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Pascual Lucas Saoŕın (plucas@um.es)
Pablo Mira Carrillo (pablo.mira@upct.es)
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Preface

The professional dialogue between Mathematicians and Physicists is some-
thing as natural as enriching in the daily life of a secondary school teacher.
It seems that it is in the following educational step, the university, where the
distance begins to be significant, situation that becomes usual as the specializ-
ation level grows. Identical situation occurs in the realm of own Physicists or
Mathematicians of the different areas, a classical characteristic of the Spanish
people that we already see almost natural that a topologist and a statistician
nothing must say themselves mathematically speaking. Perhaps it is exagger-
ated, but it is what we daily observe.

Luckily, who we define ourselves as geometricians or physicists had been
thirteen years already trying to be the exception to so displeased rule and
in that time giant steps have occurred. We have no doubt that we continue
undergoing wide gaps of understanding, but every year a shortening of that
ancestral distance is clearly observed. We think that the convergence is going
to be achieved, essentially, through the Differential Geometry tools, mainly
with theoretical physicists. It turns also out to be true that any other area
of Mathematics can contribute in the same way to the progress, not only of
Physics, but of any other science.

The participants in these series of workshops have bet to foster a better
understanding between Mathematicians and Physicists in order to undertake
joint projects of greater scope, such as the society and the current research
are demanding from them. We think that this is the right way to promote the
Spanish science and these Proceedings will contribute to that aim. Further-
more, they will be the best test of our commitment and support to Spanish
quality publications.

In Oviedo, where Murcia was nominated to organize this Workshop, and
later in Coimbra, they left the strip in the highest, but we accepted the chal-

5



6

lenge to surpass it and we spared no effort to get it. We have done one’s bit
to shorten the distance between geometry and physics; and what is better, to
increase the quality, all over the world recognized, of those working in these
areas.

We take one’s chance to reiterate our public gratefulness, by its commend-
able perseverance and example, to those who were very deserving of a ham,
the colleagues Eduardo Mart́ınez Fernández, Miguel Carlos Muñoz Lecanda
and Narciso Román Roy.

The University of Murcia, the Séneca Foundation, the Spanish Ministry of
Education and Science, the Cajamurcia Foundation, the Caja de Ahorros del
Mediterráneo and the Real Spanish Mathematical Society made the Workshop
and these Proceedings possible, so that they deserve our more sincere grate-
fulness. As well as to all those that participated either learning, or teaching
or, simply, engaging in a dialogue.

Murcia, September 2005

The Editors
Luis J. Aĺıas Linares
Angel Ferrández Izquierdo
Maŕıa Angeles Hernández Cifre
Pascual Lucas Saoŕın
José Antonio Pastor González
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José Antonio FERRY RUIZ piensoentucorreo@latinmail.com

Carlos Alberto FUERTES PASCUAL (Univ. Salamanca)
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Miguel SÁNCHEZ CAJA (Univ. Granada) sanchezm@ugr.es
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Eduardo J. SÁNCHEZ VILLASEÑOR (Univ. Carlos III) ejsanche@math.uc3m.es
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Introduction to general relativity

J. Fernando Barbero G.

jfbarbero@imaff.cfmac.csic.es

Instituto de Estructura de la Materia, CSIC
Serrano 123, 28006 Madrid (Spain)

Abstract. The following is an attempt to provide an introduction to relativity
for geometers with an emphasis on the physical side of theory. The content of the
following article corresponds to a three hours minicourse consisting of a first session
devoted to special relativity, a second one discussing how everyday gravitational
phenomena can be described by a curved Lorentzian space-time metric and a last
part where the Einstein field equations that govern the curving of space-time by
matter are introduced.

Keywords: Relativity, gravitation

2000 Mathematics Subject Classification: 83A05, 83Cxx

1. Introduction

This is not a run of the mill introductory course on relativity because it cannot
possibly be. The reason is not that the author has some exceptional insight or
a deeply original point of view on the matter but rather the unusual fact that
you, the reader, and the audience to whom this set of lectures was delivered
has a very special and uncommon feature: a deep and working knowledge of
geometry. One of the main obstacles that must be overcome to explain relativ-
ity, at least to the average physics students, is the fact that the geometrical
language in which the formalism of general relativity is written is usually un-
familiar and only partially understood by them. This was certainly the case
when I took my first courses on the subject at the University some time ago.
This state of affairs has probably improved in recent years but my impres-
sion is that, still, one has to devote some of the (scarce) available time to
define and introduce the relevant mathematical concepts, discuss such issues
as the intrinsic meaning of geometrical objects irrespective of their coordinate



4 Introduction to general relativity

representations, and dispel some common misconceptions (think about the
infamous, and very often misunderstood, invariance under general coordinate
transformations!). It is certainly relieving to know that I will not have to do
this here.

Traditionally relativity has been considered as something quite separated
from the common experience; a theory riddled with difficult paradoxes and
counterintuitive phenomena. This is apparent in the popular names still given
to some of the more spectacular consequences of the theory. I do not share this
point of view and I hope that, after reading these pages, you will not either.
The message that I want to convey is that once the operational meaning of the
relevant physical concepts is clear, relativistic phenomena can be explained,
derived, and understood in a natural and consistent way. I concede that some
intuition may always be lacking, much in the same way as a blind person may
find difficult to understand what perspective means (or the difficulties that
almost all of us can have when thinking about four dimensional geometry)
but, in my opinion, it is possible to gain a working and systematic ability to
precisely derive and understand relativistic phenomena.

Special and General Relativity are usually presented as two completely
separated subjects dealing with very different kinds of phenomena: the former
is used to describe dynamics at very high relative velocities and energies
whereas the latter is the theory of gravity, in fact, the relativistic theory of
gravity. This is most evident at the level of ordinary undergraduate courses.
Special relativity follows a coordinate based approach where inertial systems
and Lorentz transformations play a central role in the derivation and descrip-
tion of phenomena whereas courses in general relativity have a more geomet-
rical flavor, or at least use a very different type of language.

It is, nevertheless, worth noting that even within the realm of general
relativity usual presentations fall into two broad categories: what I call the
geometrical and field theoretical points of view. The reader can get a good
idea of what I mean by looking at some popular text books such as Misner,
Thorne and Wheeler [1] on one side and Weinberg [2] on the other. Most of
the texts on the subject, as well as practitioners in the field, can be classified in
most cases in one of these two categories. The differences in their approaches
are evident; in the geometric side the emphasis is made on the geometrical,
intrinsic, and coordinate independent meaning of the concepts involved. This
is in line with the spirit of differential geometry as taught and learned by
mathematicians. On the field theoretic side, instead, gravity is considered as
a somewhat exotic field theory with peculiar features such as diffeomorphism
invariance (treated as a gauge symmetry) and an intrinsic nonlinear charac-
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ter that precludes any direct solution to the field equations and renders the
traditional field theoretical approaches almost useless.

I certainly do not share this last point of view even though I consider
myself as a field theorist; in my opinion a genuine understanding of relativity,
both general and special, can only be achieved by using a geometrical ap-
proach. Does this mean that relativity is just an application of some concepts
of differential geometry? The answer to this question is a resounding no be-
cause relativity is a physical theory, in fact, the physical theory of space and
time. One of the leitmotifs of the following notes is that there is a physical level
beyond geometry. In a rough sense geometry refers to distances, angles, and
their relationship but in physics these magnitudes must be defined, suitable
prescriptions must be given in order to measure them, and the appropriate
measuring apparatuses must be used. This is the first level in which our lack
of intuition for phenomena occurring at high energies or relative velocities can
fool us. Our intuitive way of perceiving the real world around us leans on sev-
eral implicit assumptions that must be clearly isolated and understood before
we can think in relativistic terms. The information that we obtain from our
surroundings is carried by physical agents such as sound, heat, and crucially
light. What we see around us is treated by our brains as an instantaneous
picture of the world as it is right now. We think of what we see as something
happening in this moment at the different places of our neighborhood. The
fact that this is not an accurate physical picture because of the finite speed of
light and the necessity to define simultaneity in an appropriate way was one
of the main obstacles that had to be overcome in order to arrive at the correct
relativistic picture of space-time.

One of the most important physical pillars of relativity has to do precisely
with the character of light as the primary carrier of information. It is im-
possible to overemphasize the importance of this fact because light will play a
central role in the operational definitions of physical quantities in relativistic
physics. In my view (certainly shared by many others) the simplest way to
define physical magnitudes uses light rays in a crucial way. The reason, as we
will be discussed in detail later, has to do with the observational fact that the
motion of light reflects an intrinsic property of space-time and is independent
of the state of motion of light sources.

The first defining feature of these notes has to do with this: I will emphas-
ize the operational physical description above other things and try to justify
that this leads to differential geometry as the appropriate language to describe
relativistic physics. The first part of these notes will be devoted to a present-
ation of special relativity that follows this philosophy pioneered by Bondi [3]
and updated in the beautiful book by Geroch [4].
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Once we recognize the convenience and physical accuracy of the relativistic
description of space-time as a manifold endowed with the Minkowski metric it
is only natural to generalize the idea and accept the possibility of using other
metrics. The great insight of Einstein was to realize that this generalization
provides a way to understand relativistic gravity. In the second part I will show
you how we can accurately describe the gravitational phenomena of everyday
life by using the Schwarzschild metric whose features are central both to the
description and the experimental verification of the theory. I will finish by
giving a quick (and arguably rather standard) “derivation” of the dynamical
equations of the theory, the Einstein field equations. Here I will closely follow
the presentation appearing in the classic text of Wald [5]. My purpose in this
last section is to provide you with the main ingredients of the theory and give
a rough but, hopefully, sufficient picture of how general relativity works.

2. Special Relativity

Relativity is the theory of space and time, or rather of space-time; the very
first change in our usual perception of reality is the fact that space and time
are not independent but intimately related concepts. Space-time is defined as
an ensemble of events, that is, things that happen somewhere: places in space
and instants of time.

It is important to think a little bit about how these events are organized
and interrelated. With some hindsight one can recognize several viewpoints on
space and time that I will refer to as the Aristotelian, Galilean and Einstenian
points of view (where the attribution to these authors should not be taken as
a completely accurate historical fact but rather as a convenient way to identify
the thinking prevailing in different epochs of history).

In the Aristotelian point of view space and time are not interrelated but
independent notions. Events happen at a certain well defined place and in
some absolutely defined instant of time. The absolute character of time and
position imply that velocities, or rather, the state of motion of bodies are
absolute. Among all the possible reference frames there is a privileged one,
at rest, to which the motions of things are referred. A way to somewhat
summarize the physics in this framework is to give a list of questions that
make sense and can be answered within it, such as: where does a certain event
happen?, when does it happen?, are two events simultaneous?, do they occur
at the same place, what is the distance between them?, what is the velocity
of a moving object? is it at rest?...

In the Galilean point of view there is no privileged rest frame but a class of
equivalent reference systems called inertial that work as a set of “personalized”
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aristotelian frameworks. This is the main and most important departure from
the previous point of view and has some important consequences because now
positions (and hence velocities) are no longer absolute. Still some features of
the Aristotelian view are retained, in particular time and simultaneity keep
their absolute character and space is separate from time. Some of the ques-
tions that previously made sense cannot be asked now but there are others
that we may still pose to ourselves such as those referring to the time differ-
ence between events, the distance between simultaneous events and relative
velocities between moving objects.

The Einstenian point of view, that will be discussed at length in the fol-
lowing, is a dramatic departure from the pictures described in the two previous
frameworks. This is particularly so as far as the very structure of space-time
is concerned because now space and time cease to be independent objects and
melt into a single structure. This shows up in the appearance of the space-time
interval as a kind of distance (or time lapse) that relates non necessarily sim-
ultaneous events and allow pairs of them to be classified into different types
(space-like, time-like or null) with distinct physical meaning. Space-like in-
tervals are suitable to describe simultaneity and distance, time-like intervals
correspond to events observed in situ by a physical observer and the null ones
have to do with light signals. One of the most striking features of this new
framework is the fact that absolute simultaneity is lost and becomes observer
dependent.

2.1. Clocks and Light Rays

I will introduce now the main tools used to define physical space-time concepts:
clocks and light rays. A clock is a device that measures the proper time of
the physical observer that carries it. Implicit in this definition is the fact
that the actual recording of time is carried out in situ; mathematically proper
time will be defined as a certain kind of length associated to the curve that
describes the history of the observer in space-time. It is important to realize
that the only time that applies to a given observer is the one measured by
his or her own clock. When considering situations involving several observers
we will make the assumption that these clocks are identical; i.e. if they were
all carried by the same observer they would record the same time and tick at
the same pace. This does not mean that the time measurements carried out
by different observers at different places must be the same; in fact one of the
most important features of relativity is the recognition of the fact that different
observers may measure different time intervals between events depending on
their state of motion.
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The second device that we need to introduce in order to define, at least
in principle, physical space-time concepts is the light ray. The light rays
that I am talking about are, actually, special trajectories in space-time (I am
not really thinking about electromagnetic waves although Maxwell’s theory
actually tells us that real light follows precisely these type of trajectories).
The most important fact about light rays originating at a given event is that
they move in a way that is independent of the state of motion of the source.
This is so central to the following that I will give it a special name and call it the
l-hypothesis. Though this goes squarely against our experience about how
the velocities of objects and reference frames add, it is an experimental fact
that has its reflection also on the way we see the universe. It was recognized
by de Sitter and others that the shape of astronomical objects such as the
orbits of binary stars would appear severely distorted were it not for the fact
that light motion is not affected by that of the emitting source [6].

Given a certain event there is a single ray originating or arriving there
for each spatial direction. The locus of the events reached by all the light
rays arriving and originating at a certain event O is called the light cone
at O. As we can see, light trajectories encode some intrinsic information
about space-time (for example about causality) independent of the objects
and processes that produce them. Owing to this they are especially useful
to explore space-time around a physical observer and to define geometrical
magnitudes and properties in an operational way. The idea of using light rays
both as measuring devices and carriers of information can be summarized in
a master law of space-time perception: what we see is rays of light.

2.2. Inertial Observers

When considering observers it is very useful to introduce a special class of
them, called inertial, characterized by the fact that they are in the simplest
state of motion. This is defined by the condition that they do not perform
or suffer any physical action that might change how they move. They are all
completely equivalent (there is not a privileged one) but this equivalence does
not make them all the same because they can be in motion with respect to each
other. The magnitude of this relative motion can be defined and measured by
a suitable relative velocity as we will discuss later.

A very important property of inertial observers is that the proper time
between the reception of two light rays by an inertial observer Obs2 emitted
by another one Obs1 (that happens to coincide with the other at a certain
event) is proportional to the proper time interval of emission as measured
by the latter. For future reference I will refer to this as the k-hypothesis.
It is worthwhile pointing out that, as none of these two inertial observers is
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privileged the proportionality constant is the same if the rays are sent by Obs1
and received by Obs2.

In the following I will make extensive use of space-time diagrams. These
are representations of space-time and their content that are very useful to
depict and describe physical processes. Used with due care they provide an
accurate representation of relativistic phenomena. I will suppose that I have
an affine space with points in R4 and R4 as the associated (real) vector space.
Light rays are represented by straight lines “at a fixed angle” with respect to
the direction that represents time; they lie on a cone (the light cone in this
representation). Those trajectories passing through the vertex and inside the
cone correspond to the histories of physical observers (and objects in general)
and will be called world lines. Notice that not every curve in R4 may be
associated to a physical object; it is not possible, for example, to have physical
objects that move back and forth in time. In this representation inertial
observers are simply described by straight lines, arguably the simplest ones in
an affine space.

Even though our physical space-time is four dimensional we will mainly
consider here a simplified situation where we have only one spatial and one
time dimension. There are certainly some interesting relativistic phenomena
that arise when we consider motions in a two or three dimensional space (such
as the Thomas precession) but most of the important ones can be understood
in the 1+1 dimensional simplified setting that I describe in the following.

2.3. The Relativistic Interval

Let us start by discussing the definition and measurement of proper time dif-
ferences and introduce the all-important concept of relativistic interval. Let
us the ask ourselves the following question: Can a given inertial observer find
out the proper time interval between events that do not lie on his own world
line? To answer this we will use the k-hypothesis. Let us consider (see figure
1) the difference between proper emission and reception times by Obs1, T−
and T+ respectively. Taking into account that TAB = kT− and by symmetry
T+ = kTAB we immediately find TAB =

√
T−T+, i.e. the proper time meas-

ured by an inertial observer passing through events A and B is given by the
the geometric mean of the time difference between emission and reception of
light rays reflected at these two events. Notice that there is also a simple
relation between T+ and T−, namely T+ = k2T− ≡ (1 + z)T− where z > −1 is
called the redshift. This name is borrowed form observational cosmology and
refers to a measure of the relative values of the observed frequencies of known
atomic transitions compared with values in terrestrial laboratories. Under the
assumptions of the standard cosmological model it can be used to determine
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A

B

T−

T+

TAB

Obs1
Obs

T−−

T−+

T+−

T++

T

T+

T−

Obs1 Obs2

Figure 1: Left: Determination of the proper time interval between A and B
by an observer Obs1. Right: Observer independence of this determination.

cosmological distances. In the present context it provides a very convenient
way to measure the relative state of motion of the two observers and can be
obtained by any of them by simple measurements. It is important to point out
that the events A and B cannot be anything but they must be such that the
last light ray to leave Obs1 arrives last (in which case we say that the space-
time interval between these two events is time-like). The attentive reader may
wonder about the intrinsic character of the proper time interval that I have
just introduced, is this prescription observer-independent? or more specific-
ally, would the proper time difference measured by a second observer Obs2
coincide with the one obtained by Obs1? The answer to both these questions
is in the positive as long as the observers involved are inertial. To see this
consider the situation depicted in the right half of figure 1. What we want to
figure out now is whether or not

√
T+T− =

√
T++T−− is correct whenever the

conditions T− =
√
T−−T−+ and T+ =

√
T+−T++ are met. It is straightforward
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to see that this happens if
T++

T+−
=
T−+

T−−
,

where the left hand side is written in terms of the time measurements per-
formed by Obs1 to determine T+ and the right hand side in terms of those
used to get T−. We conclude that it is possible to define the proper time be−

T−

T+

T̃+

T̃−

C

B

A Figure 2

tween two events (in the appropriate
time-like relationship) in such a way
that it can be measured by any iner-
tial observer following a simple pro-
cedure. One of the most important
consequences of the fact that the be-
havior of proper times is the one de-
scribed above is the so called twins
paradox that refers, more precisely,
to the observer-dependent charac-
ter of proper time. If we synchron-
ize two clocks at a certain space-
time event and let them follow dif-
ferent world-lines afterwards they
will (generically) no longer signal
the same time if the are brought
together again. In the particular
case when one of them measures
proper time for an inertial observer
and the other moves away and back
with constant relative velocity this
is a simple and straightforward con-
sequence of the fact that the geo-
metric mean is always less or equal
than the arithmetic mean because√

T+T− ≤
T+ + T−

2
,

√
T̃−T̃+ ≤

T̃− + T̃+

2
implies that

√
T+T− +

√
T̃+T̃− ≤

1
2

[
T− + T+ + T̃− + T̃+

]
= T− + T̃− = T+ + T̃+.
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Here the definitions of the different time intervals involved are shown in figure
2. This phenomenon is closely related to the time dilation that is routinely
observed in the decay of unstable subatomic particles.

2.4. Simultaneity

Another time-related concept that requires a detailed analysis is that of simul-
taneity. The fact that time loses its absolute character has a reflection on the
very definition of simultaneous events. Let us consider first a situation (see
figure 3) in which we have an inertial observer, an event B outside its world
line and another event A in the observers worldline.

eB: emission to B

τ

rB: reception
from B

τ

B

A

eB

τ
rB

τ

B

rC

eC

A

C

Figure 3: Definition of simultaneity referred to a given inertial observer.

We will say that A and B are simultaneous, relative to this observer, if he
can send a light ray to B and record its reflection in such a way that the time
interval τ measured by his clock from emission to A is the same as the one
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from A to reception. Notice that this definition assumes a certain symmetry
between departing and returning rays in the sense that the trips that light
makes in both directions are considered as identical. It cannot be overem-
phasized that this definition necessitates of the introduction of an (inertial)
observer; it is not possible otherwise to state if two events are simultaneous or
not. If instead of a single event we have two, A and B, outside the observers
world line we can generalize the previous procedure and define their simultan-
eity. This is done by sending and receiving light rays, as shown in figure 3,
and requiring that the time intervals at emission and reception be the same.
Again, this definition refers to the particular observer of our choice. Some
comments are now in order. This concept of simultaneity defines an equi-
valence relation whose classes, constituted by mutually simultaneous events
are called simultaneity surfaces. The previous definition could be extended to
non-inertial observers in which case it becomes a local definition (i.e. valid
not far from the observers world line). This is so because, for example, some
parts of space-time may not be reachable by light rays emitted by the observer
and also because the notions of simultaneity for two different observers may
coincide in a neighborhood of their world lines but not everywhere.

2.5. Length and Velocity

After discussing the space-time concepts associated with time intervals and
simultaneity we introduce now the definition of length or spatial distance. To
this end let us consider two events A and B where we place mirrors and an
inertial observer Obs such that A and B are simultaneous. We define the
spatial length (see figure 4) from A to B as lAB = cτ where c, the speed of
light, can be considered as a conversion factor (If we measure time in meters
we can put c = 1, something that we will often do in the following). A question
that we may pose ourselves at this point is the following: Can another inertial
observer determine this proper length? The answer is in the positive because
T− = kτ and τ = kT+ leads to τ =

√
T−T+. This is precisely the same

expression that we found for the proper time interval but in the situation that
we are considering now the first emitted ray arrives last in which case we say
that the interval between the events A and B is space-like.

Once we have introduced the concepts related to lengths and distances we
are ready to define the velocity between inertial observers in the obvious way
as a measure of the change of spatial distance with time. This is done in an
straightforward way with the setup shown in figure 5.
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T−

τ

T+

τ

A

Figure 4 Obs

B

A

B

A′

B′

Obs1

Figure 5 Obs2

τ0

τ0 + h

τ0+τ1+(z+2)h
2

τ0+τ1
2

τ1

τ1 + (z + 1)h

If observer Obs1 is moving with respect to Obs2 there is a change in the
reception interval to (1+z)h where h is the (small) proper time delay between
the emission of the two light pulses. The redshift z is measured at the time
of reception and it is very easy to derive the relative velocity between both
observers from its value. If we demand that the second emitted ray must arrive
second we have the restriction z > −1 and thus the modulus of the velocity is
bounded by the value of the speed of light c. From figure 5 we find that

lAA′ =
τ1 − τ0

2
c, lBB′ =

τ1 − τ0 + zh
2

c

and, hence

v = lim
h→0

lBB′ − lAA′

(1 + z
2 )h

=
z

2 + z
c.

This expression can be conveniently rewritten as

1 + z =
c+ v
c− v .

Instead of two light rays we can consider using periodic waves satisfying
the wave equation ∂2

t φ − c2�φ = 0. In this case light rays correspond to
characteristic curves and z is measured as a frequency shift. This is just a
manifestation of the well known Doppler effect. Notice that this procedure
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works due to the invariance of the wave equation under Lorentz transforma-
tions. The equivalence between the two procedures introduced above explains
why the velocity defined in this way is known as the radar velocity.

Relativistic lengths and velocities display some interesting an unfamiliar
behaviors that we pause to discuss now. As far as lengths are concerned the
most striking is the phenomenon of length contraction schematized in figure 6,
where the measurement of the length of a ruler by a moving inertial observer
is described. This is done by bouncing light rays from the ends of a ruler and

τ1

Tβ

Tα

τ1

τ

A
B

Obs1 Figure 6

ruler

recording the arrival times of the
reflected rays. The length of the
ruler, as determined by the mov-
ing observer, is defined as the dis-
tance between the two simultaneous
(for observer Obs1) events A and B.
The moving observer can also de-
termine or define the proper length
of the ruler (the one that an iner-
tial observer standing in one of the
ends would obtain by sending and
receiving a light ray from the other
end). This is done by recording the
reflection of the first ray that he
sends from a semitransparent mir-
ror placed at the closer end of the
ruler and sending an additional light
ray in such a way that its reflec-
tion at the near end arrives at the
same time as the one bouncing off
the far end. From τ1 = Tα(1 + z)
and Tβ = τ1(1 + z) we find that

τ1 + Tα = τ1

(
2 + z
1 + z

)
, τ1 + Tβ = τ1(2 + z)

and, hence,

2τ =
√

(τ1 + Tα)(τ1 + Tβ)

that allows us to obtain the proper length of the ruler as c times the following
value of τ

τ = τ1
2 + z

2
√

1 + z
=

τ1√
1− v2

.
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We then conclude that

l1 = lprop
√

1− v2 < lprop

so that the measured length is smaller than the proper one.
Another interesting phenomenon that can be discussed is the composition

of velocities. Let us consider three inertial observers labeled Obs0, Obs1, and
Obs2. In order to find the relation among the different relative velocities
determined by them let us look at the space-time diagram shown in figure 7.
There are four different proper time intervals to be consider by the observer
Obs0:

T0

T′0

T1

T′1

T2

T′2

T3

T′3

τα

τβ

τ′β

Obs2 Figure 7

Obs0

Obs1
h

(1 + z1)h

1+z2
1+z1

h

(1 + z2)h

h
√

1 + z1 = j

1+z2√
1+z1

h = 1+z2
1+z1

j

τ′α

• T ′
0−T0 = h, where h is a delay

of our choice.

• T ′
1 − T1 = (1 + z1)h which is

the “redshifted” reflection by
Obs1 of the light rays sent at
T0 and T ′

0.

• T ′
2−T2 = 1+z2

1+z1
h which are two

light rays sent by Obs0 to Obs1
in such a way that their re-
flection at Obs1 coincides with
those reflected by Obs2 and
emitted at T0 and T ′

0.

• T ′
3 − T3 = (1 + z2)h which is

the “redshifted” reflection by
Obs2 of the rays sent by Obs0
at T0, T ′

0, T2 and T ′
2.

It is straightforward to obtain now τ ′α = τα + h
√

1 + z1 ≡ τα + j and τ ′β =
τβ+h 1+z2√

1+z1
≡ τα+j 1+z2

1+z1
by using the geometric mean formula for the interval.

So finally we find

c+ v21
c− v21

=
1 + z2
1 + z1

=
c+v20
c−v20
c+v10
c−v10

→ 1 + β20

1− β20
=

(1 + β21)(1 + β10)
(1− β21)(1− β10)

and hence
β20 =

β21 + β10

1 + β21β10

where βij = vij/c. This is a rather strange addition law because it is impossible
to go beyond c by composing smaller velocities. If we let β1, β2 ∈ (−1, 1) and
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∗ : (−1, 1)2 → (−1, 1) : (β1, β2) 
→ β1+β2

1+β1β2
, then this defines a group. This

composition law suggests the introduction of a real, unbounded, parameter
χ ∈ (−∞,∞), the rapidity, defined as β = tanhχ so that now we have

tanh(χ1 + χ2) =
tanhχ1 + tanhχ2

1 + tanhχ1 tanhχ2
.

As we see rapidities simply add when composing velocities. It is also interesting
to notice also that the k factor can be written as

k =
√
c+ v
c− v = eχ

and satisfies a multiplicative composition law k20 = k21k10.

2.6. The Interval Revisited

Let us go back now to the space-time interval that we have introduced before.

A

B

τA

τB

Obs Figure 8

O

tB

tA

A′

B′

I will start by picking an observer Obs
and an event O in his world line. In
the following I will introduce a way of
labeling events by assigning some “co-
ordinates” in a physical way. In prin-
ciple there may be many ways to do this,
for example, one could use the T− and
T+ defined before and measured with
the help of O (“null coordinates”). I
will choose instead to label each event
by assigning a pair of numbers t, and
x = cτ to it where t is the proper time
measured by the observer from O to the
event B′ in its world line which is simul-
taneous to B and cτ measures the spa-
tial distance between B′ and B. The
reason to do this is because these co-
ordinates have a direct physical inter-
pretation as proper times or spacial dis-
tances and are the ones used in the more
traditional presentations of the subject.
If we have two events A and B it is
straightforward to obtain the differences

between emission times and reception times and write the square of the inter-
val in terms of them.
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T− = (tB−tA)−(τB−τA) ≡ Δt− 1
c
Δx, T+ = (tB−tA)+(τB−τA) ≡ Δt+

1
c
Δx

T−T+ = Δt2 − 1
c2

Δx2.

If the interval from A to B is space-like we get in a completely analogous
way that the square of their spatial distance is given by T−T+ = 1

c2
Δx2−Δt2.

Finally if it is lightlike we find again T−T+ =Δt2− 1
c2

Δx2 =0. We conclude that
intervals can be classified by using a 1+1 dimensional non degenerate quadratic
form in space-time and proper times and spatial distances are determined by
it! This leads to the introduction of the all-important Minkowski metric

ds2 = dt2 − 1
c2
dx2

and the recognition of the fact that a space-time point of view is much better
that the traditional separation of space and time. In fact, according to some
authors [7] special relativity cannot be considered as complete until the intro-
duction by Minkowski of the concept of space-time and the realization of the
fact that it is completely described by the so called Minkowskian metric.

I will show now that proper time cannot originate in a universal time. In
more concrete terms let us ask ourselves the following question: Can we find a
scalar function Φ(t, x) (expressed in the same coordinates introduced above)

such that TAB =
√

(tA − tB)2 − 1
c2

(xA − xB)2 = Φ(tA, xA) − Φ(tB , xB)? The
answer to this question is in the negative; the reason is that we would have
then

Φ(t, x)−Φ(0, 0) =

√
t2 − x

2

c2

and

Φ(tA, xA)− Φ(tB , xB) =

√
t2A −

x2
A

c2
−
√
t2B −

x2
B

c2
�= TAB .

As we see the existence of a universal, observer independent, time controlling
the ticking of the clocks carried by all the observers is in contradiction with
hypotheses l and k and, hence, if we want to keep any one of them we have
to abandon the other. Historically the rejection of the idea of the existence of
a universal time was, probably, the single most difficult step that had to be
taken to resolve the paradoxical situations posed by the mounting evidence
given by experiments; in particular those trying to detect the motion of the
earth with respect to the ether.
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2.7. Lorentz Transformations

At this point the reader may wonder what has happened with the Lorentz
transformations that are at the crux of the usual presentations of special re-
lativity. To show how they appear as a consequence of the hypotheses that we
have introduced at the beginning let us consider now the following diagram,

0Figure 9

s

τ

τ

τ′

τ′

s′ = ks

A

where I discuss a situation in which
two inertial observers have world-
lines with an event O in common.
Let us find out the physical coordin-
ates that they both assign to a given
event that we label A. To this end
we compute

τ ′ =
(1 + k2)τ + (1− k2)t

2k
,

t′ = τ ′ + ks = k(t− τ) + τ ′;

taking into account that

t = τ + s, t′ = τ ′ + s′,

k(2τ ′ + ks) = 2τ + s, s = t− τ,

and

1 + k2

2k
=

1√
1− v2

c2

,

1− k2

2k
=

−v
c√

1− v2

c2

.

Hence we see that the relationship
between the values of x, x′, t, and t′ is given by the familiar expressions that
give the Lorentz transformation in 1+1 dimensions

x′ =
(1 + k2)x+ (1− k2)ct

2k
=

x− vt√
1− v2

c2

t′ =
(1 + k2)t+ (1− k2)τ

2k
=
t− x v

c2√
1− v2

c2

.
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It should be clear at this point the complete equivalence of our presentation
and the more familiar ones relying upon the use of these Lorentz transforma-
tions.

In the above picture we have viewed space-time as an affine space. It is
very useful now to change this point of view and adopt a new one. To this end
let us consider space-time as a differentiable manifold (R4,g) with the usual
differential manifold structure and the Minkowski metric defined on it. This
metric can be taken as a twice covariant symmetric tensor with the following
form at every point in R4 in the coordinate basis (in the following I will set
c = 1) ⎡⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎦ .
All the issues discussed before are easily described in this framework, in par-
ticular the classification of vectors and the description of physical observers.
At each point in R4 tangent vectors v are classified as time-like if g(v,v) > 0,
null if g(v,v) = 0, and space-like if g(v,v) < 0. Physical observers and, in
particular the inertial ones, are described by curves parametrized by proper
time (i.e. with time-like tangent vectors T satisfying g(T,T) = +1). Light
rays are null geodesics (geodesics with null tangent vectors) and spacelike vec-
tors are suitable to represent measuring rods and certain sets of simultaneous
events.

Given a space-like parametrized curve γ(s) defined by events that are
simultaneous with respect to a given inertial observer its length is∫

ds
√
−g(γ̇, γ̇).

Given a time-like parametrized curve γ(s) describing an observer that
carries a clock the proper time that it measures is given by∫

ds
√
g(γ̇, γ̇).

The Minkowski metric has certain symmetries described by Killing vector
fields. It is always possible to choose four of these in such a way that they
commute and allow the construction of coordinate systems in which the metric
takes the form written above. These are the inertial reference systems. Trans-
formations that preserve the form of the metric correspond to the choice of a
different set of commuting Killing fields to build the inertial frame; they are
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the Lorentz transformations. In each of these it is possible to have inertial ob-
servers “at rest” (i.e. with constant spatial coordinates). It is very important
to realize that some concepts that play an important role in special relativity
are, in fact, particular properties of the Minkowski metric due to its very high
degree of symmetry.

In the following I will generalize the framework discussed above and in-
troduce general (+−−−) (Lorentzian) signature metrics. These will not have
all of the properties of the Minkowski metric (in particular its symmetries)
but will prove to be a very useful and important objects. Now the question
is: What kind of physical phenomenon can be described with them?

3. Relativistic Gravity

In the following I am going to introduce and discuss a mathematical model for
an Einstenian space-time (M,g) whereM is a four dimensional differentiable
manifold and g is a metric onM with (+−−−) signature. We say that (M,g)
and (M′,g′) are isometric if there exists θ :M→M′ a diffeomorphism from
one to the other such that g′ = θ∗g. This defines an equivalence relation
whose equivalence classes will be taken as space-time models. In this setting
the different frameworks (Aristotelian, Galilean, Einstenian) can be described
by introducing different mathematical structures (see a nice discussion in [7]).

I give now the notation and conventions that will be used in the following.
Tensors on a vector space V over a field K (usually R or C) of type (k, l) are
multilinear maps

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×
l︷ ︸︸ ︷

V × · · · × V → K

where V ∗ is the dual vector space of V . I will only consider finite dimensional
vector spaces (and, hence, V ∗∗ ∼= V ). Tensor fields are defined at each point
P of a differentiable manifold M by using the tangent and cotangent vector
spaces (TP and T ∗

P ). By taking a basis of V and its dual basis on V ∗ one can
obtain their components; in physics one often works in terms of them. One
can introduce the usual operations for tensors such as contractions or exterior
products.

In these notes I will use the abstract index notation of Penrose [8] accord-
ing to which a tensor of type (k, l) will be denoted as T a1...ak

b1...bl
. This is a

useful notation because it mimics the more traditional component approach
but does not refer to any specific coordinate system. Indices are just conveni-
ent labels to identify the different types of tensors and their combinations.
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A contraction will be represented by repeating indices, for example, T abcbe
(no summing of repeating indices meant!) and tensor products are given by
expressions such as T abcdeS

f
g. Symmetries in tensors are taken care of in a

straightforward way, for instance, if Tabvawb = Tabw
avb, ∀va, wa ∈ V then we

say that Tab is symmetric and denote it as Tab = Tba. Some tensor objects are
especially important; in particular the metric gab [non-degenerate symmetric
(0, 2) tensor] and its inverse gab defined to satisfy gabgbc = δac. As is traditional
among physicists I will “raise and lower indices” with the metric (that is, I
will use the vector space isomorphism g : V → V ∗ : va 
→ gabv

b) whenever I
find it appropriate.

3.1. Relativistic Free Fall

In the rest of this section I will try to show you how gravity is described in this
setting, in particular, I will discuss how and why objects fall. In fact I will do
something slightly less trivial and study relativistic free fall. In the following I
will make use of two hypotheses that can be proved to be true, nonetheless, in
some appropriate and physically relevant circumstances. The first one states
that test particles (particles that feel the presence of a space-time metric but do
not perturb it) move along time-like geodesics. Test particles are important as
an idealization that allows us to explore a given space-time metric, physically,
without acting on it. The second hypothesis refers to the motion of light rays
and states that they follow null geodesics. Test particles are in the simplest
state of motion and are the best candidates to become what we can call inertial
observers in general relativity.

Let us consider the static, spherically symmetric gravitational field created
by a star or a planet. In Newtonian mechanics this field is described in terms
of the distance to its center by the potential

Φ = −GM
r

and is independent of its angular velocity. In relativistic gravity the situation
changes because the gravitational field created by a rotating mass is different
from the one created by a non-rotating one. If the rotation is slow it can
be accurately described, nevertheless, by the Schwarzschild metric (in the
following G = 1 so that mass is measured in length units)

dτ2 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

that is known to represent the space-time geometry outside a static, spherically
symmetric distribution of mass M . The coordinates in terms of which this is
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written take values in r ∈ (2M,∞), t ∈ R, θ ∈ (0, π), and φ ∈ (0, 2π). As
will be discussed later some of the singularities that appear in the components
are physical whereas the others are, in a sense, just artifacts of this specific
coordinate representation.

The following study of relativistic free fall will require the consideration of
radial geodesics. We show some of them (starting in an “outgoing” direction)
in figure 10.

r

t

r0

radial
null
geodesic

radial
timelike
geodesics

Figure 10: Time-like and null radial geodesics for the Schwarzschild metric.

We see different types of behaviors. There are, for example, radial geodesics
that go “up” and then “down” (in the direction of growing r) and others that
go “up forever”. Between these two behaviors there is an intermediate critical
situation that separates them. We see also how radial null geodesics look like;
in particular we can see that they are, in a certain sense, a limit of the time-like
“escaping geodesics”. The behavior depicted above is certainly suggestive of
the type of situation encountered when we consider ordinary Newtonian free
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fall. If an object is hurled upwards with a speed below a certain critical value
it will eventually fall back to the floor, if, instead, the velocity is above that
value it will escape and travel indefinitely with a speed approaching a certain
limit. Between these two situations there is a critical one in which the object
never falls back but moves with a velocity that gets closer and closer to zero
with time.

There are several issues that must be carefully considered before we can
accept the previous picture. To begin with it is important to understand that
we are plotting t versus r but these are coordinates whose physical (opera-
tional) meaning we have not clarified at this point; we do not know what they
really measure. There are also other questions, for example, when we ask
ourselves why we see things falling when we stand on the ground, how do we
know that the ground really corresponds to r = constant? This is in fact a
non trivial issue that requires the discussion of some important properties of
the metric, such as isometries, that I will consider next.

r

t

ξa = ∂t

Figure 11: Time-like Killing vector field ∂t. I show an integral curve of this
field that represents the ground and one of the time-like geodesics.
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Given a metric gab on a manifold M, an isometry is a diffeomorphism
φ :M→M such that (φ∗g)ab = gab; they are the symmetries of the metric,
and by extension of space-time.

r

t

∝T(r)

∝ y(r)

P
Q

(r, t)

ξa = ∂t

r0

Figure 12: Determination of the observed trajectory for a non-escaping time-
like geodesic.

If we have a one parameter group of diffeomorphisms φt we can obtain
curves on M by considering the images of points P ∈ M under its action.
If we take the tangents to all the curves obtained this way for every point in
M we can construct a certain vector field ξa that generates φt. It is possible
to use φt to carry along any smooth tensor field T a···b··· . By comparing T a···b···
with φ−tT a···b··· we can define the Lie derivative of this tensor field. Finding
the symmetries of the metric gab boils down to getting vector fields with the
property that the Lie derivatives of gab along the directions defined by them
are zero. This condition can be conveniently rewritten as ∇(aξb) = 0 (where
∇a is the derivative operator associated with the metric gab and ξa ≡ gabξb).
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This is the so called Killing equation whose solutions are known as Killing
vector fields.

In the case of the Schwarzschild metric introduced above it is straight-
forward to show that the time-like vector field ∂t is a Killing vector field or
equivalently that (t, r, θ, φ) 
→ (t+ T, r, θ, φ) is an isometry for every value of
T . Metrics for which such time-like (and hypersurface orthogonal) Killing vec-
tor fields exist are known as static; the Schwarzschild metric is an example of
them. Any observer whose world line is an integral curve of the vector field ∂t
will perceive a non-changing space-time in the sense that any experiment per-
formed by him to explore its properties will yield the same result if repeated at
a different instant of time (if the same setup is used). It is important to realize
that these are not inertial observers because they are not in free fall; in this
respect it is right to say that everyday gravity is a fictitious force very much as
the centripetal or Coriolis forces are. In the following I will consider observers
with constant r = r0 (and forget about θ and φ in the radial case). In a free
fall experiment we would say that such an observer stays on the ground.

3.2. Radial Free Fall

Let us discuss now the physical meaning of r and t. In principle they are just
coordinates so it is legitimate to ask ourselves wether we are entitled to assign
a physical meaning to them such as vertical distance to the floor or time in
flight. Here we can follow the space-time philosophy of the first talk on special
relativity and use the definitions that we introduced there for distances and
proper times. By adapting them to the present situation we will have natural
and easy to understand notions that can be used to describe free fall in physical
terms.

Let us pick an event P on the worldline of the falling object and let us
trace back to the floor the two light rays (i.e. null geodesics) that arrive and
start at P (see figure 12). In this case there is a discrete time symmetry that
implies that for an observer with constant r all the events with the same t are
simultaneous.

In the following I will get what one could rightly call the equations of the
“physical” (or, rather, observed) geodesics; that is the equations that give the
observed distance in terms of the measured physical time. To this end we need
the equations for the time-like radial geodesics.

ṫ =
E

1− 2M
r

, ṙ =
[
E2 −

(
1− 2M

r

)]1/2
where E is a certain real constant to be interpreted below and the dot denotes
derivative with respect to the affine parameter. We also need the equations
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for the null radial geodesics

ṫ =
1

1− 2M
r

, ṙ = ±1

where the plus sign refers to the outgoing null geodesics and the minus to the
ingoing ones. From these equations we get

dt

dr
=

E(
1− 2M

r

) [
E2 −

(
1− 2M

r

)]1/2
for the time-like geodesics, and

dt

dr
=

±1(
1− 2M

r

)
for the null ones. The solutions to them are respectively given by

ttime(r) = t0 + E
∫ r

r0

dρ(
1− 2M

ρ

) [
E2 −

(
1− 2M

ρ

)]1/2
tnull(r) = t0 + r − r0 ± 2M log

r − 2M
r0 − 2M

.

The proper time elapsed at the ground from launch at r0 to the event Q is

given by T (r) =
(
1− 2M

r0

)1/2
ttime(r) (as can be easily read from the metric)

and the distance to the ground (proportional to the proper time elapsed at
the floor from emission to reception of the light ray reaching the free falling
object at P ) is

y(r) =
(

1− 2M
r0

)1/2 [
r − r0 + 2M log

r − 2M
r0 − 2M

]
.

It is straightforward to get now the velocity and acceleration

v(r) ≡ dy

dT
=

1
E

(E2 − 1 +
2M
r

)1/2, a(r) ≡ d2y

dT 2
= −

M
(
1− 2M

r

)
E2r2

(
1− 2M

r0

)1/2

where in these last two equations r should be considered as a function of y
obtained by inverting y(r).

We see that E = 1√
1−v20

(
1− 2M

r0

)1/2
[v0 ≡ v(r0)] so that for r0 >> 2M

and v0 << 1 we find that E � 1− M
r0

+ 1
2v

2
0 . This can be easily interpreted, in
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the non-relativistic limit, as the energy per unit mass including the Newtonian
gravitational potential energy. For values of E close to one the acceleration is
given in a very good approximation by

a(y) = −M
y2
,

which is just the Newtonian result; the relativistic corrections can be easily
obtained. At this point the reader may find it strange that the acceleration, in
general, depends on E but some thought will convince him that, in fact, this is
not so because an outgoing light ray (in a sense described by the E →∞ limit
of a massive particle) moves with no acceleration! This is shown in figure 13.

r

t

y=T

y(r)

2T(r)

Figure 13: The definitions of distance and proper time that we are using imply
that the observed trajectory of a light ray (c = 1) is y = T and, hence, light
moves with no acceleration.
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3.3. Gravitational Redshift

r

t

Δτ = 1, ν1

Δτ = 1, ν2

R2

ν2 < ν1

R1

Figure 14: Gravitational redshift

An interesting, and very important from the experimental point of view,
physical consequence that can be derived from the previous discussion a is
the phenomenon of gravitational redshift (see figure 14). Let us consider two
observers at two different heights R1 and R2 > R1 (radial case) and suppose
that R1 emits radiation at a certain frequency ν1. What is the frequency
observed by R2? At R1 the proper time between the emission of two pulses is
proportional to (1− 2M/R1)

1/2 whereas the proper time at R2 (reception) is
proportional to (1− 2M/R2)

1/2. We hence find

ν2
ν1

=
(1− 2M/R1)1/2

(1− 2M/R2)1/2

This has been measured in several important experiments using very dif-
ferent approaches starting from Pound and Rebka (1960) with a setup based on



30 Introduction to general relativity

a very sensitive Mössbauer detector used to measure the gravitational redshift
on gamma rays emitted from a radioactive cobalt source climbing upwards.
These results were later confirmed and refined by Vessot and Levine (1979) in
an experiment using hydrogen masers on a sounding rocket known nowadays
as Gravity Probe A (with an accuracy of 0.01%). Another interesting verific-
ation of this effect was carried out by Hafele and Keating (1972) by carrying
atomic clocks in airliners. In fact it is fair to say that gravitational redshift
has entered the realm of technology and everyday life as its effects must be
taken into account for the correct working of the Global Positioning System.

The non radial geodesics display a rich variety of behaviors. Though I
will not discuss them in detail here it is important to point out that they
describe Keplerian orbits, at least for values of r much larger than a certain
characteristic length (the Schwarzschild radius) and also the corrections to
these orbits that are the basis of the classical tests of general relativity (light
deflection by compact masses, rotation of perihelia, Shapiro time delay,...).

3.4. The Kruskal Extension

The Schwarzschild metric describes the space-time metric in vacuo for a spher-
ically symmetric situation (i.e. outside the earth if one forgets about its rota-
tion). The matching metric inside some spherically symmetric distribution of
mass is different and its detailed form depends on the properties of the matter
distribution. As long as the value of r that limits the extent of the matter
distribution is not smaller or equal than 2M (the Schwarzschild radius) noth-
ing dramatic happens, but, what is going on at r ≤ 2M? Can we extend the
Schwarzschild metric beyond r = 2M? What happens at r = 0?

Answering to these questions requires the discussion of the so called Kruskal
extension of the Schwarzschild metric. In order to show how this is done I will
consider first a simplified but rather illuminating example. Let us consider
the metric [t ∈ R, x ∈ (0,∞)]

dτ2 = x2dt2 − dx2

This metric seems to be singular at x = 0 because det gab = 0 there. Let
us however “change coordinates” according to

t =
1
2

log
(
T +X
T −X

)
, x =

√
X2 − T 2
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where now X > 0 and X2 > T 2 (see figure 15).

X

T

X > 0
X2 > T2

Figure 15: Domain of definition of the Rindler metric.

In these coordinates the previous metric becomes

dτ2 = dT 2 − dX2

which is just Minkowski defined on a submanifold of R2. This is known as the
Rindler space-time and plays a very important role in the understanding of
quantum field theory in curved space-times and phenomena related to black
hole evaporation and the presence of horizons. We see then that the initial
metric describes just a piece of Minkowskian space-time and suggests that its
singularity can be considered as an artifact introduced by a “bad choice of co-
ordinates”. By choosing appropriate coordinates, the metric can be extended
to a larger manifold in such a way that this extension can be considered as
complete in a well defined sense.
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There is a way to do something similar with the Schwarzschild solution to
construct the Kruskal extension. Consider the coordinate change defined by(

r
2M − 1

)
er/(2M) = X2 − T 2

t = 2M log
(
T+X
T−X
)

where now X and T are constrained to satisfy X2−T 2 > −1. In these coordin-
ates (Kruskal-Szekeres) the Schwarzschild metric introduced at the beginning
of this section becomes

dτ2 =
32M3e−r/(2M)

r
(dT 2 − dX2)− r2(dθ2 + sin2 θdφ2)

A space-time diagram representing the Kruskal extension of the Schwarschild
metric (each point represents a full spherical surface) is shown in the figure
16.

I

II

III

IV

X

T

singularity (r = 0)

singularity (r = 0)

t const.

r const.

r = 2M

r = 2M

Figure 16: Domain of definition of the Kruskal extension for the Schwarzschild
metric. The Killing vector field that reduces to ∂t in region I is also shown.

The original Schwarzschild metric describes only the region labelled as I
in the diagram (and represents the exterior gravitational field of a spherical
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body). Nothing happens at the boundary of the regions I and II as far as the
regularity of the metric is concerned, the metric is well defined there and the
singularity at r = 2M is fictitious from the physical point of view. There are,
nonetheless, some interesting phenomena to consider when one looks at this
extended metric. If, for example, studies the time-like curves in region I it is
possible to see that they can be extended to arbitrary values of r with arbitrary
large proper time whereas those in II hit the boundary of the diagram in a
finite proper time. This means that an object that crosses the horizon will hit
the boundary after some time that depends on the trajectory itself and the
mass M . This boundary corresponds to r = 0 and represents a genuine space-
time singularity where some quantities, such as the curvature, blow up. It is
a very dangerous place because tidal forces in its vicinity become arbitrarily
large and, hence, a body that gets too close to it will be torn apart. The fact
that r = 0 is a singularity implies that the extension obtained is maximal in
a precise mathematical sense and there is no way to go beyond it.

One can study the symmetries of the Kruskal extension. It is interesting
to look, in particular, at the Killing field that coincides with ∂t in region I
because it has the curious feature of becoming space-like in region II and zero
at X = 0, T = 0, this means that there is no way of having a “ground”
inside region II and, hence, there is a minimum size for a static object that
can support a spherically symmetric external geometry. Neutron stars are
thought to be very close to this situation. What about regions III, IV and the
other singularity? Region III is in a sense the opposite as the black hole II
so it is called a white hole, a region of space-time that any object must leave
in a finite proper time. Region IV is similar in its properties to region I but
it is physically isolated from it in the sense that there is no way to send or
receive signals from there (at speeds smaller than the speed of light). There
is no realistic astrophysical situation that could give rise to the space-time
represented by the full Kruskal extension. In the collapse of a physical object,
infalling matter completely “covers” regions III and IV, but region I, part of
II and the singularity will still be present.

The previous discussion would lead us to the very important issue of space-
time singularities that I can only briefly mention here. Physically they show
their presence as the impossibility to arbitrarily extend time-like and null
geodesics in their affine parameters (that is if there exist incomplete, time-
like and space-like geodesics). This is the property that is proved in the
important singularity theorems (of Hawking and Penrose [9]) that show that
singularities such as the big bang or black holes are generic physical features
and not artifacts of the usual metrics that display them.
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4. The Einstein Field Equations

We know from Newtonian gravity that the gravitational field is created by
the distribution of masses in the universe; in a relativistic setting we would
expect that the distribution of matter and energy that creates gravity and
determines the space-time metric. How does this come about? What is the
detailed mechanism that explains how matter curves space-time?

Let us go back to special relativity and consider something that we com-
pletely left aside in the first part of these notes: Relativistic dynamics. Clas-
sical mechanics can be very conveniently described by using variational prin-
ciples. The main idea is to introduce an action functional whose stationary
points, determined by differential equations, correspond to the evolution of the
system in question. Let us consider here as a particularly relevant example
the relativistic particle. The motion of such a particle can be described by a
certain worldline that we have to determine dynamically. To this purpose let
us fix two space-time events A and B and consider a sufficiently smooth curve
γ connecting them. We choose as the action the proper time measured along
γ from A to B multiplied by −m (where m is an attribute of every physical
particle known as its rest mass). If we choose inertial coordinates this is

S = −m
∫ tB

tA

√
1− ẋ2.

One can equivalently consider an arbitrary coordinatization of the worldline
and work with a reparametrization invariant action. In this case we have gauge
symmetries, that manifest themselves as constraints, and a zero Hamiltonian.
The Euler-Lagrange equations tell us that the world line of the free relativ-
istic particle is a straight line in space-time. We can, alternatively, use the
Hamiltonian formalism to study the resulting dynamics. What we find is that
the canonical momenta are given by

p =
mẋ√
1− ẋ2

,

and the Hamilton equations imply that these momenta are constant in t.
Finally the conserved energy is given by E =

√
m2 + p2. It is important

to point out that (E,p) can be considered as the components of a (four)
vector pa = mua proportional to the so called four-velocity ua ≡ dxa

dτ that
satisfies uaua = +1. This energy is an observer-dependent concept so that
another observer at an event where the particle is present (with four-velocity
va) would measure a different one given by +vapa.
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4.1. The Energy-momentum Tensor

If we have a swarm of non-interacting particles (usually referred to as dust)
the action of the system is given by the sum of the actions of the individual
particles. We can define a total energy-momentum vector for the system as
the sum of the individual contributions of each particle in the obvious way.
In the case of continuous matter distributions one can introduce the so called
stress-energy-momentum tensor Tab that encodes all the information about
the energy and momentum of the system. The different components of this
tensor in a given inertial system have simple and intuitive physical meanings.
Specifically let us suppose that we have an observer with four-velocity given by
va and choose three mutually orthogonal space-like vectors xa1, x

a
2, x

a
3 satisfying

vax
a
i = 0. The components of Tab for this observer have then the following

interpretation:

• Tabvavb is the energy density per unit proper volume.

• Tabvaxb is the momentum density of matter in the spatial direction
defined by xb.

• Tabxai xbj (i �= j) is the ij component of the stress tensor.

For normal (ordinary, physically observed) matter there are some restric-
tions on Tab known as energy conditions that constrain its possible form. As
we will see later this is very important when we consider the Einstein field
equations that describe how matter determines the geometry of space-time
because they equate the curvature of space-time to the energy-momentum
tensor. Without some appropriate restrictions on the latter any metric would
be a solution to the field equations for some Tab and the equations them-
selves would have no predictive power. There are several of them, the most
important ones are:

• The weak energy condition stating that for normal matter the energy
density measured by an observer with four-velocity va must satisfy the
inequality Tabvavb ≥ 0.

• The dominant energy condition: If va is the four velocity of an observer
we must have that Tabvavb ≥ 0 and T abva not space-like. Physically this
means that the pressure does not exceed the energy density (and hence
the velocity of sound is less than the speed of light).

• The strong energy condition: Tabvavb ≥ 1
2T that is satisfied if no large

negative pressures exist. It holds, for example, for the electromagnetic
field and massless scalars.



36 Introduction to general relativity

The most important and common types of matter distributions used in
general relativity are electromagnetic fields, scalar fields, and perfect fluids.
The latter are specially important because they provide an accurate first ap-
proximation to study astrophysical systems and the universe as a whole so I
will stop to describe them here. Let us consider a Minkowskian space-time
(with metric given by gab). A perfect fluid is a matter distribution with

Tab = ρuaub + P (−gab + uaub)

where ρ, P , and ua are the mass-energy density, the pressure and the four
velocity in the rest frame of (each sufficiently small volume of) the fluid. The
dynamics of a perfect fluid subject to no external forces is given by the very
important condition

∇aT ab = 0

Some remarks are now in order. First it is important to point out that in the
case of perfect fluids this last equation is completely equivalent (and leads)
to the familiar continuity and Euler equations for fluids in a certain inertial
coordinate system and in the non relativistic limit in which the fluid velocity
is much smaller than the speed of light.

∂ρ

∂t
+∇ · (ρv) = 0

ρ

[
∂v
∂t

+ (v · ∇)v
]

+∇P = 0

Second it is very important to realize that it implies energy-momentum conser-
vation for the perfect fluid system. To see this let us take a family of observers
such that their four velocities satisfy ∇avb = 0 (they are “parallel”) and define
the (co-)vector field Ja = Tabv

a. Then we have

∇aJa = ∇a(T abvb) = (∇aT ab)vb + T ab(∇avb) = 0

and energy momentum conservation follows immediately. Conversely energy
momentum conservation for all inertial observers implies that ∇aT ab = 0.
This equation plays a central role in the physical justification of the Einstein
field equations that I will present at the end.

At this point it is only natural to wonder how are we supposed to get
the expression for the energy-momentum tensor of physically relevant systems
satisfying the appropriate conservation conditions. In the specially relativistic
case (i.e. when the space-time metric is simply Minkowski) the Noether the-
orem provides a simple way to obtain it from a Lorentz invariant Lagrangian.
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Another way to look at this is to realize that in the presence of symmetries of
the metric (represented by Killing vector fields) it is straightforward to obtain
conserved densities of the type that we are considering here. For the usual
field theories such as the electromagnetic or scalar fields the energy momentum
tensors are given by

Tab =
1
4π

[
−FacF c

b +
1
4
gabFdeF

de

]
where Fab = ∇aAb −∇bAa and for a scalar field it is straightforward to get

Tab = ∇aφ∇bφ−
1
2
gab(∇cφ∇cφ−m2φ2).

If the metric is not Minkowski then many definitions can be easily adap-
ted but some of the previous statements must be modified. Here, for example,
particle motions are still described by time-like curves and the properties of
the matter distribution by energy momentum tensors that, in most cases, are
simply obtained by substituting partial derivatives for covariant derivatives
and the Minkowskian metric by the space-time metric in the familiar special
relativistic expressions. They must still satisfy ∇aTab = 0 but it is import-
ant to realize that in general this cannot longer be considered as an exact
conservation law but rather as only an approximate one (valid only locally).
Even in the absence of symmetries there are prescriptions to build suitable,
divergenceless Tab for virtually any type of matter that we want by writing the
generalizations of the familiar specially relativistic matter Lagrangians in tems
of general space-time metrics (and the corresponding covariant derivatives).
Perfect fluids, for example, continue to be represented in terms of ua, ρ, and
P and electromagnetic fields are represented by a 2-form field Fab.

Before proceeding further let us pause for a moment to discuss in more
detail the local conservation of Tab. To this end let us concentrate on the case of
perfect fluids. In general it may be impossible now to find a family of observers
for which∇(avb) = 0 (with vava = +1) in which case we cannot argue as we did
for Minkowski. If such a family of observers exists nevertheless (the so called
stationary case) then Ja = T abvb is a conserved current and we still have
energy momentum conservation. In fact it can be shown that the symmetries
of a metric –described by Killing fields– allow us to define conserved quantities.
In the most general situation we have approximate conservation in space-time
regions small compared to the curvature radius.

4.2. Geodesic Deviation

The next step in this rush to the Einstein equations leads us to consider now
the so called geodesic deviation equation. Let us take a smooth 1-parameter
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family of geodesics γs(t) such that ∀s ∈ R, γs is affinely parametrized by t. Let
us suppose that the map f : (t, s) 
→ γs(t) is sufficiently smooth, one to one,
and with smooth inverse. In these conditions we can define a two dimensional
submanifold in space-time Σ spanned by the points in the geodesics γs(t) with
coordinates given by (t, s). The vector field defined on Σ by T a =

(
∂
∂t

)a
is tangent to each geodesic of the family and satisfies T a∂aT b = 0. A vector
Xa =

(
∂
∂s

)a measuring the deviation between nearby geodesics, can be defined
by using the freedom to change affine parameters in each geodesic according
to t 
→ b(s) + c(s)t to get XaT a = 0 everywhere on Σ. We can define the rate
of change of the displacement to a nearby geodesic as va = T a∇bXb and the
relative acceleration between nearby geodesics as aa = T a∇bvb. The geodesic
deviation equation simply states that

aa = −R a
cbd X

bT cT d.

where R d
abc denotes the Riemann curvature tensor.

4.3. The Einstein Equations

Let us get now to the main point in this last part of the paper: The Einstein
field equations. Inspired by the Mach principle that suggests that the struc-
ture of space-time is influenced by the distribution of matter in the universe,
Einstein looked for a set of equations such that the space-time geometry is
determined by the distribution of matter and energy. If va is the 4- velocity
and xa is the orthogonal deviation vector the tidal acceleration of two nearby
particles is −R a

cbd x
bvcvd. In Newtonian gravity the tidal acceleration between

particles separated by a vector �x is −(�x · �∇)�∇φ. This suggests the correspond-
ence R a

cbd v
cvd ↔ ∂b∂

aφ. Now the Newtonian Poisson equation and the fact
that the energy density is given by Tabvavb leads us to consider the replace-
ment ∂a∂aφ↔ 4πTabvavb so that putting everything together for any possible
observer we are led to write the following equation relating the geometry of
space-time and its matter content

Rcd = 4πTcd.

This equation was considered by Einstein for some time as the equation of
general relativity but, eventually, it had to be discarded because it suffered
from a very serious drawback originating in the Bianchi identity ∇cRcd =
1
2∇dR. In this case this would imply that the trace of Tab should be constant
throughout space-time, an unacceptable and overly restrictive condition on
physical grounds. There is, however, a simple escape from this state of affairs
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because the combination known as the Einstein curvature tensor Gab = Rab−
1
2gabR satisfies ∇aGab = 0. If we consider the equations

Gab = 8πTab

the previous heuristic arguments would still be true but no inconsistencies
arise and, in particular, there is no need to impose unphysical conditions on
the matter distribution. These are the famous Einstein field equations. Several
comments are in order now. First of all we see that, in some fixed coordin-
ates, these are a system of coupled, nonlinear, second order partial differential
equations that are hyperbolic if the metric has Lorentzian signature. For usual
choices of matter fields Tab itself depends on the metric, so strictly speaking,
geometry shows up also in the “matter side” of the equations. Once they
are solved for a certain type of matter fields the dynamics of the matter is
completely fixed by the local conservation condition ∇aTab = 0, in particular
this is true for perfect fluids. In the case of zero pressure (dust) this condition
implies that every particle moves along a geodesic. In fact, this is generically
true for sufficiently small bodies with “weak enough” self gravity because the
condition ∇aTab = 0 also implies that they move along geodesics. As we can
see it is not necessary now to impose as a separate hypothesis that test bodies
move along geodesics because this is a consequence of the Einstein equations;
a very non trivial consistency condition is indeed satisfied. It is important to
realize, anyway, that for large enough bodies there are deviations from geodesic
motion.

The Einstein field equations can be derived from an action principle by
using the so-called Einstein-Hilbert action with a Lagrangian proportional to
the scalar curvature. If a matter Lagrangian is included, by generalizing the
special-relativistic ones in the obvious way, one automatically obtains a locally
conserved energy-momentum tensor as a functional derivative of the matter
part of the Lagrangian with respect to the metric gab.

S =
∫ √

|g|R+ Smat

It is important to insist on the fact that one can “solve” the Einstein equations
by computing Gab for any metric and defining Tab as the resulting expression.
This would lead generically to very unphysical matter (violating energy con-
ditions or such that no known physical interaction can produce the energy-
momentum distribution thus obtained). So beware of exotic solutions! As a
final statement I would like to emphasize the enormous difficulties that must
be overcome to solve the gravitational field equations in physically realistic
situations. This is true even from a purely numerical point of view. In fact, a
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lot of effort is devoted nowadays to find solutions that are significant from the
astrophysical point of view and to obtain precise predictions about the emis-
sion of gravitational radiation from astrophysical sources that can be used as
templates in the operating gravitational radiation detectors.

Let me wrap up here by merely listing some of the many issues that I did
not have time to consider in the space available for these notes: The Newto-
nian limit, gravitational waves and radiation, cosmological models, homogen-
eous and isotropic models, the solution of the Einstein equations, algebraically
special solutions, perturbation theory, causal structure, well-posedness of the
Einstein equations, singularities and singularity theorems, the initial value
formulation, asymptotics and asymptotic flatness, gravitational energy, black
holes and thermodynamics, the Hamiltonian formulation, numerical solution
of the Einstein equations... Considering them here would have extended these
notes far beyond the allowed space. These issues are, in many cases, hot
research topics, both from the perspective of Physics and Mathematics, de-
serving close attention and a lot of thinking. I hope that the paper has suc-
ceeded in conveying part of the beauty of Relativity and excited the curiosity
of the reader about this fascinating subject where both physics and geometry
melt in such a harmonious combination.

Acknowledgments

I want to thank Eduardo J. S. Villaseñor and José Maŕıa Mart́ın Garćıa for the
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Abstract. We describe how to obtain some probabilistic Bismut formulae for
the derivatives of the heat kernel on a Riemannian manifold and give an application
to the estimate of the energy in Euclidean Quantum Mechanics.

1. Introduction

M shall denote a d-dimensional compact complete Riemannian manifold with-
out boundary although generalizations (concerning compactness and bound-
ary) are possible. With respect to the metric ds2 =

∑
i,j gi,jdm

idmj the
Laplace-Beltrami operator is defined by

Δ = (detg)
1
2
∂

∂mi
(gi,jdetg−

1
2
∂

∂mj
)

where gi,j denotes the inverse of the matrix gi,j . Here again we could consider
a more general operator by adding a first order term (a vector field) but we
are more interested in explaining the ideas rather then consider full generality.
There exists a huge number of works concerning estimates of the heat kernel
associated with Δ, namely the function pt(m0,m) satisfying the p.d.e.

∂p

∂t
=

1
2
Δp with pt(m0,m)→ δm0(m), t→ 0

A major insight on these problems is due to Kolmogorov ([10]), who as-
sociated with the Laplacian and, more generally, with an elliptic second order
linear operator, a stochastic flow of diffeomorphisms, generalizing the well
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known fact that one can associate a deterministic flow with a vector field.
The rôle of partial differential equations was since then made clear in the the-
ory of Markov processes and, ”reciprocally”, stochastic processes turned out
to be a central tool in the study of these equations.

We refer also to two works, that can be seen as landmarks on the subject:
Varadhan’s results ([17]) that essentially states the behaviour of the heat kernel
for small times,

limt→0(−2tlog pt(m0,m)) = d2(m0,m)

and [11], where the authors prove (analytically) very precise estimates.
We are concerned here with estimates on the derivative of the heat ker-

nel. Such estimates allow, in particular, to deduce the smoothness of the
corresponding heat semigroup

(e
t
2
Δf)(m0) =

∫
M
f(m)pt(m0,m)dm

where dm denotes the Riemannian volume measure. Here again many authors
have considered these type of problems, concerning ponctual or Lp estimates
(cf., for example,[1],[7],[15],[16] and also [14], where large deviations arguments
are used).

Bismut [1] showed that t∇m0log pt(m0,m) can be expressed in terms of a
conditional expectation of some stochastic process and used such an expression
to study the small time assymptotics of the logarithmic derivative of the heat
kernel. Other related formulae have been obtained since then (they are far
from being unique).

The logarithmic derivative is quite a natural object to investigate. For
example in (semiclassical) quantum physics, it has to do with the gradient of
the action of the system under consideration.

The heat semigroup can be expressed as an expectation with respect to
some stochastic process, in this case the M valued Brownian motion ρw(t),
starting at m0 at time zero,

(e
t
2
Δf)(m0) = Ef(ρw(t))

Therefore it is natural to think that derivatives of the heat kernel can be
transfered to some derivatives on the path space of the process. And, in order
to accomplish such task, one should use the stochastic calculus of variations
on the path space or Malliavin calculus ([13]).

This paper is organized as follows: in the next paragraph we recall some
notions of Malliavin calculus (in the flat situation, namely on the Wiener
space) and, in particular, its integration by parts formula. This one can also
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be interpreted a rigorous version of Feynman’s integration by parts formula
(c.f. [2], Part 2) in quantum physics. In paragraph 3 we describe a construction
of the Brownian motion on a Riemannian manifold, we consider the Itô map
and present an intertwinning formula that allows to transfer derivatives on the
path space of a manifold to derivatives on the Wiener space. In paragraph
4 we show how to deduce Bismut formula for the heat kernel derivative and,
finally, the last paragraph is devoted to an application: estimating the energy
in Euclidean quantum mechanics.

2. Malliavin calculus

Let X denote the Wiener space, namely the space of continuous paths γ :
[0, 1] → Rd, γ(0) = x0 endowed with the Wiener measure μ. This measure is
the law of the Rd valued Brownian motion and is associated to the Laplacian
in the sense that the corresponding heat semigroup has the representation

(e
t
2
Δf)(x0) = Eμ(f(γ(t)))

Let H be the (Hilbert) subspace of X, named after Cameron and Martin,
of the paths which are absolutely continuous and whose derivative satisfy∫ 1
0 |γ̇(τ)|2dτ <∞. Although dense in X, the (μ) measure of H is zero.

For a cylindrical functional F = f(γ(τ1), ..., γ(τm)) the Malliavin deriv-
ative ([13]) is defined by

DτF (γ) =
m∑
k=1

1τ<τk∂kf(γ(τ1), ..., γ(τm))

The operator D is closed on the completion of the space of cylindrical func-
tionals with respect to the norm ||F ||2 = Eμ(|F |2 +

∫ 1
0 |DτF |2dτ) and can

therefore be extended to this space. For a ”vector field” z : X → H, we define
the directional derivatives

DzF =
∫ 1

0
< DτF, ż(τ) > dτ

where <,> denotes the scalar product in Rd. They coincide with the more
familiar limit (taken in the a.e.-μ sense) of 1

ε (F (γ + εz)− F (γ)) when ε→ 0.
Girsanov-Cameron-Martin theorem states that, when z is adapted to the

increasing filtration Pτ generated by the events before time τ (the Itô filtra-
tion), then a shift γ → γ + z induces a transformation of the Wiener measure
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to a measure which is absolutely continuous with respect to μ and we have an
explicit formula for the Radon-Nikodym density (c.f. [18]):

EμF (γ + z) = Eμ
(
F (γ)exp{

∫ 1

0
< ż, dγ(τ) > −1

2

∫ 1

0
|ż|2dτ}

)
The integral in dγ is the Itô integral with respect to Brownian motion.
In the case of deterministic z, Cameron and Martin actually proved that

belonging toH is a necessary and sufficient condition for the shifted measure to
be absolutely continuous with respect to μ. It is therefore natural to consider
variations with respect to H valued functionals and therefore consider this
space as a tangent space (which explains the terminology ”vector fields” used
before).

The dual of the derivative with respect to the measure μ is called the diver-
gence operator. For adapted vector fields z such that Eμ

∫ 1
0 |ż(τ)|2dτ < ∞ it

follows from Girsanov-Cameron-Martin theorem that the divergence coincides
with the Itô integral and we have the following integration by parts formula:

Eμ(DzF ) = Eμ
(
F

∫ 1

0
< ż(τ), dγ(τ) >

)
More generally the divergence coincides with an extension of this integral, the
so-called Skorohod integral (c.f.[13] and references therein).

We notice that there is, in particular, a class of adapted transformations
preserving the Wiener measure: these are the rotations (Levy’s theorem). So,
if dξi(τ) =

∑
j ai,jdγ(τ) where a ≡ ai,j is an antisymmetric matrix, a(0) = 0,

and if DξF =
∫ 1
0 DτFdξ(τ), we have

Eμ(Dξ(F )) = 0

The tangent space to the Wiener space can therefore be extended to include
processes ξ satisfying a stochastic differential equation of the form

dξi(τ) =
∑
j

ai,jdγ
j(τ) + zidτ

with a as above (the so-called tangent processes, c.f. [3]).

3. Brownian motion on a Riemannian manifold

If M is a d-dimensional Riemannian manifold, let O(M) denote the bundle of
orthonormal frames over M , namely

O(M) = {(m, r) : m ∈M, r : Rd → Tm(M) is an Euclidean isometry}
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and π : O(M) → M, π(r) = m the canonical projection. Let mk(t) denote
the (unique) geodesic starting at m at time zero and having initial velocity
r(ek) with ek,k = 1, ..., d, a vector in the canonical basis of Rd. The parallel
transport of r along mk defined by the equation drk

dt +Γṁk
rk = 0, rk(0) = Id,

where Γ are the Christoffel symbols of the Levi-Civita connection, determines
a vector field on O(M): Ak(m, r) = d

dt |t=0
rk(t). We consider the horizontal

Laplacian on O(M), namely the second order differential operator

ΔO(M) =
d∑
k=1

A2
k

Then
ΔO(M)(foπ) = (Δf)oπ

where Δ is the Laplace-Beltrami operator onM . These two Laplacians induce
two probability measures or two stochastic flows, defined in the path spaces of
O(M) and of M , respectively; and π realizes an isomorphism between these
probability spaces. The measure in

Pm0(M) = {ρ : [0, 1]→M,ρ continuous, ρ(0) = m0}

that we shall denote by ν, is the Wiener measure, or the law of the Brownian
motion on M and satisfies (e

t
2
ΔMf)(m0) = Eν(f(ρ(t))). The measure in

Pm0(O(M)) corresponds to the law of r(τ), the (Itô stochastic) parallel dis-
placement along the curve ρ(τ) with respect to the Levi-Civita connection.
This lifted curve satisfies an stochastic differential equation of the form drγ(τ)
=
∑

k Ak(rγ(τ)dγ
k(τ), rγ(0) = r0, with π(r0) = m0 (c.f., for example, [9]).

In [12] Malliavin defined the Itô map I : X → Pm0(M),

I(γ)(τ) = π(rγ(τ))

and proved that I is a.s. bijective and provides an isomorphism of measures.
A vector field along the path ρ is a section process of the tangent bundle

of M , namely a measurable map Zρ(τ) ∈ Tρ(τ)(M). We denote by z the image
of Z through the parallel transport,

z(τ) = r0o[rγ(τ)]−1(Z(τ))

and assume that z belongs to the Cameron-Martin space H.
The derivative of a cylindrical functional F = f(ρ(τ1), ..., ρ(τm)) along a

vector field is given by

DZF (ρ) =
m∑
k=1

< r0o[rγ(τk)]−1∂kf, Z(τk) >
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This derivative can be extended by closure to a suitable Sobolev space of
functionals.

The theorem that follows expresses how derivatives in the path space can
be transfered to derivatives in the Wiener space. We shall not be precise, here,
in the assumptions, namely in the regularity needed for the functionals and
the vector fields.

The result is a consequence of the formula for the derivative of the Itô
map. Since a (stochastic) parallel transport along the Brownian motion is
differentiated, the variation is given in terms of the integral of the curvature
tensor along this curve.

Theorem 1 (Intertwinning formula [3], [4], [6], [8]). A functional F is differ-
entiable along a vector field Z in Pm0(M) iff FoI is differentiable in X along
the process

dξ(τ) = [ż +
1
2
Ricc(z)]dτ − (

∫ τ

0
Ω(z, odγ))dγ(τ)

where dγ, odγ denote, resp., Itô and Stratonovich stochastic differentiation
(c.f.[9]), Ω and Ricci the curvature and the Ricci tensors in M . Furthermore
we have:

(DZF )oI = Dξ(FoI)

From this theorem we can deduce, in particular, Bismut integration by
parts formula:

Eν(DZF ) = Eμ
(
(FoI)

∫ 1

0
[ż(τ) +

1
2
Rτ (z(τ))]dγ(τ)

)
with Rτ the Ricci tensor read in the frame bundle. This result follows from
the integration by parts formula on the Wiener space and from the fact that Ω
is antisymmetric, the corresponding term in the intertwinning formula having
therefore zero divergence.

4. Heat kernel derivatives

Given the probabilistic representation of the heat kernel, we differentiate this
function by derivating the Brownian motion on M in a convenient direction.
Then we apply the intertwinning theorem to tranfer this derivative to the
Wiener space (c.f. [5]). The following result can be obtained:

Theorem 2 (Bismut formula). Let f be a smooth function on M and v a
vector in the tangent space Tm0(M). For fixed t > 0 and denoting Ptf = e

t
2
Δf ,
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we have:

< ∇Ptf, v >Tm0 (M)=
1
t
Eμ
(
f(ργ(t))

∫ t

0
[v +

1
2
(τ − t)Rτv]dγ(τ)

)
Idea of the proof:
Let U be the solution of the o.d.e.

dU(τ)
dτ

= −1
2
RτU(τ), U(0) = IdTm0 (M)

Consider y(τ) = U(τ)v− 1
t (t−τ ∧ t)v, which is a Cameron-Martin vector field.

From the intertwinning formula we derive

< ∇Ptf, v >Tm0 (M) = E < rγ(t)r−1
0 ∇f, U(t)v >Tm0 (M)

= E < rγ(t)r−1
0 ∇f, y(t) >Tm0 (M)

= E(DY f(γ(t)))

where Y denotes the parallel transport of the vector y. The result follows from
the integration by parts on the path space.

Remark 1. From this result we may, in particular, obtain Lp estimates for the
derivative of the heat semigroup. For example, in the situation where

||Ricc||Lp(dm) = Cp <∞

for every p > 1, we obtain

||∇Ptf ||Lp(dm) ≤ (
2
t

+
t

6
C2

pq
q−p

)
1
2 ||f ||

p
q

Lq(dm)

Remark 2. Bismut formula appears sometimes as a probabilistic expression
for the logarithmic derivative ∇logpt(m0,m) (c.f. [1]). Such expressions can
be obtained from the one in last theorem by taking conditional expectations
on the underlying stochastic processes.

Remark 3. Formulae for derivatives of the heat kernel with respect to the
second variable written in terms of stochastic integrals can also be deduced
by similar methods.

5. An application

In Euclidean Quantum Mechanics (c.f. [2] and [18]) a family of stochastic
processes is associated to the self-adjoint Hamiltonian observable H = −1

2Δ+
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V , where V denotes a bounded below scalar potential. These processes solve
stochastic differential equations of the form (in local coordinates):

dzi(t) = �
1
2σi,k(z(t))dγk(t)−

�

2
gj,kΓij,k(z(t))dt + �∂ilogηt(z(t))dt

where σ =
√
g and with respect to the (usual) past Itô filtration and

d∗zi(t) = �
1
2σi,kd∗γk∗ (t)− �

2
gj,kΓij,kdt− �∂ilogη

∗
t dt

with respect to the future filtration. Here η and η∗ are, respectively, positive
solutions of final and initial value problems for the heat equation with potential
V . Considering time running in the interval [0, T ],

ηt(x) = e
1
�
(t−T )HηT

η∗t (x) = e−
1
�
tHη∗0

The law of z at time t is absolutely continuous with respect to the volume
measure and its density is ηtη∗t .

In this framework the energy is defined (following Feynman) by

E = −1
2
|�∇logηt|2 −

�2

2
div∇logηt + V

or, in the other filtration, by

E∗ = −1
2
|�∇logη∗t |2 −

�2

2
div∇logη∗t + V

We want to estimate the mean value of the energy along the trajectories
of the process z(t), namely the quantity

e(t) = E(E(z(t)) =
∫
M
Eηtη∗t dm

which is also equal to E(E∗(z(t)), and correspond to the path space counter-
parts of < ψ|Hψ >L2(dm) in quantum mechanics, for a state ψ. Since∫

M
(div∇logη∗t )ηtη∗t dm = −

∫
M
< ∇logη∗t ,∇(ηtη∗t ) > dm

we have

e(t) =
�2

2

∫
M
< ∇ηt,∇η∗t > dm+

∫
M
V ηtη

∗
t dm
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We observe that the energy (say, its Lp norm) in this framework can be
entirely estimated in terms of the heat kernel and its derivatives, together with
the initial and final conditions and the assumptions on the potential V .

In the absence of the potential (if V is different from zero we should
introduce a Feynman-Kac representation for the corresponding semigroups)
and in the situation of Remark 2. of the last paragraph, we can obtain, for
example, the following estimation:

|e(t)|4 ≤ �8

24

( 2�

T − t +
T − t
6�

C2

)(2�

t
+
t

2�
C2

)
||ηT ||2L2(dm)||η∗0 ||2L2(dm)
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1. Harmonic maps

The aim of the theory of harmonic maps is to single out the “best” maps
between Riemannian manifolds, as measured by the energy functional:

E(φ,D) =
1
2

∫
D
|dφ|2 vg,

for a map φ : (Mm, g)→ (Nn, h) and a compact subset D of M . The critical
points of E (for all compact subsets D if M is not compact itself) are called
harmonic maps. The associated Euler-Lagrange equation, τ(φ), called the
tension field, is obtained by considering a one-parameter variation of φ, φt :
] − ε,+ε[×Mm → Nn with φ0 = φ and V = ∂φt

∂t

∣∣∣
t=0

, the section tangent to
the variation, and computing:

∂E(φt)
∂t

∣∣∣
t=0

= −
∫
D
< V, τ(φ) > vg,
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with τ(φ) = traceg∇dφ. Clearly a map φ is harmonic if and only if τ(φ) = 0.
Equipping Mm and Nn with local coordinates (xi)i=1,...,m and (yα)i=1,...,n,
yields a local expression for τ(φ):

τα(φ) =
m∑

i,j=1

gij
∂2φα

∂xi∂xj
−MΓkij

∂φα

∂xk
+

n∑
β,γ=1

NΓαβγ
∂φβ

∂xi
∂φγ

∂xj
α = 1, . . . , n

A lot of ready-made examples are at our disposal: harmonic functions (N =
R), harmonic 1-forms with integral periods (N = S1), geodesics (M = R or
S1), holomorphic maps between complex linear spaces, totally geodesic maps,
i.e. such that ∇dφ = 0, the Hopf maps S3 → S2, S7 → S4 and S15 → S8.
Note that, in general, the composition of harmonic maps is not a harmonic
map. The functional E is invariant by conformal change on a two-dimensional
domain, and therefore, harmonic maps from Riemann surfaces are meaningful.
Unfortunately for the existence of harmonic maps, E satisfies the Palais-Smale
condition only when the domain has dimension one, so Eells and Sampson have
had to revert to the flow of the associated heat equation to prove:

Theorem 1. [12] Let M and N be compact Riemannian manifolds, if N has
non-positive sectional curvature, then, in each homotopy class, there exists a
harmonic map.

Remark that the curvature condition on N means that its universal cover
is diffeomorphic to Rn. When M admits a non-empty boundary and N is
compact, Hamilton extended Theorem 1 to homotopy classes of fixed boundary
values.

Some years later Eells and Ferreira discovered that allowing conformal
changes of the metric lifted the curvature restriction.

Theorem 2. [8] Let (M,g) (dimM ≥ 3) and (N,h) be compact and φ :
M → N , then there exists g̃ conformal to g and φ̃ homotopic to φ, with
φ̃ : (M, g̃)→ (N,h) harmonic.

Of course, one attractive feature of harmonic maps is that they do not al-
ways exist even in some simple cases, like the homotopy class of Brower degree
±1 between T2 and S2 [13], in fact a topological obstruction, the nontrivial
class from P2 to S2 [9], or the non-zero sections of vector bundles with Euler
characteristic different from zero [19] (we will elaborate this point later on), or
from a compact to a non-compact complete manifold of non-negative sectional
curvature, like a paraboloid of revolution in R3.
The case conspicuously missing from the Eells-Sampson theorem is of maps
between spheres. In spite of many remarkable works, this question of har-
monic representatives in homotopy classes remains open for most dimensions,
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the cases of positive answer being (cf. [16]):
πn(Sn) = Z, n = 1, 2, . . . , 7, 9, 10, 11, 17, πn+1(Sn) = Z2, n ≥ 3
πn+2(Sn) = Z2, n = 5, 6, 7, 8, 13, n ≥ 5 odd
πn+3(Sn) = Z24, n = 7, 8, π7(S3) = Z2, π15(S9) = Z2

Among the best known properties of harmonic maps are:
• A continuous weakly harmonic map (i.e. a weak solution to τ(φ) = 0) is
smooth ([9]).
• A weakly harmonic map from a surface is smooth ([17]).
• Strong unique continuation: if, at a point, all the derivatives of a harmonic
map vanish then it is constant ([28]).
• For an isometric immersion into a Euclidean space, having constant mean
curvature is equivalent to its Gauss map being harmonic ([27]).
• An isometric immersion is minimal if and only if it is harmonic ([12].
• Conservation law: the divergence of the stress energy, Sφ = 1

2 |dφ|2g−φ∗h, i.e.
the Euler-Lagrange equation of E for variations of the metric, of a harmonic
map is zero ([3]).

As any functional, E admits a second variation given by the Jacobi oper-
ator:

Jφ(V ) = ΔφV + tracegRiemN (dφ, V )dφ

A harmonic map is called stable if
∫
M < Jφ(V ), V > vg is positive for any

section tangent to φ. Clearly if M is compact and RiemN is negative then any
harmonic map from M to N is stable, but a harmonic map to ([29]) or from
([22]) a sphere of dimension at least three, is unstable, for example the Hopf
maps or the identity of spheres (but it is stable for S2).

As to the global question, weakly conformal maps between surfaces are
minimisers and, more generally, so are holomorphic maps between compact
Kähler manifolds, but, on the other hand, the infimum of the energy of any
homotopy class from Sm (m ≥ 3) to a compact manifold is zero, ruling out
the possibility of a minimum, except in the trivial homotopy class.

For more information, we refer to the surveys [9, 10, 11].

2. Harmonic morphisms

Though introduced to generalise holomorphic maps between Riemann surfaces,
harmonic morphisms originate from Potential theory on Brelot spaces, and
suffered, at first, from a very non-geometrical definition:

Definition 1. A map φ : (M,g)→ (N,h) is a harmonic morphism if whenever
f : U ⊂ N → R is harmonic and φ−1(U) �= ∅ then f ◦ φ : φ−1(U) ⊂M → R is
also harmonic.
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The simplest examples of harmonic morphisms are weakly conformal maps
between Riemann surfaces, holomorphic maps between complex Euclidean
spaces and the Hopf maps.

Fortunately, and rather mysteriously, Fuglede [14] and Ishihara [20] inde-
pendently showed that such maps are exactly the harmonic maps enjoying a
property, geometrical in essence, called horizontal weak conformality (HWC),
defined by: dφx ≡ 0 (critical point) or dφx : Hx = ker(dφx)⊥ → Tφ(x)N is
surjective and conformal, of factor λ2(x) (regular point). This immediately
implies that, unless φ is constant, dimM must be greater than dimN . This
dual nature of harmonic morphisms was later on linked to the minimality of
the fibres:

Theorem 3. [3] Let φ : (M,g)→ (N,h) be a HWC map.
If dim(N) = 2 then φ is harmonic if and only if its fibres are minimal.
If dim(N) ≥ 3 then two assertions imply the third:
• φ is harmonic.
• dφ(∇λ2) = 0.
• the fibres are minimal.

Moreover, a simple chain rule shows that harmonic morphisms preserve
the tension field i.e. if φ : M → N is a harmonic morphism and ψ : N → P
then τ(ψ ◦ φ) = λ2τ(ψ).
The relation between the two faces of harmonic morphisms is more direct for
polynomials.

Theorem 4. [1] A HWC polynomial mapping between Euclidean spaces is
automatically harmonic.

This has consequences in non-flat situations as well, since from any har-
monic morphism one can construct a polynomial harmonic morphisms between
Euclidean spaces, in fact its symbol map, and, using the strong Louiville
property, deduce that if dimM < 2 dimN − 2 then a harmonic morphism
φ : M → N must be a submersion. In particular, this implies the non-
existence of (non-constant) harmonic morphisms from Sn+1 to Sn (n ≥ 4) or
S2k to N2k−1 (k ≥ 3). Another property of global implications is the openness
of harmonic morphisms ([14]), since it forces a harmonic morphism φ from a
compact manifold to be a surjection onto another compact manifold, hence φ∗

is injective between the first cohomology classes and the first Betti number of
the domain must be greater than the one of the target, ruling out, for example,
harmonic morphisms from a sphere to a torus. From a three-dimensional space
form to a surface, Baird and Wood obtained a classification (up to a conformal
transformation of the target):
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Theorem 5. [4] Let φ : M3 → N2 be a globally defined harmonic morphism
then:
If M3 = R3 then φ is the orthogonal projection R3 → R2.
If M3 = S3 then φ is the Hopf map S3 → S2.
If M3 = H3 then φ is the orthogonal projection H3 → D2 or the projection to
the plane at infinity H3 → C.

While it is not difficult to see that harmonic morphisms from a compact
manifold to a manifold with negative Ricci curvature must be stable, one can
also show that their stability is linked to their geometry:

Theorem 6. • [24] If a submersive harmonic morphism from a compact man-
ifold into a surface, has its fibres volume-stable then the map is energy-stable.
• [7] A stable harmonic map from a compact manifold to S2 is a harmonic
morphism.

The first result can be illustrated by the Hopf map S3 → S2 which is
unstable, but, being quadratic, quotients to a stable harmonic morphism P3 →
S2.

In 1996, Fuglede extended, in [15], the characterisation of harmonic morph-
isms to semi-Riemannian geometry by adding to the definition of horizontal
weak conformality, the condition: “if ker dφx is degenerate, then (ker dφx)⊥ ⊂
ker dφx”.

3. Einstein manifolds

Work on the classification of harmonic morphisms with one-dimensional fibres
from an Einstein manifold, i.e. a Riemannian manifold (M,g) such that
Ricci = cg, is due to Pantilie and Wood and stems from efforts to generalise a
result of Bryant:

Theorem 7. [6] A harmonic morphism φ : Mn+1 → Nn, where Mn+1 is of
constant sectional curvature, is of Killing or warped product type.

Three types of one-dimensional harmonic morphisms can be singled out:
• Killing type: fibres are (locally) tangent to a Killing vector field (equivalently
grad(λ) ∈ H).
• Warped product type: they are horizontally homothetic and have totally
geodesic fibres and integrable horizontal distribution. Locally, this makes φ
the projection of a warped product.
• Type (T): |(gradλ)V | = F (λ) (F �= 0).
While the first is exclusive of the others, the last two can combine.

In general, integrability of the horizontal distribution is required:
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Theorem 8. [4] Let φ : (Mn+1, g) → (Nn, h) be a horizontally homothetic
harmonic morphism with integrable horizontal distribution then:
•M is Einstein if and only if N is Einstein, in which case Δ lnλ = cM−λ2cN ,
cM and cN being the Einstein constants of (Mn+1, g) and (Nn, h), respectively.
• If M is compact, then cM = cN = 0, λ is constant and φ is the projection
of a Riemannian product.

When restricted to low dimension, the three types are the only possible:

Theorem 9. [25, 26] Let φ : (M4, g) → (N3, h) be a harmonic morphism
between orientable manifolds, with (M4, g) Einstein, then φ is of one of the
three types.
If it is of type (T) then (M4, g) is Ricci-flat and (N3, h) has non-negative
constant sectional curvature KN = k2. The metric g has the normal form:

g = λ−2φ∗h+ λ2θ2,

where λ is the dilation of φ and θ = 1
2kd(λ

−2) + φ∗α with α a 1-form on N
satisfying, with respect to some orientation on N :

dα+ 2k ∗ α = 0.

If M4 is compact then φ is the projection T4 → T3.
When (N3, h) is of constant curvature, each of the three types leads to, non-
equivalent, constructions of Einstein metrics.

4. Weyl geometry

By the sheer conformality of its nature, the condition HWC begs for Weyl
geometry. Moreover, while harmonicity is not conformally invariant, un-
less mapping between surfaces, among the constituents of the tension field
equation, trace∇dφ = 0, the connection is the only one not to be conform-
ally invariant. This can be remedied by replacing the Levi-Civita connection
by the (torsion-free) Weyl connection D of a conformal manifold (M, c), i.e.
∀g ∈ c,∃ real one-form αg, called the Lee form, such that:

Dg = −2αg ⊗ g (the −2 is a non-canonical convention).

D is the Levi-Civita connection of some metric if and only if αg = df , and
(M, c,D) is called a Weyl manifold. A map φ : (M, c,DM → (N,DN ) is har-
monic if tracecDdφ = 0, where D is the connection of φ−1TN ⊗T ∗M induced
by DM and DN . Then the definition of a harmonic morphism easily extends
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to Weyl geometry by decreeing that φ : (M, cM ,DM )→ (N, cN ,DN ) is a har-
monic morphism between Weyl manifolds if for any f : U ⊂ (N, cN ,DN )→ R

harmonic, then f ◦φ : (M, cM ,DM )→ R is also harmonic. Here R is equipped
with its canonical conformal structure. If dimN = 2 then a function on
(N, cN ,DN ) is harmonic if and only if it is harmonic w.r.t. to any local rep-
resentative of cN , since, on a surface, harmonicity is conformally invariant.
The Fuglede-Ishihara characterisation and the Baird-Eells theorem follow suit:
i) φ is a harmonic morphism if and only if it is a horizontally weakly conformal
harmonic map.
ii) Let φ : (M, cM ,DM ) → (N, cN ,DN ) be a horizontally weakly conformal
submersion.
If dimN = 2 then φ is harmonic if and only if the fibres are minimal w.r.t.
DM .
If dimN ≥ 3 then two assertions imply the third:
• φ is harmonic (morphism).
• the fibres are minimal w.r.t. DM .
• HDM = DN .

The picture becomes even more interesting when one observes that the
results hold in the complex-Riemannian category (as introduced by LeBrun
in [21]) and that twistor structures can be mixed in. By a twistor structure
on M , we mean an integrable foliation F on a complex manifold P such that
π : P →M is a proper complex analytic submersion and F ∩ (ker dπ) = {0},
while twistorial maps preserve twistorial structures, or, equivalently, pull back
twistorial functions (locally of the type “π composed with a complex analytic
function”) onto twistorial functions. These definitions are driven by three
cases:
i) [21] Let M2 be a 2-dimensional complex Riemannian manifold and π : P →
M2 the bundle of null directions, then the pull-back of local null geodesics is
a twistor structure.
ii) [18] Let (M3, c,D) be a Weyl manifold and π : P →M3 the bundle of null
planes, then a twistor structure is given by Fp ⊂ TpP being the horizontal lift
of p at p ∈ P .
iii) [2] Let (M4, c) be a conformally flat manifold and π : P →M4 the bundle
of null planes in M4, then again, taking Fp ⊂ TpP as the horizontal lift of p
at p ∈ P , gives a twistor structure.

These definitions combine with the preceding results to give:

Theorem 10. [23] Let (M4, cM ,D
M ) be an Einstein-Weyl manifold, (N2, cN )

a conformal manifold and φ : (M4, cM ,D
M ) → (N2, cN ) a submersive har-

monic morphism with nowhere degenerate fibres.
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If (M4, cM ) is orientable then φ is twistorial.
If (M4, cM ) is non-orientable then φ has totally umbilical fibres.

Theorem 11. [23] Let (M4, cM ,D
M ) and (N3, cN ,D

N ) be Einstein-Weyl
manifolds and φ : (M4, cM ,D

M ) → (N3, cN ,D
N ) a submersive harmonic

morphism with nowhere degenerate fibres.
If (M4, cM ) is orientable then it is anti-self-dual and φ is twistorial.
If (M4, cM ) is non-orientable then it is conformally flat, its horizontal dis-
tribution is integrable and the fibres of φ are locally generated by conformal
vector fields whose orbits are geodesics with respect to DM .

5. Vector fields

A setting potentially rich in examples is to take the target to be the tangent
bundle of the domain, and, more generally, everything in this section can be
adapted to Riemannian vector bundles. In this situation three variational
problems can be posed for the energy functional E, the central question of the
choice of the metric on the target will be addressed further down. One can
search for critical points of E for:
1) variations of any type; i.e. the harmonic map problem.
2) variations restricted to vector fields, to obtain harmonic vector fields.
3) variations through unit (or constant) vector fields, called unit harmonic
vector fields.
To describe the metrics on TM , we need to recall the canonical decomposition
of the tangent space of the tangent bundle of a Riemannian manifold (M,g):
Let π : TM → M be the natural projection and V , the vertical space, be
the kernel of dπ : TTM → TM . Its complement in TTM , the horizontal
space, H ⊂ TTM , is obtained by considering all the curves on M and the
parallel vector fields (w.r.t. the Levi-Civita connection on (M,g)) along these
curves, these, in turn, form curves on TM whose tangent vectors make up H.
It can also be seen as the kernel of the connection map K : TTM → TM ,
characterised by K(dZ(X)) = ∇XZ.
If TM is equipped with a metric such that π : TM → M is a Riemannian
submersion with totally geodesic fibres then from the tension field of the first
variational problem (i.e. all possible variations), one can deduce the Euler-
Lagrange equations of the other two by, for harmonic vector fields, taking only
the vertical part of the tension field (owing to the fact that a vector tangent to
a variation through sections must be vertical) and, for unit harmonic vector
fields, by asking that the vertical part of the tension field be colinear to the
vector field itself, instead of zero.
As to the Riemannian metric on TM , the two main suggestions, the Sasaki
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and Cheeger-Gromoll metrics, have both the disadvantage that, when the
base is compact, harmonic vector fields (and a fortiori vector fields which are
harmonic maps) must be parallel, a topological obstruction controlled by the
Euler characteristic.

To widen the possibilities, a two-parameter family of metrics has been
introduced in [5]:

hm,r(A,B) = g(dπ(A), dπ(B)) +
1

(1 + |e|2)m {g(KA,KB) + rg(KA, e)g(KB, e)} ,

for e ∈ TM and A,B ∈ TeTM . With respect to this metric, σ ∈ C(TM) is a
harmonic section if it satisfies:

(1 + |σ|2)∇∗∇σ + 2m∇X(σ)σ =
(
m|∇σ|2 −mr|X(σ)|2 − r(1 + |σ|2)Δ(

1
2
|σ|2)
)
σ

If we restrict the metric hm,r to a sphere bundle (i.e. to vectors of constant
norm) then g(KA, e) = 0 and the condition for σ to be a critical point of the
energy among maps of constant norm equal to k is rather simply:

∇∗∇σ =
1
k2
|∇σ|2σ,

so there is no restriction on the values of m and r for the existence of unit (or
k2) (m, r)-harmonic sections.
On the other hand, the rigidity of the Sasaki (m = r = 0) and Cheeger-
Gromoll (m = r = 1) metrics extends to any value of m ∈ [0, 1] and r ≥ 0,
that is any harmonic vector field must be parallel [5], but, as soon as m ≥ 1,
there exist non-parallel harmonic vector fields for any (m, r), namely σ =
ζ/
√
m− 1, where ζ is the Hopf vector field on the sphere S2p+1. Besides

conformal gradient vector fields defined on Sn by σ = ∇λ, where λ : Sn → R,
λ(x) = a.x, are harmonic vector fields for m = n+ 1 and r = 2− n (n ≥ 3).

On generic domains, we compensate non-compactness by the harmonicity
of the norm:

Theorem 12. [5] Let σ : (M,g) → (TM,hm,r) be a harmonic vector field
such that |σ|2 is harmonic and (1−m)|σ|2 ≥ −1. If m > 1 and r ≥ 2(1−m)
then σ must be parallel.
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1. Introduction

In very recent paper [7], the authors introduced the notion of a Lagrangian
submanifold of a symplectic Lie algebroid and they proved that the Lagrangian
(Hamiltonian) dynamics on a Lie algebroid E may be described in terms of
Lagrangian submanifolds of symplectic Lie algebroids. In this description, a
special geometrical construction plays an important role: the so-called Tul-
czyjew’s triple associated with the Lie algebroid E. When E is the standard
Lie algebroid TM one recovers some well-known results which were proved by
Tulczyjew [11, 12].
On the other hand, in [9] (see also [3]) the authors proposed a possible gene-
ralization of the notion of a Lie algebroid to affine bundles in order to build
a geometrical model for a time-dependent version of Lagrange (Hamilton)
equations on Lie algebroids. The resultant mathematical structures are called
Lie affgebroids in the terminology of [3].
In this Note we will introduce the so-called Tulcyjew’s triple associated with a
Lie affgebroid A and a Hamiltonian section. The Note is organized as follows.
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In Section 2, we will recall some definitions and results on Lie algebroids
(affgebroids) which will be useful in the rest of the paper. In Section 3, we
will introduce the notion of a Lie affgebroid morphism and we will show some
relations between Lie algebroid and Lie affgebroid morphisms. In Section 4,
we will see that a canonical involution may be associated with an arbitrary Lie
affgebroid. Finally, in Section 5, we will introduce the so-called Tulczyjew’s
triple for a Lie affgebroid and a Hamiltonian section.
Proofs of the the results contained in this Note may be found in a forthcoming
paper (see [1]). In this paper, we will also see that Tulczyjew’s triple associated
with a Lie affgebroid and a Hamiltonian section plays an important role (as
in the time-independent case) in some interesting descriptions of Lagrangian
(Hamiltonian) dynamics on Lie affgebroids.

2. Lie algebroids and Lie affgebroids

2.1. Lie algebroids

Let τ : E →M be a vector bundle of rank n over the manifoldM of dimension
m. Denote by Γ(τ) the C∞(M)-module of sections of τ : E → M . A Lie
algebroid structure ([[·, ·]], ρ) on E is a Lie bracket [[·, ·]] on the space Γ(τ) and
a bundle map ρ : E → TM , the anchor map, such that if we also denote by
ρ : Γ(τ)→ X(M) the induced homomorphism of C∞(M)-modules then

[[X, fY ]] = f [[X,Y ]] + ρ(X)(f)Y, for X,Y ∈ Γ(τ) and f ∈ C∞(M).

The triple (E, [[·, ·]], ρ) is called a Lie algebroid over M (see [8]).
If (E, [[·, ·]], ρ) is a Lie algebroid, one may define the differential of E, dE :
Γ(∧kτ∗) −→ Γ(∧k+1τ∗) and the Lie derivative with respect to X ∈ Γ(τ),
LEX : Γ(∧kτ∗) −→ Γ(∧kτ∗), as the following operators

(dEμ)(X0, . . . ,Xk) =
k∑
i=0

(−1)iρ(Xi)(μ(X0, . . . , X̂i, . . . ,Xk))

+
∑
i<j

(−1)i+jμ([[Xi,Xj ]],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk),

LEXμ = iX(dEμ) + dE(iXμ),

for μ ∈ Γ(∧kτ∗) and X0, . . . ,Xk ∈ Γ(τ).
If E is the standard Lie algebroid TM then the differential dE = dTM is the
usual exterior differential associated with M which we will denote by d0.
Now, suppose that (E, [[·, ·]], ρ) and (E′, [[·, ·]]′, ρ′) are Lie algebroids over M and
M ′, respectively, and that (F : E → E′, f : M →M ′) is a morphism between
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the vector bundles E and E′, i.e., τ ′ ◦ F = f ◦ τ. Then (F, f) is said to be a
Lie algebroid morphism if dE((F, f)∗φ′) = (F, f)∗(dE′

φ′), for φ′ ∈ Γ(∧k(τ ′)∗).
Note that (F, f)∗φ′ is the section of the vector bundle ∧kτ∗ →M defined by

((F, f)∗φ′)x(a1, . . . , ak) = φ′f(x)(F (a1), . . . , F (ak)), for x ∈M and ai ∈ Ex.

If (F, f) is a Lie algebroid morphism, f is an injective inmersion and F/Ex
:

Ex → E′
f(x) is injective, for all x ∈ M , then (E, [[·, ·]], ρ) is said to be a Lie

subalgebroid of (E′, [[·, ·]]′, ρ′).

The prolongation of a Lie algebroid over a fibration

In this section, we will recall the definition of the Lie algebroid structure on
the prolongation of a Lie algebroid over a fibration (see [6, 7]).
Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension
m and π : M ′ →M be a fibration. We consider the subset of E × TM ′

LπE = {(b, v′) ∈ E × TM ′/ρ(b) = (Tπ)(v′)},

where Tπ : TM ′ → TM is the tangent map to π. Denote by τπ : LπE → M ′

the map given by τπ(b, v′) = πM ′(v′), πM ′ : TM ′ → M ′ being the canonical
projection. If dimM ′ = m′, one may prove that LπE is a vector bundle over
M ′ of rank n+m′ −m with vector bundle projection τπ : LπE →M ′.
A section X̃ of τπ : LπE →M ′ is said to be projectable if there exists a section
X of τ : E → M and a π-projectable vector field U ′ ∈ X(M ′) to the vector
field ρ(X) such that X̃(x′) = (X(π(x′)), U ′(x′)), for all x′ ∈ M ′. For such a
projectable section X̃, we will use the following notation X̃ ≡ (X,U ′). It is
easy to prove that one may choose a local basis of projectable sections of the
space Γ(τπ).
The vector bundle τπ : LπE →M ′ admits a Lie algebroid structure ([[·, ·]]π , ρπ).
Indeed, if (X,U ′) and (Y, V ′) are projectable sections then

[[(X,U ′), (Y, V ′)]]π = ([[X,Y ]], [U ′, V ′]), ρπ(X,U ′) = U ′. (1)

(LπE, [[·, ·]]π , ρπ) is the prolongation of the Lie algebroid E over the map π (for
more details, see [6, 7]).
Now, let τ : E → M be a Lie algebroid over a manifold M and Lτ∗E be
the prolongation of E over the projection τ∗ : E∗ → M . Lτ∗E is a Lie
algebroid over E∗ and we can define a canonical section λE of the vector
bundle (Lτ∗E)∗ → E∗ as follows. If a∗ ∈ E∗ and (b, v) ∈ (Lτ∗E)a∗ then

λE(a∗)(b, v) = a∗(b). (2)
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λE is called the Liouville section of (Lτ∗E)∗.
Now, one may introduce the section ΩE of the vector bundle Λ2(Lτ∗E)∗ → E∗

given by ΩE = −dLτ∗EλE. One may prove that ΩE is a non-degenerate 2-
section and, moreover, it is clear that dLτ∗EΩE = 0. In other words, ΩE is
a symplectic section. ΩE is called the canonical symplectic section associated
with the Lie algebroid E (for more details, see [7]).

Action Lie algebroids

In this section, we will recall the definition of the Lie algebroid structure of
an action Lie algebroid (see [6, 7]).
Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and f : M ′ → M be a
smooth map. Denote by f∗E ⊆M ′ × E the pull-back of E over f .
Now, suppose that Ψ : Γ(τ) → X(M ′) is an action of E on f , that is, Ψ is a
R-linear map which satisfies the following conditions

Ψ(hX) = (h ◦ f)ΨX, Ψ[[X,Y ]] = [ΨX,ΨY ], ΨX(h ◦ f) = ρ(X)(h) ◦ f,

for X,Y ∈ Γ(τ) and h ∈ C∞(M). Then, one may introduce a Lie algebroid
structure (the action Lie algebroid structure) ([[·, ·]]Ψ, ρΨ) on the vector bundle
pr1|f∗E : f∗E ⊆M ′ × E →M ′ which is characterized as follows

[[X ◦ f, Y ◦ f ]]Ψ = [[X,Y ]] ◦ f, ρΨ(X ◦ f) = Ψ(X), for X,Y ∈ Γ(τ).

Next, we will apply the above construction to a particular case. Let (E, [[·, ·]], ρ)
be a Lie algebroid with vector bundle projection τ : E → M and X ∈ Γ(τ).
Then, we can consider the vertical lift of X as the vector field on E given by
Xv(a) = X(τ(a))va, for a ∈ E, where v

a : Eτ(a) → Ta(Eτ(a)) is the canonical
isomorphism between the vector spaces Eτ(a) and Ta(Eτ(a)). In addition, there
exists a unique vector field Xc on E, the complete lift of X, satisfying the two
following conditions: (i) Xc is τ -projectable on ρ(X) and (ii) Xc(α̂) = L̂EXα,
for all α ∈ Γ(τ∗). Here, if β ∈ Γ(τ∗) then β̂ is the linear function on E defined
by β̂(b) = β(τ(b))(b), for all b ∈ E (for more details, see [4, 5, 7]).
On the other hand, it is well-known (see, for instance, [2]) that the tangent
bundle to E, TE, is a vector bundle over TM with vector bundle projection
the tangent map to τ , Tτ : TE → TM . Moreover, the tangent map to X,
TX : TM → TE is a section of the vector bundle Tτ : TE → TM . We may
also consider the section X̂ : TM → TE of Tτ : TE → TM given by

X̂(u) = (Tx0)(u) +X(x)v0(x), (3)

for u ∈ TxM , where 0 : M → E is the zero section of E.
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If {eα} is a local basis of Γ(τ) then {Teα, êα} is a local basis of Γ(Tτ).
The vector bundle Tτ : TE → TM admits a Lie algebroid structure with
anchor map ρT given by ρT = σTM ◦ T (ρ), σTM : T (TM) → T (TM) being
the canonical involution of the double tangent bundle. The Lie bracket [[·, ·]]T
on the space Γ(Tτ) is characterized by the following equalities (see [7, 8])

[[TX, TY ]]T = T [[X,Y ]], [[TX, Ŷ ]]T = ̂[[X,Y ]], [[X̂, Ŷ ]]T = 0, (4)

for X,Y ∈ Γ(τ). Furthermore, there exists a unique action Ψ : Γ(Tτ)→ X(E)
of the Lie algebroid (TE, [[·, ·]]T , ρT ) over the anchor map ρ : E → TM such
that Ψ(TX) = Xc, Ψ(X̂) = Xv , for X ∈ Γ(τ) (see [7]). Thus, on the vector
bundle ρ∗(TE) we can consider the action Lie algebroid structure ([[·, ·]]TΨ, ρTΨ).

2.2. Lie affgebroids

Let τA : A → M be an affine bundle with associated vector bundle τV : V →
M . Denote by τA+ : A+ = Aff(A,R)→M the dual bundle whose fibre over
x ∈ M consists of affine functions on the fibre Ax. Note that this bundle has
a distinguished section 1A ∈ Γ(τA+) corresponding to the constant function 1
on A. We also consider the bidual bundle τ

�A
: Ã→ M whose fibre at x ∈ M

is the vector space Ãx = (A+
x )∗. Then, A may be identified with an affine

subbundle of Ã via the inclusion iA : A→ Ã given by iA(a)(ϕ) = ϕ(a), which
is injective affine map whose associated linear map is denoted by iV : V → Ã.
Thus, V may be identified with a vector subbundle of Ã.
A Lie affgebroid structure on A consists of a Lie algebra structure [[·, ·]]V on
Γ(τV ), a R-linear action D : Γ(τA) × Γ(τV ) → Γ(τV ) of the sections of A on
Γ(τV ) and an affine map ρA : A→ TM , the anchor map, satisfying

DX [[Ȳ , Z̄]]V = [[DX Ȳ , Z̄]]V + [[Ȳ ,DX Z̄]]V , DX+Ȳ Z̄ = DX Z̄ + [[Ȳ , Z̄]]V ,

DX(fȲ ) = fDX Ȳ + ρA(X)(f)Ȳ ,

for X ∈ Γ(τA), Ȳ , Z̄ ∈ Γ(τV ) and f ∈ C∞(M) (see [3, 9]).
If ([[·, ·]]V ,D, ρA) is a Lie affgebroid structure on an affine bundle A then
(V, [[·, ·]]V , ρV ) is a Lie algebroid, where ρV : V → TM is the vector bundle
map associated with the affine morphism ρA : A→ TM .
A Lie affgebroid structure on an affine bundle τA : A → M induces a Lie
algebroid structure ([[·, ·]]

�A
, ρ

�A
) on the bidual bundle Ã such that 1A ∈ Γ(τA+)

is an 1-cocycle in the corresponding Lie algebroid cohomology, that is, d �A1A =
0. Indeed, if X0 ∈ Γ(τA) then for every section X̃ of Ã there exists a real C∞-
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function f on M and a section X̄ ∈ Γ(τV ) such that X̃ = fX0 + X̄ and

ρ
�A
(fX0 + X̄) = fρA(X0) + ρV (X̄)

[[fX0 + X̄, gX0 + Ȳ ]]
�A = (ρV (X̄)(g) − ρV (Ȳ )(f) + fρA(X0)(g)

−gρA(X0)(f))X0 + [[X̄, Ȳ ]]V + fDX0Ȳ − gDX0X̄.

(5)

Conversely, let (U, [[·, ·]]U , ρU ) be a Lie algebroid over M and φ : U → R be
an 1-cocycle of (U, [[·, ·]]U , ρU ) such that φ/Ux

�= 0, for all x ∈ M . Then, A =
φ−1{1} is an affine bundle over A which admits a Lie affgebroid structure in
such a way that (U, [[·, ·]]U , ρU ) may be identified with the bidual Lie algebroid
(Ã, [[·, ·]]

�A, ρ �A) to A and, under this identification, the 1-cocycle 1A : Ã → R

is just φ. The affine bundle τA : A → M is modelled on the vector bundle
τV :V = φ−1{0} →M .

3. Lie affgebroid morphisms

Let τA : A → M (respectively, τA′ : A′ → M ′) be an affine bundle with
associated vector bundle τV : V → M (respectively, τV ′ : V ′ → M ′) and
(F : A → A′, f : M → M ′) be an affine morphism between τA : A → M
and τA′ : A′ →M ′ such that the corresponding morphism between the vector
bundles τV : V → M and τV ′ : V ′ → M ′ is the pair (F l : V → V ′, f : M →
M ′).
Denote by τ

�A : Ã → M (respectively, τ
�A′ : Ã′ → M ′) the bidual bundle to

τA : A → M (respectively, τA′ : A′ → M ′) and by F̃ : Ã → Ã′ the map given
by F̃ (ã)(ϕ′) = ã(ϕ′ ◦ F ), for ã ∈ Ãx and ϕ′ ∈ (A′)+f(x) = Aff(A′

f(x),R), with

x ∈ M . Then, a direct computation proves that the pair (F̃ , f) is a vector
bundle morphism and (F̃ , f)∗1A′ = 1A.
Conversely, suppose that τU : U → M and τU ′ : U ′ → M ′ are vector bundles
and that φ and φ′ are sections of the vector bundles τ∗U : U∗ → M and
τ∗U ′ : (U ′)∗ → M ′, respectively, such that φ|Ux

�= 0, for all x ∈ M , and
(φ′)|U ′

x′
�= 0, for all x′ ∈ M ′. Assume also that the pair (F̃ , f) is a morphism

between the vector bundles τU : U → M and τU ′ : U ′ → M ′ such that
(F̃ , f)∗φ′ = φ and denote by A and V (respectively, A′ and V ′) the subsets
of U (respectively, U ′) defined by A = φ−1{1} and V = φ−1{0} (respectively,
A′ = (φ′)−1{1} and V ′ = (φ′)−1{0}). Then, it is easy to prove that F̃ (A) ⊆ A′

and F̃ (V ) ⊆ V ′. Thus, the pair (F, f) is a morphism between the affine bundles
τA = (τU )/A : A → M and τA′ = (τU ′)/A′ : A′ → M ′, where F : A → A′ is
the restriction of F̃ to A. The corresponding morphism between the vector
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bundles τV = (τU )/V : V → M and τV ′ = (τU ′)/V ′ : V ′ → M ′ is the pair
(F l, f), F l : V → V ′ being the restriction of F̃ to V .
Now, suppose that (τA : A→M , τV : V →M) and (τA′ : A′ →M ′, τV ′ : V ′ →
M ′) are two Lie affgebroids with Lie affgebroid structures ([[·, ·]]V ,D, ρA) and
([[·, ·]]V ′ ,D′, ρA′) respectively, and that ((F, f), (F l, f)) is a morphism between
the affine bundles τA : A→M and τA′ : A′ →M ′. Then, the pair ((F, f), (F l, f))
is said to be a Lie affgebroid morphism if: (i) The pair (F l, f) is a morphism
between the Lie algebroids (V, [[·, ·]]V , ρV ) and (V ′, [[·, ·]]V ′ , ρV ′); (ii) Tf ◦ ρA =
ρA′ ◦ F and (iii) If X (respectively, X ′) is a section of τA : A → M (respec-
tively, τA′ : A′ → M ′) and Ȳ (respectively, Ȳ ′) is a section of τV : V → M
(respectively, τV ′ : V ′ → M ′) such that X ′ ◦ f = F ◦X and Ȳ ′ ◦ f = F l ◦ Ȳ
then F l ◦DX Ȳ = (D′

X′ Ȳ ′) ◦ f.
Using (5), one may deduce the following result.

Proposition 1. (i) Suppose that τA : A → M and τA′ : A′ → M ′ are Lie
affgebroids and that τ

�A
: Ã → M and τ

�A′ : Ã′ → M ′ are the bidual vector
bundles to A and A′, respectively. If ((F, f), (G, f)) is a Lie affgebroid morph-
ism and F̃ : Ã→ Ã′ is the corresponding morphism between the vector bundles
Ã and Ã′ then the pair (F̃ , f) is a morphism between the Lie algebroids Ã and
Ã′.

(ii) Conversely, suppose that τU : U → M and τU ′ : U ′ → M ′ are Lie al-
gebroids and that φ ∈ Γ(τ∗U) and φ′ ∈ Γ(τ∗U ′) are 1-cocycles of τU : U → M
and τU ′ : U ′ → M ′, respectively, such that φ|Ux

�= 0, for all x ∈ M , and
(φ′)|U ′

x′
�= 0, for all x′ ∈ M ′. Then, if the pair (F̃ , f) is a Lie algebroid

morphism between the Lie algebroids τU : U → M and τU ′ : U ′ → M ′ satisfy-
ing (F̃ , f)∗φ′ = φ, we have that the corresponding morphism ((F, f), (F l, f))
between the Lie affgebroids τA = (τU )/A : A = φ−1{1} → M and τA′ =
(τU ′)/A′ : A′ = (φ′)−1{1} →M ′ is a Lie affgebroid morphism.

4. The canonical involution associated with a Lie

affgebroid

Let (τA : A → M, τV : V → M, ([[·, ·]]V ,D, ρA)) be a Lie affgebroid and
τ
�A : Ã → M be the bidual bundle to τA : A → M . Denote by ρV : V → TM

the anchor map of the Lie algebroid τV : V → M , by ([[·, ·]]
�A, ρ �A) the Lie

algebroid structure on τ
�A : Ã → M and by 1A : Ã → R the distinguished

1-cocycle on Ã.
We consider the subset J AA of the product manifold A× TA defined by

J AA = {(a, v) ∈ A× TA/ρA(a) = (TτA)(v)}.
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Next, we will see that J AA admits two Lie affgebroid structures:

The first structure [9]: Let (LτAÃ, [[·, ·]]τA
�A
, ρτA

�A
) be the prolongation of the

Lie algebroid (Ã, [[·, ·]]
�A, ρ �A) over the fibration τA : A → M . LτAÃ is a Lie

algebroid over A with vector bundle projection τ τA
�A

: LτAÃ → A given by
τ τA
�A

(ã, v) = πA(v), πA : TA→ A being the canonical projection.

Now, we consider the section φ0 : LτAÃ → R of the dual bundle to τ τA
�A

:

LτAÃ→ A defined by

φ0(ã, v) = 1A(ã), for (ã, v) ∈ LτAÃ. (6)

Using (1), (6) and the fact that 1A is an 1-cocycle, it follows that φ0 is also
an 1-cocycle and, since (1A)/ �Ax

�= 0, for all x ∈M , then (φ0)/(LτA �A)a
�= 0, for

all a ∈ A.
On the other hand, we have that

(φ0)−1{1} = {(ã, v) ∈ Ã× TA/ρ
�A
(ã) = (TτA)(v), 1A(ã) = 1} = J AA. (7)

In addition, if LτAV is the prolongation of the Lie algebroid (V, [[·, ·]]V , ρV ) over
the fibration τA : A→M then, it is easy to prove that (φ0)−1{0} = LτAV.
We will denote by ([[·, ·]]τAV , ρ

τA
V ) the Lie algebroid structure on τ τAV : LτAV → A.

From (7), we conclude that τ τAA : J AA→ A, defined by τ τAA (a, v) = πA(v), is
the affine bundle projection of the affine bundle J AA and that J AA admits
a Lie affgebroid structure in such a way that the bidual Lie algebroid to τ τAA :
J AA → A is just (LτAÃ, [[·, ·]]τA

�A
, ρτA

�A
). Finally, it follows the Lie affgebroid

τ τAA : J AA→ A is modelled on the Lie algebroid (LτAV, [[·, ·]]τAV , ρ
τA
V ).

Remark 1. Denote by (Id, T iA) : LτAÃ → Lτ �AÃ the inclusion defined by
(Id, T iA)(ã, vb) = (ã, (T iA)(vb)), with b ∈ A. Then, it is easy to prove that
(LτAÃ, [[·, ·]]τA

�A
, ρτA

�A
) is a Lie subalgebroid of (Lτ �AÃ, [[·, ·]]τ �A

�A
, ρ
τ
�A
�A

) via the map
((Id, T iA), iA).

The second structure: As we know, the tangent bundle to Ã, TÃ, is a
Lie algebroid over TM with vector bundle projection Tτ

�A : TÃ→ TM .
Now, we consider the subset d0(1A)0 of TÃ given by

d0(1A)0 = {ṽ ∈ TÃ/d0(1A)(ṽ) = 0} = {ṽ ∈ TÃ/ṽ(1A) = 0}. (8)

d0(1A)0 is the total space of a vector subbundle of Tτ
�A : TÃ → TM . More

precisely, suppose that X̃ ∈ Γ(τ
�A
) and denote by TX̃ : TM → TÃ the tangent

map to X̃ and by ˆ̃X : TM → TÃ the section of Tτ
�A

: TÃ → TM defined
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by (3). Then, using (8), we deduce the following facts: if 1A(X̃) = c, with
c ∈ R, we have that TX̃ : TM → TÃ is a section of the vector bundle
(Tτ

�A
)/d0(1A)0 : d0(1A)0 → TM and if 1A(X̃) = 0 it follows that ˆ̃X : TM → TÃ

is a section of the vector bundle (Tτ
�A
)/d0(1A)0 : d0(1A)0 → TM .

Indeed, if {e0, eα} is a local basis of Γ(τ
�A
) such that 1A(e0) = 1 and 1A(eα) = 0,

for all α, then {Te0, T eα, êα} is local basis of Γ((Tτ
�A
)/d0(1A)0). Using these

facts, (4) and since 1A : Ã→ R is an 1-cocycle, we deduce the following result.

Proposition 2. The vector bundle (Tτ
�A)/d0(1A)0 : d0(1A)0 → TM is a Lie

algebroid and (Tτ
�A)/d0(1A)0 : d0(1A)0 → TM is a Lie subalgebroid of Tτ

�A :
TÃ→ TM , via the canonical inclusion i : d0(1A)0 → TÃ.

Next, we consider the pull-back ρ∗A(d0(1A)0) of the vector bundle (Tτ
�A
)/d0(1A)0 :

d0(1A)0 → TM over the map ρA : A → TM which is a vector bundle over
A with vector bundle projection the map pr1 : ρ∗A(d0(1A)0) → A given by
pr1(a, ṽ) = a. On the other hand, we will denote by (iA, Id) : ρ∗A(d0(1A)0) →
ρ∗
�A
(TÃ) the monomorphism (over the canonical inclusion iA : A→ Ã) between

the vector bundles ρ∗A(d0(1A)0)→ A and ρ∗
�A
(TÃ)→ Ã defined by (iA, Id)(a, ṽ)

= (iA(a), ṽ), for (a, ṽ) ∈ ρ∗A(d0(1A)0).We recall that the vector bundle ρ∗
�A
(TÃ)

→ Ã is an action Lie algebroid (see Section 2.1). Furthermore, we have (see
[1] for a proof of this result)

Proposition 3. (i) The vector bundle ρ∗A(d0(1A)0)→ A is a Lie algebroid over
A and the pair ((iA, Id), iA) is a monomorphism between the Lie algebroids
ρ∗A(d0(1A)0)→ A and ρ∗

�A
(TÃ)→ Ã.

(ii) If ϕ0 : ρ∗A(d0(1A)0)→ R is the linear map given by

ϕ0(a, ṽ) = 1A(πA(ṽ)), (9)

then ϕ0 is an 1-cocycle of the Lie algebroid ρ∗A(d0(1A)0)→A and ϕ0/(ρ∗A(d0(1A)0))a

�= 0, for all a ∈ A.

Denote by (([[·, ·]]
�A
)TΨ0
, (ρ

�A
)TΨ0

) the Lie algebroid structure on ρ∗A(d0(1A)0) →
A. Then,

([[T ρAe0, T
ρAeα]] �A)TΨ0

= T ρA [[e0, eα]]
�A, (ρ

�A)TΨ0
(T ρAe0) = (e0)c/A,

([[T ρAeα, T
ρAeβ]] �A)TΨ0

= T ρA [[eα, eβ ]] �A, (ρ
�A)TΨ0

(T ρAeα) = (eα)c/A,

([[T ρAe0, ê
ρA
α ]]

�A
)TΨ0

= ̂[[e0, eα]]
ρA

�A , (ρ
�A
)TΨ0

(êρA
α ) = (eα)v/A,

([[T ρAeα, ê
ρA

β ]]
�A)TΨ0

= ̂[[eα, eβ ]]
ρA

�A , ([[êρA
α , ê

ρA

β ]]
�A)TΨ0

= 0.

(10)
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Here, if X̃ ∈ Γ(τÃ) then T ρAX̃ (respectively, ˆ̃XρA) is the section of ρ∗A(d0(1A)0)

→ A given by T ρAX̃ = TX̃ ◦ ρA (respectively, ˆ̃X ◦ ρA).
Now, from (9), it follows that ϕ−1

0 {1} = J AA. Thus, we conclude that the
affine bundle pr1 : J AA → A admits a Lie affgebroid structure in such a
way that the bidual Lie algebroid to pr1 : J AA → A is just (ρ∗A(d0(1A)0),
([[·, ·]]

�A)TΨ0
, (ρ

�A)TΨ0
).

On the other hand, using (9), we obtain that ϕ−1
0 {0} = ρ∗A(TV ). Therefore, the

affine bundle pr1 : J AA→ A is modelled on the vector bundle pr1 : ρ∗A(TV )→
A. Furthermore, from (10), we deduce that the corresponding Lie algebroid
structure is induced by an action ΨV of the Lie algebroid (TV, [[·, ·]]TV , ρTV ) over
the anchor map ρA : A → TM . For this action, we have that ΨV (TX̄) =
(iV ◦ X̄)c/A, ΨV ( ˆ̄X) = (iV ◦ X̄)v/A, for X̄ ∈ Γ(τV ).

The canonical involution

Let Lτ �AÃ be the prolongation of the Lie algebroid (Ã, [[·, ·]]
�A
, ρ

�A
) over the

fibration τ
�A : Ã → M and ρ∗

�A
(TÃ) ≡ Lτ �AÃ be the pull-back of the Lie

algebroid Tτ
�A : TÃ → TM over the anchor map ρ

�A : Ã → TM . If (ã, ṽb̃) ∈
(Lτ �AÃ)b̃, with b̃ ∈ Ãx and x ∈ M , then there exists a unique tangent vector
ũã ∈ TãÃ such that:

ũã(f ◦ τ �A) = (d �Af)(x)(b̃), ũã(θ) = ṽb̃(θ) + (d �Aθ)(x)(b̃, ã),

for f ∈ C∞(M) and θ : Ã → R ∈ Γ(τA+) (see [7]). Thus, one may define the
map

σ
�A : Lτ �AÃ→ ρ∗

�A
(TÃ), σ

�A(ã, ṽb̃) = (b̃, ũã), for (ã, ṽb̃) ∈ (Lτ �AÃ)b̃.

σ
�A

is an isomorphism (over the identity Id : Ã → Ã) between the Lie al-
gebroids (Lτ �AÃ, [[·, ·]]τ �A

�A
, ρ
τ
�A
�A

) and (ρ∗
�A
(TÃ), ([[·, ·]]

�A)TΨ, (ρ �A)TΨ) and, moreover,
σ2
�A

= Id. σ
�A is called the canonical involution associated with the Lie al-

gebroid (Ã, [[·, ·]]
�A, ρ �A) (for more details, see [7]).

Now, we have the following result.

Theorem 4. [1] The restriction of σ
�A

to J AA induces an isomorphism σA :
J AA → J AA between the Lie affgebroids τ τAA : J AA → A and pr1 : J AA →
A and, moreover, σ2

A = Id. The corresponding Lie algebroid isomorphism
σlA : LτAV → ρ∗A(TV ) between the Lie algebroids τ τAV : LτAV → A and pr1 :
ρ∗A(TV )→ A is the restriction of σ

�A to LτAV , that is, σlA = (σ
�A)/LτAV .

Definition 1. The map σA : J AA→ J AA is called the canonical involution
associated with the Lie affgebroid A.
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5. Tulczyjew’s triple associated with a Lie affgebroid
and a Hamiltonian section

Let (τA : A → M, τV : V → M, ([[·, ·]]V ,D, ρA)) be a Lie affgebroid. Denote
by ρ∗A(TV ) (respectively, ρ∗A(TV ∗)) the pull-back of the vector bundle TτV :
TV → TM (respectively, Tτ∗V : TV ∗ → TM) over the anchor map ρA : A →
TM and by LτAV the prolongation of the Lie algebroid τV : V →M over the
projection τA : A→M .
Then, the aim of this section is to introduce the so-called Tulczyjew’s triple
associated with A and a Hamiltonian section. For this purpose, we will proceed
in three steps.

First step: In this first step, we will introduce a canonical isomorphism
AA : ρ∗A(TV ∗)→ (LτAV )∗, over the identity of A, between the vector bundles
ρ∗A(TV ∗)→ A and (LτAV )∗ → A.
Let < ·, · >: V ×M V ∗ → R be the natural pairing. If b ∈ A, (b,Xu) ∈ ρ∗A(TV )b
and (b,Xα) ∈ ρ∗A(TV ∗)b then (Xu,Xα) ∈ T(u,α)(V×MV ∗) and we may consider

the map ˜T < ·, · > : ρ∗A(TV )×A ρ∗A(TV ∗)→ R given by

˜T < ·, · >((b,Xu), (b,Xα)) = dt<u,α>((T(u,α) < ·, · >)(Xu,Xα)),

where t is the usual coordinate on R and T < ·, · >: T (V ×M V ∗) → TR is
the tangent map to < ·, · >: V ×M V ∗ → R. Since the pairing < ·, · > is
non-singular, it follows that the map ˜T < ·, · > is also a non-singular pairing
and, thus, it induces an isomorphism (over the identity of A) between the
vector bundles ρ∗A(TV ) → A and ρ∗A(TV ∗)∗ → A which we also denote by

˜T < ·, · > : ρ∗A(TV )→ ρ∗A(TV ∗)∗.
Next, we consider the isomorphism of vector bundles A∗

A : LτAV → ρ∗A(TV ∗)∗

defined by A∗
A = ˜T < ·, · > ◦ σlA, σlA : LτAV → ρ∗A(TV ) being the linear part

of the canonical involution associated with the Lie affgebroid A. Then, the
isomorphism AA : ρ∗A(TV ∗)→ (LτAV )∗ is just the dual map to A∗

A : LτAV →
ρ∗A(TV ∗)∗.

Second step: Denote by τ
�A : Ã → M the bidual Lie algebroid to the Lie

affgebroid τA : A→M and by Lτ∗V Ã the prolongation of Ã over the projection
τ∗V : V ∗ → M . Then, in this step, using a Hamiltonian section, we will
introduce a cosymplectic structure on the Lie algebroid τ τ

∗
V

�A
: Lτ∗V Ã→ V ∗.

Let τA+ : A+ →M be the dual vector bundle to the affine bundle τA : A→M ,
μ : A+ → V ∗ be the canonical projection given by μ(ϕ) = ϕl, for ϕ ∈ A+

x ,
with x ∈ M , where ϕl ∈ V ∗

x is the linear map associated with the affine map
ϕ and h : V ∗ → A+ be a Hamiltonian section, that is, h ∈ Γ(μ).
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Now, we consider the prolongation LτA+ Ã of the Lie algebroid Ã over the
projection τA+ : A+ → M and the map Lh : Lτ∗V Ã → LτA+ Ã defined by
Lh(ã,Xα) = (ã, (Tαh)(Xα)), for (ã,Xα) ∈ (Lτ∗V Ã)α, with α ∈ V ∗, where
Tαh : TαV ∗ → Th(α)A

+ is the tangent map to h at α. It is easy to prove
that the pair (Lh, h) is a Lie algebroid morphism between the Lie algebroids
τ
τ∗V
�A

: Lτ∗V Ã→ V ∗ and τ τA+

�A
: LτA+ Ã→ A+.

Next, denote by λh and Ωh the sections of the vector bundles (Lτ∗V Ã)∗ → V ∗

and Λ2(Lτ∗V Ã)∗ → V ∗ given by

λh = (Lh, h)∗(λ
�A), Ωh = (Lh, h)∗(Ω

�A),

where λ
�A

is the Liouville section of the vector bundle (LτA+ Ã)∗ → A+ and
Ω

�A is the canonical symplectic section associated with the Lie algebroid Ã.

Note that Ωh = −dLτ∗V �Aλh. On the other hand, let 1̃A : Lτ∗V Ã → R be the
section of (Lτ∗V Ã)∗ → V ∗ defined by 1̃A(ã,Xα) = 1A(ã), for (ã,Xα) ∈ Lτ∗V Ã.
Since 1A : Ã → R is an 1-cocycle of the Lie algebroid τ

�A : Ã → M , it follows
that 1̃A is also an 1-cocycle of the Lie algebroid Lτ∗V Ã → V ∗. Furthermore,
(1̃A)

/(Lτ∗
V �A)α

�= 0, for all α ∈ V ∗.

Finally, we will see that the pair (Ωh, 1̃A) is a cosymplectic structure on the
Lie algebroid τ τ

∗
V

�A
: Lτ∗V Ã → V ∗. Note that the rank of the vector bundle

τ
τ∗V
�A

: Lτ∗V Ã → V ∗ is 2n + 1, n being the rank of the affine bundle τA :
A → M . Moreover, if Lτ∗V V is the prolongation of the Lie algebroid τV :
V → M over the projection τ∗V : V ∗ → M and (iV , Id) : Lτ∗V V → Lτ∗V Ã is
the canonical inclusion, then it is clear that ((iV , Id), Id) is a Lie algebroid
morphism. In addition, using (2) and the fact that μ ◦ h = Id, one may prove
that (iV , Id)∗λh = λV , λV being the Liouville section of (Lτ∗V V )∗ → V ∗. This
implies that,

(iV , Id)∗Ωh = ΩV , (iV , Id)∗(1̃A) = 0, (11)

where ΩV is the canonical symplectic section associated with V. Thus,

{1̃A ∧ Ωn
h}(α) = {1̃A ∧Ωh ∧ . . .(n · · · ∧ Ωh}(α) �= 0, for all α ∈ V ∗.

Therefore, since dL
τ∗V �A1̃A = 0 and dL

τ∗V �AΩh = 0, we conclude that the pair
(Ωh, 1̃A) is a cosymplectic structure on the Lie algebroid Lτ∗V Ã→ V ∗.

Third step: A direct computation proves that (1̃A)−1{1} = ρ∗A(TV ∗) and
(1̃A)−1{0} = Lτ∗V V. Consequently, the map π̃V ∗ : ρ∗A(TV ∗)→ V ∗ is the affine
bundle projection of the affine bundle ρ∗A(TV ∗) which admits a Lie affgebroid
structure in such a way that the bidual Lie algebroid is τ τ

∗
V
�A

: Lτ∗V Ã → V ∗.
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In addition, the Lie affgebroid π̃V ∗ : ρ∗A(TV ∗) → V ∗ is modelled on the Lie
algebroid τ τ

∗
V
V : Lτ∗V V → V ∗.

Now, we introduce the map �Ωh
: ρ∗A(TV ∗) → (Lτ∗V V )∗ defined by

{�Ωh
(α)(a,Xα)}(u, Yα) = Ωh(α)((iA(a),Xα), (iV (u), Yα)), (12)

for α ∈ V ∗, (a,Xα) ∈ ρ∗A(TV ∗)α and (u, Yα) ∈ (Lτ∗V V )α.
On the other hand, let �ΩV

: Lτ∗V V → (Lτ∗V V )∗ be the canonical isomorphism
given by

{�ΩV
(α)(u, Yα)}(v, Zα) = ΩV (α)((u, Yα), (v, Zα)), (13)

for (u, Yα), (v, Zα) ∈ (Lτ∗V V )α, with α ∈ V ∗. Then, using (11), (12) and (13),
it follows that �Ωh

is an affine isomorphism over the identity of V ∗ and the
corresponding linear isomorphism between the vector bundles τ τ

∗
V
V : Lτ∗V V →

V ∗ and (τ τ
∗
V
V )∗ : (Lτ∗V V )∗ → V ∗ is just the map �ΩV

.
In conclusion, we have the following commutative diagram

A

�
�

�
�

�
��

�
�

�
�

�
��

V ∗

τ τAV π̃V ∗ (τ τ
∗
V
V )∗

�
�

�
�

�
��

pr1

�
�

�
�

�
��

(LτAV )∗
AA �Ωh� ρ∗A(TV ∗) � (Lτ∗V V )∗

This diagram will be called Tulczyjew’s triple associated the Lie affgebroid A
and the Hamiltonian section h.
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Abstract. Making use of the theory of symmetry transformations in PDEs
we construct new solutions of the Nizhnik-Novikov-Veselov model, an integrable
system in 2+1 dimensions. These solutions are constructed by applying some
elements of the symmetry group to known solutions of the model.

We find that the solutions obtained by means of this technique describe interesting
processes. For example, we present source and sink solutions, solutions describing
the creation or the diffusion (or both) of a breather or a ring soliton, finite time
blow-up processes and finite time source solutions.
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1. Introduction

Among the 2+1 dimensional integrable systems that have been found to ex-
hibit solutions describing processes of interaction of exponentially localized
structures, one can find the Nizhnik-Novikov-Veselov (NNV) system, i.e.

qt = qxxx + qyyy + 6(qu1)x + 6(qu2)y,

u1y = qx, u2x = qy.
(1)

This system was proposed as an extension of the Korteweg de Vries (KdV)
equation in dimension two, with symmetry in the spacial variables. On the
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other hand, (1) [3, 6] is one of the first members of a hierarchy of integrable
systems emerging from a bilinear identity related to a Clifford algebra, which
is generated by two neutral fermion fields. In [8] it is proved that (1) admits
exponentially localized solutions travelling at constant velocity and presen-
ting an internal oscillation, these solutions are referred to as breathers. The
exponentially localized dependent variable is q, while u1 and u2 play the role
of potentials.

Moreover, it is also proved (see [8]) that in solutions describing inter-
action processes of breathers, they manifest dynamical properties similar to
the dromion solutions of the Davey-Stewartson equation [5], for instance they
change their form under interaction. More recently, [7] new solutions of this
system have been determined, by applying the variable separation method in
nonlinear PDEs. Among these solutions one can cite dromions, lumps or ring
solitons.

It is also worth noting that the evolution associated to (1) conserves the
mass, defined by

M =
∫

R2

q(x, y, t)dxdy,

for localized solutions. It is a consequence of the fact that the right hand side
of the first equation in (1) is a divergence.

On the other hand, as most of the 2+1 dimensional integrable systems
that have been studied from the point of view of the the theory of symmetry
transformations in PDEs (see for example [4, 14] for the KP equation or [2] for
the Davey-Stewartson equation), the system (1) admits an infinite dimensional
group of symmetries [11]. Making use of these groups, new solutions of the
previous systems have been constructed [9, 10, 11]. It worths to be noticed
that in many cases, these solutions describe interesting processes of singularity
formation.

In this work, we focus out attention in the construction of new solutions
of (1) by applying some of the simplest symmetry group elements to known
solutions of (1). In this way, we obtain

• solutions that describe processes of singularity formation at finite time:
– Solutions describing blow-up processes and instantaneous source

solutions. In both cases the finite time singularity appears in the
solution.

– Solutions describing finite time creation or annihilation processes.
In these cases the singularity appears in the time derivative of the
solution.

• Solutions describing creation or diffusion processes, sink and source solu-
tions.
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2. Symmetry group

In order to find the Lie algebra associated to the Lie group of symmetry
transformations of (1), we look for vectorial fields of the form:

V = ξ1(x, y, t, q, u1, u2)
∂

∂x
+ ξ2(x, y, t, q, u1, u2)

∂

∂y
+ ξ3(x, y, t, q, u1, u2)

∂

∂t
+

φ1(x, y, t, q, u1, u2)
∂

∂q
+ φ2(x, y, t, q, u1, u2)

∂

∂u1
+ φ3(x, y, t, q, u1, u2)

∂

∂u2
,

which leave invariant the third prolongation of (1). Using the algorithmic
techniques (see for example [1, 12, 13]) we find that the general element of the
Lie algebra has the form

V1(f) + V2(g) + V3(h)

where

V1(f) =
1
3
f ′(t)x

∂

∂x
+

1
3
f ′(t)y

∂

∂y
+ f(t)

∂

∂t
− 2

3
f ′(t)q

∂

∂q

−
(

2
3
f ′(t)u1 +

1
18
f ′′(t)x

)
∂

∂u1

−
(

2
3
f ′(t)u2 +

1
18
f ′′(t)y

)
∂

∂u2

V2(g) = g(t)
∂

∂x
− 1

6
g′(t)

∂

∂u1
,

V3(h) = h(t)
∂

∂y
− 1

6
h′(t)

∂

∂u2
,

(2)

with f , g and h being arbitrary functions on the time variable t.

From the expression of the arbitrary element of the Lie algebra we can
obtain the equations of the symmetry transformation group, by solving the
system
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dX

ds
=

1
3
Xf ′(T ) + g(T ), X(0) = x,

dY

ds
=

1
3
Y f ′(T ) + h(T ), Y (0) = y,

dT

ds
= f(T ), T (0) = t,

dQ

ds
= −2

3
Qf ′(T ), Q(0) = q,

dU1

ds
= −2

3
U1f

′(T )− 1
18
Xf ′′(T )− 1

6
g′(T ), U1(0) = u1,

dU2

ds
= −2

3
U2f

′(T )− 1
18
Y f ′′(T )− 1

6
h′(T ), U2(0) = u2,

with s being the parameter of the group. From the solution of this system we
obtain that if q(x, y, t), u1(x, y, t), u2(x, y, t) is a solution of (1) (we will refer to
this solution as the initial solution), a new family of solutions of (1) is given by

If f �≡ 0:

Q(X,Y, T ; s) =
(
f(t)
f(T )

) 2
3

q(x, y, t),

U1(X,Y, T ; s) =
(
f(t)
f(T )

) 2
3

u1(x, y, t)−
X

18
f ′(T )− f ′(t)

f(T )
− ϕ1(T ),

U2(X,Y, T ; s) =
(
f(t)
f(T )

) 2
3

u2(x, y, t)−
Y

18
f ′(T )− f ′(t)

f(T )
− ϕ2(T )

(3)

where

x =
(
f(t)
f(T )

) 1
3

(X−ψ1(T )), y =
(
f(t)
f(T )

) 1
3

(Y−ψ2(T )), t = Φ−1(Φ(T )−s),

(4)
with

Φ(T ) =
∫ T 1

f(ξ)
dξ, (5)
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and with ϕ1, ϕ2, ψ1 and ψ2 depending on f , g, h in such a way that all these
functions vanish in the case that g ≡ h ≡ 0.

If f ≡ 0:

Q(X,Y, T ; s) = q(X − sg(T ), Y − sh(T ), T ),

U1(X,Y, T ; s) = u1(X − sg(T ), Y − sh(T ), T )− s
6
g′(T ),

U2(X,Y, T ; s) = u2(X − sg(T ), Y − sh(T ), T )− s
6
h′(T ).

(6)

From (3), (4) and (6), it is clear that the arbitrary functions g and h, just
move globally the solution, at an arbitrary velocity and on an arbitrary curve
in the plane. In view of this, we take in what follows g ≡ h ≡ 0 and consider
the solution (3)-(4) with ϕ1 ≡ ϕ2 ≡ ψ1 ≡ ψ2 ≡ 0.

3. New solutions

According to the last paragraph, we are going to analyze the behavior of the
solution (3)-(4) with g ≡ h ≡ 0. We focus our attention in the dependent
variable Q (the dependent variable associated to the exponentially localized
structures). From (3)-(4) realize that:

• If there exists T1 such that:

lim
T→T1

f(t)
f(T )

= 0, (7)

then we find that

max
(X,Y )∈R2

|Q(X,Y, T ; s)| → 0, as T → T1.

Thus, we can find the following types of solutions

– If T1 ∈ R and (7) is satisfied as a left-limit, the solution describes
the annihilation of a structure or set of structures.

– If T1 ∈ R and (7) is satisfied as a right-limit, the solution describes
the instantaneous creation of a structure or set of structures.

– If T1 = −∞ the solution describes a creation process.

– If T1 =∞ the solution describes a diffusion process.
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• If there exists T2 such that:

lim
T→T2

f(t)
f(T )

= 1, (8)

then we find that

Q(X,Y, T ; s) ∼ q(X,Y, T ), as T → T2.

Thus, the new solution behaves as our starting solution as T → T2.

• If there exists T3 such that:

lim
T→T3

f(t)
f(T )

=∞, (9)

then we find that

Q(X,Y, T ; s)→ c δ(X,Y ), as T → T3,

where c is a certain constant related to the mass of our initial solution and
δ stands by the Dirac delta distribution. Its meaning can be understood
as the whole mass of the solution is, in the limit, concentrated in the
origin. Thus, we can interpret the new solution depending on T3 as:

– If T3 ∈ R and (9) is satisfied as a left-limit, the solution describes
a finite time blow-up process.

– If T3 ∈ R and (7) is satisfied as a right-limit, the solution is an
instantaneous source solution.

– If T3 = −∞ the solution is a source solution.
– If T3 =∞ the solution is a sink solution.

Taking into account all these facts we are going to describe next some
examples of solutions exhibiting the previous behaviors

3.1. Example 1: f(t) = eαt, α �= 0

We have for this choice of the arbitrary function f that

f(t)
f(T )

=
1

1 + αseαT
.

Thus, by introducing

T0 = − 1
α

ln(−αs), for the cases in which αs < 0,

we find
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• If α > 0, s < 0, T ∈ (−∞, T0), our solutions satisfies:

Q(X,Y, T ) ∼ q(X,Y, T ) as T → −∞,

Q(X,Y, T )→ c δ(X,Y ) as T → T−
0 ,

Consequently, the new solution describes a finite time blow-up process.

• If α > 0, s < 0, T ∈ (T0,∞), we have that:

Q(X,Y, T )→ c δ(X,Y ) as T → T+
0 ,

Q(X,Y, T )→ 0 as T →∞,

Then, the solution is an instantaneous source solution in which the struc-
tures created from the source suffer a diffusion process.

• If α < 0, s > 0, T ∈ (−∞, T0), we have that:

Q(X,Y, T )→ 0 as T → −∞,

Q(X,Y, T )→ c δ(X,Y ) as T → T−
0 ,

then, the solution describes a creation process, and after the creation of
the structures a finite-time blow-up takes place.

• If α < 0, s > 0, T ∈ (T0,∞), our solutions satisfies:

Q(X,Y, T )→ c δ(X,Y ) as T → T+
0 ,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞,

consequently, it is an instantaneous source solution.

• If α > 0, s > 0, the solution is defined for T ∈ R and satisfies:

Q(X,Y, T ) ∼ q(X,Y, T ) as T → −∞,

max
(X,Y )∈R2

|Q(X,Y, T )| → 0 as T →∞,

thus, we have a regular solution describing a diffusion process.
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• Finally, if α < 0, s < 0, the solution is defined for T ∈ R and satisfies:

max
(X,Y )∈R2

|Q(X,Y, T )| → 0 as T → −∞,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞,

and the solution describes a creation process.

3.2. Example 2: f(t) = ta, a �= 0, 1, t ∈ (0,∞)

In this case we have that

f(t)
f(T )

=
[
1− s(1− a)T a−1

] a
1−a ,

now, by introducing

T0 =
(

1
s(1− a)

) 1
a−1

, for the cases in which s(1− a) > 0,

and discussing as in the previous example we have that:

• If a < 0, s > 0, the solution is only defined when T ∈ (T0,∞), and
satisfies

Q(X,Y, T )→ c δ(x, y) as T → T+
0 ,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞,

thus, our solution is an instantaneous source solution.

• If a < 0, s < 0, we have the solution defined for T ∈ (0,∞) and the
asymptotic behavior is given by:

max
(X,Y )∈R2

|Q(X,Y, T )| → 0 as T → 0+,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞.

As we have previously discussed, that means that the structures in the
solution are instantaneously created at T = 0.
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• If a ∈ (0, 1), s > 0, the solution has sense for T ∈ (T0,∞) and satisfies

max
(X,Y )∈R2

|Q(X,Y, T )| → 0 as T → T+
0 ,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞.

In this case, the solution describes an instantaneous creation process (the
creation takes place at T = T0). We illustrate this solution in figure 1
(in the next section) taking as the initial solution the breather solution.
We have choose a = 1

2 and s = 1, thus T0 = 1
4 . We can see the creation

process for T � T0, thus for T = 0.26 the structure is very small and
it can not be appreciated that it is an exponentially localized structure.
We can see its creation by plotting the graphic for T = 0.4 and T = 0.6.
In the last three figures (T = 1, 2, 3) we observe the usual evolution
of the breather solution (inner oscillation and movement at a constant
velocity).

• If a ∈ (0, 1), s < 0, the solution is defined for T ∈ (0,∞) and verifies

Q(X,Y, T )→ c δ(x, y) as T → 0+,

Q(X,Y, T ) ∼ q(X,Y, T ) as T →∞,

thus, our solution is an instantaneous source solution.

• If a > 1, s > 0, we also have a regular solution for T ∈ (0,∞) and it is
clear that

Q(X,Y, T ) ∼ q(X,Y, T ) as T → 0+,

max
(X,Y )∈R2

|Q(X,Y, T )| → 0 as T →∞,

thus, the solution describes a diffusion process.

• If a > 1, s < 0, our solution only has sense for T ∈ (0, T0) and we have
that

Q(X,Y, T ) ∼ q(X,Y, T ) as T → 0+,

Q(X,Y, T )→ c δ(x, y) as T → T−
0 ,

i.e. the solution blows-up at finite time T0.
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Finally, we recall that we have taken the arbitrary functions g and h as
zero. We have seen at the end of section 2, that the only effect of these
functions in the solution (dependent variable Q) is a global movement of the
solution on the plane. Thus, by taking appropriate functions g and h, all the
processes previously described can take place at arbitrary and not necessarily
constant velocities in R2. For example, a source solution can emerge in any
point in the plane, and not only in the origin as in our examples above.

4. Figures

Figure 1: Deformation of the breather solution with f(t) = t
1
2 , s = 1 and

T = 0.26, 0.4, 0.6, 1, 2, 3, respectively
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1. Introduction

Surfaces of revolution in the Euclidean three dimensional space are the first
examples of invariant surfaces. They are invariant under the action of the
one-parameter subgroup SO(2) of the isometry group of R3. Since the be-
ginning of differential geometry of surfaces much attention has been given to
the surfaces of revolution with constant Gauss curvature or constant mean
curvature. The surfaces of revolution with constant Gauss curvature seem
to be known to Minding (1839), while those with constant mean curvature
have been classified by Delaunay (1841). Aside from rotations, the isometry
group of R3 includes the one-parameter subgroup of translations and that of
helicoidal motions. It is rather interesting to note that the classification and
explicit parametrisations of helicoidal surfaces in R3 (invariant under the ac-
tion of helicoidal groups) with constant mean curvature have been achieved
only recently, in 1982, by M.P. Do Carmo and M. Dajczer in [3]. In the last
decades, due to the development of suitable reduction techniques [1, 4, 5, 7],
appeared many works on the study of surfaces in a three dimensional mani-
fold which are invariant under the action of a one-parameter subgroup of the
isometry group, see, for example, [2, 5, 6, 7, 8, 9, 10, 14]. In this paper we
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consider the three dimensional manifold H2 × R, where by H2 we denote, as
usual, the half-plane model of the hyperbolic space endowed with the stand-
ard metric of constant Gauss curvature −1. The space H2 × R is one of the
eight Thurston’s geometries and its isometry group is of dimension 4 which
is, among the 3-dimensional spaces with non-constant sectional curvature, the
greatest possible. This means that the space H2 ×R is sufficiently symmetric
to motivate the study of surfaces which are invariant under the action of a one-
parameter subgroup of the isometry group. The paper is divided as follows. In
section 2 we summarize the reduction techniques for invariant surfaces with
constant mean curvature (CMC) or constant Gauss curvature; in section 3
we describe the isometry group of H2 × R and the one-parameter groups of
isometries; in section 4 we give the classification of invariant surfaces with
constant mean curvature and in section 5 we analyze the invariant surfaces
with constant Gauss curvature.

2. Reduction Techniques

Let (N3, g) be a three dimensional Riemannian manifold and letX be a Killing
vector field on N . Then X generates a one-parameter subgroup GX of the
group of isometries of (N3, g). For x ∈ N , the isotropy subgroup Gx of GX is
compact and the quotient space GX/Gx is diffeomorphic to the orbit G(x) =
{gx ∈ N : g ∈ G}. An orbit G(x) is called principal if there exists an open
neighbourhood U ⊂ N of x such that for all orbits G(y), y ∈ U , the isotropy
subgroups Gy are conjugate. If N/GX is connected, from the Principal Orbit
Theorem ([13]), the principal orbits are all diffeomorphic and the regular set
Nr, consisting of points belonging to principal orbits, is open and dense in N .
Moreover, the quotient space Nr/GX is a connected differentiable manifold
and the quotient map π : Nr → Nr/GX is a submersion.

Definition 1. Let f : M2 → (N3, g) be an immersion from a surface M2

into N3 and assume that f(M) ⊂ Nr. We say that f is a GX -equivariant
immersion, and f(M) a GX-invariant surface of N , if there exists an action
of GX on M2 such that for any x ∈M2 and g ∈ GX we have f(gx) = gf(x).

A GX -equivariant immersion f :M2 → (N3, g) induces on M2 a Rieman-
nian metric, the pull-back metric, denoted by gf and called the GX -invariant
induced metric. Let f :M2 → (N3, g) be a GX -equivariant immersion from a
surface M2 into a Riemannian manifold (N3, g) and let endow M2 with the
GX -invariant induced metric gf . Assume that f(M2) ⊂ Nr and that N/GX is
connected. Then f induces an immersion f̃ : M/GX → Nr/GX between the
orbit spaces; moreover, the space Nr/GX can be equipped with a Riemannian
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metric, the quotient metric, so that the quotient map π : Nr → Nr/GX is
a Riemannian submersion. Following [8] we shall describe the quotient met-
ric of the regular part of the orbit space N/GX . It is well known (see, for
example [11]) that Nr/GX can be locally parametrized by the invariant func-
tions of the Killing vector field X. If {f1, f2} is a complete set of invariant
functions on a GX -invariant subset of Nr, then the quotient metric is given by
g̃ =
∑2

i,j=1 h
ijdfi⊗dfj where (hij) is the inverse of the matrix (hij) with entries

hij = g(∇fi,∇fj). If we denote by ω(y) = ‖X(y)‖ the volume function of the
principal orbit G(y) = {gy : g ∈ G}, then the mean curvature function of f
can be expressed in terms of the geodesic curvature of f̃ and of the function
ω(y) as it is shown in the following

Theorem 1 (Reduction Theorem [1]). Let H be the mean curvature function
of f : M2 → N3 and kg the geodesic curvature of f̃ : M/GX → Nr/GX . Then

H = kg − ∂n(lnω),

where n is the unit normal vector to M/GX in N3
r /GX .

2.1. Invariant surfaces with constant Gauss curvature

We first give a local description of the GX -invariant surfaces of N3. Let
γ : (a, b) ⊂ R → (N3

r /GX , g̃) be a curve parametrized by arc length and let
γ̃ : (a, b) ⊂ R → N3

r be a lift of γ, such that dπ(γ̃′) = γ′. If we denote by
φr, r ∈ (−ε, ε), the local flow of the Killing vector field X, then the map

ψ : (a, b) × (−ε, ε)→ N3 , ψ(t, r) = φr(γ̃(t)),

defines a parametrized GX -invariant surface. Conversely, if f : M2 → N3
r is

a GX -equivariant immersion, then f̃ defines a curve in (N3
r /GX , g̃) that can

be, locally, parametrized by arc length. The curve γ is generally called the
profile curve. The following theorem describe (locally) the invariant surfaces
with constant Gauss curvature.

Theorem 2 ([10]). Let f : M2 → (N3, g) be a GX -equivariant immersion,
γ : (a, b) ⊂ R→ (N3

r /GX , g̃) a parametrisation by arc length of f̃ and γ̃ a lift
of γ.

(i) If the GX -invariant induced metric gf is of constant Gauss curvature
K, then the function ω(t) = ‖X(γ̃)‖g satisfies the following differential
equation

d2

dt2
ω(t) +Kω(t) = 0. (1)
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(ii) Vice versa, suppose that Equation (1) holds with K a real constant.
Then, in all points where d(ω2)/dt �= 0, the GX -invariant induced metric
gf has constant Gauss curvature.

By integration of (1) we have

Corollary 3. Let f : M2 → (N3, g) be a GX -equivariant immersion which
induces a GX -invariant metric gf on M2 of constant Gauss curvature K.
Then the norm ω(t) of the Killing vector field X along a lift of the profile
curve is:

for K = 0 given by ω(t) = c1t+ c2;
for K = 1/R2 > 0 given by ω(t) = c1 cos(t/R) + c2 sin(t/R);
for K = −1/R2 < 0 given by ω(t) = c1 cosh(t/R) + c2 sinh(t/R),

with c1, c2 ∈ R.

As we shall show in Section 5 the profile curve of a GX -invariant surface
can be parametrized as a function of ω. Thus, using Corollary 3, we can give
the explicit parametrisation of the profile curve.

Remark 1. If (N3, g) = (R3, can) is the Euclidean three dimensional space,
then the Killing vector fields generate either translations or rotations. In the
case of translations the quotient space R3/GX is R2 with the flat metric and
ω is constant. Thus, from Equation 1, we see that any curve in the quotient
space generates a flat right cylinder. In the case of rotations we can assume,
without loss of generality, that the rotation is about a coordinate axis, say x3.
Then the Killing vector field is X = −x2

∂
∂x1

+ x1
∂
∂x2

and the regular part of
the quotient space is R3

r/GX = {(x1, x2, x3) ∈ R3 : x2 = 0, x1 > 0} with
the flat metric. If γ(t) = (u(t), 0, v(t)) ∈ R3

r/GX is a arc length parametrized
profile curve of a GX-invariant surface, then the norm of X restricted to the
profile curve is ω = u(t) and, using Corollary 3, we find the classical explicit
parametrisation of surfaces of revolution with constant Gauss curvature.

3. One-parameter subgroups of isometries of H2×R

Let H2 = {(x, y) ∈ R2 : y > 0} be the half plane model of the hyperbolic
plane endowed with the metric, of constant Gauss curvature −1, given by

gH =
dx2 + dy2

y2
.

The hyperbolic plane H2, with the group structure derived by the composition
of proper affine transformations, is a Lie group and the metric gH is left-
invariant. Then the product space H2 × R is a Lie group with the product
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structure

L(x,y,z)(x
′, y′, z′) = (x, y, z) ∗ (x′, y′, z′) = (x′y + x, yy′, z + z′)

and the left invariant metric given by the product metric

g =
dx2 + dy2

y2
+ dz2.

From a direct integration of the Killing equation LXg = 0 we have

Proposition 4. The Lie algebra of the infinitesimal isometries of the product
(H2 ×R, g) admits the following bases of Killing vector fields

X1 =
(x2 − y2)

2
∂

∂x
+ xy

∂

∂y
; X2 =

∂

∂x
; X3 = x

∂

∂x
+ y

∂

∂y
; X4 =

∂

∂z
.

Let denote byGi the one-parameter subgroup of isometries generated byXi, by
Gij the one-parameter subgroup of isometries generated by linear combinations
of Xi and Xj and so on. Explicitly we have that

G1 = {L(t,0,0,0)| t ∈ R} with

L(t,0,0,0)(x, y, z) =
(−2[t(x2 + y2)− 2x]

(tx− 2)2 + t2y2
,

4y
(tx− 2)2 + t2y2

, z
)
;

G2 = {L(0,t,0,0)| t ∈ R} with L(0,t,0,0)(x, y, z) = (x+ t, y, z);

G3 = {L(0,0,t,0)| t ∈ R} with L(0,0,t,0)(x, y, z) = (etx, ety, z);

G4 = {L(0,0,0,t)| t ∈ R} with L(0,0,0,t)(x, y, z) = (x, y, z + t).

Remark 2. The integral curves of X2, X3 and X4 are easy to picture out.
In fact, for t fixed the isometries L(0,t,0,0) ≡ L(t,1,0), L(0,0,t,0) ≡ L(0,et,0) and
L(0,0,0,t) ≡ L(0,1,t) are left translations. The integral curve of X1, through the
point p0 = (x0, y0, z0) ∈ H2 × R, is L(t,0,0,0)(x0, y0, z0) = (x(t), y(t), z0), where

x(t)2 + y(t)2 −
(x2

0 + y2
0

y0

)
y(t) = 0.

Therefore, it is a horocycle, in the plane z = z0, with radius (x2
0 + y2

0)/2y0 and
centered at (0, (x2

0 + y2
0)/2y0, z0). In Figure 1 there is a plot of the integral

curves of X1 through three different points.
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Figure 1: Integrale curves of X1 (left) and of X∗
12 (right).

Two groups GX and GY , generated by two Killing vector fields X and Y ,
are conjugate if there exists an isometry ϕ of H2×R such that GY = ϕ−1GXϕ.
If GX and GY are conjugate, then the respectively invariant surfaces are con-
gruent, i.e. isometric with respect to the isometry ϕ of the ambient space.
Therefore, we can reduce the study of the invariant surfaces by analyzing all
the conjugate one-parameter groups of isometries. In [12] there is the complete
list of the conjugate groups of isometries in H2 × R which gives the following

Lemma 5 ([12]). Any surface in H2 ×R which is invariant under the action
of a one-parameter subgroup of isometries GX , generated by a Killing vector
field X =

∑
i aiXi, is isometric to a surface invariant under the action of one

of the following groups

G24, G34, G∗
12, G∗

124,

where G∗
12 is the one-parameter group generated by X∗

12 = X1 + (X2)/2 and
G∗

124 is the one-parameter group generated by X∗
12 and X4.

Remark 3. The integral curve of X∗
12 = X1 + X2/2 through the point p0 =

(x0, y0, z0) ∈ H2 × R is L(t,t/2,0,0)(x0, y0, z0) = (x(t), y(t), z0), where

x(t)2 + y(t)2 −
(1 + x2

0 + y2
0

y0

)
y(t) + 1 = 0.

An easy computation shows that the hyperbolic distance from a point of the
integral curve to the point (0, 1, z0) is constant. Therefore, the integral curves
of X∗

12 are geodesic circles centred at (0, 1, z0) (see Figure 1).

4. Invariant surfaces with constant mean curvature

In this section we shall consider only the actions of G4 and G∗
124 which lead to

invariant surfaces with a nice geometric description. For a detailed account of
the classifications presented in this section and for the other actions, we refer
the reader to [12].
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4.1. CMC surfaces invariant under the action of the group G4

The group G4, generated by the Killing vector field X4 = ∂
∂z , acts freely on

H2 × R, thus the regular part is the whole space. A complete set of invariant
functions of X4 is

u(x, y, z) = x and v(x, y, z) = y.

Thus the orbit space is H2 = {(u, v) ∈ R2 | v > 0} and the orbital metric
is given by gH = du2+dv2

v2 . From the Reduction Theorem 1 we have that a
curve γ(s) = (u(s), v(s)) in the orbit space H2, parametrized by arc length,
generates a CMC surface if u and v satisfy the following system{

u̇ = v cos σ, v̇ = v sinσ,
H = σ̇ + cos σ = kg,

(2)

where σ = σ(s) is the angle between γ̇ and the positive u direction, while kg
is the geodesic curvature of γ. Now, assuming that the mean curvature H is
constant and non negative, we have that the function J(s) = σ̇/v is constant
along any curve γ(s) which is a solution of system (2). Thus the solutions of
(2) are given by J(s) = k, for some k ∈ R. By a qualitative analysis of the
equation J(s) = k, we can prove the following

Theorem 6. The CMC surfaces in H2×R, which are invariant under the ac-
tion of the subgroup G4, are vertical cylinders over curves of H2 with constant
geodesic curvature. Moreover:

• if H = 0, they are geodesics of H2. In particular, if

1. k = 0, the curve is an Euclidean ray normal to the line v = 0;

2. k �= 0, the curve is an Euclidean semicircle with center on the line
v = 0;

• if H > 0 they are:

1. for H > 1 Euclidean circles;

2. for H = 1 horocycles;

3. for H < 1 hypercycles.
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Figure 2: Profile curves of G4-invariant CMC surfaces: geodesics (left), horocycles
(center) and hypercycles (right).

4.2. Helicoidal CMC surfaces: invariant under the action of
G∗

124

Introducing the cylindrical coordinates (r, θ, z) into (H2 × R, g), with r > 0
and θ ∈ (0, π), the metric g takes the form

g =
dr2

r2 sin2 θ
+

dθ2

sin2 θ
+ dz2,

and the Killing vector field X∗
124 becomes

X∗
124 = X∗

12 + aX4 =
r2 + 1

2
cos θ

∂

∂r
+
r2 − 1

2r
sin θ

∂

∂θ
+ a

∂

∂z
.

Choosing the invariant functions

u(r, θ, z) =
r2 + 1
r sin θ

and v(r, θ, z) = z + a arctan
(2r cos θ
r2 − 1

)
,

the orbit space is B = {(u, v) ∈ R2| u ≥ 2} and the quotient metric reduces to

g̃ =
du2

(u2 − 4)
+

u2 − 4
u2 + 4(a2 − 1)

dv2.

The system of ODE’s that characterizes the profile curve γ(s) of a G∗
124-surface

is: ⎧⎪⎪⎨⎪⎪⎩
u̇ =
√
u2 − 4 cos σ, v̇ =

√
u2 + 4(a2 − 1)

u2 − 4
sinσ,

σ̇ = H − u√
u2 − 4

sinσ.
(3)

Remark 4. The Equation (3) for σ has a singularity at the boundary of B.
This type of singularity has been dealt extensively in the literature (see, for
example, [4, 6]). In particular, solutions that go to the boundary must enter
orthogonally, which means that the generated surface will be regular at those
points.
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If H is constant, the function J(s) =
√
u2 − 4 sinσ − Hu is constant along

any curve γ(s) which is a solution of System (3). Thus the solutions of this
system are given by

√
u2 − 4 sinσ − Hu = k, k ∈ R. As in the previous

section a qualitative analysis of the equation J(s) = k, gives the following
characterization of the profile curves of CMC helicoidal surfaces.

Theorem 7. Let Σ ⊂ H2 × R be a CMC helicoidal surface and let γ be the
profile curve in the orbit space. Then we have the following characterization
of γ according to the value of the mean curvature H and of k.

1. (H > 1) - The profile curve is of Delaunay type. Moreover if

• k < −2H is of nodary-type;

• k = −2H is of circle-type;

• k > −2H is of undulary-type.

2. (H = 1) - The profile curve is

• for k < −2 of folium-type;

• for k = −2 of conic-type;

• for k > −2 of bell-type.

3. (0 < H < 1) - The profile curve is

• for k < −2H of bounded folium-type;

• for k = −2H of helicoidal-type;

• for k > −2H of bounded bell-type.

4. (H = 0) - The profile curve is

• for k = 0 a horizontal straight line;

• for k �= 0 of catenary-type.

Remark 5. (i) The plots of the profile curves in Figure 3 and Figure 4 are
drown using the qualitative analysis of the angle σ with respect to the metric
g̃ of the orbit space.
(ii) The plots of the profile curves of the helicoidal surfaces with 0 < H < 1
are similar to those with H = 1; the only different is that for 0 < H < 1 the
limit of the angle σ, for u that goes to infinity, is between 0 and π/2, instead
of π/2 as for the helicoidal surfaces with H = 1.
(iii) We note that some of the invariant surfaces described in Theorem 7 are
complete, for example the minimal surface of revolution (G∗

12-invariant) gen-
erated by a curve of catenary-type. Moreover, there are interesting examples
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Figure 3: Profile curves of helicoidal CMC surfaces with H > 1: nodary-type (left),
circle-type (center) and undulary-type (right).
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Figure 4: Profile curves of helicoidal CMC surfaces with H = 1: folium-type (left),
conic-type (center) and bell-type (right).

of complete minimal surfaces which are invariant under the action of the
group G34. It is proved in [12] that the function f : H2 → R, given by
f(x, y) = ln(x2 + y2), defines a complete minimal graph of H2 × R which is
G34 invariant; thus the Berstein Theorem in H2×R does not hold. In Figure 5
there is a plot of such a surface.

xyy

zz

Figure 5: A complete minimal graph of H2 × R.
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5. Invariant surfaces with constant Gauss curvature

Let G be a one-parameter group of isometries among those described in
Lemma 5. If we denote, as before, by ω the volume function of the principal
orbits, we can give the following local description of the G-invariant surfaces
of H2 × R.

Theorem 8 ([10]). Let γ = (u(s), v(s)) be a curve in the orbit space (H2 ×
R/G, g̃), parametrized by arc length, which is the profile curve of a G-invariant
surface in (H2 × R). Then:

• if G = G4, the orbit space is H2 and any curve parametrized by arc length
is the profile curve of a flat G4-invariant cylinder;

• if G = G24, the orbit space is B = {(u, v) ∈ R2 : u > 0} and the profile
curve can be parametrized by⎧⎪⎨⎪⎩

u(s) = |a|/
√
ω2 − b2, a, b ∈ R

v(s) =
∫ s
s0

√
a2ω2

ω2−b2
[
1−
(

ωω′
ω2−b2

)2
]
dt;

• if G = G34, then the orbit space is B = {(u, v) ∈ R2 : 0 < u < π} and
the profile curve can be parametrized by⎧⎪⎨⎪⎩

u(s) = arcsin
(
|a|/
√
ω2 − b2

)
, a, b ∈ R

v(s) =
∫ s
s0

√
a2ω2

ω2−b2
[
1− (ωω′)2

(ω2−b2)(ω2−a2−b2)

]
dt;

• if G = G∗
124, then the orbit space is B = {(u, v) ∈ R2 : u ≥ 2} and the

profile curve can be parametrized by⎧⎨⎩u(s) = 2
√
ω2 + 1− a2, a ∈ R

v(s) =
∫ s
s0

√
ω2

ω2−a2
[
1− (ωω′)2

(ω2−a2)(ω2+1−a2)

]
dt.

Now if γ is the profile curve of a G-invariant surface in H2 ×R with con-
stant Gauss curvature, then the explicit parametrisation of γ can be obtained
by replacing in Theorem 8 the corresponding expression of the function ω,
according to the value of the Gauss curvature K, as we have described in Co-
rollary 3. For example, in the case of the G∗

12-invariant surfaces of H2×R, for
some values of ω we have:
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1) if K = 0, choosing ω(s) = s, we have the following parametrisation for
the profile curve

γ(s) = (2
√
s2 + 1,

√
s2 + 1);

2) if K > 0, choosing ω(s) = cos s, the corresponding profile curve is

γ(s) = (2
√

cos2 s+ 1,

√
2 cos2 s

cos s
arctan

( sin s√
cos2 s+ 1

)
);

3) if K < 0, taking the function ω(s) = sinh s, we obtain

γ(s) = (2 cosh s, 0).
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1. Introduction

From the point of view of geometry, the theory of classical general relativity
(see Fernando Barbero’s lectures in this volume) is the study of Riemannian or
semi-Riemannian geometries (depending on the choice of Euclidean or Lorent-
zian signature) which satisfy the Einstein equations. In 3-dimensional space-
time these equations for the components gμν of the metric tensor are derived
from the Einstein–Hilbert action∫ √

|g|(R+ Λ)d3x (1)
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where integration is over the spacetime manifold, and we have included a
cosmological constant Λ. In the first term of (1) the Ricci scalar, a contraction
of the Riemann tensor, appears. This term may be written as follows:

1
2

∫
Rμσρνεμσαε

ρνβδαβd
3x (2)

where the usual summation convention over repeated indices is used and in-
dices on the totally antisymmetric tensor εμνρ are raised with the inverse metric
tensor gμν .

It is convenient to rewrite the action (1) in terms of orthonormal dreibeins
or triads ea. These are a local basis of 1-forms

ea = eaμ(x) dx
μ, a = 1, 2, 3 (3)

such that
gμνdx

μ ⊗ dxν = ea ⊗ ebηab (4)

where ηab = diag(−1, 1, 1)ab. Then the action (1) takes the form∫
(Rab ∧ ec +

Λ
3
ea ∧ eb ∧ ec)εabc (5)

where Rab are the curvature 2-forms

Rab =
1
2
Rabμνdx

μ ∧ dxν (6)

and Rabμν is the Riemann tensor that appears in (2) contracted with the
dreibein components (3).

In the dreibein formulation, there is an extra gauge symmetry of local
Lorentz transformations ea 
→ Ma

be
b where M ∈ SO(2, 1) (local, since M

depends on the point of spacetime). This extra freedom arises since one may
simultaneously rotate the three fields ea, whilst preserving the metric and the
condition (4).

There is a striking similarity between the action in the form (5) and the
Chern-Simons action for a connection A in a principal G-bundle, which has
the structure ∫

tr(F ∧A− 1
3
A ∧A ∧A).

Indeed, it was shown by Witten [1] that the action (5) may be interpreted as
a Chern-Simons action for G = SO(2, 2), when Λ < 0 (and for G = SO(3, 1)
when Λ > 0). The connection in the Chern-Simons theory is given in terms
of the dreibein ea and spin connection (or Ricci rotation coefficient) ωab by:

A =
1
2
ωabMab + eaMa4, (7)



106 Classical and quantum geometry of moduli spaces

where the indices a, b run from 1 to 3, and {MAB}A,B=1,...,4 is a basis of the
Lie algebra of SO(2, 2). Note that in this so-called first-order formalism, the
dreibein ea and spin connection ωab are independent fields.

We conclude this introduction with a short discussion of the relation
between connections and holonomy. Given a connection on a principal G-
bundle, a holonomy is an assignment of an element H(γ) of G to each (based)
loop γ on the manifold, obtained by lifting the loop into the total space of
the bundle and comparing the starting and end points of the lifted loop in
the fibre over the basepoint. Holonomy is, in a suitable sense, equivalent to
the connection it is derived from. When the connection is flat, i.e. has zero
fieldstrength F , the holonomy of γ only depends on γ up to homotopy. Thus
an efficient way of describing flat connections is to specify a group morphism
from the fundamental group of the manifold to the group G.

2. Equations of motion and the classical phase space

Consider the Chern-Simons action∫
Σ×R

tr(A ∧ dA+
2
3
A ∧A ∧A) (8)

on a spacetime of the form Σ × R, where Σ is a closed surface representing
space and R represents time. The connection 1-form A may be written as

A = Aidx
i +A0dx

0

where xi, i = 1, 2 are coordinates on Σ, and x0 = t is the time coordinate.
Imposing the gauge fixing condition

A0 = 0

and the corresponding constraint

Fijdx
i ∧ dxj = 0

we see that the connections are flat. The action (8) now has the structure∫
A2∂0A1 + . . .

and therefore “A is its own conjugate momentum”. The Poisson brackets for
the components of A (see equation (7)) have the following form:{

A1
a(x), Aj b(y)

}
= δabεijδ

2(x− y) ε12 = 1. (9)
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We now choose the space manifold to be the torus T2, and since the group
SO(2, 2) is isomorphic to SL(2,R) × SL(2,R)/Z2, we restrict ourselves to
studying the phase (moduli) space P of flat SL(2,R) connections on the torus
T2, modulo gauge transformations. Note that P is in principle a complicated
space to describe, being an infinite-dimensional space divided by an infinite-
dimensional group, but in the holonomy picture there is a very simple finite-
dimensional description, as we will see shortly. In this picture the moduli
space of flat SO(2, 2) connections can then be constructed from the product
of two copies of P by identifying equivalent elements under the Z2 action.

Since π1(T2) =
〈
γ1, γ2|γ1γ2γ

−1
1 γ−1

2 = 1
〉

where γ1 and γ2 are a pair of
generating cycles, a holonomy

H : π1(T2)→ SL(2,R)

is given by U1 := H(γ1) and U2 := H(γ2), since this determines H on any
other homotopy class of loops. The phase space P is then

P = {(U1, U2)|U1U2 = U2U1} / ∼

where ∼ denotes the remaining gauge freedom, namely

(U1, U2) ∼ (S−1U1S, S
−1U2S)

for any S ∈ SL(2,R).
For a single matrix U ∈ SL(2,R) there are four possibilities for how U

can be conjugated into a standard form:

A) U has 2 real eigenvalues:

S−1US =

(
λ 0
0 λ−1

)

B) U has 1 real eigenvalue with an eigenspace of dimension 2:

S−1US = ±
(

1 0
0 1

)

C) U has 1 real eigenvalue with an eigenspace of dimension 1:

S−1US =

(
±1 1
0 ±1

)



108 Classical and quantum geometry of moduli spaces

D) U has no real eigenvalues:

S−1US =

(
cos θ − sin θ
sin θ cos θ

)

A similar analysis for a pair of commuting SL(2,R) matrices led in [2] to
an explicit parametrization of the classical phase space P , whose elements are
pairs (U1, U2) of commuting SL(2,R) matrices, identified up to simultaneous
conjugation by an SL(2,R) matrix. The parametrization is based on putting
the pairs of matrices into a standard form, analogous to e.g. Jordan canonical
form, but for pairs rather than a single matrix. The structure of P resembles
that of a cell complex with, for instance 2-dimensional cells consisting of pairs
of diagonal matrices, or pairs of rotation matrices. However there are also
1-dimensional cells which consist of e.g. pairs of non-diagonalisable matrices
of the form:

U1 =

(
1 cosα
0 1

)
U2 =

(
1 sinα
0 1

)
, 0 < α <

π

2
. (10)

For further details, depictions of P and a discussion of its topology see [2].

3. Quantization via quantum matrices

The Poisson brackets (9) are for non-gauge-invariant variables so it is con-
venient to change to gauge-invariant variables, and an obvious choice are the
traced holonomies

T (γ) =
1
2

tr H(γ)

which are gauge-invariant due to the conjugation invariance of the trace. The
holonomy is sometimes written as a path-ordered exponential, or Chen integ-
ral,

H(γ) = P exp
∫
γ
A

and from equation (9) the Poisson brackets between the T (γ) are only non-
vanishing if the loops intersect transversally. From trace identities for 2 × 2
matrices it is enough to consider the following three variables:

T1 := T (γ1) T2 := T (γ2) T3 := T (γ1γ2)

(which are not independent since they satisfy the identity T 2
1 + T 2

2 + T 2
3 −

2T1T2T3 = 1). Their Poisson bracket relations are [3]

{Ti, Tj} = εij
kTk + TiTj , i, j, k = 1, 2, 3. (11)
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(here we have rescaled the variables compared to [3] to absorb the coupling
constants).

The first term on the right-hand-side of equation (11) has a geometric
interpretation in terms of rerouted loops: e.g. for i = 1, j = 2 the two cycles
γ1 and γ2 intersect transversally at one point, and from homotopy invariance
of the holonomy T3 is the traced holonomy corresponding to the loop γ1Sγ2

obtained by starting at the basepoint, following γ1 to the intersection point S,
rerouting along the loop γ2 back to the intersection point, and finally continu-
ing again along γ1 back to the basepoint. We will see more of these rerouted
loops shortly.

We observe that by parametrising the variables as follows:

T1 = cosh r1 T2 = cosh r2 T3 = cosh(r1 + r2)

equation (11) is solved by setting:

{r1, r2} = 1.

On quantization, replacing Ti, rj by operators T̂i, r̂j respectively implies the
corresponding commutation relation:

[r̂1, r̂2] = i�. (12)

The operators T̂i satisfy a q-deformed (q = ei�) cubic relation, which can
be interpreted in terms of a quantum Casimir operator for the quantum group
SU(2)q, see [4].

We note that e.g.

T1 =
1
2

tr U1 = cosh r1 =
1
2
(er1 + e−r1)

so that by introducing the quantum matrices

Ûi =

(
er̂i 0
0 e−r̂i

)
i = 1, 2 (13)

we have the analogous relation between T̂i and Ûi, namely

T̂i =
1
2

tr Ûi i = 1, 2.

We also notice that these quantum matrices satisfy the following fundamental
relation:

Û1Û2 = q Û2Û1, (14)
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where we are using matrix multiplication of operator-valued matrices (the
usual algebraic rule, but paying strict attention to the order of the symbols).
For example, the relation

er̂1er̂2 = q er̂2er̂1

follows from the commutation relation (12) between the operators r̂i.
The cubic constraint satisfied by the quantum variables T̂i is rather com-

plicated, so instead we work with the quantum holonomy matrices Ûi them-
selves rather than with the trace functions T̂i. It is important to note that
even though the quantum matrices Ûi are not gauge-invariant, i.e.

Ûi �= S−1ÛiS

for general S, the fundamental equation (14) is gauge-covariant, and is also
covariant under the modular symmetry of the theory, i.e. the group of large
diffeomorphisms of the torus, see [5]. Thus our idea is to substitute invari-
ant variables obeying complicated equations by non-invariant matrix variables
satisfying natural q-commutation relations like the fundamental relation (14).
Certainly for the case of diagonal matrices these two viewpoints are entirely
equivalent.

We have also studied, in [5], what happens when one imposes the fun-
damental equation for a pair of upper-triangular quantum matrices, which
should correspond, in some sense, to the quantization of the 1-dimensional
upper-triangular cell of the classical phase space mentioned in section 2.

If one parametrizes the quantum matrices Ûi as follows:

Ûi =

(
α̂i β̂i

0 α̂−1
i

)
, (15)

where the α̂i, β̂i are operators to be determined, a solution to equation (14)
is given by:

α̂1ψ(b) = exp
d

db
ψ(b)

α̂2ψ(b) = exp i�b ψ(b)
β̂iψ(b) = α̂iψ(−b) (16)

Note the change of sign in the argument of ψ in the last of equations (16). It
can be checked, from (16) that

α̂1α̂2 = q α̂2α̂1

as required, but we also get an internal commutation relation

α̂1β̂1 = β̂1α̂
−1
1
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for the elements of Û1 and similarly for Û2, which curiously does not involve
the quantum parameter �.

Note that it is impossible to find solutions to (14) with α̂i = I, the unit
operator, by naive analogy with equation (10), since β̂1 + β̂2 �= q(β̂1 + β̂2).
Thus in terms of the number of quantum parameters, this upper-triangular
sector would appear to be as substantial as the triangular sector, unlike the
classical case.

Finally we remark that in [6], we studied equations like (15) from an
algebraic point of view, and found that their solutions have several interesting
properties analogous to quantum groups.

4. Reroutings and the quantized Goldman bracket

Here we briefly describe our most recent work, for a full treatment see [7]. In
section 3 we only considered the quantum matrices assigned to γ1 and γ2, so
it is natural to try and understand how to assign quantum matrices to other
loops, and to study the relationships between them. A useful way of doing
this, proposed in [8], is to introduce a constant quantum connection

Â = (r̂1dx+ r̂2dy)

(
1 0
0 −1

)
,

where constant means that the r̂i do not depend on the spatial coordinates
x, y of the torus. Then the assignment of a quantum matrix to any loop is
given by the holonomy of this connection along the loop:

γ 
→ Ûγ = exp
∫
γ
Â. (17)

It can easily be seen that (17) reproduces the quantum matrices Ûi of equation
(13), if γ1 is the loop with y coordinate constant and x running from 0 to 1,
and γ2 is the loop with x constant and y running from 0 to 1.

It is convenient to identify the torus T2 with R2/Z2, where Z2 consists
of points with integer x and y coordinates. We consider all loops on the
torus represented by piecewise-linear (PL) paths between integer points on
the (x, y) plane, and work with this description, keeping in mind that paths
represent loops. In particular the integer paths denoted (m,n) are straight
paths between (0, 0) and (m,n) with m, n integers. Thus for example we
assign to the integer path (2, 1) the quantum matrix

Û(2,1) =

(
e2r̂1+r̂2 0
0 e−2r̂1−r̂2

)
.
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Consider two homotopic loops γ1 and γ2 corresponding to PL paths both
starting at (0, 0) and ending at the same integer point in the plane. It was
shown in [7] that there is the following relationship between the respective
quantum matrices:

Ûγ1 = qS(γ1,γ2)Ûγ2 , (18)

where S(γ1, γ2) denotes the signed area enclosed between the paths γ1 and γ2.
For example, the exponent (the number 1) of q in the fundamental relation
(14) is the signed area between two paths around the perimeter of the unit
square, starting at (0, 0) and ending at (1, 1), the first via (1, 0) and the second
via (0, 1).

The traces of these quantum matrices also exhibit commutation relations
with interesting properties. Let

T̂ (m,n) := tr Û(m,n).

(note we have dropped the factor 1
2 for easier comparison with the Goldman

result below). It was shown in [7] that the following commutation relation
holds:

[T̂ (m,n), T̂ (s, t)] = (q
mt−ns

2 − q−
mt−ns

2 )
(
T̂ (m+ s, n+ t)− T̂ (m− s, n− t)

)
(19)

There are some surprising geometric aspects to equation (19). The num-
ber mt−ns appearing in the exponents is the signed area of the parallelogram
spanned by the vectors (m,n) and (s, t). The same expression equals the
suitably-defined total intersection number (including and counting multipli-
cities) of the two loops represented by the paths (m,n) and (s, t). Equation
(19) can, in fact, be viewed as a quantization of a bracket due to Goldman [9]
for the loops corresponding to such integer paths. This bracket is a Poisson
bracket for the functions T (γ) = trUγ given by:

{T (γ1), T (γ2)} =
∑

S∈γ1�γ2
ε(γ1, γ2, S)(T (γ1Sγ2)− T (γ1Sγ

−1
2 )) (20)

where γ1�γ2 denotes the set of transversal intersection points of γ1 and γ2 and
ε(γ1, γ2, S) is their intersection index for the intersection point S. In equation
(20) γ1Sγ2 and γ1Sγ

−1
2 denote the loops which follow γ1 and are rerouted along

γ2, or its inverse, at the intersection point S as described previously. For the
integer loops considered here, all the rerouted loops γ1Sγ2 are homotopic to
the integer loop (m + s, n + t), with an analogous statement for the loops
γ1Sγ

−1
2 . It follows that the classical Goldman bracket (20) can be written as

{T (m,n), T (s, t)} = (mt− ns)(T (m+ s, n+ t)− T (m− s, n− t)).
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Therefore the first factor on the right hand side of (19) may be thought of as
a quantum total intersection number for the loops (m,n) and (s, t).

We remark that in [7] we also derived a different form of (19) where each
rerouted loop appears separately. The different terms are related by the same
area phases as in (18). In these proofs we used a classical geometric result
[10] namely Pick’s Theorem (1899), which expresses the area A(P ) of a lattice
polygon P with vertices at integer lattice points of the plane in terms of the
number of interior lattice points I(P ) and the number of boundary lattice
points B(P ) as follows:

A(P ) = I(P ) +
B(P )

2
− 1.

Full details are given in [7].
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Abstract. Warped and double warped space-times are defined and classi-
fied according to the existence of preferred vector and tensor fields on the locally
decomposable space-times they are associated to by means of special conformal
transformations. An invariant geometric characterization is also presented, as well
as a characterization based on the Newman-Penrose formalism.

Keywords: Exact solutions of Einstein’s equations; NP formalism

2000 Mathematics Subject Classification: 83C20; 83C60

1. Introduction

In [1] warped product manifolds are obtained by homothetically warping the
product metric on a semi-Riemannian product manifold. Warped space-times
are then viewed as conformal to locally decomposable ones, the conformal
factor depending on the variables defined only on one of the spaces used to
build the decomposable space. They are classified and characterized in an
invariant manner in [2] and [3], where their geometry is expressed in terms
of the warping function and the geometry of the underlying locally decom-
posable space-times. It is also referred (see references listed in [2]) that there
is a variety of exact solutions to Einstein’s equations which can be viewed as
warped space-times, for example Schwarzchild, Bertotti-Robinson, Robertson-
Walker, Reissner-Nordstrom, de Sitter, therefore their study being quite rel-
evant in general relativity. From the point of view of describing solutions to
Einstein’s equations, it is an interesting problem to investigate double warped
space-times. These are also conformal to locally decomposable ones, how-
ever the conformal factor is now separable on the coordinates defined on each
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space used to build the decomposable space-time. It should also be referred
that warped and double warped space-times are are special cases of twisted
products [4]. In [5] an invariant characterization for double warped space-times
is presented in terms of the Newman-Penrose formalism [6] and a classification
scheme is proposed, as well as a detailed study of their conformal algebra.

Here warped and double warped space-times are defined and classified ac-
cording to the existence of preferred vector and tensor fields on the underlying
decomposable space-times. Therefore it is convenient to start with a brief
summary of results on locally decomposable space-times [7].

Given two metric manifolds (M1, h1) and (M2, h2), one can build a new
metric manifold (M,g) by setting

M = M1 ×M2 (1)

and

g = π1
�h1 ⊕ π2

�h2, (2)

or simply g = h1⊗h2, π1 and π2 being the canonical projections onto M1 and
M2, respectively.

Throughout this text we will be interested in space-time manifolds (M,g),
therefore we will consider that dimM = dimM1 + dimM2 = 4 and that g
is a Lorentzian metric. Consequently one of the manifolds (M1, h1), (M2, h2)
is Lorentzian and the other is Riemannian.

Since the considerations to be presented are mainly local, we will assume
that, for each point p inM , there exists a neighborhood U of p where a coordin-
ate system adapted to the product structure exists, namely (u = x0, x1, x2, x3).
Two main cases then arise, as summarized below.

(A) (M,g) is a 1+3 locally decomposable space-time, if it admits a global,
non-null, nowhere zero covariantly constant vector field. For this case the line
element associated with g can be written in the following form

ds2 = εdu2 + hαβ(xγ)dxαdxβ , (3)

where greek indices take the values 1, 2, 3 and ε = ±1. Here h1 = εdu ⊗
du and h2 = hαβ(xγ)dxα ⊗ dxβ. Moreover, when the covariantly constant
vector field ∂/∂u is timelike (respectively spacelike), then ε = −1 (respectively
ε = +1) and the space-time is locally 1 + 3 spacelike (respectively timelike)
decomposable.

It should be noticed that, if the space-time admits another global co-
variantly constant non-null vector field, nowhere zero, then the space-time
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decomposes further and can be referred to as being 1 + 1 + 2 spacelike or
1 + 1 + 2 timelike in an obvious notation.

(B) (M,g) is a 2 + 2 locally decomposable space-time, in which case no
global, covariantly constant, nowhere zero vector field exists in M , but the
space-time admits two global recurrent null vector fields, linearly independ-
ent. This is equivalent to saying that in (M,g) there are two global, linearly
independent covariantly constant tensor fields of rank 2, namely P and Q,
such that gab = Pab + Qab with Pab;c = Qab;c = 0 ( a, b, c, · · · = 0, 1, 2, 3).
The line element associated with g can have, for this case, the following form:

ds2 = h1 αβ(xγ)dxαdxβ + h2 AB(xD)dxAdxB , (4)

where h1 and h2 are two 2-dimensional metrics on M1 and M2 respectively
such that π∗1h1 = P and π∗2h2 = Q.

2. General Concepts

We now consider the two metric manifolds (M1, h1) and (M2, h2) introduced
above and a smooth function θ : M1 → R, which will be called a warping
function. We can now build a new manifold (M,g), namely a warped product
manifold (see [1], [8]) by setting M = M1 ×M2 and

g = h1 ⊗ e2θπ∗h2, (5)

or simply g = h1 ⊗ e2θh2, where π is the canonical projection onto M2 and
will be omitted where there is no risk of confusion.

It should be noticed that (5) can also be written as

g = e2θ(h′1 ⊗ h2) = e2θg′, (6)

where we have defined h′1 ≡ e−2θh1 as a new metric onM1. Therefore a warped
space-time is conformal to a decomposable space-time (M,g′), the conformal
factor depending only on the coordinates on either M1 or M2.

Similarly, if one considers two smooth functions θ1 : M1 → R, θ2 :M2 → R

(warping functions), one can build a new metric manifold (M,g) by setting
M = M1 ×M2 and

g = e2θ2π∗1h1 ⊗ e2θ1π∗2h2, (7)

where π1, π2 are the canonical projections onto M1 and M2 respectively. As
before, if no risk of confusion exists we will simply write g = e2θ2h1 ⊗ e2θ1h2.
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This metric manifold (M,g) will be called a double warped product manifold
(see [5]). It is now clear that, if either θ1 or θ2 are constant, then (M,g)
becomes a warped manifold. If, moreover, both warping functions are constant
then (M,g) is a decomposable metric manifold.

It should be noticed that (7) can be written as follows:

g = e2(θ1+θ2)[e−2θ1h1 ⊗ e−2θ2h2] = e2(θ1+θ2)[h′1 ⊗ h′2] = e2(θ1+θ2)g′. (8)

Due to the definition of the warping functions, it is clear that h′1 and h′2
are metrics on M1 and M2, respectively. Therefore, a double warped space-
time can be thought of as being conformal to a locally decomposable one, say
(M,g′), the conformal factor being separable on the coordinates defined on
those submanifolds used to construct M .

On what follows, we will write h1 and h2 instead of h′1 and h′2, whenever
there is no risk of confusion.

3. Canonical Forms for the Metric

When studying warped and double warped space-times (M,g), it is our goal
to express their geometry in terms of the warping functions and the geometries
of the underlying spaces M1 and M2. It appears natural to consider two main
classes of warped space-times: one class includes space-times conformally re-
lated to 1 + 3 locally decomposable space-times, as shown in (3), the other
class containing those space-times which are obtained from 2 + 2 locally de-
composable space-times, as in (4). Analogous considerations apply to double
warped metrics.

3.1. Warped Space-Times

According to [2], warped space-times (M,g) are always included in one of the
classes described below.

Class A: (M,g) is conformally related to a 1 + 3 locally decomposable space-
time (M,g′). Two different sub-classes are distinguished, namely class A1

corresponding to a 1 + 3 spacelike (M,g′) and class A2 corresponding to a
1 + 3 timelike (M,g′).

Class B: (M,g) is conformally related to a 2 + 2 locally decomposable space-
time (M,g′).
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It is now convenient to write canonical forms for the line element associ-
ated with the metric of warped space-times in each of the referred classes. If
one uses (3), (5) and (6), the following canonical forms arise.

Class A1:

ds2 = εdu2 + e2θ(u)hαβ(xγ)dxαdxβ (9)

Class A2:

ds2 = εe2θ(xγ )du2 + hαβ(xγ)dxαdxβ , (10)

Class B:

ds2 = h1 αβ(xγ)dxαdxβ + e2θ(xγ)h2 AB(xC)dxAdxB . (11)

Here we have followed the notation used for writing (3) and (4).
Since hαβ(xγ) is a three-dimensional metric it can always be written in a

diagonal form so that the line elements (9) and (10) can be rewritten taking
this property into account. Similarly (11) can also be modified if one takes
into account that a two-dimensional space is always conformally flat.

3.2. Double Warped Space-Times

The similarity between the construction of warped and of double warped space-
times induces a similar procedure for writing canonical forms for the line ele-
ment of double warped space-times. In fact, according to [5], double warped
space-times (M,g) are always included in one of the following classes:

Class A: (M,g) is conformally related to a 1 + 3 locally decomposable space-
time (M,g′). Two different sub-classes are distinguished, namely class A1

corresponding to a locally 1 + 3 decomposable spacelike (M,g′) and class A2

corresponding to a locally 1 + 3 decomposable timelike (M,g′).

Class B: (M,g) is conformally related to a 2 + 2 locally decomposable space-
time (M,g′).

Canonical forms for the line element associated with the metric in each of
these classes are presented, following a procedure similar to the one used in
studing warped space-times.

Class A1:

ds2 = e2(θ1(u)+θ2(xD))
[
−du2 + hAB(xD)dxAdxB

]
, (12)
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Class A2:

ds2 = e2(θ1(xγ)+θ2(u))
[
hαβ(xγ)dxαdxβ + du2

]
, (13)

Class B:

ds2 = e2(θ1(xγ)+θ2(xD))
[
h1 αβ(xγ)dxαdxβ + h2 AB(xD)dxAdxB

]
. (14)

Again the notation used for writing (3) and (4) is applied in these canonical
forms. The canonical forms written above can be cast in a different manner if
one applies the considerations referred to in the previous section.

4. Geometric Characterization

We recall that a vector field �X on M is a conformal Killing vector whenever

L �Xg = 2φg.

Here φ (conformal factor) is a scalar field on U and, as usual, L �X is the
Lie derivative operator with respect to the vector field �X . The special cases
φ = constant and φ = 0 correspond respectively to �X being a homothetic
vector field (HV) and a Killing vector field (KV). Moreover, a CKV is said
to be proper whenever it is non-homothetic (i.e. φ �= const). Similarly, a
HV which is not a KV (i.e. φ = const �= 0) will be designated as ‘proper
homothetic’. A proper CKV is said to be a special CKV (SCKV) whenever
its associated conformal factor φ satisfies φa;b = 0 in any coordinate chart.

In order to establish an invariant geometric characterization of warped
and double warped space-times (M,g) one can look at preferred vector fields
living on the underlying decomposable space-time (M,g′) and investigate how
those vector fields are transformed when the warping functions are introduced.

For example, it is easy to see from (3) that a global, non null, nowhere
zero, covariantly constant vector field for a 1 + 3 locally decomposable space-
time (M,g′) can be rescaled so as to become a KV in the associated warped
(M,g).

For warped space-times of classes A1 and A2 the characterization can be
summarized as follows. The proofs of the following theorem can be found in
[2].

Theorem 1. The necessary and sufficient condition for (M,g) to be warped
class A is that a global, non-null, nowhere zero, hypersurface orthogonal unit
vector field exists that is shearfree
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(a) and such that it is geodesic with expansion Θ satifying Θ,ch
c
a = 0,

where hab ≡ gab− εuaub is the orthogonal projector to ua, in which case (M,g)
is warped class A1.

(b) and such that it is non-expanding, its acceleration being a gradient, in
which case (M,g) is warped class A2.

The definitions used for expansion and shear can be found in [9], if u is
timelike, and in [10], if u is spacelike.

This theorem is proved in [2]. However results of (a) can also be found in
[11].

The following theorem was proved in [5] and establishes an invariant char-
acterization for class A double warped space-times.

Theorem 2. The necessary and sufficient condition for (M,g) to be a double
warped class A spacetime is that it admits a non-null, nowhere vanishing CKV
�X which is hypersurface orthogonal and such that the gradient of its associated
conformal factor ψ is parallel to �X.

The characterization of warped spacetimes can now be easily obtained, as
stated in the following corollary.

Corollary 3. If the CKV �X in theorem 2 is a Killing Vector (KV) then the
spacetime is warped of class A2. If �X is a proper (non-KV) gradient CKV (i.e.
if the associated conformal bivector Fab = Xa;b −Xb;a vanishes) the spacetime
is class A1 warped.

It is worthwhile noticing that theorem 2 provides also an invariant char-
acterization of spacetimes conformal to 1+3 locally decomposable spacetimes:

Corollary 4. The necessary and sufficient condition for (M,g) to be con-
formally related to a 1+3 decomposable spacetime (M,g′) is that it admits
a non-null, nowhere vanishing conformal Killing vector (CKV) �X which is
hypersurface orthogonal.

On the other hand, if the underlying space-time (M,g′) is locally 2 + 2
decomposable the characterization of warped and double warped space-times
in given in the following theorem. The proof of this theorem is provided in [2]
and [5].

Theorem 5. The necessary and sufficient condition for (M,g) to be conform-
ally related to a 2+2 decomposable spacetime (M,g′) with g = e2θg′ (θ being
a real function), is that there exist null vectors �l and �k (laka = −1) satisfying

la;b = Ae−θlalb − θ,alb + (θ,clc)gab (15)
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ka;b = −Ae−θkalb − θ,akb + (θ,ckc)gab (16)

for some function A. Further, (M,g) is class B double warped if and only if

Hc
a

(
hdbθ,d

)
;c

+ 2
(
hdbθ,d

)
(Hc

aθ,c) = 0, (17)

where

hab ≡ −2k(alb) and Hab ≡ gab + hab. (18)

5. Newman-Penrose Characterization

The invariant characterization of double warped space-times using the New-
man-Penrose (NP) formalism was obtained in [5]. Here we present this classi-
fication for class A1, class A2 and class B double warped space-times. However
the corresponding classification for warped space-times of those classes can eas-
ily be obtained if one restricts the form of the conformal factor in an obvious
manner.

With the notation used in Theorem 2 we have that for a class A1 double
warped spacetime a coordinate chart {u, xK} exists such that the line element
takes the form (12). Then �X = ∂u is a timelike hypersurface orthogonal CKV
with associated conformal factor ψ(u) = θ1,u(u), and �u = e−U∂u is a unit
timelike vector field parallel to �X . For convenience we will write U(u, xK) =
θ1(u) + θ2(xK). The following theorems were proved in [5].

Theorem 6. (M,g) is a class A1 double warped spacetime if and only if
there exist a function U : M → R and a canonical complex null tetrad
{ka, la,ma, m̄a} (kala = −mam̄a = −1) in which:

DU = ε+ ε̄ (19)
�U = −(γ + γ̄) (20)

δU = κ+ π̄ = −(τ + ν̄) (21)
σ + λ̄ = 0 (22)
α+ β̄ = 0 (23)

ε+ ε̄+ γ + γ̄ = ρ+ μ̄ (24)
D(ρ+ μ̄) = −Φ (25)
�(ρ+ μ̄) = Φ (26)

δ(ρ+ μ̄) = δ̄(ρ+ μ̄) = 0 (27)

where Φ = Φ(u) is a real function of the timelike coordinate u.
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A similar notation is used to establish the classification of A2 double
warped space-times within NP formalism. The result is summarized in the
following theorem.

Theorem 7. (M,g) is a class A2 double warped spacetime if and only if
there exist a function U : M → R and a canonical complex null tetrad
{ka, la,ma, m̄a} (kala = −mam̄a = −1) in which one of the following sets
of equations holds:

(i)

DU = ε+ ε̄ �U = −(γ + γ̄) δU = −κ+ π̄ = τ + ν̄ (28)
σ − λ̄ = α+ β̄ = 0 (29)

ε+ ε̄− (γ + γ̄) = ρ− μ̄ (30)
D(ρ− μ̄) = �(ρ− μ̄) = Φ (31)
δ(ρ− μ̄) = δ̄(ρ− μ̄) = 0 (32)

(ii)

DU = σ + ρ̄ �U = −(λ̄+ μ) δU = ᾱ− β (33)
δU + δ̄U = π + π̄ = −(τ + τ̄) (34)

κ+ κ̄ = ν + ν̄ = 0 (35)
ε− ε̄ = 0γ − γ̄ = 0 (36)

δ(π + π̄) = δ̄(π + π̄) = Φ′ (37)
�(π + π̄) = D(π + π̄) = 0 (38)

(iii)

DU = −σ + ρ̄ �U = λ̄− μ δU = ᾱ− β (39)
δU − δ̄U = −π + π̄ = −τ + τ̄ (40)

κ− κ̄ = ν − ν̄ = 0 (41)
ε− ε̄ = γ − γ̄ = 0 (42)

−δ(π − π̄) = δ̄(π − π̄) = −Φ′′ (43)
�(π − π̄) = D(π − π̄) = 0 (44)

where Φ,Φ′ and Φ′′ are real functions of the spacelike coordinate u.

In order to establish a characterization of class B double warped space-
times, using the NP formalism, a complex null tetrad {ka, la,ma, m̄a} is chosen
such that �k and �l are the vectors in (15) and (16), i.e. kala = −mam̄a = −1
all other inner products vanishing. The following theorem then holds.
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Theorem 8. The necessary and sufficient condition for (M,g) to be con-
formally related to a 2+2 decomposable spacetime (M,g′), with g = e2θg′ ,
is that there exist a function θ : M → R and a canonical complex null tetrad
{ka, la,ma, m̄a} as described above such that

κ = σ = λ = ν = α+ β̄ = π + τ̄ = ρ+ (ε+ ε̄) = 0
Ae−θ = μ+ (γ + γ̄)

ρ = −Dθ, μ = �θ, τ = −δθ (45)

where A is the real function appearing in (15) and (16). Furthermore, (M,g)
is class B double warped if and only if

δρ = −2ρτ, δμ = −2μτ, ρμ = 0 (46)

The characterization of class A and class B double warped spacetimes
given in the results stated here should prove useful in formulating an algorithm
for classifying such metrics. This is the case since such characterization is co-
ordinate independent although tetrad dependent. In what follows the tetrads
described above will be designated as double warped tetrads of class A and B,
as appropriate.

Thus, in order to determine whether a given metric g represents a double
warped spacetime, one can use the theorems stated either with a coordinate
or a tetrad approach through the following scheme:

1. Determine the Petrov type of the Weyl tensor associated with the met-
ric g and choose a canonical tetrad {ka, la,ma, m̄a} such that gab =
2[−l(akb) +m(am̄b)].

2. Determine the NP spin coefficients and their NP derivatives in the chosen
tetrad (1).

3. If the scalars determined in step (2) satisfy the relations of theorem 6 or 7
(respectively 8) for some function U (respectively θ), then the spacetime
is double warped of class A (respectively B) and the algorithm stops
here, otherwise continue the algorithm.

4. If possible, find the Lorentz transformation of the invariance group that
transforms tetrad (1) into a double warped tetrad, i.e. such that the
corresponding NP spin coefficients and NP derivatives obey the condi-
tions in theorem 6 or 7 (respectively 8). If such a transformation exists,
the spacetime is double warped of class A (respectively B), otherwise it
is not double warped.
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The Lorentz transformations considered in step (4) must belong to the
invariance group of the Petrov type of the metric g since in step (1) one
chooses a canonical tetrad. Thus, for instance, if the given metric is of Petrov
type D or N, then in step (4) one looks for spin and boost transformations or
for null rotations respectively.
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Introduction

This is an expository introduction to the relations between Brownian motion
and Symplectic Geometry. This subject is still in its infancy. As a matter of
fact, although the notion of Stochastic Riemannian Geometry is almost as old
as the theory of Brownian motion itself, one can observe a remarkable absence
of results as far as Symplectic Geometry is concerned. One of our purposes,
here, is to argue in favor of an approach where Quantum Mechanics is used
as a guide line. For our needs, the free heat equation or its quantum coun-
terpart, the dynamics of the free quantum particle, will be sufficient since the
problems we address are basic. Many of the ideas involved in our approach
relate to a probabilistic reinterpretation of Feynman’s path integral method,
known as “Euclidean Quantum Mechanics” (cf. [1]) but the familiarity with
this method is not really indispensable, hopefully, to understand the content
of the present introduction. We have adopted a style of presentation which
should be accessible to a mixed community of mathematicians and physicists.
It is our hope that we shall be able to convince them that the method advoc-
ated here produces interesting results for both communities, especially if one
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considers the simplicity of our underlying hypotheses and the various direc-
tions of generalization available.

It is a pleasure to thank the organizers of the XIII Fall Workshop on Geo-
metry and Physics, in Murcia. The participation of many young researchers,
in particular, turned this meeting into a very stimulating experience.

1. The Laplacian in Classical and Quantum Physics

The Laplacian operator is omnipresent in Theoretical Physics. Let us adopt
the convention H0 = −�2

2 Δ, for � a strictly positive constant. There are at
least two physical theories where the role of H0 is fundamental, Statistical
Mechanics and Quantum Mechanics.

In Statistical Mechanics we associate H0 to the theory of Brownian Motion
and to the parabolic equation

�∂tη = H0η (1)

where ∂t denotes the (partial) time derivative. Eq. (1) is known as the heat of
diffusion equation, and describe many classical phenomena. In particular, its
connection with the Brownian motion is known since the time of A. Einstein
(for Physics) and N. Wiener (for Mathematics).

In the twenties of the last century, the second author constructed a math-
ematical model of Einstein’s qualitative description, namely a probability
measure μ�

w, named after him, on a space of continuous paths (R valued,
for simplicity) starting from the origin:

Ω0 = {ω ∈ C(R+,R) t.q. ω(0) = 0} (2)

The properties of the Wiener measure μ�
w are the following:

The distribution of ω(t) under μ�
w(dω) has the form:

μ�
w(ω(t) ∈ dq) = h0(0, t, q)dq = (2π�t)−

1
2 exp

{
− 1

2�t
q2
}
dq (3)

i.e. h0 is the fundamental solution of Eq. (1).
The increments ω(ti) − ω(ti−1), i = 1, ..., n, 0 = t0 < t1 < ... < tn are

independent under μ�
w.

Then Wiener proved that there is a probability space (Ω0, σ, μ
�
w), where

σ is the Borel σ-field of Ω0, with respect to which {ω(t) ≡ wt}t∈R+ is, indeed,
the Brownian motion. Let us stress that it is crucial, in the definition of
any stochastic process, not only Wiener’s one, to be able to construct its
probability space.
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The above definition of the Wiener measure is the constructive one of
mathematicians, but there is a lack of intuition in it with respect to the fol-
lowing one inspired by R. Feynman:

μ�(dω) = C exp
(
−1

�
SL0 [ω]

)
Dω (4)

where C is a normalization constant, SL0 denotes the Action functional of the
classical system underlying Eq. (1), i.e. the free one:

SL0[ω] =
∫ ∞

0
L0(ω̇, ω)dt, for L0 =

1
2
|ω̇(t)|2 , (5)

and Dω is used as a Lebesgue measure on Ω0.
In spite of the fact that there is no such Lebesgue measure on the (infinite

dimensional!) space Ω0, the representation (4) is more intuitive than Wiener’s
original approach because it involves an explicit relation with a classical sys-
tem, namely the Action (5). It suggests, moreover, that the dynamics founded
on Eq. (1) is an �-deformation of the classical dynamics.

Feynman’s representation (4) was mostly designed not for Eq. (1) but for
its quantum mechanical counterpart:

i�∂tψ = H0ψ. (6)

Although, for Eq. (1), we may choose various function spaces where to
look for the solution, this is not the case for Schrödinger’s equation (6); its
solution ψt must be in L2(R, dq) because of Born probabilistic interpretation
of quantum states. On the other hand, Brownian motion is simpler than the
one of a quantum free particle. In fact, denoting the expectation by E

E[wt] = 0, ∀t ∈ R+. (7)

In contrast, if 〈 〉ψt denotes the quantum expectation in the state ψt,
and Q,P the position and momentum observables respectively, the quantum
particle satisfies:

〈Q〉ψt =
∫
q|ψt(q)|2dq = α+ βt

(8)

〈P 〉ψt =
∫

(−i�� logψt(q))|ψt(q)|2dq = β

where α and β are constant. In other words the free quantum particle has, in
general, a constant drift β. So it is insufficient to claim (as in most textbooks)
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that the Wiener process is the probabilistic counterpart of the free quantum
evolution under Eq. (6).

For a good analogy we need diffusion processes zt : I → R (where I ⊂ R+

is a time interval) built from the Wiener process wt, more precisely whose
distribution is absolutely continuous with respect to the one of wt, for any
t ∈ I. This construction can only involves the solutions ηt of Eq. (1). The
relations (8) suggest how to produce the probabilistic version of a quantum
drift:

dzt = �
1
2dwt + �� log ηt(zt)dt. (9)

The first term of this equation represents a quantum noise, whose scale is
given by �. We cannot write dwt

dt in the strong sense, this is only defined as
a distribution, the “white noise”. The second term of (9), defined for ηt > 0,
is a regular one, in the sense of ODE’s theory. Eq. (9) is a (Itô’s) stochastic
differential equation (SDE), for each given positive solution of Eq. (1). Its
solution zt is a time indexed random variable, whose path t 
→ zt are not
differentiable. In particular, only to the trivial solution ηt = 1 is associated
the (Planck’s scaled) Brownian motion itself.

The differential and integral calculus associated with SDE like Eq. (9) is
due to K. Itô (cf. [2]). We shall interpret it as an �-deformation of Leibniz-
Newton calculus along smooth (“classical”) paths t 
→ q(t), built on properties
of the heat equation (1).

The fundamental kinematical characteristic of the irregular paths t 
→ zt
is that

Et[(zt+Δt − zt)2] = �Δt+ o(Δt) (10)

where Et denotes a conditional expectation given zt. This is a sum only over
those continuous paths starting from a fixed point q = zt. Notice that Δt
appears on the r.h.s. of (10), not (Δt)2. This is why t 
→ zt must be very
irregular. Itô’s differential calculus is built on relation (10). In Itô’s terms,
one write that (dzt)2 = (dwt)2 = �dt, i.e. zt inherits the irregularities of
the Wiener’s paths. The key consequence is that any Taylor expansion of a
smooth function F of zt must be computed up to the second order: this is the
mathematical origin of the �-deformation of classical calculus.

The above framework extends without major difficulties when the paths
t 
→ zt stay on a n-dimensional Riemannian manifold M . The H0 operator in
(1) must be replaced by the Laplace-Beltrami operator

H0 = −�2

2
�j�j (11)

where �j denotes the covariant derivative with respect to the Riemannian
connection. The Christoffel symbols associated with the metric gij are Γijk.
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The SDE (9) becomes

dzjt = dwjt +
(

��j log ηt(zt)−
�

2
Γjikg

ik

)
dt (12)

where wjt is defined by dwjt = σjk(wt)dξ
j
t , with σikσ

j
k = gij and the ξjt denote

n independent copies of Euclidean Brownian motions as before. The trivial
solution of Eq. (1) is still associated with the Wiener process zjt = wjt on
the manifold, whose drift is now non zero, except in normal (or harmonic) co-
ordinates. The kinematical characteristic of the process solving (12) provides
us with the metric:

dzitdz
j
t = dwitdw

j
t = gijdt. (13)

With respect to the Euclidean case there are interesting new features,
notably the construction of the stochastic notion of parallel transport (cf. [3],
for instance) but no qualitatively new ideas. This is why the theory of SDE
on Riemannian manifolds is almost as old as the Euclidean theory.

Let us notice, however, that it is also possible to construct a geometry
directly on the path space Ω0 of such processes (cf. [7], [8]).

2. Some aspects of the theory of stochastic differ-

ential equations and of its geometry

Let us come back to the historical development of the theory of SDE. The
general version of Eq. (9), for a n dimensional diffusion process zt, is

dzt = σ̃i(zt)dwit + B̃(zt)dt (14)

when B̃ is a given Rn-valued measurable function and σ̃ a n×n matrix valued
measurable function. After integration

∫ t1
t0

the second integral of the r.h.s. is
a regular (Lebesgue or possibly Riemann) integral. But the first one (an Itô’s
“stochastic integral”) is not: it is too singular to be regarded as a Riemann-
Stieltjes integral defined path by path. This is due to the fact that each part
of almost every path of wt is of unbounded variation in a finite time interval.
In short, its lenght is infinitive. On the other hand when σ̃ = 0 , we know
that the ODE (14) has a unique solution if B̃ is Lipschitz. Under this kind of
restrictions on B̃ and σ̃ a differential and integral calculus on path space Ω0

has been designed, based on Wiener measure μ�
w. Some of the mathematicians

associated with this construction are Wiener, Cameron, Martin, Girsanov, Itô,
Malliavin...
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It appeared quite early, in this context, that there is a privileged subspace
(named after Cameron and Martin) of Ω0:

H =
{
q ∈ Ω0, abs. cont. and s.t. ||q||21 =

∫ ∞

0
|q̇(τ)|2dτ <∞

}
. (15)

This is an Hilbert space. Now, to take Feynman’s “Lebesgue measure”
seriously would require to be able to do at least any translation

Tq : Ω0 → Ω0

ω 
→ ω + q

without problem in the paths space. In probability theory “without problem”
means that the resulting measure Pq is absolutely continuous with respect to
μ�
w (otherwise we cannot compare them). But this is the case, precisely, iff
q ∈ H. In fact, the Wiener measure does not “see” such “classical” paths:

μ�
w(H) = 0.

Nevertheless, we have an explicit (Cameron, Martin, Girsanov) formula for
the Radon-Nikodym density dPq

dμ�
w

involving Itô’s stochastic integral; this one
is so defined as an extension from ODE to SDE (cf. [8]). On this basis, a
differential geometry can be constructed, where H is regarded as a tangent
space of Ω0. But, by the same token, the intuitive definition (4) stresses what
will be the key technical difficulty of the framework. If we pick a typical
ω ∈ Ω0, SL0[ω] will be divergent. Only SL0 [q], for q ∈ H would make sense
but those “classical” paths are not representative in any way.

This situation is very reminiscent of Feynman’s path integral method of
quantization (cf. [4]). According to him, the fundamental (kinematical) prop-
erty of (one dimensional) quantum paths t→ ω(t) is〈

(ω(t+ Δt)− ω(t))2
〉
SL

= i�Δt (16)

where SL[q] =
∫
L(q̇, q)dt is the Action functional of the classical system to

be quantized. We shall prefer interpret geometrically SL as integral of the
Poincaré-Cartan differential form:

SL =
∫
ωpc, where ωpc = pdq − hdt, (17)

for p and h = h(q, p) respectively, the momentum and Hamiltonian observables
and (17) is computed along smooth solutions of the classical equations of
motion.
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In relation (16), 〈·〉SL
denotes Feynman’s path integral reinterpretation of

quantum expectations in term of spectral measures of self-adjoint operators
in L2 (as in (8), for example). Nobody has ever been able to construct a
probability space where Feynman’s “process” underlying Eq. (16) could live.
His path integral method is, from the probabilistic viewpoint, without content.
But, in this symbolic method as in the rigorous discussion above, we observe
the same coexistence of smooth (classical) and divergent expressions. Clearly,
Feynman was discovering, in his historical 1948 paper, a kind of informal Itô’s
calculus.

Probability theory, when we can use it, provides tools to (partly) eliminate
some divergences. Let us come back to Eq. (14), for n = 1. As said before,
dzt
dt does not make sense. But, using the conditional expectation involved in
Eq. (10) we can define a random variable which does:

lim
Δt↓0

Et

[
zt+Δt − zt

Δt

]
≡ Dzt (18)

To such a zt is associated, in fact, a differential operator (when σ̃ = �
1
2 ,

as needed for quantum physics (cf. (9))):

D =
∂

∂t
+ B̃

∂

∂q
+

�

2
∂2

∂q2
(19)

acting on regular F = F (q, t), with q = zt. When F = q, we have Dzt = B̃(zt).
Now under Et, D behaves indeed as a time derivative:

∀F ∈ DD, Eq,t

∫ T

t
DF (zτ , τ)dτ = Eq,t[F (zT , T )]− F (q, t). (20)

Notice that, on the left hand side we are dealing with an usual (Lebesgue
or Riemann) integral. Still, as it is clear from definition (19), before the ex-
pectation we must expect �-deformations of elementary calculus. For example,
Leibniz rule becomes, for F = F (q) and G = G(q) regular enough,

D(F.G) = DF.G+ F.DG+ ��F�G. (21)

Clearly, the Lagrangian in SL (cf. Eq. (16)) is defined on a space (a
contact bundle, in fact) where q and q̇ are regarded as independent variables.
How could we do that with zt and Dzt? For a given drift B̃ in the SDE (14),
of course zt and Dzt are dependent...

This puzzling question is closely related with the lack of any “Stochastic
Symplectic Geometry”.
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3. Cartan’s geometry of PDE and Stochastic Sym-
plectic Geometry

How could we build a Liouville measure dpdq(≡ dp ∧ dq) when q = zt, a
diffusion solving Eq. (14)? In quantum theory, the status of position and mo-
mentum observables are sharply distinguished: when one is a multiplication
operator, the other is a partial differential operator. Our probabilistic frame-
work suggests to find a model where the process and its drift can be regarded
as independent variables.

We shall use Cartan’s ideas on the geometry of Eq. (1) (cf. [5]). Or, better,
motivated by the fundamental role of ωpc in (17) and Feynman’s expression
(4), the geometry of the PDE solved by S = −� ln ηt(q), ηt > 0 solving Eq.
(1):

∂S

∂t
=

1
2

(
∂S

∂q

)2

− �

2
∂2S

∂q2
(22)

Eq. (22) is called the (free) Hamilton-Jacobi-Bellman equation (HJB).
It is clearly an �-deformation of its classical counterpart. On this basis one
defines two new variables,

E = −∂S
∂t
, B = −∂S

∂q
(23)

respectively called energy and momentum. Any solution of HJB annuls the
set of classical differential forms on M = R5 (with coordinates q, t, B,E, S):

ω = dS +Bdq + Edt

Ω = dω = dBdq + dEdt (24)

β =
(
E +

1
2
B2

)
dqdt +

�

2
dBdt

where d denotes, here, the classical exterior derivative. ω is called a contact
form; clearly ω − dS is the form playing the role of Poincaré-Cartan one. Ω
is a Liouville form in extended phase space. β seems artificial but results
simply from the product of Eq. (22) with dqdt. The exterior derivative of β
is a product of dω with another form so the set (24) is closed under exterior
multiplication and differentiation. It is called the differential ideal IHJB of
Eq. (22). In this sense, the geometrical structure of Hamilton-Jacobi-Bellman
contains all what should be needed, in particular for a symplectic (or a contact)
geometry.
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One of the main purposes of the representation of Eq. (22) as the ideal
(24) is to study, in a way independent on the coordinates, the symmetries of
HJB. If

N = N q ∂

∂q
+N t ∂

∂t
+NB ∂

∂B
+NE ∂

∂E
+NS ∂

∂S
(25)

is an infinitesimal symmetry then, for each differential form α in IHJB the Lie
derivative LNα must stay in IHJB . In short

LN (IHJB) ⊂ IHJB. (26)

Such vector fields N are called isovectors. In (25), the coefficients N q, N t,
..., NS are unknown. The condition (26) provides a set of linear PDE for them.
Their solution is as follow (cf. [6] for details)

N1 =
∂

∂t
, N2 =

∂

∂q
, N3 = −�

∂

∂S

N4 = 2t
∂

∂t
+ q

∂

∂q
− 2E

∂

∂E
−B ∂

∂B

N5 = −t ∂
∂t

+ q
∂

∂S
+B

∂

∂E
− ∂

∂B
(27)

N6 = 2t2
∂

∂t
+ 2qt

∂

∂q
+ (�t− q2) ∂

∂S
− (2qB + 4tE + �)

∂

∂E
+ 2(q − tB)

∂

∂B

Ng = e
1
�
S

{
−�g

∂

∂S
+ (�gt − Eg)

∂

∂E
+ (�gq −Bg)

∂

∂B

}
,

for g a positive solution of Eq. (1) (the isovector Ng expresses the superpos-
ition principle for the underlying linear equation (1)). Of course any linear
combination of these N is also an isovector.

The second form of (24) suggests to define, for ∀ pair δ, δ′ of vector fields
in M the following Cartan’s “bilinear covariant”:

Ω(δ, δ′) = (δ(B)δ′(q)− δ(q)δ′(B)) + (δ(E)δ′(t)− δ(t)δ′(E)). (28)

The basic property of isovectors, in term of this definition, is that, for any
vector field δ in M

Ω(N, δ) = −δ(nN ) (29)

as long as N is generated by N1, ..., N6. In Eq. (29), nN denotes the contrac-
tion of theisovector N with the contact form ω:

nN ≡ ω(N) = N tE +N qB +NS. (30)
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Given M and IHJB it is clear how we should define, now, our (free) Lag-
rangian and the Poincaré-Cartan form on M :

L(B, q) =
1
2
B2 (31)

and
ωpc = ω − dS = Bdq + Edt (32)

The set of forms (24) is in involution with respect to our starting variables
q and t, i.e. gives back HJB if (q, t) are independent. This means that
the “sectioned” forms (traditionally denoted by a ∼) are annulled on the 2d
submanifold of M where dq, dt are independent forms. Or, equivalently, that
the two dimensional “integral submanifold” of the ideal IHJB (annuling all
forms of IHJB) represents geometrically the solutions of the HJB equation.

The section map θη has been already used implicitly in our definitions of
S, the drift B̃ of Eq. (9) (cf. also (19)) etc...

θη(q) = q, θη(t) = t, θη(S) = � ln ηt ≡ S̃(q, t)

θη(B) = �� ln ηt ≡ B̃(q, t), θη(E) = � ∂t ln ηt ≡ Ẽ(q, t). (33)

Then we can re-express our main tools on the space-time submanifold:

θη(ωpc) = B̃dq + Ẽdt

θη(nN ) = �
νNηt
ηt

, for νN = N t ∂

∂t
+N q ∂

∂q
+

1
�
NS (34)

θη ◦ Ω = Ωη.

The 2-form Ω takes, then, a simple form when reduced to isovectors N,N ′

not transforming the S-variable:

Ωη(N,N ′) = �
ν[N,N ′]η

η
and dΩη = 0. (35)

To get the probabilistic interpretation we just have to read our various
geometrical objects on q = zt, solution of the SDE (9):

S̃(q, t) = Eq,t

∫ T

t
θη(ωpc)dτ. (36)

By (20) and (34), the integrand, i.e. our Lagrangian, can be identified
with −DS̃(zτ , τ). Using (19) and (33) this reduces, as expected (cf. (31)), to

L0(Dzτ , zτ ) =
1
2
(Dzτ )2 (37)
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Let us stress that this Lagrangian is not anymore singular along the
“quantum” paths τ 
→ zτ , and can be used for the calculus whose existence
was suggested by Feynman. For example, the condition of invariance of L0

under the symmetry generated by any isovector N is

LN(L0) + L0
dN t

dt
= −DNS (38)

This is a key result of a stochastic calculus of variations for the action (36),
not so easy to obtain directly via Itô’s calculus. We shall conclude with two
examples, showing that this geometrical framework contains new informations
both in probabilistic terms and in physical ones.

1) Probability theory

In the table (27), consider N = −1
2N6. On the 2d space-time submanifold (cf.

(34)) we have

N̂6 = −1
2
νN6 = t2

∂

∂t
+ qt

∂

∂q
− 1

2�
(q2 − �t). (39)

Then UNα = exp(αN̂6) maps a positive solution η of (1) into

ηα(q, t) =
1√

1− αt
e
− αq2

2�(1−αt) η

(
q

1− αt,
t

1− αt

)
, α ∈ R (40)

Clearly this corresponds to the change of space time variables

(Q,T ) 
→
(

Q

1 + αT
,

T

1 + αT

)
If the diffusion zt is built from η, according to the SDE (9), a one parameter

family zαt will, therefore, be defined via ηα, ∀α ∈ R, by

zα(t) = (1− αt)z
(

t

1− αt

)
. (41)

In particular, for the Wiener itself (i.e. the trivial solution ηt = 1)

dzαt = �
1
2 dwt −

αzαt
1− αt dt. (42)

This SDE makes sense for t < α−1. Its solution is the famous “Brownian
bridge”, coming back at the origin at t = α−1, namely the process needed, for
example, to study Loop spaces.

All invariances of the Brownian motion (like the projective one: wαt =
α−

1
2wαt, etc...) follow as well from this method.
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2) Quantum Physics

Coming back to physics, we lose, sadly, the diffusion zt. But Cartan’s geo-
metrical analysis of Eq. (6) is almost identical to the one of Eq. (1). The
isovector N̂6 should now act on ψt. Interpretating q as Heisenberg position
observable etc... this means that

N(t) = −t2H0(t) +Q(t) t ◦ P (t)− 1
2
(Q2(t) + i�t) (43)

is an observable (we had, first, to symmetrize it using Jordan’s product ◦). It
is easy to check that N(t) is, indeed, a quantum constant of motion:

i�
∂

∂t
N(t) + [N(t),H0] = 0,

something hard to guess without the help of the above probabilistic analysis.
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antonioc@ugr.es

Departamento de Geometŕıa y Topoloǵıa
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Abstract.
In this work we study the isoperimetric problem of partitioning a planar disk into
n regions of prescribed areas using the least-possible perimeter. We obtain the
regularity conditions that must be satisfied by the solutions, and solve completely
the problem in the cases of two and three regions.
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1. Introduction

In the last years, the study of isoperimetric problems has been of great interest
not only for its own nature but also for its relation with multitude of physical
phenomena. Among them, the ones relating to isoperimetric partitions can
model several natural situations.

In this work we treat the following partitioning problem: consider a planar
disk D, and n positive numbers a1, . . . , an whose sum is the total area of the
disk. Then we want to find the way of dividing the disk into n regions Ri,
each one of area ai, with the least possible perimeter.

This question explains properly many situations in Nature: the first steps
in the process of division of a cell, the shape of the interfaces separating
different fluids in a round dish, and other ones (see [4, Ch. VII and VIII]).

For this problem, the main trouble is that regions may have several com-
ponents, since we do not assume them to be connected. Therefore there are
many ways of dividing the disk into n regions of the given areas.
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From [3] we obtain the existence of a solution, for any number of regions
we consider:

Theorem 1. (Existence Theorem) Given a planar disk D and n positive num-
bers a1, . . . , an such that

∑n
i=1 ai = area (D), there exists a least-perimeter

way of dividing the disk into n regions of areas a1, . . . , an, consisting of smooth
curves meeting in threes in the interior of the disk, and meeting ∂D only one
curve at each time.

2. Regularity Conditions

Let D ⊂ R2 be a closed disk, centered at the origin. Along this work, a graph
C will consist of a finite number of vertices and edges in D such that at every
interior vertex (a vertex in the interior of the disk) three edges meet, and at
every vertex in ∂D, only one edge arrives. Note that, in view of Theorem 1,
this is a natural definition.

We shall assume that a graph C decomposes the open disk into n regions
Ri, possibly nonconnected as commented before, and we shall denote by Cij ⊂
C the curve separating two adjacent regions Ri and Rj (this curve may not be
connected), by Nij the normal vector to Cij pointing into Ri, and by hij the
geodesic curvature of Cij with respect to Nij (as we are working in the plane,
the geodesic curvature coincides with the usual curvature of a curve).

We will call minimizing graph to the least-perimeter graph dividing the
disk into n regions of the given areas.

Let ϕt : C → D be a smooth variation of a graph C, for t small, such that
ϕt(C ∩ ∂D) ⊂ ∂D. Denoting the associated vector field by X = dϕt/dt|t=0,
with normal components uij = X ·Nij on Cij , then the derivative of the area
Ai enclosed by a region Ri at t = 0 is equal to

dAi
dt

∣∣∣∣
t=0

= −
∑
j∈I(i)

∫
Cij

uij,

where I(i) = {j �= i;Rj touches Ri}.
Proposition 2. (First variation of length) Given a graph C and a smooth
variation ϕt : C → D, the first derivative of the length functional of ϕt(C) at
t = 0 is equal to

dL

dt

∣∣∣∣
t=0

= −1
2

∑
i∈{1,...,n}
j∈I(i)

{∫
Cij

hijuij +
∑

p∈∂Cij

X(p) · νij(p)
}
, (1)

where νij(p) is the inner conormal to Cij in p.
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A graph will be said stationary if dL
dt |t=0 = 0, for any variation preserving

the areas. Observe that stationary graphs are critical points for the length
functional when the areas Ai are fixed. Since we want to minimize such a
functional, it follows that a minimizing graph must be stationary.

From Proposition 2 we obtain the regularity conditions that stationary
graphs (and then minimizing graphs) must verify:

Theorem 3. (Regularity Conditions) Given a stationary graph C, the follo-
wing regularity conditions must be satisfied:

i) The curvature hij is constant on Cij, and accordingly the edges will be
circular arcs or line segments.

ii) The edges of C meet in threes at 120-degree angles in interior vertices.

iii) Three edges Cij, Cjk, Cki meeting in an interior vertex satisfy

hij + hjk + hki = 0.

iv) The edges of C meet ∂D orthogonally.

Proof. By considering appropriate area-preserving variations in (1), the con-
ditions above easily follow.

3. Minimizing graph for two regions

The problem for two regions can now be solved from Theorem 3. In this case
no triple interior vertices can appear in the minimizing graph (any interior
vertex would be surrounded by three different regions), and so any edge will
be a circular arc or a line segment meeting ∂D orthogonally.

Let us assume that the minimizing graph has more than one edge. Then,
by rotating one of them about the origin until touching another one, we will
obtain a new minimizing graph (since the perimeter and the areas enclosed
are preserved) with a non-allowed vertex in ∂D, which is contradictory.

Hence we have the following

Theorem 4. Let C ⊂ D be a minimizing graph for two given areas. Then C
consists of a circular arc or a line segment meeting orthogonally ∂D.
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Figure 1: The least-perimeter partition of the disk into two given areas

4. Minimizing graph for three regions

Now we treat the problem for three regions. Straightforward calculations give
the next proposition.

Proposition 5. (Second variation of length) For a stationary graph C and
a variation {ϕt} that preserves the areas, the second derivative of the length
functional at t = 0 is given by

−1
2

∑
i=1,...,n
j∈I(i)

{∫
Cij

(u′′ij + h2
ijuij)uij +

∑
p∈∂Cij

p∈int(D)

(
− qiju2

ij + uij
∂uij
∂νij

)
(p) (2)

+
∑

p∈∂Cij

p∈∂D

(
u2
ij + uij

∂uij
∂νij

)
(p)
}
,

where qij(p) = (hki + hkj)(p)/
√

3, and Rk is the third region touching the
vertex p.

Let us introduce an important concept in this work: for a region Ri, it
is possible to define its pressure pi as a real number such that, for any edge
Cij ⊂ C,

hij = pi − pj.

Then, for area-preserving variations by stationary graphs (that is, at each ins-
tant of the deformation we obtain stationary graphs, satisfying the conditions
of Theorem 3), the second variation of length (2), expressed in terms of the
pressures, turns

d2L

dt2
=
∑
α

dpα
dt

dAα
dt
, (3)

where α labels the components of the graph (recall that regions may have
various components).



Antonio Cañete 145

We will say that a stationary graph C is stable if d2L
dt2

∣∣
t=0
� 0, for any

area-preserving variation. This means that stable graphs are second order
local minima for the length when the areas Ai are preserved. Then it is clear
that a minimizing graph must be stable.

A hexagonal component of a region is a component bounded by six edges.
Fix R1 as the region of largest pressure. From Proposition 5 we get the fol-
lowing result:

Proposition 6. Consider a stable graph dividing the disk into n regions.
Then, R1 has at most n− 1 nonhexagonal components.

In the case n = 3, this result allows us to discuss the possible config-
urations for a minimizing graph, once we have checked, using Gauss-Bonnet
Theorem, that hexagonal components cannot occur:

Proposition 7. Let C ⊂ D be a minimizing graph dividing D into three
regions. Then C is one of the graphs in Figure 2.

Configuration 2(10) will be called standard graph. Now we will show
how to discard the non-standard possibilities, to conclude that the minimizing
graph for three regions is the standard graph.

Let us check that configurations 2(1) and 2(2) are unstable, and hence
not minimizing. The motive is that both of them have a region with two
triangles (components of three edges) touching ∂D.

Proposition 8. Given a stationary graph with a triangle Ω touching ∂D,
there exists a variation by stationary graphs such that

(i) increases the area of Ω,

(ii) decreases the pressure of Ω, keeping the other pressures unchanged, and

(iii) leaves invariant the edges of the graph not placed in ∂Ω.

Remark. For this variation, we have that dp
dt
dA
dt < 0 in Ω.

Proposition 9. Any stationary graph with a region with two triangles touch-
ing the boundary of the disk is unstable.

Sketch of the proof. First, consider in each triangle Ωi the variation of Pro-
position 8. By combining both variations, we can construct another variation
by stationary graphs too, preserving the areas. Finally, by using Equation (3)
to compute the second variation of length we have

d2L

dt2

∣∣∣∣
t=0

=
∑
α

dpα
dt

dAα
dt

=
dp1
dt

dA1

dt
+
dp2
dt

dA2

dt
< 0,
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Figure 2: The ten possible configurations for a minimizing graph
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since the only pressures that change along the deformation are the ones of the
triangles Ω1 and Ω2.

Therefore, Proposition 9 yields instability of configurations 2(1) and 2(2).
A function u : C =

⋃
i,j Cij → R is said a Jacobi function if the restrictions

to Cij satisfy
u′′ij + h2

ij uij = 0.

The following result will show that configurations 2(3) to 2(7) of Figure 2 are
unstable:

Proposition 10. ([2]) Let C be a stationary graph separating the disk into
three regions. If there exists a Jacobi function defined on C with at least four
nodal domains, then C is unstable.

In this case, the normal components of the rotations vector field about
the origin constitute a suitable Jacobi function (recall that a nodal domain is
a domain in C where that function does not vanish). Then, because of some
symmetries we find in these configurations, we can apply Proposition 10 and
obtain the instability of all of them.

Finally let us see that configuration 2(8) cannot be a minimizing graph.
It is possible to construct a new configuration with the same perimeter and
enclosing the same areas by this geometric transformation:

z

2
’Ω1Ω2Ω1

’ T

v

v’

Ω1
’ Ω2 Ω2

’
1Ω −T TΩ

Figure 3: Geometric transformation creating two non-allowed vertices

As the new configuration has two non-allowed vertices, it cannot be min-
imizing, and so, neither configuration 2(8). The same argument can be applied
for configuration 2(9).

Then, the nine non-standard possibilities have been discarded, so we ob-
tain the following theorem:

Theorem 11. ([1]) Let C ⊂ D be a minimizing graph for three given areas.
Then C is a standard graph.

Remark. For two and three regions, the solutions are unique up to rigid mo-
tions of the disk.
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Figure 4: The least-perimeter partition of the disk into three given areas
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Universidad de Granada

Abstract. We study maximal graphs in the Lorentz-Minkowski space L3

invariant under a discrete group of isometries and having a finite number of singu-
larities in its fundamental piece. We also give a method to construct them, based
on the Weierstrass representation for maximal surfaces.

Keywords: Maximal surfaces, conelike singularities, periodic surfaces.

2000 Mathematics Subject Classification: 53C50, 53C42, 53A10

1. Introduction

Maximal surfaces in a Lorentzian manifold are spacelike surfaces with zero
mean curvature. In the Lorentz-Minkowski space L3 these surfaces arise as
local maxima for the area functional associated to variations of the surface
by spacelike surfaces. Also, maximal graphs in L3 are the solutions for a
quasi-linear elliptic differential equation, and therefore a maximum principle
for them is satisfied. As in the case of minimal surfaces in the Euclidean
space, maximal surfaces have a conformal representation (Weierstrass repres-
entation) in terms of meromorphic data on a Riemann surface.

A classical result by Calabi [1] asserts that the unique complete maximal
surfaces in L3 are the spacelike planes. However, if we allow the existence
of singularities, there is a vast theory of complete maximal surfaces, see for
example [10], [2], [4], [5], [6]. In this paper we focus our attention on isolated
embedded singularities of maximal surfaces, also called conelike singularities
(see [7]). If in adittion the surface is complete or proper, it turns out that it
is a graph over any spacelike plane of L3.
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We say that a surface is periodic if it is invariant under a group of iso-
metries G of L3 acting properly and freely on L3. This paper develops the
main results obtained by the authors in [3] for periodic maximal surfaces in
the embedded case. In concrete, we show that the group G contains a fi-
nite index subgroup G0 which is a group of translations of rank 0 (that is,
G0 = {Id}), 1 (singly periodic surfaces), or 2 (doubly periodic surfaces). We
also use the Weierstrass representation of maximal surfaces to give a recipe
recovering these surfaces.

Figure 1: Examples of maximal graphs with isolated singularities

2. Preliminaries

2.1. Spacelike immersion with isolated singularities

Through this paper L3 will denote the 3-dimensional Lorentz-Minkowski space,
that is L3 = (R3, dx2 + dy2 − dz2), and M a differentiable surface.

An immersion X : M −→ L3 is said to be spacelike if for any p ∈ M,
the tangent plane TpM with the induced metric is spacelike, that is to say,
the induced metric on M is Riemannian. This metric induces a conformal
structure on M, and so it becomes in a Riemann surface.

Let F ⊂ M be a discrete closed subset of a differentiable surface M and
ds2 a Riemannian metric in M− F. Take a point q ∈ F, an open disk D(q)
in M such that D(q) ∩ F = {q} and an isothermal parameter z for ds2 on
D(q)−{q}. Then write ds2 = h|dz|2, where h(w) > 0 for any w ∈ z(D(q)−{q}).
By definition, the Riemannian metric ds2 is singular at q if for any disk D(q)
and any parameter z as above, the limit limp→q h(z(p)) vanishes (as a matter
of fact, it suffices to check this condition just for one disc and conformal
parameter). The metric ds2 is said to be singular at F if it is singular at
any point of F. In this case, (M, ds2) is said to be a Riemannian surface with
isolated singularities and F is the singular set of (M, ds2).
Definition 1. Let X : M → L3 be a continuous map. Suppose there is a
discrete closed F ⊂M subset such that X|M−F is a spacelike immersion and
(M, ds2) is a Riemannian surface with isolated singularities in F, where ds2

is the metric induced by X.
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Then, X is said to be a spacelike immersion with (isolated) singularities
at F, and X(M) a spacelike surface with (isolated) singularities at X(F ).

The following lemma describes the behavior of a spacelike immersion
around an isolated singularity.

Lemma 1 ([3]). Let X : M → L3 be a spacelike immersion with isolated
singularities and Π a spacelike plane. Label π : L3 → Π as the Lorentzian
orthogonal projection.

Then, h := π◦X is a branched local homeomorphism and its branch points
correspond to the locally non embedded singularities of X.

As a consequence, if X is an embedding locally around the singular points
and is proper, then X(M) is a graph over any spacelike plane (in particular X
is an embedding). The same conclusion holds if we replace proper by complete.

2.2. Maximal surfaces

A maximal immersion X : M → L3 is a spacelike immersion with vanishing
mean curvature. The notion of maximal immersion with (isolated) singularit-
ies is defined analogously.

If X :M→ L3 is a (everywhere regular) maximal immersion, it is known
that there exist a meromorphic map g with |g| �= 1 and a holomorphic 1-form
φ3 defined on the Riemann surface M satisfying that the vectorial 1-form
Φ = (φ1, φ2, φ3) := ( i2(1

g−g)φ3,
−1
2 (1

g +g)φ3, φ3) is holomorphic, non vanishing
and without real periods in M. Moreover, up to a translation X is given by
X(p) = Re

∫ p
p0

Φ, where p0 is an arbitrary point.
Either the pair (g, φ3) or the vectorial 1-form Φ is called the Weierstrass

representation of the maximal immersion X.

As mentioned before, we will focus our attention in embedded surfaces,
and therefore, we will consider only embedded singularities. For a more general
treatment of non-embedded maximal surfaces with isolated singularities see
[3]. As a consequence of Lemma 1, any proper (or complete) maximal surface
with isolated embedded singularities is a graph over any spacelike plane.

The behaviour of a maximal immersion around embedded isolated sin-
gularities is well known (see for example [4], [7]). As a matter of fact, if D
is a disc around such a singularity p, then D \ {p} is conformally equival-
ent to an annulus A, and the Gauss map of the immersion becomes lightlike
at the boundary component of A corresponding to the singularity. Moreover,
around X(p) the surface X(M) is asymptotic to a component of the light cone
at X(p). For this reason, isolated embedded singularities of maximal surfaces
are also called conelike singularities.



152 Periodic maximal graphs in L3

Definition 2. We say that a maximal graph with isolated singularities X :
M → L3 is G-periodic if X(M) is invariant under a discrete subgroup G of
isometries acting freely and properly of L3. We say that X is singly (resp.
doubly) periodic if G is a group of translations of rank one (resp. two).

If in addition the quotient of the singular set of X under the relation
induced by G is finite we say that X is of finite type.

Let X :M→ L3 be a maximal graph of finite type and label F = {pα :
α ∈ Λ} ⊂ M as its singular set. Taking into account the local behavior
around the singularities described above and the results about the Koebe
uniformization given in [8], we can deduce that the Riemann surface M\ F
is biholomorphic to a circular domain C \ ∪α∈ΛDα, where Dα are pairwise
disjoint closed discs in C whose boundaries γα := ∂(Dα), α ∈ Λ, correspond
to the singularities. In this setting, we label

M0 := C \ ∪α∈ΛInt(Dα) (1)

and we refer to it as the conformal support of X. The conformal reparameter-
ization X0 : C \ ∪α∈ΛDα → L3 extends to M0 by putting X0(γα) = X(pα).

3. Main Results

Theorem 2 ([3]). Let X :M→ L3 be a G-periodic maximal graph of finite
type. Then the subgroup G0 of G consisting of the positive and orthochronous
(that is, preserving H2

+) isometries of G, which is a finite index subgroup of
G, is either the identity or a group of spacelike translations of rank 1 or 2.

Our aim now is to describe the global behavior of the G-periodic maximal
graphs of finite type when G is one of the three groups given in the above
theorem in terms of its Weierstrass data.

Thus, let X :M→ L3 be as in the statement of the theorem, and consider
its conformal supportM0 and the conformal reparameterization X0 :M0 →
L3 (see Equation (1)). Since the isometries in G preserves the singular set
we can regard G as group of transformations in M0. So, we can consider
the induced immersion X̂0 : M̂0 = M0/G → L3/G. It follows that X̂0 is a
complete maximal immersion with a finite number of singularities. Moreover,
since M is simply connected, X̂0(M̂0) is an embedded surface in L3/G. If in
addition G is a translational group, the Weierstrass data of X0 can be also
pushed out to M̂0.

Observe that the Riemann surface with boundary M̂0 =M0/G is biho-
lomorphic to Σ \ ∪kj=0Int(Dj), where Dj are pairwise disjoint closed discs and
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Σ = C if G = {Id}, Σ = C∗ in the singly periodic case, and Σ is a torus in the
doubly periodic case.

In order to use the tools we need for our purposes is useful to work with
boundaryless surfaces, for this reason we introduce the notion of the double
surface of the conformal support. This surface is nothing but the quotient of
M̂0∪M̂∗

0 by identifying their boundary components, ∂(M̂0) ≡ ∂(M̂∗
0), where

M̂∗
0 is the mirror surface associated to M̂0 (see [9] for more details). It follows

that the Weierstrass data Φ can be extended holomorphically to the double
surface S and satisfy J∗(Φ) = −Φ, where J : S→ S is the mirror involution,
that maps each point of M̂0 into its mirror image and vice versa (observe that
the fixed point set of J coincides with ∂(M̂0)).

Theorem 3 ([3]). Let S be a compact Riemann surface of genus k ≥ 0 and
J : S → S be an antiholomorphic involution having k + 1 pairwise disjoint
Jordan curves of fixed points γ0, . . . , γk. Suppose also that S \ ∪kj=0γj has two
connected components, namely Ω and J(Ω), any one of them homeomorphic
(and so biholomorphic) to a circular domain1 in the extended complex plane
C or in a torus T.

Consider a meromorphic vectorial 1-form Φ = (φ1, φ2, φ3) defined on S,
non vanishing, with J∗(Φ) = −Φ and having poles at F∞ ∪ J(F∞), where
F∞ ⊂ Ω consists of one (and in this case the poles are double) or two points
(and in this case the poles are simple) if Ω ⊂ C and F∞ = ∅ if Ω ⊂ T.

Finally, label G as the group of translations of vectors {Re
∫
γ Φ : γ ∈

H1(Ω0,Z)}, where Ω0 is the quotient surface obtained from Ω \ F∞ by identi-
fying each component γj of ∂(Ω) to a point qj /∈ Ω, j = 0, . . . , k (qj �= qh for
j �= h).

Then, G has rank 0 (if F∞ has 1 point), 1 (if F∞ contains 2 points) or 2
(F∞ = ∅), and the map

X̂0 : Ω \ F∞ → L3/G, X̂0 = Re(
∫

Φ),

is well defined and provides a complete maximal surface with k + 1 singu-
lar points (namely X̂0(γj), j = 0, . . . , k) whose lifting to L3 is a G-periodic
maximal graph with k + 1 singular points in its fundamental piece.

Conversely, any such surface can be obtained in this way.

From the behaviour of the Weierstrass data described above we can deduce
the asymptotic behaviour of the lifted periodic surface in L3. It turns out that
if G = {Id} the surface is asymptotic at infinity to either half catenoid or a
spacelike plane, and in the singly periodic case the surface is asymptotic to

1that is, an open domain bounded by analytical circles
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two spacelike half planes. In the doubly periodic case the resulting surface is
contained in a slab (see [4], [3] for a detailed proof).

Examples of surfaces constructed using the above representation (for ex-
ample, the surfaces in Figure 1) can be found in [3].
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Abstract. Identifying and recasting a given set of ordinary differential equa-
tions as a finite-dimensional Poisson system is an open problem of Hamiltonian
dynamics. Such problem is revisited in this work with special emphasis on the
point of view of the analysis of the partial differential equation formulation of the
Jacobi identities in local coordinates. The characterization of two different solu-
tion families of the Jacobi equations (one of them in dimension three, the other in
dimension n) and the global and explicit study of their main properties (including
their symplectic structure, Casimir invariants and the reduction to the Darboux
canonical form) will be reviewed in what follows. Such analysis underlines how the
study of skew-symmetric solutions of the Jacobi equations is not only unavoidable
in order to solve the Hamiltonization problem, but also important for classification
purposes and for the establishment of a common and more economic description of
different Poisson systems previously unrelated, that now appear as particular in-
stances of more general Poisson structures and can be jointly analyzed in a unified
way.
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1. Introduction

Finite-dimensional Poisson structures [1] have an important presence in all
fields of mathematical physics, such as dynamical systems theory, mechanics,
optics, electromagnetism, etc. Describing a given physical system in terms of
such a structure opens the possibility of obtaining a wide range of information
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which may be in the form of perturbative solutions, invariants, nonlinear sta-
bility analysis and determination of Liapunov functionals, study of bifurcation
properties, characterization of chaotic behaviour, or integrability results, just
to cite a few.

Mathematically, a finite-dimensional dynamical system is said to have
a Poisson structure if it can be written in terms of a set of ODEs of the
form ẋi =

∑n
j=1 Jij∂jH, i = 1, . . . , n, or ẋ = J · ∇H in short, where H(x),

which is usually taken to be a time-independent first integral, plays the role
of Hamiltonian function. The Jij(x) are the entries of a n×n matrix J which
may be degenerate in rank —known as the structure matrix— and they have
the property of being solutions of the Jacobi identities:

n∑
l=1

(Jli∂lJjk + Jlj∂lJki + Jlk∂lJij) = 0 , i, j, k = 1, . . . , n (1)

The Jij must also verify the additional condition of being skew-symmetric:

Jij = −Jji for all i, j (2)

The possibility of describing a given finite-dimensional dynamical system in
terms of a Poisson structure is still an open problem [2]-[5]. The source of the
difficulty arises not only from the need of a known first integral playing the role
of the Hamiltonian, but mainly due to the necessity of associating a suitable
structure matrix to the problem. In other words, finding an appropriate solu-
tion of the Jacobi identities (1), complying also with the additional conditions
(2), is unavoidable. This explains, together with the intrinsic mathematical
interest of the problem, the permanent attention deserved in the literature
by the obtainment and classification of skew-symmetric solutions of the Jac-
obi identities. In the simplest case of three-dimensional flows it has been
possible to rewrite equations (1–2) in more manageable forms allowing the
determination of some families of solutions, as well as some general results on
classification of Poisson structures [2]. However, most of these strategies are
not applicable when analyzing the general n-dimensional problem (1–2). In
such a case [3]–[5], the evolution of results leading to the present-day classific-
ation of solutions of (1–2) can be summarized, roughly speaking, as a sequence
of solution families of increasing nonlinearity: from the constant structures,
to the linear (i.e. Lie-Poisson) structures [6], affine-linear structures [7] and
finally quadratic structures [4, 8].

As an illustration of the previous trends, in these pages the characteriz-
ation and main properties of two different families of solutions are reviewed
[9, 10]. One of them is of dimension three [9], and will be considered in Section
2. The other [10] is of dimension n, and will be the subject of Section 3. As a
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result of the generality of such families —both consist of solutions containing
functions not limited to a given degree of nonlinearity— many known Poisson
structures appear embraced as particular cases, thus unifying many different
systems seemingly unrelated. As we shall see, this unification has relevant con-
sequences for the analysis of such systems, since it leads to the development
of a common framework for the explicit determination of key features such
as the symplectic structure or the Darboux canonical form. Such properties
can now be characterized globally in a unified and economic way. The work is
concluded in Section 4 with some final remarks.

2. A three dimensional family of solutions

In the 3d case the joint problem (1-2) can be reduced to the single equation:
J12∂1J31− J31∂1J12 + J23∂2J12− J12∂2J23 + J31∂3J23− J23∂3J31 = 0. Now for
an open domain Ω ⊂ IR3, consider the family of functions of the form

Jij(x) = η(x)ψi(xi)ψj(xj)
3∑

k=1

εijkφk(xk) (3)

where indexes i, j run from 1 to 3, {η, ψi, φi} are arbitrary C1(Ω) functions
of their respective arguments which do not vanish in Ω and ε is the Levi-
Civita symbol. This family of functions is a skew-symmetric solution family
of the 3d Jacobi equations. Actually such family is very general, therefore con-
taining numerous previously known structure matrices of very diverse three-
dimensional systems as particular cases. Instances of this are found in Poisson
structures reported for the Euler top, the Kermack-McKendrick model, the
Lorenz system, the Lotka-Volterra and generalized Lotka-Volterra systems,
the Maxwell-Bloch equations, the Ravinovich system, the RTW interaction
equations, etc. which are enumerated in detail in [9].

However, the generality of this solution family is not an obstacle for the
characterization of the main properties. We begin by the symplectic structure
and the Casimir invariant. It can be shown that the rank of such Poisson
structures is constant in Ω and equal to 2, and a Casimir invariant is:

C(x) =
3∑
i=1

∫
φi(xi)
ψi(xi)

dxi

Moreover, this Casimir invariant is globally defined in Ω and C2(Ω).
To conclude, we proceed now to construct globally the Darboux canonical

form. For every three-dimensional Poisson system ẋ = J · ∇H defined in



158 Hamiltonization and Jacobi equations

an open domain Ω ⊂ IR3 and such that J is of the form (3), the Darboux
canonical form is accomplished globally in Ω in the new coordinate system
{z1, z2, z3} and the new time τ , where {z1, z2, z3} is related to {x1, x2, x3} by
the diffeomorphism globally defined in Ω

z1(x1) =
∫
φ1(x1)
ψ1(x1)

dx1 , z2(x2) =
∫
φ2(x2)
ψ2(x2)

dx2 , z3(x) =
3∑
i=1

∫
φi(xi)
ψi(xi)

dxi

and the new time τ is given by a time reparametrization of the form dτ =
η(x(z))φ1(x1(z))φ2(x2(z))φ3(x3(z))dt. The result of these transformations is
a new Poisson system with structure matrix

JD(z) =

⎛⎜⎝ 0 1 0
−1 0 0
0 0 0

⎞⎟⎠
and time τ . The reduction is thus explicitly and globally completed. In this
way it can be seen how the different Poisson structures embraced by family
(3) become unified in a common framework.

3. A n-dimensional family of solutions

Let {ϕ1(x1), ϕ2(x2), . . . , ϕn(xn)} be a set of nonvanishing C1 functions defined
in a subset Ω ⊂ IRn. A separable matrix is a n×n matrix defined in Ω of the
form

Jij = aijϕi(xi)ϕj(xj)

with aij ∈ IR, aij = −aji for all i, j. Obviously, every separable matrix thus
defined is skew-symmetric because A = (aij) is. Moreover, every separable
matrix is also a solution of the Jacobi identities (1). Therefore, every separable
matrix is a structure matrix [10].

Determining the Casimir invariants is not difficult [11]: in fact, if

Ck =
n∑
j=1

kj

∫
dxj
ϕj(xj)

(4)

where k = (k1, k2, . . . , kn)T ∈ Ker(A), then Ck is a Casimir function of
J . In addition, we have that dim{Ker(A)} = n − Rank(A) ≡ m, and thus
there are m linearly independent vectors that span Ker(A). In fact, m is also
the number of independent Casimir invariants, and actually a basis of Ker(A)
provides a complete set of independent Casimir invariants of J of the form
(4).
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We now examine the reduction to the Darboux canonical form. For this
we first introduce the following diffeomorphic transformation globally defined
in Ω: yi =

∫
(ϕi(xi))−1dxi, i = 1, . . . , n. The transformed Poisson structure

is given by J̃ij(y) = aij , for all i, j. In other words, we have transformed
the matrix in such a way that now J̃ = A is a structure matrix of constant
entries. In addition, we now perform a second transformation, which is also
globally defined: zi =

∑n
j=1 Pijyj, i = 1, . . . , n, where P is a constant, n × n

invertible matrix. Then the structure matrix J̃ now becomes Ĵ = P · J̃ ·
P T = P · A · P T . It is well known that matrix P can be chosen to have
Ĵ = diag(D1,D2, . . . ,Dr/2, 0, (n−r). . . , 0) where r = Rank(A) is even, and

D1 = D2 = . . . = Dr/2 =

(
0 1
−1 0

)

Thus the structure matrix has been reduced to the Darboux form. It is worth
emphasizing that the reduction has been completed explicitly and globally in
the domain of interest Ω. This is remarkable, since the number of Poisson
structures for which this can be done is very limited.

These results have allowed a unified treatment of many different Poisson
structures, including Lotka-Volterra and Generalized Lotka-Volterra systems
(of importance in contexts such as plasma physics or population dynamics),
mechanical systems such as the Toda and relativistic Toda models, and other
Poisson formulations such as the ones used in the Kermack-McKendric model,
in circle maps, or in bimatrix games (see [10] for the full details).

4. Concluding remarks

It can be appreciated how the analysis and classification of skew-symmetric
solutions of the Jacobi equations is not only necessary for the Hamiltoniza-
tion of dynamical systems, but also useful for classification purposes of Pois-
son structures. Moreover, this perspective leads to a common description of
diferent Poisson systems previously unrelated that now can be regarded and
analyzed in a more general framework. Given that Jacobi equations are a set
of nonlinear coupled p.d.e.s, we are still far from a complete knowledge of their
solutions. Such investigation will be the subject of future research.
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1. Introduction

It is known, since an old result by Riemann [1], that an n-dimensional metric
is locally equivalent to the giving of f = n(n − 1)/2 functions. Since this
feature is related to a particular choice of either a local chart or a local base,
it seems to be a non-covariant property.

For n = 2 it is known that (Gauss theorem)[2] any two-dimensional metric
g is locally conformally flat, g = φη , where η is the flat metric and φ a
conformal deformation scalar factor. This result is covariant, because the sole
degree of freedom is represented by the scalar φ, which only depends on the
metric g.

The question thus arises of, whether or not, for n > 2 they exist sim-
ilar intrinsic and covariant local relations between an arbitrary metric g , on
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the one hand, and the corresponding flat metric η together with a set of f
covariant quantities on the other.

There is a number of results concerning the diagonalization of any three-
dimensional metric (see ref.[3], to quote some few) which are not covariant
because, in addition to the metric, an orthogonal triad or a specific coordinate
system is involved. To our knowledge, the first published result of this kind
for n = 3 is [4], where the following theorem was proved:

Theorem 1. Any three-dimensional analytic Riemannian metric g may be
locally obtained from a constant curvature metric η by a deformation of the
form

g = aη + ε s⊗ s , (1)

where a and s are respectively a scalar function and a differential 1-form. The
sign ε = ±1, the curvature of η and an analytic constraint Ψ(a, s) between the
scalar a and the Riemannian norm |s| may be arbitrarily prescribed.

After realizing that n(n − 1)/2 is precisely the number of independent
components of a n-dimensional 2-form, in the context of the general theory of
relativity B. Coll [5] has conjectured that any n-dimensional metric g can be
locally obtained as a deformation of a constant curvature metric η, paramet-
rized by a 2-form F , according to:

g = λ(F ) η + μ(F )F 2 (2)

where λ and μ are scalar functions of F and F 2 := Fη−1F .
In particular, it can be easily proved that the Kerr-Schild class of metrics

in general relativity [6] satisfy this relation.
We here prove the following variant of Coll’s conjecture:

Theorem 2 (Deformation theorem). Let (Vn, g) be an analytic semi-
Riemannian manifold. Locally there always exist an analytic 2-form F and
an analytic scalar function a such that:
(a) they satisfy a previously chosen arbitrary analytic scalar constraint:
Ψ(a, F ) = 0 and
(b) the semi-Riemannian deformed metric:

gαβ = agαβ − εF 2
αβ , (3)

with F 2
αβ := gμνFαμFνβ and |ε| = 1, has constant curvature.

Since the constraint Ψ(a, F ) is a scalar, it will only depend on the invariants
of Fαβ = gανFνβ .
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Our proof relies on the Cauchy-Kowalevski theorem for partial differential
systems. Therefore, analyticity of g, F , a and Ψ is implied hereon (even
though, we will not always mention it explicitly).

What we shall actually prove is the following extension of theorem 2

Theorem 3. Let (Vd, g) be a semi-Riemannian manifold and λ a 2-covariant
symmetric tensor. Locally there always exist a 2-form F and a scalar function
a such that: (a) they meet a previously chosen constraint: Ψ(a, F, x) = 0 and
(b) the semi-Riemannian deformed metric:

gαβ = agαβ + λαβ − εF 2
αβ , with F 2

αβ := gμνFαμFνβ (4)

has constant curvature (|ε| = 1).

We shall prove theorem 3 instead of theorem 2 because it can be proved
by iteration on the number of dimensions. The proof that it is true for n = 2
is similar to the proof of the above mentioned Gauss theorem. We shall now
see that: if theorem 3 holds for d = n− 1, then it also holds for d = n.

2. Sketch of the proof

Let (Vn, g) be a semi-Riemannian manifold and let {eα}α=1...n be a base of
vectors. The metrics gαβ and gαβ coexist through the proof. Indices are always
lowered with gαβ and raised with its inverse gαβ . The inverse metric for gαβ
is denoted hαβ .

The Riemannian connections ∇ and ∇ for g and g define the difference
tensor

Bρμν := gαρ
(
γαμν − γαμν

)
=

1
2
(
∇μgρν +∇νgρμ −∇ρgμν

)
, (5)

and the respective Riemann tensors are related to each other by

Rμναβ := gμρR
ρ
ναβ = gμρR

ρ
ναβ + 2∇[αBμβ]ν + 2Bρν[αBρ|β]μ (6)

The condition that gαβ has constant curvature is expressed as

Eμναβ := Rμναβ + k
(
gμαgνβ − gμβgνα

)
= 0 . (7)

Part of these equations yield a partial differential system (PDS) for the un-
knowns Fαβ and a.

To pose the Cauchy problem, consider a hypersurface S with a non-null
unit normal vector nα and denote Πα

μ := δαμ−σnαnμ the g-orthogonal projector
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and σ = nαn
α. Not all equations (7) contain second order normal derivatives

of the unknowns. In particular, the only equations contributing to the PDS’s
principal part [7] are the n(n− 1)/2 independent combinations:

Eμα := Eμναβ nνnβ = 0 (8)

As it will be seen below, a well posed Cauchy problem with data on S can be
set up for these equations. The remaining equations (7) are equivalent to

Lμναβ := Eλρσγ Πλ
μ Πρ

ν Πσ
α Πγ

β = 0 Lμνα := Eλρσγ Πλ
μΠρ

ν Πσ
α n

γ = 0 (9)

and can be taken as subsidiary conditions to be fulfilled by the Cauchy data
on S. Indeed, from the second Bianchi identity for Rμναβ it easily follows that:
Proposition. Any analytical solution of (8) satisfying the constraints (9) on
S, also satisfies them in a neighborhood of S.

2.1. Non-characteristic hypersurfaces

Let us now see that Cauchy data can be given on S so that it is non-characteris-
tic for the PDS (8). We first write Fαβ := nαEβ − Eαnβ + F̃αβ , i.e., splitting
Fαβ into its parallel and transversal parts relatively to nα and, on substituting
it into (8), we obtain

∇2
na ĝαβ + σε

(
Eβ∇2

nEα +Eα∇2
nEβ
)
− ε
(
F̃ρβ ∇2

nF̃
ρ
α + F̃ ρ

α ∇2
nF̃ρβ

)
= Hαβ

(10)
where Hαβ includes all non-principal terms. This equation must be supple-
mented with the second normal derivatives of the constraint

∇2
nΨ(a, Fρβ , x) := Ψ1∇2

na+ Ψα
2∇2

nEα + Ψαβ
3 ∇2

nF̃αβ −Ψ0 = 0 . (11)

Now S is non-characteristic for the prescribed Cauchy data if, and only if,
the linear system (10-11) can be solved for the second order normal derivatives
∇2

nEα, ∇2
nF̃αβ and ∇2

na. A sufficient condition on the Cauchy data is

Δ(d) �= 0 and Γ(d) �= 0 (12)

where Γ(d) is the determinant of Gij := (−1)i−1EαEβ(F̃ i+j−2)αβ , i, j = 1 . . . d
and Δ(d) is a function of Eβ and F̃αβ (see [9] for details).

2.2. Geometrical meaning of the subsidiary conditions

Let us now assume that S and the Cauchy data have been chosen so that
h
αβ
nαnβ �= 0. Consider the g-orthogonal unit vector

nα := h
αβ
ζβ with ζβ := |hαρnαnρ|−1/2nβ ,
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and denote Πα
β := δαβ − σ̄nαζβ the g-orthogonal projector, with gαβnαnβ =

σ̄ = ±1 .
It follows that Πα

βΠ
β
μ = Πα

μ and Πα
βΠβ

μ = Πα
μ. As a consequence it is

obtained that conditions (9) are equivalent to:

Lμναβ := Eλρσγ Πλ
μ Πρ

ν Πσ
α Πγ

β = 0 and Lμνα := Eλρσγ Πλ
μ Πρ

ν Πσ
α n

γ = 0
(13)

The theory of Riemannian submanifolds [8] applied to (V4, g) and the
hypersurface S provides a clear geometrical meaning to these subsidiary con-
ditions. Consider the isometrical embedding of S into (V4, g) and respectively
denote by g̃, ∇̃ and φ, the first fundamental form, the induced connection and
the second fundamental form. Including the Codazzi-Mainardi equation, the
second subsidiary condition (13) amounts to

∇̃vφ(w, z) − ∇̃wφ(v, z) = 0 ∀v, w, z tangential to S (14)

which has φ = 0 as a particular solution. For this particular choice, including
Gauss equation, the first of conditions (13) yields

R̃(v,w, t, z) + k [g(v, t)g(w, z) − g(v, z)g(w, t)] = 0 . (15)

∀v, w, z, t tangential to S.
Take now a base of vectors adapted to S, i.e. {tα1 . . . tαd , tαn = nα}, with

tαj nα = tαj ζα = 0 , j = 1 . . . d. It is obvious that Πα
μt
μ
j = tαj and, since by

definition Eαnα = F̃αβn
α = 0, the induced metric g̃ in this base is:

g̃ij = a ĝij + λ̃ij − εF̃ 2
ij , i, j = 1 . . . d (16)

with λ̃ij := λij + σεEiEj . Also in this base, equation (15) reads:

R̃ijkl + k [g̃ikg̃jl − g̃ilg̃jk] = 0 , i, j, k, l = 1 . . . d

i. e., the Cauchy data on S must be chosen so that the induced metric g̃ij has
constant curvature.

Therefore, if we choose one half of the Cauchy data ∇na, ∇nEα, ∇nF̃αβ
so that φ = 0 (which can be achieved provided that the inequalities (12) are
satisfied [9]) and choose the remaining data a, Eα, F̃αβ so that the induced
metric g̃ has constant curvature (which is possible by the hypothesis), then
these Cauchy data on S satisty the subsidiary conditions (9). �
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1. Introduction

The cotangent bundle T ∗G of a Lie group G has a Lie group structure with
product ωg · ω′

g′ = Lctgg [ω′
g′ ] + Rctg

g′ [wg], where Lctgg and Rctg
g′ are the natural

cotangent lifts of the left and right actions of G. Therefore, invariant geometric
objects on T ∗G, with respect to this Lie group structure, are determined by
algebraic conditions on the Lie algebra g⊕ g∗ of this group.

It is well known that the canonical symplectic form on T ∗G, in general,
is not invariant under this product. On the other hand,, if one considers
the left invariant 2-form Ω2

0 on T ∗G determined by the linear 2-form ω2
0 on

T(ε,0)(T ∗G) � g⊕g∗ defined by ω2
0((A,α), (A′ , α′)) = α(A′)−α′(A), it is easy

to check that Ω2
0 is closed if and only if G is abelian.
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However it is possible [1] to deform the Lie group structure of T ∗G in
such a way that the left invariant 2-form Ω2

inv defined by ω2
0 becomes closed,

giving thus an invariant symplectic structure on T ∗G. N. Boyom proved in [2]
that if a simply connected Lie group G admits an invariant flat torsion free
linear connection (i.e. G has a left invariant affine structure), it is possible to
endow T ∗G with a Lie group structure such that dΩ2

inv = 0. Similar ideas
have been used to construct other invariant geometric structures on the Lie
group T ∗G ([3], [4], [5]).

In order to have a better geometric understanding of Boyom’s result, we
analyze all the inequivalent Lie group extensions of G by g∗ compatible with
the differentiable structure of T ∗G; that is, we classify all non-equivalent Lie
group structures on the manifold T ∗G such that

0 −→ g∗ ι−→ T ∗G π−→ G −→ 1

is an exact sequence of Lie groups. One can proof ([6], [7], [8]) that in this
case, there exists a trivialization of T ∗G as a trivial g∗-principal bundle over
G such that the product can be written

(g, α) · (g′, α′) = (gg′, α+ ρg′−1(α′) + ξ(g, g′))

where ξ : G × G → g∗ is a smooth map fulfilling some normalized 2-cocycle
condition and ρ : G→ Aut g∗ is a linear representation.

In this paper we present a new geometric and constructive approach to
this problem in terms of a pair of compatible linear cocycles for the left and
right actions of G. These techniques are closely related to the geometric way
of lifting an action of G on a manifold X to an action of G on a trivial
vector bundle over X by means of automorphic factors. In order to solve
the equivalence problem for these group structures on T ∗G, we introduce a
cohomology associated to a pair of compatible Aut g∗-cocycles for the left
and right actions on G. In our understanding, this cohomology is new in
the literature and, for some particular compatible linear constant cocycles, it
coincides with the standard cohomology of the Lie group G with values on the
G-module g∗.

We would like to point out that all these constructions can be generalized,
in a straightforward way, in order to define Lie group structures on any trivial
vector bundle over G; for instance, in all the tensorial bundles T rs (G).
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2. Compatible linear cocycles for a Lie group

Given a Lie group action φ : G×X → X, any lift Φ of this action to an action
on a trivial vector bundle π : E � X × E → X can be described as

Φ : G× (X × E) −→ (X × E)
(h, (x, e)) −→ h · (x, e) = (φh(x),J(h,x)(e))

where J : G×X −→ Aut E is a linear φ-cocycle; that is, a differentiable map
fulfilling the cocycle condition J(h1h2,x) = J(h1,φh2

(x)) ◦ J(h2,x).

Definition 1. A set of compatible Aut g∗-valued cocycles for a Lie group G is
a pair of differentiable maps L : G×G −→ Aut g∗ and R : G×G −→ Aut g∗

fulfilling : (a) cocycle conditions

L(h1h2,g) = L(h1,h2g) ◦ L(h2,g)

R(h1h2,g) = R(h1,gh
−1
2 ) ◦ R(h2,g)

for the left and right actions, respectively, and (b) the compatibility condition

L(g1,g2g3) ◦ R(g3−1,g2) = R(g−1
3 ,g1g2)

◦ L(g1,g2)

Remark 1. Given a trivialization of the bundle T ∗G � G×g∗, we see that L and
R allow us to define non standard cotangent lifts of the left and right actions
of G. The compatibility condition implies that the lifted actions commute.

Proposition 1. If {L,R} is a set of compatible Aut g∗-valued cocycles for G,
the map ρ(L,R) : G −→ Aut g∗ defined by

ρ(L,R)
g ≡ R(g,g) ◦ L(g,ε) = L(g,g−1) ◦ R(g,ε)

is a linear representation of G.

Example. If T ∗G is trivialized by left invariant forms, the natural cotangent
lift of the left action L (resp. the right action R) of the Lie group G are defined
by the L-cocycle L(h,g) = Idg∗ (resp. by the R-cocycle R(h,g) = CoAdh). It
is easy to check that these linear cocycles are compatible and, in this case,
ρ(L,R) is the coadjoint representation.

Definition 2. We say that two compatible AutG∗-valued cocycles {L,R}
and {L′,R′} for a Lie group G are gauge equivalent if there exists a gauge
transformation on T ∗G � G × g∗, defined by a differentiable map � : G →
Aut g∗, such that

L′(h,g) = �hg ◦ L(h,g) ◦ �−1
g

R′
(h,g) = �gh−1 ◦ R(h,g) ◦ �−1

g
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Theorem 2. (Rigidity of compatible linear cocycles) Every pair {L,R} of
compatible AutG∗-valued cocycles for a Lie group G is gauge equivalent to
the compatible linear cocycles {L(Id),R(ρ(L,R))} defined by L(Id)

(h,g) = Idg∗ and

R(ρ(L,R))
(h,g) = ρ

(L,R)
h .

Proof. The gauge transformation relating both sets of compatible linear
cocycles is defined by �g = L(g−1,g).

Corollary 3. Any set of compatible AutG∗-valued cocycles {L,R} for G can
be constructed as

L(h,g) = φhg ◦ φ−1
g

R(h,g) = φgh−1 ◦ ρh ◦ φ−1
g

where ρ : G → Aut g∗ is a linear representation and φ : G → Aut g∗ is
a differentiable map satisfying φε = Id, where ε is the unit element of G.
Moreover, the gauge equivalence class of any set of linear cocycles {L,R} ≡
{ρ, φ} is determined by the linear equivalence class of the representation ρ.

3. Cohomology associated to a set of compatible

Aut g∗-valued cocycles of a Lie group

Definition 3. A differentiable p-cochain of G with values in g∗ is a differen-
tiable map ξ : G× (p. . . ×G −→ g∗. We say that a differentiable p-cochain ξ
is normalized if ξ(g1, . . . , gi−1, ε, gi+1 . . . gp) = 0, ∀g1, . . . , gi−1, gi+1 . . . gp ∈ G,
where ε is the unit element of G.

Definition 4. For every p, let us denote by Cpnorm(G, g∗) the vector space of
all normalized differentiable p-cochains of G with values in g∗. For p = 0, we
define C0

norm(G, g∗) = g∗.

Definition 5. Given a set of compatible linear cocycles {L,R} for the Lie
groupG, we define the following complex of vector spaces (C•

norm(G, g∗), δ(L,R)
• )

where the coboundary operators are :

• δ(L,R)
0 : C0

norm(G, g∗) = g∗ −→ C1
norm(G, g∗) with

[δ(L,R)
0 (α)](g) ≡ L(g,ε)(α)−R(g−1,ε)(α)
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• δ(L,R)
p : Cpnorm(G, g∗) −→ Cp+1

norm(G, g∗), if p > 0, with

[δ(L,R)
p ξ](g1, g2, . . . , gp+1) = L(g1,g2···gp+1) ξ(g2, . . . , gp+1) +

+
p∑
i=1

(−1)i ξ(g1, . . . , gigi+1, . . . , gp+1) +

+ (−1)p+1R(g−1
p+1,g1···gp) ξ(g1, . . . , gp)

These maps δ(L,R)
p are linear and δ(L,R)

p ξ is a normalized differentiable
(p+ 1)-cocycle , ∀ξ ∈ Cpnorm(G, g∗).

Proposition 4. One has δ(L,R)
p+1 ◦ δ(L,R)

p = 0 .

Definition 6. Let us denote by Zp(L,R)(G, g
∗) = ker δ

(L,R)
p the subspace of

normalized differentiable p-cocycles and by Bp(L,R)(G, g
∗) = Im δ

(L,R)
p−1 the sub-

space of normalized differentiable p-coboundaries. The p-cohomology space of
G with values in g∗ associated to the compatible linear cocycles {L,R} is

Hp
(L,R)(G, g

∗) =
Zp(L,R)(G, g

∗)

Bp(L,R)(G, g
∗)

Lemma 5. If we denote by [g∗]G the subspace of invariant elements under the
linear representation ρ(L,R) : G→ Aut g∗ associated to the compatible cocycles
{L,R}, then Z0

(L,R)(G, g
∗) = ker δ

(L,R)
0 = [g∗]G.

Some particular cases :

• θ ∈ Z1
(L,R)(G, g

∗)⇐⇒ θ(g1g2) = L(g1,g2) θ(g2) +R(g−1
2 ,g1)

θ(g1).

• ξ ∈ Z2
(L,R)(G, g

∗) if and only if

L(g1,g2g3) ξ(g2, g3) + ξ(g1, g2g3) = ξ(g1g2, g3) +R(g−1
3 ,g1g2)

ξ(g1, g2)

Proposition 6. If {L,R} and {L′,R′} are gauge equivalent under a gauge
transformation � : G → Aut g∗, then there exists Φp

� ∈ AutCpnorm(G, g∗) ful-
filling Φp+1

� ◦ δ(L
′,R′)

p = δ
(L,R)
p ◦ Φp

� and inducing linear isomorphisms Φp
� :

Hp
(L′,R′)(G, g

∗)→ Hp
(L,R)(G, g

∗).

As a consequence of the rigidity theorem for compatible linear cocycles,
we have
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Corollary 7. Given a pair {L,R} of compatible AutG∗-valued cocycles for a
Lie group G, the cohomology spaces H•

(L,R)(G, g
∗) are isomorphic to the usual

cohomology spaces H•(G, g∗; ρ(L,R)) of the Lie group G with values on g∗ via
the representation ρ(L,R) : G→ Aut g∗.

Corollary 8. Given two sets {L,R}, {L′,R′} of compatible Aut g∗-valued
cocycles for a Lie group G, every equivariant linear isomorphism φ : g∗ → g∗

with respect to the actions ρ(L,R) and ρ(L′,R′), induces linear isomorphisms
Hp

(L,R)(G, g
∗)→ Hp

(L′,R′)(G, g
∗).

4. Lie group structures on T ∗G associated to a pair
of compatible linear cocycles

Theorem 9. Let {L,R} be a set of compatible Aut g∗-valued cocycles for a
Lie group G and let ξ ∈ Z2

(L,R)(G, g
∗) be a normalized 2-cocycle. Fixing a

trivialization of the cotangent bundle T ∗G � G× g∗, we define the product

(g1, α1) · (g2, α2) = (g1g2,L(g1,g2)(α2) +R(g−1
2 ,g1)

(α1) + ξ(g1, g2))

Then, (T ∗G, ·) is a Lie group that we will denote by (G× g∗)
(L,R,ξ)

.

• Associativity follows since (L,R) are compatible and δ(L,R̃)
2 ξ = 0.

• The unit element is (ε, 0).

• The inverse is (g, α)−1 = (g−1,−L(g−1,ε)[R(g,g)(α) + ξ(g, g−1)]).

• The differentiability of the multiplication law and the inverse are trivial
since all the cocycles are assumed to be linear maps of g∗.

Theorem 10. Fixed a trivialization of the vector bundle T ∗G � G × g∗, all
Lie group extensions of G by g∗ compatible with the differentiable structure of
T ∗G can be written as in the previous theorem.

Proof. Fixing a trivialization of T ∗G as a trivial g∗-principal bundle over G,
it is easy to see that the product can be written

(g, β) · (g′, β′) = (gg′, β + ρg′−1(β′) + η(g, g′))

where η : G × G → g∗ is a smooth map fulfilling a normalized 2-cocycle
condition and ρ : G→ Aut g∗ is a linear representation. By means of a gauge
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transformation φ : G → Aut g∗, we can express this product, in the initially
fixed trivialization of T ∗G as a vector bundle, in the following way

(g, α) · (g′, α′) = ( gg′, φgg′φ−1
g (α) + φgg′ρg′−1φ−1

g′ (α′) + φgg′(η(g, g′)) )

where α = φg(β). Defining L(g,g′) ≡ φgg′ ◦ φ−1
g , R(g′−1,g) ≡ φgg′ ◦ ρg′−1 ◦ φ−1

g′

and ξ(g, g′) ≡ φgg′(η(g, g′)), one can see that {L,R, ξ} are the set of compatible
Aut g∗-valued cocycles and the normalized 2-cocycle stated on the theorem.

Corollary 11. We have the following exact sequence of Lie groups

0→ g∗ −→ T ∗G � (G× g∗)
(L,R,ξ)

π−→ G→ 1

where g∗ is endowed with its natural abelian additive Lie group structure as a
vector space.

In general, T ∗G � (G× g∗)
(L,R,ξ)

is not a central extension of G because,
in general, (ε, α) · (g, β) �= (g, β) · (ε, α).

Proposition 12. The group extensions (G× g∗)
(L,R,ξ)

and (G× g∗)
(L′,R′,ξ′)

are equivalent if, and only if, the following conditions are fulfilled :
a) There exists a linear isomorphism φ : g∗ → g∗ such that

ρ(L′,R′)
g ◦ φ = φ ◦ ρ(L,R)

g ∀g ∈ G

b) There exists θ ∈ C1
norm(G, g∗) such that

[δ(L,R)
1 θ] = [φ · ξ]− ξ′

In that case, the isomorphism Φ : (G× g∗)
(L,R,ξ)

−→ (G× g∗)
(L′,R′,ξ′)

is
given by

Φ(g, α) = (g,L′(g,ε)φL(g−1,g)(α) + θ(g)) = (g,R′
(g−1,ε) φR(g,g)(α) + θ(g))

Corollary 13. If ξ = δ
(L,R̃)
1 θ ∈ B2

(L,R)(G, g
∗) then (G× g∗)

(L,R,ξ)
is iso-

morphic, as a Lie group, to the semidirect product G×ρ(L,R) g∗.

Remark 2. With these Lie group structures on T ∗G, it is possible to give
a better geometric approach to Boyom’s result on the existence of invariant
symplectic structures on T ∗G. Also by means of the results of this paper, [9]
we are searching for invariant complex structures on T ∗G.
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[9] A. López Almorox. Invariant structures on T ∗G associated to compat-
ible linear cocycles for a Lie group G, in preparation.



Proceedings of XIII Fall Workshop on

Geometry and Physics

Murcia, September 20–22, 2004

Publ. de la RSME, Vol. 9 (2005), 175–180

Trapped submanifolds in Lorentzian

geometry
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1. Introduction

The concept of closed trapped surface, first introduced by Penrose [1], is ex-
tremely useful in many physical problems and mathematical developments,
with truly versatile applications. It was a cornerstone for the achievement of
the singularity theorems, the analysis of gravitational collapse, the study of
the cosmic censorship hypothesis, or the numerical evolution of initial data,
just to mention a few, see e.g. [1, 2, 3] (a more complete list of references can
be found in [4].) Trapped surfaces are usually introduced as co-dimension 2
imbedded spatial surfaces such that all its local portions have, at least initially,
a decreasing (increasing) area along any future evolution direction. However,
it has been seldom recognized that the concept of trapped surface is genuinely
and purely geometric, closely related to the traditional concepts of geodesics,
minimal surfaces and variations of submanifolds. The purpose of this short
note is to present this novel view, which may be clarifying for, and perhaps
arouse interest of, the mathematical community.
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2. Basics on semi-Riemannian submanifolds

Let (V, g) be any D-dimensional semi-Riemannian manifold with metric tensor
g of any signature. An imbedded submanifold is a pair (S,Φ) where S is a
d-dimensional manifold on its own and Φ : S −→ V is an imbedding [5]. As is
customary in mathematical physics, for the sake of brevity S will be identified
with its image Φ(S) in V . D − d is called the co-dimension of S in V .

At any p ∈ Φ(S) one has the decomposition of the tangent space

TpV = TpS ⊕ TpS⊥

if and only if the inherited metric (or first fundamental form) Φ∗g ≡ γ is
non-degenerate at p. Henceforth, I shall assume that γ is non-degenerate
everywhere. Let us note in passing that Φ(S) is called spacelike if γ is also
positive definite. Thus, ∀p ∈ S, ∀�v ∈ TpV we have �v = �vT + �v⊥ which are
called the tangent and normal parts of �v relative to S.

Obviously, (S, γ) is a semi-Riemannian manifold on its own, and its in-
trinsic structure as such is inherited from (V, g). However, (S, γ) inherits also
extrinsic properties. Important inherited intrinsic objects are (i) the canon-
ical volume element d-form ηS associated to γ; (ii) a Levi-Civita connection
∇ such that ∇γ = 0. An equivalent interesting characterization is

∀�x, �y ∈ TS, ∇�x �y = (∇�x �y)T (1)

(where ∇ is the connection on (V, g)); and (iii) of course, the curvature of ∇
and all derived objects thereof.

Concerning the extrinsic structure, the basic object is the shape tensor
K : TS × TS −→ TS⊥, also called extrinsic curvature of S in V , defined by

∀�x, �y ∈ TS, K(�x, �y) = − (∇�x �y)⊥ . (2)

The combination of (1) and (2) provides

∀�x, �y ∈ TS, ∇�x �y = ∇�x �y −K(�x, �y) .

An equivalent way of expressing the same is

∀ω ∈ T ∗S, Φ∗(∇ω) = ∇(Φ∗ω) + ω(K)

where by definition ω(K)(�x, �y) = ω (K(�x, �y)) for all �x, �y ∈ TS.
The shape tensor contains the information concerning the “shape” of Φ(S)

within V along all directions normal to Φ(S). Observe that K(�x, �y) ∈ TS⊥.
If one chooses a particular normal direction �n ∈ TS⊥, then one defines a
2-covariant symmetric tensor field K�n ∈ T(0,2)S by means of

K�n(�x, �y) = n(K)(�x, �y) = g (�n,K(�x, �y)) , ∀�x, �y ∈ TS
which is called the second fundamental form of S in (V, g) relative to �n.
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3. The mean curvature vector

The main object to be used in this contribution is the mean curvature vector
�H of S in (V, g). This is an averaged version of the shape tensor defined by

�H = trK, �H ∈ TS⊥

where the trace tr is taken with respect to γ, of course. Each component of
�H along a particular normal direction, that is to say, g( �H,�n) (= tr K�n) is
termed “expansion along �n” in some physical applications.

The classical interpretation of �H can be understood as follows. Let us
start with the simplest case d = 1, so that S is a curve in V . Then there
is only one independent tangent vector, say �x, and (∇�x �x)⊥ = −K = − �H is
simply (minus) the proper acceleration vector of the curve. In other words, S
is a geodesic if and only if K = 0 (equivalently in this case, �H = �0). Hence, an
immediate and standard generalization of a geodesic to arbitrary codimension
d is: “S is totally geodesic if and only ifK = 0”. Totally geodesic submanifolds
are those such that all geodesics within (S, γ) are geodesics on (V, g).

Nevertheless, one can also generalize the concept of geodesic to arbitrary
d by assuming just that �H = �0. To grasp the meaning of this condition,
let us first consider the opposite extreme case: d = D − 1 or codimension
1. Then, S is a hypersurface and there exists only one independent normal
direction, say �n, so that necessarily �H = θ�n where θ is the (only) expansion,
or divergence. Classical results imply that the vanishing of �H (ergo θ = 0)
defines the situation where there is no local variation of volume along the
normal direction. Actually, this interpretation remains valid for arbitrary d.
Indeed, let �ξ be an arbitrary C1 vector field on V defined on a neighbourhood
of S, and let {ϕτ}τ∈I be its flow, that is its local one-parameter group of
local transformations, where τ is the canonical parameter and I " 0 is a real
interval. This defines a one-parameter family of surfaces Sτ ≡ ϕτ (S) in V ,
with corresponding imbeddings Φτ : S → V given by Φτ = ϕτ ◦ Φ. Observe
that S0 = S. Denoting by ηSτ

their associated canonical volume element
d-forms, it is a matter of simple calculation to get

dηSτ

dτ

∣∣∣∣
τ=0

=
1
2
tr
[
Φ∗(£�ξ

g)
]
ηS

where £�ξ
is the Lie derivative with respect to �ξ. Another straightforward

computation using the standard formulae relating the connections on ∇ and
∇ leads to

1
2
tr
[
Φ∗(£�ξ g)

]
= div(ϕ∗ξ) + g(�ξ, �H) (3)
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where div is the divergence operator on S. Combining the two previous for-
mulas one readily gets the expression for the variation of d-volume:

dVSτ

dτ

∣∣∣∣
τ=0

=
∫
S

(
div�̄ξ + g(�ξ, �H)

)
ηS

where VSτ =
∫
Sτ

ηSτ
is the volume of Sτ . In summary:

Among the set of all submanifolds without boundary (or with a fixed boundary
under appropriate restrictions) those of extremal volume must have �H = �0.

4. Lorentzian case. Future-trapped submanifolds

If (V, g) is a proper Riemannian manifold, then g( �H, �H) ≥ 0 and the only
distinguished case is g( �H, �H) = 0 which is equivalent to �H = �0: a extremal
submanifold. However, in general semi-Riemannian manifolds g( �H, �H) can be
also negative, as well as zero with non-vanishing �H. Thus, new possibilities
and distinguished cases arise.

To fix ideas, let us concentrate in the physically relevant case of a Lorent-
zian manifold (V, g) with signature (–,+,. . . ,+). Let (S, γ) be spacelike. Then,
�H can be classified according to its causal character:

g( �H, �H) =

⎧⎪⎨⎪⎩
> 0 �H is spacelike
= 0 �H is null (or zero)
< 0 �H is timelike

Of course, this sign can change from point to point of S. Recall that non-
spacelike vectors can be subdivided into future- and past-pointing. Hence, S
can be classified as (omitting past duals) [4, 6]:

1. future trapped if �H is timelike and future-pointing all over S.

2. nearly future trapped if �H is non-spacelike and future-pointing all over
S, and timelike at least at a point of S.

3. marginally future trapped if �H is null and future-pointing all over S, and
non-zero at least at a point of S.

4. extremal or symmetric if �H = �0 all over S.

5. absolutely non-trapped if �H is spacelike all over S.

The original definition of “closed trapped surface”, which is of paramount
importance in General Relativity (D = 4), is due to Penrose [1, 2, 3] and
was for codimension two, in which case points 1, 4 and 5 coincide with the
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standard nomenclature; point 2 was coined in [4], while 3 is more general than
the standard concept in GR (e.g. [2, 3]) —still, all standard marginally trapped
(D−2)-surfaces are included in 3—. On the other hand, the above terminology
is unusual for the cases d = D − 1 or d = 1, see [4, 6] for explanations.

5. Applications

One of the advantages of having defined trapped submanifolds via �H is —apart
from being generalizable to arbitrary codimension and thereby comparable
with well-known cases such as maximal hypersurfaces and geodesics— that
many simple results and applications can be derived. As an example, let
us consider the case in which �ξ is a conformal Killing vector £�ξg = 2Ψg
(including the particular cases of homotheties (Ψ =const.) and proper Killing
vectors (Ψ = 0)). Then formula (3) specializes to Ψ d = div(ϕ∗ξ) + g(�ξ, �H) so
that, integrating over any closed S (i.e. compact without boundary) we get∫

S
ΨηS =

1
d

∫
S
g(�ξ, �H)ηS .

Therefore, if Ψ|S has a sign, then g(�ξ, �H) must have the same sign, clearly
restricting the possibility of �H being non-spacelike. For instance, if �ξ is time-
like, then �H (if non-spacelike) must be oppositely directed to sign(Ψ|S)�ξ; in
particular, if Ψ = 0, then there cannot be closed (nearly, marginally) trapped
submanifolds at all [4, 6]. Analogously, if �ξ is null on S and Ψ|S = 0, then
the only possibility for a non-spacelike �H is that the mean curvature vector
be null and proportional to �ξ.

Specific consequences of the above are, for example, [4, 6, 7]

• that in Robertson-Walker spacetimes (where there is a conformal Killing
vector), closed spacelike geodesics are forbiden (!), and closed subman-
ifolds can only be past-trapped if the model is expanding [4, 6]; fur-
thermore, there cannot be maximal closed hypersurfaces, nor minimal
surfaces [4, 6].

• in stationary regions of (V, g), any marginally trapped, nearly trapped,
or trapped submanifold is necessarily non-closed and non-orthogonal to
the timelike Killing vector [4, 6].

• in regions with a null Killing vector �ξ, all trapped or nearly trapped
submanifolds must be non-closed and non-orthogonal to �ξ, and any mar-
ginally trapped submanifold must have a mean curvature vector parallel
(and orthogonal!) to the null Killing vector.
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• the impossibility of existence of closed trapped surfaces (co-dimension 2)
in spacetimes (arbitrary dimension) with vanishing curvature invariants
[7]. This includes, in particular, the case of pp-waves [4, 6, 7]. This
has applications to modern string theories, implying that the spacetimes
with vanishing curvature invariants, which are in particular exact solu-
tions of the full non-linear theory, do not posses any horizons.

More details and applications can be found in [4, 6, 7, 8].
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Departamento de Matemática, Universidade de Évora
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1. The metric

In this short communication we show some computations about the curvature
of a metric defined on the twistor space of a symplectic manifold.

Let (M,ω,∇) be a symplectic manifold endowed with a symplectic con-
nection (that is ∇ω = 0, T∇ = 0). Recall that the twistor space

Z =
{
j ∈ EndTxM : x ∈M, j2 = −1, ω type (1,1) for j and ω( , j ) > 0

}
is a bundle π : Z → M , with obvious projection, together with an almost
complex structure J∇ defined as follows. First, notice the connection induces
a splitting

0 −→ V −→ TZ = H∇ ⊕ V dπ−→ π∗TM −→ 0

into horizontal and vertical vectors, which is to be preserved by J∇. Since
the fibres of Z are hermitian symmetric spaces Sp(2n,R)/U(n) — the Siegel
domain —, we may identify

Vj = {A ∈ sp(π∗TM,π∗ω) : Aj = −jA}

and hence J∇
j acts like left multiplication by j : J∇

j (A) = jA.
On the horizontal part, the twistor almost complex structure is defined in

a tautological fashion as j itself, up to the bundle isomorphism dπ| : H∇ →
π∗TM which occurs pointwise: thus J∇

j (X) = (dπ)−1jdπ(X), ∀X horizontal.
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Notice that we understand that j ∈ Z also belongs to End (π∗TM)j, so
there exists a canonical section Φ of the endomorphisms bundle defined by
Φj = j.

In [1,2] a few properties and examples of this twistor theory are explored.
Between them, the integrability equation is recalled (cf. [3]), dependent on
the curvature of ∇ only. A natural hermitian metric on Z was also considered
in [1,2] and our aim now is to find the sectional curvature in a special case.
First we define its associated non-degenerate 2-form Ω∇. By analogy with the
Killing form in Lie algebra theory and a Cartan’s decomposition of sp(2n,R) =
u(n)⊕m, the subspace m playing the role of Vj, one defines a symplectic form
on Z by Ω∇ = t π∗ω − τ , where t ∈]0,+∞[ is a fixed parameter and

τ(X,Y ) =
1
2
Tr (PX)Φ(PY ).

P is the projection TZ onto V with kernel H∇, thus a V-valued 1-form on Z.
It is easy to see that J∇ is compatible with Ω∇ and that the induced metric
is positive definite. The following results are proved in the cited thesis.

Theorem 1. Ω∇ is closed iff ∇ is flat. In such case, Z is a Kähler manifold.

Let 〈 , 〉 be the induced metric, so that

〈X,Y 〉 = t π∗ω(X,J ∇Y ) +
1
2
Tr (PXPY )

and thus H∇ ⊥ V.

Lemma 2. P is a V ⊂ End (π∗TM)-valued 1-form on Z. The connection
D = π∗∇−P on π∗TM preserves V and hence induces a new linear connection
D over the twistor space such that DJ∇ = 0 and D preserves the splitting of
TZ. Moreover, the torsion TD = P (π∗R∇)− P ∧ dπ.

Let ·h denote the horizontal part of any tangent-valued tensor.

Theorem 3. (i) The Levi-Civita connection of 〈 , 〉 is given by

DXY = DXY − PY (π∗X)− 1
2
P (π∗R∇

X,Y ) + S(X,Y )

where S is symmetric and defined both by

〈P (S(X,Y )), A〉 = 〈Aπ∗X,π∗Y 〉, ∀A ∈ V,

and
〈Sh(X,B), Y 〉 =

1
2
〈P (π∗R∇

X,Y ), B〉, ∀Y ∈ H∇.
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Hence for X,Y ∈ H∇ and A,B ∈ V we have

P (S(X,A)) = P (S(A,B)) = 0,
Sh(X,Y ) = Sh(A,B) = 0.

(ii) The fibres π−1(x), x ∈M , are totally geodesic in ZM .
(iii) If ∇ is flat, then DJ∇ = 0.

One may write P (S(X,Y )) explicitly and construct a symplectic-ortho-
normal basis of V induced by a given such basis on H∇. We show the first of
these assertions.

Proposition 4. For X,Y horizontal

Sj(X,Y ) = − t
2

{
ω(X, )jY + ω(jY, )X + ω(jX, )Y + ω(Y, )jX

}
.

In particular, 〈Sj(X,Y )X,Y 〉 = 1
2

(
〈X,Y 〉2 + ‖X‖2|Y ‖2 + t2ω(X,Y )2

)
and

〈Sj(X,X)Y, Y 〉 = 〈X,Y 〉2 − t2ω(X,Y )2.

The proof of the last result is accomplished by simple verifications. The
following is the relevant linear algebra used in its discovery, explained to us by
J. Rawnsley. Since sp(2n,R) � S2R2n, the symmetric representation space,
which is irreducible under Sp(2n,R), and since

ω2(XY,ZT ) = ω(X,Z)ω(Y, T ) + ω(X,T )ω(Y,Z)

is a non-degenerate symmetric bilinear form, it follows that ω2 must be a
multiple of the Killing form of sp, ie. the trace form!

The twistor space is not compact, nor does the metric extend to any
compact space that we know. Indeed, we have not yet found a proof for the
following conjecture: if ∇ is complete, the same is true for D and D.

2. Kählerian twistor spaces

The next result appeared in [1] without a proof. Until the end of the subsection
assume R∇ = 0, ie. that the metric 〈 , 〉 is Kählerian.

Theorem 5. Let Π be a 2-plane in TjZ spanned by the orthonormal basis
{X +A,Y +B}, X, Y ∈ H∇, A,B ∈ V. Then the sectional curvature of Π is

kj(Π) = −〈RD(X +A,Y +B)(X +A), Y +B〉

= 1
2

(
‖X‖2‖Y ‖2 + 3t2ω(X,Y )2 − 〈X,Y 〉2

)
+

+‖BX −AY ‖2 − 2〈[B,A]X,Y 〉 − ‖[B,A]‖2
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where [ , ] is the commutator bracket. Thus

kj(Π)
{
> 0 for Π ⊂ H∇

< 0 for Π ⊂ V .

Proof. Following the previous theorem, notice that S is vertical only. Let U, V
be any two tangent vector fields over Z. Then

dπ
∗∇P (U, V ) = π∗∇U (PV )− π∗∇V (PU)− P [U, V ]

= DUPV + [PU,PV ]−DV PU − [PV,PU ] − P [U, V ]
= PTD(U, V ) + 2[PU,PV ] = 2[PU,PV ].

Hence, from well known connection theory,

RD = Rπ
∗∇ − dπ

∗∇P + P ∧ P = −P ∧ P.

Now let us use the notation Ruvwz = 〈RD(U, V )W,Z〉. Recall the symmetries
Ruvwz = Rwzuv = −Ruvzw and Bianchi identity Ruvwz +Rvwuz +Rwuvz = 0.
Now we want to find

−kj(Π) = 〈RD(X +A,Y +B)(X +A), Y +B〉
= Rxyxy +Rxyxb +Rxyay +Rxyab

+Rxbxy +Rxbxb +Rxbay +Rxbab
+Rayxy +Rayxb +Rayay +Rayab
+Rabxy +Rabxb +Rabay +Rabab

and, if we see this sum as a matrix, then we deduce that it is symmetric.
Notice that RD(X,Y )Z, with X,Y,Z horizontal, and RD(A,B)C, with

A,B,C vertical, can be obtained immediately from Gauss-Codazzi equations.
First, notice that the horizontal distribution is integrable when∇ is flat. Then
the horizontal leaves are immediately seen to have D, or simply π∗∇, for Levi-
Civita connection with the induced metric; hence they are flat. Finally, S is
the 2nd fundamental form, so a formula of Gauss says RD

X,Y Z = Rπ
∗∇
X,Y Z +

S(X,Z)Y − S(Y,Z)X. Therefore

−Rxyxy = 〈S(X,Y )X,Y 〉 − 〈S(X,X)Y, Y 〉
= 1

2

(
〈X,Y 〉2 + ‖X‖2|Y ‖2 + t2ω(X,Y )2

)
− 2〈X,Y 〉2 + 2t2ω(X,Y )2

)
= 1

2

(
‖X‖2|Y ‖2 + 3t2ω(X,Y )2 − 〈X,Y 〉2

)
.

which is positive, as we have deduced following proposition 4.
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By the same principles, RD
A,BC = RDA,BC = [−P ∧P (A,B), C] = −[[A,B], C].

For the (totally geodesic) vertical fibres of Z, we recall that

Rabab = −〈[[A,B], A], B〉 = ‖[B,A]‖2

is minus the sectional curvature of the hyperbolic space Sp(2n,R)/U(n). We
also note that the previous curvatures return, respectively, to the horizontal
and vertical subspaces. Hence we get

Rxyxb = Rxyay = Rxbab = Rayab = 0.

Now we want to find Rxbay. First we deduce via theorem 3 the formulae
DAX = DAX, DXA = DXA − AX, DAB = DAB. Also, the Lie bracket
[X,B] = DXB−DBX − TD(X,B) = DXB−DBX −BX by lemma 2. Thus

RD
X,BA = DXDBA−DBDXA−D[X,B]A

= DXDBA−DBDXA+ DB(AX)−DDXB−DBX−BXA
= DXDBA− (DBA)X −DBDXA+DB(AX)
−D[X,B]A−A(DBX)−ABX

= RDX,BA−ABX = −ABX.

Hence Rxbay = −〈ABX,Y 〉, Rxbxb = 〈B2X,X〉 = −‖BX‖2 and

Rxyab = Rabxy = −Rxaby −Rbxay = 〈BAX,Y 〉 − 〈ABX,Y 〉 = 〈[B,A]X,Y 〉.

Finally

kj(Π) = −Rxyxy − 2Rxyab −Rxbxb − 2Rxbay −Rayay −Rabab
= −Rxyxy + 2〈[A,B]X,Y 〉+ ‖BX‖2 + 2〈ABX,Y 〉+ ‖AY ‖2 −Rabab
= −Rxyxy + 2〈[A,B]X,Y 〉+ ‖BX −AY ‖2 −Rabab

as we wished. The second part of the result follows by Cauchy inequality. �

It is possible to prove that the sectional curvature attains the value −4 in
vertical planes and a the maximum value 2 in horizontal planes. The following
problem is closely related to this.

3. A problem in variational calculus

Let T be a real vector space. Let R be a Riemannian curvature-type tensor,
ie. an element of

∧2 T ∗⊗
∧2 T ∗ satisfying Bianchi identity and R(u, v, z, w) =

R(z,w, u, v). Let
k : Gr(2, T )→ R
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be the induced sectional curvature function on the real Grassmannian of 2-
planes of T . Let H ⊕ V be a direct sum decomposition of T and suppose k is
positive in H and negative in V . Then, are the maximum and minimum of k,
respectively, in H and V ?

We do not know a reference for this result — which we believe to be true.
We thank any comments or guidance to the related literature.
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1. Poisson coalgebra symmetry and integrability

A systematic approach to the construction of integrable and superintegrable
Hamiltonian systems with N degrees of freedom from Poisson coalgebras
has been recently introduced (see [1, 2, 3] and references therein). From
this perspective, a specific class of Poisson coalgebras associated to quantum
groups [4, 5] can be understood as the dynamical symmetries that generate
integrable deformations of well-known dynamical systems with an arbitrary
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number of degrees of freedom. In this contribution we show that one of such
deformations can be interpreted in the 2D case as the algebraic structure that
underlies the integrability of the geodesic dynamics on certain spaces of vari-
able curvature. Moreover, the formalism allows for the definition of a superin-
tegrable geodesic motion, which is shown to live on the so-called Cayley–Klein
(CK) spaces of constant curvature. A more detailed exposition of these results
can be found in [6], and their application to the definition of certain integrable
potentials on the spaces here studied will be presented elsewhere [7].

Let us briefly recall the basics of this construction by using the non-
deformed Poisson coalgebra (sl(2),Δ), which is defined by the following Pois-
son brackets and coproduct map Δ:

{J3, J+} = 2J+, {J3, J−} = −2J−, {J−, J+} = 4J3, (1)
Δ(Ji) = Ji ⊗ 1 + 1⊗ Ji, i = +,−, 3. (2)

The Casimir function is C = J−J+ − J2
3 and a one-particle symplectic realiza-

tion of (1), labeled by C(1) = b1, is given by

J
(1)
− = q21, J

(1)
+ = p21 +

b1
q21
, J

(1)
3 = q1p1. (3)

A two-particle symplectic realization is obtained through the coproduct (2):

J
(2)
− = q21 + q22, J

(2)
+ = p21 + p22 +

b1
q21

+
b2
q22
, J

(2)
3 = q1p1 + q2p2. (4)

Thus, given any function H defined on the generators of (sl(2),Δ), the coal-
gebra symmetry ensures that the associated two-body Hamiltonian H(2) :=
Δ(H) = H(J (2)

− , J
(2)
+ , J

(2)
3 ) is integrable, since the two-particle Casimir

C(2) = Δ(C) = (q1p2 − q2p1)2 +
(
b1
q22
q21

+ b2
q21
q22

)
+ b1 + b2, (5)

Poisson commutes with H(2). Some well-known (super)integrable Hamiltonian
systems can be recovered as specific choices for H(2). In particular, if we set
H = 1

2J+ + F (J−), where F is an arbitrary smooth function, we find the
following family of integrable systems defined on the 2D Euclidean space

H(2) =
1
2
(
p21 + p22

)
+
b1
2q21

+
b2
2q22

+F
(
q21 + q22

)
. (6)

The case F (J−) = ω2J− = ω2(q21 +q22) is just the 2D Smorodinsky–Winternitz
system [8, 9, 10]. Obviously, the free motion on the 2D Euclidean space is
described by H = 1

2J+, and the N -body generalization of this construction [2]
follows from the N -body coassociative iteration of the coproduct map (2).
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2. q-Poisson coalgebras

By considering coalgebra deformations of the previous construction we are
able to find integrable deformations of (6). For instance, the non-standard
quantum deformation of sl(2) [11] is associated to the q-Poisson coalgebra:

{J3, J+} = 2J+ cosh zJ−, {J3, J−} = −2
sinh zJ−

z
, {J−, J+} = 4J3, (7)

Δz(J−) = J− ⊗ 1 + 1⊗ J−, Δz(J+,3) = J+,3 ⊗ ezJ−+e−zJ− ⊗ J+,3, (8)

where z = ln q is a real deformation parameter. The deformed Casimir is

Cz =
sinh zJ−

z
J+ − J2

3 , (9)

and we consider the bi = 0 deformed symplectic realization [2] with C(1)
z = 0:

J
(1)
− = q21 , J

(1)
+ =

sinh zq21
zq21

p21, J
(1)
3 =

sinh zq21
zq21

q1p1. (10)

The coproduct Δz (8) provides the two-particle realization of (7):

J
(2)
− = q21 + q22, J

(2)
+ =

sinh zq21
zq21

ezq
2
2p21 +

sinh zq22
zq22

e−zq
2
1p22,

J
(2)
3 =

sinh zq21
zq21

ezq
2
2q1p1 +

sinh zq22
zq22

e−zq
2
1q2p2.

(11)

Consequently, the two-particle Casimir given by

C(2)
z = Δz(Cz) =

sinh zq21
zq21

sinh zq22
zq22

e−zq
2
1ezq

2
2 (q1p2 − q2p1)2 , (12)

is, by construction, a constant of the motion for any Hamiltonian H(2)
z =

Δz(H) = H(J (2)
− , J

(2)
+ , J

(2)
3 ).

Therefore, if we consider H = 1
2J+, we find the Hamiltonian for an integ-

rable deformation of the free motion on the 2D Euclidean space, namely

HI
z =

1
2

(
sinh zq21
zq21

ezq
2
2p21 +

sinh zq22
zq22

e−zq
2
1p22

)
. (13)

It can also be shown that a maximally superintegrable deformation (an addi-
tional constant of the motion does exist [2]) of the free motion is achieved by
considering H = 1

2J+ezJ− , which gives rise to the slightly different Hamilto-
nian

HS
z =

1
2

(
sinh zq21
zq21

ezq
2
1e2zq22p21 +

sinh zq22
zq22

ezq
2
2p22

)
. (14)

This contribution focuses on the geometric interpretation of the manifolds on
which the Hamiltonians (13) and (14) describe geodesic motions.
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3. Spaces with non-constant curvature

The kinetic energy T I
z (qi, pi) coming from (13) can be rewritten as the Lag-

rangian

T I
z (qi, q̇i) =

1
2

(
zq21

sinh zq21
e−zq

2
2 q̇21 +

zq22
sinh zq22

ezq
2
1 q̇22

)
, (15)

that defines a geodesic flow on a 2D Riemannian space with a definite positive
metric with signature diag(+,+) given by

ds2 =
2zq21

sinh zq21
e−zq

2
2 dq21 +

2zq22
sinh zq22

ezq
2
1 dq22. (16)

The corresponding Gaussian curvature K reads

K(q1, q2; z) = −z sinh
(
z(q21 + q22)

)
, (17)

so that the space is of hyperbolic type, with a variable negative curvature, and
endowed with a radial symmetry. Now we introduce a pair of new coordinates
(ρ, θ) defined through

cosh(λ1ρ) = exp
{
z(q21 + q22)

}
, sin2(λ2θ) =

exp
{
2zq21
}
− 1

exp
{
2z(q21 + q22)

}
− 1

, (18)

where both λ1 =
√
z and λ2 �= 0 can be either real or pure imaginary numbers.

In this way, we will be able to rewrite the initial metric (16) as a family
of six metrics on spaces with different signature and curvature. In fact, under
the transformation (18), the metric (16) takes a simpler form:

ds2 =
1

cosh(λ1ρ)

(
dρ2 + λ2

2

sinh2(λ1ρ)
λ2

1

dθ2
)

=
1

cosh(λ1ρ)
ds20. (19)

In these new coordinates the Gaussian curvature (17) turns out to be

K(ρ) = −1
2
λ2

1

sinh2(λ1ρ)
cosh(λ1ρ)

. (20)

Now, by recalling the description of the 2D CK spaces in terms of geodesic
polar coordinates [12, 13], we find that ds20 is just the CK metric provided that
we identify z = λ2

1 ≡ −κ1 and λ2
2 ≡ κ2. Therefore, by taking into account the

possible values of z and λ2 six (deformed) spaces arise:

• When λ2 is real, we get a 2D deformed sphere S2
z (z < 0), and a deformed

hyperbolic or Lobachewski space H2
z (z > 0).
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• When λ2 is imaginary, we obtain a deformation of the (1+1)D anti-de
Sitter spacetime AdS1+1

z (z < 0) and of the de Sitter one dS1+1
z (z > 0).

• In the non-deformed case z → 0, the Euclidean space E2 (λ2 real) and
Minkowskian spacetime M1+1 (λ2 imaginary) are recovered.

Thus the variable curvature of the space is directly related to the deform-
ation parameter z and the “additional” parameter λ2 governs the signature of
the metric. The integration of the geodesic motion on all these spaces can be
explicitly performed in terms of elliptic integrals [7].

4. Spaces with constant curvature

Let us consider now the superintegrable Hamiltonian (14). The associated
metric is given by

ds2 =
2zq21

sinh zq21
e−zq

2
1e−2zq22 dq21 +

2zq22
sinh zq22

e−zq
2
2 dq22. (21)

Surprisingly, in this case the Gaussian curvature turns out to be constant and
coincides with the deformation parameter K = z.

Under the change of coordinates (18), the metric (21) becomes

ds2 =
1

cosh2(λ1ρ)

(
dρ2 + λ2

2

sinh2(λ1ρ)
λ2

1

dθ2
)

=
1

cosh2(λ1ρ)
ds20, (22)

where ds20 is again the metric of the 2D CK spaces. As these spaces are
also of constant curvature, a further change of coordinates should allow us to
reproduce exactly the CK metric. By introducing a new radial coordinate as

r =
∫ ρ

0

dx
cosh(λ1x)

, (23)

we finally obtain

ds2 = dr2 + λ2
2

sin2(λ1r)
λ2

1

dθ2, (24)

which is just the CK metric written in geodesic polar coordinates (r, θ) and
provided that z = λ2

1 ≡ κ1 and λ2
2 ≡ κ2 [13]. Note that in the limiting case

z → 0 the coordinate ρ→ r.
Therefore, we conclude that (at least in 2D) the existence of an additional

integral of the motion leads to a geodesic dynamics on a set of spaces with
constant curvature. Finally, we stress that, as a consequence of the underlying
coalgebra structure, the generalization of the approach here presented to N -
dimensions can be performed and seems worthy to be investigated.
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Abstract.
We discuss the connection between the Fock space introduced by Ashtekar and
Pierri for the quantization of the cylindrically symmetric Einstein-Rosen gravit-
ational waves and its perturbative counterpart based on the concept of particle
that arises in linearized gravity with a de Donder gauge. We show that the vacua
of these two Fock spaces cannot be related by means of a power series in the
gravitational constant. This result is interpreted as indicating that the two Fock
quantizations are unitarily inequivalent.
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1. Introduction

The ability to provide a model with the field complexity of general relativity,
but with known exact solutions which describe gravitational waves, has en-
dowed the family of Einstein-Rosen (ER) spacetimes with a prominent role in
the analysis of the quantization of gravitational systems [1, 2]. A key remark
for the canonical quantization of these waves is that the dynamics of the ER
spacetimes is equivalent to that of a cylindrically symmetric, massless scalar
field propagating on an auxiliary Minkowski background [1]. Thanks to this
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fact, one can recast the system as three-dimensional gravity coupled to a scalar
field with rotational symmetry. Employing this three-dimensional formulation,
a consistent and essentially complete quantization of the ER waves was ob-
tained by Ashtekar and Pierri (AP). This quantization was achieved after a
careful treatment of the regularity conditions at the symmetry axis, and of
the boundary conditions at spatial infinity that ensure asymptotic flatness in
cylindrical gravity [2].

In the AP quantization, the Hilbert space is the Fock space correspond-
ing to the rotationally symmetric scalar field that propagates in the three-
dimensional, auxiliary Minkowski spacetime. An important issue that has
only recently been considered [4] is whether this space is the kind of Fock
space that one would introduce in a standard perturbative treatment of the
model and, if they differ, what relation exists between them. The main aim
of this contribution is to discuss this point. This is a fundamental question in
order to answer whether one can or cannot attain the correct non-perturbative
results by adopting a perturbative approach. In our analysis, we will adopt
units such that c = � = 1, with c being the speed of light and � the Planck
constant. We also call G the Newton constant per unit length in the direction
of the symmetry axis.

2. ER waves and AP quantization

The ER waves are linearly polarized, cylindrical waves in vacuum general
relativity. They can be described by the metric

ds2 = e−ψ
[
−N2dt2 + eγ(dR +NRdt)2 + (8Gr)2dθ2

]
+ eψdZ2. (1)

All these metric functions depend only on the radial and time coordinates,
R and t. Z is the coordinate of the symmetry axis and θ ∈ S1 is the axial
coordinate. The lapse N and the radial shift NR can be fixed by remov-
ing the gauge-freedom associated with the Hamiltonian and diffeomorphism
constraints [4]. An admissible gauge is provided by the AP gauge conditions
r = R/(8G) and pγ = 0, where pγ is the canonical momentum of γ. In this
manner, and imposing regularity on the axis R = 0, one attains a reduced
system whose metric can be written in the form [2, 4]

ds2 = e−ψ
[
eγ(dT 2 + dR2) + R2dθ2

]
+ eψdZ2, γ =

∫ R

0

dR̃
R̃

2

[
(ψ′)2 +

(8Gpψ)2

R̃2

]
.

The field ψ (with momentum pψ) provides the only physical degree of freedom,
and γ (up to a constant factor) can be interpreted as the energy in a circle of
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radius R of a free, rotationally symmetric scalar field ψ in three dimensions.
Actually, the reduced dynamics of ψ is generated by the free-field Hamilto-
nian H0 that would provide the total energy according to this interpretation,
namely 8GH0 = limR→∞ γ := γ∞. Thus, the field ψ satisfies a cylindrical wave
equation, whose regular solutions can be obtained in terms of the zeroth-order
Bessel function J0: ψ(R,T ) =

√
4G
∫∞
0 dk J0(Rk)

[
A(k)e−ikT +A†(k)eikT

]
.

The function A(k) and its complex conjugate A†(k) are determined by the
initial conditions and play the role of annihilation and creation variables.

The AP quantization is essentially based on the introduction of a Fock
space in which A†(k) and A(k) are promoted to creation and annihilation
operators [2] (with k ∈ R+). The field ψ (e.g. at T = 0) becomes then
an operator valued-distribution ψ̂(R). In order to obtain a truly well-defined
operator, it suffices to insert a regulator g(k) in the k-decomposition of the
field, where g is any square-integrable function of k ∈ R+. In the following,
we will concentrate our attention on the case in which g(k) corresponds to a
cut-off kc, i.e., g(k) = Θ(kc − k) with Θ being the Heaviside function.

3. Field redefinition and linearized theory

In standard perturbative treatments of gravity, the basic metric fields are linear
in the excess of the metric around the Minkowski background. Expanding the
gravitational action in powers of these basic fields, the quadratic term provides
the action of linearized gravity, while the higher-order terms can be regarded
as describing interactions. At this stage, it is convenient to adopt a gauge that
simplifies the linearized equations. A frequently used gauge is the de Donder or
Lorentz gauge, in which the linearized gravitational equations reduce to wave
equations, so that one easily arrives at a notion of particle. When considering
the full gravitational system, rather than its linearization, one would correct
the de Donder gauge with higher-order terms in the fields to ensure that it
continues to be well posed.

We will now show that the gauge fixing introduced by AP is nothing but a
valid generalization of the de Donder gauge from linearized to full ER gravity.
Therefore, adopting it as a suitable gauge, the relation between the AP and
the perturbative treatments follows straightforwardly from the transformation
in configuration space that connects the metric variables used in each of the
two descriptions. Let us start by introducing a different field parametrization
for the ER metric (1) such that the new (over-barred) fields are linear in the
metric excess around Minkowski,

ds2 = −(1− 2N̄ − ψ̄)dt2 + 2N̄RdtdR + (1 + γ̄ − ψ̄)dR2

+(R2−R2ψ̄ + 16GRρ̄)dθ2 + (1 + ψ̄)dZ2.
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Note that this new parametrization can also be regarded as the linearization of
the metric (1) around the background solution. In addition, our field redefin-
ition can be easily completed into a canonical transformation. One may then
fix the gauge freedom by simply imposing the AP gauge conditions translated
to the new canonical variables [4]. In this way, one arrives again at the reduced
model, but described in terms of the new scalar field ψ̄,

ds2 =
(
1 + γ̄[ψ̄]− ψ̄

) (
−dT 2 + dR2

)
+
R2dθ2

1 + ψ̄
+ (1 + ψ̄)dZ2,

with γ̄[ψ̄] a functional of ψ̄ (and its momentum) [4]. This basic field and its
canonical momentum are related to those of the AP formulation by means
of the canonical transformation ψ = ln (1 + ψ̄), pψ = p̄ψ̄(1 + ψ̄). It is worth
emphasizing that, whereas ψ provides a free-field realization of the reduced
ER model, the field ψ̄ displays a much more complicated evolution [4]. On the
contrary, while ψ is non-linear in the metric excess with respect to Minkowski,
the field ψ̄ can be identified as the excess of the norm of the translational
Killing vector ∂Z .

On the other hand, the linearization of the AP conditions around the
Minkowski solution (where, in particular, r = R/8G) adopts the expressions
ρ̄ = 0; p̄γ̄ = 0. It has been recently proved [4] that these linearized conditions
fix a valid gauge for the ER system in linearized gravity. With such a gauge,
the reduced model that one attains in the linearized theory has the metric

ds2l = (1− ψ̄)(−dT 2 + dR2 +R2dθ2) + (1 + ψ̄)dZ2 (2)

and, in this linearized theory, the cylindrically symmetric field ψ̄ is free [4].
We are now in an adequate position to prove that the linearization of the

AP conditions is in fact a de Donder gauge. Let hμν = gμν−ημν (μ, ν = 1, ...4)
be the excess of the spacetime metric gμν around the Minkowski metric ημν
and call h̄μν = hμν − ημνh/2, where h = hμνη

μν . The de Donder (or Lorentz)
gauge conditions are h̄ ν

μν, = 0 (in Cartesian coordinates), and provide an
acceptable gauge fixing in linearized gravity, although they still leave some
freedom in the choice of coordinates. The most straightforward way to see
that conditions ρ̄ = 0 and p̄γ̄ = 0 determine a de Donder gauge is to compute
h̄μν for the reduced metric (2); one gets that the only non-vanishing component
is h̄ZZ = 2ψ̄. Since the field ψ̄ is independent of Z, the considered gauge is
then of de Donder type. Furthermore, a detailed study of the ER system in
linearized gravity shows that the linearization of the AP gauge is indeed the
only de Donder gauge which is compatible with the requirement of regularity
of the metric at the symmetry axis, assumed to be located at the origin of the
radial coordinate [4]. We therefore conclude that the AP gauge is a non-linear
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generalization to full cylindrical gravity of the de Donder gauge compatible
with regularity .

4. Annihilation and creation variables

Once we have found the field redefinition that relates the AP and the per-
turbative descriptions of the ER model (with the same gauge fixation), we
can proceed to discuss the connection between the annihilation and creation
variables that are associated with each of these descriptions. For this, we
restrict our attention to a section of constant time, e.g. T = 0, where we
evaluate from now on our fields and momenta. Recalling that the considered
descriptions adopt as basic canonical pairs, respectively, (ψ, pψ) and (ψ̄, p̄ψ̄), a
simple exercise shows that, in each of these cases, the following variables have
the Poisson-bracket algebra of a set of particle-like variables:

A(k) :=
∫ ∞

0
dR

J0(Rk)
2
√

4G
[Rkψ(R) + i8Gpψ(R)] ; A†(k) := A∗(k); (3)

a(k) :=
∫ ∞

0
dR

J0(Rk)
2
√

4G

[
Rkψ̄(R) + i8Gp̄ψ̄(R)

]
; a†(k) := a∗(k). (4)

Here, the star denotes complex conjugation. These definitions reproduce the
annihilation and creation variables of the AP formulation and of the linearized
ER model with (regular) de Donder gauge. In order to determine the relation
between these two sets of variables, one can substitute in Eq. (4) the inverse
of transformation ψ = ln (1 + ψ̄), pψ = p̄ψ̄(1 + ψ̄), and employ the expression
of the AP canonical pair in terms of their corresponding particle-like variables:

ψ̄(R) = eψ(R) − 1, p̄ψ̄(R) = pψ(R)e−ψ(R); (5)

ψ(R) =
√

4G
∫ ∞

0
dkJ0(Rk)[A(k) +A†(k)], (6)

pψ(R) = i

∫ ∞

0
dk
J0(Rk)√

16G
Rk[−A(k) +A†(k)]. (7)

In this way, we get the expression of the variables (a, a†) in terms of their
AP counterpart, (A,A†). The next natural step is to try to promote the
particle-like variables of the perturbative description to operators in the AP
quantization by replacing the variables (A,A†) with annihilation and creation
operators. We focus the analysis on the AP quantization because it is precisely
this approach to the quantum theory which is known to be well-defined and
under control for the ER model.

However, there exist some difficulties in promoting (a, a†) to operators.
In particular, to cope with the quantum analog of expressions (5), one needs
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to regularize the operator-valued distributions ψ̂(R) and p̂ψ(R). We do this
by introducing a regulator g(k) corresponding to a generic cut-off kc, as ex-
plained in Sec. 2, thus arriving to well-defined operators ψ̂(R|g) and p̂ψ(R|g).
Functions of the field ψ such as its exponential can then be defined quantum
mechanically by means of the spectral theorem. In addition, factor ordering
ambiguities arise in the definition of the particle-like operators, although the
conclusions of our discussion can be shown to be rather insensitive to them [4].
The annihilation and creation-like operators obtained in this manner will be
called â(k|g) and â†(k|g). By construction, they are adjoint to each other. It is
not difficult to calculate their commutators; although relatively complicated,
they have the following noticeable properties [4]. Firstly, one can compute
their limit when the gravitational constant G vanishes and check that this re-
produces the algebra of a set of annihilation and creation operators restricted
to the region of wave-numbers under the cut-off. Secondly and most import-
ant, when the cut-off is removed (so that g → 1), the commutators formally
reproduce the algebra of a set of annihilation and creation operators (regard-
less of the value of G).

On the other hand, notice that, from the above expressions, the particle-
like operators that we have introduced have a non-linear dependence in

√
G.

At least formally, it is possible to expand them as power series in this constant,
â(k|g) =

∑∞
n=0(G)n/2â(n)(k|g). Increasing powers of

√
G reflect contributions

from a larger number of AP particles (with a certain factor ordering) [4]. In
this sense, we can regard

√
G as playing the role of interaction constant for

the system. In the above expansion, the leading contribution coincides with
the AP operator in the sector of particles with wave-numbers smaller than the
cut-off, â(0)(k|g) = g(k)Â(k). This is due to the fact that the canonical pair
of the perturbative approach (ψ̄, p̄ψ̄) can be considered the linearization of the
AP pair (ψ, pψ) [see Eq. (5)], whose expressions are homogeneous in

√
G.

5. The perturbative vacuum

In principle, the perturbative vacuum may be reached by considering a state
|0̄g〉 annihilated by all the introduced particle-like operators â(k|g) and taking
the limit when the cut-off is removed. The state |0̄g〉 is totally determined
from the above annihilation conditions and the requirement that it contains
no contribution from AP particles with energies above that corresponding to
the cut-off. In fact, taking into account the power series for â(k, g), |0̄g〉 can
(at least formally) be written as the AP vacuum corrected by a perturbative
series in

√
G, |0̄g〉 = |0〉 +

∑∞
n=1(G)n/2 |Φn,g〉, where |Φn,g〉 is a superposition

of non-vacuum m-particle states with wave-numbers smaller than the cut-off.
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The explicit form of |Φn,g〉 can be determined by expanding the condition
â(k|g) |0̄g〉 = 0 in powers of

√
G and imposing each order independently. In

this way, one can in particular show that |Φ1,g〉 is a sum of a three-particle
state and a one-particle state [4]. Furthermore, although the one-particle
state is partially affected by the factor ordering ambiguities that arise in the
definition of â(k|g), the form of the three-particle contribution |Φ(3)

1,g〉 can be
found unambiguously and exactly. The norm of such a state turns out to be
given by [4]

〈Φ(3)
1,g|Φ

(3)
1,g〉 =

∫ kc

0

dk1
6π2

∫ kc

0

dk2

∫ min{kc,k1+k2}

|k1−k2|

(k1 + k2 + k3) dk3
(k1 + k2 − k3)(k3 − |k1 − k2|)(k3 + |k1 − k2|)

.

This integral diverges regardless of the value of the cut-off kc since the integ-
rand is positive and there exists a simple pole at the boundary k3 = |k1−k2| of
the integration region for k3. Therefore, we see that the first-order correction
to the AP vacuum is in fact a state of infinite norm. So, the vacuum of the
perturbative approach is not accessible as a power series in

√
G in the Fock

space of the AP quantization.
It is worth remarking that the divergence of the norm of |Φ(3)

1,g〉 does not
arise as the result of taking the limit in which the cut-off disappears. If that
were the case, one could proceed to normalize first the perturbative vacuum
|0̄g〉 for fixed regulator, and remove the cut-off afterwards. However, the diver-
gence exists for all positive values of the cut-off; hence renormalization does
not solve the problem.

This result is a clear indication of the inequivalence of the Fock quantiz-
ations of the two approaches and, in any case, proves that the perturbative
vacuum is not analytic in

√
G. Hence, a standard perturbative quantum ana-

lysis fails.
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1. Introduction

In the last decade, a large body of literature has been devoted to the study
of W-algebras, and the subject still continues to be fruitful. These algebras
were first introduced as higher-conformal-spin s > 2 extensions of the Vira-
soro algebra (s = 2) through the operator product expansion of the stress-
energy tensor and primary fields in two-dimensional conformal field theory.
W-algebras have been widely used as a useful tool in two-dimensional physical
systems. Only when all (s→∞) conformal spins s ≥ 2 are considered, the al-
gebra (denoted byW∞) is proven to be of Lie type. The process of elucidating



Manuel Calixto 203

the mathematical structure underlying W algebras has led to various direc-
tions. On the one hand, geometric approaches identify the classical (� → 0)
limit w∞ of W∞ algebras with area-preserving (symplectic) diffeomorphism
algebras of two dimensional surfaces (cone and hyperboloid). On the other
hand, group-theoretic approaches identifyW∞ algebras as particular members
of a one-parameter family W∞(c) of non-isomorphic infinite-dimensional Lie-
algebras of SU(1, 1) tensor operators. Going from three-dimensional algebras
su(2) and su(1, 1) to higher-dimensional pseudo-unitary algebras su(N+, N−)
entails non-trivial problems. Some steps in this direction have been already
done in Ref. [1]. Here we just want to discuss the basic mathematical struc-
tures underlying all these constructions without entering into concrete details
(we address the interested reader to Ref. [1])

2. Underlying group-theoretic structures

Let us start by fixing notation and reminding some definitions and results on
group, tensor operator, Poisson-Lie algebras, coherent states and symbols of
a Lie group G; in particular, we shall focus on pseudo-unitary groups:

G = U(N+, N−) = {g ∈MN×N (C) / gΛg† = Λ}, N = N+ +N−, (1)

that is, groups of complex N × N matrices g that leave invariant the in-
definite metric Λ = diag(1,N+. . ., 1,−1,N−. . .,−1), which is used to raise and
lower indices. The Lie-algebra G = u(N+, N−) is generated by the step op-
erators X̂β

α with commutation relations
[
X̂β1
α1 , X̂

β2
α2

]
= �(δβ1

α2X̂
β2
α1 − δ

β2
α1X̂

β1
α2)

(we introduce the Planck constant � for convenience to discuss the classical
limit). There is a standard oscillator realization of these step operators in
terms of N boson operator variables (â†α, âβ), given by: X̂β

α = â†αâβ, with
[âβ, â†α] = �δβαI, α, β = 1, . . . N . Thus, for unitary irreducible representations
of U(N+, N−) we have the conjugation relation: (X̂β

α)† = ΛβμX̂ν
μΛνα (sum

over doubly occurring indices is understood unless otherwise stated).

Definition 1. Let G⊗ be the tensor algebra over G, and I the ideal of G⊗
generated by [X̂, Ŷ ] − (X̂ ⊗ Ŷ − Ŷ ⊗ X̂) where X̂, Ŷ ∈ G. The universal
enveloping algebra U(G) is the quotient G⊗/I. [From now on we shall drop
the ⊗ symbol in writing tensor products]

Theorem 1 (Poincaré-Birkhoff-Witt). The monomials X̂k1
α1β1

. . . X̂kn
αnβn

, with
ki ≥ 0, form a basis of U(G).

Casimir operators are especial elements of U(G), which commute with every-
thing. There are N Casimir operators for U(N+, N−), which are written as
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polynomials of degree 1, 2, . . . , N of step operators as follows:

Ĉ1 = X̂α
α , Ĉ2 = X̂β

αX̂
α
β , Ĉ3 = X̂β

αX̂
γ
β X̂

α
γ , . . . (2)

The universal enveloping algebra U(G) decomposes into factor or quotient Lie
algebras Wc(G) as follows:

Theorem 2. Let Ic =
∏N
α=1(Ĉα − �αcα)U(G) be the ideal generated by the

Casimir operators Ĉα. The quotientWc(G) = U(G)/Ic is a Lie algebra (roughly
speaking, this quotient means that we replace Ĉα by the complex c-number
Cα ≡ �αcα whenever it appears in the commutators of elements of U(G)). We
shall refer to Wc(G) as a c-tensor operator algebra.

According to Burnside’s theorem, for some critical values cα = c
(0)
α , the

infinite-dimensional Lie algebraWc(G) “collapses” to a finite-dimensional one.
In a more formal language:

Theorem 3 (Burnside). When cα, α = 1, . . . , N coincide with the eigenvalues
of Ĉα in a dc-dimensional irrep Dc of G, there exists an ideal χ ⊂ Wc(G)
such that Wc(G)/χ = sl(dc,C), or su(dc), by taking a compact real form of
the complex Lie algebra.

For other values of c the algebraWc(G) is, in general, infinite-dimensional.
For example, the standard W∞ and W1+∞ algebras appear to be distinct
members (c = 0 and c = −1/4 cases, respectively) of the one-parameter
family Wc(su(1, 1)) of non-isomorphic infinite-dimensional factor Lie-algebras
of SU(1, 1) tensor operators. It is also precisely for the specific value of c = 0
(resp. c = −1

4) that Wc(su(1, 1)) can be consistently truncated to a closed
algebra containing only those generators L̂sm with positive “conformal-spins”
s = 2, 3, 4, . . . (resp. s = 1, 2, 3, . . . ) and “conformal-dimension” m ∈ Z.

Another interesting structure related to the previous one is the group
C∗-algebra C∗(G) [in order to avoid some technical difficulties, let us restrict
ourselves to the compact G case in the next discussion]:

Definition 2. Let C∞(G) be the set of analytic complex functions Ψ on G ,

C∞(G) = {Ψ : G→ C, g 
→ Ψ(g)} . (3)

The group algebra C∗(G) is a C∗-algebra with an invariant associative *-
product (convolution product):

(Ψ ∗Ψ′)(g′) ≡
∫
G
dLgΨ(g)Ψ′(g−1 • g′), (4)

(g • g′ denotes the composition group law and dLg stands for the left Haar
measure) and an involution Ψ∗(g) ≡ Ψ̄(g−1).
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The dual space R(G) of C∞(G) consists of all generalized functions with
compact supports. The space M0(G) of all regular Borel measures with com-
pact support is a subspace of R(G). The set R(G,H) of all generalized func-
tions on G with compact supports contained in a subgroupH also forms a sub-
space of R(G). The following theorem reveals a connection between R(G, {e})
[e ∈ G denotes the identity element] and the enveloping algebra:

Theorem 4 (L. Schwartz). The algebra R(G, {e}) is isomorphic to the envel-
oping algebra U(G).

This isomorphism is apparent when we realize the Lie algebra G by left
invariant vector fields X̂L on G and consider the mapping Φ : G → R(G), X̂ 
→
ΦX̂ , defined by the formula 〈ΦX̂ |Ψ〉 ≡ (X̂LΨ)(e), ∀Ψ ∈ C∞(G), where
〈Φ|Ψ〉 ≡

∫
G d

Lg Φ̄(g)Ψ(g) denotes a scalar product and (X̂LΨ)(e) means the
action of X̂L on Ψ restricted to the identity element e ∈ G. One can also verify
the relation 〈ΦX̂1

∗ · · · ∗ ΦX̂n
|Ψ〉 = (X̂L

1 . . . X̂
L
nΨ)(e), ∀Ψ ∈ C∞(G), between

star products in R(G) and tensor products in U(G):

3. Underlying geometric structures. Classical Limit

Let us comment now on the geometric counterpart of the previous algebraic
structures, by using the language of Geometric Quantization and recalling the
Kostant-Kirillov-Souriau construction of the symplectic structure on the orbits
of the coadjoint (ir-)representations of G.

The classical limit lim�→0(i/�2)[Ψ,Ψ′](g) of the convolution commutator
[Ψ,Ψ′] = Ψ ∗Ψ′ −Ψ′ ∗Ψ corresponds to the Poisson-Lie bracket

{ψ,ψ′}PL(g) = i(Λα2β1xα1β2 − Λα1β2xα2β1)
∂ψ

∂xα1β1

∂ψ′

∂xα2β2

(5)

between smooth functions ψ ∈ C∞(G∗) on the coalgebra G∗, where xαβ, α, β =
1, . . . , N denote a coordinate system in the coalgebra G∗ = u(N+, N−)∗ � RN2

,
seen as a N2-dimensional vector space. The “quantization map” relating Ψ
and ψ is symbolically given by the expression:

Ψ(g) =
∫
G∗

dN
2
Θ

(2π�)N2 e
i
�
Θ(X̂)ψ(Θ), (6)

where g = exp(X̂) = exp(xαβX̂αβ) is an element of G and Θ = θαβΘαβ

is an element of G∗. The constraints Ĉα(x) = Cα = �αcα defined by the
Casimir operators (2) (written in terms of the coordinates xαβ instead of X̂αβ)
induce a foliation G∗ �

⋃
C OC of the coalgebra G∗ into leaves OC : coadjoint
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orbits, algebraic (flag) manifolds (see e.g. [1]). This foliation is the (classical)
analogue of the (quantum) standard Peter-Weyl decomposition of the group
algebra C∗(G):

Theorem 5 (Peter-Weyl). Let G be a compact Lie group. The group algebra
C∗(G) decomposes C∗(G) �

⊕
c∈ĜWc(G) into factor algebras Wc(G), where

Ĝ denotes the space of all (equivalence classes of) irreducible representations
of G of dimension dc.

The leaves OC admit a symplectic structure (OC ,ΩC), where ΩC denotes a
closed 2-form (a Kähler form), which can be obtained from a Kähler potential
KC as:

ΩC(z, z̄) =
∂2KC(z, z̄)
∂zαβ∂z̄σν

dzαβ ∧ dz̄σν = Ωαβ;σν
C (z, z̄)dzαβ ∧ dz̄σν , (7)

where zαβ, α > β denotes a system of complex coordinates in OC (see [1]).
After the foliation of C∞(G∗) into Poisson algebras C∞(OC), the Poisson
bracket induced on the leaves OC becomes:

{ψcl , ψcm}P (z, z̄) =
∑
αj>βj

ΩC
α1β1;α2β2

(z, z̄)
∂ψcl (z, z̄)
∂zα1β1

∂ψcm(z, z̄)
∂z̄α2β2

=

=
∑
n

fnlm(c)ψcn(z, z̄). (8)

The structure constants fnlm(c) can be obtained through the scalar product
fnlm(c) = 〈ψcn|{ψcl , ψcm}P 〉, with integration measure dμC(z, z̄) ∝ Ωn

C(z, z̄), 2n =
dim(OC), when the set {ψcn} is chosen to be orthonormal.

To each function ψ ∈ C∞(OC), one can assign its Hamiltonian vector field
Hψ ≡ {ψ, ·}P , which is divergence-free and preserves de natural volume form
dμC(z, z̄). In general, any vector field H obeying LHΩ = 0 (with LH ≡ iH ◦
d+d◦iH the Lie derivative) is called locally Hamiltonian. The space LHam(O)
of locally Hamiltonian vector fields is a subalgebra of the algebra sdiff(O) of
symplectic (volume-preserving) diffeomorphisms of O, and the space Ham(O)
of Hamiltonian vector fields is an ideal of LHam(O). The two-dimensional
case dim(O) = 2 is special because sdiff(O) = LHam(O), and the quotient
LHam(O)/Ham(O) can be identified with the first de-Rham cohomology class
H1(O,R) of O via H 
→ iHΩ.

Poisson and symplectic diffeomorphism algebras of the orbits OC+ ≡ S2

and OC− ≡ H2 (the sphere and the hyperboloid of SU(2) and SU(1, 1), re-
spectively) appear as the classical limit of factor algebras Wc+(su(2)) and
Wc−(su(1, 1)), respectively (see [1]). The classical limit means small � and
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large su(2) (resp. su(1, 1)) Casimir eigenvalues c± = s(s ± 1) [s denotes the
(conformal) spin], so that the curvature radius C± = �2c± remains finite. Let
us clarify these classical limits by making use of the operator (covariant) sym-
bols: Lc(z, z̄) ≡ 〈cz|L̂|cz〉, L̂ ∈ Wc(G), constructed as the mean value of an
operator L̂ ∈ Wc(G) in the coherent state |cz〉 (see Ref. [1] for a thorough
discussion on coherent states of U(N+, N−)). Using the resolution of unity:∫

OC

|cu〉〈cu|dμC (u, ū) = 1 (9)

for coherent states, one can define the so called star multiplication of symbols
Lc1 � L

c
2 as the symbol of the product L̂1L̂2 of two operators L̂1 and L̂2:

(Lc1 � L
c
2)(z, z̄) ≡ 〈cz|L̂1L̂2|cz〉 =

∫
OC

Lc1(z, ū)L
c
2(u, z̄)e

−s2c(z,u)dμc(u, ū), (10)

where we introduce the non-diagonal symbols Lc(z, ū) = 〈cz|L̂|cu〉/〈cz|cu〉
and the overlap s2c(z, u) ≡ − ln |〈cz|cu〉|2 can be interpreted as the square of
the distance between the points z, u on the coadjoint orbit OC . Using general
properties of coherent states, it can be easily seen that s2c(z, u) ≥ 0 tends
to infinity with c → ∞, if z �= u, and equals zero if z = u. Thus, one can
conclude that, in that limit, the domain u ≈ z gives only a contribution to
the integral (10). Decomposing the integrand near the point u = z and going
to the integration over w = u − z, it can be seen that the Poisson bracket
(8) provides the first order approximation to the star commutator for large
quantum numbers c (small �); that is:

Lc1 � L
c
2 − Lc2 � Lc1 = i {Lc1, Lc2}P + O(1/cα), (11)

i.e. the quantities 1/cα ∼ �α (inverse Casimir eigenvalues) play the role of
the Planck constant � to the α, and one uses that ds2c = Ωαβ;σν

C dzαβdz̄σν
(Hermitian Riemannian metric on OC). We address the reader to Ref. [1] for
more details.
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2

and Ujué R. Tŕıas
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Abstract. Many geometric concepts can be defined by a suitable algebraic
formalism. This point of view has interest because one can compare different
geometric structures having similar algebraic expressions. In the present paper we
study manifolds endowed with three (1,1)-tensor fields F , P and J satisfying

F 2 = ±I, P 2 = ±I, J = P ◦ F, P ◦ F ± F ◦ P = 0.

We analyze the geometries arising from the above algebraic conditions. According
to the chosen signs there exist eight different geometries. We show that, in fact,
there are only four. In particular, hypercomplex manifolds and manifolds endo-
wed with a 3-web fit in this construction.We study geometric objects associated to
these manifolds (such G-structures, connections, etc.), restrictions on dimensions,
etc., and we show significative examples.
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1. Introduction

A triple structure on a manifold M is given by three tensor fields of type (1,1),
F , P and J satisfying the relations:

i) F 2 = ε1I, P
2 = ε2I, J

2 = ε3I, where ε1, ε2, ε3 ∈ {−1,+1} and I stands
for the identity map, i.e., each one of them is an almost product or almost
complex structure.

ii) P ◦ F ± F ◦ P = 0, i.e., they commute or anti-commute.
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iii) J = P ◦ F .
These relations allow us to define four types of triple structures on a

manifold, which provide four different geometries:
1. Almost biparacomplex structure: F 2 = I, P 2 = I, P ◦ F + F ◦ P = 0.
2. Almost hyperproduct structure: F 2 = I, P 2 = I, P ◦ F − F ◦ P = 0.
3. Almost bicomplex structure: F 2 = −I, P 2 = −I, P ◦ F − F ◦ P = 0.
4. Almost hypercomplex structure: F 2 = −I, P 2 = −I, P ◦F +F ◦P = 0.
One can expect to define four other triple structures:
5. F 2 = I, P 2 = −I, P ◦ F + F ◦ P = 0; in this case, J2 = I.
6. F 2 = I, P 2 = −I, P ◦ F − F ◦ P = 0; in this case, J2 = −I.
7. F 2 = −I, P 2 = I, P ◦ F + F ◦ P = 0; in this case, J2 = I.
8. F 2 = −I, P 2 = I, P ◦ F − F ◦ P = 0; in this case, J2 = −I,

but one can prove that the conditions 1, 5 and 7, and 3, 6 and 8 define the same
triple structures. Our main aim is to compare the four geometries defined by
the four previous triple structures, which have similar algebraic definitions.

Three of these triple structures have been studied in other works. For
example, D. V. Alekseevsky and S. Marchiafava study almost hypercomplex
and almost quaternionic structures in [1]. V. Crucenanu introduces the almost
hyperproduct structures on a manifold in [3]. In this paper, he also studies
metrics and connections attached to these structures. Almost biparacomplex
structures have been deeply studied in [9]. Examples of almost biparacomplex
structures on manifolds and adapted metrics can be found in [8]. Recently,
in [4], the authors of the present work have established links among these
structures, bi-Lagrangian manifolds and symplectic ones.

We will dedicate the next sections to show the principal objects attached
to every type of triple structure. We focus our attention on the G-structure
defined by the triple structure and the existence of functorial connections
associated to them. The work [6] is a survey about this topic. At the end of
every section we show several examples of the triple structures studied.

Let (F,P, J) be a triple structure. We say that (F,P, J) is integrable if
the Nijenhuis tensor of the three tensor fields vanishes, NF = NP = NJ = 0.

Notation. If H2 = I, we denote by T+
H (M) and T−

H (M) the distributions
on M defined by the eigenvectors of Hp on Tp(M) for every p ∈ M , by H+

and H− the projections over these distributions. Also we denote by Tor∇ and
R∇ the torsion and the curvature tensors of the connection ∇, by F (M) the
principal bundle of linear frames. Definitions and basic results on functorial
connections can be found in [6].
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2. Almost biparacomplex structures

Definition 1. A manifold M has an almost biparacomplex structure if it is
endowed with two tensor fields F , P , satisfying F 2 = P 2 = I, P ◦F+F ◦P = 0.

In this case, J2 = −I andM has got three equidimensional supplementary
distributions defined by: V1 = T+

F (M), V2 = T−
F (M), V3 = T+

P (M), with
J(V1) = V2. Then dimM = 2n, with dimVi = n, i = 1, 2, 3.

An almost biparacomplex structure (F,P, J) on M defines the following
subbundle of F (M):

B =
⋃
p∈M

⎧⎪⎨⎪⎩
(X1, . . . ,Xn, Y1, . . . , Yn) ∈ Fp(M)

{X1, . . . ,Xn} basis of V1(p), {Y1, . . . , Yn} basis of V2(p),
{X1 + Y1, . . . ,Xn + Yn} basis of V3(p)

⎫⎪⎬⎪⎭ ,
which has the following structural group

ΔGL(n; R) =

{(
A 0
0 A

)
: A ∈ GL(n; R)

}
.

The Lie algebra of this group is invariant under matrix transpositions and its
first prolongation vanishes; then ΔGL(n; R) admits functorial connections.

The connection characterized by the conditions: ∇F = 0, ∇P = 0, and
Tor∇(F+X,F−Y ) = 0, for every X,Y vector fields on M , is a functorial
connection. This connection is called the canonical connection of (F,P, J).

The canonical conection characterizes the integrability of the almost bi-
paracomplex structure (F,P, J) and the ΔGL(n; R)-structure: (F,P, J) is in-
tegrable if and only if Tor∇ = 0, and, the ΔGL(n; R)-structure is integrable if
and only if Tor∇ = 0,R∇ = 0 (see the details in [9]).

Manifolds endowed with a 3-web, the tangent bundle of a manifold, and
Lie groups of even dimension are examples of manifolds which admit almost
biparacomplex structures.These examples are carefully explained in [8] and
[9].

3. Almost hyperproduct structures

Definition 2. A manifold M has an almost hyperproduct structure if it is
endowed with two tensor fields F , P , satisfying F 2 = P 2 = I, P ◦F−F ◦P = 0.

In this case, J2 = I. The manifold has got six distributions defined by
eigenvectors of F , P and J : V1 = T+

F (M), V2 = T−
F (M), V3 = T+

P (M),
V4 = T−

P (M), V5 = T+
J (M), V6 = T−

J (M). Then, one can define the following
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four distributions: V13 = V1 ∩ V3, V14 = V1 ∩ V4, V23 = V2 ∩ V3, V24 = V2 ∩ V4,
with dimVij = nij , i ∈ {1, 2}, j ∈ {3, 4}.

One almost hyperproduct structure (F,P, J) on M defines the following
subbundle of F (M):

H =
⋃
p∈M

⎧⎪⎨⎪⎩
(X1, . . . ,Xn13 , Y1, . . . , Yn14 , U1, . . . , Un23 ,W1, . . . ,Wn24) ∈ Fp(M)
{X1, . . . ,Xn13} basis of V13(p), {Y1, . . . , Yn14} basis of V14(p),
{U1, . . . , Un23} basis of V23(p), {W1, . . . ,Wn24} basis of V24(p)

⎫⎪⎬⎪⎭ .
Therefore dimM = n13 + n14 + n23 + n24 = n and there are no restrictions
over the dimension of the manifold M .

The structural group of H, Δ(n13, n14, n23, n24; R), is the image of the
product group GL(n13; R) × GL(n14; R) × GL(n23; R) × GL(n24; R) by the
diagonal inmersion in GL(n; R). The Lie algebra of this group is

Δ∗(n13, n14, n23, n24; R) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

⎞⎟⎟⎟⎟⎠ :

A ∈ gl(n13; R),
B ∈ gl(n14; R),
C ∈ gl(n23; R),
D ∈ gl(n24; R),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
The first prolongation of Δ∗(n13, n14, n23, n24; R) does not vanish; therefore,
the Lie group Δ(n13, n14, n23, n24; R) does not admit functorial connections.

The tensor fields of R4 defined in the standard basis by

F =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎠ , P =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎠
provide an elemental example of an almost hyperproduct structure in R4.

4. Almost bicomplex structures

Definition 3. A manifoldM has an almost bicomplex structure if it is endowed
with two tensor fields F , P , satisfying F 2 = P 2 = −I, P ◦ F − F ◦ P = 0.

In this case, J2 = I and M has got two distributions: V1 = T+
J (M), V2 =

T−
J (M). One can prove that Fp(Vi(p)) = Vi(p), ∀p ∈M , i = 1, 2, and then the

two distributions are even-dimensional, but these dimensions do not coincide
in general. Therefore M is also even-dimensional: dimM = 2(r + s), with
dimV1 = 2r, dimV2 = 2s.



212 Triple structures on a manifold

An almost bicomplex structure (F,P, J) on M defines the following sub-
bundle of F (M):

BC =
⋃
p∈M

⎧⎪⎨⎪⎩
(X1, . . . ,Xr, PX1, . . . , PXr, Y1, . . . , Ys, PY1, . . . , PYs) ∈ Fp(M)

{X1, . . . ,Xr, PX1, . . . PXr}basis of V1(p),
{Y1, . . . , Ys, PY1, . . . , PYs}basis of V2(p),

⎫⎪⎬⎪⎭ ,
The structural group is

Δ(r, s; C) =

{(
A 0
0 B

)
: A ∈ GL(r; C), B ∈ GL(s; C)

}
.

The Lie algebra of this group, Δ∗(r, s; C), is a subalgebra of gl(r+ s; C) which
can be considered as a Lie subalgebra of gl(2(r + s); R) by means of the real
representation of GL(r + s; C). The first prolongation of Δ∗(r, s; C) does not
vanish, and then, the Lie group Δ(r, s; C) does not admit functorial connec-
tions.

This triple structure appears naturally on the product of manifoldsM and
N ,M×N , endowed with an almost complex structure JM and JN respectively.
One can easily prove that M ×N is an almost bicomplex manifold when one
considers the tensor fields F and P defined by:

F (X, 0) = (−JM (X), 0), P (X, 0) = (JM (X), 0), ∀X ∈ X(M),
F (0, Y ) = (0, JN (Y )), P (0, Y ) = (0, JN (Y )), ∀Y ∈ X(N),

is an almost bicomplex structure on M × N . Note that J = P ◦ F is the
canonical almost product structure of M ×N . Recently, this structures have
appeared in the study of bi-Hamiltonian systems (see [5]).

5. Almost hypercomplex structures

Definition 4. A manifold M has an almost hypercomplex structure if it is
endowed with two tensor fields F , P satisfying F 2 = P 2 = −I, P◦F+F◦P = 0.

In this case, J2 = −I and neccesarily dimM = 4n.
An almost hipercomplex structure (F,P, J) on M defines the following

subbundle of F (M):

HC =
⋃
p∈M

{
(X1, FX1, PX1, JX1, . . . ,Xn, FXn, PXn, JXn) ∈ Fp(M)

{X1, . . . ,Xn} linearly independent inTp(M)

}
,
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whose structural group is the linear general group over the field of quaternions,
GL(n; H).

Alekseevsky and Marchiafava have proved that the first prolongation of the
Lie algebra of the group GL(n; H) vanishes. They attached to each GL(n; H)-
structure one D-connection, which is a particular case of functorial connection
with a condition over the torsion tensor (see the details in [1]). This connection
is called the Obata connection of the almost hypercomplex structure.

As in the case of the canonical connection of an almost biparacomplex
structure, this connection allows to characterize the integrability of the almost
hypercomplex structure and the GL(n; H)-structure associated. One has: the
triple structure (F,P, J) is integrable if and only if the torsion tensor of the
Obata connection vanishes, and the GL(n; H)-structure is integrable if and
only if the Obata connection is locally flat.

A lot of examples, such as K3-surfaces and Kählerian complex 2-dimen-
sional torus, can be found, e.g., in [2] and [7].
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(Krákow/Bregenz, 2001), J. Phys. A 35 (2002), no. 40, 8393.
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[8] R. Santamaŕıa. Examples of Manifolds with three Supplementary Dis-
tributions, Atti Sem. Mat Fis. Modena 47 (1999), 419.
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Abstract. Every affine space A can be canonically immersed as a hyperplane
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1. Introduction

Any affine space has a canonical immersion, as a hyperplane, in a vector space;
with it, affine maps can be understood as linear maps. This construction has
been studied in several places, and has applications to different fields [1–9].
Among these applications, we can point out: the (n + 1)-dimensional linear
representation of the affine group in n dimensions, barycentric calculus in
affine spaces and the projective completion of an affine space, computer-aided
geometric design, the study of solid mechanics, and the geometric description
of time-dependent mechanics. In this paper we will study some aspects of this
construction, both for affine spaces and affine bundles. We will also show that
the vector hull of some interesting affine bundles can be identified with well-
known vector bundles. More details will be given in a forthcoming paper [8].
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2. A universal problem in affine geometry

First we establish the notation. If A is an affine space (over a field K), we
denote by �A its associated vector space. The set of affine maps between the
affine spaces A and B is denoted by Aff (A,B). Remember that an affine
map f ∈ Aff (A,B) has an associated linear map, which we denote by �f ∈
Lin( �A, �B).

Let E be a vector space. Giving a proper hyperplane H ⊂ E amounts
to giving a non-vanishing linear form w : E → K, and both are related by
H = w−1(1). Now let h : H → F be an affine map with values in a vector
space. Then there exists a unique linear map h̄ : E → F prolonging h. This

map is defined by h̄(x) =

{
�h(x) if w(x) = 0

w(x)h
(

x
w(x)

)
if w(x) �= 0

Suppose we have an affine space A, a vector space Â, and an affine map
j : A→ Â. Consider the following universal property: for every vector space
F and affine map h : A→ F , there exists a unique linear map ĥ : Â→ F such
that h = ĥ ◦ j.

A
j ��

h ���
��

��
��

� Â

ĥ
���
�
�

F

Proposition 1. (Â, j) satisfies the universal property iff j is injective and
j(A) ⊂ Â is a proper hyperplane.

(Â, j) is called a vector hull of A. It is unique, up to isomorphism. We
know that there is a unique linear form w : Â→ K such that j(A) = w−1(1);
then �A is identified with w−1(0). All this can be summarized in the following
diagram:

0 �� �A
i �� Â

w �� K �� 0

A
��

j

��

The assignment h 
→ ĥ is an isomorphism Aff (A,F ) � Lin(Â, F ), and in
particular Aff (A,K) � Â∗.

Given an affine map f : A → B, there is a unique linear map f̂ : Â → B̂
such that f̂ ◦ jA = jB ◦ f . We call it the vector extension of f .

A� �

jA
��

f �� B� �

jB
��

Â
�f ����� B̂
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The assignment f 
→ f̂ is an affine inclusion Aff (A,B) ↪→ Lin(Â, B̂).

Coordinate description Consider a point e0 = a0 ∈ A and a basis (ei)i∈I
of �A. Then, with the appropriate identifications, every point in Â can be
uniquely written as x = x0e0 + xiei. A point x ∈ Â belongs to A iff x0 = 1,
and belongs to �A iff x0 = 0.

With these coordinates, the linear extension of yj = cj+Ajix
i is the linear

map yν = Aνμx
μ, with Aj0 = cj , A0

0 = 1, A0
i = 0.

3. A construction of the vector hull

Consider an affine map X : A→ �A, which can also be identified with a vector
field on A. The map X has an associated linear map �X ∈ Lin( �A, �A); if this
endomorphism is a homothety, let us call X homothetic.

The set Â of homothetic vector fields is clearly a vector space, and the
map w : Â→ K defined by �X = −w(X)Id is a nonzero linear form.

Consider the following special vector fields on A:
• Constant vector field Yu(p) = u.
• Central vector field Za,λ(p) = λ �pa = −λ �ap.

Proposition 2. Let X ∈ Â be a homothetic vector field. If w(X) = 0, then
X is a constant vector field Yu. If w(X) = λ �= 0, then X is a central vector
field Za,λ.

So the set Â is the disjoint union of constant vector fields and central
vector fields.

Proposition 3. The image of the linear map i : �A ↪→ Â given by i(u) = Yu

coincides with w−1(0). The image of the affine map j : A ↪→ Â given by
j(a) = Za,1 coincides with w−1(1).

This shows that (Â, j) is a construction of the vector hull of A. Moreover,
A� Â, f � f̂ , is a covariant functor from affine spaces to vector spaces.

4. Vector hull of an affine bundle

Let π : A→M be an affine bundle modelled on the vector bundle π : �A→M .
For each m ∈ M , Am is an affine space modelled on �Am. Consider its vector
hull jm : Am → Âm and define

Â :=
⊔
m∈M

Âm, π̂ : Â −→ M

âm 
−→ m

j : A −→ Â

am 
−→ jm(am)
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Proposition 4. π̂ is a vector bundle and j is an injective affine morphism.

The same properties as for affine spaces hold for affine bundles. Let us
review some of them.

Let E →M be a vector bundle. If f : A→ E is an affine bundle morphism
there exists a unique vector bundle morphism f :̂ Â→ E such that fˆ◦ j = f .

Similarly, if f : A→ B is an affine bundle morphism, there exists a unique
vector bundle morphism f̂ : Â→ B̂ such that f̂ ◦ jA = jB ◦ f .

Suppose we have an exact sequence of vector bundles over M

0 �� �A
�j ��F

w ��M ×R ��0

where w−1(1) is isomorphic to the affine bundle A. Then we can identify
F with the vector hull Â. In the next sections this property will be used
to identify the vector hull of some jet bundles with some particular vector
bundles.

5. Vector hull of jet bundles over R

First order case

Let ρ : M → R be a bundle. Consider its first order jet manifold J1ρ:

J1ρ
ρ1,0 ��

ρ1
���

��
��

��
� M

ρ

��
R

(t, qi, vi)
ρ1,0 ��

ρ1
�������������

(t, qi)

ρ

��
t

The bundle ρ1,0 is affine, and it is modelled on the vertical vector bundle of ρ,
which is Vρ = Ker Tρ ⊂ TM . The vertical bundle Vρ is locally generated by
the vector fields { ∂

∂qi }.
There is a canonical immersion j : J1ρ → TM , defined by j1t ξ 
→ ξ̇(t); in

coordinates, (t, qi, vi) 
→ (t, qi; 1, vi). Its image coincides with dt−1(1) in the

exact sequence 0→ Vρ
�j−→ TM dt−→M ×R→ 0. Therefore

Ĵ1ρ = TM.

Higher order case

Consider now the k-th order jet bundle of ρ, Jkρ → R, with coordinates
(t, qi(0), q

i
(1), . . . , q

i
(k−1), q

i
(k)). The bundle ρk,k−1 : Jkρ → Jk−1ρ is affine, and it
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is modelled on the vertical vector bundle of ρk−1,k−2, which is Vρk−1,k−2 =
Ker Tρk−1,k−2 ⊂ TJk−1ρ. This vertical bundle is locally generated by the
vector fields ∂

∂qi
(k−1)

.

There is a canonical immersion of Jkρ into TJk−1ρ:

j : Jkρ −→ TJk−1ρ

jkt ξ 
−→ (jk−1ξ).(t)

The Cartan distribution on Jk−1ρ (denoted by Cρk−1,k−2) is the distribution
generated by the vectors tangent to (k − 1)-jet prolongations of sections of ρ.
A local basis for Cρk−1,k−2 is given by the vector fields

∂

∂t
+
k−2∑
l=0

qi(l+1)

∂

∂qi
(l)

,
∂

∂q1(k−1)

, . . . ,
∂

∂qn(k−1)

.

It is easily seen that Im(j) ⊂ Cρk−1,k−2 coincides with dt−1(1) in the
exact sequence

0 �� Vρk−1,k−2
�j �� Cρk−1,k−2

dt �� Jk−1ρ×R �� 0

Therefore
Ĵkρ = Cρk−1,k−2.

6. Vector hull of J1π over an arbitrary base

Let π : M → B be a bundle. We consider its first-order jet manifold J1π, with
coordinates (xi, uα, uαi ). The projection π1,0 : J1π → M is an affine bundle
modelled on the vector bundle Vπ ⊗ π∗(T∗B)→M.

We have an inclusion

Vπ ⊗ π∗(T∗B) � Hom(π∗TB,Vπ) ⊂ Hom(π∗TB,TM)

characterized by Vπ ⊗ π∗(T∗B) = {A ∈ Hom(π∗TB,TM) | Tπ ◦ A = 0}. On
the other hand, each j1bφ ∈ J1π induces a homomorphism

(π∗TB)m −→ TmM (m = φ(b))
(m, vb) 
−→ Tbφ(vb)

so there is also an inclusion

J1π ⊂ Hom(π∗TB,TM)
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characterized by J1π = {A ∈ Hom(π∗TB,TM) | Tπ ◦A = IdTB}.
Then we can see that this sequence is exact:

0 �� Vπ ⊗ π∗(T∗B) �� Ĵ1π
w �� M ×R �� 0

where the vector hull is identified with

Ĵ1π = {A ∈ Hom(π∗TB,TM) | Tπ ◦ A = λ IdTB}

and the 1-form is w(A) = λ.
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[8] X. Gràcia and R. Mart́ın. Vector hulls of affine spaces and affine
bundles, preprint, 2005.

[9] E. Mart́ınez, T. Mestdag and W. Sarlet. Lie algebroid structures
and lagrangian systems on affine bundles, J. Geom. Phys. 44 (2002), 70–
95.



Proceedings of XIII Fall Workshop on

Geometry and Physics

Murcia, September 20–22, 2004

Publ. de la RSME, Vol. 9 (2005), 221–226

Quantization of the regularized Kepler and

related problems

Julio Guerrero
1
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1. KS Regularization of the Kepler problem

In this work we affront the task of the quantization of the Kepler problem,
given by the Hamiltonian defined on R3

0 ×R3, R0 = R− {0},

H =
�Y · �Y
2m

− γ
r
, (1)

where r =
√

X2, (X,Y) ∈ R3
0 × R3.

For this purpose we shall use the linearization provided by the KS regu-
larization, as introduced by P. Kustaanheimo and E. Stiefel, in the spinorial
version due to Jost (see [1]). The KS transformation regularizes the Kepler
problem and linearizes it, showing that the dynamical group of the Kepler
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problem is SU(2, 2). The regularization means that collision orbits, for which
the potential is singular, are included in the state space on the same footing
that the rest of the orbits. The linearization means that the Kepler problem,
for the case of negative energy, can be seen as a system of 4 harmonic oscil-
lators in resonance subject to a constrain. For the case of positive energy,
it turns to be a system of 4 repulsive harmonic oscillators in resonance
subject to constrains. Finally, the singular case of zero energy can be ex-
pressed as 4 free particles subject to constrains. In this work we shall only
consider the case of negative energies (bounded states), see [2] for a detailed
study of the other cases.

The key point in the KS transformation is the commutativity of the dia-
gram (see [1]):

(z, w) ∈ (I−1(0))′ C→ (η, ζ) ∈ I−1(0) ⊂ C4

π ↓ � ↓ π̂
(�x, �y) ∈ R3

0 × R3 ν−1

→ (q, p) ∈ T+S3

(2)

In this diagram ν is Moser transformation (see [1]), which allows us to
see T+S3 as an embedded manifold in R3

0 × R3, where T+S3 = {(q, p) ∈
R8, ||q|| = 1, < p, q >= 0, p �= 0}, is named Kepler manifold.

The KS transformation is the map π, which can be seen as a symplectic
lift of the Hopf fibration, π0 : C2

0 → R3
0, z = (z1, z2) 
→ π0(z) :=< z, σ̄z >,

(�σ are Pauli matrices):

π : T ∗C2
0 → T ∗R3

0, (z,w) 
→(�x = π0(z), �y =
Im < w,�σz >

< z, z >
), (3)

such that, π∗θR3
0

= θC2
0
|(I−1(0))′ = 2Im < w, dz > ( which equals θη ζ =

Im(<η, dη> − <ζ, dζ>) up to a total differential) and θR3
0

is the canonical
potential form restricted to R3

0. The map

C =
1√
2

(
σ0 σ0

σ0 −σ0

)
, (4)

provides the injection of collision states. The function

I =
1
2
(<η, η> − <ζ, ζ >) , (5)

defines the regularized space I−1(0) ((I−1(0))′ doesn’t contain collision states),
which is diffeomorphic to C2

0×S3 while I−1(0)/U(1) is diffeomorphic to R3
0×

S3. The transformation, �X = 1√
mk
�x, �Y = k

√
m�y, with ρ =

√
�x2 and k >
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0 is a scaling parameter to account for all (negative) energies, relates the
variables in the Kepler problem to the variables used in ν. The map π̂ is
a symplectomorphism between I−1(0)/U(1) and T+S3, with the symplectic
structures restricted to the corresponding spaces. The Kepler Hamiltonian for
negative energy is associated with

J =
1
2
(< η, η > + < ζ, ζ >) , (6)

which corresponds to a system of 4 harmonic oscillators in resonance 1-1-1-1.
The potential 1-form θη ζ is left invariant by the Lie group U(2, 2), which

also leaves invariant the constrain I when acting on C4
0. This is thus the

dynamical group for the Kepler problem. A convenient basis for the Lie algebra
u(2, 2) is given by the components of the momentum map associated with its
action on C4

0 (here I is central):

I, J , �M = −1
2 < η,�σ η >,

�N = 1
2 < ζ,�σ ζ >,

Q = (−Im < η, ζ >,Re < η,�σζ >), P = (Re < η, ζ >, Im < η,�σζ >).
(7)

Table I: KS regularization with physical constants

�X = 1√
mk

(�Q− �R′), �Y = k
√
m

�P
||P ||+P0

,

H = �Y2

2m −
γ

||�X|| = k
2(||P ||+P0)

(k(||P || − P0)− 2γ
√
m),

�AM = �L = �X× �Y = �M + �N, �R′ = �M − �N,

�RL =
�Y× �L
m

− γ X

||X|| =
�R′(kP0 + γ

√
m) + �Q(k||P || − γ

√
m)√

m(||P || + P0)
.

2. Quantization of the Kepler problem for E < 0

The KS transformation reveals that the Kepler problem for negative energies
can be seen as the Hamiltonian system (C4, θ(η,ζ),J ) restricted to I−1(0). De-
fining C = (C1,C2) = (η, ζ +), Ci ∈ C2, the Hamiltonian J adopts the form
Hho = ωC ·C+ which corresponds to four harmonic oscillators. The quantiz-
ation of this system can be obtained from the group law of the corresponding
symmetry group (a central extension of it by U(1), rather, see [3]):

λ′′ = λ′ + λ, C′′ = C′ e− i λ + C, C′′+ = C′+ ei λ + C+,

ς ′′ = ς ′ ς exp[ i2 (iC′ ·C+ e− i λ − iC′+ ·C ei λ)],
(8)
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where C,C+ ∈ C4, ς ∈ U(1) and λ = ω t ∈ R. We can obtain the quantum
version of this system using any geometrical (like Geometric Quantization,
see [4]) or group-theoretical method, like Group Approach to Quantization
(GAQ, see [3]), the one used here. The resulting wave functions (defined on
the group) are ψ = ςe−

1
2
C·C +

φ(C+, λ), and the Schrödinger equation for this
system is i∂φ∂λ = iC+ · ∂φ

∂C + .
In this formalism, quantum operators are constructed from the right-

invariant vector fields on the group (8), and in this case creation and an-
nihilation operators are given by Ĉ

+
= XR

C and Ĉ = XR
C+, respectively,

where XR stands for right-invariant vector fields. Since the momentum map
(7) is expressed as quadratic functions on C and C+, we can resort to Weyl
prescription to obtain the quantization of these functions on the (right) en-
veloping algebra of the group (8). In this way we obtain a Lie algebra of
quantum operators isomorphic to the one satisfied by the momentum map (7)
with the Poisson bracket associated with θη ζ . The Hamiltonian operator and
the quantum version of the constrain, when acting on wave functions are given
by:

Ĵψ = −1
2
W(2+C+· ∂

∂C + )φ , Îψ = −1
2
W(C+

1 ·
∂

∂C +
1

−C+
2 ·

∂

∂C +
2

)φ , (9)

where W = ςe−
1
2
C·C+

is the “vacuum” state. To obtain the quantum version
of the Kepler manifold (that is, the Hilbert space of states of the Hydrogen
atom for E < 0), we must impose the constrain Îψ = 0. This means that
the energy of the first two oscillators must equal the energy of the other two.
It is easy to check that the operators in the (right) enveloping algebra of the
group (8) preserving the constrain (see [5, 6] for a characterization of these
operators) is the algebra su(2, 2) of the quantum version of the momentum
map (7). These operators act irreducibly on the constrained Hilbert space, as
can be checked computing the Casimirs of su(2, 2), which are constant.

The quantum operators commuting with the Hamiltonian (and providing

the degeneracy of the spectrum) are �̂M and �̂N . They define two commuting

su(2) algebras in the same representation (( �̂M )2 = ( �̂N)2 = 1
4 (Ĵ )2 − 1

4), and
linear combinations of them provide us with the angular momentum and the
Runge-Lenz vector (see Table I).

The relation between the Kepler Hamiltonian H and the Hamiltonian J
is

H = − mγ
2

2J 2 , (10)
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and the same relation holds for their quantum counterparts. If we act on
eigenstates of the number operator for each oscillator,

ψn1,n2,n3,n4 = (Ĉ +
11)

n1(Ĉ +
12)

n2(Ĉ +
21)

n3(Ĉ +
22)

n4W , (11)

and taking into account that Ĵψn1,n2,n3,n4 = 1
2 (2 +

∑
ni)ψn1,n2,n3,n4, we re-

cover the spectrum of the Hydrogen atom,

En = − mγ
2

2n2
, n = 1 + n1 + n2 , (12)

where we have made use of the fact that n1 + n2 = n3 + n4 by the constrain
Îψ = 0. The degeneracy is provided by the dimension of the representations
of the algebra su(2) × su(2), which turn to be n2 (if spin 1/2 is considered,
the degeneracy is doubled).

An interesting application of these results is the fact that the linearization
is preserved in some perturbed problems, such as the lunar problem or the
Stark effect (see next section).

A similar study can be found in [7], where the quantization of the Kepler
problem for E �= 0 is considered in the Weyl-Wigner-Moyal formalism using
the K-S transformation. A discussion of the hyperbolic version of the K-S
transformation is given in [8]. A detailed study of the conformal symmetry
(the group SU(2, 2) is locally isomorphic to the conformal group SO(4, 2)), in
the two-dimensional Kepler problem can be found in [9].

3. Stark Effect

Let us consider the Hamiltonian for the Stark Effect,

HS = H +
√
γ E Z , (13)

whereH is the Kepler Hamiltonian and E is the electric field intensity, which is
supposed to be constant and in the direction of the Z component. We need to
express HS in the K-S variables, and for this we use that Z = 1√

mk
(Q3 − R′

3),

where �R′ = �M − �N . Thus we have:

√
γ E Z =

√
γ E

2
√
mk

< η + ζ, σ3 (η + ζ) > (14)

=
√
γ E

2
√
mk

(
η̄1η1 − η̄2η2 + ζ̄1ζ1 − ζ̄2ζ2 + 2Re(η̄1ζ1 − η̄2ζ2)

)
.

Since the perturbation term commutes with I, the space of states is still
defined by I−1(0), and therefore the dynamical group of this system is again
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SU(2, 2). However, the complete Hamiltonian HS does not commute with the
angular momentum and Runge-Lenz vectors.

Following the scheme of Sec. 2, the quantization of this system is straight-
forward. The quantum version of the new Hamiltonian is

ĤS = Ĥ+ κ
(
Ĉ +

11Ĉ11 − Ĉ +
12Ĉ12 + Ĉ +

21Ĉ21 − Ĉ +
22Ĉ22

+Ĉ +
11Ĉ

+
21 + Ĉ11Ĉ21 − Ĉ +

12Ĉ
+
22 − Ĉ12Ĉ22

)
(15)

where Ĥ is the quantum version of the Kepler Hamiltonian given in (10), and
κ =

√
γ E

2
√
mk

. From the form ĤS it is clear that preserves the constrain ÎΨ = 0,
i.e., n1 + n2 = n3 + n4. Since it does not commute with the angular mo-
mentum and Runge-Lenz operators, the n2 degeneracy of the eigenstates will
be partially broken (the third component of the angular momentum operator
still commutes with ĤS).

The determination of the energy levels of this system is a standard problem
in perturbation theory in quantum mechanics. A detailed account of the Stark
effect can be found, for example, in [10].
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1. Introduction

Recently (see [5]), a correspondence has been obtained between affine Jacobi
brackets on an affine bundle A→M and Lie algebroid structures on the dual
bundle A+, extending the correspondence between linear Poisson structures
on a vector bundle V → M and Lie algebroid structures on the dual vector
bundle V ∗ (see [1]).

On the other hand, in [7] (see also [2]) a possible generalization of the
notion of Lie algebroid to affine bundles is introduced in order to build a
geometrical model for a time-dependent version of Lagrange equations on Lie
algebroids. The new structures are called Lie affgebroid structures (in the
terminology of [2]). In [2, 7], the authors show that a Lie affgebroid structure
on an affine bundle is equivalent to a Lie algebroid structure on the bidual
Ã = (A+)∗ with a non-vanishing 1-cocycle. The canonical example of a Lie
affgebroid is the first-jet bundle J1M → M , where M is a fibred manifold
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over the real line. In addition, if M is a Poisson manifold then we can define
an affine Jacobi structure on J1M which is compatible with the Lie affgebroid
structure in a certain sense. This fact suggests us to introduce the compatib-
ility notion between these types of structures defined over an arbitrary affine
bundle. In this note we will study several aspects related with this concept of
compatibility and we will present some examples which illustrate this notion.

2. Lie affgebroid structures on affine bundles

Let τ : A→M be an affine bundle with associated vector bundle τV : V →M .
Denote by τ+ : A+ → M the dual bundle whose fibre over m ∈ M consists
of affine functions on the fibre Am. Note that this bundle has a distinguished
section e0 ∈ Γ(A+) corresponding to the constant function 1 on A. We also
consider the bidual bundle τ̃ : Ã → M whose fibre at m ∈ M is the vector
space Ãm = (A+

m)∗. Then, A can be identified with an affine subbundle of
Ã via the inclusion i : A → Ã given by i(a)(ϕ) = ϕ(a), which is an injective
affine map whose associated vector map is denoted by iV : V → Ã. Thus, V
may be identified with a vector subbundle of Ã. Using these facts, one can
prove that there is a one-to-one correspondence between affine functions on A
and linear functions on Ã. On the other hand, there is an obvious one-to-one
correspondence between affine functions on A and sections of A+.

A Lie affgebroid structure on A (see [2, 7]) consists of a Lie algebra struc-
ture [[·, ·]]V on the space Γ(V ) of sections of τV : V → M , a R-linear action
D : Γ(A) × Γ(V ) → Γ(V ) of the sections of A on Γ(V ) and an affine map
ρ : A→ TM , the anchor map, satisfying the following conditions:

• Ds[[s̄1, s̄2]]V = [[Dss̄1, s̄2]]V + [[s̄1,Dss̄2]]V , ∀s̄1, s̄2 ∈ Γ(V ),∀s ∈ Γ(A),

• Ds+s̄1 s̄2 = Dss̄2 + [[s̄1, s̄2]]V , ∀s̄1, s̄2 ∈ Γ(V ),∀s ∈ Γ(A),

• Ds(f s̄) = ρ(s)(f)s̄+ fDss̄, ∀s̄ ∈ Γ(V ),∀s ∈ Γ(A),∀f ∈ C∞(M).

We recover the notion of Lie algebroid on a manifold M when A = V
is a vector bundle, D is the action defined by the Lie bracket [[·, ·]]V and
ρ : A = V → TM is a morphism of vector bundles. In fact, for a Lie aff-
gebroid (A, [[·, ·]]V ,D, ρ) we have that (V, [[·, ·]]V , ρ̄) is a Lie algebroid, where
ρ̄ : V → TM is the linear part of ρ. Moreover, one can induce a Lie algebroid
structure on the bidual bundle Ã such that e0 ∈ Γ(A+) is an 1-cocycle in the
corresponding Lie algebroid cohomology. Conversely, a Lie algebroid structure
on Ã such that e0 is an 1-cocycle restricts to a Lie affgebroid structure on A
(see [2, 7]).
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The canonical example of a Lie affgebroid is the first-jet bundle J1M →M
to a manifold M fibred over the real line π : M → R. In this case, the vector
bundle associated with J1M , V er(π), is the set of vectors tangent to M which
are vertical with respect to π. We can identify the space of sections of J1M
as the affine space Γ(J1M) = {X ∈ X(M)/X(t ◦ π) = 1}, where t is the usual
coordinate on R. Under this identification, (J1M)+ = T ∗M and J̃1M = TM .
The Lie affgebroid structure on J1M is given by the usual Lie bracket on
Γ(V er(π)) ≡ XV (M), the action D : Γ(J1M)× XV (M)→ XV (M) is also the
Lie bracket and the anchor map ρ : Γ(J1M)→ X(M) is the natural inclusion
(see [7]).

3. Lie algebroids and affine Jacobi structures

A Jacobi manifold is a differentiable manifold M endowed with a pair (Jacobi
structure) (Λ, E), where Λ is a 2-vector and E is a vector field on M satisfying
[Λ,Λ] = −2E ∧Λ and [E,Λ] = 0. For this type of manifolds, one can define
the Jacobi bracket as {f, g}(Λ,E) = Λ(df, dg) + fE(g) − gE(f), for f, g ∈
C∞(M). If E = 0 we recover the notion of Poisson manifold. A Jacobi
structure on an affine bundle (respectively, on a vector bundle) τ : A→M is
called affine (respectively, linear) if the corresponding Jacobi bracket of affine
functions is again an affine function (respectively, the Jacobi bracket of linear
functions is again a linear function).

Recently, in [5] it is proved that there is a one-to-one correspondence
between affine Jacobi structures on an affine bundle τ : A → M and Lie
algebroid structures on the dual bundle τ+ : A+ → M . More precisely, the
Lie algebroid structure ([[·, ·]]+, ρ+) on A+ induced by an affine Jacobi structure
(Λ, E) on τ : A→M is defined by

[[ã, b̃]]+ = {̃a, b}(Λ,E),

ρ+(ã)(f) ◦ τ = {a, f ◦ τ}(Λ,E) − (f ◦ τ){a, 1}(Λ,E),

}
(1)

for all ã, b̃ ∈ Γ(A+) and f ∈ C∞(M), where a and b are the affine functions

associated to the sections ã and b̃, respectively, and {̃a, b}(Λ,E) is the section
of A+ associated to the affine function {a, b}(Λ,E). Conversely, if ([[·, ·]]+, ρ+)
is a Lie algebroid structure on τ+ : A+ → M , then we have an affine Jacobi
structure on A which is the restriction to A of the following Jacobi structure
on Ã

Λ
�A = Π

�A −Δ
�A ∧E �A, E

�A = i
d �e0

Π
�A, (2)
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where Π
�A is the linear Poisson structure on Ã induced by ([[·, ·]]+, ρ+), Δ

�A is
the Liouville vector field on Ã and ê0 is the linear function on Ã induced by
e0 ∈ Γ(A+).

4. Compatibility condition between an affine Jacobi
structure and a Lie affgebroid structure on an
affine bundle

Let Π be a Poisson structure on a manifold M. Then, the cotangent bundle
T ∗M admits a Lie algebroid structure ([[·, ·]]Π,#Π) defined by #Π(α) = iαΠ
and [[α, β]]Π = L#Π(α)β − L#Π(β)α− d(Π(α, β)), for α, β ∈ Ω1(M).

Proposition 1. (i) Let π : M → R be a fibration, Π be a Poisson structure
on M and τ : J1M → M be the canonical projection. Suppose that (Λ, E)
is an affine Jacobi structure on J1M induced by the cotangent Lie algebroid
((J1M)+ = T ∗M, [[·, ·]]Π,#Π) and that j1 : C∞(M) → C∞(J1M) is the map
given by j1f(v) = v(f), for all f ∈ C∞(M) and v ∈ J1M . Then,

{f, g}Π ◦ τ = {f ◦ τ, j1g}(Λ,E) − (f ◦ τ){1, j1g}(Λ,E) (3)

and j1 is a Jacobi morphism, i.e., j1{f, g}Π = {j1f, j1g}(Λ,E), for all f, g ∈
C∞(M).

(ii) If (Λ, E) is an affine Jacobi structure on J1M then there exists a
bracket {·, ·}Π on C∞(M) such that (3) holds. Furthermore, if

j1{f, g}Π = {j1f, j1g}(Λ,E), for f, g ∈ C∞(M), (4)

then {·, ·}Π : C∞(M)× C∞(M)→ C∞(M) defines a Poisson bracket on M .

Proof. (i) The linear Poisson structure on TM induced by the Lie algebroid
on T ∗M is the complete lift Πc of Π, which satisfies {f c, gc}Πc = ({f, g}Π)c,
for f, g ∈ C∞(M) (see [4]). Moreover, (f c)|J1M = j1f and Δ(f c) = f c, Δ
being the Liouville vector field on TM. Using these facts and (2), we get (i).

(ii) Since (Λ, E) is an affine Jacobi structure on J1M , we have (3) and
that

{f ◦ τ, g ◦ τ}(Λ,E) = (f ◦ τ){1, g ◦ τ}(Λ,E) + (g ◦ τ){f ◦ τ, 1}(Λ,E), (5)

for all f ∈ C∞(M) (see [5]). Assuming that (4) holds, from (3) and (5), we
obtain that {·, ·}Π satisfies the Jacobi identity and it acts as a derivation on
each of its arguments. Thus, {·, ·}Π is skew-symmetric (see [3]) and, therefore,
is a Poisson bracket on M .
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Let π : M → R be a fibration and (Λ, E) be an affine Jacobi struc-
ture on the first-jet bundle J1M satisfying (3). Then, from Proposition 1,

(̃J1M) = TM and (J1M)+ = T ∗M are Lie algebroids over M and the pair
(J̃1M,J1M+) is a Lie bialgebroid over M (see, for instance, [8] for the defin-
ition of a Lie bialgebroid).

Motivated by the above example, we introduce the following definition.

Definition 1. Let τ : A → M be an affine bundle, τV : V → M the vec-
tor bundle associated with A, (Λ, E) be an affine Jacobi structure on A and
([[·, ·]]V ,D, ρ) be a Lie affgebroid structure on A. Consider the Lie algebroid
structures on Ã and A+ induced by ([[·, ·]]V ,D, ρ) and (Λ, E), respectively.
Then, ([[·, ·]]V ,D, ρ) and (Λ, E) are compatible if (Ã, A+) is a Lie bialgebroid
over M .

Others examples . (i) Let (V, [[·, ·]]V , ρV ) be a Lie algebroid structure on
V → M such that (V, V ∗) is a Lie bialgebroid. Denote by ΠV the linear
Poisson structure on V induced by the Lie algebroid structure on V ∗ and by
([[·, ·]]V ,D, ρV ) the Lie affgebroid structure on V induced by ([[·, ·]]V , ρV ). Then,
ΠV and ([[·, ·]]V ,D, ρV ) are compatible.

(ii) Let p : Q → M be a principal G-bundle over a manifold M and
π : M → R be a fibration. Denote by τ : J1Q→ Q and by μ = π ◦ p : Q→ R

the corresponding fibrations. Then, G acts on J1Q and on the vertical bundle
to μ, Ver μ, so that J1Q/G is an affine bundle over M = Q/G with associated
vector bundle Ver (μ)/G→M .

Consider the Lie affgebroid on J1Q/G (first introduced in [7]) which a-
ssociated bidual is the Atiyah Lie algebroid [6].

Now, suppose that Π ∈ V2(Q) is a G-invariant Poisson structure on Q.
Then, the Lie bialgebroid (TQ, T ∗Q) descends to a Lie bialgebroid structure
(TQ/G, T ∗Q/G) on M , where the Lie bracket on T ∗Q/G comes from the fact
that the Lie bracket of two G-invariant 1-forms on Q is G-invariant. Therefore,
the Lie affgebroid structure on J1Q/G and the affine Jacobi structure induced
by the Lie algebroid T ∗Q/G are compatible.

In the following τ : A → M is an affine bundle on M , (ΛA, EA) is an
affine Jacobi structure on A and ([[·, ·]]V ,D, ρ) is a Lie affgebroid structure on
A which are compatible. Then, the Lie bialgebroid (Ã, A+) induces a Poisson
structure ΠM on M defined by {f, g}ΠM

= d̃f(d+g), where d+ and d̃ are the
differentials of A+ and Ã, respectively (see [8]).

Define the map j1 : C∞(M)→ C∞(A) such that j1f is the affine function
on A associated with d̃f ∈ Γ(A+). Then, using (1), we deduce
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Proposition 2. Suppose that (ΛA, EA) and ([[·, ·]]V ,D, ρ) are compatible. Then,
the Poisson structure ΠM induced on M is related with (ΛA, EA) as follows

{f, g}ΠM
◦ τ = {f ◦ τ, j1g}(ΛA ,EA) − (f ◦ τ){1, j1g}(ΛA ,EA).

In addition, if e0 generates an ideal of Γ(A+), the dual bundle to V , V ∗, admits
a Lie algebroid structure such that (V, V ∗) is a Lie bialgebroid.
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2Dept. Matemática Económica, Financiera y Actuarial
Universidad de Barcelona. Av. Diagonal 690. E-08034 Barcelona. Spain
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1. Introduction

It is well known that for systems of ODE’s describing singular dynamical
systems, the existence and uniqueness of solutions are not assured. In many
cases there are geometrical constraint algorithms that, in the most favourable
situations, give a maximal submanifold of the phase space of the system, where
consistent solutions exist [6], [7].
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The same problems arise when considering system of PDE’s associated
with field theories described by singular Lagrangians, as well as in some other
applications related with optimal control theories. Working in the framework
of the multisymplectic description for this theories, we present a geometric
algorithm for finding the maximal submanifold where there are consistent
solutions of the system, reducing the problem to another one in the realm of
linear algebra. (For the proofs of the results and other details see [9]).

Manifolds are real, paracompact, connected and C∞. Maps are C∞. Sum
over crossed repeated indices is understood.

2. Linear theory

Let W and E be R-vector spaces, such that dim E = m, dim W = m+n, and
σ : W → E a surjective morphism. Denote V(σ) = ker σ, and j : V(σ) ↪→ W
the natural injection. Let η ∈ ΛmE∗ be a volume element, and ω = σ∗(η).
Finally, consider Ω ∈ Λm+1W∗, and a subspace C ⊆ W. We consider the
following problems in (σ; η,Ω, C):
Statement 1. To find an m-vector X ∈ ΛmC such that:

1. X is decomposable. 2. i(X )ω = 1. 3. i(X )Ω = 0.

Statement 2. To find a linear map h : E → C ⊆ W such that:
1. σ ◦ h = IdE . 2. [i(w)Ω]|Im h = 0, ∀w ∈ W.

Proposition 1. The statements 1 and 2 are equivalent; that is, every solution
to some of these problems is also a solution to the other.

Let ∇ : E → W be a section of σ, and denote H(∇) := Im∇. We
have the splitting W = H(∇) ⊕ V(σ), where H(∇) is the horizontal sub-
space of ∇, and V(σ) is the vertical subspace of σ. We also have the in-
duced projections σH∇ : W → W and σV∇ : W → W, with σH∇ + σV∇ = IdW ,
and w = wH∇ + wV∇, ∀w ∈ W. wH∇ ∈ H(∇), and wV∇ ∈ V(σ) are called
the horizontal and vertical components of w induced by ∇. Furthermore
we have the splitting W∗ = H∗(∇) ⊕ V∗(σ), which induces the bigradation
ΛkW∗ =

⊕
p,q=0,...,k; p+q=k

(ΛpH∗(∇)⊕ΛqV∗(σ)). As a consequence we can write

Ω = Ω(m,1) + Ω∇; Ω(m,1) being a (m + 1)-form of bidegree (m, 1) and Ω∇ a
(m+ 1)-form that includes the rest of components.

Definition 1. Let Z ∈ ΛmE | η(Z) = 1; then it is unique and decomposable.
We define Y∇

η = Λm∇(Z) ∈ ΛmW, which is the m-vector associated to ∇ and
η. (It generates ΛmH(∇)).

Y∇
η is decomposable and ω(Y∇

η ) = 1.
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Proposition 2. Ω(m,1) = ω∧γ∇η , with γ∇η := i(Y∇
η )Ω. Thus Ω = Ω∇+ω∧γ∇η .

Finally, if h : E → C is a linear map, ∇ induces a splitting h = hH∇ +hV∇ =

σH∇ ◦ h + σV∇ ◦ h, and the endomorphism h̃V∇ = hV∇ ◦ σ = σV∇ ◦ h ◦ σ : W →W.

Assumption 1. Ω∇ is of bidegree (m− 1, 2). Then Ω = Ω(m,1) + Ω(m−1,2).

∇ induces also the R-bilinear map

�∇ΩC : E∗ ⊗ C → E∗ ⊗H(∇)×V∗(σ)

h 
→ (hH∇ , i(i([h̃
V
∇]t)Y∇

η )(Ω|V(σ)) ,

where (i([h̃V∇]t)Y∇
η )(β1, . . . , βm) :=

∑m
α=1 Y∇

η (β1, . . . , [h̃V∇]t(βα), . . . , βm), for

every β1, . . . , βm ∈ W∗. If Y∇
η = w1∧. . .∧wm, for wα ∈ W, then i([h̃V∇]t)Y∇

η =∑m
α=1 w1 ∧ . . . ∧ h̃V∇(wα) ∧ . . . ∧ wm.

Theorem 3. The necessary and sufficient condition for a linear map h : E →
C to be a solution to the problem posed in Statement 2 is that

�∇ΩC(h) = (jH(∇) ◦ (σ|H(∇))
−1,−γ∇η |V(σ)) ,

where jH(∇) : H(∇)→W denotes the natural injection.

Corollary 4. A linear map h : E → C is a solution to the problem posed in
Statement 2 iff hH∇ = jH(∇)◦(σ|H(∇))−1 and [i(i([h̃V∇]t)Y∇

η )Ω]|V(σ) = −γ∇η |V(σ).

Definition 2. The orthogonal complement of C with respect to Ω and ∇ is

(C⊥)∇Ω := (Im �∇ΩC)
0 ⊂ (E ⊗V(σ)0)×V(σ) .

Theorem 5. There exists a solution h : E → W to the problem posed in
Statement 2 if, and only if,

ht(jH(∇) ◦ (σ|H(∇))
−1)− γ∇η (Z) = 0 , for every (ht, Z) ∈ (C⊥)∇Ω . (1)

3. The general multisymplectic case

Let κ : F →M be a fibre bundle with dim M = m > 1, dim F = n+m, and
η ∈ Ωm(M) a volume form on M . Denote ω = κ∗η.

Definition 3. Ω ∈ Ωm+1(F ) is a multisymplectic form if it is closed and
1-nondegenerate (the map �Ω : TM −→ ΛmT∗M is injective). Then (F,Ω, ω)
is a multisymplectic (regular) system. Otherwise, Ω is a pre-multisymplectic
form, and the system is pre-multisymplectic (singular).
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Now we state the following problem:

Statement 3. Given a pre-multisymplectic system (F,Ω, ω). To find a sub-
manifold jC : C ↪→ F , and a κ-transverse, locally decomposable, integrable
m-vector field XC along C, such that i(XC(y))Ω(y) = 0, ∀y ∈ C.

First we obviate the integrability condition, and the problem consists in
finding C ↪→ F and a locally decomposable m-vector field XC ∈ Xm(F ) along
C such that i(XC(y))ω(y) = 1, and i(XC(y))Ω(y) = 0, ∀y ∈ C.

Then, from proposition 1, we have:

Proposition 6. In C ↪→ F , there is a solution of the problem stated in State-
ment 3 if, and only if,, ∀y ∈ C, ∃hy ∈ T∗

κ(y)M ⊗ TyC such that

1. hy is κ-transverse (it is a connection along C): Tyκ|TyC ◦ hy = Id.

2. ∀(X ′
1)κ(y), . . . , (X ′

m)κ(y) ∈ Tκ(y)M , ∀Yy ∈ TyF ,

Ω(y)(hy((X ′
1)κ(y)), . . . ,hy((X

′
m)κ(y)), Yy) = 0

Let ∇ be a connection in κ : F →M , and Y∇
η ∈ Xm(F ) the corresponding

locally decomposable m-vector field in F such that i(Y∇
η )ω = 1. ∇ induces the

splitting ΛkT∗F =
⊕

p,q=0,...,k; p+q=k

(ΛpH∗(∇) ⊕ ΛqV∗(κ)); where H(∇) → M

and V(κ)→M are the horizontal and vertical subbundles associated with ∇.
Thus we have Ω = Ω(m,1) + Ω∇.

Proposition 7. Ω(m,1) = ω∧γ∇η , with γ∇η := i(Y∇
η )Ω. Thus Ω = Ω∇+ω∧γ∇η .

Assumption 2. The (m+ 1)-form Ω∇ is of bidegree (m− 1, 2).
(This is the situation in the Lagrangian and Hamiltonian field theories).

In order to solve the problem, we work at every point of the manifolds
involved in this problem, and we apply the results given in section 2. Thus, if
y is a point of C, we make the following identifications:

E ≡ Tκ(y)M , W ≡ TyF , C ≡ TyC , V(σ) ≡ Vy(κ) .

Assumption 3. In the sequel, every subset Ci is a regular submanifold of F ,
and its natural injection is an embedding.

Thus, we consider the submanifold C1 ↪→ F where a solution exists:

C1 = {y ∈ F | ∃hy ∈ Lin(Tκ(y)M,TyF ) such that (hy)H∇ = TyκH(∇),

[i(i([(̃hy)V∇]t)(Y∇
η (y)))(Ω(y))]|Vy (κ) = −(γ∇η (y))|Vy(κ)}.
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Then, there exists a locally decomposable section X1 of ΛmTC1F → C1 such
that (i(X1)ω)|C1 = 1 and (i(X1)Ω)|C1 = 0. But,in general, hy(Tκ(y)M) is not
a subspace of TyC1, therefore X1 is not tangent to C1. Thus we define

C2 = {y1 ∈ C1 | ∃hy1 ∈ Lin(Tκ(y1)M,Ty1C1) such that (hy1)H∇ = Ty1κH(∇),

[i(i([(̃hy)V∇]t)(Y∇
η (y)))(Ω(y1))]|Vy1 (κ) = −(γ∇η (y1))|Vy1 (κ)},

and there exists a locally decomposable section X2 of ΛmTC2C1 → C2 such
that (i(X2)ω)|C2 = 1 and (i(X2)Ω)|C2 = 0. But X2 is not tangent to C2, and

the procedure follows giving a sequence of submanifolds · · ·
ji
i+1
↪→ Ci

ji−1
i
↪→ · · ·

j12
↪→

C1
j1
↪→ C0 ≡ F . For every i ≥ 1, Ci is called the ith constraint submanifold.

We have two possibilities: ∃k such that dimCk < m, and then the problem has
no solution, or ∃k such that Ck+1 = Ck ≡ Cf ; then there exists a connection
Xf in κ : F →M along Cf such that i(Xf (yf ))(Ω(yf )) = 0, ∀yf ∈ Cf , and Cf
is the final constraint submanifold, and dimCf ≥ m.

Theorem 8. Every constraint submanifold can be defined as

Ci = {yi−1 ∈ Ci−1 | 〈((TκH(∇))
−1,−(γ∇η )|V(κ))(yi−1), (T⊥

yi−1
Ci−1)∇Ω 〉 = 0}.

Therefore, considering the vector bundle over F , W (κ,∇) = (κ∗(T∗M) ⊗
H(∇))⊕F V∗(κ), if (T⊥Ci−1)∇Ω is a vector subbundle of rank r of W ∗

Ci−1
(κ,∇),

and {(h∗
1, Z1)(i−1), . . . , (h∗

r , Zr)(i−1)} is a set of sections of W ∗(κ,∇) → F
spanning locally the space Γ((T⊥Ci−1)∇Ω ), then Ci, as a submanifold of Ci−1,
is defined locally as the zero set of the functions ξ(i)j ∈ C∞(F ) given by

ξ
(i)
j = ((TyκH(∇))

−1,−(γ∇η )|V(κ))((h
∗
j , Zj)

(i−1)).

These functions are called ith-generation constraints.

In general, Xf is not a flat connection. Nevertheless, in many cases, after
applying an integrability algorithm, one may find a submanifold I of Cf such
that (Xf )|I is a flat connection in the fibration κ : F →M along I.

4. Application to field theories

Lagrangian field theory (See [1], [3], [4], [10]): M is an oriented manifold
with volume form η ∈ Ωm(M). π : E → M is the configuration fiber bundle
(dim M = m, dim E = N +m). π1 : J1E → E is the associated first-order
jet bundle (multivelocity phase bundle), with π̄1 = π ◦ π1 : J1E →M .
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A Lagrangian density is a π̄1-semibasicm-form on J1E, L = Lπ̄1∗η, where
L ∈ C∞(J1E) is the Lagrangian function. Then, we can define the associated
Poincaré-Cartan m and (m + 1)-forms ΘL ∈ Ωm(J1E) and ΩL = −dΘL ∈
Ωm+1(J1E). L is regular (resp. singular) if ΩL is a multisymplectic (resp.
pre-multisymplectic) (m+ 1)-form.

The Lagrangian problem consists in finding integral sections φ ∈ Γ(M,E)
of a class of holonomicm-vector fields {XL} ⊂ Xm(J1E), such that i(XL)ΩL =
0, for every XL ∈ {XL} (Euler-Lagrange equations). Then, if the Lagrangian is
singular, this is a particular case of the general problem stated in the statement
3, taking the pre-multisymplectic system (J1E,ΩL, π̄1∗η).

Hamiltonian field theory (See [2], [5], [8]): The extended and restric-
ted multimomentum bundles are Mπ ≡ Λm1 T∗E (the bundle of m-forms on
E vanishing by contraction with two π-vertical vector fields), and J1∗E ≡
Mπ/Λm0 T∗E. The natural projections are denoted by μ : Mπ → J1∗E;
τ1 : J1∗E → E; τ̄1 = π ◦ τ1 : J1∗E →M .

Introducing the extended Legendre map associated with L, F̃L : J1E →
Mπ, we can define the restricted Legendre map associated with L as FL :=
μ◦F̃L : J1E → J1∗E. Then L is regular if FL is a local diffeomorphism. Else-
where it is called singular. L is hyper-regular if FL is a global diffeomorphism.
L is almost-regular if P := FL(J1E) ↪→ J1∗E is a closed submanifold of J1∗E,
FL is a submersion onto its image, and the fibres FL−1(FL(ȳ)) are connected
submanifolds of J1E. We denote by j0 : P ↪→ J1∗E the natural embedding,
and by τ̄1

0 = τ̄1 ◦ j0 : P →M the corresponding submersion.
Mπ is endowed with canonical forms Θ ∈ Ωm(Mπ) and Ω := −dΘ ∈

Ωm+1(Mπ). In the almost-regular case, there is a diffeomorphism μ̃ : Im F̃L →
P. Then, if j̃0 : F̃L ↪→ Mπ is the natural embedding, we can define the
Hamilton-Cartan forms Θ0 = (j̃0 ◦ μ̃−1)∗Θ, and Ω0 = (j̃0 ◦ μ̃−1)∗Ω. Therefore,
the Hamiltonian problem consists in finding integral sections ψ ∈ Γ(M,P) of a
class of integrable and τ̄1

0 -transverse m-vector fields {X0} ⊂ Xm(P) satisfying
that i(X0)Ω0 = 0, for every X0 ∈ {X0} (Hamilton-De Donder-Weyl equations).
Thus, this is a particular case of the general problem stated in the statement
3, taking the pre-multisymplectic system (P,Ω0, τ̄

1∗
0 η).
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projects BFM2001-2272, BFM2002-03493, and BFM2003-01319.



M. de León el al 239

References

[1] E. Binz, J. Sniatycki, H. Fisher. The Geometry of Classical fields,
North Holland, Amsterdam, 1988.
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1. Introduction

The theorem of Darboux is probably the first normal form theorem in sym-
plectic geometry. This theorem has its analogue in contact geometry. Normal
forms let us reduce the study of our system to model-like situations in which
the computations are simplified. However the theorem of Darboux is local and
does not take into account additional geometrical structures on the manifold.
In this paper we review some normal forms results for integrable systems on
symplectic manifolds and find an application to study normal forms for the
contact analogous situation.

2. Completely integrable Hamiltonian systems on a
symplectic manifold

We consider a completely integrable Hamiltonian system on a symplectic man-
ifold (M,ω). It is given by a moment map F = (f1, . . . , fn). The condition
{fi, fj} = 0,∀i, j implies that the distribution generated by the Hamiltonian
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vector fields Xfi
is involutive. We denote this foliation by F . This foliation

has Lagrangian regular orbits and isotropic singular ones. A natural question
in this situation arises: Can we find a classification theorem for completely
integrable Hamiltonian systems in a neighbourhood of an orbit L?

In the case L is a regular compact orbit, the theorem of Liouville-Mineur-
Arnold for integrable systems gives a positive answer to this question. The
existence of action-angle coordinates in a neighbourhood of L implies that
the completely integrable system is equivalent in a neighbourhood of L to
the completely integrable system determined by the action functions and the
Darboux symplectic form.

If L is singular the problem remains unsolved in general. In the case the
orbits of the integrable system are compact and L is a singular nondegenerate
orbit, the answer is given by the following theorem due to the author and
Nguyen Tien Zung:

Theorem 1 (Miranda, Nguyen Tien Zung [11]). Under the hypotheses men-
tioned above, the completely integrable Hamiltonian system is symplectically
equivalent to the linearized integrable Hamiltonian system with the Darboux
symplectic form. In the case there exists a symplectic action of a compact
Lie group G preserving the system, this equivalence can be established in a
G-equivariant way.

Remarks.

1) In the case dimL = 0 and L is nondegenerate Eliasson ([4], [5]) estab-
lished local linear models for the singularity and provided a complete
proof for the symplectic equivalence with the linear model in any dimen-
sion in the completely elliptic case.

2) Details of Eliasson’s proof have been recently clarified by the author
and Vu Ngoc San in [12]. In [10] the author provided a complete proof
of Eliasson’s result in cases other than elliptic. This proof uses a gen-
eralization of the Morse Isochore lemma and Moser’s path method for
foliations to achieve a symplectically orthogonal decomposition into 2
and 4-dimensional cells depending on the Williamson type of the singu-
larity.

3) This result generalizes previous partial results for nondegenerate com-
pact singular orbits of rank greater than 0. In particular it generalizes
the result of Eliasson ([5]) in the case the orbits are of completely el-
liptic type. It also generalizes the results of Colin de Verdière and San
Vu Ngoc ([2]) and Currás-Bosch and Miranda ([3]) in the case dimM = 4
and dimL = 1.
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3. Integrable systems on contact manifolds

The aim of this section is to present an analogue to the linearization result
for singular integrable Hamiltonian systems stated but in the case of singular
integrable system in contact manifolds.

Consider a contact manifold M2n+1 together with a contact form. We as-
sume that the Reeb vector field associated to α coincides with the infinitesimal
generator of an S1 action. We assume further than there exists n-first integrals
of the Reeb vector field which commute with respect to the Jacobi bracket.
Then there are two foliations naturally attached to the situation. On the one
hand, we can consider the foliation associated to the distribution generated
by the contact vector fields. We call this foliation F ′. On the other hand we
can consider a foliation F given by the horizontal parts of the contact vector
fields. The functions determining the contact vector fields may have singu-
larities. We will always assume that those singularities are of non-degenerate
type. Observe that F ′ is nothing but the enlarged foliation determined by the
foliation F and the Reeb vector field.

Let α′ be another contact form in a neighbourhood of a compact orbit
O of F ′ for which F is generically Legendrian and such that the Reeb vector
field with respect to α′ coincides with the Reeb vector field associated to α.
A natural question is to know if α is equivalent to α′. This entails naturally
the study of the existence of normal forms for α in a neighbourhood of O
preserving the foliation F .

The condition that the Reeb vector field is an infinitesimal generator of
an S1-action is fulfilled in many examples present in contact geometry. For
instance, model contact structures for a transverse knot can be obtained by
considering contact forms satisfying this condition (see for example [6]). Fur-
thermore, as proved in [7], a contact form whose Reeb flow generates a torus
action is “stable” in the sense that the Reeb flow of any C2-close contact form
has at least one periodic orbit.

The problem of determining normal forms for foliations related to Le-
gendrian foliations has its own story. P. Libermann in [8] established a local
equivalence theorem for α-regular foliations. Loosely speaking, those foliations
are regular foliations containing the Reeb vector field and a Legendrian foli-
ation. The problem of classifying contact structures which are invariant under
a Lie group was considered by Lutz in [9]. The foliations studied by Liber-
mann and Lutz are regular. The singular counterpart to the result of Lutz was
proved by Banyaga and Molino in [1] but for contact forms. Namely, Banyaga
and Molino study the problem of finding normal forms under the additional
assumption of transversal ellipticity. The assumption of transversal ellipticity



Eva Miranda 243

allows to relate the foliation F ′ of generic dimension (n+1) with the foliation
given by the orbits of a torus action.

The results that we present here and whose proof is contained in [10]
pretend to extend these results for foliations which are related in the same
sense to foliations with generical (n+ 1)-dimensional leaves but which are not
necessarily identified with the orbits of a torus action. All our study of the
problem is done in a neighbourhood of a compact singular orbit.

The linear model for the contact setting

Let (M2n+1, α) be a contact pair and let Z be its Reeb vector field. We
assume that Z coincides with the infinitesimal generator of an S1 action. We
also assume that there are n first integrals f1, . . . , fn of Z which are generically
independent and which are pairwise in involution with respect to the Jacobi
bracket associated to α. Let O be the orbit of the foliation F ′ through a point
p in M2n+1. We will assume that O is diffeomorphic to a torus of dimension
k+1 and that the singularity is non-degenerate in the Morse-Bott sense along
O.

In [10] it is proven that there exists a diffeomorphism from a neighbour-
hood of O to a model manifold M2n+1

0 taking the foliation F ′ to a linear
foliation in the model manifold with a finite group attached to it and taking
the initial contact form to the Darboux contact form.

Theorem 2 ((Miranda [10])).
There exist coordinates (θ0, ..., θk, p1, ..., pk, x1, y1, ..., xn−k, yn−k) in a finite
covering of a tubular neighbourhood of O such that,

• The Reeb vector field is Z = ∂
∂θ0

.

• There exists a triple of natural numbers (ke, kh, kf ) with ke+ kh+2kf =
n − k and such that the first integrals fi are of the following type,fi =
pi, 1 ≤ i ≤ k, and

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

• The foliation F is given by the orbits of D =< Y1, . . . Yn > where Yi =
Xi−fiZ being Xi the contact vector field of fi with respect to the contact
form α0 = dθ0 +

∑n−k
i=1

1
2 (xidyi − yidxi) +

∑k
i=1 pidθi.
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The model manifold is the manifold M2n+1
0 = Tk+1×Uk×V 2(n−k), where

Uk and V 2(n−k) are k-dimensional and 2(n − k) dimensional disks respect-
ively endowed with coordinates (θ0, . . . , θk) on Tk+1, (p1, . . . , pk) on Uk and
(x1, . . . , xn−k, y1, . . . yn−k) on V 2(n−k). The linear model for the foliation F ′

is the foliation expressed in the coordinates provided by the theorem together
with a finite group attached to the finite covering. The different smooth sub-
models corresponding to the model manifold M2n+1

0 are labeled by a finite
group which acts in a contact fashion and preserves the foliation in the model
manifold. This is the only differentiable invariant. In fact, this finite group
comes from the isotropy group of an associated Hamiltonian action. In the
symplectic case this finite group was already introduced in [13].

Contact equivalence in the model manifold

Theorem 3 (Miranda [10]). Let α be a contact form on the model manifold
M2n+1

0 for which F is a generically Legendrian foliation and such that the
Reeb vector field is ∂

∂θ0
. Then there exists a diffeomorphism φ defined in a

neighbourhood of the singular orbit O = (θ0, . . . , θk, 0, . . . , 0) preserving F ′

and taking α to α0.

The G-equivariant result

Consider a compact Lie group G acting on contact model manifold in such a
way that preserves the n first integrals of the Reeb vector field and preserves
the contact form as well. In [10] we prove that there exists a diffeomorphism in
a neighbourhood of O preserving the n first integrals, preserving the contact
form and linearizing the action of the group. Namely we prove,

Theorem 4 (Miranda [10]). There exists a diffeomorphism φ, preserving F =
(f1, . . . , fn) defined in a tubular neighbourhood of O such that φ∗(α0) = α0 and
such that φ ◦ ρg = ρ

(1)
g ◦ φ, being ρ(1)

g the linearization of ρg .

Contact linearization

Applying this G-equivariant version to the particular case of the finite group
attached to the finite covering, we obtain as a consequence the following con-
tact linearization result:

Theorem 5 (Miranda [10]). Let α be a contact form for which F is gener-
ically Legendrian and such that Z is the Reeb vector field then there exists a
diffeomorphism defined in a neighbourhood of O taking F ′ to the linear foli-
ation, the orbit O to the torus {xi = 0, yi = 0, pi = 0} and taking the contact
form to the Darboux contact form α0.
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[3] C. Currás-Bosch and E. Miranda. Symplectic linearization of sin-
gular Lagrangian foliations in M4, Differential Geom. Appl. 18 (2003),
195-205.

[4] L. H. Eliasson. Hamiltonian systems with Poisson commuting integrals,
Ph.D. Thesis, 1984.

[5] L. H. Eliasson. Normal forms for Hamiltonian systems with Poisson
commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), 4–
35.

[6] G. Geiges. Contact Geometry, Handbook in Differential Geometry, vol
2, to appear.

[7] V. Ginzburg and E. Lerman. Existence of relative periodic orbits near
relative equilibria, Math. Res. Lett. 11 (2004), 397–412.

[8] P. Libermann. Legendre foliations on contact manifolds, Differential
Geom. Appl. 1 (1991), 57–76.
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Abstract. In these notes we review some facts about sets minimizing a
perimeter functional under a volume constraint inside a Euclidean domain. First,
we summarize what is known about these sets when the functional is the Euclidean
perimeter and the ambient domain is a convex body. Second, we give a brief
description of our results in [RRo], where we have studied some properties of sets
minimizing the relative perimeter within a solid cone for fixed volume.

Keywords: Isoperimetric regions, free boundary problem, stability.

2000 Mathematics Subject Classification: 53C42, 49Q20

1. Introduction

An isoperimetric problem is one in which we try to minimize a perimeter
functional under one of more volume constraints. In this paper we study two
of the simplest formulations of the isoperimetric problem inside a Euclidean
domain. Let us precise the situation. We denote by Ω a smooth domain
(connected, open set) of Rn+1. For any E ⊆ Ω, we consider

• vol(E) = (n+ 1)-Lebesgue measure of E,
• P(E) = Euclidean perimeter of E,
• P(E,Ω) = perimeter of E relative to Ω.

These notions of perimeter are defined in the sense of De Giorgi [M]. If, for ins-
tance, E has C2 boundary, then P(E) = Hn(∂E) and P(E,Ω) = Hn(∂E∩Ω),
whereHn(·) is the n-dimensional Hausdorff measure in Rn+1. This means that
only the boundary area of E inside Ω contributes to the relative perimeter.
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In these notes we show some properties of sets minimizing one of the
perimeter functionals defined above for a fixed volume V 	 vol(Ω). These sets
are called isoperimetric regions -or simply minimizers- of volume V . When
the perimeter to minimize is the relative one, the problem is usually referred
to as a free boundary problem.

In the study of an isoperimetric problem the first questions taken into
consideration are related to the existence and regularity of minimizers. Re-
cently, geometric and topological properties have been treated by many au-
thors. However, in spite of the last advances, the complete description of
isoperimetric regions has been achieved only for some few domains of Rn+1.
A survey of most of these results which also includes some recent progress and
open questions can be found in [R], see also [RR].

Our main purpose here is to review the results we have obtained in two
different situations

(i) Ω is a convex body and the functional to minimize for fixed volume is
the Euclidean perimeter.

(ii) Ω is a solid cone and the perimeter functional is the relative one.

2. Convexity of minimizers inside a convex body

Let Ω be a bounded, smooth, convex domain of Rn+1. In this section we will
study minimizers for the Euclidean perimeter restricted to the class of subsets
of Ω enclosing a given volume.

First, as Ω is compact, we can apply standard results in Geometric Meas-
ure Theory [M] to ensure that for any V 	 vol(Ω) there exists an isoperimetric
region E of volume V . Moreover, we have that ∂E ∩ Ω is a smooth hyper-
surface with constant mean curvature, except for a closed set of singularities
whose Hausdorff dimension is less than or equal to n − 7. As Ω has smooth
boundary, it is also known ([SZ, Theorem 3.6]) that ∂E is a C1,1 hypersurface
around any p ∈ ∂E ∩ ∂Ω, and that ∂E meets ∂Ω tangentially.

The classical isoperimetric inequality in Rn+1 implies that any minimizer
E in Ω such that vol(E) does not exceed the volume of a largest ball contained
in Ω must be a round ball. For larger volumes, minimizers cannot be round
balls and the regularity properties mentioned above are not enough, in general,
to describe them. In fact, the classification of isoperimetric regions inside an
arbitrary convex body is an interesting and difficult problem. In the study
of this question we find the following plausible conjecture proposed by E.
Stredulinsky and W. Ziemer

Conjecture ([SZ]): Isoperimetric regions for the Euclidean pe-
rimeter inside a convex body must be convex.
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What is known at this moment? Some partial results but not the complete
answer. For example, the conjecture is true for any planar convex body; this
easily follows from the fact that the convex hull of a domain of R2 increases
volume while decreasing boundary length. For higher dimension the conjecture
has a positive answer when assuming additional conditions on Ω. In [SZ,
Theorem 3.32] it is shown that the conjecture holds if Ω satisfies a great circle
condition. This means that there is a largest ball B of Ω, and a hyperplane
P passing through the center of B, such that ∂B ∩ P ⊂ ∂Ω. This property
allows also to prove that isoperimetric regions in Ω of volumes V � V0 are
unique and nested. Here V0 is the volume of the set in Ω given by the union
of all largest balls of Ω.

In [Ro] we provide a new condition under which the conjecture turns out
to be true. In precise terms, by using symmetrization arguments and the
classification of stable constant mean curvature hypersurfaces of revolution in
Rn+1, it is proved

Theorem 1. Let Ω ⊂ Rn+1 be a smooth convex body which is rotationally
symmetric about a straight line. Then, minimizers inside Ω are convex.

In [Ro] we also give an example illustrating that isoperimetric regions of
volumes V � V0 inside a rotationally symmetric Ω need not be nested.

The last result to our knowledge about the convexity of minimizers in
a convex body has been recently established by F. Alter, V. Caselles and
A. Chambolle [ACC]. These authors have shown the existence of a value
V1 � V0 such that minimizers in Ω of volumes V � V1 are unique, convex and
nested (recall that V0 is the volume of the set given by the union of all largest
balls inside Ω). This result together with the example in [Ro] mentioned above
suggests that in the interval of volumes [V0, V1] we cannot control the convexity
nor the nestedness of minimizers. In fact, the conjecture by E. Stredulinsky
and W. Ziemer remains open for an arbitrary convex body in Rn+1, n � 2.

3. The free boundary problem inside a solid cone

In this section, the domain Ω will be a smooth solid cone of Rn+1, that is, a cone
0××C over a smooth domain C ⊂ Sn. The isoperimetric free boundary problem
in Ω consists of finding a minimum for the relative perimeter functional P(· ,Ω)
in the class of sets contained in Ω and enclosing a given volume V > 0. The
isoperimetric profile of Ω is the function

IΩ(V ) = inf {P(E,Ω) : E ⊂ Ω, vol(E) = V }, V > 0. (1)
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As a particular case, if C is a half-sphere of Sn then Ω coincides with a half-
space of Rn+1. It is well-known that the isoperimetric regions in a half-space
are the half-balls centered at the boundary of the half-space.

In general, it is not easy to decide whether minimizers exist or not inside
an unbounded domain of Rn+1. In fact, we can find non convex cones in Rn+1

(n � 2) for which there are no minimizers of any given volume. In the next
section we will study this important question in more detail.

3.1. Existence and regularity results. Planar cones

The direct method of the Calculus of Variations to minimize a functional
consists of taking a minimizing sequence and trying to extract a convergent
subsequence. The problem which appears when working in a noncompact
setting is that part or all of a minimizing sequence could diverge. Let us
precise this fact. Consider a fixed V > 0, and a sequence in Ω of sets of
volume V whose relative perimeter tends to IΩ(V ). In [RRo, Theorem 2.1]
we have proved that such a sequence splits in two disjoint parts: one of them
converges to an isoperimetric region E, and the other one diverges. At first,
a fraction of V could disappear at infinity and so, the volume of E may not
coincide with V . However, by using that a cone is invariant under dilations
centered at its vertex, we can control the volume and perimeter of the diverging
part. With this scheme we have established the following

Theorem 2 ([RRo]). Let Ω be a smooth solid cone in Rn+1. Then, either
there are isoperimetric regions in Ω of any given volume, or the isoperimetric
profile IΩ defined in (1) coincides with the one of a half-space in Rn+1.

The theorem above allows us to give some criteria ensuring existence of
minimizers in a cone. Recall thatHk(·) represents the k-dimensional Hausdorff
measure in Rn+1.

Corollary 3 ([RRo]). Suppose that the cone Ω = 0××C of Rn+1 satisfies one
of the following conditions

(i) Ω admits a local supporting hyperplane at a point p ∈ ∂Ω \ {0}.
(ii) Hn(C) 	 Hn(Sn)/2.

Then, there are bounded isoperimetric regions in Ω of any given volume. In
particular, we have existence of minimizers in convex cones.

Once we have assured existence under certain conditions, we must study
the regularity of minimizers. By using standard results in Geometric Measure
Theory [M] we obtain that the relative boundary ∂E ∩ Ω of a minimizer E
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is, up to a closed singular set whose Hausdorff dimension does not exceed
n− 7, a smooth, embedded hypersurface Σ with boundary and with constant
mean curvature. The behaviour of the minimizer near the boundary ∂Ω is
quite different from the one we indicated in Section 2 for minimizers of the
Euclidean perimeter. In fact, the hypersurface Σ meets ∂Ω orthogonally.

Now, we can prove the following result which does not appear in [RRo]

Proposition 4. Let Ω ⊂ R2 be a cone over an open arc C ⊂ S1. Then,
isoperimetric regions in Ω exist and they are

(i) Circular sectors centered at the vertex if length(C) < π,
(ii) Half-discs centered at ∂Ω \ {0} if length(C) � π.

Proof. The existence of bounded minimizers is guaranteed since assertion (i)
in Corollary 3 holds. Let E be a minimizer in Ω. By the regularity results
mentioned above, we have that Σ = (∂E ∩ Ω) \ {0} is a smooth, embedded
curve with constant geodesic curvature. As E is bounded, we deduce that Σ
is the union of finitely many circular arcs with the same radius, and meeting
∂Ω\{0} orthogonally. This clearly implies that the center of any of these arcs
is a point in ∂Ω. It follows that any component of Σ is a half-circle centered
at ∂Ω \ {0} or a circular arc homothetic to C. From here, it is not difficult
to see that Σ is connected. Finally, a direct comparison between the lengths
of the different candidates indicates us that circular sectors centered at the
vertex are isoperimetrically better than half-discs only if length(C) < π. �

3.2. Classification of stable regions in convex cones

In this section we study sets that locally minimize the perimeter for fixed
volume inside a cone Ω. Let E be a bounded set in Ω such that P(E,Ω) < +∞.
A volume preserving variation of E in Ω is a smooth family of diffeomorphisms
{ϕt}t∈(−ε,ε) of Ω, preserving ∂Ω, and such that the volume of any Et = ϕt(E)
coincides with the volume of E0 = E. We say that E is a stable region
in Ω if the perimeter functional P(t) = P(Et,Ω) associated to any volume
preserving variation of E is a C2 function near the origin such that P ′(0) = 0
and P ′′(0) � 0. By using the first and second variation for perimeter and
volume together with an appropriate volume preserving variation, we have
completely described stable regions in convex cones allowing the presence of
a small singular set in the relative boundary

Theorem 5 ([RRo]). Let E be a bounded stable region inside a convex cone
Ω ⊂ Rn+1 (n � 2). Suppose that the boundary ∂E ∩ Ω is the union of a smooth
embedded hypersurface Σ with boundary ∂Σ ⊂ ∂Ω, and a closed singular set
Σ0 such that Hn−2(Σ0) = 0 or consists of isolated points. Then E is either
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(i) A round ball contained in Ω, or
(ii) A half-ball centered and lying over a flat piece of ∂Ω, or

(iii) The intersection with the cone of a round ball centered at the vertex.

Figure 1: Stable bounded regions in a convex cone.

The idea of the proof of Theorem 5 is based on the method used by
J. Barbosa and M. do Carmo [BdC] to characterize bounded stable regions
without singularities in Rn+1. Geometrically speaking we consider the volume
preserving variation of E which results when one considers first a contraction
of Σ by parallel hypersurfaces to its relative boundary, and then applies a
dilation centered at the vertex of the cone to restore the enclosed volume. After
some computations we obtain that the inequality P ′′(0) � 0 associated to this
variation implies that Σ is a totally umbilical hypersurface. The proof finishes
by using [RRo, Lemma 4.10] where we classify totally umbilical hypersurfaces
inside a convex cone meeting orthogonally the boundary of the cone.

The existence of bounded minimizers in convex cones (Corollary 3) and
the classification of stable regions in Theorem 5 allow us to describe, after an
easy comparison among the perimeters of the different candidates, which are
the isoperimetric regions in a smooth convex cone

Theorem 6 ([LP], [RRo]). Isoperimetric regions in a smooth convex cone
are the intersection with the cone of round balls centered at the vertex.

Theorem 6 was previously proved by P. Lions and F. Pacella [LP] by using
the Brunn-Minkowski inequality in Rn+1. The complete solution to the free
boundary problem inside a convex cone over a non-smooth spherical domain
of Sn is still an open question.
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