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ABSTRACT 

We propose a new relativistic two-body formalism which reduces to a non- 

relativistic Schroedinger theory for a single effective particle. The formalism 

is equal in rigor to that of Bethe and Salpeter, and considerably simpler to apply. 

We illustrate its use by computing O(or6) terms in the ground state splitting of 

muonium and positronium involving infinite Coulomb exchange. 
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1. INTRODUCTION 

The high precision measurements of the ground state hyperfine splittings (hfs) 
- 

in muonium (e-p +1 ) and positronium (e - +2 e ) allow a sensitive test of our under- 

standing of two-body bound states in quantum field theories and particularly in 

quantum electrodynamics (QED). This is the second of two papers in which we 

examine alternatives to the Bethe-Salpeter (BS)3 equation for organizing and 

computing bound state energies in spinor field theories. In the first paper (I), 4 

the BS equation was reduced to an equivalent Dirac equation by placing one particle 

effectively on mass shell. This approach is natural when the binding is non- 

relativistic or when the ratio of constituent masses is large (e.g. in high Za! atoms 

or perhaps in D mesons). Analytic solutions were found for a Coulomb-like kernel, 

and a systematic perturbation theory developed. The bound state equation reduced 

to the Dirac-Coulomb equation when one particle’s mass became infinite. 

Here we propose an alternative approach which may be more convenient when 

calculating high order corrections for non-relativistic systems (e. g. muonium or 

positronium). We reduce the exact BS equation to an equivalent Schroedinger 

equation with reduced mass. Among the advantages of such an approach are: 

(1) Approximating the kernel by a simple Coulomb interaction results in a 

zeroth order problem of great simplicity. The wave functions are essentially 

just the usual Schroedinger wave functions for the hydrogen atom. 

(2) The corrections to this zeroth order problem can be elaborated in a 

systematic perturbation series. 

(3) The unperturbed 2-particle GreenPs function can be expressed in a number 

of simple analytic forms. This is important when computing contributions from 

second order perturbation theory, as we demonstrate below. 
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(4) As the exact unperturbed wave functions are finite at the origin, the 

-expectation value of the l-photon annihilation kernel (in positronium) is finite. 
* 

This is not the case in the BS approach, where this quantity can be made finite 

only after an infinite order (in CY) renormalization of the annihilation vertices. 

In t.he formalism described below, all infinities related to renormalization can 

be removed order by order in precisely the way on-shell amplitudes are treated. 

This greatly simplifies the analysis and numerical evaluation of high order terms. 

(5) The spinor structure of the wave functions is that of free particle Dirac 

spinors , facilitating the use of computers for performing spinor algebra. This is 

quite important in view of the large number of diagrams remaining to be computed 

before theoretical and experimental determinations of hfs can be compared. 

(6) The constituents are treated symmetrically, and hermiticity is explicitly 

maintained. 

Unlike I, none of the fine structure of levels with differing angular momenta 

is incorporated into the unperturbed QED solutions. The fine structure of atoms 

with constituents of equal mass is quite different. in character from that of atoms 

with a large mass ratio. It is difficult to create a formalism which naturally 

accommodates both cases and still admits analytic solutions comparable in 

simplicity to those presented below. 

The most recent measurements of hfs test theory to O(02 AE6) in positronium 

and to O(ru2me/mP AE6, a3 AE6) in muonium, where AE6 is the leading contri- 

bution in each case. The relevant terms of O(cu3 AE6) can be computed in the 

Dirac limit (m 
FL 

4~) and will be discussed in a later paper (see also Ref. 5). 

Few O(02 AE6, o2 meimP AE6) terms have been computed. 6 All zero, one and two 

loop (irreducible) kernels contribute to this order. In addition there exists an 

infinity of diagrams with three or more loops which contribute. These diagrams 



-4- 

involve multiple Coulomb exchange. They arise when static interactions are 

treated in second order perturbation theory (Fig. 1). To illustrate the use of our 

formal&m, we compute all O(a6) hfs terms of this sort. 

In Section II we introduce a formalism describing bound states of two fermions 

with arbitrary mass. The analysis is similar to that in I and will only be outlined 

here. In Section III we rewrite the bound state equation as a Schroedinger equation 

for a single effective particle and solve it for a Coulomb-like kernel. We outline 

the entire calculation of 0 (a6) hfs in Section IV. We then compute the contributions 

requiring second order perturbation theory. We also quote the analogous results 

obtained using the formalism of I. In Appendix I we comment upon certain aspects 

of renormalization theory for bound states, and finally, in Appendix II, we briefly 

discuss the relation between our formalism and the more conventional BS treatment. 
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II. THE BOUND STATE FORMALISM (2 FERMIONS) 

Most bound state formalisms follow from a Lippman-Schwinger equation for 

the trudcated 2-particle Green’s function, GT, having the general form (inte- 

grations over relative four-momenta are implicit):7 

GT(P) = K(P) + K(P) A S(P) GT(P) P-1) 

Here K(P) is the interaction kernel at total momentum P, A is a spinor projec- 

tion operation, 

the choice of A 

and S(P) is a 2-particle propagator. The kernel is determined by 

and S(P): 

K(P) = GTtp) 
1 

1 + A S(P) GT(P) 

= GT(P) - GT(P) A S(P) GT(P) + * * * (2.2) 

Given the expansion of GT, this equation defines the expansion in Q! for K. 

The Bethe-Salpeter equation is obtained by choosing3 

S@,P) = 
i i 

TIP++-ml T2p-$f-m2 

A=1 
m. 1 7. = i= 1 m +m 1,2 
1 2 

In this case the kernel, KBS, is the sum of all 2-particle irreducible diagrams. 

This kernel is dominated by the static single-photon-exchange kernel in non- 

relativistic QED atoms. When the kernel is static, integrations over relative 

energy k” are easily done, resulting in a 3-dimensional formalism with propagator 

(in the center of momentum frame):8 
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A S(kP) = 271-i S(k”) 
A(+) A(2+-fi ) + + P)(E) *(2+-E) 

PO - El(k) - E2(k) -PO + El(k) + E2(k) 1 ’ 

Ei(k) = ,/E2 + rnf i= 1,2 

The A A term contributes only to O(CY’), suggesting that a useful formalism - - 

could be constructed with A = 2ris(k0) A?’ A?’ and S(EP) -1 = PO-El-E2. 9 

It is convenient at this point to introduce the 2-particle Green’s function 

evaluated at zero relative energy and having external fermion propagators: 

A(“$) A(2+-l?) 
&P) = + + 

PO 
(27r)3S “(F-<) + 

- Elfi) - E2(k) I 
d* 
(27G3 

= Ajl’ct;r) A?‘& A(l)(;) A(2)(-:) 
+- 

PO - El(k) - E2(k) 
(2*)3S 3(C -s’) + GT(I;:P) + 

PO i 
(2.3) 

- El(k) - E2@) 

where GT is related to the complete 4-point function (2.1) by 

5,(f<P) = lim 
k”,qo+O 

i GT(kqp) 

Equation (2.3) is exact only if K is defined as in Eq. (2.2). In terms of the 

2-particle irreducible BS kernel KBS, we have (Fig. 2 a): 

Ii(E:P) = KBS(kqP) 
I k”=qo=o 

+ 
KBS(krP) Vh +2 

A(‘)(F) At2)(-,‘) 
- 27ri s(rO) + + 

PO-El(r)-E,(r) 
+ 

k”--qo=o * ’ ’ 

(2.4) 

(2.5) 
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As discussed above, K = K BS k”=qo=O I 
is a very good approximation when the 

binding is non-relativistic, and the remaining terms in (2.5) may then be incor- 

porated perturbatively . 
-h 

Equation (2.3) is far simpler than the BS equation because we have chosen to 

consider GT (kqP) only at k”=qo=O. 10 The location of bound state poles is unaffected 

by the relative energy of the constituents, 11 and so there is no need to retain this 

excess degree of freedom when computing energy levels or decay rates (F= -2 Im AE). 

Furthermore when the BS kernel is static, GT is independent of k” and q”, and 

solving (2.3) is then equivalent to solving the BS equation (Appendix). 

Like GT(kqP), ?@cP) has poles at the mlm2 bound state energies Pz: 

Qlz<P) + 
qn il; ) $, 6, 

as PO-, P 0 

PO - P,” n (2.6) 

Substituting (2.6) into (2.3) and evaluating at the pole, we obtain the bound state 

equations (Fig. 2b) 

[I”-E,(k)-E,(k)) +fi) = AjL’$, Ay)(-E) 
I 

2-L 
m3 

iI?(r;GP) e(G) (2.7a) 

A(‘+-l;) q(B) = A(2)(+E) $4) = 0 (2.7b) 

Notice that the spinor structure of q(B) follows immediately from (2.7): 

$m =c J1) (I; A) u(2+-Ex’) 
Ah’ J4El(k) E2rX) 

W3?&, 

where u(l?h) is the usual free particle Dirac spinor (?iu = 2m). Defining 

w9’wh’p’ AC1 = 
J1)@J p)(--+)t - G(Its’p)y(l)y(2) uq q’A) J2)(-s’p) 

, 1/ 4EltW E2(k) ’ ’ 4 4Eltq) E2td 

(2.8) 

(2.9) 

&EqP) 
u(l)(~~,) $2)(-&Q 

h’p’,hp = 4 K(lq P) 
utl)(~h) J2)(-&) 

4El(k) E2(k) d 4ElW E2W 
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we can rewrite Eqs. (2.3), (2.6), and (2.7): 

- L!!tWSL asp”4po 
PO - P; n 

(P”-ElWE2tk)) +fl, = I &I- 
w3 

iFi(i?qP) $($) 

Using methods described in I, we obtain the orthonormality conditions: 

I 3 3 
dkdq 8 (i?RP) w (IQPP,)$J$) = 

Q? 

m-f PO - P; 

where 

* d3k d3q 

(27$ 
em m ww PmPn) $,@I) = bnm 

w&;PmPn) = (2n)363(k’-9’) - 
iii(k’g’P,) - iI?(‘;g’Pn) 

Porn - P; 

(2.10a) 

(2. lob) , 

(2.11) 

Perturbation theory for this equation also follows as in I. Let @z(E) be the eigen- 

function and e: the eigenvalue (PO = ml + m2 + E ) of (2. lob) with kernel K,. 

Then if Go is the corresponding Green’s function (2. lOa), the perturbed energies 

and wave functions when E = go + SE are given by 



+ e(sfi2) 
where the momentum integrations are implicit. Note that these formulae are 

also valid when $, (p*, 8g and c are replaced by 4, T, 8k and Grespectively. 
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III. THE UNPERTURBED PROBLEM IN QED 

Equation (2. lob) is rendered more tractable by multiplying on both sides 

by N(kT/,i”N?k-i where12 

N(k) = PO + El(k) + E20C) ) cpo2 - ( El(k) - E2uq2 

2P. PO2 - (ml-m2)2 

N k2 3E2 li-- E 
4m2 -7mlm2- 2(ml+m2) + * ’ ’ 1E1 <<m 

and 

m= mlm2 
m +m 1 2 

is the reduced mass. The resulting equation is 

This is just a Schroedinger equation for an effective particle with “binding energy” 

and 17mass11 

E= pO 2 - (ml+m2)2 
3L E2 

2p0 ’ - 2(ml+m2) + * ’ * 

2 - & pO (ml-m2)2 

4p0 
Em+; l- 

( 
2m 

m +m 1 
+ ‘*’ 

1 2 

We emphasize that this equation is exact and equivalent to (2. lob). 

For QED bound states, the choice of zeroth order kernel is now obvious: 

2 
iZo(k’q”P) = -e 1 

I&@ JmmFi) 

as then (2. lob) reduces to the Schroedinger-Coublomb equation: 
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The eigenfunctions are simply related to the (normalized) non-relativistic 

Schroedinger wave functions with m replaced by m: 

-h k&,h tE ir;;;> n=l, 2, ,‘. . 

-b- $(E) = 
p(q p(--) 

~4El(k)E2tk) 
4btQ 

The normalization is fixed by Eq. (2.11). Note that $(z = 0) CG /d3k c$(k) is always 

finite in the unperturbed problem. The unperturbed energy levels follow by solving 

pO 2 - (ml+m2)2 a2 Z2 
2p0 

-- 
2n2 i 

pO 2 - (ml-m2)2 

4p0 

,a 
o2 m+ 

po=(ml+m2) ‘- n2+a24 1 2 
( / 

m +m 1. 

corn +m a2rn 

’ 
-- + g+ p - -yrn2) + WA 

2 2n2 

It is readily demonstrated that the remaining C(cr4) terms are due to the 

following static kernels (in Coulomb gauge): 13 

a) Relativistic corrections to single Coulomb exchange (Fig. 3a): 

i6Kc = -e 
2 

lk’-<12 y. 
WyoM _ G 

0 

ilYx<. o- 
1 + 

&xc * G 
+ 2 

4m12 4m22 1 
(3.5a) 
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b) Single transverse photon exchange (Fig. 3b): 

+ &ET = 
e2 

I 
Es Q2 - f2q2 _ iBX 4’. (Rl + z2) 

IC-;12 i,m, k-d 2 2mlm2 

+ 
(It-G) x 61 - (E-B) x 32 

4mlm2 1 

c.) Single photon annihilation (positronium only; Fig. 3~): 

i6K = yF * Yl e2 

A tp0j2 

+ iSEA 2 
e2 

8mlm2 
(3 + al - u2) ml = m2 

(3.5b) 

(3.5c) 

. Only the dominant parts of each kernel have been exhibited. 

These kernels are important for the analysis presented in the next section. 

We will also require the ground state (n=l) wave function 

(3.6) 

where x(l), x(21 are 2-component spinors. 



We now examine the Green’s function Go for kernel go. We require 

lim o 
E+E 

- $O$$/E-Eo 1 
for se&d order perturbation theory (2.12). Applied to (2. lOa), the arguments 

used above lead to a simple relationship between E. and the non-relativistic 

Schroedinger-Coulomb propagator: 14 

‘u GSch tc& ; m) Ia, ICI << ml,m 2 (3.7) 

Though analytic expressions exist for GSch in coordinate space, l5 we find it 

convenient to use an expression in momentum space due to Schwinger: 16 

GSch@i E ;m) = 
(2T)3 s3(L;) _ 1 e2 1 

E d2Lm E -c2krn ,iq2 E -;xrn 

1 

dP 
lk’-s’,2 p 

where iv = The first two terms are just the zero and one Coulomb terms 

in the Born series, Integrating by parts and taking irl + 1 we can isolate and remove 

the ground state pole, and perform the p integration. The resulting (exact) 

expression is: 17 

lim N N k, - 
E-+ E 

0 

6 
+ Y 

4(E2 + y2) ,Ls', 2(;" -I- y2) 
+ ws', 1 (3.8a) 



-14- 

@?<) represents all contributions ,due to exchange of two or more Coulomb 

photons and is given by: 

k-3 = ts2 
5 4Y2 

+,$I (s’2+y2)2 2 - K2+y2 -<2y;2 
II 

1 
+2 QnA+ 2A-1 tan-IJ=I 

tpxi 1 (3.8b) 

A = (E2 + y2)(G2 + y2) 

4Y219-1712 

It is convenient when computing O(a6) hfs to isolate the zero and one 

Coulomb terms as these result in one and two loop kernels (when inserted into 

(2. I2))which are most easily computed with all other kernels of the same order. 

In the following section we compute all terms involving the remainder ?i - i.e. 

the kernels which arise when we substitute 18 

in (2.12). As mentioned earlier these are the only relevant kernels having three 

or more loops, aside from the O(oz3AE0) which are calculable in Dirac theory. 
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IV. HYPERFINE SPLITTING IN MUOMUM AND POSITRONIUM 
but one, 

All kernels%ontributing to O(cr6) ground state splitting in this formalism 

are di%played in Fig. 4. These have been expressed in terms of the BS kernel 

KBS (Fig. 5), the unperturbed kernel go, and R (Eq. 3.8b), by combining 

expansions (2.5)) (2.12), and (3.8). Only those parts of KBS need be retained in 

Fig, 4a as result in diagrams with two or fewer loops. 

The only contribution not appearing in Fig. 4 is trivially computed: 

’ E = (@$jzT$))($~ & i6gc$o) = 4y3a3 . 
E =E 0 3(ml + m2J2 

In what follows, we compute the hfs due to the kernels in Fig. 4b. To 

exhibit the mass dependences, calculations are for muonium when it is appropriate. 

The corresponding results for positronium are found simply by setting mp=me. 

Note that only the dominant perturbation kernels (Eq. 3.5) must be treated in 

second order perturbation theory, and then only in the region of non-relativistic 

momentum. Note also that iS% and iSKA alone contain spin-spin interactions, 

and thus we need only consider pairs of interactions which include one or the 

other of these kernels. 

To illustrate the procedure, we consider the term containing iSfiG and 

i&ZT: 

(jECT= 2 d3k d3q 

m6 

I 
J=l 

x &XT (s”F) +,(C) 
J=O 

The spherical symmetry of the wave functions allows us to drop spin dependent 

terms in i&G and for hfs to replace iS% by: 

i6 f;;,-+ e2 
6mm 5.5 

e P 
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We find 

* 
6ECT = 

J d31 d3k 

(ZKf 

where E F is the hyperfine 

3 

splitting in lowest order (Fermi splitting): 

E,=S&- <o’ e 
e P 

E cy2!id 
/ 

8ny d3p 

/ 

d3r 879 
F 

Y6 (27r)3 I62 + y2) 2 2 (;2+y2)2 

2 Y&L 
3 mm 

e 1-1 

(- 4 czm e 
3 

in positronium 
1 

The r and p integrations are easily performed (using Feynman parameters for 

the latter), leaving: 

,EFCY2 

6ECT = .4 

m 
- me+m 

( 
y tan -1 ii _ sy2 i-1 

P 
Y q2+y2 13 Gm 
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The last integrals were evaluated numerically; 19 the analytic .results quoted here 

agree ta at least five significant figures with the numerical results. The term 

(9/J - r2/6) (u2EF when combined with similar contributions from Fig. 4a results 

in the usual Breit-Dirac correction 3 a! 2 E F /2. The remaining term is a new 

recoil correction. 

A similar analysis has been performed for each term in Fig. 4b, The 

results are summarized in Table I. 6 EAA agrees with the value computed in 

Ref. 20. 

We list here the final integrals for each case. Again these were evaluated 

numerically to 1 part in lo5 or better. As the spin-spin part of 6kA is 3/4 that 

of 6 N Isr* we find 6E ~3 &E 
CA 4 CT cc 

(m + me) for these contributions. 

EF Y2 Y2 
dETT = 7 memP E2.Y J 

X ( *2 
3 q 3 c2+y2 tan-l g 
z+z -2 

Y Y4 Y 1 

+2 z-z----- 
( 

3 3 it2 + Y2 tan-1 & + K2 
7 

_ 1 + I c2 -t- y2 
2 2 YLI 

tan-l 4 
yk Y Y 
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6 =a m 

6ECA = i 6ECT(mp+ me) 

=cx6me[& - $1 

6 a!m 

6EAA = - 8n4 
e 

/ 
d3k d3q N 

Y6 
RCEq’) 

3 6 =- - 
16 a! me 

Perturbations of 6ETT, 6EAT and 6EAA are independent to this order of the 

details of the bound state formalism used. The same results should occur in most 

any analysis and in particular they appear in a BS treatment or in the formalism 

of I. On the other hand, i6Kc is very dependent upon the nature of the propagator 

and of the unperturbed kernel used. Thus the formalism described in I gives the 

following results: 

a6m- 
6ECA=- --$ 
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V. CONCLUSIONS 

In this paper we have described further alternatives to the traditional 

Bethe-&peter analysis of bound states in field theory. These novel methods are 

well suited to computational QED as analytic solutions of great simplicity can be 

found for a zeroth order interaction containing the basic physics. The corrections 

to this basicsinteraction are then unambiguously specified by a simple perturbation 

theory. 

Applying these results, we have computed new O(a6) terms in the ground 

state splitting of muonium and positronium which require an all orders treatment 

of the binding potential. Of the terms still to be computed before theory matches 

experiment in precision, Only those Of O((r3EF) present a major conceptual prob- 

lem. Evaluation of the remaining terms (Fig. 4a) is straightforward though 

perhaps tedious. 
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APPENDIX I 

Comments on Renormalization 

The solutions presented in Section III contain none of the divergences associated 

with the short distance (high energy) behavior of QED. In particular the wave 

functions at the origin 

$(;;“= 0) = dim q(k) 
tw3 

are finite. Here we illustrate how the property allows us to disentangle the low 

energy features of the field theory (e. g. bound states) from the high energy features 

(e. g. UV divergences). This is most desirable as the first must be analysed to all 

orders, while the latter are most conveniently handled in perturbation theory. 

The wave functions in Section III are finite at f;‘= 0 only because z” falls 

faster for large momenta than does the true l-photon interaction. Indeed the BS 

wave function qBs for the exact l-photon interaction (Fig. 6a) is mildly divergent at 

the origin (just like solutions of the Dirac-Coulomb equation). This divergence 

causes problems only when evaluating the energy shift due to l-photon annihilation 

(Fig, 6b) and similar kernels. Since the annihilation kernel is independent of 

relative momentum k, the perturbation is proportional to 

1 +BStx= ‘) 1 
2 N I jd4k$(k) I2 = to. This expectation value contains an infinity of 

divergent vertex subdiagrams, as is evident when the wave function is iterated 

(Fig. 6b). Thus the energy shift has the form 

AE(A) = Ko4 1-t o!f1(A)t cy2f2(A)t . . . 1 
if k is cut-off at A. The functions fi(A) all diverge as A- 00 and these divergences 

are removed only by an all orders vertex renormalization. Note that the leading 
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order contribution is finite (= 1 t,bm(0) 1 2&e;- e;, where qNR is the non- 

relamistic wave function and ,M is the annihilation amplitude at threshold). 

The divergence is a relativistic effect and as such is suppressed by a factor ($) N CL 

The infinity in Jigs(O) is spurious insofar as it is removed by a (complicated) 

renormalization when computing l-photon annihilation terms, and cut-off by 

momenta of O(m) in other terms. Using the more convergent wave functions $ 

from Section III, U V divergences only appear within the kernels themselves. These 

are removed order by order in just the way they are removed from on-shell ampli- 

tudes. No further infinities can be introduced when evaluating the corresponding 

expectation values since z/(2= 0) is finite. Thus the perturbation due to lowest 

order annihilation (Fig. 3c) is finite for these wave functions, and agrees in lowest 
order with AE(A). The 
divergent parts of AE (A) appear here, one at a time, in higher order kernels. For 

example, the first order vertex correction (Fig. 7) arises from terms in the second 

line of Fig. 4a. The kernel in Fig. 7a diverges as loop momentum k - ~0, and 

reproduces the lowest order divergence in AE(A) (i. e. K a5 fI(A)). This divergence 

is exactly cancelled by the usual (lowest order) renormalization counter-term 

(Fig. 7b) for all finite external momenta q. The q-integration must then converge 

because I d3q + (q) does. Thus the energy shift due to the kernels in Fig. 3c, 7 

is completely finite. 

Finally we note that the Green’s functions and kernels discussed in Section II are 

all unrenormalized (though masses and charges in ?% o, $ are physical). Overall 

multiplicative constants, such as Z2, cannot shift the locations of bound state poles 

in the Green’s function. It is obvious from the derivation of perturbation theory 

(see Ref. 4) that such constant factors cancel in the final expression for the perturbed 
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energy. As mentioned above, the masses and charges appearing in the unperturbed 

interaction (Kg) and wave functions (Section III) are the physical quantities. Con- 
- 

sequently all renormalization is due to counter-terms appearing in the kernels (Fig. 4) 

of the bound state perturbation theory (Eq. (2.12)). In particular it is not correct to 

replace the unperturbed wave function $ by Z2$ when calculating radiative cor- 

rections. The factors of q required for charge renormalization already occur 

in the kernel. To illustrate this, consider the first order radiative corrections on 

the electron line using the BS wave function depicted in Fig. 6a. By iterating the 

wave function, we can express these corrections in terms of a single ’ effective 

vertex’ (Fig. 8). Clearly charge is properly renormalized. Similar rearrangements 

of perturbation theory can be obtained beginning with the solutions in Section III. The 

lowest order radiative corrections in Fig. 4 can readily be rewritten in terms of the 

same ’ effective vertex’ (Fig. 9). 

An advantage of grouping terms as in Fig. 9 is that Z1 and Z2 cancel explicitly 

because of Ward’s identity (in QED). These are very complicated momentum de- 

pendent renormalization factors in Coulomb gauge and it is fortunate that they need 

not be computed, The vacuum polarization is gauge invariant in QED and as such. 

it (and Z3) can be computed in Feynman gauge (or any other gauge one might prefer). 

A detailed application of renormalization theory is described in Ref. 22 for 

bound states inDirac theory. Most of that discussion applies to two particle bound- 

state theory as well. 



APPENDIX II 

RELATION TO THE BETHE-SALPETER FORMALISM 

A^t a bound state energy P” n, the complete 2-particle Green’s function has a 

pole: 
- i+,,tk)?,f$q) 

GTtkqP)+ 
PO - P; 

(1) 

Here +BS is the truncated BS wave function: 

KB &k@) % c&q) (2) 

Substituting (1) into (2.1) and evaluating at the pole we find (momentum integrations 

implicit) 

@BS = KtP)A ‘t’)@BS (3) 

where A and S(P) are arbitrary. Defining a new wave function 

$J= A ‘tP)@BS 

we obtain 

S-I(P)+ = A K(P)+ (4) 

This is simply the effective bound state equation of the formalism defined by h 

and S (Eq. 2.7). Thus given the solutions $ of (4), the BS wave function is just 

%S = K(P)’ 
Specializing to the formalism in Section III, we see that when KBS is static 

(independent of k”) the truncated BS wave function is 

$,S@) = (5) 



This is true only when KBs is static, as only then is @Bs independent of k” 

(Eq. 3). In the general case, K must be redefined to include the k” behavior of 

KBS an; its iterates. Whether or not KBs is static, the following relation is 

valid: 

A(l)(E) A(2)(-E) 
VMi, = + + 

PO-E,(k)-E,(k) 
+BStko = o,@ 

It has recently been suggested that high order computations be performed 

in two stages. 21 First the BS wave function is determined for the fully relativistic 

(static) Coulomb interaction using a perturbative expansion. This wave function 

is then used in Bethe-Salpeter perturbation theory to compute contributions from 

transverse photons, cross graphs, etc. The basic difference between this approach 

and that described in this paper is that we abandon the BS formalism completely. 

All perturbations, static or otherwise, are treated in the same Schroedinger-like 

theory, avoiding the need for two separate perturbation series. . Note, however, 

that the methods described in this paper (or in I) together with (5) can be used to 

determine the BS wave function to any level of accuracy for a static kernel. Thus 

they are of use even if the two stage approach is adopted. 

Finally we note that if z/(c) is a solution of Eq. (2.7) for some kernel &c’;;P), 

then wave function 

@BS (T;c, = ( Po-El(k) - E2(k)) @ii) 

is an exact (truncated) solution of the BS equation with kernel 

(l)-, (2) --- (1) - (2) - (1) (2) 
KBs(zh = A+ W “+ (-k)K(k q WA+ (9) A+ WY0 Y. l 



Thus the wave functions of Section III are also exact solutions of the BS equation 

with this kernel (f-- E. ). It is possible to restate all of the analysis in this paper 

in terms of the BS formalism, using these as the unperturbed BS wave functions. 

However such an approach is awkward a) because it obscures the simple connection 

with non-relativistic Schroedinger theory, and b) because the wave functions zjBs 

(Eq. (2)) still depend upon relative time (or energy). 
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O(at6) hfs from 2nd Order Perturbation Theory 

Involving Kernels with Three or More Loops 
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FIGURE CAPTIONS 

Diagrams having 3 loops and more which contribute to O(o’)hfs. 

a) Definition of the effective kernel in terms of the Bethe-Salpeter kernel 

b) The bound state equation 

Kernels contributing to O(04) energy level corrections. 

The kernels contributing to O(a’)hfs. A double line represents the two- 

particle irreducible BS kernel (Fig. 5). 

The two-particle irreducible BS kernel. 

Divergent subdiagrams in the expectation value of the l-photon annihilation 

kernel with wave function zjBS* 

First order radiative corrections to l-photon annihilation kernel using 

solutions from Section III. 

a) Perturbation due to first order radiative corrections related to the 

electron. Similar terms must be included for the muon (or positron). 

Renormalization counter-terms are implicit. 

b) Definition of the ’ effective vertex’ . 

Terms from Fig. 4 due to first order radiative corrections as rewritten 

in terms of the ’ effective vertex’ defined in Fig. 8b. 
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