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ABSTRACT 

Under a rather general class of assumptions, the most important being that 

weak and electromagnetic interactions are based upon a spontaneously broken 

gauge theory with an underlying simple gauge group, we estimate bounds on the 

least massive charged gauge boson. Typical values lie between 55 and 75 GeV, 

in agreement with those estimated from the Weinberg-Salam SU(2) 8 U(1) model. 

Less restrictive bounds are obtained for neutral bosons Z”. 
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1. INTRODUCTION 

The apparent success of the Weinberg&Jam SU(2)@ U(1) weak- 

1,2 - electromagnetic gauge theory in quantitatively accounting for the observed 

neutral-current cross sections increases one’s confidence in the existence of 

charged $) and neutral (Z’) spin one intermediate bosons which mediate weak 

processes. In the simplest version of the SU(2) @ U(1) model, the masses of 

W and Z are already well constrained by experiment. If it is true that the data3 

provide the limit 

.25 < sin2 ew< .45 Cl) 

it follows that 

56 GeVFmW < 75 GeV 

76 GeV < mZ 5 87 GeV 
(l-2) 

This result utilizes a mass formula (mw=mz cos 0,) which depends upon the 

details of the spontaneous breakdown mechanism. However, even if one ignores 

that relation and uses a two-parameter theory (sin2 ew, mz as parameters), 

essentially the same limits are obtained. More important is the assumption that 

the right-handed components of the nonstrange quarks transform as singlets under 

the weak group; if this is relaxed the experimenktl constraints on mW are 1oosenedP 

However, whatever the degree of success of the SU(2) @ U(1) model in 

accounting for presently existing observations, it is widely felt that this model 

is only a srnall portion of a larger structure within wmch the totality of weak 

interaction physics resides .5 In particular the SU(2) @ U(1) model is not truly 

a unified theory of weak and electromagnetic interactions because of the presence 

of two coupling constants g and g’ . The weak and electromagnetic parameters 

GF and a! are traded in for g and gl. An example of a truly unified theory is one 
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based upon a simple gauge group G with a single coupling constant g, and with 

SU(2) 8 U(1) C G. In such a theory there must be additional gauge bosons and 

quite possibly more quarks and leptons. The question naturally arises of 

whether at least some of the gauge boson masses will still lie in the range given 

by the SU(2) 631 U(1) model; Eq. (1.2). This is the problem posed in this paper. 

We endeavor to find a general set of assumptions with which it is possible to put 

bounds on the mass of charged and neutral bosons W and Z. While the limits 

are only as credible as the input assumptions, we believe it is still of use to 

carry out a study of the issue, if only to exhibit to what length one must go to 

avoid the conclusions reached in the context of the SU(2) @I U(1) model. Indeed 

we believe our assumptions are in fact not very restrictive. 

We now state the input assumptions we use in Sections II and III to obtain our 

results. As indicated below, these can be considerably relaxed (as we do in 

Section IV) without affecting significantly the conclusions: 

Assumptions: 

1. The weak interaction gauge group is contained in a simple group G: 

there is only one intrinsic gauge coupling constant g. 

2. Gauge-bosons carrying lepton and/or baryon number contribute 

negligibly to the existing weak interaction phenomenology. 

3. Only two (2-component) neutrinos ve and vp contribute significantly to 

the existing weak interaction phenomenology. [By existing phenomenology we do 

not include the strong, but not yet conclusive, evidence6 from SPEAR for a 

sequential heavy lepton rf and an associated neutrino.] This assumption actually 

is not vital and will be disposed of in Section IV. 

4. For the predominant low energy phenomenology of charged and neutral 

weak currents (i. e. , ignoring effects proportional to sin2 0G, charm, other new 
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flavors, etc. ) we may use the conventional 3-color, 3-quark model for fermion 

hadronic degrees of freedom. 

5. Occasionally we shall also assume the Glashow-Iliopoulos-Maiani 

(GIM) mechanism;7 i. e., there exists a fourth (colored) quark of c of charge 

2 + z ; and (c, sc) have the same weak couplings as (u, dc) quarks. 

6. As a consequence of these assumptions we may write for the phenome- 

nological Lagrangian 

where 

3 
$zc = er”(l-Y5) Ve + FY”!(l-Y5) vp + C ‘~Yat1-Y5) ui 

i=l 

3 
-I- lzl ++l-y5) Ci? ? + . . . 

(I* 3) 

E 

(1.4) 

7. Higher-order radiative corrections may be neglected. 

With these assumptions, we may now state our main results: 

Let wf denote the charged intermediate boson of smallest mass which is 

coupled to eFe. Then 

(75 GeV) J/ 5 mW ( (75 GeV) 
e O 

J 
RO M (1.5) 

Here 

R. = c Qf (l-6) 
ie9? 

where the sum goes over all (4-component) fermions contained in an N- 

dimensional basis for some representation SS? of G, and where Qi is the charge 
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(in units of e; i.e., Q,* = *l) of the ith fermion in the representation. Also 

M = number of independent terms in $” 
(cc) 

in Eq. (1.4) . (1.7) 

Notice that the AS=0 hadron current associated with u and dc quarks contributes 

3 to M [A GIM charm-current contributes another 3 units to M]. Finally, to 

define the quantity Bei; , first let < j Ic(w)ii > denote the coupling constant (in 
e 

terms of some basic coupling g) of the intermediate boson W to left-handed 

fermions j and i contained in the representation &!Z. That is the effective 

Lagrangian is to be written 

9 eff = g C 'j 

I-Y5 

0 
4 ) 2 uiti <j Ic(W)li> + . . a 

Then, define 

l<j Ic(w)li>12 
B .T = 

j1 c I<bIc(W)la>12 
0 

in .Z 

(l-8) 

P-9) 

If the mass of all fermion degrees of freedom in the representation ,9?! is much 

less than mW/2, then 

B- ev 
= branching ratio of W into eve 

e 
(1.10) 

We now give some examples, in order to exhibit the content of Eq. (1.5). 

Suppose 

1. All leptons form a basis for a representation 99 of G. Then 

Ro=2+? 

B-l eF 
=2+? 

e 
(1.11) 

M=Z+? 
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where the ? denotes contributions from all additional lepton degrees of free- 

dom and from couplings not yet known or fully established. This gives 

(1.12) 

2. All quarks form a basis for a representation 99 of G. This option 

divides into two suboptions, according to whether or not the GIM mechanism is 

accepted: 

a. Only the (u, dc=d cos Bc+ s sin ec) current is considered an established 

contributor to the weak current and u, d, s to the electromagnetic current. Then 

Ro=2+? 

B-i 

eve 
=M=3+? 

(1.13) 

and 

(1.14) 

b. Colored u, d, s, c quarks are considered as established contributors to 

weak and electromagnetic currents (utilizing the GIM mechanism). Then 

B-I e’;, 
=M=6+? 

and 

56 GeV,/m 2 mW 5 56 GeV,/m (1.16) 

(1.15) 

3. Both leptons and quarks must be included in order to obtain a repre- 

sentation LZ! of G. This occurs, for example, in fully unified theories which 

include the strong force , such as the SU(5) theory of Georgi and Glashow.8 
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Again there are two suboptions: 

a. Only u, d, s colored quarks and the uac weak current weak current are 

considered as established. Then 

Ro=4+? 

B-l e’; =M=5+? 
e 

(67 GeV) Jm 5 mW 5 (67 GeV) drs 

(1.17) 

(1.18) 

b. Colored quarks u, d, s, c are accepted with (GIM) uac and tic weak cur- 

rents. Then 

(1.19) 

B-l e3 
CM=8 

e 

and 

FlGev)J%* ‘“s/t 4’ 5 mw ((61&V) . Jyyy (1.20) 

Hence without a major proliferation of degrees of freedom, we have 

(1.21) 

just as in the case of the SU(2)@ U(1) model. We emphasize, however, that this 

conclusion is obtained by a quite independent (but compatible) line of argument. 

If leptons and hadrons form bases for independent representations Zf and LZh 

of G, the limits we have obtained in Eqs. (1.12) and Eqs. (1.14) or (1.16) are 

mutually exclusive. More degrees of freedom or couplings must be included in 

order to maintain compatibility. This situation is very similar to that discussed 

by others in the context of the SU(2) @I U(1) model. In particular, the expression 

for sin’ e w obtained by Georgi, Quinn, and Weinberg 
9 

sin2ew= C T32i/ C Qf 
ieZ ieL?Z 

(1.22) 
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(with the sum going over two-component fermion degrees of freedom) is closely 

connected to the bounds we obtain. In the limit of a single charged W coupled 

universally to fermion doublets, we evidently have B -1 
eiJ, 

= M. The inequality in 

Eq. (1.5) becomes an equality, with the same content as Eq. (1.22) above. Using 

the known leptons @, e, v , v 
Et e 

) , one obtains 

sin2 ew = .25 tm w = 75 GeV) (1.23) 

Using only colored u, d, s, c quarks 

sin2 Bw = .45 (mw = 56 GeV) 

Combining both, as in the SU(5) model8 

sin2 e W = .375 (m w = 61 GeV) 

(1.24) 

(1.25) 

An easy way to reconcile the lepton value with the hadron value without complete 

unification or a major proliferation is to introduce some neutral leptons possessing 

V+A couplings to electron and muon. Then we can immediately increase B-l 

and M by two units without increasing Ro. We would then obtain, instead of 

Eq. (1.12), 

(53 GeV)J% ( rn+ (53 Gev)Ja (1.26) 
. 

Given the probable existence of a charged heavy lepton $ (which, by the way, 

would replace 53 GeV by 58 GeV in Eq. (1.26)) this might be considered an argu- 

ment for the existence of neutral heavy leptons. In any case experimental 
10 

searches for such objects are clearly of importance. 

The methods we use generally do not allow very stringent bounds or estimates 

for the mass of the lightest intermediate neutral boson Z”. This is regrettable in 

the light of the importance 11 of the Z” in contemplating future e+e- storage ring 

facilities. The useful information for Z” bounds comes from the data on the 

semileptonic neutrino reactions. We find in general that the Z” of lightest mass 
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is bounded from above as follows: 

where R. is defined in Eq. (1.6), and 
12 

R= 

L3 

M?= 

i- 

>6 

if only Z” couplings to u and d quarks are 

considered. 

if the GIM mechanism is accepted, and Z” 

couplings to c and s quarks are equal to the 

u and d couplings respectively. 

(1.27) 

gtot(iJ N --*v hadrons) 
= 0.28& .04 

gtot(i;CIN -P- hadrons) gtot(V N--p+ hadrons) 
, R = = .38i.O2 cc 

CT&J N -FP hadrons) atot(vpN -P- hadrons) 

atot(?PN -p+ hadrons) 
= 0.39*.06 

(1.28) 

In deriving this bound, we have necessarily put both vP and quarks in the same 

representation %‘; hence R. must be summed over both quarks and leptons. 

However, putting numbers into Eq. (1.27) yields 

-jpL 

1 

189 GeV ordinary quarks and leptons; 

R0=4, M’=3 (1.29) 

I.84 GeV GIM and ordinary leptons; 

R. = 16/3, M’ = 6 

Furthermore, it is not possible in general to obtain a lower bound on mZo using 

only semileptonic neutral current data. 

Stronger bounds can be obtained with stronger assumptions. For example, 

let us assume that only one Z” contributes to the extant semileptonic neutral 

current phenomenology. In such a case we can replace Eq. (1.27) with the 
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bound (1 +Q [ 1 I/4 
l/2 mzo ( (75 GeV) R. 

4M’(R +RccR) 
(1.30) 

where the quantities are defined as in Eq. (1.27). Putting numbers into Eq. 

(1.30) yields 

107 GeV ordinary quarks and leptons ; 

mzo 5 R0=4, M’=3 

104 Gev GIM and ordinary leptons; 

Ro= 16/3, M’=6 

(1.31) 

A final improvement of a factor 2 -l/4 can be obtained upon assuming v -V 
P e 

universality in semileptonic neutral current phenomenology (in addition to the 

single-z’ assumption). The factor 3 in Eq. (1.30) is replaced by 6, and the 

bounds become 

90 GeV ordinary quarks and leptons; 

R0=4, M’=3; v -V universality 
I-L e 

88 Gev GIM and ordinary leptons; 

R. = 16/3, M’=6; v -V universality 
P e 

(1.31) 

If only one Z” mediates semileptonic neutral current processes, a direct 

estimate of its mass can also be made: 

(1.32) 

where B - 
7-h 

is defined analogously to the Bi for W’s; c.f. Eq. (1.9). Bhad is 

the sum over u, d, s, (c) quarks of B * 
ST 

Bhad = (1.33) 

tsi9 ‘i) 
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The most naive guess for their values might be 

yielding 

B -+$ 3 

“db 
Bhad N 7 

(1.34) 

Inserting these numbers into Eq. (1.32), along with R. = 16/3 and M* = 6 gives 

“ZO N 69 GeV (1.36) 

[This is lower than the SU(2) @ U(1) estimate because in that model B _ is 

-30% higher than the guess in Eq. (1.35).] 
vPvP 

The details of all these Z” bounds 

are found in Section III. 

We conclude this section by warning the reader not to believe that all these 

bounds, and in particular the conclusions summarized in Eq. (1.21)) are com- 

pletely general. They depend upon assumptions not fully based on experiment. 

The resourceful theorist can break the bounds by ingeniously violating the 

assumptions. One vulnerable assumption is that of the current-current structure 

of the charged-current effective Lagrangian. Only the nondiagonal terms are 

well-measured. At best, diagonal contributions are known to exist and to have 
13,14 

the correct order of magnitude. However, assumptions on the nature of the 

diagonal contributions are used in Section II in obtaining the bound in Eq. (1.5). 

This question is studied in Section IV for typical cases. It turns out that the 

upper bound is only increased by a factor 5 (4/3) 114 =l. 08, if one only uses the 

existing data. 

Another assumption we have made is that the neutrinos emitted in muon 

decay are identical to those emitted in semileptonic processes. 
15 

However, it 

again turns out that nothing changes significantly if this assumption is not made. 

For the case analyzed in Section IV, the bound is independent of information 

obtained from muon decay. And in general, it should be clear from the preceding 
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discussion that omission of the information coming from leptonic decays would 

not modify the bounds in Eqs. (1.14) and (1.16)) or change very much the upper 

bounds in Eq. (1.18) and (1.20). 

A more difficult assumption to assess is our acceptance of the conventional 

fractionally charged color quark theory. Ideas along the lines pursued by Pati 

and Salam” (including the concept of pre-quarksf:r the lYBerkeleyn mixing 

models 18 might conceivably lead to different bounds, Consideration of these 

cases is beyond the scope of this paper. 

An additional question has to do with the assumed neglect of radiative cor- 

rections. If leptons and hadrons must be unified within a single representation 

before reaching a simple group G, the mass:;scale of leptoquark intermediate 

bosons could well be very large ( -101’ GeV), and renormalization effects large. 

We have not succeeded in estimating this in a general way. However in the 

specific example studied by Georgi, Quinn, and Weinberg’ with SU(2) x U(1) c 

SU(5) , the factor sin2 ew was renormalized downward by about a factor 2; 

implying an upward renormalization of the intermediate-boson mass by -400/o. 
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II. BOUNDS ON THE MASS OF THE W 

To obtain these bounds on the W mass, we begin by embedding the group G 

into a larger unitary group. Let N denote the total number of two-component 

left-handed fermion degrees of freedom which form the basis for some (possibly 

reducible) representation %! of G. These fermions might include some or all 

of the following: e-, e+, v e,v~,C;‘,~-,ui,di,si,iii,ai,~i (i=l,2,3);quarks 

possessing new flavors, more neutrinos, or heavy leptons. Any gauge trans- 

formation U in G, when applied to any one of these fermion degrees of freedom 

contained in %?, can only yield a linear combination of such fermion degrees of 

freedom. This is just a consequence of Poincare invariance. Invariance of the 

kinetic energy term in the fermion Hamiltonian 

HkE =-i apd3x c G;(X) (T-V I/L(X) 
ie% 

(2.1) 

under gauge transformations U requires that U, when considered in this N 

dimensional space of chiral fermions, be unitary. Hence G 7 U(N), and 19. mfact, 

since G is simple, G C SU(N) . 

We therefore, without loss of generality, restrict our attention to SU(N). 

We consider hypothetical bosons Wi (i, j=l, . . . N) corresponding lo the generators 

Ti of this SU(N) algebra. Only a subset of these Wi need be physical particles; 

the remainder we may without loss of generality presume to be physical but with 

an unobservably large mass. The physical bosons WQ! of definite mass ma! may 

be mixtures of the Wi . We write, for convenience, the inverse relation 

N2-1 
<j lWli> 5 Wi = C <j lc(cr) Ii> Wa! (2.2) 

a=1 



” 14 - 

where we include the possibly unphysical Wcr of very large or infinite mass. In 

order that this mixing be unitary we have 

N 
C < j It(a) Ii> <j It(p) Ii>* = 6 

i, j=l QP (2.3) 

In addition, the linear independence of the Wi and their normalization condition 

demands 2o 

C lcj It(a) li>12 = ’ 
Q 

i 

i#j 
1 

l-3 i=j 
(2.4) 

We are now in a position to study limits on the mass of the charged W. Let 

the SU(N) gauge coupling be g, and let the indices i, j run over chiral fermion 

types, i.e., i=e-,v e,e+,K, v~J-~+J+~~, . . . . Then by our assumptions (in 

particular the assumption that exchange of gauge bosons carrying nonvanishing 

lepton number contribute negligibly), the amplitude for muon decay is given by 

&f&G - 
J2 C ueY#-Y5) v V I[ e 

u YkY5$ 
“r-L 1 

E g2 g [‘eY~(~)vvj 
<em h(a) Iv,>< v Ic@) IF-> 

m2 ’ 
o! 

[;$s(qJ yj 

(2.5) 

Therefore 

$ Q! 
= g2c 

-6 I+4 Iv,x~- IC(OL) lv 9 

m2 (Y 
(2.6) 
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A simple, rather nonrestrictive limit follows rather directly from Eq. (2.6). 

Let O/SW denote the charged intermediate boson of smallest mass which con- 

tributes to the p-decay process. Then, using Eq. (2.4) 

I I 
4G< 

g2 C -ce It(a) Ivexp It(a) Ivp>* 
I o! I 

$2 - rn& 

g2 4 c 
Q! 

Ice Ic@) Iv,> 12}( c I<p It(P) IQ> 12} 
< P 

2 
A$ (2.7) 

“W “W 

Hence 

(2.8) 

To translate this into a limit, we must know the value of g2. This can be obtained 

from the coupling of the photon, which must be one of the gauge bosons Wo. The 

photon AI” evidently has only diagonal couplings to the fermion degrees of freedom; 

thus only ci It(A) li>#O. Indeed < i It(A) Ii> must be proportional to the charge 

Qi of the ith fermion. Then the normalization condition, Eq. (2.3)) determines 

the coupling: 

<i It(A) Ii> = ‘i 

J f Qf 
i=l 

Because the full electromagnetic coupling is 

- g [iiiyp(2) uil ‘<i It(A) Ii> = eQi piypuil 

(2.9) 

(2.10) 
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it follows that 

~=iL=e 

I- CQ2 -ii - 

i=l i 

(2.11) 

where R. is defined in Eq. (1.6). There the definition was, as is usually the 

convention in such matters, a sum over four-component fermion degrees of 

freedom, while in Eqs. (2.9) and (2.11) the sum is over two-component degrees 

of freedom; hence the factor 2 in Eq. (2.11). Thus 

g2 = 8ro!R0 (2.12) 

and from Eq. (2.8) we get the bound 

2 27x& 
mWz G RO 

or, putting in numbers 

mw 5 (75 GeV) q 

(2.13) 

(2.14) 

This is not a very restrictive bound, inasmuch as experimentally Ro2 7. How- 

ever m w may be bounded more stringently upon assuming that the conventional 

current-current structure of weak interactions, when supplemented with sundry 

neutral current contributions in diagonal channels, is a good approximation to 

low-energy weak amplitudes. This implies that Eq. (2.6) generalizes: 

<j It(a) Ii><1 Ic(ct) Ik>* (2.15) 

whenever (j,i) or (k,4?) are (e,ve), (CL, v,), (di,ui), or (si,ci) [with the latter to be 

included if charm and the GIM mechanism is accepted]. 
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To continue, define 

<j IC(cr) Ii> = 5dL$2fk s <jfifJli> 
o! 

(2.16) 

which is to be considered a vector in the N2-1 dimensionalcomplex space labeledby 

index (I!. Then Eqs. (1.3) and (1.4) imply 

with 

<jIzli>-<kl?lQ>=constant= (<jl~li>12 (2.17) 

(j, i) or (k,Q) = 6, v,), 0-1-T v,), (di,Ui) (Si’ Ci)’ 1 (2.18) 

Therefore, for these pairs 

<j lZli> M <klElQ> (2.19) 

For the components z which contribute significantly to the vector < j I E l i > in 

Eq. (2.19) we have not only 

<j IC(‘E;) Ii> = <k IC(z) IQ> (2.20) 

but also 

< j I c(E) Ii> = <k I c(z) IQ> (2.21) 

with, as always, the pairs (j, i) going over at least the range given in Eq, (2.18). 

Thus one unique combination of intermediate bosons 

W) = te,V,),(~-,YCL),(di,Ui) --- 

(2.22) 

necessarily is what is coupled to the pairs (j, i). At this point in the argument 

it is most convenient to choose an orthonormal basis for the WCyts which includes 

%. The orthogonality and normalization conditions, Eqs. (2.3) and (2.4)) can 

still be applied in this basis to limit the coupling of % to any one of the pairs (i, j). 
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Write, for this expansion, for general (j, i) 

<j IW Ii> = <j lb&) Ii> % + c <j lb(d) Ii> War (2.23) 
aP#w 

From Eq. (2.3) rotated into this new basis 

c I< j lb@) Ii> I2 = 1 
Li 

(2.24) 

Then, given M pairs (j, i) as enumerated in Eq. (2.18)) all coupling in the same 

way to W, it follows that 

M Ice- Ib@)lv, I2 5 1 (2.25) 

But the projection of < j IW Ii> onto W is also implied by Eqs . (2.2) and (2.22) 

<j lWli> = C <j I c(E) Ii> Wz + . . . 
z 

= 
A 

C lijIc(Z)li>12W+ . . . 
G 

(2.26) 

Hence 

I< j lb(W) Ii> I2 = c I< j I ~(3) Ii> I2 
ti! 

(2.27) 

and 

c I<e-Ic(~)Ive>12= I<e-Ib@)Ive12($ (2.28) 
z! 

Returning to Eq. (2.7), this now implies 

I<2 I c(z) Iv >I2 < -L e - Mm; 

(2.29) 
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instead of the bound of Eq. (2.8). The remainder of the argument leading up to 

Eq. (2.14) proceeds as before, but with the factor M improvement; 

Implications of various choices for R. and M have already been discussed in 

Section I. 

A lower bound on mw can also be easily obtained. From Eq. (2.29) it is 

clear that 

4G> I-- I c&v) IV,> I2 

g21/i - G 

(2.31) 

Define 

B = <em I c(W) lve>2 
Ice- I c(wj Ive> I2 

eF 
(2.32) 

e 
C lcj I c(W) lb I2 
i,j 

Were all fermion masses (for the fermions in 3) small compared to mW, Be; 
e 

is just the branching ratio of W into e-t;,. From the above definition and the 

connection, Eq. (2.12) of g2 with Q! and Ro, it follows that 

BRO = (75 GeV)2 BRO (2.33) 

Again the implications of this result are discussed in Section I. 

III. BOUNDS ON THE MASS OF THE Z” 

We may proceed in a similar way with the neutral-current contributions, 

although the bounds will be much less stringent, inasmuch as there are many 

forms which may be assumed for the structure of the neutral-current effective 

Lagrangian. As input data, we assume an effective neutral current Lagrangian 
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as follows: 

I 
1 

EL(e) e%#-?5)e + ‘Rte) eyAt1+?5)e + ’ ’ - 
1 

+ fL@) i;l - 

3 
uiy~(l’Y5)“i + kt”) 

i=l 
“iY~(1”5)u: 

3 3 
+ EL(d) 

i=l 
‘iYh(l-Y,)di + ‘R(d) 

i=l 
aiYhi1+Y5)di 

f . . . (3.1) 

The best bounds will come from exploiting the assumed color degeneracy of the 

quarks, and hereafter we shall disregard the pure leptonic terms involving 

EL .(e). Data on VP-hadron interactions3 provide an estimate for the combin- 

ations I eL(u) I2 + I EL(d) I2 and I eR(u) I2 + I “R(d) 12. The commonly used ratios 

R= ~~~‘“(E)/ctoo’~(E), Rcc=~~~’ ‘(E)/ctoJ7 “(E), and R=otoct’ “(E)/oFct’ j(E) are 

related to the E’S in simple models 
21 as follows: 

R = {lcL(U) I2 + kL(d) 12]+ Rcc {l’R@) l2 + lER(d) l”} 

fi = R,,’ [lcR(u) I2 + kR(d) I’}+ {k,(u) I2 + EL(d) I”] 
(3.2) 

We shall need the combinations 

IE, I2 = k,(u) I2 + kL(d) I2 = 
(R -RE,R) 

(1-C) 
M .25&. 10 

Ic 12= kL12+ kRl 
2 

= k,(u) I2 + kL(d) I2 + kR(u) I2 + kR(d) I2 

@+Rcc% 
= (l+Rcc) = .3oTt. 10 (3.3) 
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which are accessible to experiment as well as to the theoretical bounds. We are 

deliberately liberal with the error estimate, because our final result depends only 

on the fourth root of Ie 12; even such a large error assignment won’t matter much. 

Our problem is to use this information to bound the mass of Zofs. The best 

strategy is to repeat the line of argument used for the charged W, and which led 

to Eq. (2.30). Thus the linear combination z of neutral bosons Zcr which couples 

to a given flavor and helicity of quark (say ui) 

c ai I c(a) IUi> za! 
i?(u) = a 

J c l<Ui I c(a) ILL> I2 
a! 1 

must couple equally to each color of u quark. Since 

<Ui IWIUi’ = c <Ui I c(a) IUi> za! 
a! 

= Jm %u> 

P-4) 

(3.5) 

this line of argument, using the normalization condition in Eq. (2.4)) gives 

3 c Ia1 I c(a) lUI> I2 ( 1 - $ 
o! 

If the GIM mechanism is correct, we expect z(u) must also coupled in the same 

way to the c quarks. If this is presumed, then the factor 3 in Eq. (3.6) may be 

replaced by 6. Inclusion of the factor 1/N in that equation is a waste of ink; 

hereafter we drop it and write 

c <ul I c(a) Iu1> I2 5 &j 
o! 

with 

up and down quarks only 

GIM and charm presumed 

(3.7) 

(3.3) 
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Then, in analogy to Eqs . (2.7) and (2.29)) 

4G I eL(U) I I C(Q) Iv ‘-y I cw Iup 
ZZ 

g2J2 m2 I 
a! 

(39 9) 

where again m z is defined as the contributing gauge boson of smallest mass. 

Hence, again using Eq. (2.12) 

27&o! 
“~l~(u)l( G -j=$= (3.10) 

The same result evidently follows for E, (u) replaced by any other es, e.g., EL(d), 
Y 

‘@), ER(d), l * l l 
The best bound involving measured numbers is 

rni [It,(u) I2 + IcL(d) I’} 5 & (75 GeV)4 Ri 

or 

mz 5 (75 GeV) q 

(3.11) 

(3.12) 

inasmuch as I eL I22 I eR I2 experimentally. As we discussed in Section I, this 

bound is not very stringent, as compared with the Z” mass estimate in the 

SU(2)x U(1) model. 

The only really strong bound we have been able to find follows from the 

assumption that the observed neutral-current semileptonic processes are domi- 

nated (at moderate energies, Ev 5 20 GeV) by the exchange of a single 
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intermediate boson Z”. If this is the case, we may use the inequality, Eq. (2.3) 

C I< j I c(Z) Ii> I2 5 1 (3.13) 
ti, j) 

to good advantage. From Eq. (3.9), we now have 

z k,(u) I = 
2 

gZ I<V~ I ‘~) IVcL”ui I ‘(z) l”i’ I 

mZ 
(3.14) 

with similar expressions for the other E s. Adding the four such equations to- 

gether in quadrature and taking into account color (and possibly charm) as we did 

above Eq. (3.7) gives 

k,(u) I2 + kL(d) I2 + kR(u) I2 + kR(d) I2 = iii J- 1~ I2 
h 

2 
E -pz “VP I cfz) IVJ I 

mZ 
j-p+ (3.15) 

tsi7 ‘i) 

The sum over q goes over both left-handed q and left-handed c @r right-handed q). 

Upon using Eq. (3.13), we obtain 

2 J- Id2 ( d/L.. 
mi m 

<VP1 c(q Iv$ l- I<vpIc(z) lvp’12 

(3.16) 

This leads to the bound 

m2 < 27ralJ2 RO 
Z- G 

Jzz 
(3.17) 
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or 

(75 GeV) R;‘” 

“z ’ (4M’ IE 12)1/4 (3.18) 

As discussed in Section I, this reduces the upper bound on mZ to -110 GeV. A 

further improvement ensues if one assumes v -v universality in the coupling of 
P e 

this Z to the neutrinos. Jf 

<VP I CQ) lvp> = <ve I c(q Iv,> (3.19) 

then Eq. (3.16) may be written as 

4G/ ICI2 < 2 1 & r - rnk JiCF 
- <VP I c(z) lvp> l-21<vplc(z)lvp>12 

(3.20) 

and we gain a factor 2 -l/4 in the upper bound for mz. 

With the above assumptions we can find an estimate for mZ as well, just as 

we found for the W. Write 

I< VP I c(q ‘VP’ I = “Bv 
PP 

c 
q=ui , d. 

I<q 1 c@> Is> I2 = Bhad 
1 

c., s. 
11 

also L,R 

(3.21) 

where, as-for the ui’, the B 
S 

are the branching ratios of the Z” into modes s, 

provided all fermions in the representation S which are coupled to Z” have mass 

small compared to the Z” mass. In Eq. (3.21)) B had includes only those hadron 
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states formed by u, d, s (c?). Inserting Eq. (3.21) into (3.15) yields 

where M’ is defined in Eq. (3.8). Therefore 

“z = 

(3.22) 

(3.23) 

With ?easonable,’ values of the parameters, this yields a value somewhat lower 

than that estimated in the SU(2) @ U(1) model. This is not to be taken too seriously. 

We emphasize that the assumption that only one Z mediates the semileptonic 

neutral-current processes is crucial in this argument. A counterexample is two 

degenerate light Z’s with equal couplings to quarks but with couplings to V~ which 

differ in sign. Such Z’s might exist but would not contribute at all to semi- 

leptonic neutral current processes. 

IV. EVASIONS OF THE ASSUMPTIONS 

As we mentioned in the Introduction, there is little direct evidence for diago- 

nal current-current interactions. It is therefore of interest to study what is lost 

if the conventional assumption for the magnitude of the diagonal current-current 

coupling is abandoned. To do this we return to the same line of argument used 

in Section II, starting at Eq. (2.17). We have 

I< j 13 Ii>*. <k 15/Q> I = constant = * 
g2& 

(4.1) 

only for the pair (j, i)#(k,Q). This means the (e,v,), (JJ, v~), and (d, u) vectors may 

point in different directions. We continue by following the line of argument leading 

to Eq. (2.29) from Eq. (2.17). We again introduce a new basis for the Wo, uni- 

tarily related to the original basis; for any such basis we retain the normalization 

condition, Eq. (2.3). In the vector notation of Eq. (2.16), applied to <j I c(a) Ii>, 
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this means that for any projection of <j IZ Ii> on a unit vector ;1, (G*G=l) we 

must have 2 C l<jlZli>.GI = 1 (4.2) 
Li 

There follows from this the inequality 

I<e 17. 6 I,,>? + I<p 1-Z. G lvp> I2 + M’ I’di IT* ’ IUi’ I2 5 1 (4.3) 

where M’ , defined in Eq. (3.8)) is ~3 or 6 depending upon whether charm and the GIM 

GIM mechanism are accepted and included. Evidently 

m2wl<e l(Z.ii)Ci Iv,> I2 5 Ice l(c-& Iv,> I2 (4* 4) 

as follows by expansion of the above expression in the original basis of Wats of 

definite mass. Thus 

rn& I<eI??.jlve>12+ l<pI~*~lvp~12+ M~I<dil~*~l~i~12}( 1 (4.5) 
t 

Define the quantities 

l/2 
<elZlv > e 

Ef = gg2<p lZlvp> (4.6) 

?r = (@f’2< di IcIui> 

Insertion of these definitions into Eq. (4.5) gives the bound, for arbitrary unit 

vector G, 

but with the additional constraints 

(4.7) 

ITF*.iii~ = Ii3.-rTI = IiiGTl = 1 (4.8) 
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This defines the mathematical problem. Recall that for the simpler case 

treated in Section II we had ??= g=z, and the minimum of the right-hand 

side of Eq. (4.7) was obtained for j=??, giving 

RO 2 
2+M""O (4.9) 

To minimize the right-hand side of Eq. (4.7) in the general ease (with respect 

to variation of fi), one diagonalizes the matrix PiEj + wiMj + MVIPiHj and chooses 

the largest eigenvalue. Because of the large factor Ml we expect the eigenvector 

to lie near the 2 direction. For simplicity, we here take 6 to lie along’if, namely 

;=?I*. Then 

Similarly 

Iii&l2 > l 
-2 

(4.10) 

(4.11) 

and 

[~~i12 + liEi?? + ~ri?%i12] 2 (-$-+ M’H~) 2 2JX? (4.12) 

Hence 

2 2 
mw5 m() 

Therefore the bound on m.& is weaker than the previous case by a factor 

5 - = 1.02 M’= 3 

2+M’ 22$6 
= 

z&,lYiP i 2 - = 1.16 M’= 6 
G3 

(4.13) 

(4.14) 

We note that it is no longer possible to obtain a lower bound for mW in this more 

general case; the previous estimate, Eqs. (2.31) and (2.33)) used in an essential 

way the positivity present in diagonal amplitudes. 
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Finally, as noted in Section I, even if we do not accept that the ye and v 
P 

appearing in muon decay are the same as in semileptonic hadron processes 

(for example, perhaps muon decay is mediated by intermediate bosons distinct 

from those in semileptonic processes, with distinct neutrinos as well), we still 

obtain the upper bound expressed in Eq. (4.13). The only information from 

muon decay which was recorded in the above argument was the equation lx*.3 121, 

which in fact was never used. And information from the neutrino-experiments 

is persuasive that at least the predominant portion of semileptonic decay and 

reaction processes proceed 22 via a unique vP (and ve as wellaq. Thus 

relaxation of the assumptions on neutrino identity lead to no essential changes 

in the results. 

V. CONCLUSIONS 

We have found that under a broad range of assumptions the estimated mass 

of the lightest charged intermediate boson wf lies in the range of 55 to 75 GeV. 

Similar attempts to bound the Z” mass led to limits which are not very restrictive, 

unless it is assumed that only one Z” contributes to the present neutral current 

phenomenology. This is, in the general context we have attempted here, 

probably too strong an assumption. It is regrettable this is the case, because 

resonant production of Z” in e+e- colliding beams should be an extremely powerful 

way of studying the selection rules and dynamics of weak interactions in their 

natural energy regime. 

But aside from the attempt in this paper to be general, we recognize 

that success of the SU(2) x U(1) model, if accurate experiments continue to agree 

with its predictions, will by itself make very credible the existence of W in the 

mass region 65 f 10 GeV and Z” in the 80 f 6 GeV region. 
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