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Abstract We consider a recently proposed scenario for the generation of primor-
dial cosmological perturbations, the so called Cosmological Slingshot scenario.
We first obtain a general expression for the Slingshot primordial power spectrum
which extends previous results by including a blue pre-bounce residual contri-
bution at large scales. Starting from this expression we numerically compute the
CMB temperature and polarization power spectra arising from the Slingshot sce-
nario and show that they excellently match the standard WMAP 3-year best-fit
results. In particular, if the residual blue spectrum is far above the largest WMAP
observed scale, the Slingshot primordial spectrum fits the data well by only fixing
its amplitude and spectral index at the pivot scale kp = 10−3 hMpc−1. We finally
show that all possible distinctive Slingshot signatures in the CMB power spec-
tra are confined to very low multipoles and thus very hard to detect due to large
cosmic variance dominated error bars at these scales.

Keywords String cosmology · CMP

1 Introduction

It is well known that Standard (non-inflationary) Cosmology is afflicted by three
severe problems [1]: homogeneity, isotropy and flatness. Inflation is the standard
accepted paradigm for the resolution of these problems. Nevertheless, as a funda-
mental origin of Inflation is as yet lacking, many attempts to alternatively solve the
homogeneity, isotropy and flatness fine tunings have been recently put forward.

In this paper we consider one of these alternatives, namely the scenario de-
veloped in [2; 3] so called the “Cosmological Slingshot Scenario”, or shortly the
Slingshot.
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In the Slingshot, our Universe is a probe D3-brane “orbiting” with an open
trajectory in a IIB supergravity background, namely the Klebanov–Tseytlin (KT)
metric [4] (the bulk). If the probe brane approach of [5] used in [2; 3] can be
used, the Slingshot trajectory results on an induced cosmological evolution on
the brane. More precisely, a brane observer experiences a Friedman–Robertson–
Walker non-singular bouncing universe. In the Slingshot, the problems that afflict
standard cosmology are circumvented [2] by using similar mechanisms introduced
in pre big-bang [6] and cyclic [7] scenarios. Besides, the Slingshot also predict
a power spectrum of primordial perturbations. In [2; 3], and in this letter, the
primordial spectrum of scalar perturbations due to the fluctuation of the Slingshot
brane on the KT background is indeed calculated under the approximation that
the backreaction of the Slingshot brane into the bulk is negligible. The validity of
this approximation is supported by the fact that the KT background, in which the
Slingshot brane is moving, is produced by a large number of D3-branes having all
the same tension (“mass”) as the Slingshot brane.

The plan of the paper is as follows. In Sect. 2 we will summarize the previous
results of [2; 3]. We will then extend those results in two ways. First of all we
will consider a new blue contribution to the primordial power spectrum that was
previously not accounted for. This will produce the general parametrization of the
Slingshot primordial spectrum shown at the end of Sect. 3.

As a second step, in Sect. 4, we will use this general parametrization in or-
der to numerically compute the temperature and polarization CMB angular power
spectra arising from the Slingshot and we will compare them to WMAP data [8].
In particular we will show that a suitable and natural choice of the Slingshot pa-
rameters allow to reproduce the standard WMAP 3-year best-fit power spectra.
We will then try different choices for the Slingshot parameters and see if they
can produce distinctive model-dependent signatures in the results. Finally we will
draw our conclusions in Sect. 5.

We are now ready to conclude this section, but we would like to make a final
remark first. In [3] an analytic expansion of the Slingshot spectrum for large mul-
tipoles (` > 10) had actually already been shown to match the WMAP best fit of a
power law spectrum with spectral index ns ' 0.95. However, this result held only
at a given pivot scale (chosen as kp ∼ 10−3 h Mpc−1). Our numerical approach in
this paper shows instead that the spectrum found in [3], matches the WMAP ex-
perimental results at all scales, and not only around the pivot scale. This is not an
obvious result as the Slingshot primordial spectrum presents a non-trivial running
of the spectral index.

2 The original Slingshot power spectrum

The Slingshot power spectrum of scalar perturbations is related to the quantum
fluctuation of the Slingshot D3-brane. The way of producing this perturbation is
similar to the one introduced by [9] but without the drawbacks outlined by [10]
(see [3]). The fluctuation of the brane is of quantum origin and it is in a pure state
whenever the comoving wave length of the perturbation is below a fundamental
quantum length lc. This fundamental length can be consistently chosen to be the
first massive mode of the fundamental String or the M-theory minimal length.
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During the pre-bounce phase of the Slingshot, the perturbations created in the
far past (in the Bunch-Davis vacuum), eventually come back to their vacuum state
whenever their wavelength λ = a/k < lc, where k is the wave number of the fourier
mode associated with the wavelength λ and a is the scale factor of the induced cos-
mology on the brane. Viceversa, as the brane re-expands, the wavelength of a given
perturbation will grow again. It is therefore clear that after some time, the perturba-
tion wavelength will reach the scale lc. At this point the perturbation collapses into
its classical state becoming a coherent state as the perturbation is over-damped by
the Universe expansion [11]. After waiting enough time, a stochastic background
of primordial perturbations is therefore dynamically (and continuously) created.
The distribution of these perturbations is gaussian with variance set by the quan-
tum correlations during the quantum to classical transition. However, since the
Slingshot Scenario represent a bouncing cosmology, not all the wavelength of pri-
mordial perturbations can be produced with this mechanism. In fact the maximal
wavelength that can be produced is

λcut-off =
ab

kcut-off

= lc, (1)

where ab is the size of the scale factor at the bouncing. This obviously creates
a natural cut-off on the power spectrum.

A remark here is due. The physical process we have just discussed has been
developed in the String frame. There, at zeroth order on the brane velocities [3],
the gravitational coupling is running (GN ∼ a2) and particle masses are fixed.
The Einstein frame, in which the gravitational coupling is constant, can be then
easily obtained by re-scaling the metric by a−2. At the background level then, the
spacetime in Einstein frame is Minkowski and all particle masses run (note that
also the matter Lagrangian is re-scaled). It is therefore easy to convince ourselves
that any physical quantity in the two frames is completely equivalent (see [12] for
a general discussion and [3] for the Slingshot case). Let us, however, comment
the special case of the perturbation spectrum. In String frame the perturbed metric
is ds2

S = a2(1 + 2Φ)dt2 + · · · where Φ is the Bardeen potential. By re-scaling to
the Einstein frame such that ds2

E = (1 + 2Φ)dt2 + · · · , we still obtain the same
Bardeen potential Φ . The power spectrum of primordial perturbations (a physical
quantity) is therefore unchanged by the change of conformal frames. However,
one might still be puzzled whether the String frame cut-off on the perturbations
spectrum is still there in the Einstein frame. In the Einstein frame the wavelength
of a perturbation is constant in time, i.e. λ = 1/k. However, the quantum length in
this frame is re-scaled, together with any other physical length, by a factor a−1. In
the Einstein frame the quantum length is therefore “bouncing”. This produces, in
the Einstein frame, the same cut-off as observed in the String frame.

In [3], the Slingshot primordial power spectrum is calculated to be

Pred(k) =
A
k

e
1
2W−1

(
−

k4
0

k4

) [
1− e

1
2 ∆(k0/k;kcut-off)

]
, (2)

where W−1 is the Lambert W function in the real branch −1 (see [13] for a
description of the Lambert function properties), A is an overall normalization of
the spectrum and finally k0 is a parameter defining the spectral index at large ks.
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The cut-off function ∆(k0/k;kcut-off) is defined as

∆(k0/k;kcut-off) = W−1

(
−

k4
0

k4

)
−W−1

(
−

k4
0

k4
cut-off

)
, (3)

where kcut-off fixes the cut off as Pk is positive definite. If the ratio k0/k is small
we have W−1(−k4

0/k4) ' 4ln(k0/k). Therefore for large wave number (i.e. small
scales)

e
1
2W−1

(
−

k4
0

k4

)
'

k2
0

k2 . (4)

In this limit e
1
2 ∆ � 1 and the spectrum looks scale invariant.

In order to match the best WMAP fit of a power law power spectrum, following
[3], we fixed the spectral index of the Slingshot to be ns = d lnk3P(k)/d lnk+1 =
0.95 at the pivot scale ` = 100. If we neglect the correction due to the cut-off scale,
this fixes the parameter k0 to be k0 = 8.86648×10−7 h Mpc−1. This parameter is
much smaller than any wave number we are going to consider. We can then use the
analytical properties of the Lambert W function W−1(−x) ' ln(x)− ln(− ln(x)),
to find the approximate spectrum

Pred(k)'
A

k3
√

ln k
k0

1− k2
cut-off

k2

√√√√ ln kcut-off
k0

ln k
k0

. (5)

This completes the description of the previous results obtained in [2; 3]. In
the following section we are going to consider an additional contribution to the
Slingshot primordial power spectrum that was not kept into account in previous
works.

3 A blue pre-bounce residual

As previously discussed, primordial perturbations are in general present even dur-
ing the pre-bounce era. These perturbations, corresponds to the quantum fluctu-
ation of the Slingshot brane during its motion down the throat of the CY. The
induced Bardeen potential Φ evolves with the angular brane motion and its per-
turbations, as discussed in [3]. Nevertheless, we can use the approximations used
in [2] where the Bardeen potential results decoupled from the angular brane mo-
tion.

In this case, Φ , follows schematically the Mukhanov equation [2]

δ r′′+
(

k2− J2

r4

)
δ r = 0, (6)
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where rΦ = δ r, J is the brane angular momentum, r parameterize the brane
position in the CY throat and finally ′ is the derivative with respect to the con-
formal time. J2/r4 corresponds to r′′/r. Differently from the inflationary case,
however, r′′/r is not the Hubble horizon.

The induced scale factor of the Universe a is related to r as a = r
L
√

lnr/rs
.

L is proportional to the number N of D3-branes in the stack and rs is the ra-
dius of the blown up sphere at the tip of the CY (see [2] for more details). We
then see that for k � J

r2 the system oscillates, particles are not created and the
Bardeen potential stays in its vacuum. In the opposite case, k � J

r2 , the system
is instead over-damped and eventually Φ becomes constant. There, particles are
created and the system evolves stochastically. In the large k region we therefore
have 〈Φ(k)Φ(k′)〉∝

δ (k,k′)
kr2 . At the matching point k = J

r2 , we then have a constant
spectrum of perturbations, i.e. a power law spectrum with spectral index ns = 4.
Note that if J = 0, i.e. for a brane with no-angular momentum, the perturbation is
never over-damped and therefore the spectrum will be P(k) ∝ k−1r2 at any times.
In this case the resulting spectral index will be ns = 3 as found in [14].

These conclusions can also be drawn more precisely by following [3] and by
considering the semi-classical to quantum matching point at k = Jr−2.

We then conclude that a blue spectrum of primordial perturbations, coming
from the pre-bounce, must be added to the Pred(k). However, this spectrum will
survive from being destroyed by the quantum region only for perturbation scales
k < kcut-off, as discussed before. Therefore the full spectrum of perturbation turn out
to be

P(k) =

{ Pred(k), if k > kcut-off

Pblue(k)≡ B
k3

0
if k < kcut-off.

, (7)

where the amplitude B is a completely free parameter. The blue part of the
spectrum (7) did not appear previously in the literature. Thus, Eq. (7) constitutes
the most general parameterizations of the Slingshot power spectrum and com-
pletes the previous results of [2; 3]. In the following section we will numerically
compute the CMB angular power spectra arising from this primordial spectrum.

4 Matching the WMAP results

The CMB temperature and polarization angular power spectra are obtained from
the primordial power spectrum of scalar perturbations P(k) through the well-
known formula (see, e.g. [15]):

CXX
` = (4π)2

kmax∫
kmin

dkk2P(k)
(
∆

X
` (k)

)2
, (8)

where ∆ X
` (k) are the radiation transfer functions and X = T,E defines tem-

perature and polarization, respectively. The temperature and polarization transfer
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Fig. 1 Temperature and polarization CMB power spectra in the slingshot scenario, compared
to the standard WMAP 3-year best-fit cosmological model. The cosmological parameters
Ωbh2 = 0.02218, Ωch2 = 0.1010, ΩΛ = 0.77, τ = 0.09, h = 0.74 are the same in the two model.
The primordial spectral index in the standard scenario has been chosen as n = 0.95, while the
slingshot primordial power spectrum is described in Sects. 2 and 3. The slingshot power spec-
trum normalization is chosen in order to match the amplitude of the CMB angular power spec-
trum at ` = 100 obtaining k0 = 8.86648×10−7 h Mpc−1. We consider several different cut-off
scales and B� B̄ (see text for further details)

functions can be extracted from a Boltzmann code like, e.g. CMBfast. The angular
power spectrum predicted by the Slingshot scenario can then be calculated start-
ing from the primordial power spectrum of formula (7) and numerically evaluating
the Lambert W-functions. The Slingshot power spectrum expression contains two
new free parameters: the cut-off scale kcut-off and the amplitude B of the large scale
part Pblue(k). We will now study the effects of varying these parameters on the final
C`s.

The first alternative we consider is to choose kcut-off such that kcut-off � kmin
where kmin is the smallest wavenumber appearing in the integral defined by Eq. (8).
A cut-off below kmin then clearly affects only scales that are unobservable. The
choice of B is then not relevant in this case and we can replace P(k) in Eq. (8)
with Pred(k) defined in Eq. (2). We calculated the CMB power spectrum using this
power spectrum and transfer functions obtained from the WMAP 3-year best-fit
cosmological parameters. The resultant Slingshot C`s in this case are represented
by the dot-dashed green line in Fig. 1. In the same figure, the solid black line
represents the standard WMAP best-fit power spectrum. The two spectra present
a very good match, thus showing that, just by fitting the two parameters A and k0,
the Slingshot model allows to well reproduce the standard CMB angular power
spectrum from WMAP. More precisely, an explicit calculation of the likelihood
for the Slingshot shows that the goodness- of-fit relative to the standard WMAP
3-year spectrum is ∆ χ2

eff = 3, which, being non statistically significant [8], makes
the slingshot still a good fit of the data. As we were already stressing above, this
result was not obvious due to the non-trivial running of the Slingshot primordial
power spectrum.

Let us now consider a cut-off on scales that are relevant for the CMB, i.e.
kcut-off & kmin in Eq. 8.

In this case the wavenumber kcut-off will roughly define an angular cut-off
`cut-off below which the angular power spectrum is basically obtained from a con-
stant primordial power spectrum P(k) = Pblue ≡ B/k3

0 (see Eq. (7)). At this point
we found it useful for our analysis to determine a value of the normalization pa-
rameter B which makes the amplitudes of Pred(k) and Pblue(k) to roughly coincide
at the pivot scale (that we chose to be k ∼ 10−3 in our analysis). In order to match
WMAP data for ` > `cut-off we need |k3Pred(k)| ∼ 10−10. Thus matching the two
amplitudes yields:

k3
p

B
k3

0
= k3

pPred(kp)∼ 10−10. (9)
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Fig. 2 Comparison between WMAP data and low CMB multipoles for different values of kcut-off
and fixed B� B̄ in the Slingshot scenario

Fig. 3 We compare different values of the low-` spectrum normalization B for a given value
of `cut-off ∼ 10 and optical depth to last scattering τ = 0.09. The solid black line represents the
standard WMAP 3-year best-fit power spectrum while the dashed blue and dotted red lines are
the Slingshot power spectra for small and large values of B, respectively

With our values of k0 ∼ 10−6 and kp ∼ 10−3, we get B ≡ B̄ ∼ 10−19. We can
now distinguish between two cases: B� B̄ and B & B̄.

Let us first take B � B̄ and consider several different kcut-off. In this case the
amplitude of Pblue is much smaller than the amplitude of Pred. We then expect to see
a suppression of power on scales ` < `cut-off. This is shown in Figs. 1 and 2. The
same pictures also suggest that a cut-off scale kcut-off . 2×10−4 is still a good-fit to
the data: the goodness-of-fit relative to the WMAP best-fit spectrum is ∆ χ2

eff ≤ 3
in this range (for a similar discussion applied to a different model see [16]).

Let’s now move to the case B & B̄. We can now choose B large enough to
eliminate the suppression of the larger angular scales that we have just described
above. In Fig. 3 we consider an angular cut-off scale lcut-off ∼ 10 and we show that
a choice of the normalization B∼ B̄ can significantly improve the goodness-of-fit
relative to the case B � B̄ with the same cut-off (∆ χ2

eff = −112). In other words
this suggests that a full likelihood analysis of the slingshot parameters (which is
beyond the purpose of this work) would show some degeneracy between kcut-off
and B. Nevertheless it is important to note that this does not allow to arbitrarily
increase the cut-off scale. The slope of the angular power spectrum for ` < `cut-off
is indeed completely different in the two regimes and this becomes rapidly evident
for large `cut-off. We then conclude that also in this case any possible Slingshot-
related signature is unfortunately confined to the first few CMB multipoles, char-
acterized by a large cosmic variance. For this reason it seems impossible to use
the CMB T T , T E, and EE angular power spectra as a way to discriminate be-
tween Slingshot and standard inflationary cosmology. To this purpose further in-
vestigation in other directions might be interesting (e.g. non-Gaussian signatures,
gravitational wave background).

Even if we give up the idea of finding specific observable signatures of the
Slingshot model in the CMB temperature and polarization power spectra, we are
still left with the interesting following question: if we assume the Slingshot as the
scenario for the generation of primordial fluctuations, and we repeat the analysis
of WMAP results in this framework, are we going to see any change in the final
cosmological parameters? In the acoustic peaks region both the Slingshot and the
inflationary power spectrum have the same slope, so we already know that the
answer to the previous question is ‘no’ for most of the parameters. As the only
differences can be at small `, it seems that the only parameter that can in principle
be affected is the optical depth at reionization τ . Let us elaborate on this. WMAP
is known to predict a large optical depth to reionization τ ' 0.09, or equivalently
an early reionization at a redshift z ∼ 10. The signature of this early reionization
is mainly in the bump observed at low ` in the TE and EE angular power spectra:
there wouldn’t be any primordial polarization signal on large angular scales in
absence of early reionization. This conclusion still holds in the Slingshot scenario
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Fig. 4 We consider a relatively low value of the optical depth to reionization, τ = 0.06, and study
the effect of varying the normalization parameter B in order to look for possible degeneracies
between τ and B. The solid black line is the standard inflationary power spectrum whereas
the dotted red line is the Slingshot prediction for a suitably large value of B. Even if we can
improve the fit of polarization data with respect to the standard case, we produce a bump in
low-` temperature spectrum which does not allow to fit the data well (∆ χ2 = 1,219)

(it is only related to the physics of Compton scattering). However, the low-` part
of the polarization spectrum is described in the Slingshot by three parameters, B,
kcut-off and τ . Possible degeneracies among these parameters could then eventually
change the best-fit value of τ .

In particular it might now happen that a value of τ significantly smaller than
in the standard scenario could still allow a good fit of the low-` polarization bump
if we compensate for it by increasing the amplitude B. This also works in the
opposite direction: we can increase τ and reduce B accordingly. This mechanism
is clearly very efficient if we limit ourselves to considering polarization data only.
The situation, however, drastically changes when we account for temperature data.
A large τ produces a low-` bump in the TE and EE but it does not affect the TT
power spectrum. A large B instead produces a large enhancement of the low-` TT
power spectrum as well. This effect is not compatible with the data if we have to
compensate for a very small (large) τ with a very large (small) B. In other words
temperature data contribute to largely breaking the degeneracy between τ and B
that arises from polarization data alone. An example of this is in Fig. 4 where we
try to fit data with an optical depth τ = 0.06 and all the other WMAP parameters
unchanged.

5 Conclusions

In this paper we have studied some phenomenological implications of the cos-
mological Slingshot scenario introduced in [2; 3]. In the first part of the paper
we have derived an expression of the primordial power spectrum of cosmologi-
cal perturbations arising from the Slingshot (formula 7). This expression general-
izes previous results by [2; 3] in that it contains a blue contribution to the spec-
trum which had not been considered before. In the second part of the paper we
have numerically computed the CMB temperature and polarization power spectra
arising from the Slingshot primordial spectrum. First, we showed that a suitable
choice of the Slingshot parameters allows to match Slingshot predictions with the
WMAP 3-year best-fit power spectrum. More precisely we showed through a rel-
ative goodness-of-fit approach that the slingshot predictions are not, in a statistical
sense, worse than the best WMAP fit of a power law primordial spectrum. This
conclusion has been drown by fitting the slingshot power spectrum spectral index
to be 0.95 (best WMAP fit) at some pivot scale and by keeping all the standard
cosmological parameter unchanged. To gain a more precise insight it would be,
however, very important to perform a Montecarlo analysis were all parameter, in
particular the spectral index, can change. This might in principle find a better fit to
the data. However, as the aim of the present paper was only to show that, with the
same WMAP parameters, the slingshot power spectrum is a good fit of the data,
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the above mentioned complete statistical analysis is left for future work. In the last
part of the paper we finally looked for possible specific signatures of the Slingshot
in CMB data that could allow to distinguish it from the standard scenario. Unfor-
tunately all the distinctive Slingshot features turn out to be confined to the low-`
part of the spectrum, where large cosmic variance dominated error bars prevent
from any significant discrimination between the two scenarios.
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