation of stress-energy equations (2.32) and (2.33) to
relate the integral

∫
d3~x′ Tāb̄ to these quadrupole moments and their time derivatives.

This derivation follows the same steps as in the standard calculation in Minkowski
spacetime. We begin by noting that

∫
d3~x′ Tāb̄(t′, ~x′) = −

∫
d3~x′ (D̊m̄Tm̄(ā)xb̄) be-

cause the boundary term that arises in the integration by parts vanishes since the
stress-energy tensor has compact spatial support. Using the spatial projection
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(2.33) of the conservation equation, we can rewrite the integral as follows:
∫

d3~x′ Tāb̄(t′, ~x′) = −
∫

d3~x′ eHt
′(
∂t′ + 2H

)
T(ā(t′, ~x′) xb̄)

= 1
2

∫
d3~x′ eHt

′(∂t′ + 2H)
(
D̊m̄Tm̄(t′, ~x′)

)
xā xb̄. (2.37)

Next, we use (2.32), the projection of the conservation equation along ta, to eliminate
Ta in favor of the energy density and pressure:

∫
d3~x′ Tāb̄(t′, ~x′) = 1

2

∫
d3~x′ e4Ht′

[
∂2ρ

∂t′2
+H

∂

∂t′
( 8 ρ+ p1 + p2 + p3)

+ 5H2(3 ρ+ p1 + p2 + p3)
]
xāxb̄. (2.38)

The last step in this derivation is to express the right side of (2.38) in terms of the
quadrupole moments defined in (2.35) and (2.36). A simple calculation yields:

e̊āa e̊
b̄
b

∫
d3~x′ Tāb̄(t′, ~x′) = 1

2a(t′)
[
∂2
t′ Q

(ρ)
ab − 2H∂t′ Q(ρ)

ab +H∂t′Q
(p)
ab ](t′) , (2.39)

where e̊āa are the basis co-vectors in the ~x-chart. Finally, using the fact that Lie
derivative of any tensor field Qab with respect to the time translation Killing vector
field is given by LTQab = T c∇̊cQab − 2H Qab, it is straightforward to show that

e̊āa e̊
b̄
b

∫
d3~x′ Tāb̄(t′, ~x′) = 1

2a(t′)
[
LTLTQ(ρ)

ab + 2HLTQ(ρ)
ab

+HLTQ(p)
ab + 2H2Q

(p)
ab

]
(t′) . (2.40)

Since one can readily take the limit Λ→ 0 in the (t, ~x) chart, we see immediately
that in this limit one recovers the familiar expression

e̊āa e̊
b̄
b

∫
d3~x′ Tāb̄(t′, ~x′) → 1

2 [Lt LtQ(ρ)
ab ] (2.41)

from the discussion of the quadrupole formula in Minkowski spacetime.
Let us return to eq.(2.40). Note that it is an exact equality within the post-de

Sitter approximation; in Section 2.3.2 we have not used the assumption Do � `Λ

on the size of the source, nor the post-Newtonian assumption v � 1. If we invoke,
e.g., kinetic theory, then the pressure goes as p ∼ ρv2 and can then be ignored

34



compared to the density ρ. Then (2.40) simplifies to

e̊āa e̊
b̄
b

∫
d3~x′ Tāb̄(t′, ~x′) ≈

1
2a(t′)

[
LTLTQ(ρ)

ab + 2HLTQ(ρ)
ab + 2H2Q

(p)
ab

]
(t′) . (2.42)

where we have retained the last term because so far we have not made any assump-
tion on relative magnitudes of the dynamical time scale of the system and Hubble
time 1/H. Now, in the post-Minkowski analysis, one does not have to make the
assumption p� ρ because the continuity equations (2.32) do not involve pressure
terms in that case. Furthermore, in the Λ > 0 case, it turns out that dropping
the pressure term from the exact expression (2.40) obscures certain conceptually
important features (see footnote 14). Therefore we will retain the full expression
for now.

Finally we can express the solution (2.31) on (M+
P , ḡab) in terms of the source

quadrupole moments (after a simple transformation to the (η, ~x) chart). Denoting
by an ‘overdot’ the Lie derivative with respect to T a, we obtain:

χab(η, ~x) = 2G
r a(ηret)

[
Q̈

(ρ)
ab + 2HQ̇(ρ)

ab +HQ̇
(p)
ab + 2H2Q

(p)
ab

]
(ηret)

+ 2G
∫ ηret

−∞

dη′
η′

∂η′
1

a(η′)
[
Q̈ρ
ab + 2HQ̇(ρ)

ab +HQ̇
(p)
ab + 2H2Q

(p)
ab

]
(η′)

=: ]ab(η, ~x) + [ab(η, ~x) (2.43)

This expression is a good approximation to the exact solution (2.16) everywhere on
I+ (except at r = 0).

2.3.3 The tail term and its properties

A qualitative difference between the Λ > 0 and Λ = 0 case is the presence of the tail
term in the retarded solution at lowest in the post-de Sitter. Before we continue
to find the expression for the energy and power radiated, we will discuss some
properties of this term. First, we show that although the tail term arises as a result
of backscattering of the de Sitter background curvature, the dynamical part of the
leading order part in the post-Newtonian expansion of the tail term propagates
sharply along the null cone. Second, the Λ → 0 limit of the tail term is briefly
discussed. Third, we compare the size of the sharp and tail term in the asymptotic
region. We address the question whether [ab is negligible compared to the sharp
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term ]ab if Λ 6= 0 but tiny. We will show that the answer is in the negative. This is
another illustration of the subtlety of the limit Λ→ 0. Finally, we conclude with a
remarkable property of the tail term: the sharp and tail term conspire in such a
way that the terms proportional to vn in the sharp and tail term exactly cancel
each other on I+. Thus, the gravitational perturbation χab is true to all order in
the slow motion expansion!8

To discuss these properties, it is most convenient to work in the (t, ~x) chart. In
this chart, the tail term assumes the form

[ab(t, ~x) = −2GH
∫ tret

−∞
dt′
[...
Q

(ρ)
ab +3HQ̈ρ

ab+2H2Q̇
(ρ)
ab +HQ̈(p)

ab +3H2Q̇
(p)
ab +2H3Q

(p)
ab

]
(t′) .

(2.44)
The integral over t can be performed using Q̇ab = ∂tQab − 2HQab. This results in

[ab(t, ~x) = −2GH
[
Q̈

(ρ)
ab +HQ̇

(ρ)
ab +HQ̇

(p)
ab +H2Q

(p)
ab

]tret

−∞
. (2.45)

As shown in Section 2.4.3, the assumption LT Tab = 0 in the distant past implies
Q̇

(ρ)
ab = −2HQ(ρ)

ab there (similarly for the pressure quadrupole). Therefore, we have

[ab(t, ~x) = −2GH
[
Q̈

(ρ)
ab +HQ̇

(ρ)
ab +HQ̇

(p)
ab +H2Q

(p)
ab

]
(tret) + 2GH3Cab , (2.46)

where Cab is just a constant term.9 In general, a hereditary term can have con-
tributions that propagate along and inside the null cone. However, the above
expression shows that the dynamical part of the hereditary term to leading order in
the multipolar expansion only propagates along the null cone. One could describe
this dynamical part as an ‘instantaneous tail’. The constant term spoils the instan-
taneous nature of the tail term. Nevertheless, as we shall see in the next section,
the constant term does not play any role in the fluxes radiated through I+. For
the expression of the energy flux in (2.67), this is immediate as only derivatives of
χab appear. In the expression of the flux of angular momentum in (2.84), χab does
appear without a derivative but the constant term does not contribute because it
is integrated against Eab which is of compact support and divergence-free on I+.

Second, in Section 2.2, we had seen that the tail term vanishes in the limit
8This latter property was not discussed in the original paper [36] and has not been published

elsewhere. The rest of this section is based on Appendix A in [36].
9Its expression is Cab = −2Q(ρ)

ab (t = −∞) +Q
(P )
ab (t = −∞).
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Λ→ 0. The same is true for the leading order part of [ab in the post-Newtonian
expansion. Since the ‘overdot’ tends to the well-defined Lie derivative with respect
to the time translation Killing vector field t̊a in Minkowski spacetime in the limit
Λ→ 0, the overall multiplicative factor H in (2.44) makes it transparent that also
[ab in its approximate form does vanish in the Λ→ 0 limit. This makes the limit
to Minkowski spacetime continuous.

Now let us come back to the question of the importance of the tail term. In
order to do so, we return to eq. (2.43) and, for r > −η, write χab as

χab(η, ~x) = 2G
R(ηret)

[
(1− r

r − η
) Q̈(ρ)

ab

]
+O(H) (2.47)

where R(ηret) = a(ηret) r is the physical distance between the source and the point ~x
at time η = ηret. The factor 1 in the square bracket comes from the sharp term while
the factor r/(r − η) comes from the tail term. At late times the two contributions
are comparable and at I+ they are in fact equal in magnitude but opposite in sign.
This occurs no matter how small Λ is! The remainder – i.e., the O(H) term – also
has contributions from both the sharp and the tail terms:

χrem
ab (~x) = 2GH

R(ηret)
[
2(1− 1

2
r

r − η
) Q̇(ρ)

ab + (1− r

r − η
)Q̇(p)

ab

+ 2H(1− 1
2

r

r − η
)Q(p)

ab

]
+ 2H3Cab . (2.48)

So that on I+, the linearized perturbation is:

χab(~x)=̂ 2GH2 [Q̇(ρ)
ab +HQ

(p)
ab ] + 2H3Cab . (2.49)

This analysis provides the precise sense in which the backscattering effects encoded
in the tail term – which can also be thought of as arising from the addition of a
mass term to the propagation equation of γ̄ab – provide an O(1) contribution to the
metric perturbation χab near I+. This is a concrete realization of the non-trivial
outcome of secular accumulation of small effects we referred to in Section 2.1.
Moreover, as we will see in the next section, the tail term contributes on an equal
footing as the sharp term to the expression of energy and angular momentum
radiated across I+. In fact, without the tail term these expressions are ill-defined!
This stresses the importance of the tail term for de Sitter spacetime. We will return
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to this point in the next section. A cautionary remark is in order at this point:
One should not take the Λ→ 0 limit of the above equation (2.49) from which one
would erroneously conclude to χab vanishes in this limit. As discussed, the Λ→ 0
limit is subtle and has to be taken in the (t, ~x) rather than the (η, ~x) chart. Since
the (t, ~x) chart breaks down at I+ (where η = 0 but t =∞), we cannot take the
limit of our χab at I+ of de Sitter spacetime. Rather, we have to ‘pass through’
the physical spacetime, as was done at the end of Section 2.2 and in this section.

Finally, let us discuss the slow motion expansion of the tail term. We start by
performing similar manipulations as in Section 2.3.1, but now apply these to the
tail term. We first write the tail term as

[ab = 4G
∫

d3x′
∫

d3y δ(~x′, ~y)
∫ ηRet

−∞
dη′ 1

η′
∂η′Tab(η′, ~y)

and Taylor expand the integrand around ~x′ = 0:

[ab = 4G
∫

d3x′
∫

d3y δ(~x′, ~y)
(∫ ηret

−∞
dη′ 1

η′
∂η′Tab(η′, ~y)

−x′c ∂
∂xc

∫ ηret

−∞
dη′ 1

η′
∂η′Tab(η′, ~y) + . . .

)
. (2.50)

where the . . . indicate the higher order terms in the Taylor expansion. We will
focus first on the first order term in ~x′ denoted by the superscript (1) on [ab and
rewrite it in the following way

[
(1)
ab = 4G

∫
d3x′

∫
d3y δ(~x′, ~y)

(
−x′c ∂

∂xc

) ∫ ηret

−∞
dη′ 1

η′
∂η′Tab(η′, ~y) (2.51)

= 4G
∫

d3x′
∫

d3y δ(~x′, ~y)
(
−x′c∂ηret

∂xc
∂

∂ηret

) ∫ ηret

−∞
dη′ 1

η′
∂η′Tab(η′, ~y) (2.52)

= 4G
∫

d3x′
x′cr̂c
ηret

∂ηretTab(ηret, ~x
′) , (2.53)

where in the last step the derivative with respect to ηret was taken and the integral
over y performed. Evaluated on I+, this term is

[
(1)
ab =̂− 4G

∫
d3x′

x′cr̂c
r

∂ηretTab(ηret, ~x
′) . (2.54)

Following the same arguments in Section 2.3.1, this term is order v. Comparing
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this term to the order v term of the sharp term (see the last term in eq. (2.23)), it
is obvious that these two terms are exactly equal in magnitude but opposite in sign
on I+. Hence, to first order in the Taylor expansion in ~x′, the terms proportional to
v cancel each other on I+. Note that this cancellation only occurs on I+ and not
inside spacetime due to the η−1

ret factor in eq. (2.53) as opposed to the r−1 factor in
eq. (2.23). Curiously, this cancellation does not only happen to the lowest order in
the multipolar expansion, but occurs to all order. For any nth-order in the Taylor
expansion, we can write:

[
(n)
ab = (−1)n 4G

ηret

∫
d3x′ x′c1 r̂c1 x

′c2 r̂c2 . . . x
′cn r̂cn ∂

n
ηretTab(ηret, ~x

′) + O(d(ηret))
r

=̂− (−1)n4G
r

∫
d3x′ x′c1 r̂c1 x

′c2 r̂c2 . . . x
′cn r̂cn ∂

n
ηretTab(ηret, ~x

′) + O(d(ηret))
r

=̂− ](n)
ab + O(d(ηret))

r

so that all terms proportional to vn in the sharp and tail term cancel each other
exactly on I+. On I+ the gravitational perturbation does not have any terms
proportional to vn!10 In other words, the gravitational wave perturbation on I+

expressed in terms of quadrupole moments in eq. (2.31) does not require the matter
distribution to move slowly; It is also true for sources that do not satisfy v � 1.

This leads to the following conundrum. Given that the gravitational wave
perturbation does not receive any corrections proportional to vn on I+, the gravi-
tational strain on I+ only contains information about the quadrupolar nature of
the source and information about the source’s higher multipole moments is lost.
Is this information indeed inaccessible to I+? Fortunately, it is not. Although
there are no terms proportional to vn in the gravitational wave perturbation on
I+, these terms are registered in the time derivative of this perturbation, ∂ηχab,
because ∂η[(n)

ab does not cancel ∂η](n)
ab on I+. Since the expressions for radiated

energy and angular momentum contain time derivatives of χab, as we shall see in
the next section, the fluxes presented there are only valid to O(v).11

10There are terms proportional to vmO(d(ηret))
r

n−m
, but these can be argued to be small by the

fact that O(d(ηret))
r is small.

11This is as anticipated based on the expectation that the Λ→ 0 should recover the expressions
for energy and flux radiated by a source on a Minkowski background and the Minkowski result
contains terms proportional to vn.
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2.4 Time-varying quadrupole moment and energy flux

In this section, we will carry out the second main step spelled out in Section 2.1:
We will use the approximate solution (2.43) to generalize Einstein’s quadrupole
formula for the energy ET carried away by gravitational waves across I+. Since
linearized gravitational fields do not have a gauge invariant, local stress-energy
tensor, we employ the covariant Hamiltonian framework used in [35] to compute
this energy.

This section is divided into three parts. In the first, we will discuss the asymptotic
behavior of the fields that enter the expression of energy ET , in the second, we will
derive the quadrupole formula, and in the third, we will discuss its properties.

2.4.1 I+ and the perturbed electric part Eab of Weyl curvature

As in the Λ = 0 case, it is simplest to obtain manifestly gauge invariant expressions
of fluxes of energy-momentum and angular momentum carried away by gravitational
waves using fields defined on I+. Therefore we need to carry out a future conformal
completion of the background spacetime (M+

P , ḡab). It is natural to seek a completion
that makes (M+

P , ḡab) asymptotically de Sitter in a Poincaré patch in the sense
of [31]. Because the physical metric ḡab has the form,

ḡab = a2 g̊ab ≡ (Hη)−2 g̊ab , (2.55)

it is easy to verify that such a conformal completion can be obtained by setting
the conformal factor Ω = −Hη, so that the conformally rescaled 4-metric, which is
smooth at I+, is simply the flat metric g̊ab. We will use this completion because
all our equations in the Cartesian chart of g̊ab and the solution χab will then
automatically hold on the conformally completed spacetime, including I+. The
final results, of course, will be conformally invariant as in [31,35].

The formulas for fluxes of energy-momentum and angular momentum involve
the so-called perturbed electric part of the Weyl tensor, Eab, at I+ [35]. Therefore,
we will first express Eab in terms of the metric perturbations – for which we already
have the explicit expression (2.43) in terms of the quadrupole moments – and then
discuss its properties needed in the subsequent discussion.

For any spacetime that is weakly asymptotically de Sitter spacetime, the
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Weyl curvature of the conformally rescaled metric at I vanishes and therefore
Ω−1Cabc

d admits a smooth limit there [31, 43]. De Sitter spacetime with linearized
perturbations is an example of a weakly asymptotically de Sitter spacetime and
hence Ω−1Cabc

d – which is the sum of the background Weyl curvature scalar and
the linearized perturbations, i.e. Ω−1Cabc

d = ΩC̊abcd + Ω−1 (1)Cabcd – also has a
smooth limit to I. Our conformally rescaled metric g̊ab is flat, whence the limit of
Ω−1C̊abc

d vanishes. Therefore, not only is the first order perturbation (1)Cabcd such
that Ω−1 (1)Cabcd admits a limit to I+, but furthermore the limit is gauge invariant.
The field of interest is the limit to I+ of its electric part,

Eab := Ω−1 ((1)Cambn ηmηn) = − (Hη)−1 ((1)Cambn ηmηn) , (2.56)

where, as before, ηa is the unit normal to the cosmological slices (η = const) with
respect to the conformal metric g̊ab and the indices are raised and lowered also
using g̊ab. We need to express Eab in terms of the (trace-reversed, rescaled) metric
perturbation χ̄ab produced by the source. This can be accomplished using the
expression of (1)Cabcd in terms of the metric perturbation γ̄ab, and the equation of
motion (2.9). The final result is:

Eab = 1
2Hη (q̊acq̊bd−

1
3 q̊abq̊

cd)
[1
2D̊cD̊dχ̃−D̊(cD̊

mχd)m−D̊(c ∂ηχd) +(∂2
η−

1
η
∂η)χcd

]
.

(2.57)
Let us discuss the limit of each term to I+. Although we already know from general
considerations that the left side of (2.57) admits a smooth limit to I+, some care
is needed to evaluate the right hand side because there is a (1/η) pre-factor, and
η = 0 at I+. However, because the explicit retarded solutions (2.11) decay as η,
one can show that the terms involving χ̃ and χā admit a smooth limit to I. A more
detailed calculation using (2.31) shows that the fourth term, (1/η)

(
∂2
η − 1

η
∂η
)
χab,

also has a smooth limit to I+:

1
η

(
∂2
η −

1
η
∂η

)
χāb̄ = 4G

r

[ 1
ηret

∂2
η

∫
d3~x′ Tāb̄(ηret, ~x

′)− 1
η2

ret

∂η

∫
d3~x′ Tāb̄(ηret, ~x

′)
]
.

(2.58)
Thus, we have expressed Eab at I+ in terms of the perturbed metric, as required.
In particular, in spite of the presence of a (1/η)-pre-factor in (2.57), each of the
four terms in that formula for Eab has well-defined limits to I+. Note, incidentally,
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that in this calculation not only does the tail term [ab in χab contribute but the
result would diverge at η = 0 without it. However, the process of taking derivatives
has made the integral over η′ in [ab disappear, showing that the propagation of the
left side of (2.58) sharp. These features and eq. (2.58) in particular will play an
important role in Section 2.4.2.

We will now discuss the properties of Eab that will be needed in subsequent
calculations. First, the field equations satisfied by the first order perturbation
(1)Cabc

d are conformally invariant. Since they are completely equivalent to the field
equations satisfied by the first order Weyl tensor in the flat spacetime (M+

P , g̊ab), we
know that the propagation of (1)Cabc

d is sharp along the null cones of g̊ab (which
are the same as the null cones of the de Sitter metric ḡab). Therefore the expression
of the field Eab at I+ in terms of source quadrupole moments is also sharp. Indeed,
this is true as the dynamical part of χab propagates along the null cone and so does
Eab. Second, in any neighborhood of I+ where there are no matter sources, the
field Eab is divergence-free

D̊aEab = 0. (2.59)

Thus, Eab is transverse, traceless on I+. This property will make the gauge
invariance of our expression of energy flux transparent. Finally, as one would
expect from the fact that Eab is gauge invariant, only the transverse-traceless (TT)
components of χab (in its decomposition into irreducible parts) contribute to Eab.
Let us begin with a standard decomposition of the ten components of the (rescaled,
trace-reversed) metric perturbation χ̄ab:

χ̃ := (ηaηb + q̊ab) χ̄ab , χ := q̊abχab, χa =: D̊aA+ ATa ,

χab =: 1
3 q̊ab q̊

cdχcd +
(
D̊aD̊b −

1
3 q̊abD̊

2
)
B + 2D̊(aB

T
b) + χTTab , (2.60)

where ATa and BT
a are transverse and χTTab is transverse-traceless,

D̊aATa = 0 D̊aBT
a = 0 D̊aχTTab = 0 q̊abχTTab = 0 , (2.61)

and χ̃, χ, B, D̊aA are the longitudinal modes. Using the gauge condition (2.3), one
can show that, in the expression (2.57) of Eab, all contributions from the longitudinal
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and trace parts of χ̄ab cancel out and Eab depends only on χTTab :

Eab = 1
2Hη

[
∂2
η −

1
η
∂η
]
χTTab , (2.62)

Since Eab and χTTab are both gauge invariant, the final relation (2.62) holds in any
gauge. The limit to I+ of this equality will play an important role in the next two
sub-sections.

Note that in the study of retarded fields produced by compact sources in
asymptotically flat spacetimes, one often uses an entirely different decomposition:
Here, the 1/r-part of χab (i.e., the far field approximation) of the full retarded
solution is projected into radial and the orthogonal spherical directions in physical
space. Unfortunately, the projection onto the spherical directions is also referred
to as the transverse-traceless parts of χab. For concreteness, let us denote by P b

a

the projection operator into the 2-sphere orthogonal to the radial direction in the
physical space and set χttab = (PacPbd − (1/2)PabP cd)χcd. In the literature, in place
of tt, the symbol TT is used also for this projection (see, e.g., Chapter 11 of [53],
or Section 4.5.1 in [54], or Section 36.10 in [55]). This is confusing because the two
notions of transverse traceless parts are distinct and inequivalent as we discussed
briefly in Chapter 1 and will elaborate upon in Chapter 4. The first notion is local
in momentum space and the resulting χTTab is exactly gauge invariant everywhere in
spacetime. The second notion, which we will continue to denote by χttab, is local
in physical space and χttab is gauge invariant only in a weaker sense involving 1/r
fall-offs.

2.4.2 Fluxes across I+

Let us calculate the flux of energy associated with the time translation T a across
I+. Since T a is a Killing field of the background spacetime (M+

P , ḡab) we know that,
for any choice of admissible conformal completion, T a admits a smooth extension
which is tangential to I+. For the choice Ω = −Hη of the conformal factor we
made above, T a also serves as the dilation vector field with respect to the intrinsic
3-metric q̊ab on I+:

T =̂ −H
[
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

]
. (2.63)
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From the detailed analysis of the covariant phase space ΓCov carried out in [35], the
total energy flux ET across I+ is given by the Hamiltonian generating the time
translation T a on ΓCov. (Here, we will denote the energy flux by ET instead of HT

as was done in Chapter 1.) The result can be expressed most simply in terms of
Eab and the Lie derivative of the metric perturbation with respect to T a at I+:

ET =̂ 1
16πGH

∫
I+

d3x Ecd
(
LTχab + 2H χab

)
q̊acq̊bd . (2.64)

Note that because Eab is transverse-traceless (TT ), the integral automatically
extracts the TT part of the term in the bracket and we have

ET =̂ 1
16πGH

∫
I+

d3x Ecd
(
LTχab + 2H χab

)TT
q̊acq̊bd

=̂ 1
16πGH

∫
I+

d3x Ecd
(
Tm∇̊mχab

)TT
q̊acq̊bd , (2.65)

where in the second step we have used the fact that (LTχab + 2H χab) = Tm∇̊mχab.
We note on the side that, because the derivative Tm∇̊m commutes with the operation
of taking the TT part on I+ (for proof of this and some of the other properties of
the TT part used in this section, see Appendix A), the integral can be rewritten as

ET =̂ 1
16πGH

∫
I+

d3x Ecd
(
Tm∇̊mχ

TT
ab

)
q̊acq̊bd (2.66)

which is manifestly gauge invariant.
Next, we return to (2.65) and use (2.62) to express Eab in terms of the TT -part of

χab. Using that fact that the operator (1/η)[∂2
η− 1

η
∂η
]
commutes with the operation

of taking the TT part, we have:

ET =̂ lim
→I

1
32πGH2

∫
d3x

[1
η

(
∂2
η −

1
η
∂η
)
χab

]TT [
Tm∇̊mχcd

]TT
q̊acq̊bd

=̂ lim
→I

1
32πGH2

∫
d3x

[1
η

(
∂2
η −

1
η
∂η
)
χab

] [
Tm∇̊mχcd

]TT
q̊acq̊bd (2.67)

where in the second step we removed the TT on the first square bracket because
the second square bracket is already TT and therefore the integral automatically
extracts only the TT part of the first square bracket. These expressions hold for
any solution χab that is source-free in a neighborhood of I+ (e.g. within the shaded
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region in the left panel of Figure 2.1).
We now use the approximations Do/`Λ � 1 and v � 1 spelled out in Section

2.3.1 and insert in (2.67) the convenient expression of χab given in (2.31). For the
first square bracket we use (2.58) and ∂ηf(η − r) = −∂rf(η − r) and evaluate the
expression at I+ by setting η = 0. The result is:

1
η

[(
∂2
η −

1
η
∂η
)
χāb̄

]
(~x) =̂ − 4G

r
∂r

(1
r
∂r

∫
d3x′ Tāb̄(ηret, ~x

′)
)
. (2.68)

As we noted after (2.58), although the tail term [ab in the expression (2.17) of
χab does contribute to the result, the process of taking derivatives has made the
constant term Cab in [ab disappear and the result depends only on the behavior of
the source at retarded time.

Next, consider the second square bracket in the integrand of (2.67). Since the
term multiplying this bracket has a well-defined limit to I+, we can replace Tm by
its limiting value −Hrr̂m at I+. Using (2.31,) we find that

[
Tm∇̊mχc̄d̄

]
(~x) = 4GH

r

∫
d3x′ Tāb̄(ηret, ~x

′) . (2.69)

Substituting (2.68) and (2.69) in the expression for radiated energy (2.67), perform-
ing an integration by parts, and using eq. (2.40) to express the integral over the
stress-energy tensor in terms of quadrupole moments, we obtain

ET =̂ G

8πH

∫ dr
r

d2S
[ (
∂rHr

(
Q̈

(ρ)
ab + 2H Q̇

(ρ)
ab +HQ̇

(p)
ab + 2H2Q

(p)
ab

))
×(

∂rHr
(
Q̈

(ρ)
cd + 2H Q̇

(ρ)
cd +HQ̇

(p)
cd + 2H2Q

(p)
cd

)TT) ]
q̊acq̊bd, (2.70)

where d2S is the unit 2-sphere volume element of the flat metric q̊ab at I+, and, as
before an ‘overdot’ denotes the Lie derivative with respect to T a. Finally, using
the fact that the operation r∂r commutes with the operation of extracting the
TT part and that the affine parameter T along the integral curves of T a satisfies
dT = dr/(rH) at I+, we obtain

ET =̂ G

8π

∫
I+

dT d2S
[
Rab(~x)RTT

cd (~x) q̊acq̊bd
]
, (2.71)
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where the ‘radiation field’ Rab(~x) on I+ is given by

Rab(~x)=̂
[...
Q

(ρ)
ab + 3HQ̈(ρ)

ab + 2H2Q̇
(ρ)
ab +HQ̈

(p)
ab + 3H2Q̇

(p)
ab + 2H3Q

(p)
ab

]
(ηret) , (2.72)

where, as before, ηret = η−r =̂ −r. Note that Rab is a field on I+ because, given a
point ~x on I+, the quadrupole moments Q(ρ)

ab and Q(p)
ab are obtained by performing

an integral over the source along the 3-surface η = ηret and these 3-surfaces change
as we change ~x on I+ (see Figure 2.1). This occurs also in the standard quadrupole
formula in flat space. There is, however one difference from the standard formula:
(2.71) uses the TT decomposition rather than the tt decomposition. Indeed, since
the tt decomposition used in the flat space analysis is tied to the 1/r-expansion,
it is not very useful in the de Sitter context. One consequence is that the TT
label appears only on the Rcd term in (2.71); the term Rab is not automatically
TT because the volume element in (2.71) is not d3x. Finally, while components
of individual terms such as

...
Q

(ρ)
āb̄

(0, ~x) depend only on r ≡ |~x| at I+ and not on
angles, an angular dependence is introduced while taking the TT part. Therefore,
the total integrand of (2.71) has a genuine angular dependence; otherwise one could
have trivially performed the angular integral and replaced it just by a 4π factor.
Conceptually, this situation is the same as for the standard quadrupole formula in
flat spacetime: the tt operation also introduces angular dependence.

Finally, as in the Λ = 0 calculation, let us extract power PT radiated by the
system at any ‘instant of time’ T0 at I+ (i.e., a 2-sphere cross-section of I+,
orthogonal to the orbits of the ‘time-translation’ T a):

PT (T0) =̂ G

8π

∫
T=T0

d2S
[
Rab(~x)RTT

ab (~x)
]

(2.73)

While the expression (2.64) of radiated energy is completely local in χab, a degree
of non-locality enters while casting it in terms of sources: (2.73) involves only the
TT -part of one of the radiation fields. However, because the TT -part is taken only
for one of the two radiation fields, one can show that if LTTab = 0 at an instant
ηo, then the power at I+ vanishes at the cross-section T = T0 representing the
intersection of I+ with the null cone with vertex (ηo, ~x = ~0).

The expression (2.71) of radiated energy is the main result of this section. As in
Einstein’s quadrupole formula, it has been derived using the first post-Newtonian
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approximation under the assumption that we have an externally specified, first
order stress-energy tensor Tab satisfying the conservation equation with respect to
the background metric.

Remark: The covariant phase space ΓCov constructed and used in [35] to obtain
flux formulas at I+ consists of homogeneous solutions to linearized Einstein’s
equations. In this chapter, we are considering retarded solutions with a first order
source Tab. However, in the shaded neighborhood of I+ shown in the left panel of
Figure 2.1, all (trace-reversed) metric perturbations γ̄ab satisfy the homogeneous
equation and there is a family of Cauchy surfaces for this neighborhood that
approach I+. Therefore, one can use the covariant phase space framework in this
neighborhood to calculate fluxes of energy, momentum and angular momentum
carried by the perturbations γ̄ab across I+. In this calculation, we used the leading-
order terms in the expression (2.43) of χab, ignoring terms of order O

(
(Do/`Λ)(1−

η/r)
)
and O(v) compared to terms of order O(1). However, as noted before, the

simplified formula (2.31) for the field χab is valid in an entire neighborhood of I+

(the shaded region in the left panel of Figure 2.1). Finally note that, since the flux
formula is gauge invariant, the calculation can be carried out in any gauge.

2.4.3 Properties of fluxes across I+

Our formula of the energy carried by gravitational waves across I+ have several
interesting features which we now discuss in some detail.

(1) First, the cosmological constant term does survive (through H =
√

Λ/3)
even at I+. Nonetheless, we explicitly see that, in this first post-Newtonian ap-
proximation, the radiated energy is still quadrupolar.

(2) As we discussed in Section 2.4.1, because of its conformal properties, it is
clear that Eab has sharp propagation. However, the fundamental formula (2.64)
for the energy flux, we started out with depends also on χab whose expression
does contain an integral over all η′ that extends all the way back to η′ = −∞.
So, why is there no such integral in the final expressions of radiated energy? The
reason is that what features in (2.64) is not χab itself but rather, its derivative,
(LT + 2H)χab =̂ − Hr ∂rχab. The integral over η′ disappears while taking this
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derivative, as we saw in (2.69). This is why our quadrupole formula (2.71) does not
contain an explicit tail term in spite of backscattering due to the background de
Sitter curvature. As in the asymptotically flat case, of course, tail terms will arise
at higher post-Newtonian orders.

(3) In contrast to the Einstein formula, there is a contribution from the time
variation of the pressure quadrupole and, furthermore, from the pressure quadrupole
itself. It is well known from the Raychaudhuri equation in cosmology that pressure
contributes to gravitational attraction in any FLRW universe. Eq. (2.71) shows
that, if Λ > 0, it also sources gravitational waves already in the leading order post-
Newtonian approximation. If p� ρ as for Newtonian fluids, then the pressure terms
HQ̈

(p)
ab +3H2Q̇

(p)
ab can be neglected compared to the density terms 3HQ̈(ρ)

ab +2H2Q̇
(ρ)
ab

and the expression (2.72) of Rab simplifies to:

Rab(~x) =
[...
Q

(ρ)
ab + 3HQ̈(ρ)

ab + 2H2Q̇
(ρ)
ab + 2H3Q

(p)
ab

]
(ηret) . (2.74)

For compact binaries of immediate interest to the gravitational wave detectors, we
also have ∆tret/tH � 1 where ∆tret is the dynamical time scale in which the mass
and pressure quadrupole change by factors of O(1) and tH , the Hubble scale.12

Then the formula further simplifies and acquires a form similar to that of the Λ = 0
Einstein formula:

Rab(~x) =
...
Q

(ρ)
ab (ηret) (2.75)

When Λ is as tiny as the observations imply, the de Sitter quadrupole and its
‘overdots’ are extremely well approximated by those in Minkowski spacetime and
the Λ > 0 first post-Newtonian approximation is extremely well-approximated by
the standard one. The full expression (2.72) provides a precise control over the
errors one makes while using the Einstein formula in presence of Λ.

(4) Positivity of energy flux is not transparent because the integrand of (2.71)
is not manifestly positive, as it is in Einstein’s formula for flat space. However, one
can establish positivity as follows. First, properties of the retarded Green’s function
imply that the χTTab (η, ~x) can be expressed using the TT part T TT ′ab of Tab(η, ~x′),

12This need not be the case for the very long wavelength emission due to the coalescence of
supermassive black holes.
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where the prime in TT ′ emphasizes that the transverse traceless part refers to the
argument ~x′:

χTTāb̄ (η, ~x) = 4G
∫ d3~x′

|~x− ~x′|
T TT ′āb̄ (ηRet, ~x

′) + 4G
∫

d3~x′
∫ ηRet

−∞
dη′ 1

η′
∂η′T TT

′

āb̄ (η′, ~x′) .

(2.76)
(The TT in χTT

āb̄
(η, ~x) on the left side refers to ~x.) Next, let us rewrite the expression

(2.67) in terms of χTTab

ET =̂ lim
→I

1
32πGH2

∫
d3x

[1
η

(
∂2
η −

1
η
∂η
)
χTTab

] [
Tm∇̊mχ

TT
cd

]
q̊acq̊bd (2.77)

where we have used the fact that ∂η and Tm∇̊m commute with the operation of
taking the TT part. Finally, let us substitute (2.76) in (2.77) and simplify following
the procedure of Section 2.3.1 and steps used to pass from (2.67) and (2.69).13 We
obtain:

ET =̂ G

2π

∫
I+

dT d2S
[
∂r

∫
d3x′T TT ′ab (ηret, ~x

′)
] [
∂r

∫
d3x′T TT ′cd (ηret, ~x

′)
]
q̊acq̊cd ,

(2.78)
which is manifestly positive.

As we discussed in Chapter 1, de Sitter spacetime admits gravitational waves
whose energy can be arbitrarily negative in the linearized approximation because
the time translation Killing field T a is space-like in a neighborhood of I+. In-
deed, for systems under consideration, gravitational waves satisfy the homogeneous,
linearized Einstein’s equations in a neighborhood of I+ and there is an infinite
dimensional subspace of these solutions for which the total energy is negative [35].
What, then, is the physical reason behind the positivity of our ET ? Consider the
shaded triangular region in the left panel of Figure 2.1. It is bounded by I+, upper
half of E+(i−) and E−(i+). The time translation vector field T a is tangential to
all these three boundaries, being space-like on I+, null and past directed on the
upper half of E+(i−), and null and future directed on E−(i+). As a result, for any
solution, the energy flux across the upper half of E+(i−) is negative, that across
E−(i+) is positive, and that across I+ is the sum of the two, which can have either

13We assume that integrals involving T TT ′

ab are all well-defined. This is a plausible assumption
since Tab is smooth and of compact support whence its Fourier transform is also in Schwartz
space.
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sign and arbitrary magnitude. Thus, the potentially negative energy contribution at
I+ can be traced directly to the incoming gravitational waves across the upper half
of E+(i−). Now, in the present calculation, physical considerations led us to the
retarded metric perturbation created by the time varying quadrupoles. Therefore
there is no flux of energy across the cosmological horizon E+(i−); the potential
negative energy flux across I+ is simply absent. The entire energy flux across I+

equals the energy flux across E−(i+) which is always positive because T a is future
directed there. To summarize then, while in general the energy flux across I+ can
have either sign, the metric perturbation χ̄ab at I+ created by physically reasonable
sources are so constrained that the energy carried by gravitational waves across I+

is necessarily positive.

(5) The fifth feature concerns time dependence of the source. Equations satisfied
by the full (trace-reversed, rescaled) metric perturbation χ̄ab refer only to the
background metric ḡab and T a is a Killing field of ḡab which is time-like in the region
in which the source Tab resides. Therefore, it follows that if the source is static, i.e.,
if LTTab = 0, then the retarded solution χ̄ab must satisfy LT χ̄ab = 0. Physically,
one would expect there to be no flux of energy across I+. But this is not manifest
in eq. (2.71) since it contains a term Q

(p)
ab that does not involve a time derivative.

Let us therefore examine the fields that enter the definitions (2.35) and (2.36) of
quadrupole moments. A simple calculation shows that, if LT Tab = 0, the fields
that enter the definitions of quadrupole moments satisfy

LT ρ = 0; LT p = 0; LT a(η)xb̄ = 0; LT e̊āa = −H e̊āa; (2.79)

and the 3-dimensional volume element dV is preserved under the isometry generated
by T a. Therefore we have:

LT Q(ρ)
ab = −2H Q

(ρ)
ab and LT Q(p)

ab = −2H Q
(p)
ab . (2.80)

Thus, in contrast to what happens in the Minkowski spacetime calculation, because
of the expansion of the de Sitter scale factor, now LT Tab = 0 does not imply that
quadrupoles are left invariant by the flow generated by T a. However, using (2.43),
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(2.71), (2.73) and (2.80), it immediately follows that

if LT Tab = 0 everywhere, then ET =̂ 0, and PT (T0) =̂ 0 (2.81)

for all T0. (In fact, it follows from eq. (2.73) that an ‘instantaneous’ result also holds:
if LT Tab |η=ηret= 0, then PT (T0)=̂0 where ηret = η− r0=̂− r0 and T0=̂ 1

H
ln |r0H|.)

Thus, the presence of the term without a time derivative of the pressure quadrupole
Q

(p)
ab is in fact essential to ensure that if LT Tab = 0 then ET and PT (T0) vanish on
I+.14

(6) Next, let us consider the limit Λ → 0. The procedure is rather long as
we have to ‘pass through’ the physical spacetime as in [35] and use results from
the covariant phase space framework relating expressions involving the TT and tt
decompositions in Minkowski spacetime. We will only summarize the main steps
here.

Consider the 1-parameter family of de Sitter backgrounds ḡ(Λ)
ab , parametrized

by Λ, with a 1-parameter family T (Λ)
ab of stress-energy tensors, each satisfying the

conservation law with respect to the respective ḡ(Λ)
ab and the condition LTT (Λ)

ab = 0
outside a compact time interval. Let χ(Λ)

ab (t, ~x) denote the retarded solutions (2.31)
to the field equations and gauge conditions. For each Λ, one can express this
solution in terms of the source quadrupoles as in (2.43). The question is whether as
Λ→ 0 this 1-parameter family of solutions has a well-defined limit χ̊ab(t, ~x). If so,
the analysis in Section IV.B.2 of [35] shows that: i) χ̊ab(t, ~x) satisfies the dynamical
equation and gauge conditions with respect to the Minkowski metric η̊ab; and, ii)
the expression (2.71) of energy in the gravitational waves has a well-defined limit,
which is furthermore precisely the energy in the solution χ̊ab(t, ~x), calculated in
Minkowski spacetime.

We have already shown in Section 2.2 that the exact retarded solutions do tend
to the exact retarded solution in Minkowski spacetime. We will now show that this
is also the case for the approximate solution (2.43). As discussed in Section 2.3.3,
the tail term expressed in terms of quadrupole moments vanishes in the limit Λ→ 0.

14This consistency would have been obscured if we had ignored the pressure terms relative to
the density terms in (2.40), and used the resulting approximation (2.42) to arrive at the expression
of χab. That is why we kept all the pressure quadrupole terms even though they can be ignored
relative to the analogous density quadrupole terms for Newtonian fluids.
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The discussion for the sharp term ]ab(t, ~x) in (2.43) is more delicate. In the Λ→ 0
limit, we have T a → t̊a, a time translation in Minkowski metric η̊ab; LT → Lt;
a(t) → 1 and Q

(ρ)
ab → Q̊

(ρ)
ab , the mass quadrupole moment constructed from the

limiting stress-energy tensor T̊ab using the Minkowski metric η̊ab. Therefore, the
limiting solution is given by

lim
Λ→0

χ
(Λ)
ab (t, ~x) = 2G

r
Lt Lt Q̊(ρ)

ab (tret) =: χ̊ab(t, ~x) (2.82)

for all r � d(t), where d is the physical size of the source with respect to the
Minkowski metric η̊ab. Now, since by assumption the source is active for a finite
time interval, on a t = const surface sufficiently in the future, the support of
the initial data of χ̊ab(t, ~x) is entirely in a region where the approximation holds.
Let us consider only the future of this slice. In that spacetime region we have a
1-parameter family of solutions χ(Λ)

ab (t, ~x) to the source-free equations whose total
energy is given by (2.71) for each Λ > 0. The limit χ̊ab(t, ~x) is well-defined, as
required. Therefore, in the Λ→ 0 limit the energy expression (2.71) goes over to
the energy in χ̊ab(t, ~x) with respect to t̊a in Minkowski space (see eq. (4.24) of [35]).
And we know that this energy is given by the Einstein formula. Thus, in the limit
Λ→ 0 one recovers the standard quadrupole formula in Minkowski spacetime.

To summarize, our energy expression (2.71) arises as the Hamiltonian on the
covariant phase space of linearized solutions on de Sitter spacetime, and using
results from [35] we can conclude that it tends to the expression of the Hamiltonian
in Minkowski space in the Λ → 0 limit, which in turn reduces to the Einstein
flux formula at I̊+. The argument is indirect at the moment because in linearized
gravity off Minkowski spacetime we have not specified the relation between the
TT and tt decompositions. The equality between the two expressions of energy,
the first evaluated on space-like planes in terms of the TT decomposition and the
second, evaluated at I+ in terms of tt is well known. In the next chapter, we will
also make te relation between the TT and tt decomposition of the gravitational
wave perturbation off Minkowski spacetime explicit. This will close the gap in the
indirect argument above and make it transparent that in the Λ→ 0 limit the power
radiated on a de Sitter background reduces to the power on a Minkowski background.

(7) So far we have focussed on the energy carried by gravitational waves. Let us

52



now discuss the flux of 3-momentum across I+. The component of the 3-momentum
along a space translation Saī is given by [35]

P ī =̂ 1
16πGH

∫
I+

d3x Ecd
(
LSī

χab
)
q̊acq̊bd (2.83)

We can again use (2.62) to express Ecd in terms of χcd: Eab = [ 1
η

(∂2
η − 1

η
∂η)χab]TT .

Now, it is clear from the expression (2.31) of χab that its dependence on ~x comes en-
tirely from ηret. Therefore, χab in invariant under the parity operation Π : ~x→ −~x,
whence 1

η

(
∂2
η − 1

η
∂η
)
χab is also invariant. Since the operation of taking the TT -part

refers only to the 3-metric q̊ab, it also commutes with Π. Hence Eab is even under
Π. The second term, Smī D̊mχab is manifestly odd under Π since Sa is odd but χab
is even. Therefore the integral on the right side of (2.83) vanishes. Thus, as in the
Λ = 0 case, the gravitational waves sourced by a time changing quadrupole do not
carry 3-momentum in the post-de Sitter, first post-Newtonian approximation so
long as Do � `Λ.

(8) Finally, let us consider angular momentum. The flux of angular momentum
in the ī-direction is given by [35]:

Jī =̂
1

16πGH

∫
I+

d3x Ecd
(
LRī

χab
)
q̊acq̊bd (2.84)

where Rm
ī is the rotational Killing field in the ī-th spatial direction. Now, since

the ~x-dependence in χab is derived entirely through ηret, we have

LRī
χab = χmb D̊aR

m
ī + χam D̊bR

m
ī = −2χm(b ε̊a)n

m e̊nī . (2.85)

Hence,
Jī =̂ −

1
8πGH

∫
I+

d3x Ecd
(̊
εam

n e̊mī χnb
)
q̊acq̊bd (2.86)

Since χcd now appears without a derivative in (2.86), there is a major difference
between the calculations of energy and 3-momentum fluxes across I+: Now the
integral over η′ in the tail term [ab in the expression (2.43) of χab persists. To
evaluate the right side of (2.86), for the sharp term of χab we use eq. (2.43) and for
the tail term the integrated expression in eq. (2.46), and for Eab we use eqs. (2.62)
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and (2.68) as in the calculation of the energy flux. These simplifications lead to:

Jī =̂
G

4π

∫
I+

dT d2S
[
Rab

] [̊
εam

n e̊mī
(
Q̈

(ρ)
nb +HQ̇

(ρ)
nb +HQ̇

(p)
nb +H2Q

(p)
nb

) ]TT
,

(2.87)
where, as before T is the affine parameter along the integral curves of the ‘time
translation’ Killing field T a and Rab is defined in (2.72). Note that if the stress-
energy satisfies LTTab = 0 at some time η = ηo then the ‘radiation field’ Rab

vanishes on the cross-section r = ηo on I+, whence the flux of (energy and) angular
momentum vanish on that cross-section. Similarly if LRī

Tab vanishes at η = ηo,
then the flux of angular momentum vanishes on the cross-section r = ηo. Finally,
in the limit Λ→ 0, using the same argument as that used for energy, one can show
that (2.86) reduces to the standard formula in Minkowski spacetime. (Again the
argument is indirect at the moment because the expression of the Hamiltonian
generating rotations on the covariant phase space in Minkowski spacetime involves
the TT part of the solution while the standard expression of angular momentum
at null infinity involves the tt-part. To make this argument direct, we show their
equivalence on I in Chapter 4.)

2.5 Discussion

Einstein’s quadrupole formula has played a seminal role in the study of gravitational
waves emitted by astrophysical sources. His analysis was carried out only to the
leading post-Newtonian order, assuming that the time-changing quadrupole is a
first order, external source in Minkowski spacetime. In spite of these restrictions, his
quadrupole formula sufficed to bring to forefront the extreme difficulty of detecting
these waves. However, thanks to the richness of our physical Universe and ingenuity
of observers, impressive advances have occurred over the last four decades. First,
the careful monitoring of the Hulse-Taylor pulsar has provided clear evidence for
the validity of the quadrupole formula to a 10−3 level accuracy. Furthermore,
gravitational wave observatories, equipped with detectors with unprecedented
sensitivity, have directly detected gravitational waves [2, 3]. Therefore it is now
all the more important that our theoretical understanding of gravitational waves
be sufficiently deep to do full justice to the impressive status of the field on
the observational front. The goal of this dissertation is to fill a key conceptual
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gap that still remains: incorporation of the positive cosmological constant in our
understanding of the properties of gravitational waves and dynamics of their sources.

Since the observed value of the cosmological constant is so small, one’s first
reaction is just to ignore its presence. However, as discussed in Chapter 1 and
Section 2.1, even a tiny cosmological constant can cast a long shadow because
it abruptly changes the conceptual set-up that is used to analyze gravitational
waves. Therefore, without a systematic analysis, one can not be confident that the
quadrupole formula would continue to be valid in presence of a positive cosmological
constant.

Indeed, our analysis revealed that the presence of a cosmological constant does
modify Einstein’s analysis in unforeseen ways. In particular:
(i) The propagation equation for metric perturbations in the transverse-traceless
gauge is not the wave equation as in Minkowski spacetime, but has an effective
mass term (see eq. (2.2)). Although this mass is tiny, there is potential for
the differences from Minkowskian propagation to accumulate over cosmological
distances to produce O(1) departures in the value of the metric perturbation in
the asymptotic region;
(ii) The retarded field receives contributions from both a sharp term and a tail
term due to the backscattering by de Sitter curvature. Cumulative effects make the
tail term comparable to the sharp term (which has the same form as in Minkowski
spacetime) in the asymptotic region near I+;
(iii) Since the radial r coordinate goes to infinity I̊+ of Minkowski spacetime, the
analysis of waves makes heavy use of 1/r expansions. These can no longer be used
in de Sitter spacetime because r ranges over the entire positive real axis on de
Sitter I+. In particular, the tt-decomposition, that is local in space being tailored
to the 1/r expansions in Minkowski spacetime, is no longer meaningful near de
Sitter I+. Thus, two of the main techniques used for spacetimes with Λ = 0 do not
apply when analyzing gravitational radiation near/on de Sitter I+.
(iv) The retarded, first order metric perturbation depends not only on the mass
quadrupole as in Einstein’s calculation but also on the pressure quadrupole. Also,
while only the third time derivative of the mass quadrupole features in Einstein’s
calculation, now we also have a contribution from lower time derivatives of the two
quadrupoles, as well as the pressure quadrupole itself;
(v) The physical wavelengths λphys of perturbations grow exponentially as the
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wave propagates and vastly exceed the curvature radius `Λ = H−1 ≡
√

3/Λ in
the asymptotic region near I+. Since waves ‘experience’ the curvature, their
propagation is quite different from that in flat space. Also, since the expression
(2.67) involves the metric perturbation evaluated in the zone where λphys > `Λ, a
priori the effect of Λ on radiated energy could be non-negligible;
(vi) I+, the arena used to analyze properties of gravitational waves unambiguously
changes its character from being a null future boundary of spacetime to a space-like
one. As a result, all Killing fields of the background de Sitter spacetime – including
the ‘time translation’ used to define energy – are space-like in a neighborhood
of I+. Consequently, while linearized gravitational waves carry positive energy
in Minkowski spacetime, de Sitter spacetime admits gravitational waves carrying
arbitrarily large negative energy.

These differences are sufficiently striking to cast a doubt on one’s initial intuition
that the cosmological constant will have no role in the study of compact binaries.
For example, they open up the possibility that Einstein’s quadrupole formula could
receive significant corrections – e.g., of the order O(Hλphy) – even though the
observed value of H is so small. Interestingly, the final expression (2.73) of radiated
power shows that this does not happen for astrophysical processes such as the
Hulse-Taylor binary pulsar, or the compact binary mergers that are of greatest
interest to the current ground based gravitational wave observatories. How does
this come about? Why do the qualitative differences noted in the last paragraph
not matter in the final result for these systems? The physical reasons can be
summarized as follows:
(a) First, while the propagation of χab indeed has a tail term, the dynamical part of
the tail term propagates along the null cone. The non-dynamical part is simply a
constant term that does not play a role in radiated energy as only certain derivatives
of χab contribute to energy.
(b) Second, while the final expressions (2.71) and (2.87) of radiated energy and
angular momentum are evaluated at I+, the integrand refers to the time derivatives
of quadrupole moments evaluated at retarded instants of time. In other words,
even though (2.71) and (2.87) involve fields at late times, the time scales in the
‘dots’ in these expressions are determined by λsource

phy , the wavelength evaluated
at the source, and not by the exponentially larger physical wavelengths λasym

phy in
the asymptotic region. Therefore for the sources on which gravitational wave
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observatories will focus in the foreseeable future, HQ̈(ρ)
ab , for example, is suppressed

relative to
...
Q

(ρ)
ab by the factor H λsource

phy (rather than enhanced by the factor H λasym
phy )

and
...
Q

(ρ)
ab completely dominates over the remaining 5 terms (which have H,H2 or

H3 as coefficient). In particular, the pressure quadrupole can be neglected for these
sources. Had our expression of power referred to time scales associated with the
asymptotic values of λphy, effects discussed in the previous paragraph would have
completely altered the picture. Then, the terms with the highest powers of H –
in particular the pressure quadrupole Q(p)

ab term – would have dominated and the
contribution due to

...
Q

(ρ)
ab would have been completely negligible!

(c) Third, while a neighborhood of I+ in the Poincaré patch (M+
P , ḡab) does admit

gravitational waves carrying arbitrarily large negative energies, our calculation
showed that such waves can not result from time-changing quadrupoles. The
reason is simplest to explain using the shaded region in the left panel of Figure 2.1.
Negative contribution to the energy at I+ can come only from the waves that arrive
from the upper half of E+(i−). But the physics of the problem led us to consider
retarded solutions with the given Tab as source and for these solutions there is no
energy flux at all across E+(i−). This is why our energy flux (2.71) across I+ is
necessarily positive.

Because of these reasons, for binary coalescences that are of greatest interest
to the current gravitational wave observatories, energy and power are determined
essentially by the third time derivative of the mass quadrupole, as in Einstein’s
formula. This quadrupole moment (2.35) is calculated using the physical de Sitter
geometry and the time derivative ‘overdot’ refers to the Lie derivative with respect
to the de Sitter time translation T a. However, in the limit Λ → 0, it goes over
the mass quadrupole used in Einstein’s formula. Therefore, for compact binaries
of interest to the current gravitational wave observatories, the difference is again
negligible.

However, there are some circumstances in which the differences between Λ = 0
and Λ > 0 could be significant. First, consider the tail term in the expression (2.43)
of χab. Since it arises because of backscattering due to de Sitter curvature, it is
proportional to H. However, it involves an integral over a cosmologically large
time interval which could compensate the smallness of H and make the tail term
comparable to the one that arises from sharp propagation. The tail term could then
yield a significant new contribution to the memory effect [29,56,57] for detectors
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placed near I+. A second example is provided by mergers of supermassive black
holes at the centers of two different galaxies, such as Milky way and Andromeda.
Since the time scales associated with such galactic coalescences are cosmological,
the various effects discussed above will come into play. Gravitational waves created
in this process will have extremely long wavelength already at inception, making
the departures from Einstein’s quadrupole formula significant. While these waves
will not be detected directly in any foreseeable future, they provide a background
which could have indirect influences. An illustration of this general mechanism is
provided by inflationary cosmology, where super-horizon modes can induce non-
Gaussiantities in observable modes due to mode-mode coupling resulting from
non-linearities of general relativity (see, e.g., [60, 61]).

To conclude, we note that this analysis also provides some hints for the grav-
itational radiation theory in full, non-linear general relativity with a positive Λ
which would be of interest to geometric analysis, because of issues such as the
positivity of total energy. First, to describe an isolated gravitating systems such as
an oscillating star, or one collapsing to form a black hole, or a compact binary, it
would be appropriate to consider only the portion of full spacetime that is bounded
in the future by I+ and in the past by the future cosmological event horizon E+(i−),
where the point i− represents the past time-like infinity defined by the source. This
is because the isolated system and the radiation it emits would be invisible to the
rest of the spacetime. Second, the ‘no-incoming radiation’ boundary condition will
have to be imposed on the past boundary, E+(i−). Since this is an event horizon,
a natural strategy would be to demand that it be a weakly isolated horizon [62–64].
It would be interesting to analyze if this condition would suffice to ensure that the
flux of energy across I+ is positive, as in the weak field limit discussed here. If so,
one would have the desired generalization of the celebrated result due to Bondi and
Sachs that gravitational waves carry away positive energy, in spite of the fact that
the corresponding asymptotic ‘time translation’ on I+ would now be space-like for
Λ > 0. Third, results of [31] and [35] suggest that there will be a 2-sphere ‘charge
integral’ – representing the generalization of the notion of Bondi-Sachs energy to
the Λ > 0 case – and the difference between charges associated with two different
2-spheres will equal the energy flux across the region bounded by the two 2-spheres.
A natural question is whether this charge is also positive.15 Fourth, the form (2.43)

15These Bondi-type charge integrals will also refer to an asymptotic ‘time-translation’. They
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of the solution χab at I+ implies that the recently proposed [42] generalization
of Bondi-type expansions for full general relativity can describe at most half the
desired set of asymptotically de Sitter spacetimes. A further generalization is
necessary to capture both polarizations at I+. Finally, in the linear approximation
considered in this chapter, the past cosmological event horizon E−(i+) of the point
at future time-like infinity could be taken to lie in the ‘far zone’. Furthermore,
since there is no incoming radiation across E+(i−) from (the shaded portion of
the left panel of) Figure 2.1 it follows that the flux of energy across E−(i+) equals
that across I+ and is, in particular, positive. In full, non-linear general relativity,
then, E−(i+) may well serve as an ‘approximate’ I+ to analyze gravitational waves.
Because this surface is null, it may be easier to compare results in the Λ > 0 case
with those in the Λ = 0 case in full general relativity.

will be distinct from the ADM-type charge-integral associated with a conformal – rather than
time-translation – symmetry discussed in [65], and the intriguing 2-sphere integral recently
discovered [66], both of which are known to be positive.
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Chapter 3 |
Power radiated by a binary system in
a de Sitter Universe

3.1 Introduction

In this chapter, we apply the general formula for power radiated on a de Sitter
background to a concrete physical example. A widely studied example in the Λ = 0
case is gravitational radiation emitted by a binary system of orbiting bodies. There
one uses a Newtonian description for the orbital motion of the binary system to
calculate the mass quadrupole moments of the source. Then using the first-order
post-Newtonian approximation, one calculates the power radiated by this system at
I of Minkowski spacetime by looking at the third time derivative of the quadrupole
moment squared. We will use similar approximations in the Λ > 0 case. In
particular, we will consider the dynamics of the source only on a short time scale
compared to the time scale associated with

√
Λ such that the expansion of the

scale factor can be neglected in describing the orbital motion and a Newtonian
description of the orbital dynamics applies. That is, we will neglect terms that are
O(
√

Λtc) where tc is the characteristic time scale of the system. This is also known
as the high-frequency approximation. As a consequence, the stress-energy tensor
describing the source is not conserved with respect to the de Sitter background
and is only conserved up to O(

√
Λtc) and the resulting gravitational wave is an

approximate solution valid to O(
√

Λtc). Given this approximate solution, we can
now calculate the power radiated. From the general formula for radiated power on a
de Sitter background in eq. (2.73), the only term that survives in this approximation
scheme is the third time derivative of the quadrupole moment squared. Although
this formula now looks deceivingly similar to the formula for power radiated on a
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Minkowski background, it is different in two important aspects. First, the power
radiated on a de Sitter background is evaluated on I of de Sitter spacetime which
is space-like, whereas the power radiated on a Minkowski background is evaluated
on its I which is null. Second, the notion of energy and power refers to a time
translation symmetry. The world line of the center of mass of the binary follows a
Killing trajectory and time derivatives of the quadrupole moment are defined by this
Killing field. Therefore it is natural to use it to define energy and power. However,
this vector field is space-like near and on de Sitter I, while it is everywhere time-like
in Minkowski spacetime (and becoming null only at I). In addition to these two
crucial conceptual differences, the calculational tools used in the derivation of both
formulas are rather different.

This first application of the general formula for power radiated on a de Sitter
background illustrates nicely some of the general properties of gravitational power
in a concrete example as well as highlighting aspects unique to the power emitted
by a binary system. Here, we restrict ourselves to a binary system that evolves
in an orbit that is well-approximated by a circular orbit. A good understanding
of the amount of power radiated by such a relatively simple system is important
for both indirect and direct observations of gravitational waves emitted by binary
systems. If the power radiated in the form of gravitational waves was altered by
the cosmological constant, the shrinking of the orbit and the decay in period would
be modified as well. This would affect indirect observations of gravitational waves
that depend on the time derivative of a binary’s rotational period over long periods
of time [67,68], as well as direct observations since the power directly influences
the evolution of the waveform [69,70]. In addition, a thorough comprehension of
the power radiated by this system is interesting from a theoretical standpoint.

This chapter is structured as follows. First, we carefully spell out all the
approximations made to model a binary system on a de Sitter background in
Section 3.2. Given these approximations, the resulting power is presented in
Section 3.3 and compared to the power radiated in Minkowski spacetime. This is
the heart of this chapter. Details of the calculation of the transverse-traceless part
of the radiation field, needed to calculate the power, are included in Appendix A.
Section 4.5 contains a summary of the result.
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3.2 Preliminaries: Physical set-up

The physical system of interest is a binary and one models this system by a linearized
source on a cosmological background spacetime. Ideally, one would like to consider
a realistic FLRW model describing the different epochs of the Universe that the
gravitational radiation emitted by this system would have traveled through. Here
we take the approach that we would like to know the maximal possible effect of
the cosmological constant on the gravitational radiation. Therefore, we ignore the
radiation- and matter-dominated epochs of our cosmological history and consider a
de Sitter background.1

To dynamically model the world lines of the two bodies with mass m1 and m2

making up the binary system, we make similar assumptions as in the standard treat-
ment of sources in expanding spacetimes with Λ = 0 [71,72].2 These assumptions
are:

1. The characteristic (proper) time scale of the system tc and the expansion rate
of the background are assumed to be such that the expansion of the Universe
can be neglected during the orbital cycles of interest:

ȧ

a
tc � 1 ⇐⇒

√
Λtc � 1. (3.1)

This is the familiar high-frequency (short-wave) approximation [73].3

2. The relative physical separation between the two bodiesR∗(= ar∗ = a |~r1 − ~r2|)
is such that the bodies are far apart compared to the Schwarzschild radius of
either body:

Gm

R∗
� 1 and Gµ

R∗
� 1 , (3.2)

1A purely de Sitter background is also appropriate for the stochastic background of gravitational
waves from an inflationary period, but that radiation is source-free.

2Thanks to Eric Poisson for clarifications in a private communication.
3Technically, the high-frequency approximation is formulated in terms of conformal time η:

Hηc � 1 where H = 1
a
∂a
∂η and ηc is the characteristic conformal time. Given tc, however, we

can relate this to the characteristic conformal time by ηc ' tc
ae

(where ae is the scale factor at
the time of emission). Since Hηc ' H tc a/ae, H(η)ηc � 1 is the same as Htc � 1 when we
evaluate expressions at the time of emission. For a de Sitter background, the Hubble parameter
is H =

√
Λ
3 so that the high-frequency approximation is equivalent to

√
Λtc � 1.
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where the total mass of this system is m = m1 +m2 and the reduced mass
µ = m1m2

m
.

3. Each body moves slowly, that is, in the center of mass frame v � 1.

4. The pressure of each body is negligible compared to the energy density.

5. Each body is approximately spherically symmetric.

6. The trajectory of the binary is well approximated by a circular orbit.4

The first two assumptions ensure that the time evolution of the scale factor
can be neglected during the few cycles the system is studied. Therefore, the time
behavior of the physical separation R∗ a few orbits before and after the time of
emission is governed by the time behavior of the conformal separation r multiplied
by the scale factor at the time of emission ae. Similarly, the physical angular
velocity Ω is described by the conformal angular velocity ω multiplied by a−1

e :

R∗(t) = aer∗ +O(
√

Λtc),

Ω(t) = a−1
e ω +O(

√
Λtc).

From the first two assumptions, it also follows that by a simple constant rescaling of
the coordinates, the spacetime metric is well approximated by a Minkowski metric
during the few cycles the system is studied:5

ds2 = −dη̃2 + dr̃2 + r̃2
(
dθ2 + sin2 θ dϕ2

)
+O(

√
Λtc) (3.3)

where η̃ := aeη and r̃ := aer.
Given these rescaled coordinates, one can now interpret approximation 3-6

as the Newtonian approximation and use Newtonian dynamics to describe the
motion of the binary in the rescaled coordinates. Approximation 1-2 are critical
for this interpretation. An example of a binary system satisfying all of the above
approximations is a binary consisting of two weakly self-gravitating bodies such

4The motivation for such a binary is strong since gravitational waves effectively act to make
eccentric systems circular over time [74], and sources seen later in their evolution are expected to
have small eccentricity [75].

5As a side remark: since the scale factor is approximately constant, the Hubble radius is
infinite to zeroth approximation during this period.
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as main-sequence stars. In addition, other examples are binaries of two compact
bodies such as neutron stars or black holes. The internal gravity of each body can
be arbitrarily strong but as long as their mutual gravity is weak, the Newtonian
description applies.

In Newtonian mechanics, the motion of the center of mass is uniform. Conse-
quently, the description of the motion simplifies when the origin of the coordinate
system is chosen such that it is attached to the center of mass; the position of each
body can then be determined in terms of the relative separation between the bodies.
This is what we will do here as well. From conservation of angular momentum, it
follows that the orbital motion proceeds within a fixed orbital plane. Choosing the
orbital plane to coincide with the x− y plane and introducing the orbital angle to
be ϕ, the equations of motion are

d2r̃

dη̃2 =
r̃(dϕ

dη̃

)2

− Gm

r̃2

[1 +O(
√

Λtc) +O
(
Gm

R∗

)
+O

(
Gµ

R∗

)]
, (3.4)

d

dη̃

(
r̃2dϕ

dη̃

)
= 2Gm

(
2− µ

m

)
dr̃

dη̃

dϕ

dη̃

[
1 +O(

√
Λtc) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
(3.5)

For a circular orbit dr̃
dη̃

= 0 and it follows from eq. (3.5) that dϕ
dη̃
≡ a−1

e ω is constant.
In other words, the physical angular velocity Ω is constant up to terms proportional
to O(

√
Λtc). From eq. (3.4), we obtain Kepler’s law:6

(
dϕ

dη̃

)2

= Gm

r̃3

[
1 +O(

√
Λtc) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
. (3.7)

In terms of the physical separation vector R∗ and angular frequency Ω, Kepler’s
law is:

Ω2 = Gm

R3
∗

[
1 +O(

√
Λtc) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
. (3.8)

6This is the same Kepler’s law that is used for FLRW spacetimes. Often it is written in a
slightly different format in which the above physical quantities defined at the source are related
to quantities as measured by an observer at redshift z: ωobs = (1 + z)−1a−1

e ω, mz = (1 + z)m
and rz = (1 + z)aer. In terms of the observed quantities — given the same approximations —
Kepler’s law reads:

ω2
obs = Gmz

r3
z

. (3.6)
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Once truncated this version of Kepler’s law is similar in form to the Minkowski
version, with the only difference being constant factors of ae. The trajectory of the
reduced mass as a function of proper time is now described by

~R∗(t) =
(
R∗(t) cos

(
Ωt+ π

2

)
x̂+R∗(t) sin

(
Ωt+ π

2

)
ŷ
)

[
1 +O(

√
Λtc) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
,

where x̂ (ŷ) is the unit vector in the x−direction (y−direction) with respect to
the Euclidean 3-metric and dR∗

dt
= O(

√
Λtc) and dΩ

dt
= O(

√
Λtc). The trajectory of

the reduced mass is illustrated in Figure 3.1 for various choices of R∗. The energy
density of this system is

ρ = µ δ(3)(~R− ~R∗) = µ

a3
e

δ(3)(~r − ~r∗) +O(
√

Λtc).

This choice for the energy density ensures that the reduced mass µ remains constant.
Note that the stress-energy tensor Tab constructed from this energy density is only
approximately conserved. In other words, the divergence of the stress-energy tensor
with respect to the derivative operator compatible with the de Sitter metric is
O(
√

Λtc): ∇̄aTab = O(
√

Λtc). With these choices, the (mass) quadrupole moment
is given by

Q
(ρ)
ab (t) = µR2

∗(t)
2 [(1− cos 2Ωt)∇ax∇bx+ (1 + cos 2Ωt)∇ay∇by

−2 sin 2Ωt ∇(ax∇b)y
] [

1 +O(
√

Λtc) +O
(
Gm

R∗

)
+O

(
Gµ

R∗

)]
. (3.9)

Taking Λ→ 0 is equivalent to taking a→ 1 and the quadrupole moment reduces
to the flat space result in this limit [69].

3.3 Power radiated

Given this set-up, we can now proceed to calculate the radiated power of this system
and comment on its properties. The details of the calculation of the transverse-
traceless part of the quadrupole moments, needed for the calculation of power, can
be found in Appendix A.
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Figure 3.1. This conformal diagram illustrates the physical set-up for a binary system
in a circular orbit with respect to physical distances. The straight vertical line on the left
indicates the origin r = 0 around which the reduced mass of the binary system revolves.
The curved (blue) lines are – from left to right – the trajectories of the reduced mass
at R∗ = 1

10Rc,
1
5Rc and 1

2Rc. The values for these trajectories are chosen for illustrative
purposes; realistic systems will have a much smaller R∗. The shorter diagonal (red) line
denotes the cosmological horizon of the source. (Note that in this figure dR∗

dt is assumed
to be exactly zero; not just dR∗

dt = O(
√

Λtc).)

Once the transverse-traceless decomposition of the quadrupole moment Q(ρ)
ab (tret)

in eq. (3.9) and its derivatives, are calculated (for explicit expressions, see eqs.(A.13)-
(A.18) in Appendix A), we use the leading order part in the high-frequency approx-
imation of eq.(2.73) to calculate the radiated power:

P =̂ G

8π

∫
d2S

...
Q

TT
ab

...
Q
ab
[
1 +O(

√
ΛΩ−1)

]
(3.10)

=̂32G
5 µ2R4

∗(tret)Ω6(tret)
[
1 +O(

√
ΛΩ−1) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
, (3.11)

where, as before, =̂ denotes equality on I. Since R∗ and Ω are constant in time
given the approximations made, this equation can simply be written as:

P =̂32G
5 µ2R4

∗Ω6
[
1 +O(

√
ΛΩ−1) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
. (3.12)

Let us first comment on three of the main features of this formula. Afterwards, we
will contrast this result to the power radiated by a binary system on Minkowski
spacetime. First, the radiated power is manifestly gauge-invariant as it solely
depends on physical quantities. In addition, the power is clearly positive. Positivity
of the power radiated in de Sitter spacetimes was proven for gravitational waves
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Figure 3.2. This diagram shows the η̃ = 0 surface of the rescaled flat coordinates. From
a Minkowskian perspective, this surface is simply the t = 0 surface in the middle of
Minkowski spacetime. From a de Sitter perspective, this surface is its future null infinity
I+.

generated by physically realistic sources in Chapter 2. This is the first explicit
illustration of that general proof. Third, since there are only two independent
scales in this system, the mass and distance scale, the expression for power can
be simplified further. Using Kepler’s law, see eq. (3.8), the expression for radiated
power on a de Sitter background reduces to

P =̂32
5

1
G

(GMcΩ)10/3
[
1 +O(

√
ΛΩ−1) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
, (3.13)

where Mc := µ3/5m2/5 is the chirp mass.
The result in Minkowski spacetime is identical to eq. (3.12) up to constant

factors of ae. This is surprising for several reasons. At the conceptual level, it
seems that de Sitter calculation is essentially carried out on the rescaled Minkowski
spacetime in eq. (3.3). However, the formula for power used is defined on the de
Sitter I and with respect to the de Sitter time translation. In the rescaled flat
coordinates, I of de Sitter spacetime is at the η̃ = 0 time slice, which from the
Minkowskian perspective is a space-like slice in the middle of spacetime. This is
illustrated in Figure 3.2. In addition, the de Sitter time translation is a space-like
conformal Killing vector field on the η̃ = 0 surface in the rescaled flat coordinates.
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How then is it possible that this power is equivalent to the power radiated across
I of Minkowski spacetime that is defined with respect to the time translation
Killing field of Minkowski space, which is time-like everywhere? Furthermore, the
calculational techniques used to derive the power radiated on a de Sitter background
are drastically different from those on a Minkowski background. The power radiated
in de Sitter spacetime relies on a late time expansion to reach I+, whereas the
power radiated in Minkowski spacetime uses a 1/r expansion. In addition, the
calculation of the transverse-traceless part on a de Sitter background cannot be
done using the algebraic projection operator, instead one is required to solve a
set of differential equations to extract the transverse-traceless part. An explicit
calculation shows that, for the binary system on a de Sitter background discussed
here, QTT

ab and Qtt
ab are indeed different (and this difference does not vanish in the

high-frequency limit):

QTT
ab −Qtt

ab=̂
µR2
∗

2

(
−1

6 (1 + 3 cos 2θ) ∇ar∇br + r sin 2θ ∇(ar∇b)θ

+ r2

12 (1 + 3 cos 2θ)∇aθ∇bθ + r2

12 sin2 θ (1 + 3 cos 2θ)∇aϕ∇bϕ

)
[
1 +O(

√
ΛΩ−1)

]
(3.14)

where

Qtt
ab :=

(
P c
a P

d
b −

1
2PabP

cd
)
Qcd (3.15)

with P b
a = q ba − ∇ar ∂br and satisfying P b

a rb = 0, P a
a = 2, and P c

a P
b
c = P b

a .
Moreover, the power on a flat background typically makes use of some type of
spatial or temporal averaging, such as Brill-Hartle averaging. No such averaging
appears in the formula for power radiated on a de Sitter background.

This puzzle is resolved by carefully considering the power radiated across the
t = 0 surface in Minkowski spacetime. Assuming that the source was only dynamic
for a finite time interval before t = 0, the formula for power radiated at the spatial
surface given by t = 0 is

PMink(r)=̂ G

8π

∫
t=0

d2S r2

( ...Qab(tret)
r

)TT ...
Qab(tret)

r
+O

( 1
r3

) , (3.16)
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where the overdots refer to the time translation vector field of Minkowski spacetime.
Note that since this formula is not evaluated at I of Minkowski spacetime, the
radiative degrees of freedom in

( ...
Q ab(tret)

r

)
cannot be obtained by simply projecting

it onto the two-sphere. This procedure is only valid on Minkowski I, as we will show
in Chapter 4. Therefore, the factor of r−1 cannot be pulled out of the TT-operation
and the r’s in this formula do not cancel at leading order. Together with the
fact that there are also higher order terms that cannot be neglected for finite r,
this shows that the formula across the t = 0 surface in Minkowski spacetime in
eq. (3.16) is rather different from the de Sitter formula across the Minkowskian
η̃ = 0 surface in eq. (3.10). Hence, not only are the Killing vector fields used
to define the power radiated across the Minkowskian t = 0 versus η̃ = 0 surface
different, also the expressions for power are. Only in the limit to I does the power
radiated in Minkowski spacetime become

PMink=̂ G

8π

∫
I
d2S

...
Q

tt
ab(tret)

...
Qab(tret) (3.17)

and does the power radiated in Minkowski spacetime agree with the power across
η̃ = 0 of the rescaled flat spacetime using the de Sitter expression. In summary,
the power radiated by a binary satisfying approximation 1-6 across I of de Sitter
spacetime is equal to the power radiated by the same binary across I of Minkowski
spacetime.

Remark. Just as on a Minkowski background, for any isolated system, linear
momentum radiated in the form of gravitational waves vanishes on a de Sitter
background given the approximations made. For the specific case studied here, a
binary system restricted to the x− y orbital plane, the flux of angular momentum
in the x- and y-direction also vanishes on Minkowski and de Sitter backgrounds.
The instantaneous flux of angular momentum in the z-direction, see eq. (2.83), does
not vanish and on de Sitter I+ is given by:

LTJz=̂
32G

5 µ2R4
∗Ω5

[
1 +O(

√
ΛΩ−1) +O

(
Gm

R∗

)
+O

(
Gµ

R∗

)]
. (3.18)

69



3.4 Discussion

Previous results for linearized perturbations on a de Sitter background have shown
certain effects compared to a flat spacetime background. Specifically, using different
methods, several groups found that the gravitational memory effect is enhanced
by redshift factors [59, 76–78]. This enhancement persists even after taking the
high-frequency approximation. Thus, one might anticipate a similar enhancement
for power radiated in the form of gravitational waves by a source on a de Sitter
background. This expectation is further supported by the striking differences
between the calculational techniques used near I+ of de Sitter spacetimes and
those used near I+ of Minkowski spacetimes: late time versus large r expansions,
extracting the radiative degrees of freedom by solving a set of differential equations
versus using an algebraic projection operator and in the calculation of power, no
averaging versus spatial or temporal averaging.7 These expectations are not borne
out. The power radiated by a binary system on de Sitter spacetime in terms of
the reduced mass and angular velocity shows no enhancement (nor decrease) as
compared to the result on a Minkowski background for systems we considered. In
other words, the standard expression for power radiated in Minkowski spacetimes
also applies to de Sitter spacetime in the high-frequency approximation. The
high-frequency limit is critical for this equivalence.

This result highlights that in order to probe the cosmological constant by
measuring the power, one needs to go beyond the high-frequency approximation.
Since the general expression for power radiated in de Sitter spacetimes does not
invoke the high-frequency approximation, in principle, there are no obstacles to
perform such a calculation. In the current set-up, this regime could not be probed
as the dynamics of the binary system could only be determined up to O(

√
ΛΩ−1).

Thus, if one could reliably determine the source dynamics beyond the high-frequency
approximation, one could calculate the corrections due to the background curvature
on the power. This would allow one to observe Λ through the power emitted by
gravitational waves.

The power emitted by the binary system was calculated on I+ of de Sitter
spacetime. A natural question is: how does this result relate to what an observer
at a finite time in de Sitter spacetime may detect? Since the dynamical part of the

7Albeit, these differences do not indicate whether the power would be enhanced or diminished.
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P [C1]

P [C2]

Figure 3.3. There are strong indications, [79], that the power radiated across a two-
sphere cross-section on I+ is the same as the power radiated across any two-sphere along
the light-ray emitted from I+ to the source as long as one remains ‘far enough away from
the source’ and within the high-frequency approximation. Therefore, the power emitted
across a two-sphere cross-section on I+, P [C2], is likely the same as the power emitted
on the cosmological horizon, P [C1].

gravitational wave on a de Sitter background propagates sharply (its tail term is an
‘instantaneous’ tail, see Section 2.3.3), it is likely that the power radiated through a
2-sphere cross-section on I+ is the same as it is through any two-sphere connected
to the two-sphere on I+ by a null ray [79]. In particular, the power radiated across
I+ is the same as it is through the cosmological horizon. This is illustrated in
Figure 3.3. Thus, even though the power presented here was calculated on I+,
there are indications that this power is the same on the cosmological horizon, where
an observer may detect such radiation.
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Chapter 4 |
On the conceptual confusion in the
notion of transversality

4.1 Introduction

In 1916 Einstein discovered that general relativity admits gravitational waves in
the linearized approximation [14]. Almost exactly a century later the LIGO col-
laboration announced the spectacular detection of gravitational waves produced
by coalescing black holes, thereby ushering-in the new field of gravitational wave
astronomy [2–4]. There are also ongoing and planned missions to observe primor-
dial gravitational waves [80–82]. Physically, while waves that LIGO detects are
produced by astrophysical sources, the origin of primordial radiation is cosmological.
Mathematically, in the currently used theoretical paradigm, what LIGO observes is
described by retarded solutions of Einstein’s equations sourced by highly dynamical
compact objects in asymptotically flat spacetimes. What cosmological missions hope
to observe is described by source-free solutions of linearized Einstein’s equations
on a FLRW background. Thus, not only are their observational techniques very
different but the theoretical paradigms that underlie the two missions are also quite
different. In particular, they use conceptually distinct notions of transverse-traceless
modes.

Unfortunately, much of the current literature on gravitational waves in general
relativity, including advanced texts as well as review articles, suggests that the two
notions are the same and use the same symbol, hTT

ab , to denote them both. Our
reading of several standard references and our discussions with some of the authors
led us to conclude that there is genuine conceptual confusion on this issue. The
goal of this chapter is to clarify the situation by spelling out what the two notions
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are, make it explicit that they are distinct, and discuss the relation between them
in situations when both notions are available. The main issue arises in linearized
gravity and the confusion we referred to is related to gravitational waves produced
by isolated bodies. Therefore, it will suffice to restrict ourselves to linearized
gravity off Minkowski spacetime. We will do so and briefly return to cosmological
perturbations only at the end in Section 4.5.

Consider then linearized gravitational waves in Minkowski spacetime produced
by a spatially compact source. One introduces a t = const foliation by space-like
planes Mt, and decomposes the spacetime metric perturbation into its irreducible
parts. Of immediate interest is the decomposition only of the spatially projected
perturbation hab. If q̊ab denotes the flat, positive definite 3-metric on the Mt slices,
and D̊ its torsion-free connection, then we have the following decomposition of hab
into its irreducible parts:

hab = 1
3 q̊ab q̊

cdhcd +
(
D̊aD̊b −

1
3 q̊abD̊

2
)
S + 2D̊(aV

T
b) + hTT

ab , (4.1)

where S is a scalar field, V T
a a transverse scalar field and hTT

ab a symmetric, transverse-
traceless tensor field:

D̊aV T
a = 0 D̊ahTT

ab = 0 q̊abhTT
ab = 0 . (4.2)

This is the decomposition of the metric perturbation used in standard cosmology
(where one is also interested in the scalar and vector modes). In quantum field
theory in Minkowski spacetime, one generally considers source-free solutions to
linearized Einstein’s equations. Then the gauge invariant information in hab is
contained entirely in hTT

ab . The vector space of these fields can be naturally endowed
with a Poincaré invariant Hermitian inner product. This is the Hilbert space of
states of a graviton. It provides irreducible representations of the Poincaré group
which have mass zero and helicity ±2. Thus, this notion of hTT

ab is widely used is
several areas of physics.

To extract hTT
ab from hab one typically goes to the momentum space where the

operation is algebraic and hence local. See, e.g. Box 5.7 in [53], or Section 4.3
in [54], or Section 35.4 of [55]. By contrast the operation is non-local in physical
space since it involves inverse power of the Laplacian D̊2. Thus, if one knows
hab only in a sub-region of the spatial manifold Mt –say the asymptotic region–
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one cannot determine hTT
ab even in that sub-region. Nonetheless, this notion of

transverse-traceless modes is widely used because the field hTT
ab is gauge invariant.

But in the study of retarded fields produced by compact sources, most mono-
graphs and review articles switch to an entirely different decomposition of the
retarded solution to linearized Einstein’s equations, which is local in physical space.
In particular, one introduces a projection operator Pab into the 2-sphere orthogonal
to the radial direction in the physical space and extracts a new transverse-traceless
part of hab by projecting hab into the 2-sphere and removing the trace. This is
again denoted hTT

ab implying that the projection operator Pab provides just another
way to extract what was previously called the transverse-traceless part of hab. See,
e.g., Chapter 11 of [53], or Section 4.5.1 in [54], or Section 36.10 in [55].1 All
subsequent discussion of gravitational waves produced by isolated systems uses the
transverse-traceless part of hab that is extracted using Pab. Consequently, one sees
only asymptotic expansions (in powers of 1/r) of hab in physical space; Fourier
transforms and/or inverse powers of Laplacians are completely absent in actual
calculations of radiative modes, wave forms, and expressions of energy carried by
gravitational waves.

This is confusing because the two notions of transverse-traceless parts are
distinct and inequivalent. To avoid confusion, let us change this notation and set

(
Pa

cPb
d − 1

2PabP
cd
)
hcd =: htt

ab . (4.3)

As we emphasized, the operation of extracting hTT
ab from hab is highly non-local

in physical space and the resulting hTT
ab is exactly gauge invariant everywhere in

spacetime. On the other hand, the operation of extracting htt
ab is local in physical

space and is not gauge invariant. However, we should add that in practice htt
ab is

constructed only in the asymptotic region and its 1/r-part is shown to be gauge
invariant under a large class of gauge transformations [53] (but generally it is not
explained why it suffices to restrict oneself to that class). As we will see this second
notion, htt

ab, is tailored to Bondi-Sachs type expansions and behavior of fields near
1The underlying logic is illustrated by arguments of Section 1 of [83]. One uses Eq. (4.2) to

spell out what one means by hTT
ab , then says that transversality “requires hTT

ab to be orthogonal to
each mode’s wave vector” and takes the propagation direction to be radial in space to conclude
that hTT

ab defined in Eq. (4.2) is the same as that defined in Eq. (4.3). The reasoning is flawed
because the orthogonality hab(~k) k̂a = 0 in momentum space is unrelated to the orthogonality
habr̂

a = 0 in physical space.
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null infinity. On the other hand, in the cosmological context, these Bondi-Sachs
type expansions are not available and only the hTT

ab notion is meaningful.
Still, in the asymptotically flat context, we have two distinct notions of what

we mean by transverse-traceless modes. What is the relation between them? Each
notion leads to well-defined, leading order asymptotic fields. Do these fields carry
the same physical information? One can construct expressions of energy, momentum
and angular momentum carried by gravitational waves using either notion. How
are they related? To our knowledge these issues have not been spelled out in the
literature. The purpose of this chapter is to fill that gap using structure available
at null infinity. We will find that while there is a large overlap between physics
captured by these notions in the asymptotic region, there are also some differences.

To answer these questions, we will focus on Maxwell fields in Minkowski space-
time, since the central conceptual issues already arise in this technically simpler
context. This will allow us to focus on the conceptual issues rather than technical
details. The analysis simplifies for a Maxwell field for two reasons. First, for the
obvious reason that the potential in Maxwell theory is a rank-1 tensor field whereas
in linearized gravity a rank-2 tensor field. Second, using the fact that the theory is
conformally invariant, one can pass easily between Minkowski spacetime and its
conformal completion that includes null infinity, I. Conceptually, the situation for
Maxwell fields is completely parallel to the linearized gravitational case: Again,
there are two notions of transverse vector potentials, AT

a and At
a. The first is gauge

invariant but non-local in physical space, while the second is local in space but
gauge invariant only in a restricted sense. We will spell out the exact relation
between them. In particular, we will show that in presence of sources, angular
momentum carried away by electromagnetic waves is not expressible using just the
two radiative modes in At

a but also involves longitudinal fields that arise in the
discussion of AT

a . These fields are simply not accessible to the second approach to
transversality, At

a, based on the projection operator.
This chapter is structured as follows.2 In Section 4.2, we use conformal invariance

to show that for systems under consideration — where sources are supported on
a spatially compact world tube — the Maxwell field Fab satisfies the so-called
‘Peeling properties’ at null infinity. This discussion will also serve to fix notation
and introduce null infinity, I. In Section 4.3, we turn to vector potentials Aa

2The material in this chapter is taken almost directly from [40].
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since in the gravitational case we are primarily interested in the properties of the
linearized metric, not just its curvature. We obtain the minimal fall-off conditions
that the potential must satisfy in virtue of field equations as one recedes from
sources in null directions. Peeling properties of the Maxwell field simplify this
discussion considerably. Next in Section 4.4, we introduce the two notions AT

a and
At
a of transversality. Although AT

a and At
a differ even at leading order near I+ (i.e.,

O(1/r)), we show that the difference is encoded in non-dynamical fields. We then
discuss energy-momentum and angular momentum carried by the electromagnetic
waves. In the source-free case these quantities can be expressed in terms of the
two radiative modes (and the same is true for gravitational waves – even in full
non-linear general relativity) [84]. However, in presence of sources this is no
longer the case for angular momentum; its expression also involves the ‘Coulombic
information’ contained in the (leading order parts of) longitudinal modes, which
carry information about the total electric charge in the system. In the discussion,
in Section 4.5, we discuss how these results relate to linearized gravitational fields.
The overall situation parallels that in the Maxwell case: In presence of sources, the
wave forms of hTT

ab and htt
ab are in general different even at I+ but their difference

is time-independent. The Bondi mass and flux of angular momentum carried by
gravitational waves can not be obtained knowing only the radiative modes encoded
in htt

ab; one also needs additional information that can be extracted from hTT
ab .

After bulk of this work was completed, Dr. Badri Krishnan drew our attention
to an unpublished work of Istávan Rácz [85] which had already pointed out that
the presence of sources adds significant complications to the transverse-traceless
notion captured in hTT

ab . We will discuss the relation with that work at appropriate
points.

4.2 Null infinity and the Peeling behavior

As we will see in subsequent sub-sections, presence of sources introduces new features
in the asymptotic properties and the physical content of Maxwell potentials, even
when the sources are confined to a spatially compact world tube. In that discussion
we will assume certain asymptotic behavior of potentials. It is simplest to arrive at
these fall-off properties by first noting the immediate consequences of the expressions
of retarded solutions and then supplementing them with the implications of the
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Peeling properties of the Maxwell field. In the original discussion of Peeling [86], it
was assumed that a certain component (Φ0; see below) of the Maxwell field falls-off
as 1/r3 and then the fall-off of other components (Φ1 and Φ2) was derived. Since it
not a priori clear that the initial assumption is satisfied by retarded fields under
consideration, for completeness we will now show that the Peeling properties hold
also in presence of such sources. This point is probably obvious to experts. We
chose to include this discussion because the role of Peeling has been a focus of some
of the recent discussions of soft gravitons and photons.3 Our explicit demonstration
will make it clear that new features arise even with the standard Peeling behavior.

4.2.1 Future null infinity I+

Let us begin with a concrete conformal completion of Minkowski space (M, ηab)
that focuses on I+. In terms of the retarded spherical coordinates u = t− r, r, θ, ϕ,
we have

ds2 = ηabdxadxb = −du2 − 2dudr + r2 (dθ2 + sin2 θ dϕ2) . (4.4)

Let us conformally rescale ηab with a smooth conformal factor Ω with Ω = 1
r
outside

the world tube r = r0 for some r0, and attach to M a boundary I+ at which Ω
vanishes. Then, for r > r0 the conformally rescaled metric η̂ab is given by

dŝ2 = η̂abdxadxb = −Ω2du2 + 2dudΩ + (dθ2 + sin2 θ dϕ2) . (4.5)

The rescaled metric η̂ab is well-defined everywhere on the manifold with boundary
M̂ = M ∪ I+. Since Ω vanishes on the boundary I+, it is coordinatized by
u ∈ (−∞,∞) and θ, ϕ ∈ S2. It is thus topologically S2 × R, with a null normal
ña=̂η̂ab∇bΩ that satisfies ∇̂añb=̂0, where from now onwards =̂ stands for equality
restricted to the points of the boundary I+. In particular, the conformal frame is
‘divergence free’. Furthermore, the pull-back of η̂ab to I+ is the unit 2-sphere metric

3In the Christodoulou-Klainerman approach to the non-linear stability of Minkowski spacetime
[87], Ψ1 and Ψ0 do not peel in the standard manner, given, e.g., in [86]. This feature is sometimes
used to argue that failure of the standard Peeling behavior plays a crucial role in some of the
discussion of infrared charges and soft gravitons and photons [88]. However, whether standard
Peeling holds depends on the boundary conditions that the initial data satisfy. For example, it
does hold in the Chrusciel-Delay [89] approach to non-linear stability of Minkowski spacetime.
Infrared (or soft) photon charges as well as the new features we discuss arise also with standard
Peeling shown in this sub-section.
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qab with qab dxadxb = dθ2 + sin2 θ dϕ2. Thus, with this conformal completion we
are in a Bondi conformal frame at I+ (see, e.g., [90]). A general Killing field Ka of
ηab has the limit

Ka =̂
(
α(θ, ϕ) + uβ(θ, ϕ)

)
ña + ha (4.6)

to I+. Here α(θ, ϕ) is a linear combination of the the first four spherical harmonics,
Y00 and Y1m; β(θ, ϕ) of the three Y1,m; and ha is a ‘horizontal’ (i.e., tangential to
the u=̂const 2-sphere cross-sections of I+) and conformal Killing field of the unit
2-sphere metric, Lhqab=̂2βqab, satisfying Lhña=̂0 (see, e.g., [38, 91]). In particular,
the translation Killing fields of ηab are represented by αña. We will use these facts
in Section 4.4.

4.2.2 Peeling

Consider a retarded solution Fab of Maxwell’s equation on Minkowski spacetime
(M, ηab) with a source current Ja which is smooth and of compact spatial support,

dF = 0, d ?F = 4π ?J, (4.7)

where ?Ĵabc = εdabcJ
d. The question is whether the limit to I+ — i.e., the limit

r →∞ keeping u, θ, ϕ constant — of the retarded solution Fab to these equations
satisfies the standard Peeling properties.

To answer this question, one can directly calculate the retarded solution Fab
and examine its asymptotic behavior in detail. However, it is much simpler to
use conformal invariance of Maxwell’s equations. By inspection it follows that
F̂ab := Fab and ?F̂ab = 1

2 ε̂ab
cdF̂cd = ?Fab also satisfy Maxwell’s equations on (M̂, η̂ab):

d F̂ = 0, d? F̂ = 4π ?Ĵ (4.8)

with ?Ĵ = ?J . Since I+ is just a sub-manifold of the conformally completed
spacetime (M̂, η̂ab) that is ‘a finite distance away from sources’, it follows that F̂ab
is smooth on I+. We will now show that this fact implies that Fab satisfies the
standard Peeling properties.

For this, let us use the Newman-Penrose null co-tetrad on Minkowski spacetime
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(M, ηab), given by

na = − 1√
2

(∇at+∇ar), `a = − 1√
2

(∇at−∇ar),

ma = r√
2

(∇aθ + i

sin θ ∇aφ), m̄a = r√
2

(∇aθ −
i

sin θ ∇aφ) . (4.9)

The Newman-Penrose null tetrad is obtained simply by raising indices of these
1-forms with ηab.4 It is straightforward to check that

n̂a := na, ˆ̀a := r2 `a, m̂a := rma, and ˆ̄ma := r m̄a (4.10)

have smooth, non-vanishing limits to I+ and define a null tetrad there. Therefore,
components of the Maxwell fields F̂ab in the hatted null tetrad have smooth limits
to I+. This in turn implies that components of Fab in the Newman-Penrose tetrad
in Minkowski spacetime have the following asymptotic behavior

Φ2 = Fabn
am̄b = 1

r
F̂abn̂

a ˆ̄mb = Φ0
2(u, θ, ϕ)
r

+O
( 1
r2

)
, (4.11)

Φ1 = 1
2Fab

(
nalb +mam̄b

)
= 1

2r2 F̂ab
(
n̂al̂b + m̂a ˆ̄mb

)
= Φ0

1(u, θ, ϕ)
r2 +O

( 1
r3

)
, (4.12)

Φ0 = Fabm
alb = 1

r3 F̂abm̂
al̂b = Φ0

0(u, θ, ϕ)
r3 +O

( 1
r4

)
, (4.13)

since the hatted fields have well-defined limits as r →∞, keeping u, θ, ϕ constant.
These are precisely the standard Peeling properties of the Maxwell field [86].
Presence of sources does not introduce any new element in this result. Fields
Φ0

2, Φ0
1 and Φ0

0 on I+ encode the leading order, asymptotic Maxwell field. Maxwell’s
equations leave Φ0

2 unconstrained. Because of this property, and its 1/r fall-off, Φ0
2

is called the ‘radiation field’. The time derivatives of Φ0
1 and Φ0

0 are determined by
4Note that, with these conventions, at I+ we have ña =̂ 1√

2 n̂
a, and ña is the limit to I+ of

the unit time translation ta = −ηab∇bt of the Minkowski metric ηab.
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angular derivatives of Φ0
2:5

∂uΦ0
1 = ðΦ0

2, and ∂uΦ0
0 = ðΦ0

1 . (4.14)

In this sense Φ0
1 and Φ0

0 do not have any dynamical degrees of freedom of their own:
given Φ0

2, they are determined by their values at spatial infinity io (i.e., u = −∞),
or, time-like infinity i+ (i.e. u = ∞.). In the next sub-section we will use these
fall-off properties to find useful relations between components of the vector potential
that hold for any choice of gauge.

4.3 Asymptotic conditions on potentials

We will need asymptotic conditions that are satisfied by vector potentials Aa of
our retarded Maxwell fields. Unlike for the Maxwell field Fab, here we cannot just
invoke conformal invariance because the gauge conditions of interest generally fail
to be conformally invariant. A seemingly natural strategy would be to assume
that, since Fab admits a smooth limit to I+, one should simply require that the
potential Aa is also smooth there. However, as we show below, in presence of
sources this requirement is not met in gauges that are commonly used. Therefore,
a more systematic approach is needed to arrive at an appropriate set of boundary
conditions, compatible with gauges that are relevant to the discussions of the two
notions of transversality, AT

a and At
a.

Given a slicing of Minkowski space by hyperplanes t = const, we can decompose
the 4-potential Aa as follows:

Aa = −φ∇at+ ~Aa

= −φ∇au+ (−φ+ A1)∇ar + A2ma + Ā2 m̄a. (4.15)

We will first examine the asymptotic behavior of ~Aa in the Coulomb gauge since it
selects for us the transverse part ~AT

a of the vector potential we are interested in.
Thus, we just start with a vector potential ~Aa that satisfies D̊a ~Aa = 0 but make

5Fields such as Φ2,Φ1 and Φ0 depend on the choice of the dyad m̂a, ˆ̄ma on the (θ − ϕ)
2-sphere. A field f is said to have spin weight s if it transforms as f → eisχf under the
dyad rotation m̂a → eiχm̂a. The angular derivative ð of a spin s weighted field is defined by
ðf = 1√

2 (m̂aDaf − s√
2 cot θ f) ≡ 1

2 (∂θf + i
sin θ∂φf − s cot θf), where D is the derivative operator

on a unit 2-sphere.
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no a priori assumptions on its fall-off. The fall-off conditions will be arrived at
by using the fact that we are interested in retarded solution to the wave equation
that ~Aa satisfies (see below). For φ we assume that it tends to zero at infinity.
Our primary goal is to motivate the rather weak boundary conditions we wish to
impose. Therefore we will sketch the argument without entering into the details of
functional analysis.

Let us begin by noting a few consequences of our assumptions that will be
useful in determining the asymptotic properties of the solution. Since the source
current ja is smooth and of compact spatial support, on each t = const slice its
spatial projection ~ja is in particular in the Schwartz space S of C∞ functions which,
together with all its derivatives falls-off faster than the inverse of any polynomial in
r as r →∞ on t = const surfaces. Since S is stable under Fourier transformations,
the Fourier transform of ~ja is also in the Schwartz space in the momentum space.
Because the operation of extracting the transverse part is algebraic in the momentum
space, it follows immediately that ~jT

a (~k) decays faster than any inverse polynomial
in |~k| as |~k| → ∞. However, since the projection operator into the transverse
part projects ~ja(~k) into 2-spheres centered at the origin, it fails to be smooth at
the origin in the momentum space, whence ~jT

a (~k) also fails to be smooth there.
Therefore, although it is smooth everywhere else, bounded at the origin, and decays
rapidly as |~k| → ∞, in general ~jT

a (~k) is not in S. So neither is ~jT
a (~x) in the physical

space in the Schwartz space S. Nonetheless, properties of ~jT
a (~k) we just summarized

imply that ~jT
a (~x) is smooth and integrable:

∫ ~jT
a (~x) d3x <∞. (In the terminology

one often uses in the physics literature, the boundedness of the integral can be
taken to mean that the Cartesian components of ~jT

a (~x) fall-off faster than 1/r3.)
Thus decomposition of ja into Transverse and Longitudinal parts is well-defined on
each t = const surface:

ja = −ρ∇at+~ja = −ρ∇at+~jT
a +DaL

with D̊a~jT
a = 0.

Now, in the Coulomb gauge where ~Aa = ~AT
a , Maxwell’s equations become

D̊2φ = −4πρ and (4.16)

� ~Aa = −4π
(
~ja −

1
4πDaφ̇

)
= −4π~jT

a (4.17)
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where in the second step we have used (4.16) and the conservation of 4-current. The
equation for φ can be solved on each t = const slice and we consider the retarded
solution for ~Aa:

φ(t, ~x) =
∫

d3x′
ρ(t, ~x′)
|~x− ~x′|

(4.18)

~Aa(t, ~x) =
∫

d3x′
~jT
a (t− |~x− ~x′| , ~x′)
|~x− ~x′|

. (4.19)

Since ρ has compact support and ~jT
a is bounded and integrable, an examination of

the integral on the right shows that the solutions φ and (the Cartesian components
of) ~Aa fall-off at least as fast as O(1

r
) as r →∞ along constant u, θ, φ directions.

Consequently, in the Coulomb gauge, our solutions φ and ~Aa have the following
asymptotic behavior:

φ = φ0(u, θ, ϕ)
r

+ φ1(u, θ, ϕ)
r2 + . . . (4.20)

A1 = A0
1(u, θ, ϕ)
r

+ A1
1(u, θ, ϕ)
r2 + . . . (4.21)

A2 = A0
2(u, θ, ϕ)
r

+ A1
2(u, θ, ϕ)
r2 + . . . (4.22)

Although we decomposed the 4-potential using a specific foliation by space-like
hyperplanes, the asymptotic conditions (4.20) - (4.22) are insensitive to this choice.

Using this result in the Coulomb gauge as motivation, from now on we will
restrict ourselves to gauges in which 4-potential has the fall-off behavior given above.
Explicit examples involving point charges and dipoles listed in Appendix B show
that these boundary conditions are physically reasonable. These fall-off require-
ments are quite weak. (For example, our arguments in the Coulomb gauge go
through even if the sources were not of spatial compact support but were only in the
Schwartz space S.) As a consequence, by themselves (4.20) - (4.22) will not be suffi-
cient for our analysis. However, as we will see, field equations and gauge conditions
imply further restrictions that supplement these minimal fall-off conditions, and the
sum total of these requirements is sufficient to arrive at physically interesting results.

Remark: Although ~ja is of compact support, the support of its transverse part
~jT
a extends to spatial infinity (although, as we saw, ~jT

a falls-off sufficiently fast for
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its integral to be finite). Rácz pointed out in [85] that this fact introduces a number
of complications that have been generally overlooked in the literature.

Next, let us examine the limit of the vector potential to I+. For this we have to
express φ and ~Aa of (4.15), in terms of basis vectors in the conformally completed
spacetime (M̂, η̂ab) which are well-behaved at I+. The result is:

Aa =
√

2φˆ̀
a + Ω−2(φ− A1)ña + Ω−1A2m̂a + Ω−1Ā2 ˆ̄ma

=
√

2
(
Ωφ0 + Ω2φ1 + . . .

)
ˆ̀
a +

(
Ω−1φ0 + φ1 + . . .− Ω−1A0

1 − A1
1 − . . .

)
ña

+
(
A0

2 + ΩA1
2 + . . .

)
m̂a +

(
Ā0

2 + ΩĀ1
2 + . . .

)
ˆ̄ma . (4.23)

Thus, in spite of the fall-offs (4.20) - (4.22) in Minkowski space, because of the
presence of Ω−1 terms the 4-potential Aa diverges at I+ in the conformally com-
pleted spacetime, unless φ and A1 fall-off faster than 1/r. However even for a static
point charge in Minkowski space, the stronger fall-off conditions are not met. Thus,
in presence of sources, one cannot assume that the 4-potential admits a limit to
I+ if we are interested in extracting the transverse modes ~AT

a . The leading order
asymptotic fields, φ0, A0

1 and A0
2 are given by limits to I+ of Ω−1Aan̂

a, ΩAa ˆ̀a and
Aa ˆ̄ma respectively. Finally, as we will see, the transverse field At

a at I+ knows
only about A0

2, Ā
0
2. This information can also be extracted from Aa by first taking

the pull-back ←Aa to the Ω = const surfaces of Aa and then taking the limit to I+:
limI+ ←Aa = A0

2m̂a + Ā0
2 ˆ̄ma.

As noted aboves, Maxwell’s equations — and, in particular, the Peeling proper-
ties they imply — can be used to further restrict this asymptotic behavior of Aa
irrespective of the gauge choice so long as it meets the requirements (4.20) - (4.22).
Let us begin by expressing the Newman-Penrose components of the asymptotic
Maxwell field in terms of the vector potential:

Φ2 =
√

2
r
∂uA

0
2 +O

( 1
r2

)
≡ Φ0

2
r

+O
( 1
r2

)
Φ1 = 1

2r ∂u(A
0
1 − φ0)︸ ︷︷ ︸

=0 by (4.12)

+ 1
2r2

[
−φ0 + ∂u(A1

1 − φ1) +
√

2ðA0
2 −
√

2ð̄Ā0
2

]
+O

( 1
r3

)

≡ Φ0
1
r2 +O

( 1
r3

)
(4.24)
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Φ0 = 1
r2 ð(A0

1 − φ0)︸ ︷︷ ︸
=0 by (4.13)

+ 1
r3

[
ð(A1

1 − φ1) + 1√
2
Ā1

2

]
+O

( 1
r4

)
≡ Φ0

0
r3 +O

( 1
r4

)
.

These equations have several noteworthy features.
(i) First, the asymptotic ‘radiation field’ Φ0

2 is determined by the time derivative
of A0

2: Φ0
2 =

√
2∂uA0

2. In addition, angular derivatives of A0
2 determine ImΦ0

1.
Therefore, the complex field A0

2 at I+ represents the two radiative modes of the
Maxwell field at I+.
(ii) The fields ReΦ0

1 and Φ0
0 carry the additional ‘Coulombic information’ in the

Maxwell field at I+. For example, in the source-free region, the projection along
n̂b of the Maxwell equation ∇̂aF̂ab=̂0 reads [86]

∂uReΦ0
1=̂Re

(
ðΦ0

2

)
=̂
√

2∂uRe
(
ðA0

2

)
(4.25)

From the first equality it follows that Q=̂− 1
2π
∮
ReΦ0

1 d2S is conserved, where the
integral is taken over a 2-sphere cross-section of I+. Q is of course the the total
electric charge of the source. The second equality implies

ReΦ0
1=̂
√

2ReðA0
2 +G(θ, ϕ) . (4.26)

G(θ, ϕ) is the ‘integration constant’. It is this non-dynamical, real function G(θ, ϕ)
that carries the ‘Coulombic information’ in ReΦ0

1 that escapes in the radiative
modes A0

2. Note in particular, that the electric charge Q can also be expressed as
Q=̂ − 1

2π
∮
G(θ, ϕ)d2S. From Eq. (4.12) it follows that G(θ, ϕ) is encoded in the

‘non-radiative parts’ φ0 and ∂u(A1
1 − φ1) of the vector potential Aa in any of the

gauges in our class.
(iii) From Peeling properties (4.12) and (4.13) it follows that the field A0

1 − φ0 is
constant on I+ and its value does not enter any of the physical quantities one
normally considers, such as energy, momentum, angular momentum, electric charge,
infra-red charges [90] and electromagnetic memory effect [92]. This property holds
in any choice of gauge so long as the potential Aa satisfies the fall-off conditions
(4.20) - (4.22). Therefore, if one includes φ0 in the list of components of Aa of
interest at I+, one can drop A0

1 from the list. This conclusion can also reached
by imposing Maxwell equations. But the reasoning is cumbersome. Moreover, the
argument in terms of Peeling brings to the forefront the fact that this property
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must hold in any gauge so long as our fall-off conditions (4.20) - (4.22) are satisfied.
(iv) From Maxwell’s equation (4.16) in the Coulomb gauge it follows that the total
electric charge of the system is directly determined by the scalar potential φ0 on
I+: Q = 1

4π
∮
φ0(u, θ, ϕ)d2S where the integral is taken over a cross-section of I+.

(v) Finally, we observe that several simplifications occur in absence of sources. Let
us work in the Coulomb gauge. Then, Eq. (4.16) leads us to set φ = 0 everywhere
in Minkowski space. In particular, this implies that Aan̂a=̂0 and we can set φ0 = 0,
and φ1 = 0 in Eq. (4.24). Furthermore now, the Coulomb gauge and the Lorenz
gauge coincide. Since D̊aAa = 0 everywhere in Minkowski space, by multiplying
this equation by Ω−1 and Ω−2 and taking the limit to I+, we obtain, respectively,

∂uA
0
1=̂0 and ∂uA

1
1=̂2
√

2Re(ðA0
2) + A0

1 . (4.27)

(The first of these equations is in fact already implied by φ0=̂0 since φ0 − A0
1 is

constant on I+.) In the source-free case, now under consideration, the limit to
io along I+ of A0

1 vanishes if the initial data for ~Aa falls off at spatial infinity
sufficiently rapidly. Since we already know that A0

1 is a constant on I+, it is
identically zero. Therefore, the second equation in (4.24) simplifies:

Φ1 =
√

2
r2 ðA0

2 i.e., G(θ, ϕ) =̂ 0 (4.28)

in (4.26). This simplification makes a key difference in the consideration of angular
momentum with and without source currents.

Let us summarize. In absence of sources, there are natural gauges in which
the 4-potential Aa admits a smooth limit to I+. Furthermore, one can choose a
gauge with Aana=̂0. Then the 2 remaining components of the pull-back ←Aa of Aa
to I+ are encoded in A0

2. These radiative modes encode full information in the
source-free solution. In particular, the energy, momentum and angular momentum
carried by electromagnetic fields can be expressed using the pull-back ←Aa to I+ or
equivalently, A0

2 [84]. The situation is quite different once we have sources. The
4-potential can diverge at I+ in well-motivated gauges (such as the Coulomb and
Lorenz gauges). Now, the components A0

2 at I+ carry information only about the
radiative degrees of freedom in the solution. One needs additional components of
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the potential encoded, e.g., in G(θ, φ), to capture the ‘Coulombic aspects’ of the
solution.

4.4 AT
a versus At

a

Sections 4.2 and 4.3 provide the necessary platform to compare the two notions of
transversality. We will first introduce these notions, emphasizing their asymptotic
behavior, and then contrast them.

4.4.1 The two notions

By definition AT
a satisfies the Coulomb gauge condition D̊a ~AT

a = 0 everywhere in
Minkowski space. Since by assumption AT

a must satisfy (4.20) - (4.22), it follows
that there is no residual gauge freedom. Hence all expressions constructed from
ATa are gauge invariant on the entire spacetime.

For notational clarity, we will use an underbar to denote vector potentials
in the Coulomb gauge. The asymptotic expansions (4.20) - (4.22) show that the
leading-order part of Aa is captured in 4 functions on I+, namely, two real functions
φ0,A0

1 and a complex function A0
2. As we saw, A0

2 represents the radiative degrees of
freedom of the Maxwell field. At first, it seems surprising that the leading-order part
of the 3-potential, ~Aa, has an additional component A0

1. Shouldn’t the requirement
of transversality leave us with just two? Recall, from the first equation of (4.27),
that this requirement does lead to a non-trivial restriction: A0

1 is non-dynamical;
it is a function only of θ and ϕ on I+. That is, ~A carries information worth two
(real) functions A0

2(u, θ, ϕ) of three variables and one function A0
1(θ, ϕ) only of two

variables. Thus, in terms of asymptotic fields on I+, implications of the requirement
D̊a ~AT

a = 0 are subtle: in addition to the two degrees of freedom A0
2 one would

expect, we are left with an unanticipated, additional function A0
1 of two variables.

Now, as we saw in Section 4.3, because of Maxwell’s equations (which in particular
imply the Peeling properties), (φ0 − A0

1) is a constant on I+ in any gauge. Hence
in the Coulomb gauge now under consideration, φ0 is also a non-dynamical function
only of (θ, φ) and we can trade A0

1 for φ0. We will do so because, in view of (4.16),
the interpretation of φ0 is more direct: it captures the ‘Coulombic aspects’ of the
asymptotic Maxwell field. In particular, as we saw, the electric charge is given by
Q = 1

4π
∮
φ0d2S. Finally, since ATa is gauge invariant on the entire spacetime, higher
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order fields such as φ1 and A1
1 also have an invariant meaning. They feature in the

expression (4.24) of ReΦ0
1 and, together with φ0 and A0

2, suffice to determine it.
Therefore, the function G(θ, ϕ) in (4.26) is also determined by these fields. This
fact will play an important role in our discussion of angular momentum.

The second notion of transversality At
a that is widely used in the literature (to

motivate constructions in the gravitational case) is local in physical space (see,
e.g. [53]). One sets

At
a := P b

a Ab, where P b
a = mam̄

b + m̄am
b ≡ m̂a

ˆ̄mb + ˆ̄mam̂
b (4.29)

is the projection operator that projects fields into the 2-spheres r = const, t = const
in Minkowski spacetime. Using the expansion (4.15) of At

a in terms of its components
and the assumed fall-off (4.20) - (4.22) of these components, we obtain the following
expansion of At

a in a neighborhood of I+:

At
a =

(
A0

2 + ΩA1
2 + . . .

)
m̂a +

(
Ā0

2 + ΩĀ1
2 + . . .

)
ˆ̄ma=̂A0

2 m̂a + Ā0
2 ˆ̄ma. (4.30)

Note that At
a automatically satisfies At

an̂
a=̂0 at I+.

Often At
a is defined via (4.29) without specifying any gauge conditions even

though the result is obviously not gauge invariant. What would happen if we use
the Lorenz gauge in Minkowski spacetime so that the dynamical equation satisfied
by Aa is just the wave equation? Indeed, more careful treatments make this choice.
Then the residual gauge freedom is restricted to Aa → Aa +∇aΛ with �Λ = 0.
Since this gauge transformation also needs to preserve the fall-off conditions (4.20)
- (4.22), the solution to the wave equation has the form6

Λ = Λ0(u, θ, ϕ)
r

+O
( 1
r2

)
, (4.31)

6Note that if Λ had a leading order term of the type Λ = Λ0
0(θ, ϕ) + O( 1

r ), the Cartesian
components of ∇Λ would fall-off as 1/r as needed. But this possibility is ruled out by the fact that
�Λ would then not vanish to leading order. If Λ had terms of the form Λ = (ln r/r) Λ0(u, θ, ϕ) +
O( 1

r2 ), or Λ = Λ0(u, θ, ϕ) + O( 1
r ), the gauge transformation would fail to preserve the fall-off

conditions on Aa.
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leading to gauge transformation on Aa of the form

Aa → Aa + ∂uΛ0(u, θ, ϕ)
r

∇au+ ∂θΛ0(u, θ, ϕ)
r

∇aθ + ∂ϕΛ0(u, θ, ϕ)
r

∇aϕ+O
( 1
r2

)
.

Hence,

φ0 → φ0 − ∂uΛ0(u, θ, ϕ), A0
1 → A0

1 − ∂uΛ0(u, θ, ϕ), A0
2 → A0

2 (4.32)

and at I+ we have: Ata=̂A′
t
a. Thus, At

a is gauge invariant on I+ if Aa satisfies
the Lorenz gauge near I+ and Aa has the desired fall-off behavior. Note however
that, even with the Lorenz gauge imposed, φ0 and higher order fields including A1

1

are not gauge invariant. For notational clarity, from now on we will denote fields
associated with the vector potential in the Lorenz gauge by an undertilde. Thus,

∼A
0
2 will denote the radiative modes extracted from At

a in the Lorenz gauge.

4.4.2 Comparison

We can now compare the two notions of transversality. First, even with the Lorenz
gauge condition, At

a is not gauge invariant beyond the leading asymptotic order. By
contrast, AT

a is fully gauge invariant. How do the leading order fields compare? As
we saw, each notion of transversality enables one to single out two radiative modes
at I+: A0

2 from AT
a , and ∼A

0
2 from At

a. Both are gauge invariant. Furthermore,
we know that the gauge invariant field Φ0

2 is related to the vector potential via
Φ0

2 =
√

2 ∂uA0
2, in any gauge satisfying the fall-off conditions. Therefore, the

radiative modes in the two notions are related by a non-dynamical function on I+:

A0
2(u, θ, ϕ)−∼A

0
2(u, θ, ϕ)=̂f(θ, ϕ) . (4.33)

(Since ImΦ0
1=̂
√

2 Im(ðA0
2) in any gauge, it follows that Im(ðf)=̂0, which in turn

implies that f = ð̄h where h is real, i.e., f is ‘purely electric’ [86].) There is
no a priori guarantee that the functions representing radiative modes in AT

a are
the same as those in At

a even at I+. However, the difference between them is a
non-dynamical function. As we show below, it drops out of all physical quantities
that can be constructed from the radiative modes –including those associated with
soft (i.e. infrared) ‘charges’ and the memory effect.

As far as fields at I+ are concerned, the main difference in the two approaches
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to transversality of the vector potential is the following. In the first approach
leading to AT

a , as we saw, ~Aa has three independent components at I+ even to
leading order: In addition to A0

2, the leading order part of ~Aa provides us with A0
1,

which as we saw can be traded for φ0. This additional field is non-dynamical on
I+, a hallmark of fields carrying the ‘Coulombic information’ in the asymptotic
Maxwell field. Furthermore, in this approach, higher order fields such as φ1 and
A1

1 are also accessible and gauge invariant. By contrast, in the second approach
leading to At

a, only the leading order fields ∼A
0
2 are gauge invariant. While we can

introduce ∼φ
0 and higher order fields, they are not invariant under the restricted

gauge transformations even after imposing the Lorenz gauge.
How does this difference manifest itself? First, as we saw, the total electric

charge in the system is not encoded in the radiative modes. However, it can be
expressed as an integral of φ0 over a 2-sphere cross-section of I+, accessible in the
AT
a approach but not in the At

a approach. Thus, the information about leading order
‘Coulombic properties’ of the solution — in particular, the total electric charge
— is accessible to the first approach but not to the second. In the gravitational
case, the situation is parallel, with electric charge replaced by the linearized Bondi
4-momentum.

Based on this fact, one’s first intuition could be that the At
a-approach would

not be adequate to handle issues such as the soft charges and memory effect
which are related to the ‘charge aspect’ Φ0

1 at I+, but should be adequate for
calculating physical quantities associated with electromagnetic waves such as the
energy, momentum and angular momentum they carry. However, it turns out that
neither of these expectations is borne out; the situation is more subtle.

4.4.3 Fluxes of energy-momentum and angular momentum

Let us begin with the expressions fluxes of energy-momentum and angular momen-
tum across I+. Since every Killing field Ka admits a smooth limit (4.6) to I+,
using conformal invariance of the Maxwell field, the flux FK can be expressed as:

FK =
∫
I+
T̂abK

añb du d2S

=
∫
I+

(
F̂acF̂bd η̂

cd − 1
4 η̂abF̂cdF̂

cd
)
Kañb du d2S . (4.34)
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Recall from (4.6) that for translation Killing fields, Ka=̂α(θ, ϕ)ña, with α(θ, ϕ)
characterizing that the translation is a linear combination of the first four spherical
harmonics. Therefore, the corresponding flux becomes:

Fα =
∫
I+
|Φ0

2|2 α(θ, ϕ) du d2S

=
∫
I+

2 |∂uA0
2|2 α(θ, ϕ) du d2S . (4.35)

Thus the energy-momentum flux is expressible entirely in terms of the radiative
modes A0

2. Although we focused on the total flux of energy-momentum across I+,
since no integration by parts was involved, it is clear from the calculation that
the integrand, representing the local flux, can also be expressed in terms of A0

2.
Furthermore, the expression holds in any gauge.

Next, let us consider the component of angular momentum along a spatial
rotation ha which is tangential to the u = const 2-sphere cross- sections of I+ and
satisfies Lhqab=̂0 and Lhña=̂0 (see (4.6)). Then we can expand ha as ha=̂g(θ, ϕ)m̂a+
ḡ(θ, ϕ) ˆ̄ma (where g satisfies ð̄g=̂0 [38, 91]). Substituting Ka = ha in (4.34), we
obtain the flux of the ha-component of angular momentum:

Fg =
√

2
∫
I+

Re
[
Φ̄0

2Φ0
1 g(θ, ϕ)

]
du d2S (4.36)

= 2
∫
I+

Re
[
(∂uĀ0

2) (
√

2ðA0
2 +G(θ, ϕ)) g(θ, ϕ)

]
du d2S (4.37)

where in the second step we have used (4.26) to express the real part of Φ0
1 in terms

of A0
2 and G(θ, ϕ). Again, these expressions hold in any gauge. The integrand in

(4.36) involves only Φ0
2 and Φ0

1 which are both manifestly gauge invariant7 and
the passage to (4.37) featuring A0

2 and G(θ, ϕ) did not involve any integration by
parts. Therefore the integrands in each of these expressions represents the local
flux of angular momentum. In contrast to energy-momentum, the local as well as
the integrated flux of angular momentum depends on the asymptotic ‘Coulombic
part’ of the Maxwell field through ReΦ0

1. Eq. (4.37) makes it explicit that the flux
of angular momentum cannot be expressed purely in terms of the two radiative
modes captured in A0

2; we also need the ‘Coulombic information’ in ReΦ0
1 encoded

7While the second expression also holds in any choice of gauge since ∂uA0
2 and ReΦ0

1 =√
2ReðA0

2 +G(θ, ϕ) are both gauge invariant, the individual terms, ReðA0
2 and G(θ, ϕ) are not.

In particular ðA0
2 that features in the expression of AT

a need not equal ð∼A
0
2 that features in At

a.
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in the function G(θ, ϕ). In particular, this implies that angular momentum carried
away by electromagnetic waves cannot be expressed using only the component of
the electromagnetic vector potential in At

a. This fact appears not to have been
noticed in the literature. By contrast, AT

a provides additional asymptotic fields
that are sufficient to obtain ReΦ0

1 (and G(θ, ϕ)) and hence the local and total flux
of angular momentum at I+.

4.4.4 Soft charges and electromagnetic memory

The ‘soft’ or ‘infrared charges’ qα̃ are obtained by integrating the charge aspect
ReΦ0

1 against real-valued test fields α̃ [90]:

qα̃ = 1
4π

( ∮
u=∞
−
∮
u=−∞

) [
α̃ ReΦ0

1(u, θ, ϕ)
]

d2S. (4.38)

For any Maxwell field qα̃ vanishes if α̃ = const by charge conservation. However,
for a general α̃ it carries non-trivial information about the ‘Coulombic aspect’ of
the asymptotic Maxwell field. Since the integrand features ReΦ0

1, one might first
expect that the soft charge would not be expressible purely in terms of radiative
modes. However, using (4.26), it follows that

qα̃ = −
√

2
4π

( ∮
u=∞
−
∮
u=−∞

)
Re
[
A0

2(u, θ, ϕ) ðα̃(θ, ϕ)
]

d2S , (4.39)

since G is u-independent. Thus, the soft charges can in fact be expressed using
only the radiative modes in A0

2. (Since the kernel of ð on spin-weight zero functions
consists only of constants, in general qα̃ vanishes only if α̃ = const.) Indeed, using
the Maxwell equation ∂uΦ0

1 = ðΦ0
2 we can recast the soft charges in terms only of

the radiation field Φ0
2:

qα̃ = − 1
4π

∫
I+

(
Φ0

2(u, θ, ϕ) ðα̃
)

du d2S

= − 1
4π

∮
d2S ðα̃

( ∫ ∞
−∞

duΦ0
2(u, θ, ϕ)

)
. (4.40)

Thus, even though the soft charges are associated with ReΦ0
1 that one normally

thinks of as carrying ‘Coulombic information’, it can be expressed entirely in terms
of radiative modes and is therefore accessible in the Ata-framework. We will now
show that the situation is similar for electromagnetic memory.
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The electromagnetic analog of the memory effect is a ‘kick’ — that is, change
in velocity v that a test particle with charge q in the asymptotic region undergoes
after the passage of an electromagnetic wave. If the particle is initially following
a trajectory of the time-translation Killing field ta in the asymptotic region with
θ = θo, ϕ = ϕo, r = ro, it would acquire a velocity of magnitude ∆v given by [92]

∆v = q

m

[∫ ∞
−∞

du~E(u, ro, θo, ϕo) ·
∫ ∞
−∞

du~E(u, ro, θo, ϕo)
] 1

2
, (4.41)

where Ea is the electric field Ea = F abtb in the rest frame of the particle. We can
rewrite this expression using the asymptotic expansion of the Maxwell field as:

∆v = q

mro

∣∣∣∣ ∫ ∞
−∞

du Φ0
2(u, θ0, ϕ0)

∣∣∣∣ + O
( 1
r2
o

)

=
√

2q
mro

∣∣∣A0
2(u =∞, θo, ϕo)− A0

2(u = −∞, θo, ϕo)
∣∣∣+O( 1

r2
o

)
. (4.42)

Thus, the leading term in the electromagnetic memory is proportional to absolute
value |qα̃| of the soft charge, for α̃ such that ðα̃ is the Dirac distribution centered
at θ = θo and ϕ = ϕo. Although the kick is closely related to the charge aspect, it
can can be expressed entirely in terms of the radiation field Φ0

2, or, radiative modes
A0

2 of the vector potential.

4.4.5 Summary

AT
a is gauge invariant everywhere in spacetime while only the limit to I+ of At

a

is gauge invariant. At I+, the AT
a -framework provides us two leading order fields

A0
2 and φ0 (or, equivalently, A0

1), as well a hierarchy of higher order fields, such
as φ1, A1

1, . . . that are all gauge invariant. By contrast, only the gauge invariant
fields that the At

a-framework provides at I+ is ∼A
0
2. The two radiative modes of the

electromagnetic field are encoded in A0
2 and ∼A

0
2. However, in general A0

2 and ∼A
0
2

do not agree even asymptotically, i.e., at I+, but their difference is encoded in a
non-dynamical function f(θ, ϕ) that is irrelevant for all physical observables. We
can express energy momentum, soft charges and electromagnetic memory using only
the radiative modes A0

2 or ∼A
0
2. However, in presence of sources, angular momentum
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carried by electromagnetic waves cannot be expressed using just the radiative
modes; we also need ‘Coulombic information’. The additional fields at I+ provided
by the AT

a -framework carry this information.

Remarks:
(i) It is instructive to rewrite the angular momentum flux (4.37) by performing an
integration by parts as:

Fg = 2
∫
I+

Re
[
(∂uĀ0

2)(
√

2ðA0
2) g(θ, ϕ)

]
−
( ∮

u=∞
−
∮
u=−∞

)
Re[Ā0

2G(θ, ϕ) g(θ, ϕ)] .
(4.43)

This form brings out the fact that while the flux does depend on the ‘Coulombic
information’ in ReΦ0

1, it can be made to enter only through boundary terms at the
two ends, i+ and io, of I+.

(ii) In the source-free case, we know from (4.28) that G(θ, ϕ) vanishes and hence,
like the energy-momentum flux, the angular momentum flux is now expressible
only in terms of the two radiative modes A0

2. For the Maxwell field, we obtained
expressions of these fluxes, using the stress-energy tensor. For linearized gravity,
there is no local, gauge invariant stress-energy tensor. However, already in the
Maxwell case one can use a covariant phase space framework and recover these
fluxes as Hamiltonians generating canonical transformations induced by the action
of Killing vectors Ka on solutions of Maxwell equations [84]. In the source-free
case, this method extends to linearized gravitational waves [35] and, indeed, also to
gravitational waves in full general relativity [84].

(iii) In the absence of sources, the covariant phase space can be coordinatized
by the two radiative modes of the Maxwell [84] or gravitational fields [93]. But
in presence of sources, this coordinatization fails to be faithful; for example, it
fails to distinguish different stationary solutions. As we just saw in this section, in
presence of sources, one needs additional ‘Coulombic information’ already to obtain
the correct expression of the flux of angular momentum. This requires an extension
of the covariant phase space method. We have already carried out this extension
for the Maxwell field and the main steps have been laid down for linearized gravity.
Eq. (4.43) tells us that the bulk term in the expression of angular momentum is
the same as that in the source-free case, but we now have to supplement it with
boundary terms that encode the relevant ‘Coulombic information.’ This structure
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extends to the generalized phase space constructed at I+ to accommodate the
presence of sources in the interior. The symplectic structure of this phase space has a
bulk term that is the same as that in the source-free case but it is now supplemented
by boundary terms at i+ and io that involve appropriate non-radiative fields.

4.5 Discussion

Somewhat surprisingly, in many of the widely used monographs and review articles,
two different notions are denoted by the same term, transverse-traceless modes
of (linearized) gravitational waves, without realizing that they are conceptually
distinct. These treatments generally begin with the fully gauge invariant notion that
is local in the momentum space, and hence non-local in physical space, and label the
modes with a superscript TT. This is the notion that features in the decomposition
of metric perturbations into scalar, vector and tensor modes. However, while
discussing gravitational waves emitted by an isolated system — typically in a later
section — the relevant modes are extracted using a ‘projection operator’ that is
local in physical space. These modes are also called transverse-traceless and again
labeled by the same superscript TT, implying that this is just a reformulation of
the previous notion. But as we shown in this chapter, the two notions are distinct
and the difference persists even in the asymptotic region.

There is one exception to this statement that we have not yet discussed: for
plane waves, the two notions of transversality in fact coincide. This is clear from
the Fourier transform of the spatial components of the linearized gravitational
perturbation hab on a t = const slice:

hab(t, ~x) =
∫ d3k

(2π)3

(
h̃ab(t,~k)ei~k·~x + c.c.

)
. (4.44)

If hab is transverse and traceless in the usual sense, that is, hab = hTT
ab and satisfies

q̊abhTT
ab = 0 = D̊ahTT

ab , this translates to the following conditions on the Fourier
transformed potential h̃ab:

k̂ah̃TT
ab = 0 and q̊abh̃TT

ab = 0 , (4.45)

where k̂a is the unit wave-vector. When considering a plane wave traveling along
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k̂a, integrating the first condition in (4.45) over d3k and using the isomorphism
between real and Fourier space to identify k̂a with the radial unit vector r̂a, one
can conclude that this condition in real space becomes r̂ahTT

ab = 0. Hence, for plane
waves hTT

ab = htt
ab. This is only true for plane waves, because the integral over d3k

prohibits the identification of k̂a with r̂a whenever one considers a superposition of
waves with wave-vectors that are not aligned. Since waves emitted by astrophysical
sources are not plane waves, the equivalence for this particular case is not directly
physically relevant.8

Generically, the two notions of transversality are not equivalent. How do these
differences manifest themselves? To investigate this, we studied this issue in the
technically simpler context of Maxwell theory in which two similar notions of
transversality exist: AT

a and At
a. Null infinity provides the appropriate platform to

compare these two notions. The leading order terms of the Newman-Penrose scalars
Φ0

2 and ImΦ0
1 capture the radiative modes and are determined by time and angular

derivatives of A0
2 (and Ā0

2). Hence, the radiative degrees of freedom are encoded
in A0

2, which is the leading order part of the angular components of Aa. For these
radiative degrees of freedom, the two notions of transversality are the same up
to a non-dynamical function on the two-sphere. This non-dynamical function is
not physically relevant as it does not appear in any physical observable quantities
such as energy-momentum flux radiated across I, electromagnetic memory or soft
charges. There are important physical differences, however, between the two notions.
AT
a contains more information than At

a; it also contains ‘Coulombic information’
that is not available to At

a. Physically, this information manifest itself in angular
momentum.

We discussed these issues in detail in the technically simpler context of Maxwell
theory because the structure is completely parallel to that for linearized gravity. Of
course, in the Maxwell theory, one can forego potentials altogether and express all
physical observables directly in terms of the Maxwell field Fab, which is accessible
in both approaches. But for linearized gravitational fields, we cannot express even

8One may argue (see, for instance, [72]) that the direction of propagation of waves produced
by astrophysical objects as observed by gravitational wave observatories on earth is well-defined.
Consequently, for all practical purposes, the observed waves behave effectively as plane waves.
This heuristic argument, however, does not provide much insight. It does not bring a deeper
conceptual understanding of the relation between hTT

ab and htt
ab discussed in this chapter, nor does

it give quantitative control on the difference between hTT
ab and htt

ab. Moreover, it completely misses
the important observation that radiated angular momentum is captured by hTT

ab but not by htt
ab.
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the basic physical quantities such as the flux of energy, momentum and angular
momentum in terms of linearized curvature; we have to work with potentials.
Therefore, we studied the Maxwell case in terms of the vector potential in detail.
Analogously to the electromagnetic case, the Newman-Penrose scalars Ψ0

4, Ψ0
3 and

ImΨ0
2 capture the radiative modes in the context of linearized gravitational fields

(and in full general relativity — although that is not relevant to this discussion).
Just as A0

2 in Maxwell theory determined the radiative aspects through its time and
angular derivatives, so does the linearized shear encoded in the angular components
of the metric perturbation determine Ψ0

4, Ψ0
3 and ImΨ0

2. The linearized shear for
hTT
ab and htt

ab is generically not the same, not even at I+, but it differs only by a
non-dynamical function on the two-sphere that does not appear in any physical
observables typically considered. Futhermore, similar to AT

a in Maxwell theory,
hTT
ab provides additional fields at I that contain information about the ‘Coulombic

aspect’ of the field. Preliminary results indicate that these additional fields play
an important role for angular momentum radiated by gravitational perturbations.
The analysis of angular momentum radiated is rather technical as for linearized
gravity no stress-energy tensor exists. To by-pass this issue, we use the covariant
phase space framework to calculate fluxes radiated by considering the Hamiltonians
generating canonical transformations induced by the action of Killing vectors Ka on
solutions of the linearized Einstein’s equations [84]. However, the current covariant
phase space framework is only valid in the absence of sources. The main steps for
the extension of this framework to include sources have been carried out and will
appear elsewhere.

To conclude, we do not claim that there is a major error in the final expressions
in standard gravitational wave theory literature that heavily uses the second notion
of transversality. But it can lead to physically incorrect results for a few quantities
such as angular momentum carried by gravitational waves. The primary goal of
this chapter was to clarify the conceptual differences between the two notions. This
clear distinction between the two notions of transversality is especially important
when considering stochastic backgrounds of gravitational radiation or when one
wants to place an isolated system in a realistic cosmology, where asymptotically flat
spacetimes are replaced by asymptotically de Sitter spacetimes. In neither of these
scenarios can one use the second notion of transversality, htt

ab, that relies heavily on
the Bondi expansions near null infinity I+ in asymptotically flat spacetimes.
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Chapter 5 |
Conclusion and outlook

With the recent gravitational wave detections by LIGO, a new era has started:
the era of gravitational wave astronomy [2–4]. As a qualitatively new channel
to study astrophysical phenomena, gravitational wave observations are likely to
revolutionize our understanding of the Universe. In cosmology, they will allow us
to look deeper into the past of our Universe than has been possible with CMB
observations and study the earliest stages just after the big bang. However, in
order to use gravitational waves for cosmology, we need to go beyond our present
understanding of these waves.

The current theoretical framework was developed with nearby astrophysical
sources in mind: it treats the source that emits gravitational waves as an isolated
system in an asymptotically flat universe. In this set-up, spacetime curvature
decays as we recede from sources. However, this is not what happens in our physical
Universe. Not only does the spacetime curvature prevail because of approximate
spatial homogeneity but there is also an accelerated expansion that is best described
by a positive cosmological constant Λ. Somewhat surprisingly, the global structure
of solutions of Einstein’s equations with a positive Λ is very different from that
with zero Λ, no matter how small Λ is. Since radiative properties of solutions
can be extracted only by moving far away from sources — to the ‘radiation zone’
— differences in the global structure become very important in the discussion
of properties of gravitational radiation. In particular, the rich framework used
to describe gravitational waves in the asymptotically flat context is no longer
applicable, nor can it be simply tweaked. One needs completely new methods to
incorporate the global issues brought in by a positive Λ. This dissertation provided
first steps to overcome these limitations of the current theory of gravitational waves
by addressing issues that arise in presence of a positive Λ for linearized gravitational
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waves. To construct a theory that can adequately describe gravitational waves in
our Universe, one would have to incorporate cosmological matter in addition to Λ
and extend the framework to full, non-linear general relativity.

5.1 Summary

In the asymptotically flat case, by going far away from sources in null directions one
can disentangle the gravitational waves from the background curvature. This insight
by Bondi allowed him to show that gravitational waves are physical since they
carry energy. Penrose formalized these ideas using conformal methods and showed
that the boundary of spacetime, I, is the natural arena on which gravitational
radiation can be studied unambiguously. On I of asymptotically flat spacetimes, a
rich structure exists. For instance, there is an asymptotic symmetry group, called
the BMS group, that leaves the asymptotic structure invariant. In addition, one
can define the Bondi news tensor that describes gravitational radiation in a gauge
invariant manner in full, non-linear general relativity. A key difference between
asymptotically flat spacetimes and asymptotically de Sitter spacetimes is the nature
of I. As a consequence of Einstein’s equations, I is a null surface when with Λ = 0,
while space-like when Λ > 0. Many conceptual difficulties arise as a result, as
we elaborated upon in Chapter 1. For instance, we do not yet have an analog
in asymptotically de Sitter spacetimes of the Bondi news tensor. Nor is there an
analog of the BMS group that allows for an interpretation of energy-momentum or
angular momentum emitted in the form of gravitational radiation.

These issues were circumvented by studying linearized gravitational fields on a
de Sitter background. The results obtained by studying the linearized fields serve
as important checks in the final construction of the framework that allows the
study of gravitational radiation in full non-linear general relativity when Λ > 0.
In addition, they are interesting on their own since already at the linearized level
subtleties arise.

First of all, in asymptotically flat spacetimes the properties of gravitational
waves are best understood in the region far away from the sources that create
them. Therefore, one often employs an 1/r expansion to study gravitational waves.
However, when Λ 6= 0 this expansion is not physically relevant. Instead a late
time expansion is needed because I is no longer a null surface but is space-like.
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Second, while wavelengths of fields propagating on a flat spacetime are constant,
on a de Sitter spacetime they increase and even exceed the curvature radius in the
asymptotic region. Consequently, the commonly used high-frequency approximation
is not valid near de Sitter I. The breakdown of the high-frequency limit near
I is further illustrated by the appearance of a hereditary term in the expression
for gravitational wave perturbations. This term vanishes in the high-frequency
limit but its value near I is comparable to the sharply propagating term and thus
should not be neglected. Another interesting lesson learned from the study of
linearized fields on a de Sitter background is that the Λ→ 0 can be discontinuous.
A worrisome example is the discontinuity in energy: for gravitational perturbations
in the presence of a positive Λ the energy is unbounded below and thus can be
arbitrarily negative, whereas for perturbations in flat spacetime the energy is always
positive because of the positive mass theorem [94,95]. Nevertheless, we showed that
the energy of gravitational waves emitted by physical sources cannot be negative.
For non-linear gravitational wave theory, this is still an important open question
and can only be addressed after the development of the framework that addresses
gravitational radiation in full general relativity for spacetimes with Λ > 0.

Furthermore, many subtleties arise in the generalization from Einstein’s cele-
brated quadrupole formula describing the power emitted in the form of gravitational
radiation on a flat spacetime to de Sitter spacetime. This is described in Chapter 2.
This generalization occurred exactly a 100 years after Einstein’s initial formula and
the long time span between these results highlights the conceptual subtleness and
technical difficulty of this generalization. At the technical level, standard techniques
to study gravitational waves on flat spacetimes such as the 1/r expansion, the
high-frequency approximation and the algebraic projection operator to extract the
radiative degrees of freedom do not apply to gravitational waves on a de Sitter
background. At the conceptual level, we found that power radiated introduces new
features. Although the power radiated is still quadrupolar in nature within our
post-de Sitter, first order post-Newtonian approximation, it receives contributions
from both mass quadrupole moments as well as pressure quadrupole moments. From
cosmology, it is well known that pressure gravitates. This result shows that it also
directly sources gravitational waves — already at this leading order approximation.
In addition, not only third time derivatives of the quadrupole moments contribute
to the power radiated but also lower order time derivatives contribute. This is in
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contrast to the result on a Minkowski background that at this order depends only
on the third time derivative of the mass quadrupole moment. The lower order time
derivatives and pressure quadrupole moments are all accompanied by factors of√

Λ so that in the limit Λ→ 0 the expression for power radiated on a Minkowski
background is recovered. Moreover, despite the fact that the gravitational wave
itself has a tail term, the power at any given time only depends on the dynamics
of the source at the corresponding retarded time. This is due to the fact that the
energy radiated depends not on the gravitational perturbation directly but on its
derivatives and the derivatives of the tail term propagate sharply. As a result,
the tail term does not explicitly appear in the power radiated. (This should not
be mistaken to mean that the tail term itself does not contribute to the energy
radiated on I, it certainly does.) Thus, while even a small cosmological constant
requires entirely new techniques and introduces qualitatively new features to the
power radiated, in the end, the corrections to Einstein’s formula due to Λ are
negligible for current gravitational wave observatories.

There are situations in which the differences between the Λ > 0 and Λ = 0 case
could be significant. For instance, one of the most powerful sources of gravitational
waves is the interaction of two supermassive black holes following the merger of
their host galaxies. The time scales associated with this system are cosmological
and thus one may hope to detect effects due to Λ > 0. Therefore, in Chapter 3,
we applied the formula for power radiated by an arbitrary source on a de Sitter
background to a binary system in a circular orbit. The dynamics of the binary could
only reliably be determined up to O(

√
ΛΩ−1) with Ω the angular velocity of the

binary. Consequently, the resulting power could also only be reliably determined
up to O(

√
ΛΩ−1) and the power radiated in terms of the reduced mass and angular

velocity is identical to the standard expression for power radiated by the same
system on a Minkowski background (up to constant factor of the scale factor at
the time of emission). By construction, no corrections due to Λ appear. From a
physical perspective, this result is as expected: the effect of Λ is small due to a
natural separation of scales. However, from a mathematical perspective, the final
answer is rather surprising given that the limit Λ→ 0 can be discontinuous and
the different (physical) approximations made and calculational tools used.

One of the key difference in the calculational tools is the 1/r expansion versus
the late time expansion. Another important difference between gravitational waves
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on a Minkowski and de Sitter background is how the radiative degrees of freedom
are extracted. When Λ = 0, one extracts the radiative degrees of freedom of
the gravitational waves in the wave zone using an algebraic projection operator.
This algebraic projection operator projects the spatial part of the gravitational
perturbation onto the two-sphere orthogonal to the radial direction. This has become
standard in gravitational wave theory. When Λ > 0, however, one needs to extract
the transverse-traceless part of the spatial components of the linearized potential.
In Chapter 4, we studied the relation between the two methods for extracting the
radiative modes in the context of asymptotically flat spacetimes. We showed that
the radiative degrees of freedom extracted by the two methods generically do not
agree; not even at I. Their difference is, however, not physically important as it
can be completely encoded by a function of the two angular coordinates f(θ, ϕ)
and does not contain any dynamical information. The difference f(θ, ϕ) disappears
from physical observable quantities typically considered such as energy carried by
the gravitational waves. Hence, for questions for which only the radiative degrees of
freedom are relevant, both methods yield the same result. The difference between
the two methods becomes important when one is also interested in ‘Coulombic’
information. This information is not available to the algebraic projection method,
whereas it is to hTT

ab . For instance, angular momentum carried by gravitational waves
cannot be calculated from htt

ab alone. We also showed that the algebraic projection
operator does not extract the radiative degrees of freedom for (asymptotically) de
Sitter spacetimes, since the algebraic projection method is tailored to Bondi-Sachs
type expansions and behavior of fields near I in asymptotically flat spacetimes and
does not generalize to cases for which I is space-like.

5.2 Looking forward

The primary goal of this dissertation was conceptual. Given the observed small-
ness of the cosmological constant, it is natural to expect that the observational
consequences of Λ on gravitational radiation will also be small. However, without a
framework to calculate the corrections induced by Λ one cannot say with confidence
how small these corrections are. The formula for power radiated in the presence of
Λ > 0 derived in Chapter 2 is a first step towards answering this question. The
expression shows explicitly that the effects of Λ are suppressed by the characteristic
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time scale associated with the source. This result is non-trivial given the fact that
the limit Λ→ 0 can be discontinuous.

Nonetheless, much is still to be understood both with regard to calculational
tools as well as fundamental questions. In particular, all results at the linearized
level so far have been for a de Sitter background. To be directly relevant for
observations, these results need to be extended to more realistic cosmological
spacetimes such as FLRW models with positive Λ that include matter. Tied to this
generalization to spacetimes with matter, is the question what the origin of the
O(
√

Λtc) corrections is. The cosmological constant is a measure of curvature that
plays two roles: it is present at the time of generation of the gravitational waves
and it influences their propagation. Is one of these a dominating factor in giving
rise to the O(

√
Λtc) terms in power radiated? Given that in the formula for power

radiated all terms are to be evaluated at the retarded instant of time, it is plausible
that the curvature at the time of the wave generation is the key player. If this
is indeed the case and one assumes that the result for power radiated generalizes
in a straightforward manner to spacetimes with matter and Λ > 0, then it seems
plausible that the value of

√
Λ in the power radiated should be replaced by that of√

3H at the moment the waves are generated. The value of
√

3H was much larger
in the past than the value of

√
Λ. This could make the corrections to the power

radiated due to the expansion of the Universe larger and easier to observe. We will
conclude by providing some estimates.

Let us suppose that one percent corrections to the power radiated could be
readily observed and focus on a binary formed at z ∼ 100, the epoch when the
first stars and black holes were formed. When the period of the orbital motion
is ∼ 107 years, the corrections due to the curvature are then observable. For a
binary black hole system with a total mass of about two solar masses, this implies,
in the Newtonian approximation, a physical separation between the two bodies
of 0.4 pc (and a velocity of the individual black holes of ∼ 150 m s−1). A binary
black hole system with total mass ∼ 106M� has to be separated by 30 pc (and the
internal velocity is approximately 104 m s−1). Such systems should exist among
the first stars and black holes, but we do not know how abundant they would be.
To measure these effects, we would need gravitational wave detectors sensitive to
wavelengths λ ∼ 5 Mpc. For comparison, the pulsar timing array is sensitive to
λ ∼ 3 pc [96].
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On the other hand, if the terms containing Λ in the power radiated are mainly
due to the waves propagating on a curved background and again one assumes that
the result for power radiated generalizes trivially to expanding spacetimes with
matter, it will be more difficult to observe the effect of Λ on gravitational radiation.
Concretely, if one assumes again that one can resolve the power to a precision of one
percent then the period of a binary system has to be roughly 1010 years. The black
holes making up a binary with total mass equaling ∼ 2M� are now separated by 26
pc (and v ∼ 18 m s−1), while for a binary with total mass 106M� the separation is
10 kpc (and v ∼ 103 m s−1). Our current methods that focus on I do not address
what the dominating factor is: the curvature at the source or during propagation.
New tools may be needed to satisfactorily answer this question. In addition, if the
terms of O(

√
Λtc) in the radiated power can be attributed to the wave propagation

effect, it is critical to gain a better understanding of the source dynamics on longer
time scales. In Chapter 3, the source dynamics could only reliably be determined
in the approximation that the scale factor is constant during the time of interest.
This assumption will then need to be relaxed. If the effects due to Λ have their
origin in the wave generation process, the source dynamics on long time scales is
not pivotal in understanding the corrections due to the cosmological background
on the power radiated.

From a more practical point of view, it is worthwhile to investigate whether there
is an efficient way to extract the radiative degrees of freedom from a gravitational
wave perturbation. As mentioned before, in Minkowski spacetime, one can extract
the radiative modes on I using the algebraic projection operator. This projection
operator is remarkably simple from a computational perspective and avoids solving
a cumbersome set of differential equations otherwise needed to obtain the radiative
modes. Applying this algebraic projection operator to gravitational perturbations
on a de Sitter background, however, does not yield the radiative degrees of freedom.
Are there other methods that allow a simple extraction of the radiative modes of
the gravitational perturbations on a de Sitter spacetime?

A more fundamental issue is related to the gravitational memory effect. This
effect is well understood in asymptotically flat spacetimes and describes the phe-
nomenon that a passing gravitational wave displaces test masses permanently.
Several authors have also studied this effect in cosmological spacetimes with a
positive Λ and found an enhancement of this effect as compared to flat space-
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times [77, 78]. In addition, since already at the lowest order in the approximations
for gravitational waves on de Sitter spacetime a tail term appears — which is absent
for flat spacetime — it has been argued that also a new type of linear memory
exists [59,76]. These studies have some important limitations as they employ a 1/r
expansion which is not appropriate. The connection between these ideas and how
they may relate to the further development of the framework of asymptotically de
Sitter spacetimes in full, non-linear general relativity is interesting.

Finally, it is important to understand gravitational radiation in non-linear gen-
eral relativity especially given the historical confusion on the reality of gravitational
waves.
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Appendix A|
Transverse-traceless decomposition of
the quadrupole moment

In this appendix,1 we first briefly recall the decomposition of a spatial tensor into its
irreducible parts and outline a generic prescription to extract the transverse-traceless
part of this decomposition. In addition, we discuss some important properties of
this decomposition. Next, we apply this method to calculate the transverse-traceless
part of the quadrupole moment in eq. (3.9) and comment on the calculation of
the transverse-traceless part of the radiation field Rab. For this calculation, the
algebraic computing software Maple was used extensively for solving the differential
equations and Mathematica for the tensor analysis.

A.1 General properties TT decomposition

As discussed in chapter 2 and 4, any spatial symmetric rank-2 tensor Sab can be
decomposed into its irreducible parts in the following form [53,97]:

Sab = 1
3qabS +

(
DaDb −

1
3qabD

2
)
B + 2D(aB

T
b) + STTab (A.1)

where qab is the spatially flat metric and Da is the covariant derivative compatible
with qab.2 S is the spatial trace of Sab (S := qabSab), BT

a is a transverse vector
so that DaBT

a = 0, and STTab is a transverse and traceless tensor.3 In order to
1This appendix is an expanded version of appendix A in [39].
2The transverse-traceless decomposition refers to the flat spatial metric and not to the spatial

de Sitter metric. Since only the flat metric plays a role, this metric will be denoted by qab instead
of q̊ab in this appendix to avoid notational clutter.

3York, [98], uses a similar decomposition using only the vector Wa, related to our components
via Wa = BTa + 1

2DaB.
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extract the radiative degrees of freedom of the gravitational field that are encoded
in the transverse-traceless part of the spatial components, one often uses an
algebraic projection operator in gravitational wave theory. However, as the above
decomposition indicates, this generically will not extract the transverse-traceless
part STTab . Instead one needs to solve a set of differential equations. The ‘recipe’ to
obtain the TT part of a tensor Sab is as follows:

1. First, by transvecting the above decomposition with two covariant derivatives,
one obtains a Poisson equation for the Laplacian of one the longitudinal
modes, i.e., for D2B:

D2(D2B) = 3
2D

aDbSab −
1
2D

2S (A.2)

Denote D2B by A and solve for A.

2. Next, solve for the longitudinal mode B itself using D2B = A.

3. Now, solve for the two independent transverse modes – encoded in BT
a –

satisfying

D2BT
a = DbSab −

1
3DaS −

2
3D

2DaB , (A.3)

DaBT
a = 0 , (A.4)

where the first equation was obtained by contracting eq. (A.1) with Db.

4. Lastly, the transverse-traceless part of Sab is simply obtained by subtracting
the transverse and longitudinal modes from Sab in the following way: STTab =
Sab − 1

3qabS −
(
DaDb − 1

3qabD
2
)
B − 2D(aB

T
b).

Note that the order of step 2 and 3 can be interchanged.
Before we use apply this algorithm, let us discuss some important properties

of this decomposition that are used in the derivation of the expression for power
on a de Sitter background in section 2.4.2 and in the explicit calculation of the
transverse-traceless part of the radiation field of the binary system discussed in
chapter 3. First, if a spatial transverse-traceless tensor STTab is contracted with
a generic, symmetric spatial tensor Xab and integrated over the proper volume
element on a constant time slice, then only the transverse-traceless part of Xab
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contributes to the integral. In other words, STTab extracts the transverse-traceless
part of Xab if integrated:∫

d3V XabSTTab =
∫
d3V Xab

TTS
TT
ab . (A.5)

This equivalence is not true without the (proper) volume integral. The proof is
rather straightforward:
∫
d3V XabSTTab =

∫
d3V

[1
3qabX +

(
DaDb −

1
3qabD

2
)
BX + 2D(aY

T
b) +XTT

ab

]
SabTT

=
∫
d3V

[
DaDbBX + 2DaY

T
b + STTab

]
SabTT

=
∫
d3V

[
−DbBX D

aSTTab − Y b
TD

aSTTab +XTT
ab S

ab
TT

]
=
∫
d3V Xab

TTS
TT
ab ,

where notation is analogous to eq. (A.1) with X the spatial trace of Xab, BX the
other longitudinal mode and Y T

a describing the transverse vector modes. In going
from the first to the second line, the tracelessness of STTab automatically cancels
two terms. In the next line, integration by parts is performed and the boundary
terms are assumed to vanish (which is, for instance, the case if STTab has compact
support). In the final line, we used that STTab is transverse.

Second, since the decomposition in eq. (A.1) is done on a spatial slice, it com-
mutes with time derivatives so that (∂tSab)TT = ∂tS

TT
ab , or equivalently (∂ηSab)TT =

∂ηS
TT
ab . However, extracting the transverse-traceless part of a tensor generically

does not commute with taking spatial derivatives. A notable exception to this is
the derivative along the ‘dilation’ vector field, r∂r. The time translation vector
field of de Sitter spacetime is composed of this dilation vector field and a time
derivative (see chapter 1), consequently, (LTQab)TT =̂LTQTT

ab . Using this property,
one can easily obtain the transverse-traceless part of the radiation field Rab if one
knows QTT

ab by simply calculating the appropriate Lie derivatives of QTT
ab . Given

the importance of this property, let us elaborate upon its proof. We need to show
that if STTab is transverse and traceless, LTSTTab is also transverse and traceless. In
other words, DaLTSTTab and qabLTSTTab have to be zero. Rewriting both conditions,

107



we obtain:

DaLTSTTab = Da
(
T cDcS

TT
ab − 2HSTTab

)
= DaT cDcS

TT
ab + T cDcDaS

TT
ab − 2HDaSTTab

qabLTSTTab = LT
(
qabSTTab

)
− STTab LT qab.

Using that DaT c = −Hqac, flat derivatives operators commute, LT qab = 2Hqab

and the transverse-traceless property of STTab , it follows immediately that indeed
DaLTSTTab = 0 and qabLTSTTab = 0.

Lastly, taking the limit to I commutes with extracting the transverse-traceless
part of any symmetric, spatial tensor. This is clear from the procedure to calculate
the transverse-traceless part and we have also checked this explicitly for a simplified
example.

A.2 Transverse-traceless decomposition of the quadrupole mo-
ment

Now we apply the algorithm to calculate the transverse-traceless part of the
quadrupole moment in eq. (3.9) evaluated at retarded time on I. Using that the
order of taking the limit to I and extracting the transverse-traceless part is not
important, we first take the limit to I of the quadrupole moment. This simplifies
the process of calculating the transverse-traceless part. In each step, we only keep
the particular solutions to the Poisson equations as we are only interested in the
solution due to the source of the gravitational waves. In the first and second step,
normal techniques for solving the Poisson equation can be used. Since the source is
quadrupolar finding solutions is straightforward and the solutions are

A(r, θ, ϕ) = −6µR2
∗Ω2 sin2 θ

18H2 + 8Ω2

[
cos (2Ωtret + 2ϕ)− 3

2
H

Ω sin (2Ωtret + 2ϕ)
]

(A.6)

B(r, θ, ϕ) = 12µR2
∗Ω2H2 r2 sin2 θ

900H4 + 544H2Ω2 + 64Ω4

[(
1− 15

4
H2

Ω2

)
cos (2Ωtret + 2ϕ)

− 4H
Ω sin (2Ωtret + 2ϕ)

]
, (A.7)

where tret on I is tret = −H−1 lnHr. Thus, these solutions do not dependent on
time (as should be the case given that Qab is evaluated on I) and additional lnHr
dependence hides in tret. In spherical coordinates the radial component of the
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vector-Poisson equation in eq. (A.3) is simplified by using the transverse condition
to substitute out all but the radial components of the vector-Laplacian operator,
giving an almost-standard scalar Helmholtz equation:

[
D2 + 2

r
∂r + 2

r2

]
BT
r = qabDaQbr −

1
3∂r(q

abQab)−
2
3∂rD

2B

where the explicit expression for the source term on the right hand side is 2
r
A.

Here the index r refers to the orthonormal component of BT
a in the direction of r.

(Similary, we shall use θ and ϕ indices on B to denote the orthonormal components
proportional to ∇aθ and ∇aϕ, respectively.) Solving this equation for BT

r yields
the following solution:

BT
r (r, θ, ϕ) = 2

r
B(r, θ, ϕ) (A.8)

The θ-component of the vector-Poisson equation is the most challenging, since the
source term for the component that appears on the right hand side of eq. (A.3) is
not purely quadrupolar:

[
D2 + 2 cot θ

r2 ∂θ + cot2 θ − 1
r2

]
BT
θ = qabDaQbθ −

1
3r∂θ(q

abQab)−
2
3r∂θD

2B (A.9)

as is clear from the θ dependence in the explicit expression for the right hand side:

RHS = µR2
∗Ω sin(2θ)
2Hr

[
sin (2Ωtret + 2ϕ) + H

Ω cos (2Ωtret + 2ϕ)
]
. (A.10)

Fortunately, the angular dependence of the solution follows from the source term
and using an ansatz of the form

BT
θ = µR2

∗ sin 2θ
[
f1(r) sin (2Ωtret + 2ϕ) + f2(r) cos (2Ωtret + 2ϕ)

]
(A.11)

allows one to solve for the two functions of the radial coordinate, f1(r) and f2(r).4

This gives the following solution:

BT
θ = −µR

2
∗ΩH r sin(2θ)
50H2 + 8Ω2

[
sin (2Ωtret + 2ϕ) + 5

2
H

Ω cos (2Ωtret + 2ϕ)
]

(A.12)

4In this case the functional form of f1(r) and f2(r) is rather simple, but this method generalizes
nicely for similar, yet more complicated scenarios.
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Once these two components of BT
a are known, the transverse condition, eq. (A.4),

can be integrated to find the third component, BT
ϕ :

BT
ϕ = − HµR2

∗Ω r

25H2 + 4Ω2

[
cos (2Ωtret + 2ϕ)− 5

2
H

Ω sin (2Ωtret + 2ϕ)
]
.

Using these results, we obtain the following transverse-traceless components of the
quadrupole moment Qab evaluated at retarded time on de Sitter I+ (again, written
in an orthonormal frame):

QTT
rr =̂− 3µR2

∗H
2 sin2 θ

(9H2 + 4Ω2) (25H2 + 4Ω2)

[ (
15H2 − 4Ω2

)
cos (2Ωtret + 2ϕ)

+ 16HΩ sin (2Ωtret + 2ϕ) +
(
9H2 + 4Ω2

) (
25H2 + 4Ω2

)
+ cos(2θ)

(
675H4 + 408H2Ω2 + 48Ω4

) ]
(A.13)

QTT
rθ =̂ µR2

∗ sin(2θ)
4 (25H2 + 4Ω2)

[
− 4HΩ sin (2Ωtret + 2ϕ)− 10H2 cos (2Ωtret + 2ϕ)

+ 25H2 + 4Ω2
]

(A.14)

QTT
rϕ =̂ µR2

∗H sin θ
25H2 + 4Ω2 [5H sin (2Ωtret + 2ϕ)− 2Ω cos (2Ωtret + 2ϕ)] (A.15)

QTT
θθ =̂ µR2

∗
12 (9H2 + 4Ω2) (25H2 + 4Ω2)

[
− 16Ω4 − 136H2Ω2 − 225H4

+ cos(2θ)
(
675H4 + 408H2Ω2 + 48Ω4

)
− 6

(
45H4 + 87H2Ω2

+ cos(2θ)
(
45H4 + 21H2Ω2 + 4Ω4

)
+ 12Ω4

)
cos (2Ωtret + 2ϕ)

+ 6HΩ
(
cos(2θ)

(
4Ω2 − 3H2

)
+ 87H2 + 12Ω2

)
sin (2Ωtret + 2ϕ)

]
(A.16)

QTT
θϕ =̂ µR2

∗ cos(θ)
225H4 + 136H2Ω2 + 16Ω4

[ (
42H3Ω + 8HΩ3

)
cos (2Ωtret + 2ϕ)

+
(
45H4 + 54H2Ω2 + 8Ω4

)
sin (2Ωtret + 2ϕ)

]
(A.17)

QTT
ϕϕ =̂ µR2

∗
12 (9H2 + 4Ω2) (25H2 + 4Ω2)

450H4 + 272H2Ω2 + 32Ω4

− 6HΩ
(
cos(2θ)

(
45H2 + 4Ω2

)
+ 39H2 + 12Ω2

)
sin (2Ωtret + 2ϕ)

)
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6
(
90H4 + Ω2 cos(2θ)

(
33H2 + 4Ω2

)
+ 75H2Ω2 + 12Ω4

)
cos (2Ωtret + 2ϕ)

 .
(A.18)

Let us comment on a few properties of the above expressions. First, recall that
the quadrupole moment is evaluated on I+ and that tret = − 1

H
ln(Hr). Second,

although in chapter 3, we are interested in the high-frequency limit ofQTT
ab , the above

expressions are true to all order in H
Ω (assuming dR∗

dt
= 0, not just dR∗

dt
= O(

√
Λtc)).

The differential equations mix powers of H
Ω . This mixing is responsible for the

complicated form of QTT
ab as compared to Qab itself. To obtain the high-frequency

limit, we truncate the result in the end. As shown in eq. (3.14), taking the high-
frequency limit of QTT

ab does not reduce QTT
ab to Qtt

ab.
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Appendix B|
Point charges and dipoles

In chapter 4, the asymptotic behavior of the vector potential Aa in Maxwell theory
was investigated. We showed that for retarded solutions to Maxwell’s equations
in the Coulomb gauge with sources confined to a spatially compact world tube,
the Cartesian components of Aa fall-off as O(r−1) in the limit to I+. This fall-off
behavior in the Coulomb gauge was used as motivation to restrict ourselves to
gauges for which the vector potential has this fall-off behavior. Here, we show the
leading order behavior of the vector potential in the Coulomb gauge for several
physical examples including a static charge and oscillating dipole. We discuss the
oscillating dipole also in the Lorenz gauge. It also exhibits the desired fall-off
behavior in that gauge, thereby illustrating that the asymptotic conditions satisfied
by the vector potential in the Coulomb gauge also accommodates other often chosen
gauges.

The simplest example in the Coulomb gauge is provided by a point charge q

moving along the origin of the rest-frame in which the Coulomb gauge is imposed.
In other words, consider a source described by ja = −q δ(3)(~r) ∇at. Then the
only non-zero component of the retarded solution for the vector potential Aa is
φ0 = q. A slightly more interesting case is obtained by boosting this charge with
respect to the rest-frame in which the Coulomb gauge is imposed [85]. For instance,
boosting q in the x-direction with velocity v is described by a source with charge
density ρ = q δ(3)(~r − vt x̂) with x̂ the unit vector in the x-direction. This yields
the following leading order behavior for the parts of Aa containing ‘Coulombic
information’:

φ0 = q√
1− 2v sin θ cosφ+ v2
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A0
1 = −q + q√

1− 2v sin θ cosφ+ v2 .

The radiative modes vanish, that is, A0
2 = Ā

0
2 = 0, as this source does not radiate.

Instead of boosting the charge, one can oscillate the charge around the origin along
the x-axis of the reference frame in which the Coulomb gauge is imposed [85].
When the charge is oscillates harmonically with amplitude a and angular frequency
ω, the charge density is given by ρ = q δ(3)(~r− a sin(ωt)x̂). The only non-vanishing
leading order potential in this case is φ0 = q.

Dipole sources are also physically interesting sources and we will show for
a particular example that they exhibit the desired fall-off behavior in both the
Coulomb and Lorenz gauge. Take, for example, an oscillating dipole situated
at the origin with strength p and angular frequency ω so that the source is
ja = p

4π

(
cosωt δ(x)δ(y)δ′(z)∇at− ω sinωt δ(3)(~x)∇az

)
. If the Coulomb gauge is

implemented on any of the constant t-slices, the scalar potential φ is obtained by
solving the Poisson equation with the charge density ρ as a source:

~∇2φ = −4πρ = −p cos(ωt)δ(x)δ(y)δ′(z). (B.1)

The Green’s function for the Laplace equation satisfies

~∇2G3(~x, ~x′) = δ(3)(~x, ~x′)

and is given by
G3(~x, ~x′) = − 1

4π|~x− ~x′| .

Therefore, φ in the Coulomb gauge is

φ =
∫
d3~x′

p cosωt
4π

δ(x′)δ(y′)δ′(z′)
|~x− ~x′|

(B.2)

= −p cosωt
4π

∫
dz′

∂

∂z′

 1√
x2 + y2 + (z − z′)2

 δ(z′) (B.3)

= −p cosωt
4π

cos θ
r2 . (B.4)
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The solution for the 3-vector potential in the Coulomb gauge to leading order is [99]

~Aa = pω

4πr (− sinωt cosωr + cosωt sinωr)
[
∇az − r̂b∇bz∇ar

]
+O(r−2) (B.5)

= pω

4
√

2πr
sinω(t− r) sin θ [ma + m̄a] +O(r−2). (B.6)

Hence, the leading order potentials are given by

φ0 = 0 A0
1 = 0

A0
2 = Ā

0
2 = pω

4
√

2π
sin θ sinωu .

Now let us compare the potentials of this physical system in the Coulomb gauge
with those in the Lorenz gauge. In this case, the scalar vector potential satisfies
the inhomogeneous wave equation:

�∼φ =
(
−∂2

t + ~∇2
)
∼φ = −4πρ = p cos(ωt)δ(x)δ(y)δ′(z).

Since the Green’s function in Minkowski spacetime satisfies

(
−∂2

t + ~∇2
)
G(x, x′) = δ(4)(x, x′)

and has the following retarded solution

Gret(x, x′) = −δ(t− t
′ − |~x− ~x′|)

4π|~x− ~x′| , (B.7)

the scalar potential ∼φ in the Lorenz gauge is

∼φ(t, ~x) = −p
∫
dt′
∫
d3~x′

δ(t− t′ − |~x− ~x′|)
4π|~x− ~x′| cos(ωt′)δ(x′)δ(y′)δ′(z′) (B.8)

= −pω cos θ sin(ωu)
4πr + cos θ p cos(ωu)

4πr2 . (B.9)

The retarded solution for the spatial part of the vector potential is [99]

∼
~Aa = − pω

4πr sin(ω(t− r))∇az (B.10)

= −pω

4π sin(ωu)
(

cos θ∇ar −
1√
2

sin θma −
1√
2

sin θ m̄a

)
. (B.11)
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Thus, in the Lorenz gauge the leading order potentials are

∼φ
0 = −pω cos θ sinωu

4π

∼A
0
1 = −pω cos θ sinωu

4π

∼A
0
2 = Ā0

2 = pω

4
√

2π
sin θ sinωu .

The examples in this appendix nicely illustrate three general properties discussed
in chapter 4. First, the 4-vector potential does not always have a well-defined limit
to I. Specifically, whenever A0

1 6= 0, Aa does not have a limit. Second, Peeling
(which follows from Maxwell’s equations) implies that φ0 − A0

1 = const. This is
true for all of the above examples while there are several cases in which neither φ0

nor A0
1 is independently constant. Third, the radiative modes in the Coulomb and

Lorenz gauge, respectively, encoded in A0
2 and ∼A

0
2, differ only by a function on the

two-sphere f(θ, ϕ). For the oscillating dipole, this function is trivial: f(θ, ϕ) = 0.
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Appendix C|
Various investigations in early Universe
cosmology

Inflation is the leading paradigm of the early Universe, according to which the tiny
temperature fluctuations observed in the cosmic microwave background (CMB) orig-
inate from quantum vacuum fluctuations at very early times [100–106]. Specifically,
starting with generic initial conditions, inflation produces a nearly scale-invariant
primordial spectrum for scalar and tensor fluctuations at the end of inflation.
Evolving these primordial power spectra with Boltzmann equations in conjunction
with Einstein’s equations to the time of last scattering reproduces the temper-
ature power spectrum observed in the CMB remarkably well. However, several
unexpected features have been observed at large angular scales by both WMAP
and Planck . For instance, an amplitude deficit for the temperature anisotropies
in the spherical harmonics decomposition has been observed for ` . 30 as well
as a hemispherical power asymmetry [107]. Although each of these anomalies by
itself has low statistical significance (less than 3σ), taken together these anomalies
imply a violation of statistical isotropy and scale invariance of the inflationary
perturbations. There are several possible explanations for these anomalies: (i) They
may be due to foreground residuals and/or systematic effects, (ii) They are merely
are a statistical fluctuation, or (iii) They are a result of primordial physics yet to
be understood. Hence, understanding their origin is fundamental to either validate
the standard model of cosmology or to explore new physics.

During my PhD, I have studied two different extensions to the standard vanilla
slow-roll single field model of inflation that may (partially) explain at least one of
the observed anomalies, that is, the power suppression anomaly. In particular, in
collaboration with Dr. Brajesh Gupt and Dr. Nelson Yokomizo, we have studied
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the effect of positive spatial curvature on the primordial scalar and tensor power
spectra and its effects on the temperature anisotropy spectrum CTT

`` and the B-mode
polarization spectrum [108,109]. Spatial curvature introduces a length scale that
breaks scale invariance in a natural way. Previously, the effect of positive spatial
curvature during inflation had only been studied at the level of the background
evolution and in a simplified setting for the primordial fluctuations in which the
inflationary background was replaced with an exact de Sitter background [110–112].
We carried out the first systematic study of the effect of spatial curvature on the
temperature anisotropies observed in the CMB by performing a detailed analysis
of the inflationary evolution of gauge-invariant perturbations in a closed FLRW
Universe. The results are summarized in section C.1 and show that spatial curvature
might partially explain the observed power suppression. Together with Dr. Gupt,
we also studied an extension of the standard inflationary paradigm to the pre-
inflationary era in the context of loop quantum cosmology [113,114]. Earlier work
had used the framework of quantum fields on quantum spacetimes to extend the
inflationary phase all the way to the Planck scale and study the observational
imprints of the quantum gravity dominated regime on the inflationary perturbations
[115]. Interestingly, the ultraviolet modifications of the background dynamics that
resolve the big bang singularity influence the infrared modes of the perturbations:
The infrared modes are not in a Bunch-Davies vacuum at the onset of inflation. As
a result, the primordial power spectrum deviates from the nearly scale-invariant
power spectrum predicted by inflation. Depending on the initial state chosen in
the deep quantum gravity regime, the resulting primordial power spectrum shows
either enhancement or suppression on large scales that subsequently leads to power
enhancement or suppression on large angular scales in the temperature anisotropies
observed in the CMB. Thus, this opens up the possibility that quantum gravity
effects may account for the power suppression anomaly. These results, however,
were only obtained for single field inflation with a quadratic potential. We showed
that the type of observable modifications due to the pre-inflationary phase are
similar for the Starobinsky potential and argued that in general these modifications
are robust under the change of the inflationary potential. This work is summarized
in section C.2.

Both scenarios discussed above only leave observable imprints on the CMB
if the number of e-folds is not much larger than ∼ 70, the minimum number
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of e-folds required for inflation to successfully explain the nearly scale invariant
primordial spectra. When the number of e-folds is larger than this minimum, our
observable Universe is only part of the entire Universe and new effects need to
be accounted for. This is the third project I worked on that I will describe in
this appendix. This is joint work with Dr. Suddhasattwa Brahma, Anne-Sylvie
Deutsch and Prof. Sarah Shandera. Specifically, if there is coupling between
modes of different wavelengths, the local statistics in our observable Universe is
generically different from the global statistics. Depending on the realization of
the long wavelength modes in the observable patch and the type of mode-mode
coupling, the amplitude of the locally observed power spectrum can be shifted and
an additional scale dependence can be introduced thereby modifying the spectral
index [116]. Thus, even if one in principle would be able to observe all n-point
correlation functions, one would only be able to uniquely construct a Langrangian
for the fluctuations in our observable Universe but not for the global Universe.
Nonetheless, we showed that the mass of one of the inflationary fields in quasi-single
field inflation can be reliably determined from measurements of the scaling of the
bispectrum despite mode-mode coupling due to non-derivative self-interactions [117].
In addition, we showed that while the spectral index ns in the locally observed
volume is generically shifted away from the global mean, this shift is small. This
is in contrast to the tensor-to-scalar ratio r that can be significantly different in
the locally observed volume as compared to the global volume. Our results are
discussed in section C.3.

C.1 Spatially closed Universe

One of the compelling features of the inflationary scenario is that it leads to an
almost flat, homogeneous and isotropic Universe today starting from generic initial
conditions. In particular, inflation ‘dilutes’ away any effects of spatial curvature
and the spacetime is extremely well approximated by a spatially flat FLRW model
at the end of inflation. In other words, even though spatial curvature effects
are subdominant today, they could have been important in the early phases of
inflation. Modes of metric perturbations exiting the Hubble horizon at these early
times during which spatial curvature could be non-negligible can carry imprints
of this in their primordial power spectra. Specifcally, spatial curvature can affect
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observations in two ways: (i) by affecting the background spacetime evolution in
the post-inflationary era [118]; (ii) by introducing corrections to the primordial
power spectrum at the end of inflation [110,111,119–122].

Recent cosmological observations determine the density parameter due to the
spatial curvature to be Ωk = −0.005+0.016

−0.017 from Planck data alone and Ωk =
0.000+0.005

−0.005 by combining Planck measurements with BAO data [123]. While these
values for Ωk are compatible with a flat FLRW model, they allow the possibility that
our Universe is spatially closed with spatial topology of a 3-sphere. For Ωk = −0.005
(which is the value we shall work with throughout), the physical radius of this
3-sphere today is approximately 64 Gpc, which is ∼ 4.5 times the physical radius
of the CMB sphere. This indicates that the effects of spatial curvature, if present,
would be most prominent for length scales similar to or larger than that of the
CMB sphere. A detailed analysis shows that this is indeed the case. The evolution
of the background geometry and gauge-invariant scalar and tensor perturbations
in a spatially closed FLRW universe where inflation is driven by a single scalar
field in the presence of an inflationary potential (taken to be either quadratic or
Starobinsky potential) show that effects of the non-zero spatial curvature become
important at the early phases of inflation (∼ 60 e-folds before the end of inflation).
The resulting scalar power spectrum is different from the almost scale invariant
power spectrum obtained in a spatially flat inflationary FLRW spacetime for long
wavelength modes. The ratio of the scalar power spectrum in the spatially closed
and spatialy flat model is shown in the left panel of figure C.1. The power spectrum
in the closed model shows oscillatory behavior that is most prominent for the long
wavelength modes. In addition, when these oscillations are averaged out, there is
suppression of power at such scales as compared to the flat model. For Ωk = −0.005,
the power deficit in the primordial power spectrum leads to suppression of power
in the temperature anisotropy spectrum CTT

` at ` < 20 [108]. For small wavelength
modes, the power spectrum approaches the nearly scale invariant power spectrum
and the resulting CTT

` agrees extremely well with that in the flat model for ` & 20.
Similarly to the scalar perturbations, the tensor power spectrum also shows power
suppression for long wavelength modes (see right panel of figure C.1). However, we
find that the relative suppression for tensor modes is smaller than that for the scalar
modes. The suppression in the tensor power spectrum is weak and limited to very
long wavelength modes, which correspond to super-horizon modes. Consequently,
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Figure C.1. Left panel: Ratio of the scalar power spectrum in the closed FLRW model
with Ωk = −0.005 to that in the flat model as a function of the spherical wavenumber
n. Right panel: Ratio of the tensor power spectrum in the closed FLRW model with
Ωk = −0.005 to that in the flat model. Both spectra show suppression of power at small
n. However, the scalar modes are significantly more suppressed in the closed Universe as
compared to the tensor modes. The two curves in each figure correspond to two different
initial conditions for the background geometry: ‘cond1’ corresponds to initial conditions
matching the best fit values for the amplitude of the scalar power spectrum As and its
running ns as measured by Planck and ‘cond2’ is chosen to generate maximal suppression
while still being consistent with the measured allowed range in As and ns. In both figures
the spectra are discrete in n (for the clarity of presentation discrete points are shown
only for n < 20).

the resulting observable polarization anisotropy spectrum CBB
` in closed FLRW

model differs less than a percent from the flat FLRW model.
Since the tensor and scalar spectra are modified differently by the spatial

curvature, the tensor-to-scalar ratio at the long wavelength modes acquires scale
dependent corrections which further leads to the violation of the standard slow-roll
consistency relation obtained for the flat FLRW model. This is shown in figure C.2.
Hence, although the modifications in the tensor spectrum due to positive spatial
curvature do not have a direct observable imprint in the B-mode polarization
signal, they lead to violation of the standard slow-roll consistency relation for long
wavelength modes. This deviation from the standard relation, if observed, can be
used to further refine the constraints on spatial curvature of the Universe.

In our work, we focused on the analysis of geometric effects due to the presence
of spatial curvature, but our framework can also be applied to study observational
signatures of spatial topology in locally spherical universes. We restricted ourselves
to spacetimes with spatial sections isometric to the three-sphere, the simplest global
geometry compatible with a constant positive spatial curvature, but solutions for
the equations of motion for perturbations on nontrivial topologies with positive
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Figure C.2. The deviation from the consistency relation (r + 8nt = 0) for Ωk = −0.005
plotted with respect to the spherical wavenumber n. It is evident that for small n
deviation from r + 8nt = 0 is more prominent. These deviations approach zero as n
increases. Similar to figure C.1, cond1 and cond2 correspond to two different choices for
the background initial conditions.

curvature can always be written as linear superpositions of normal modes on the
three-sphere. Consequently, the evolution of the inflationary perturbations and
the primordial power spectrum for arbitrary topologies with positive curvature
can be determined from our results for the dynamics of the perturbations on the
three-sphere.

C.2 Robustness of predictions of a quantum gravity extension
to inflation

The inflationary scenario is highly successful in explaining, with minimal assump-
tions, the primordial origin of structure formation and small inhomogeneities
observed in the cosmic microwave background (CMB). However, the standard infla-
tionary models are based on general relativity and therefore inherit the big bang
singularity and cannot be extended too far into the past. Using techniques from
loop quantum gravity, it was shown that there is a self-consistent pre-inflationary
extension all the way to the Planck scale [115, 124, 125]. This extension has a
finite quantum gravity regime and confronts the problem of a past singularity. At
the background level, the underlying quantum geometric effects of loop quantum
cosmology (LQC) modify the Planck scale physics leading to the resolution of
classical singularities in a variety of homogeneous and inhomogeneous cosmological
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settings [126,127] (see, e.g., [128] for a review). In all these models, the big bang
is replaced by a quantum bounce, evolution is deterministic and all curvature
scalars remain finite throughout the evolution.1 Perturbations propagating on these
quantum cosmological spacetimes can inherit potentially observable imprints of
the quantum gravity regime. This had been studied in great detail for single field
inflation with a quadratic potential [124,125,134]. Although the quadratic potential
is attractive due to its simplicity, recent data from Planck show that, for single field
inflation, the Starobinsky potential is favored [135]. We studied the predictions of
the pre-inflationary dynamics of single field inflation with a Starobinsky potential
and the robustness of the observational predictions of LQC under a change of
inflationary potential.

To understand the evolution of quantum perturbations, we used the formalism
of quantum fields on a quantum cosmological spacetime. Within the test field
approximation (that is, the backreaction of the perturbations on the background
quantum geometry is negligible), the dynamics of the perturbations on the quantum
FLRW geometry is remarkably simple: It is completely equivalent to that of
perturbations evolving on a ‘dressed’ FLRW metric, where ‘dressing’ refers to
quantum corrections [124,134]. Interestingly, for sharply peaked states, the dressed
metric is extremely well described by the effective description of LQC, given by the
following modified Friedmann and Raychaudhuri equations [136–138]:

H2 :=
(
ȧ

a

)2
= 8πG

3 ρ

(
1− ρ

ρmax

)
, (C.1)

Ḣ = −4πG (ρ+ P )
(

1− 2 ρ

ρmax

)
, (C.2)

where H is the Hubble rate, a is the scale factor, ρmax = 18π/∆3
o ρPl ≈ 0.41 ρPl is the

universal maximum of the energy density and ∆o ≈ 5.17 is the minimum eigenvalue
of the area operator, whose value is fixed via black hole entropy calculations in
loop quantum gravity [139,140]. Note that the LQC modifications are dominant
only in the quantum gravity regime, where the energy density of the matter field is
Planckian. When the spacetime curvature is sub-Planckian (ρ� ρmax), equations
(C.1) and (C.2) reduce to the classical Friedmann and Raychaudhuri equations.

1For other approaches to bouncing models see, e.g. [129–132]. Also see [133] (and references
therein) for a recent review.
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The evolution of the Fourier transform of the gauge invariant Mukhanov-Sasaki
scalar mode qk and two tensor modes ek on the dressed quantum geometry is given
by [124,125]:

q′′k(η̃) +2 ã
′

ã
q′k(η̃) +

(
k2 + Ũ(η̃)

)
qk(η̃) = 0, (C.3)

e′′k(η̃) +2 ã
′

ã
e′k(η̃) + k2ek(η̃) = 0, (C.4)

where the prime denotes the derivative with respect to the dressed conformal time
η̃ and Ũ is the dressed effective scalar potential that is completely determined by
background quantities [124,125].

Given this set-up, a priori there is no reason to believe that the pre-inflationary
dynamics of the Starobinsky potential and quadratic potential are similar because:
(i) already their inflationary dynamics is quite different; and (ii) the evolution
equation for the scalar perturbations depends explicitly on the potential. Despite
these differences, we found that the observationally relevant initial conditions are all
kinetic energy dominated in the quantum gravity regime and therefore the inflaton
behaves essentially as a massless scalar field during this regime. In other words, the
inflaton evolves as a free particle in the deep quantum gravity dominated regime.
Thus, the details of the potential do not affect the quantum gravity dominated
phase significantly. Consequently, the occurrence of desired inflationary phase and
corrections to the primordial power spectrum are robust features of LQC.

In particular, we showed that for the Starobinsky potential there are natural
initial conditions for both the background spacetime and perturbations that lead to
the desired slow-roll phase compatible with observations. In fact, almost all initial
conditions starting at the bounce lead to the desired slow-roll phase. The quantum
gravity phase excites the modes of the perturbations and as a result they carry
excitations over the Bunch-Davies state at the onset of inflation, giving corrections
to the standard inflationary power spectrum. There exist initial conditions for which
these LQC induced corrections to the standard inflationary predictions at large
angular scales are observable while being in complete agreement with observations
at small angular scales!

Furthermore, just as in the standard inflationary paradigm, evolution of the
scalar and tensor modes is different due to the presence of the effective potential
Ũ for the scalar evolution equation. Therefore, the particle density for scalar and
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Figure C.3. Comparison of LQC corrections to tensor-to-scalar ratio between the
Starobinsky and quadratic potential. Since the pre-inflationary dynamics extends to the
deep Planck regime where the spacetime metric cannot be approximated by a de Sitter
metric, it is not meaningful to require the modes to be in the Bunch-Davies vacuum at
the bounce. Here, we choose the quantum perturbations to be in a 4th order adiabatic
‘vacuum’ that respects the symmetry of the background spacetime and whose expectation
value of the renormalized energy density of the perturbations is negligible with respect to
the background energy density at the bounce. In addition, we required the state to give
maximum power suppression in the primordial power spectrum.

tensor modes should be different from each other for k2 . Ũ . It turns out that
the numerical value of Ũ is typically very small compared to even the smallest
observable wavenumber kmin and consequently negligible. However, a small subset
of the initial data surface exists for which the effect of Ũ on the scalar modes is no
longer negligible. The tensor and scalar particle densities are therefore different
for these modes and rLQC 6= rBD, where r is the tensor-to-scalar ratio and the
subscript ‘BD’ refers to the predictions from the standard inflationary paradigm.
This is distinct from the quadratic potential, where this difference is negligible
for all k & 10−5kmin. This is shown in figure C.3, where rLQC/rBD is plotted
for the Starobinsky and the quadratic potential. The quantum gravity induced
deviations from rBD are not directly relevant for observational modes, but the
altered behavior of these super horizon modes can change the observed three-point
functions (and higher order correlation functions) through mode-mode coupling
as well as play an important role for tensor fossils. This difference between the
scalar and tensor modes as compared to the standard picture, could thus lead to
signatures in the non-Gaussian modulation of the power spectrum due to super
horizon modes [141,142]. It is noteworthy that the set of initial conditions for these
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effects is very small. Nonetheless, it is interesting as these initial conditions fall
nicely into the regime for which the LQC corrections to the power spectrum are
in the observable window. Thus, if these LQC corrections are observed, there is
also hope to observe this effect. Furthermore, these initial conditions fall on the
exponential side of the potential and not on the plateau side. Therefore, they are
very likely to be present for potentials which have exponential walls such as the
Higgs potential. This potentially opens new avenues to explore the origin of CMB
anomalies in quantum gravity.

C.3 Cosmic variance in quasi-single field inflation

In the previous two sections, the focus was the primordial power spectra and the
resulting power spectrum of the temperature anisotropies. However, the statistics
of the (primordial) fluctuations beyond the power spectrum contain a wealth of
information beyond what one could learn from the power spectrum alone and
are collectively known as non-Gaussianities. For instance, these higher order
correlations functions could inform us of the particles present during inflation and
their interactions. Although the Planck satellite bounds on non-Gaussianity are
excellent (σ(fNL) ∼ O(10) [143]), they do not yet cross even the highest theoretically
interesting (and roughly shape-independent [144]) threshold to rule out fNL ∼ O(1).
Future data will help probe the remaining parameter space, and either stronger
constraints or detection of non-Gaussianity would provide an important clue about
physics at the inflationary scale.

When the primordial fluctuations are entirely or partly sourced by a light field
other than the inflaton, the correlation functions can have the interesting property
that locally measured statistics depend on the long wavelength modes. For example,
this occurs in curvaton scenarios in which the “local” bispectrum correlates the
amplitude of short wavelength fluctuations with the amplitudes of much longer
wavelength modes [145–150].

More generally, in the presence of a local ansatz non-Gaussianity, the power
spectrum measured in sub-volumes will vary depending on how much the background
fluctuations deviate from the mean [151–154]. While the bispectrum (three-point
function) can cause the power spectrum to vary in sub-volumes, the trispectrum
(four-point correlation function) can also generate shifts to the bispectrum and the
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power spectrum in biased sub-volumes (that is, sub-volumes whose long wavelength
background is not the mean). More generally, long wavelength modes in the n-point
correlation function can shift any lower order correlation function [151,155]. Since
nearly all sub-volumes will have a long wavelength background that is not zero,
statistics measured in any small region are likely to be biased compared to the
mean statistics of the larger volume. Schematically, the shift to the power spectrum
of a non-Gaussian field ζ in a sub-volume due to the long wavelength background
can be written as:

〈ζ(~k1)ζ(~k2)〉VS
= 〈ζG(~k1)ζG(~k2)〉VS

+ 〈ζG(~k1)ζG(~k2)〉VS
〈ζG(~kL)〉VS

+ . . .

= 〈ζG(~k1)ζG(~k2)〉VS
〉 (1 + ζL + . . .)

where ζG is a Gaussian field, VS is the sub-volume, and the averages are performed
with respect to the sub-volume. The wave number ~k1 and ~k2 correspond to
wavelengths within the sub-volume. The Gaussian field averaged over the total
volume VL vanishes, i.e. 〈ζG(~kL)〉VL

= 0, but its average over the sub-volume is
non-zero and denoted by 〈ζG(~kL)〉VS

:= ζL.2 In the limit that the sub-volume covers
the entire volume VL the terms proportional to ζL vanish.

This correlation between local statistics and the long wavelength background can
be used to detect non-Gaussianity (e.g., through the non-Gaussian halo bias [156])
when applied to sub-volumes where at least some long wavelength modes are
observable. But it may also be relevant to the conclusions we can draw about
inflationary physics: our entire observable universe is possibly a sub-volume of a
larger, unobservable space. This is a true for any scenario for which the number
of e-folds during inflation is larger than the minimum number required. If the
perturbations we observe turn out to have any form of long-short mode coupling, we
must assume there is a ‘super cosmic variance’ uncertainty in comparing observations
in our Hubble volume with the mean predictions of inflationary models with more
than the minimum number of e-folds [116,151–155,157–159]. In that case, there is
not necessarily a one-to-one map between properties of the correlation functions
we measure and parameters in an inflationary Lagrangian. We studied an explicit
model where some, but not all, of the parameters of the Lagrangian are obscured

2Note, the definition of ζL here differs from the one used in [117] that is defined in momentum-
space.
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by this cosmic variance.
An interesting example that naturally interpolates between the single-clock

inflationary models in which there is no significant coupling between modes of very
different wavelengths [160–164] and curvaton inflationary models is quasi-single
field inflation [165]. Quasi-single field inflation has an additional scalar field that is
coupled to the inflaton during inflation. This additional field does not contribute
to the background expansion and its self-interactions are not restricted by the
approximate shift symmetry that the inflaton is subject to. Observational evidence
for this ‘hidden sector’ field would be found in the non-Gaussianity it indirectly
sources in the adiabatic mode. Previous studies have shown that when the hidden
sector field has a cubic self-interaction, the degree of long-short coupling in the
observed bispectrum is determined by the mass of the second field (with the strongest
coupling coming from a massless field). The coupling between modes of very different
wavelengths is captured by the squeezed limit of the bispectrum, where all momenta
have wavelengths that are within the local sub-volume but with one momenta
having a much longer wavelength than the others (e.g., k1 � k2 ≈ k3). Measuring
the dependence on the long wavelength mode (k1) in the squeezed limit of the
bispectrum would reveal the mass of this spectator field [165–168]. We investigated
how robust the quasi-single field bispectrum shape is to cosmic variance when higher
order correlations are included in the model. We performed the calculations in two
different ways. The conceptually straightforward, but calculationally more difficult
method is to take soft limits of the full in-in calculations. Our newly developed
techniques allowed a more straightforward calculation by performing a long-short
wavelength split in the late-time correlation functions. Both methods are in perfect
agreement with each other.

When the hidden sector field is sufficiently light, any additional correlations
may bias the statistics observed in sub-volumes. Here, we considered correlations
generated by additional (i.e., quartic and beyond) non-derivative self-interactions
of the hidden sector fluctuations. Any degree of long-short mode coupling causes
statistics in sub-volumes to differ from the global mean statistics by an amount that
depends on the amplitude of fluctuations with wavelengths larger than sub-volume
size. Specifically, by computing the power spectrum and bispectrum in sub-volumes
with non-zero long wavelength background modes we showed that (similarly to
the local model), any non-derivative self-interaction of the spectator field leads to
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the same pattern/shape of correlation functions in sufficiently biased sub-volumes.
In particular, the spectral index observed in sub-volumes is generically shifted
away from the mean, but the shift is small. The tensor-to-scalar ratio r can be
significantly different in the locally observed volume as compared to the global
volume. When the hidden sector field is light and the number of e-folds before the
largest observable mode today excited the horizon is large, the effect is the largest.
This can in fact change the value of r by two orders of magnitude! In addition,
non-zero long wavelength fluctuations induce a tree-level bispectrum locally even
if the mean theory does not contain one. Furthermore, the squeezed limit scaling
of the bispectrum is the same in all sub-volumes, while the local amplitude of
fluctuations and amplitude of non-Gaussianity are subject to cosmic variance. So,
although the details of a light hidden sector field’s potential can be obscured by
cosmic variance, its mass can be robustly determined by any post-inflationary
observer.

It is important to note that these long wavelength effects are distinct from
those that do affect the mass of a light scalar in de Sitter space. For example,
the loop diagrams for a light scalar with a quartic self-interaction have a naive
infrared dependence that can be re-summed into a correction to the mass of the
field [169–171]. The mass of the light scalar is corrected everywhere, not just in
some sub-volumes, and it is the shifted mass that will be observed in the squeezed
limit of the bispectrum. This type of mass correction is a dynamical effect of field
theory in (quasi-)de Sitter space; the sub-sampling of non-Gaussian statistics in
the post-inflationary world is not sensitive to the dynamics that generated the
primordial fluctuations.

Our results are a concrete example of an initial conditions problem for inflation:
when cosmological data is only good enough to measure some properties of some
correlation functions (e.g., the bispectrum averaged over the full sky), that data only
allows us to uniquely construct a Lagrangian for the fluctuations in our observed
volume. The local Lagrangian is consistent with a larger set of possible “global”
Lagrangians sourcing additional inflation and which may share some features (here
the mass of the spectator field) but differ in others (here the spectator field’s
potential). Of course, in the absence of cosmic variance this is also true, but there
is a straightforward order by order map between the dimension of terms in the
fluctuation Lagrangian and the order of correlation function measured. Cosmic
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variance from long-short mode coupling breaks that mapping. Making additional
measurements such as any position-dependence of the observed bispectrum or a
detection of a trispectrum would remove some degeneracies, but not all. It would be
interesting to extend our results to other multi-field scenarios to understand more
generally which properties of the particle content and dynamics can be determined
regardless of cosmic variance and which cannot.
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