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Abstract. By using a Hamiltonian formalism for fields wider than the canonical
one, we write the Einstein vacuum field equations in terms of alternative variables.
This variables emerge from the Ashtekar’s formalism for gravity.

1. Introduction

In 3+1 dimensions the only successful attempt to obtain a canonical theory for gravity
in terms of a connection that yields first class constraints is that due to Ashtekar [1, 2].
In this formulation one can use a (complex) SO(3) spatial connection as coordinate for
the gravitational phase space instead of the 3-metric introduced by Arnowitt, Deser
and Misner (ADM) [3]. Ashtekar’s canonical gravity has given rise to a promising
quantization project.

In this work we show that the evolution equations for the gravitational field, given
by the Einstein vacuum field equations in an alternative representation derived from
the Ashtekar’s canonical gravity, can be expressed in a Hamiltonian form with the
canonical Hamiltonian structure and in terms of non canonical variables.

We will use a Hamiltonian formulation in which the time evolution of the field
variables φα (α = 1, 2, ..., n), which represent the state of the system, can be written
in the form [4, 5]

φ̇α = Dαβ
δH

δφβ
, (1)

where H (the Hamiltonian) is a suitable functional of the φα, and the Dαβ are,
in general, differential operators of an arbitrary finite order with the coefficients
depending on the variables φα and their derivatives. The appropriate expression for
the Poisson bracket between two functionals has the form

{F, G} =

∫

δF

δφα
Dαβ

δG

δφβ
dv (2)

The Hamiltonian operator Dαβ must satisfy certain restrictions in order for (2) to be
a true Poisson bracket (antisymmetric and satisfying the Jacobi identity).

The outline of this paper is as follows. In the next section we review the ADM
formalism. Then we analyze the change of variables leading to the Ashtekar formalism.
In Sect. 4 the alternative form of the dynamical equations of vacuum general relativity
is derived. We end the paper with some concluding remarks.
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2. ADM formalism

We can consider the spacetime as a 4-manifold M , arising as a result of the time
evolution of a three-dimensional space-like hypersurface Σ. The manifold M is
assumed to be orientable, and have the global topology Σ × <, where < is the real
line. We assume that Σ is compact without boundary. The dynamical variables are
the Riemannian 3-metric tensor field qab, and the tensor density field of the conjugate
momenta pab [3], which are linearly related to the extrinsic curvature tensor Kab of
the hypersurface by pab = −q1/2(Kab − qabK), where qab is the inverse matrix to qab,
K = qabKab, q = det(qab), and the Latin indices a, b, . . . label spatial coordinates and
run over the values 1, 2, 3. These indices are raised and lowered by means of qab. (See,
e.g., Ref. [6] for a nice treatment of this formulation.)

Dynamic equations are generated by the Hamiltonian

H =

∫

(

NH + N bHb

)

d3x, (3)

which is a linear combination of the (scalar and vectorial) constraints

H = q1/2

(

−3R + q−1pabpab −
1

2
q−1p2

)

, (4)

Ha = − 2q1/2Db

(

q−1/2pab
)

, (5)

and by the canonical Poisson bracket

{qab(x), pcd(y)} = δc
(aδd

b)δ
3(x − y), (6)

so that

q̇ab = {qab, H}, ṗab = {pab, H}. (7)

In Eqs. (4) and (5) p = pa
a = pabqab, and Da is the torsion-free covariant

derivative compatible with qab, with Riemann curvature tensor 2D[aDb]vc ≡ 3Rabc
dvd,

where va is an arbitrary covector on Σ. 3R is the Ricci scalar of this curvature. The
scalar N is known as the lapse and Na is the shift vector on Σ; they appear in Eq.
(3) as Lagrange multipliers.

3. Ashtekar formalism

Originally Ashtekar’s variables were SU(2) spinors. However, we will use SO(3)-valued
variables. The translation from SO(3)-valued variables to SU(2) spinors can be see
in Ref. [7]. Instead of the metric tensor qab we introduce the triad ea

i, such that the
spatial metric is given by

qab = ea
ieb

jδij . (8)

Latin indices i, j, ... = 1, 2, 3 are SO(3) indices. They are raised and lowered with the
Kronecker delta δij . The inverse matrices to the triad are denoted by ea

i. It is not
difficult to verify that qab = eaiebi and that q = det(ea

iebi) = (det(ea
i))2 ≡ e2.

Let us introduce the momenta pa
i conjugate to the triad. They satisfy the

equations
{

ea
i(x), pb

j(y)
}

= δb
aδi

jδ
3(x − y), (9)

and can be easily related to the momenta pab by means of pa
i = 2pabebi. It now turns

out that part of the Poisson brackets for the ADM variables has been modified, one has
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also (6), but now
{

pab(x), pcd(y)
}

6= 0 [2]. To preserve the correspondence between
Poisson structures, one has to impose three additional constraints which generate
SO(3) rotations and can be represented in the form J i = εijkpa

jeak = 0 [8]. This
constraint also ensures the conservation of the number of degrees of freedom.

In terms of (ea
i, pa

i), the Hamiltonian becomes

H =

∫

(

NH + NaHa + NiJ
i
)

d3x, (10)

where H, Ha are given by (5), with qab and pab considered here as derived quantities,
and we have annexed the additional constraint with the Lagrange multiplier Ni.

For the transition to the Ashtekar variables it is more convenient to use the
variables (Eai, Ka

i) defined by Ea
i ≡ eea

i, Ka
i ≡ Kabe

b
i +Jabe

b
i, where Kab = K(ab)

is the extrinsic curvature, and Jab = 1
4 (eaipb

i − ebipa
i) = J [ab]. Then one has

{Ea
i(x), Kb

j(y)} =
1

2
δa
b δ

j
i δ

3(x − y). (11)

In [1] Ashtekar proposed a transformation that allows one to represent the density
of the gravitational Hamiltonian as a polynomial in canonical variables. Ashtekar also
introduced a complex parametrization in which the new variables are represented as
Aa

i = 1
2εijkeb

kDaeb
j + iKa

i. In this parametrization, we have

{Ea
i(x), Ab

j(y)} = iδa
b δ

j
i δ

3(x − y), (12)

{Ea
i(x), Eb

j(y)} = 0, {Aa
i(x), Ab

j(y)} = 0. (13)

For any two functionals in phase space F (E, A), G(E, A), the Poisson brackets are
thus given by

{F, G} ≡ i

∫
(

δF

δEa
i

δG

δAa
i
−

δF

δAa
i

δG

δEa
i

)

d3x. (14)

Changing the variables in the Hamiltonian leads to the expression

H = i

∫
(

−
i

2
NS +

1

2
NaVa + N iGi

)

d3x, (15)

where

Gi(A, E) ≡ DaEa
i ≡ iεabcJabec

i = 0, (16)

Va(A, E) ≡ Eb
iFab

i = 0, (17)

S(A, E) ≡ Ea
iE

b
jFabkεijk = 0. (18)

are the (Gauss, vectorial and scalar) constraints, N = e−1N and εabc is the totally
antisymmetric Levi-Civita symbol (ε123 = 1). The new covariant derivative Da is
defined by Davi ≡ ∂avi + 1

2εijkAa
jvk. The curvature of the connection Aa

i can be
found from 2D[aDb]vi = 1

2εijkFab
jvk, hence

Fab
i = ∂aAb

i − ∂bAa
i +

1

2
εi

jkAa
jAb

k. (19)

The evolution equations for the canonical variables are obtained taking the
Poisson bracket of the variables with the Hamiltonian (15), and, neglecting boundary
terms, they are given by

Ȧa
i(x) = {Aa

i, H} = −iN εijkEbjFab
k +

1

2
N bFba

i, (20)

Ėa
i(x) = {Ea

i, H} = iDb(N εijkE[a|j|Eb]k) + Db(N
[bEa]

i). (21)
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4. Alternative representation

In this section we will describe the phase space of gravity using the “magnetic” field
Ba

i ≡ εabcFbci = εabc
(

2∂bAci + 1
2 εijkAbjAck

)

rather than Aai. For a non-Abelian
theory the Bianchi identity,

DaBai = ∂aBai +
1

2
εijkAajB

a
k = 0, (22)

is a relation between Ba
i and Aai which can be used as a linear relation to be solved for

Aai, i.e., it is generically possible to obtain Aai = Aai(B) (see [9] for some examples).
Note that Ḃa

i = {Ba
i, H} = 2εabcDbȦci, thus, we have a new set of equations of

evolution for the gravitational field, equivalent to Eqs. (21) and (20), given by

Ėa
i = Db(iN εijkE[a|j|Eb]k + N [bEa]

i), (23)

Ḃa
i = −Db(2iN εijkE[a|j|Bb]k + N [aBb]

i). (24)

In order to express the alternative set of evolution equations in the Hamiltonian form
(1), we introduce the Hamiltonian

H = i

∫

d3x

(

−
i

2
NS(E, B) +

1

2
NaVa(E, B) + N iGi(E, B)

)

(25)

where, now,

Va(E, B) ≡
1

2
εabcE

b
iB

ci = 0, (26)

S(E, B) ≡
1

2
εabcE

a
iE

b
jB

c
kεijk = 0, (27)

Gi(E, B) ≡ DaEa
i, (28)

are the constraints. The Hamiltonian (25) is the same of Ashtekar [cf. Eq. (15)], with
A = A(B).

On the other hand, Eqs. (23) and (24) can be written in the Hamiltonian form

Ėa
i = Dab

ij
δH

δBb
j
, Ḃa

i = −Dab
ij

δH

δEb
j

(29)

where

Dab
ij ≡ −2iεabcDcδij ≡ −2iεabc

(

∂cδij +
1

2
εiklAc

kδl
j

)

(30)

and H is given by (25).
Making use of the Dab

ij given by Eq. (30), a Poisson bracket between any pair of
functionals of the field F (E, B) and G(E, B) can be defined as

{F, G}n ≡

∫
(

δF

δEa
i
Dab

ij
δG

δBb
j
−

δF

δBa
i
Dab

ij
δG

δEb
j

)

d3x, (31)

where the subscript n (non canonical variables) is introduced to distinguish it from
the canonical Poisson bracket. However, one can see that the antisymmetry and the
Jacobi identity of the Poisson bracket (31) follows from the fact that the Hamiltonian
structure is the canonical one, i.e, from the canonical Poisson bracket (14), by using
the fact of that δ

δAa
i = 2εabcDb

δ
δBc

i

, which follows from the chain rule, one can see
that (integrating by parts)

{F, G} = {F, G}n. (32)

VII Mexican School on Gravitation and Mathematical Physics IOP Publishing
Journal of Physics: Conference Series 91 (2007) 012013 doi:10.1088/1742-6596/91/1/012013

4



Therefore, the Hamiltonian structure is the canonical one, only the variables are new.
Thus, in what follows, we will use the subscript n in order to point out that we are
using E and B as variables of the phase space.

The new variables satisfy the Poisson brackets relations

{Ea
i(x), Eb

j(y)}n = 0, {Ba
i(x), Bb

j(y)}n = 0 (33)

and

{Ea
i(x), Bb

j(y)}n = − 2iεabcDcδijδ
3(x − y)

= − 2iεabc

(

∂cδij +
1

2
εiljAc

l

)

δ3(x − y). (34)

The Poisson bracket (31) yields the expected relations between the Hamiltonian
and any functional of the field. If F (E, B) is any functional of the field that does not
depend explicitly on the time then Eqs. (31) and (29) give

{F, H}n =

∫
(

δF

δEa
i
Ėa

i +
δF

δBa
i
Ḃa

i

)

d3x = Ḟ , (35)

i.e., H generates time translations.

5. Concluding remarks

As one result we have shown that it is possible to write the dynamic equations of
general relativity in terms of new variables, which are not canonical. We obtained
a Poisson bracket (associated with the canonical Hamiltonian structure) and it was
shown that it yields the expected relations between the Hamiltonian and any functional
of the field.

The Poisson algebra of the constraints in terms of the new variables is first class,
i.e., it closes. Furthermore the number of degrees of freedom is two. (See [10] for a
review of this points and for a sketch of quantization in this formalism.)
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