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An additional variation of the Einstein-Hilbert action with respect to the Planck mass provides a 
constraint on the average Ricci scalar that prevents vacuum energy from gravitating. Consideration of 
the evolution of the inhomogeneous matter distribution in the Universe with evaluation of the averaging 
constraint on disconnected matter cells that ultimately form isolated gravitationally bound structures 
yields a backreaction effect that self-consistently produces the cosmological constant of the background. 
A uniform prior on our location in the formation of these isolated structures implies a mean expectation 
for the present cosmological constant energy density parameter of �� = 0.704, giving rise to a late-time 
acceleration of the cosmic expansion and a coincident current energy density of matter.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The physical nature of the cosmological constant remains a 
persistent enigma immanent to Einstein’s Theory of General Rel-
ativity. It is generally thought to represent the gravitational contri-
bution of vacuum fluctuations, anticipated of adequate magnitude 
to account for the observed late-time accelerated expansion of our 
Universe [1,2]. Quantum theoretical calculations, however, exceed 
measurement by several orders of magnitude [3,4]. This may imply 
a missing prescription for the correct computation of standard vac-
uum contributions but also motivates conjectures of an undeter-
mined mechanism that prevents vacuum energy from gravitating 
in full extent and the possibility of attributing cosmic acceleration 
to a different origin. The growing wealth of cosmological obser-
vations, however, also puts strong constraints on alternatives to a 
cosmological constant as explanation of the accelerated expansion 
such as dark energy or a departure from General Relativity at large 
scales [5–8]. A curiosity of cosmic acceleration can furthermore 
be found in the comparable magnitude of its associated current 
energy density with that of matter, provoking the Why Now? co-
nundrum [4,9].

This Letter re-examines the cosmological constant problem un-
der an additional variation of the gravitational and matter actions 
with respect to the Planck mass, which allows for an interpretation 
of the Planck mass as global Lagrange multiplier that imposes gen-
eral relativistic dynamics on the metric prescribing the space-time 
for the matter fields. The resulting additional constraint equation 
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is evaluated respecting the inhomogeneous nature of the Universe 
at small scales, and an analysis is presented for the implication of 
this new framework for the old cosmological constant problem of 
the non-gravitating vacuum as well as its new aspects of cosmic 
acceleration and the coincidence problem.

2. Non-gravitating vacuum energy

Consider the Einstein-Hilbert action

S = M2
Pl

2

∫
M

d4x
√−g (R − 2�) +

∫
M

d4x
√−gLm + b.t. , (1)

where M denotes the cosmic manifold, � is a free classical cos-
mological constant, matter fields are minimally coupled, the stan-
dard Gibbons-Hawking-York boundary term is adopted, and c =
h̄ = 1. Variation of the action with respect to the metric gμν yields 
the Einstein field equations

Gμν + �gμν = M−2
Pl Tμν , (2)

where Tμν ≡ −2 
[
δ(

√−gLm)/δgμν
]
/
√−g . In addition to the 

metric variation, we shall now perform a variation of the ac-
tion with respect to the quadratic Planck mass M2

Pl. This may be 
interpreted as using M2

Pl as a global Lagrange multiplier for a topo-
logical constraint on the matter action. Boundary conditions may 
be adapted as in Ref. [10] (also see Ref. [11]). This gives the con-
straint equation

1

2

∫
d4x

√−g(R − 2�) = 0 . (3)
M
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Using the trace of Eq. (2) in Eq. (3), it follows that

M2
Pl� = 1

2

∫
M d4x

√−gT∫
M d4x

√−g
≡ 1

2
〈T 〉 (4)

such that the Einstein field equations (2) become

Gμν + 1

2
M−2

Pl 〈T 〉gμν = M−2
Pl Tμν , (5)

replacing the free cosmological constant with a space-time average 
of the trace of the energy-momentum tensor.

This new metric field equation is reminiscent of vacuum en-
ergy sequestering [12,13] but with a different fraction of M−2

Pl 〈T 〉
contributing dynamically as the cosmological constant. Similarly to 
the sequestering mechanism, vacuum contributions to the matter 
sector cancel out in Eq. (2). However, the cancellation occurs dif-
ferently. For this observation, consider first the one-loop vacuum 
cosmological constant in curved space-time [4]

�vac = M−2
Pl

∑
i

ni
m4

i

64π2
ln

(
m2

i

μ2
i

)
+ �EW

vac + . . . , (6)

where mi denote particle masses of species i, ni represent the 
respective number of degrees of freedom with +/− sign for 
bosons/fermions, and μi are unknown renormalization mass scales. 
The electroweak vacuum contribution is given by �EW

vac =
−M−2

Pl (
√

2/16)(m2
H/GF) with Higgs boson mass mH and Fermi 

constant GF, and one may also wish to include further phase tran-
sitions. As an example for cancellation, one may now rewrite the 
masses as fractions of the Planck mass mi = λi MPl and using the 
scale μi = mi exp(−M2/M2

Pl) for some renormalization mass M in-
dependent of MPl, one finds that M2

Pl�vac ∝ M2
PlM

2. The same scal-
ing is, for instance, also found for the leading-order vacuum contri-
bution of a Wheeler space-time foam description [14]. Separating 
out the vacuum and bare component from the matter Lagrangian 
density, Lm = L̄m − M2

Pl(�vac + �bare), one finds after variation of 
the action with respect to gμν and M2

Pl that Gμν + (� + �vac +
�bare)gμν = M−2

Pl τμν and M2
Pl(� + �vac + �bare) = 〈τ 〉/2, where τ

is specified by L̄m, and therefore,

Gμν + 1

2
M−2

Pl 〈τ 〉gμν = M−2
Pl τμν . (7)

Hence, the vacuum and bare cosmological constants do not grav-
itate. Rather than a cancellation between the left- and right-hand 
sides of Eq. (5), as in vacuum energy sequestering, for given �vac
and �bare, the value of � is set by the topological constraint equa-
tion (3) such that the sum of the cosmological constants matches 
〈τ 〉/2.

Importantly, however, there is no guarantee that the residual 
cosmological constant obtained by the scaling of masses in the 
one-loop vacuum term (6) is radiatively stable or that the vac-
uum contribution should even scale as M2

Pl. To simultaneously 
meet both caveats we shall first consider a scaling of the total 
vacuum energy density with the Planck mass as M2α

Pl such that 
the total vacuum contribution to the action (1) will be −M2α

Pl �̄vac

with the overbar indicating an independence of M2
Pl. In particular, 

this allows for α = 0. What is necessary for the cancellation is the 
addition of a classical counterterm −M2α

Pl �̄α . More specifically, fol-
lowing the same procedure as for Eq. (7) and solving for �̄α , one 
obtains

Gμν + 1

2 − α

[
(1 − α)� + M−2

Pl 〈τ 〉
2

]
gμν = M−2

Pl τμν , (8)
where � remains a free classical cosmological constant that is 
radiatively stable and determined by measurement. As observed 
next from the evolution of matter inhomogeneities, � simply cor-
responds to the total measured cosmological constant. For α = 1, 
one recovers Eq. (7), and for α = 0, the dynamical equations of the 
local sequestering mechanism [13] with �tot = 1/4〈τ 〉M−2

Pl + 
�, 
where 
� ≡ �/2. Note that one may also consider a series ex-
pansion of �vac in M2

Pl, for instance from considering graviton 
loops [15]. With a counterpart expansion of the classical cosmolog-
ical constant, the resulting equivalent expression for Eq. (3) cancels 
these terms and reproduces Eq. (8). Similarly, quantum corrections 
with higher-derivative terms in Eq. (1) do not contribute to Eq. (3)
or the field equations if independent of Planck mass, and if depen-
dent on MPl, are cancelled by the same classical expansion (also 
see Ref. [15]).

Finally, variations with respect to the Planck mass have also 
been performed in Ref. [13,15] and are in nature similar to a 
scalar-tensor theory in Jordan-Brans-Dicke representation with 
constant scalar field across the observable universe. A transfor-
mation into Einstein frame removes the variation in M2

Pl but leaves 
variations with respect to an effective � and a coupling in the 
matter sector, sharing similarities with the proposals of Refs. [12,
16–18], however also differing from them, e.g., by not impos-
ing a constant four-volume as in unimodular gravity. The scalar 
field becomes a space-time constant, for example, by a δ-function 
generated through appropriate boundary conditions on an addi-
tional vector field [16,19] or by a squared four-form field strength 
contribution of a three-form gauge field as arises in supergrav-
ity [13,15,19–22]. Variations in M2

Pl therefore find fundamental 
motivation ranging from scalar-vector-tensor or higher-dimensional 
scalar-tensor theories to supergravity, string theory, or a type II 
multiverse.

3. Backreaction from structure formation

The four-volume term in Eq. (4) determining the residual cos-
mological constant in Eq. (5) grows large for an old universe, and 
with integration over the background matter density ρ̄m, assumed 
spatially perfectly homogeneous and isotropic, 〈τ 〉 = 〈ρ̄m〉 eventu-
ally vanishes. For the residual to reproduce the observed cosmolog-
ical constant with Planck parameters [5], the Universe should have 
undergone an immediate collapse at the scale factor a = 0.926, at 
an age of 0.88H−1

0 , thus, about 1 Gyr in the past, and in contrast, 
an immediate collapse at the current epoch would account for 81% 
of the observed value with a decreasing fraction for a longer future 
(cf. [23]). While it is interesting that this value is close to measure-
ment, it is not an exact recovery and moreover standard cosmology 
does not foresee an imminent collapse of the Cosmos.

Importantly, however, the Universe is not perfectly homoge-
neous and isotropic with structures growing to be even more 
pronounced in the future. We shall therefore next examine the im-
pact of the evolution of inhomogeneities in the generation of the 
residual cosmological constant through Eq. (4), thus a backreaction
effect of structure formation. To describe the inhomogeneous mat-
ter distribution in the Universe, consider a separation of the matter 
content into disconnected cells Ui , which are of maximal extent 
such that the matter contained will remain gravitationally bound 
throughout their evolution, eventually forming isolated clusters in 
the far future. By a halo model interpretation, all matter is con-
tained in these cells with each particle uniquely assigned to a 
single Ui . The matter action in Eq. (1) becomes

Sm =
∑

i

∫
U

dV 4Lm,i +
∫

M\ ⋃
U

dV 4L∅ , (9)
i i i
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where Lm,i denote the Lagrangian densities of the matter in Ui

and L∅ represents a Lagrangian density for the empty space. 
L∅ is chosen such that the residual cosmological constant in the 
empty space matches that of the matter cells. We shall adopt 
L∅ = M2

Pl

(
�/n + M2n

Pl �̄∅

)
. Variation of the new action with re-

spect to the metric and M2
Pl on each Ui gives

� = 1

2M2
Pl|Ui

〈T 〉Ui , (10)

where 〈T 〉Ui indicate averages over the manifolds Ui . Variations 
on M\ 

⋃
i Ui do not impose a constraint on � such that there is 

no conflict with the constraint obtained from the matter patches 
in Eq. (10). It is easy to verify that for n → (α − 1) the vacuum 
and bare cosmological constants remain non-gravitating in any of 
the patches, and as observed in the following by examining the 
evolution of critical mass shells existing at turnaround between 
expansion and collapse, 〈τ 〉Ui = 〈τ 〉U j = 2M2

Pl� ∀i, j.
For simplicity, consider first the evolution and formation of 

nonlinear structures employing the spherical collapse model with 
approximation of forming halos by spherically symmetric top-hat 
overdensities and a further restriction to only pressureless matter 
and a cosmological constant in a spatially-flat cosmological back-
ground. It has been checked in Ref. [23] that radiation components 
only marginally affect the computation. The top hat is defined by 
its density ρm ≡ ρ̄m + δρm ≡ ρ̄m(1 + δ) and mass M . The back-
ground density corresponds to the spatial cell volume integration 
of all top-hat densities with respect to the total spatial volume 
of the Universe, which follows from mass conservation and repro-
duces the standard Friedmann equations. From energy-momentum 
conservation in each matter cell ∇μTμν |Ui = 0, one derives the 
evolution equation [23]

y′′ +
(

2 + H ′

H

)
y′ + 1

2
�m(a)

(
y−3 − 1

)
y = 0 (11)

for the dimensionless physical top-hat radius y = (ρm/ρ̄m)−1/3, 
where primes denote derivatives with respect to ln a and �m(a) ≡
M−2

Pl ρ̄m/(3H2) with Hubble function H . The evolution of y can 
be determined setting initial conditions in the matter-dominated 
regime ai � 1, where yi ≡ y(ai) = 1 − δi/3 and y′

i = −δi/3 for an 
initial top-hat overdensity δi . Note that for y ≈ 1, Eq. (11) reduces 
to the familiar differential equation determining the growth of lin-
ear matter density perturbations in �CDM.

Evaluating Eq. (4) on a given patch Ui , one finds [23]

〈τ 〉 =
∫

d4x
√−g τ∫

d4x
√−g

= ρ̄m0

∫
d ln a H−1∫

d ln a H−1a3 y3
, (12)

where subscripts of zero denote present values. Importantly, the 
evolution of y, and therefore the value of 〈τ 〉, depends only on the 
initial overdensity δi and is independent of the top-hat mass. From 
the competition between the expansion of the cosmological back-
ground and the self gravity of the massive cell one can therefore 
find a universal minimal, critical δi below which the expansion rate 
in the future will exceed the effect of self gravitation and above 
which a given patch will collapse. Hence, for critical mass shells 
〈τ 〉 = 〈τ 〉Ui = 〈τ 〉U j ∀i, j. Using the symmetry of a(t)y(t) around 
tturn = tmax/2 for mass shells that eventually collapse, one further-
more obtains

〈τ 〉
M2

Pl�obs
= �m

2(1 − �m)

tmax∫ tturn
0 dt a3 y3

, (13)

where �obs denotes the observed cosmological constant that 
drives the late-time acceleration of the background. From Eq. (11)
it follows that d(ay)/dt = 0 and d2(ay)/dt2 = 0 at tturn such that 
a3 y3|tturn = �m/(1 − �m)/2, and thus,

tturn∫
0

dt a3 y3 <
�m

2(1 − �m)
tturn , (14)

implying that

〈τ 〉
M2

Pl�obs
>

tmax

tturn
= 2 . (15)

The longer the evolution remains at a3 y3|tturn , which is the case for 
nearly critical matter patches that only collapse in the far future, 
the closer the ratio approximates this limit. Hence, in Eqs. (7) and 
(8) it follows that �obs = M−2

Pl 〈τ 〉/2 = � such that we recover the 
Einstein field equation Gμν +�obs gμν = M−2

Pl τμν . This result is in-
dependent of assuming a top-hat description for the disconnected 
matter cells. Critical matter patches that exist long enough into the 
cosmological constant dominated regime always reach the constant 
value of a y in Eq. (14) [24] and hence reproduce Eq. (15). For ex-
ample, using the analytic description for the evolution of critical 
mass shells in Ref. [24] for the integration in Eq. (12) recovers the 
limit in Eq. (15). In the very far future the critical cells will even-
tually collapse or fragment into smaller structures due to energy 
loss from radiation. These isolated halos may then further collapse 
into ultra massive black holes that eventually evaporate. It is also 
possible that the entire Universe will collapse due to a Higgs in-
stability prior to that. These processes are, however, expected to 
occur on much longer time scales than required for approaching 
the limit in Eq. (15). But as a consequence, the integrals in Eq. (4)
are not expected to diverge. Importantly, even for an eternal inte-
gration, the limit in Eq. (4) remains well defined under l’Hôpital’s 
rule with constant τ in the de Sitter future (also see Ref. [13]). 
It is also worth emphasizing that because of the integration over 
the entire existence in time, in contrast to similar approaches with 
causal set theory [25] or backreaction from long-wavelength per-
turbations [26], 〈τ 〉 and �obs in Eq. (15) are time independent.

Finally, note that the recovery of the observed cosmological 
constant in the Einstein equations is not a circular argument. A 
different fraction of M−2

Pl 〈τ 〉 contributing as the residual cosmolog-
ical constant in Eq. (7) would not provide a self-consistent solution 
(cf. [23]). Moreover, as we will see next, the evaluation of 〈τ 〉 by 
the evolution of isolated critical matter patches offers direct impli-
cations for the coincidence problem.

4. Late-time acceleration and coincidence problem

The additional variation of the Einstein-Hilbert action with re-
spect to the Planck mass combined with the evolution of discon-
nected critical matter cells provides a self-consistent framework 
to alleviating the old cosmological constant problem in preventing 
vacuum energy from gravitating. The observational evidence for 
a late-time accelerated expansion [1,2] adds a new aspect to the 
problem by the small non-vanishing �obs that furthermore coin-
cides with the current energy density of matter. This Why Now? co-
incidence problem is not self-evidently addressed by a mechanism 
that gives rise to a free classical, radiatively stable cosmological 
constant. While a late-time epoch of cosmic acceleration will gen-
erally be assumed in the presence of a non-vanishing positive cos-
mological constant, for an estimation of the relative magnitude of 
its current contribution to the total energy density, one needs a 
sense of likelihood of our particular location in the cosmic his-
tory. One may, for instance, inspect the star-formation history, and 
allowing the Sun to have formed within 3σ of the star-formation 
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peak constrains the current energy densities of matter and the cos-
mological constant to differ not beyond a factor of 102 [23].

The relation of the residual cosmological constant to isolated 
matter cells however provides a more direct estimate of �� ≡
�/(3H2

0) that is intrinsically linked to the evolution in Eq. (11). 
The dimensionless physical top-hat radius y lends itself here to a 
meaningful measure of likelihood [23], describing the relative ex-
tent of the matter cells and evolving within a finite range from a 
small perturbation −δi/3 from unity at early times to zero at the 
time of its collapse in the far future. Adopting a uniform prior on 
y yields a mean expectation value of 〈y〉 = 1/2, which shall be as-
sumed here as a likely location for our present time t0, implying 
that there is as much of the evolution of y ahead of us as there is 
in the past. To compute �� at t0 one can adopt a more convenient 
normalization for the scale factor a that eliminates the dependence 
of Eq. (11) on �m. As long as the cosmological constant is not 
strictly vanishing, there is always a time when ρ̄m = ρ̄� = M2

Pl�. 
Hence, normalizing the scale factor at the time of this equality, 
one therefore finds Heq ≡ H(a = aeq ≡ 1) with the correspond-
ing energy density parameters defined at aeq ≡ 1 simplifying to 
�� = �m = 1/2. Requiring y(t0) = 1/2 and then normalizing results 
back to a(t0) ≡ 1 gives a present energy density parameter for the 
cosmological constant of

�� = 0.704 , (16)

which is consistent with current cosmological observations such 
as from the Planck satellite [5] and the Dark Energy Survey [6] at 
the 3σ and 1σ levels, respectively. Note that the difference to the 
prediction of �� = 0.697 in Ref. [23], found for an extension of 
the global sequestering mechanism, is due to the required collapse 
of the matter patches in that scenario at tmax = 4t0 whereas these 
structures are considered much longer-living here.

Finally, one observes that y = 1/2 is close to the epoch of min-
imal y′ , which is another manifestation of a change from mat-
ter domination to comic acceleration and hence of the coincident 
energy densities. This also implies, for instance, a current prox-
imity to the maximal ratio of the density of critical mass shells 
to the critical background density [24]. Cosmological coincidences 
have furthermore been pointed out at recombination, reionization, 
and the star-formation peak [9]. It may be interesting to elabo-
rate whether the framework presented here could establish a link 
between these observations or provide new approaches for other 
cosmological problems, leaving a range of further explorations to 
future work.

5. Conclusions

The cosmological constant problem encompassing the weakly 
or non-gravitating vacuum energy, the late-time accelerated cos-
mic expansion, and the coincident current energy densities of the 
cosmological constant and matter remains a difficult puzzle to cos-
mology. A new framework was presented here that proposes the 
additional variation of the Einstein-Hilbert action with respect to 
the quadratic Planck mass on top of the usual metric variation. 
It offers the interpretation of identifying the Planck mass with 
a global Lagrange multiplier that imposes general relativistic dy-
namics on the metric prescribing the space-time for the matter 
fields. The variation provides a constraint equation on the average 
Ricci scalar that acts to prevent vacuum energy from gravitating. 
The evaluation of this constraint under consideration of the evo-
lution of the inhomogeneous matter distribution in the Universe 
in form of disconnected matter cells representing ultimately iso-
lated gravitationally bound structures yields a backreaction effect 
that self-consistently produces the cosmological constant of the 
background. With the application of a uniform prior on the dimen-
sionless physical size of these structures as a measure of likelihood 
determining our location in the cosmic history, one finds a mean 
expectation for the current energy density parameter of the cos-
mological constant of �� = 0.704. The result is in good agreement 
with current cosmological observations, giving rise to a late-time 
acceleration of the cosmic expansion and a coincident current en-
ergy density of matter. Future analysis will reveal if the presented 
framework allows for a reinterpretation and possible unravelling of 
some cosmological obscurities such as coincidences identified for 
the epochs of recombination, reionization, and the star-formation 
peak with the times of equality between the energy densities of 
radiation, baryons, and the cosmological constant. It may also mo-
tivate new approaches for other unresolved problems of cosmol-
ogy.
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