
Probing Supersymmetry with Recursive
Jigsaw Reconstruction

27th February 2018

1st December 2017

Marco Santoni

A Thesis Submitted for the Degree of Doctor of Philosophy in Physics

Supervisors:

Prof. Paul Jackson

Prof. Martin White

Department of Physics, School of Physical Sciences



ii



iii

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name, in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission

in my name, for any other degree or diploma in any university or other tertiary institu-

tion without the prior approval of the University of Adelaide and where applicable, any

partner institution responsible for the joint-award of this degree. I give consent to this

copy of my thesis, when deposited in the University Library, being made available for

loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give

permission for the digital version of my thesis to be made available on the web, via the

University’s digital research repository, the Library Search and also through web search

engines, unless permission has been granted by the University to restrict access for a

period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.



iv

Nessuno effetto è in natura senza ragione; intendi la ragione e non ti bisogna

sperienza

La esperienza non falla, ma sol fallano i nostri giudizi, promettendosi di lei

cose che non sono in sua potestà

Leonardo Da Vinci



v

Abstract

This thesis describes Recursive Jigsaw Reconstruction, a technique for analysing final

state topologies with weakly interacting particles at collider experiments. Constructed

to extract information from indirect hints of dark matter candidates, bases of observ-

ables are used for proposed analyses of proton-proton collision events at the Large

Hadron Collider (LHC) focused on probing supersymmetry.

This dissertation presents a number of phenomenological studies targeting potential

pair-production of supersymmetric partners of the Standard Model particles assuming

a centre-of-mass collision energy of the LHC consistent with the designed energy of 14

TeV, for various luminosity scenarios.

The first is a partially inclusive study dedicated to probe compressed scenarios concern-

ing the production of a pair of gluinos and the first two generations of squarks decaying

to hadronic jets and neutralinos (g̃ → qqχ̃0
1 and q̃ → qχ̃0

1). In this scenarios the χ̃0
1

is considered to be the lightest supersymmetric particle (LSP). Putative gluinos would

be discovered above 1 TeV with a LSP mass up to 800 GeV, while squarks would be

excluded up to 900 GeV for an integrated luminosity of 100 fb−1 at LHC14.

Similar compressed investigations are dedicated to probe associated neutralino-chargino

production events with initial state radiation focusing on final states with three leptons

(χ̃0
2 → Z∗(l+l−)χ̃0

1, χ̃
±
1 → W ∗±(l±ν)χ̃0

1) and potential exclusion limits are presented for

the chargino pair-production for a data sample of 3 ab−1.

Other studies are focused on the production of light scalar bottoms either directly or

mediated by gluinos. The gluino-mediated sbottom pair-production in final states with

four b-jets and missing transverse momentum (g̃ → bb̃1(bχ̃0
1)) is investigated for several

values of the masses of the three superparticles. Gluinos could be discovered above 2

TeV and neutralinos up to 500 GeV almost independently of the scalar bottom mass

with an integrated luminosity of 50 fb−1.

The results of the proposed analysis for the direct production of light sbottoms in final
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states with two b-jets and missing transverse momentum are presented in the Mb̃1
vs

Mχ̃0
1
plane for an integrated luminosity of 50 fb−1. Assuming a systematic uncertainty

of the 20% for the SM background, superpartner of the bottom quark would be excluded

at the 95% CL with masses above 1.2 TeV and LSP with masses up to 400 GeV, while

in the compressed regime, results demonstrate the third generation scalar would be

excluded with masses above 800 GeV, well beyond the current experimental limit.



vii

Acknowledgements

I would like to express my gratitude to the smart advisors and colleagues I had the

opportunity to collaborate and initiate friendships. Firstly, I really want to thank my

supervisor Paul Jackson for his guidance and support during this years. Without him

and his inventiveness for kinematic observables, this journey of my life would have been

impossible. A big thank you goes to my co-supervisor Martin White for his dedication

and continuous feedback to this work. His passion for physics is contagious. I want

to thank Christopher Rogan who first introduced me to the maths and philosophy of

the RJR technique, for his help and inspirational conversations any time he has been

in Adelaide. I would like to thank all the guys of the CoEPP group in Adelaide I

had the opportunity to have productive and casual talks: Andreas, Larry, Abhishek,

Anum, Damir, Jason and Lei and You for their precious help in the collaboration for

the project dedicated to the SM process Higgs plus tt̄ in the dileptonic channel.

Outside the university, my gratitude goes most of all to my girlfriend Jillian. She has

always been a pillar at my side, no matter what and her love and passion have inspired

me and made me stronger. I want to thank her family and my friend Alberto who has

supported me during these years. With him and all the folks of the Uni football, I have

spent the most enjoyable recreational time. This journey has also been possible thanks

to the great support from distance received by the numerous Italian friends and in

particular for the several chats had with Paolo, Mirco and Giorgio and with my former

supervisor during my MPhys in Perugia, Orlando Panella.

Finally, I want to dedicate this thesis to my parents Vittorio and Rosella for their love

and support.



viii



Contents

1 Introduction 1

2 Theoretical Motivation 3

2.1 The Standard Model in a nutshell . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . 3

2.1.2 Symmetry and Quantum Field Theory . . . . . . . . . . . . . . 6

2.1.3 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Electroweak unification . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Higgs Mechanism and spontaneous electroweak symmetry break-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.7 Masses of the SM particles . . . . . . . . . . . . . . . . . . . . . 14

2.1.8 Some conventions and the SM in two-component spinors repres-

entation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Shortcomings of the Standard Model . . . . . . . . . . . . . . . . . . . 19

2.2.1 Dark Matter and Freeze-Out . . . . . . . . . . . . . . . . . . . 19

2.2.1.1 What is Dark Matter? . . . . . . . . . . . . . . . . . . 19

2.2.1.2 Why WIMP? . . . . . . . . . . . . . . . . . . . . . . . 22

ix



x CONTENTS

2.2.2 Hierarchy problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Grand Unified Theory . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Introduction to SUSY . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 SUSY breaking and soft Lagrangian . . . . . . . . . . . . . . . . 35

2.3.4 CMSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4.1 Flavour and phase constraints . . . . . . . . . . . . . . 38

2.3.4.2 EW breaking in the MSSM . . . . . . . . . . . . . . . 39

2.3.4.3 Eigenstates of mass . . . . . . . . . . . . . . . . . . . 41

2.3.4.4 Other constraints on the MSSM . . . . . . . . . . . . . 42

2.3.5 Decay phenomenology . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.6 Theoretical guidelines . . . . . . . . . . . . . . . . . . . . . . . 48

3 BSM at proton-proton collider experiments 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Event structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Multi-detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 ATLAS and CMS . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Madgraph, Pythia, MLM matching . . . . . . . . . . . . . . . . 67



CONTENTS xi

3.4.2 Delphes and the definition of the physical objects . . . . . . . . 70

3.4.2.1 Photon object . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2.2 Electron object . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2.3 Muon object . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.4 Jet objects . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.5 Missing transverse momentum . . . . . . . . . . . . . . 77

3.4.2.6 Shortcomings of simulated samples . . . . . . . . . . . 78

3.5 Typical strategy: how to discriminate the signal from the background . 78

3.5.1 The SM background and the signal . . . . . . . . . . . . . . . . 78

3.5.2 The jungle: an overview of the main observables . . . . . . . . . 84

4 Recursive Jigsaw Reconstruction 91

4.1 Introduction to RJR: some nomenclature and conventions . . . . . . . 91

4.2 The two hemispheres and the weakly interacting mass . . . . . . . . . . 94

4.2.1 The contra-boost . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Bounding the weakly interacting mass . . . . . . . . . . . . . . 97

4.2.3 A bit of asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.4 Estimating the unknown d.o.f. . . . . . . . . . . . . . . . . . . 102

4.2.5 The contra-boost invariants . . . . . . . . . . . . . . . . . . . . 104

4.3 The transverse plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 RJR in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Choose the topology . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.2 Evaluation of the invisible particles four-momenta . . . . . . . . 109

4.4.3 Boosting the objects to the relevant frames of reference . . . . 111



xii CONTENTS

4.4.4 Construct the observables . . . . . . . . . . . . . . . . . . . . . 112

4.5 The jigsaw rules: customisable and interchangeable like a strange puzzle 115

4.5.1 More complex topologies . . . . . . . . . . . . . . . . . . . . . . 115

4.5.2 Combinatoric Jigsaw . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.3 Summary, and another example! . . . . . . . . . . . . . . . . . . 122

4.6 RJR for compressed spectra . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6.1 Introduction to the compressed kinematics . . . . . . . . . . . . 123

4.6.1.1 The challenge . . . . . . . . . . . . . . . . . . . . . . . 124

4.6.1.2 ISR to increase the momentum of the objects . . . . . 125

4.6.2 The compressed RJR tree . . . . . . . . . . . . . . . . . . . . . 130

4.6.3 Compressed variables . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Sparticles in Motion 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Preselection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 High-ISR regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Signal regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Results and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Probing the supersymmetric electroweak sector phenomenology for

compressed mass spectra with RJR 159

6.1 Introduction to the topologies investigated . . . . . . . . . . . . . . . . 159

6.1.1 The golden channels . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1.2 Validation of the cross sections and branching fractions for the

simplified topologies . . . . . . . . . . . . . . . . . . . . . . . . 162



CONTENTS xiii

6.1.2.1 The cross sections . . . . . . . . . . . . . . . . . . . . 163

6.1.2.2 The branching fractions . . . . . . . . . . . . . . . . . 164

6.2 Chargino-neutralino associated pair-production in final states with three

leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Compressed RJR observables-preselection criteria . . . . . . . . 168

6.2.2 Two-dimensional distributions . . . . . . . . . . . . . . . . . . . 173

6.2.3 Signal regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 Chargino pair-production . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3.1 Another look at the RJR observables . . . . . . . . . . . . . . . 184

6.3.2 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3.3 Reducing the boson plus jets and tt̄ Standard Model backgrounds 192

6.3.4 The irreducible W+W− background . . . . . . . . . . . . . . . . 195

6.3.5 Signal regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7 Study of gluino mediated sbottom pair-production in final states with

four b-jets and missing transverse momentum 207

7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.3 Preselection and RJR observables . . . . . . . . . . . . . . . . . . . . . 210

7.4 Combinatoric jigsaw rule . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.4.1 Additional motivations . . . . . . . . . . . . . . . . . . . . . . . 212



xiv CONTENTS

7.4.2 Knowing the assignment . . . . . . . . . . . . . . . . . . . . . . 214

7.5 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.5.1 Signal and background RJR variable distributions . . . . . . . 219

7.5.2 Angular and scale signal regions . . . . . . . . . . . . . . . . . . 222

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Sbottom pair-production in final states with two b-jets and missing

transverse momentum 237

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2 RJR tree motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.3 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.4 RJR complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.5 Signal regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.6 Results and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

9 Outlook 267

9.1 Higgs plus tt̄ in the di-leptonic channel . . . . . . . . . . . . . . . . . . 267

9.1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.1.3 CP-sensitive observables . . . . . . . . . . . . . . . . . . . . . . 269

9.2 Other potential future works . . . . . . . . . . . . . . . . . . . . . . . 273

10 Summary 277



Chapter 1

Introduction

The realisation of the Large Hadron Collider (LHC) and its experiments has opened a

new frontier in high energy physics. Armed with an increasing data-set of proton-proton

collisions, experimentalists have the possibility to shed light on our understanding of

fundamental phenomena at the smallest length scales ever achieved, with a multitude

of choices for the search of signatures of Beyond the Standard Model (BSM) phys-

ics. This thesis concerns the introduction of an original technique for analysing such

events at collider experiments and proposes phenomenological studies in the context of

Supersymmetry (SUSY).

Firstly, a brief overview of the Standard Model (SM) of particle physics, the current

theoretical framework describing with remarkable success the fundamental particles and

their interactions, is presented in Chapter 2. Then an introduction to some of its failings

together with possible theoretical solutions is given. In particular, the supersymmetric

extension of the SM is discussed in some detail.

Secondly, the typical strategy for probing beyond the Standard Model signatures at

proton-proton colliders is given in Chapter 3. A brief description of the Large Hadron

Collider and its two main experiments ATLAS and CMS, is followed by a discussion of

many analysis tools used in the rest of the thesis along with the canonical observables

handled in the experimental analyses.

1



2 CHAPTER 1. INTRODUCTION

In Chapter 4, Recursive Jigsaw Reconstruction is presented: a technique for probing

final state topologies containing weakly interacting particles. Specific examples are used

to illustrate the method, from the two hemispheres tree view, typical of supersymmetric

topologies, to the compressed scenarios phenomenology.

The remaining chapters describe several proposed physics analyses based on the Recurs-

ive Jigsaw Reconstruction technique. A study for gluino and squark pair-production

is presented in Chapter 5. The focus is on compressed scenarios in fully hadronic fi-

nal states. Chapter 6 contains two proposed analyses for compressed mass spectra of

electroweakinos in leptonic decay products. A study of gluino mediated scalar bottom

pair-production is described in Chapter 7, while in Chapter 8 the RJR technique is

applied for probing the direct production of sbottoms employing a more sophisticated

strategy. Other studies in which the author has had part and possible future works

are discussed in Chapter 9. Finally a summary of the main results obtained and the

conclusions are presented in Chapter 10.



Chapter 2

Theoretical Motivation

2.1 The Standard Model in a nutshell

2.1.1 Introduction to the Standard Model

The Standard Model (SM) of particle physics is a quantum field theory describing all the

known elementary constituents and their strong, weak and electromagnetic interactions

[1–4]. Theoretical calculations and experimental measurements agree with remarkable

precision for a wide variety of phenomena. Forces and constituents are treated as

point-like fundamental particles with an internal angular momentum quantum number

called spin. Two main categories emerge from the spin value: fermions are half-integer

spin particles respecting Fermi-Dirac statistics, while bosons are integer spin particles

respecting Bose-Einstein statistics.

Spin 1/2 elementary fermions are the constituents of matter and are composed of two

groups, quarks and leptons, each with three families or generations. Each particle

has a corresponding anti-matter counterpart with opposite quantum numbers but the

same mass. Quarks interact via all three forces of the SM and are the only fermions

to interact strongly. The charged leptons interact via the electromagnetic and weak

forces while neutrinos are neutral leptons, usually assumed to be massless in the SM

3



4 CHAPTER 2. THEORETICAL MOTIVATION

Figure 2.1.1: Schematic representation of the Standard Model elementary particles and
their interactions.

and interact only weakly. Charged fermions are classified with an increasing mass into

three generations which appear identical in every other aspect.

Spin 1 elementary bosons are force carriers or mediators of the forces acting on fermions.

The photon (γ), W/Z bosons and gluons (g) are the mediators of the electromagnetic,

weak and strong forces, respectively.

The discovery of the Higgs boson (2012), after the top quark (1995) and tau neutrino

(2000), has located the last missing piece of the Standard Model of particle physics.

The SM-like Higgs is a scalar (spin 0 particle) responsible for giving masses to all the

other known particles.

Figure 2.1.1 shows the particles of the SM and how they interact. Electrons, muons and

taus have electric charge defined by convention to be −1 and 1 for their anti-particle.

The quarks have fractional electric charges, respectively +2/3 and −1/3, for each up and

down type quark for each family. Quarks exist in three different colour species, whilst

gluons carry colour charge with eight independent combinations of two separate colour

labels, so they allow the quarks of different colours to interact through their exchange.

The current theoretical framework includes a total of 61 fundamental particles.

The weak interaction couples to the leptons in each generation (see Figure 2.1.1). The
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vector bosons couple to the weak eigenstates of the quarks which correspond to a

linear combination of the mass eigenstates (“physical” quarks) mixed by the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. The result is that the weak interaction violates

quark flavour. Kobayashi and Maskawa proposed the existence of the third genera-

tion, necessary for the CP-violating phase, before the second one was experimentally

fully discovered. At the current time, there is no experimental evidence for a fourth

generation and neutrino sector experiments suggest only three families.

The Standard Model does not explain several phenomena and so it fails to be a “Theory

of everything”. Firstly, it does not incorporate general relativity which is a very weak

force on microscopic scales, and for which a quantum description is currently unavail-

able.1 It does not contain any viable dark matter particle candidate that possesses all

of the required properties deduced from observational cosmology (described in Section

2.2.1). The model does not address the strong CP problem or why QCD does not

break CP-symmetry. It does not explain why our universe is dominated by matter with

minuscule amounts of anti-matter. The reason for there being exactly three generations

of particles is an unsolved question. It does not predict a correct unification at the GUT

scale of the running interaction-strength coupling (described in Section 2.2.3).

Every theory can be considered an effective theory, or an approximation, of an underly-

ing theory valid for higher energy scale or shorter distances. When the energy scale of

new physics is very large, such as the GUT or Plank scale, a hierarchy problem arises:

why does the Higgs mass at the electroweak scale result in a large discrepancy between

gravity and the other forces (described in Section 2.2.2)?

These are some of the most important unsolved problems in physics. In order to fix

its inconsistencies, the SM needs some kind of extension. Beyond the Standard Model

(BSM) physics is the paradigm in which theoretical and experimental physicists all

around the world try to brighten the darkness surrounding our understanding of Nature

(Figure 2.2.1).

1The Einstein theory of gravitation is not renormalizable when quantised [5].
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2.1.2 Symmetry and Quantum Field Theory

In physics the concept of symmetry plays a pivotal role in the investigation of Nature’s

behaviour. We can imagine, for example, that the total amount of energy of an isolated

system must remain constant if we rotate or translate the system in toto, or, in other

words, if we change our frame of reference. For the microscopic as well as the mac-

roscopic world that we experience, symmetries are associated with conservation laws.

In the microscopic world the mathematical paradigm describing physical phenomena

is Quantum Field Theory (QFT). Point-like entities are generalised to quantised fields

permeating the whole space.

The starting point is the action defined as the space-time integral of the Lagrangian

density2

S =

∫
d4xL(Φ(x), ∂µΦ(x)), (2.1.1)

which depends on a generic field Φ(x) and its derivatives.

The dynamics of, and interactions between, different fields are expressed by the Euler–Lagrange

equation:

∂µ

(
δL

δ (∂µΦ)

)
− δL
δΦ

= 0. (2.1.2)

Whenever the action has a continuous symmetry, there is a procedure, known as No-

ether’s theorem, which allows us to construct a conserved current, Jµ, where

∂µJ
µ = 0 (2.1.3)

and the associated charge

Q ≡
∫
d3xJ0 (2.1.4)

is a constant of the motion
dQ

dt
= 0. (2.1.5)

2In this work the author refers to L simply as the Lagrangian from now on.
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In the quantum theory, this is translated to

[Q,H] = 0 (2.1.6)

and the transformation is said to be a symmetry of the Hamiltonian. The analogy with

the macroscopic example is clear: the total energy of the system is unchanged for such

transformation.

The SM framework is a relativistic QFT based on gauge transformations: internal

symmetry transformations related to abstract transformations of the matter fields. The

application of the concept of symmetry to the Lagrangian by imposing local gauge

invariance introduces new vector fields. The introduction of spontaneous symmetry

breaking and the Higgs mechanism are necessary to explain the experimental evidence

for the massive W and Z bosons. The SM is based on the internal symmetries of the

unitary product group SU(3)C × SU(2)L × U(1)Y , where C, L and Y are quantum

numbers referred to as colour, left-handed weak isospin and hypercharge.

2.1.3 Quantum Electrodynamics

Quantum electrodynamics (QED) is the prototype gauge field theory. The laws de-

scribing the phenomena involving electrically charged particles and light are invariant

under complex phase rotations applied to particle fields. In group theory jargon, QED

is based on the Abelian U(1)Q symmetry group, where the electric charge (Q) is the

generator. Feynman used to refer to QED as “the jewel of physics” because of its

remarkably accurate predictive power.

The Lagrangian of a free fermionic field is described by the Dirac formulation

LD = iΨ̄Dγ
µ∂µΨD −mΨ̄DΨD, (2.1.7)
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where ΨD is a four component Dirac field.3 The Lagrangian is invariant under global

transformations, but when we promote a global transformation to a local gauge one4

ΨD → eiθ(x)ΨD (2.1.8)

an extra term appears in the Lagrangian. The gauge invariance is restored by adding

an additional term

L → LD − geΨ̄Dγ
µAµΨD (2.1.9)

where the gauge field Aµ, transforms

Aµ → Aµ + ∂µλ, with λ (x) = −θ (x)

ge
. (2.1.10)

A free term must be added to the Lagrangian. Defining the electromagnetic field tensor

Fµν ≡ ∂µAν − ∂νAµ we can write a non interacting Lagrangian for the field Aµ

L = −1

4
F µνFµν +

1

2
m2
AA

µAµ, (2.1.11)

where the mass term is not invariant under transformations of the form given by Eq.

2.1.10. The vector field is imposed to be massless (mA = 0) in order to preserve the

local gauge invariance. Finally the QED Lagrangian is

LQED = Ψ̄D (iγµDµ −m) ΨD + Lγ (2.1.12)

where Lγ = −1
4
F µνFµν is the free massless photon term and Dµ ≡ ∂µ + igeAµ is the

covariant derivative.

QED, like all the gauge theories of the SM, is a renormalizable theory. The infinities

resulting from loop Feynman diagrams contributing to fields self-energies can be elim-

inated from the theory. The physical consequence is that the QED coupling ge(E), or

3For more details see Section 2.1.8.
4In QED the convention for the electric charge is Q = −1.
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the fine structure constant αe(E) = g2
e(E)
4π

, is a function of energy, running with the

scale of the interaction.

2.1.4 Quantum Chromodynamics

In order to explain the existence of baryons like ∆++, Han and Nambu introduced a

gauge group of dimension N = 3 following the Yang and Mills theory [6] describing

Non-Abelian local gauge transformations. The transformation of Quantum Chromody-

namics (QCD) [7,8] belongs to the SU(3)C group, where C is the colour charge. Impos-

ing the local gauge invariance under SU(3)C to the quark fields introduces N2 − 1 = 8

gauge coloured fields called gluons.

The six flavour quarks (q) are fermionic fields (ΨD) populating a triplet

ψ ≡


qr

qg

qb

 , ψ̄ ≡ (q̄r, q̄g, q̄b) (2.1.13)

which allows us to write the QCD Lagrangian in a very compact form and similar to

the QED case

LQCD = ψ̄ (iγµDµ −m)ψ − 1

4
Gµν ·Gµν , (2.1.14)

where the covariant derivative and the field strength are defined 5

Dµ ≡ ∂µ − igsT ·Aµ, (2.1.15)

Gµν ≡ ∂µAν − ∂νAµ − igs [Aµ,Aν ] . (2.1.16)

The generators T a ≡ λa

2
, are the 8 Gell-Mann matrices apart from a factor, satisfying

the non-commuting algebra [
λa, λb

]
= 2ifabcλc, (2.1.17)

5The last terms in Eq. 2.1.16 and 2.1.15 are often defined with opposite signs.
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where fabc is the constant structure of the group and a, b and c the colour labels. The

commutator in Eq. 2.1.16

[Aµ,Aν ]
a = ifabcAbµA

c
ν (2.1.18)

gives rise to the triple and quartic gluon coupling terms and manifests the peculiar

nature of the strong interaction: gluons interact with each other because they carry

colour charge.

Two key features of QCD are asymptotic freedom and confinement. The QCD beta

function, which describes the running of αs(E) as discussed in paragraph 2.2.3, is

negative and decreases logarithmically with increasing energy. At the collision energies

reached by the modern collider experiments such as the LHC, the quarks and gluons

of colliding protons interact directly: the partons are practically free at very short

distances.

Perturbative theories cannot be used at a lower energy where baryons and mesons

are observed as colour singlets. Confinement refers to the impossibility for coloured

particles to be isolated and so detected individually. The consequence of confinement

is that it causes free partons to hadronise. In order to understand the hadronisation

phenomenon, we can imagine two quarks pushed apart from each other from their

kinetic energies while the gluon fields pull them together, forming characteristic narrow

tubes of colour charge. If there is enough energy to “separate” the two quarks, at some

point it becomes energetically favourable for a new quark/anti-quark pair to appear

from the vacuum along the colour tube. For very energetic coloured particles, this

process will repeat recursively. High energy quarks and gluons produced in collisions

reach the detector as a collimated spray referred to as a jet of hadrons.

2.1.5 Electroweak unification

The unification of the electromagnetic and weak forces SU(2)L × U(1)Y was first sug-

gested by Glashow in 1961 [9]. The weak current is constructed from the SU(2)L group
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of weak isospin which is observed to only couple to left-handed fermions or right-handed

anti-fermions. U(1)Y is the group of weak hypercharge, where the hypercharge6

Y = Q− I3/2 (2.1.19)

is the average electric charge of the multiplet, Q is the electric charge and I3 is the

third component of weak isospin. The chiral-left component of the electric charged

leptons and respective neutrinos belong to the SU(2)L doublet, while the chiral-right

electron, muon and tau are in their own singlet. Optionally one could introduce to the

SM a sterile particle, namely not interacting via the weak force, such as a chiral-right

neutrino or chiral-left antineutrino. For the weak interaction up-type quarks behave

like neutrinos while down-type quarks like charged leptons

ψdoubletL ≡

 νeL

eL

 =

 νe

e


L

,

 νµ

µ


L

,

 ντ

τ


L

,

 u

d


L

,

 c

s


L

,

 t

b


L

,

(2.1.20)

ψsingletR ≡ eR, µR, τR, uR, dR, cR, sR, tR, bR. (2.1.21)

Through the imposition of local gauge invariance, four new massless gauge bosons with

spin 1 are introduced. The covariant derivative is defined

Dµ ≡ ∂µ − igwτ ·Wµ − igY Y Bµ, (2.1.22)

where gw and gY are the weak and electromagnetic running coupling constants, τ i = σi/2

are the 3 generators, or the Pauli matrices apart from a factor, of SU(2)L.

6Sometimes the weak hypercharge is defined as twice the average electric charge of the multiplet
Y/2 = Q− I3
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The Dirac Lagrangian for the electro-weak theory is

LEW = ψ̄ (iγµDµ −m)ψ − 1

4
Wµν ·Wµν −

1

4
BµνBµν , (2.1.23)

where ψ are chiral-left or chiral-right fields. The term Wµ in the covariant derivative is

zero for right-handed eigenstates.

2.1.6 Higgs Mechanism and spontaneous electroweak symmetry

breaking

The weak nature of the weak interaction was known before a modern version of QFT

was introduced. Fermi was the first to describe the nuclear beta decay n→ p e ν̄e with

the introduction of the neutrino. The half-life of the neutron is about 15 minutes and

the Hamiltonian H was approximated by a contact interaction

H =
GF√

2
(p̄γµn)(ēγµνe) + h.c., (2.1.24)

where the Fermi constant is a parameter with a small numerical value related to the

proton mass

GF '
10−5

m2
p

. (2.1.25)

The discovery of parity violation suggested a vector-axial theory and when the weak

interaction was incorporated in the structure of a gauge theory, the necessity of massive

boson fields was clear. The weakness of the weak force is not related to the coupling

and it is theoretically solved with the introduction in the Feynman propagator of a

mass term.

Weinberg and Salam provided a complete solution utilising the Higgs mechanism cap-

able of incorporating massive gauge fields through spontaneous electroweak symmetry

breaking (EWSB) [10–15]. The Higgs acquires a non-zero vacuum expectation value

(VEV) which breaks the groups SU(2)L × U(1)Y .
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The idea is to introduce four real scalar fields φi or a complex SU(2)L doublet of

scalar fields, as proposed by Weinberg in 1967. One adds to the LEW in Eq. 2.1.23 a

SU(2)L × U(1)Y gauge invariant Lagrangian for the scalar field φ

Lφ = |(∂µ − igwτ ·Wµ − igY Y Bµ)φ|2 − V (φ) (2.1.26)

where |·|2 = (·)† (·) and the four fields φi are arranged in an isospin doublet with

hypercharge Y = 1
2

φ =

 φ+

φ0

 ≡
 1√

2
(φ1 + iφ2)

1√
2

(φ3 + iφ4)

 . (2.1.27)

The potential in Eq. 2.1.26 can be written

V = µ2φ†φ+ λ
(
φ†φ
)2
, (2.1.28)

with µ2 < 0 and λ > 0 and can be imagined as the famous “sombrero” or “Mexican hat”

shape for each complex field.

Minimising the potential one finds for the ground state the relation

φ†φ = −µ
2

2λ
. (2.1.29)

The choice of one of the ground states spontaneously breaks the symmetry: the intrinsic

symmetry of the Lagrangian is hidden by the arbitrary choice of an asymmetric vacuum.

The usual choice in literature for the vacuum expectation value is

φ0 =
1√
2

 0

v

 , (2.1.30)

because one can only allow neutral scalars to acquire a VEV if one wants the conser-

vation of electric charge. The Weinberg and Salam theory retains a massless photon.

Any choice of φ0 which breaks the symmetry will generate a mass for the corresponding
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gauge boson as will be clear in the next paragraph. The choice in Eq. 2.1.30 is suitable

because the vacuum is left invariant by subgroup U(1)Q and the corresponding gauge

boson remains massless:

Qφ0 = 0 (2.1.31)

which is valid just for the combination expressed in Eq. 2.1.19.

When one expands around the vacuum, because of the SU(2)L gauge invariance, one

can simply substitute the expression

φ =
1√
2

 0

v +H(x)

 (2.1.32)

in the Lagrangian , where H(x) is the famous Higgs boson of the SM. The Higgs field

can be imagined as the excitation along the real radial direction of the Mexican hat.

The generic expansion of the scalar field ϕ = 1√
2
(v+η+ iξ) can be chosen fixing η → H

and ξ → θ real, ϕ → 1√
2
(v + H(x))eiθ(x)/v. The unwanted massless Goldstone boson

(ξ → θ) actually does not appear in the theory and its kinetic term is reabsorbed in the

definition of the gauge field. The net result is a mass for the gauge field coming from

the VEV. For SU(2)L the theory is parametrised with 4 real fields, but only the Higgs

remains in the Lagrangian while θ1, θ2, θ3 are “eaten” by the gauge bosons providing the

masses for the W± and Z bosons of the SM.

The Higgs mechanism refers to the combination of gauge invariance and spontaneous

symmetry breaking applied to the electroweak theory, eventually providing mass for

the Higgs itself, for the fermions and for the vector bosons of the SM.

2.1.7 Masses of the SM particles

Firstly, the Higgs mechanism predicts the existence of a massive Higgs boson. The

quartic term in the Higgs potential (Eq. 2.1.28) gives rise to the mass for the Higgs
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field

mH =
√

2λv. (2.1.33)

The 3 massless Goldstone bosons from SU(2)L are eaten by the gauge fields. In other

words, these degrees of freedom (d.o.f.) become the longitudinal polarisations of the

massive vector bosons of the SM. The W and Z bosons and the photon are linear

combinations of the weak and hypercharge fields

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (2.1.34)

Zµ = cos θWW
3
µ − sin θWBµ, (2.1.35)

Aµ = cos θWBµ + sin θWW
3
µ , (2.1.36)

where θW is the Weinberg angle satisfying the relation tan θW = gY
gw
. Taking the term∣∣(igw σ

2
·Wµ − igY Y Bµ)φ

∣∣2 in Eq. 2.1.26 and comparing the expected mass terms with

the terms proportional to the VEV of the Higgs, one has

MW± =
1

2
vgw (2.1.37)

MZ =
1

2
v
√
g2
w + g2

Y (2.1.38)

where the ratio between the masses can be expressed by θW as MW±
MZ

= cos θW .

Finally, the field φ couples with left and right-handed fermionic fields providing a mass

for them. For the electron one can write the interaction

Linteφ = −ye

(ν̄e, ē)L

 φ+

φ0

 eR + ēR
(
φ−, φ̄0

)
L

 νe

e


L

 (2.1.39)

and for the EWSB one can simply substitute the Eq. 2.1.30

Linteφ = − ye√
2
v(ēLeR + ēReL)− ye√

2
(ēLeR + ēReL)H. (2.1.40)
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The actual mass of the electron me = yev√
2
, and all other fermion masses, is not predicted

since ye is arbitrary. In a similar way the masses for the quarks are generated, but for

the up-type quarks one rewrites the Higgs doublet with an opposite hypercharge φc =

−iσ2φ
∗, which transforms identically to φ for the SU(2)L proprieties. The parameter

v ∼ 246 GeV is the scale responsible for all the masses of the SM. The Yukawa couplings

are related to the mass of the fermions, as discussed for the electron, via the equation

mf =
yfv√

2
(2.1.41)

and their different values are experimentally measured with an increasing accuracy.

The Higgs is responsible for giving mass to all the known fundamental particles of

the SM. It must be pointed out, however, that the masses of colourless mesons and

baryons are not the simple sums of the valence quark masses. The hadronic mass of the

universe is mostly made of protons and neutrons and its value is a consequence of the

QCD effects. Furthermore, the baryonic matter accounts for barely ∼5% of the total

energy of our universe.

2.1.8 Some conventions and the SM in two-component spinors

representation

QED and QCD are parity-conserving theories and the four-component fermion notation

is well-suited. However, it is natural to employ Weyl spinors to describe phenomena at

and above the scale of electroweak symmetry breaking. Moreover, the two-component

fermion notation is particularly useful for the description of supersymmetry. Herein,

the writer presents a brief overview of the notations and conventions used, and how the

SM can be described with the Weyl spinors.

The “west-coast” metric is

gµν = gµν = diag (1,−1,−1,−1) (2.1.42)
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with the position, momentum and derivative four-vectors given by

xµ = (t, x̄), pµ = (E, p̄) and ∂µ ≡
∂

∂xµ
= (∂t, ∇̄). (2.1.43)

The projector operators, or chiral operators, are expressed in terms of the γ5 matrix

via

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2
, with γ5 =

 −I 0

0 I

 (2.1.44)

and select the left-handed and right-handed two-component of a Dirac field

ΨD =

 ψL

0

+

 0

ψR

 = PLΨD + PRΨD =

 ξα

χ†α̇

 . (2.1.45)

The γ-matrices appearing in the covariant formulation of the Dirac Lagrangian (Eq.

2.1.7) are defined as

γµ =

 0 σµ

σ̄µ 0

 (2.1.46)

where σµ = (σ0, ~σ) and σ̄µ = (σ̄0,−~σ) with σ0 = σ̄0 =

 1 0

0 1

 and ~σ the Pauli

matrices: σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 and σ3 =

 1 0

0 −1

 .

In the last term of Eq. 2.1.45 one uses the same convention utilised in [16], with

Ψ̄D = Ψ†Dβ = Ψ†D

 0 I

I 0

 =
(
χα ξ†α̇

)
. (2.1.47)

All the fermionic d.o.f. can be described using only left-handed (1
2
,0) fermions ψα and

their conjugates

ψ†α̇ ≡ (ψα)† = (ψ†)α̇. (2.1.48)
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In the two-component representation the Dirac Lagrangian is

LD = iξ†σ̄µ∂µξ + iχ†σ̄µ∂µχ−m
(
ξχ+ χ†ξ†

)
, (2.1.49)

while for a Majorana spinor χ = ξ the Lagrangian becomes

LM = iξ†σ̄µ∂µξ −
m

2

(
ξξ + ξ†ξ†

)
. (2.1.50)

Any theory involving fermions can be written in terms of only left-chiral Weyl spinor.

For the Standard Model the Lagrangian can be summarised as

LSM = F † (iσµDµ −M) F − 1

4
A µνAµν + |DµH|2 + LM(B) + LintX H , (2.1.51)

where all the flavour and colour indices are removed. The first term is the fermion Lag-

rangian with F the left-handed piece of a Dirac spinor populating the SU(2)L doublet

or the conjugate of the right-handed piece populating the singlet. When F refers to

a quark (anti-quark), the field is one of the three colour in the 3 (3̄) representation.

Dµ is the appropriate covariant derivative of the SM for the field. The second term

summarises the free contributions of the gauge bosons (A µ). The third term is the free

contribution for the scalar of the SM. The fourth term is the mass term for the massive

bosons LM(B) = 1
2
m2
HH

2 + M2
WW

+W− + 1
2
M2

ZZ
2
µ. The fifth term is the interaction

between the Higgs field and the other particles (X ) of the SM LintX H = LintFH + LintAH .
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Figure 2.2.1: Composition of the Universe.

2.2 Shortcomings of the Standard Model

2.2.1 Dark Matter and Freeze-Out

2.2.1.1 What is Dark Matter?

For the current parametrisation of the Lambda Cold Dark Matter (ΛCDM) model

[17, 18], about 85% of the mass of the universe is a form of matter we do not know

.7 Several independent observations at different astronomical length scales require the

existence of an additional form of non-relativistic matter different from the baryonic

component.8

The earliest indication arose from the study of the velocity dispersion of the stars in

the Milky Way and, on a larger scale, of clusters of galaxies in the 1930s. Another

phenomenon to probe Dark Matter (DM) is the distribution of galaxy rotation curves.

The velocity as a function of the radius of the spiral galaxy can be explained by the

conservation of the angular momentum and should reproduce a “Keplerian” behaviour.

The roughly constant speed of the stars, independently from their distance to the centre

7Other possibilities assume modifications of the Einsteinian general relativity, but are disfavoured
by various astrophysical measurements.

8The remainder of this section follows arguments taken mainly from [19] and [20].
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of the galaxy, implies a uniformity of the mass density well beyond the visible bulge.

Other evidence results from the gravitational lensing. The bending of light due to

the presence of mass (such as a cluster of galaxies) in between the very distant source

(such as a quasar) and the observer (such the Hubble Space Telescope) produces the

spectacular phenomenon of lensing arcs. The mass required to reproduce the “Einstein

radius” is much larger than the amount inferred from the luminosity of the cluster.

The potential candidates for DM populate a mass spectrum from the axion to the

black hole. In any case, every form of baryonic candidate or massive astrophysical

compact halo objects (MACHOs) cannot account for the amount of DM in the universe.

Modern evidence, coming from Big Bang Nucleosynthesis (BBN) and Cosmic Microwave

Background (CMB), can estimate the amount of baryonic matter in the universe.

Primordial neutrons can survive if bounded in nuclei. BBN refers to the period after

the Big Bang when neutrons and protons fused together to form deuterium and light

elements. The abundance of deuterium is particularly important being a lower limit on

the amount created during the BBN because it fuses creating helium in the stars with

no remnants. Abundances of 4He, D and 3He as a residual for the 4He formation and
7Li can be theoretically calculated and are related to the photon to baryon ratio (η)

and so, to the baryonic density.

Recombination refers to the epoch at which charged electrons and protons first be-

came bound to form electrically neutral hydrogen atoms. The Wilkinson Microwave

Anisotropy Probe (WMAP) operating from 2001 to 2010 and the Planck space ob-

servatory from 2009 to 2013 have provided a deep understanding of the primordial

thermal radiation left over from the time of recombination. WMAP has achieved pre-

cise measurements of the angular fluctuations in the CMB spectrum with a resolution

of ∼ 10−6 of a degree in the temperature variation, while the Planck spacecraft has a

more sensitive angular resolution, and its data will continue to be analysed in the years

to come.

The temperature fluctuations of the CMB are really small (30 ± 5 µK) and are due
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Figure 2.2.2: The CMB Anisotropy Power Spectrum from Planck experiment (2013)
and its fit using the ΛCDM model.

to two effects: large and small scale anisotropies. Lower energy photons are observed

today from areas that were more dense because they escaped from a deeper potential

well: these are large scale fluctuations. On small scales, the anisotropy is caused by the

acoustic oscillation of the photon-baryon fluid until the photon decoupling. Dark matter

accounts only for the first phenomenon and varying the baryonic and dark components

of the energy density it is possible to reproduce the power spectrum as shown in Figure

2.2.2. Furthermore, in order to explain how the large-scale structure of our universe

evolved from the anisotropy of CMB, the baryonic matter component is not enough.

The most recent evidence for DM comes from the collision of a sub-cluster (the Bullet

cluster) and a cluster. Baryonic mass estimations of galaxy clusters can be obtained

from X-ray emission from the hot gas within the galaxies and do not match with the

gravitational lensing estimations. During the collision between two galaxy clusters,

the hot gas encounters friction (and emits X-rays) and its distribution remain concen-

trated in the centre as shown in Figure 2.2.3, while DM passes through with weaker

interactions.

DM could be the sum of different species of non-baryonic particles and most BSM the-

ories provide a unique stable candidate. The identikit of the “good candidate” satisfies

some important requirements. DM must be stable otherwise it would decay to SM
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Figure 2.2.3: In pink the X-ray emission of hot gas from a bullet-shaped and a larger
cluster, whilst in blue the distribution of DM calculated via lensing observations.

particles. It is dark, or has no electric charge, and it is colourless otherwise it would

form strongly bound states and would be simply detected from direct searches, from

the scattering with nuclei as in the Large Underground Xenon experiment (LUX)[21].

DM must also reproduce the observed relic density [22]

ΩDMh
2 ' 0.1186± 0.0020, (2.2.1)

where h is the Hubble constant nowadays in unit of 100 km s−1 Mpc−1observed to be

h2 ' 0.5 and

ΩDM =
ρDM
ρc

(2.2.2)

is the average density of non-baryonic DM divided by the total critical density. Their

values are approximately ρc = 3H0/8πGN ' 10h2 GeV m−3 that would lead to a spatially

flat homogeneous universe and ρDM ' 1.2 × 10−6 GeV/cm3, roughly the equivalent

of 6 protons every 5 m3.

2.2.1.2 Why WIMP?

Freeze-out refers to the mechanism for a particle going out of thermal equilibrium

during the history of the universe. The result is a constant residual number of particles.

Herein we consider for simplicity only a single DM particle χ. Since dark matter is in
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equilibrium9

x ≡ Mχ

T
� 1 (2.2.3)

in the canonical ensemble with the other SM particles, the creation-annihilation pro-

cesses have the same rate in both directions

χχ̄←→ ff̄ , (2.2.4)

where χ̄ represents the anti-DM particle and f is a Standard Model fermion.

The density at equilibrium is given by

nEQχ =
gdof

(2π)3

∫
f(p)d3p =

gdof
(2π)3

∫ ∞
0

4πp2

exp
(
Mχ−µ
T

)d3p, (2.2.5)

where gdof is the number of d.o.f., f(p) is the Fermi-Dirac statistics and the number of

DM particles in the comoving volume N = a3nEQχ is constant. The chemical potential

µ in Eq. 2.2.5 can be neglected.

If the actual number density of DM is larger than the equilibrium density the reac-

tion will go faster to the right: the annihilation dominates the creation process. The

depletion rate is proportional to σχχ̄→ff̄ |v|n2
χ, but there is a term with opposite sign

because of the inverse process proportional to
(
nEQχ

)2. The time evolution of the dens-

ity number can be expressed in two terms 1
V
Ṅχ = 1

a3

d(nχa3)
dt

= dnχ
dt

+ 3nχaȧ and finally

the Boltzmann transport equation governing the phenomenon can be written

ṅχ + 3Hnχ = 〈σtot|v|〉
[(
nEQχ

)2 − nχ
]
, (2.2.6)

where the second term accounts for the expansion of the universe and 〈σtot|v|〉 stands

for the thermally averaged total annihilation cross-section times the velocity.

This equation has no analytic solution. Using the time-temperature relation for radi-

9One uses units in which kB = 1.



24 CHAPTER 2. THEORETICAL MOTIVATION

Figure 2.2.4: Dark matter freeze out mechanism.

ation dominance t = 0.3 mPl
T 2√geff

, Eq. 2.2.6 can be transformed to an evolution equation

as a function of the temperature. Defining Yx ≡ nχ/s where s is the entropy density

Eq. 2.2.6 can be rearranged as

x

Y EQ
x

dY

dx
= −Γtot

H

[(
Yx

Y EQ
x

)
− 1

]
(2.2.7)

and can be solved numerically with the thermal equilibrium boundary conditions x� 1

and Yx = Y EQ
x .

The rate of interaction at the equilibrium Γtot = nEQχ 〈σtot|v|〉 � H(t) is much larger

than the expansion of the universe. The freeze-out condition is achieved when

Γtot = H(tf ) (2.2.8)

and can be roughly interpretable as the point in Figure 2.2.4 where the dashed line

decouples from the continuum line. The solution of Eq. 2.2.7 provides Tf , therefore xf

at the freeze-out and the asymptotic value Yf = Yx(∞). The number of DM particles is

frozen because neither the creation nor the annihilation process are allowed χχ̄ = ff̄

and the density evolves in time just due to the expansion of the universe.
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In the literature, DM is usually referred to as hot, warm or cold depending on the

velocity of the DM particles at the time of decoupling. Very light particles (such as

neutrinos) were hot during the freeze-out or, in other words, they were relativistic.

Large-scale structure formation disfavours hot DM. Qualitatively we can imagine how

cold or warm DM tends to not move too much and naturally amplifies the initial density

contrast because of the gravitational attraction.

DM could interact with SM particles only gravitationally or via some unknown coupling.

In any case, making some reasonable assumption regarding the freeze-out temperature

Tf ∼ Mχ/20, the estimate of the order of magnitude for the cross section is typically

weak for Mχ ∼ O(100 GeV).

We thus arrive at the paradigm of a warm or cold Weakly Interacting Massive Particle

(WIMP) which is capable of naturally reproducing the value in Eq. 2.2.1 and being

potentially observable in the near future.

2.2.2 Hierarchy problem

The self-energy of the Higgs (m2
h) receives divergent quantum corrections from the

virtual effects of every particle that couples, directly or indirectly, to the Higgs field.

Pauli-Villars regularisation introduces an ultraviolet cut-off ΛUV that could be inter-

preted as the energy scale at which new physics enters to alter the high-energy behaviour

of the theory. The SM particles give one-loop quadratic corrections to the Higgs mass

∆m2
H |fermion = −

y2
fΛ

2
UV

8π2
, ∆m2

H |gauge =
9g2Λ2

UV

64π2
, ∆m2

H |Higgs =
−λΛ2

UV

16π2
(2.2.9)

with the top giving the greatest contribution, due to its Yukawa coupling of order one

(yt ∼ O(1)). If we consider that there is no new physics between the electroweak scale

and the Planck or GUT scale (ΛUV ∼ O(MPlank) or O(MGUT ) ), the level of cancellation

will be unnatural. For example for MGUT/MHiggs ∼ O(1014 GeV) the cancellations in the

various contributions to mH must be precise to 14 orders of magnitude: this is referred
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Figure 2.2.5: One-loop corrections to m2
H due to the top.

Figure 2.2.6: One-loop correction to m2
H due to a scalar.

to as the hierarchy problem.

The one-loop Feynman diagram in Figure 2.2.5 yields the correction:

∆m2
H |top =

(
−3y2

t

8π2

)[
aΛ2

UV − 6m2
t ln

(
ΛUV

mt

)]
, (2.2.10)

where the factor of three takes account of the possible colours and a = 1 for a Pauli-

Villars regularisation and a = 0 if one uses dimensional regularisation. Rejecting a

physical interpretation for the cut-off (a = 0), it remains difficult to understand why

mH is so small, but the level of cancellation is more natural.

When a scalar S couples to the Higgs with a term in the Lagrangian −λS |H|2 |S|2 (see

Figure 2.2.6) the correction to m2
H is:

∆m2
H |scalar =

(
λS

16π2

)[
aΛ2

UV − 2m2
S ln

(
ΛUV

mS

)
+ ...

]
. (2.2.11)

Considering two scalars for every Dirac fermion with the couplings respecting λS =

|λF |2, the quadratic divergences are erased. In order to evaluate the total one-loop
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Figure 2.2.7: Two-loops corrections to m2
H due to a heavy fermion.

logarithmic correction one must consider the tri-linear mass term mS |S|2 (H + H†).

The logarithmic sensitivity remains and depends on the scalar and fermion masses but

is zero when mS = mF .

Two-loop corrections to m2
H coming from heavy fermions F (see Figure 2.2.7) are of

the form

∆m2
H = CH

(
g2

16π2

)[
aΛ2

UV + 24m2
f ln

(
ΛUV

mf

)
+ ...

]
(2.2.12)

where CH is the quadratic Casimir invariant of H and g is a gauge coupling (electroweak

or unknown).

Summarising: contributions to m2
H come from Feynman diagrams with N -loops, where

N = 1, ...∞, involving the SM particles appearing in the diagram when new physics

is assumed at the energy scale ΛUV. The Higgs mass (mH ' 125 GeV) is too small

compared to the Planck or GUT scales and the miraculous cancellations are expected to

have a physical reason instead to be the result of an unnatural fine-tuning as described

in Section 2.3.6. SUSY provides an elegant solution to this issue by associating two

scalar d.o.f. for every fermion of the SM (as discussed in Section 2.3.1). In such a way

all the quadratic divergences are erased at every loop of the perturbative theory.

2.2.3 Grand Unified Theory

Every subgroup of the SM describes a renormalizable QFT and the couplings are a

function of the energy. The unification of the three gauge interactions into a single
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force is the fascinating Grand Unified Theory (GUT). The SM does not provide a

perfect unification of the couplings at the GUT scale. The beta functions, describing

the dependence of the coupling parameters on the energy scale, satisfy the one-loop RG

equations

β (gi) ≡
d

dt
gi =

1

16π2
big

3
i , t = ln

(
M

M0

)
(2.2.13)

whereM is the RG scale,M0 = MGUT for example, and bi are constant coefficients with

i = 1, 2, 3. The normalisations for g1 =
√

5/3gY , g2 = gW and g3 = gS are chosen to

agree with the canonical covariant derivative of the group SU(3)C×SU(2)L×U(1)Y into

SU(5). Usually the reciprocals of the quantities αi = g2
i/4π2 are represented, because at

one-loop order they run linearly
d

dt
αi = − bi

2π
. (2.2.14)

The coefficients bi are larger for supersymmetric models with respect to the SM because

of the contributions of the extra particles in the loops. Comparing the SM with its

minimal supersymmetric extension at the one-loop level one has the values:

Model b1 b2 b3

SM 41/10 −19/6 −7

MSSM 33/5 1 −3

Figure 2.2.8 shows the two-loop renormalisation group evolution of α−1
i in SM and

MSSM with sparticle masses treated as a common threshold between 500 GeV and 1.5

TeV.

2.3 Supersymmetry

Supersymmetry (SUSY) [24–33] is a popular and well-motivated theory capable of

providing a solution for the hierarchy problem, the unification of the gauge couplings

and a suitable DM candidate (when R-parity is conserved, see Section 2.3.2). In this
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Figure 2.2.8: Two-loop renormalisation evolution of the gauge couplings in the SM
(dashed lines) and the MSSM (solid lines). Figure from [23].

section, the writer discusses the ordinary N = 1 supersymmetry, where N refers to the

number of supersymmetries. Being the focus of the proposed analyses in this thesis and,

in recent years, of a large proportion of SUSY searches at the LHC, some aspects of

the Minimal Supersymmetric Standard Model (MSSM) are described, with a particular

focus on the phenomenological implications10.

2.3.1 Introduction to SUSY

Supersymmetry refers to an invariance under generalised space-time transformations

relating bosons and fermions. From the Coleman-Mandula theorem [35], an exten-

sion of the relativistic invariance is possible by introducing anticommuting spinorial

generators, as described by the Haag–Łopuszański–Sohnius generalisation [36]. The su-

persymmetric spin-1
2
operator Q, and its hermitian conjugate Q̄11, transforms a bosonic

state |B〉 in a fermionic state |F 〉 and vice versa

Q |B〉 = |F 〉

Q |F 〉 = |B〉
. (2.3.1)

10This section closely follows prescriptions taken from [23,34].
11The hermitian conjugate of a Weyl spinor is traditionally labelled with a bar (−) in the superfields

nomenclature. The same conventions as in Section 2.1.8 are otherwise used.
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From a geometrical perspective, alongside the four canonical space-time coordinates,

one introduces four space coordinates θ respecting Grassmannian algebra. In such a

way one defines a superspace with eight dimensions

xµ, θα, θ̄α̇, (2.3.2)

where α runs on two spinorial indexes. As a particle-quantum field is a representation

of the Poincaré group, a generic scalar superfield

S
(
x, θ, θ̄

)
= φ+ θξ + θ̄χ̄+ θ2M + θ̄2N + θσµθ̄Aµ + θ2θ̄λ̄1 + θ̄2θλ2 + θ2θ̄2D (2.3.3)

represents the super-Poincaré group, where on the right side of Eq. 2.3.3 one specifies

the complete Taylor series with respect to the fermionic coordinates. The idea is to

construct a super-lagrangian Λ, function of the superfields, and an action A given by

the expression

A =

∫
d4x

∫
dθ2dθ̄2Λ(Si

(
x, θ, θ̄

)
) =

∫
d4x LSUSY. (2.3.4)

The Lagrangian can be obtained by integrating Λ over only the Grassmannian coordin-

ates. The result of such integrations lives only the terms proportional to the maximum

expansion in θ and θ̄.

Defining the supercharges explicitly asQα = −i∂α − (σµ)αβ̇ θ̄
β̇∂µ

Q̄α̇ = i∂̄α̇ + θβ (σµ) α̇β ∂µ

, (2.3.5)

the SUSY transformation is equivalent to a translation in superspace. The resulting

Gol’fand-Likhtman (Poincaré) superalgebra gives the non-trivial anticommutator and
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commutators

{
Qα, Q̄

α̇
}

= 2 (σµν)
α̇
α Pµ

[Mµν , Qα] = − (σµν)
β
α Qβ, [Mµν , Q̄

β̇] = − (σ̄µν)
α̇
β̇ Q̄

β̇
(2.3.6)

where Pµ is the four-momentum and Mµν = xµPν − xνPµ generators of SO(1, 3).

Supersymmetric transformations of the superspace coordinates need the introduction

of covariant derivatives defined asDα = ∂α + i (σµ)αβ̇ θ̄
β̇∂µ

D̄α̇ = ∂̄α̇ − iθβ (σµ) α̇β ∂µ

(2.3.7)

anticommuting with the supercharges and with non zero torsion. The irreducible repres-

entations of the superalgebra are chiral superfields Φ obtained by imposing the covariant

constraint

D̄α̇S
(
x, θ, θ̄

)
= 0. (2.3.8)

Conventionally, one introduces new bosonic coordinates

yµ ≡ xµ + iθσµθ̄ D̄α̇y
µ = 0 (2.3.9)

in such a way that the left-handed chiral superfield is not a function of θ̄ anymore and

it can be written via a Taylor expansion as

Φ (y, θ) = φ (y) +
√

2θψ (y) + θ2F (y) . (2.3.10)

Similarly, one can define an anti-chiral superfield Φ†
(
y†, θ̄

)
.

Expanding the superfields on the bosonic coordinates, one can construct the Lagrangian

combining a superpotential W (Φ), an holomorphic function of a chiral (or anti-chiral)

superfields and a Kähler potentialK
(
Φ†Φ

)
and integrating on the fermionic coordinates

as expressed by the Eq. 2.3.4.
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The Wess-Zumino model introduces a Lagrangian composition of the quadratic and

cubic terms of W and the simple form of the Kähler potential K = Φ†Φ as in the

expression

LWZ =

∫
dθ2dθ̄2Φ†Φ +

∫
dθ2 1

2
mΦ2 +

λ

3
Φ3 + h.c. (2.3.11)

The other class of superfields fundamental in order to describe SUSY gauge theories

are the real or vector superfields V = V ∗ satisfying the reality condition

S†
(
x, θ, θ̄

)
= S

(
x, θ, θ̄

)
. (2.3.12)

In the MSSM bosons and fermions are superpartners of each other and organised in such

irreducible representations or supermultiplets. Respecting the superalgebra given by the

expressions in Eq. 2.3.6, each of these superfields has the same number of bosonic and

fermionic d.o.f. and all the single particle states populating the same supermultiplet

have the same mass, colour, weak isospin, and hypercharge.

The gauge fields of the SM populate vector or gauge superfields, while Weyl fermions

populate chiral supermultiplets. The superpartners of the gauge bosons are spin-1
2

fermions called gauginos, while the superpartners of the Weyl fields are scalars referred

to as squarks and sleptons. SUSY models need two Higgs supermultiplets with Y = ±1,

both to solve gauge anomalies and to give masses to the quarks of up and down-

type. The superpartners of the Higgs bosons are called Higgsinos and populate chiral

supermultiplets.

Gauge and chiral superfields are shown in Tab. 2.1 and Tab. 2.2 and as in the literature,

the superpartners are denoted as the state of the SM, but with an upper tilde (∼).

Squarks and sleptons are scalars hence their left or right-handedness refers to the their

SM superpartners; nevertheless only left-handed and anti-right-handed scalar fields

interact weakly.
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Φ spin-0 spin-1
2

SU(3)C , SU(2)L, U(1)Y

squarks quarks

Q

U

D

(ũL d̃L), (c̃L s̃L), (t̃L b̃L)

ũ∗ = ũ∗R, c̃
∗
R, t̃

∗
R

d̃∗R, s̃
∗
R, b̃

∗
R

(uL dL), (cL sL), (tL bL)

u†R, c
†
R, t

†
R

d†R, s
†
R, b

†
R

(3, 2, 1
6
)

(3̄, 1, −2
3
)

(3̄, 1, 1
3
)

sleptons leptons

L

E

(ν̃e ẽL), (ν̃µ µ̃L), (ν̃τ τ̃L)

ẽ∗R, µ̃
∗
R, τ̃

∗
R

(νe ẽL), (νµ µ̃L), (ντ τL)

e†R, µ
†
R, τ

†
R

(1, 2, −1)

(1, 1, 1)

Higgs Higgsinos

Hu

Hd

(H+
u H

0
u)

(H0
d H

−
d )

(H̃+
u H̃

0
u)

(H̃0
d H̃

−
d )

(1, 2, 1
2
)

(1, 2, −1
2
)

Table 2.1: Chiral supermultiplets in the MSSM.

V spin-1
2

spin-1 SU(3)C , SU(2)L, U(1)Y

g g̃ gluino g gluon (8, 1, 0)

W W̃+, W̃ 0, W̃− winos W+, W 0, W− W -bosons (1, 3, 0)

B B̃0 bino B0 B-boson (1, 1, 0)

Table 2.2: Gauge supermultiplets in the MSSM.
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The SUSY Lagrangian for the MSSM can be written in a compact form as

LMSSM
SUSY =

∫
dθ2dθ̄2

∑
chiral Φ

†e
∑
a gaVaΦ +

∫
dθ2Tr

(
1

4g2
a
Wα
aWaα

)
+ h.c.

+
∫
dθ2µHuHd + yuQUHu − ydQDHd − ylLEHd + h.c.

, (2.3.13)

where the first term is the gauge and SUSY invariant kinetic term and the Wα are the

supersymmetric generalisation of the strength tensors: a chiral superfield constructed

as −1/4D̄2DαV for the Abelian and −1/8D̄2e−2VDαe
2V for the non-Abelian case. The

second line in Eq. 2.3.13 represents the superpotential for the MSSM and by convention

has the signs such to reproduce a positive sign for the masses of the fermion of the SM

when the two Higgs doublets get VEVs.

2.3.2 R-parity

The minimal superpotential in Eq. 2.3.13 can be enriched by other gauge-invariant

terms violating lepton number (L) and individual flavour number by one unit

WL−violating =
1

2
λ1LLE + λ2LQD + λ3LH (2.3.14)

and baryon number (B) by one unit

WB−violating =
1

2
λ4UDD, (2.3.15)

with λijk4 antisymmetric in the last two flavour indexes related to the down-type super-

fields (j 6= k = 1, 2, 3).

The low energy phenomenology of several processes and relative measurements places

strong constraints on the violation of lepton and baryon number. For example, proton

stability12 demands the suppression of at least one of the possible B and L-violating

terms. Figure 2.3.1 shows two example processes that could lead to the proton decay.
12An experimental lower limit for the proton lifetime (τp > 2.3 × 1033 years) is set by the Super-

Kamiokande collaboration for the decay channel p→ K+ν̄ [37].
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Figure 2.3.1: Feynman diagram for proton decay (p → π0e+) mediated by a strange
(bottom) squark.

The conservation of a discrete Z2 symmetry called R-parity defined as:

RP = (−1)3(B−L)+2s (2.3.16)

is assumed in the minimal extension of the SM. The particles of the SM and the other

Higgs bosons have RP = 1, while the superpartners are R-parity odd. R-parity conser-

vation demands no particle-sparticle mixing and hence every interaction vertex has an

even number of supersymmetric particles or none.

From a phenomenological perspective at collider experiments, R-parity conservation

implies the production of an even number of superparticles, each decaying to an odd

number of superparticles until the lightest stable supersymmetric particle is created.

Final states are populated by an even number of LSPs, likely two, undetected by the ex-

periments when not interacting strongly and/or electromagnetically. Several scenarios

predict a neutral LSP whose properties compatible with dark matter phenomenology.

2.3.3 SUSY breaking and soft Lagrangian

SUSY cannot exist at the energy scale in which human beings live. A selectron not

respecting the exclusion Pauli principle, but in all the other aspects identical to the

electron, would implicate a completely different chemistry. None of the supersymmet-

ric partners of the SM has been discovered so far, hence a realistic phenomenological
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model must contain a spontaneous supersymmetry breaking resulting in a SUSY mass

spectrum around the TeV scale or above.

Comparing Eq. 2.2.9 and Eq. 2.2.11 in Section 2.2.2 one has shown how the vanishing

of the quadratic divergences (Λ2
UV ) in the Higgs mass occurs when there are the same

number of bosonic and fermionic d.o.f. and the dimensionless couplings respect the

relation λS = |λF |2. Consequently, an unbroken supersymmetry naturally maintains a

hierarchy between the electroweak scale and a large (Planck or GUT) scale deleting also

the logarithmic divergences proportional to the squared masses due of the degeneracy

for the superparticle-particle masses.

Broken supersymmetry must still provide the solution for the hierarchy problem and so

the cancellation for the quadratic divergences. This is referred to as soft supersymmetry

breaking. The effective Lagrangian can be written as

L = LSUSY + Lsoft, (2.3.17)

where LSUSY contains terms conserving the supersymmetry while Lsoft contains contri-

butions violating the supersymmetry, but not dimensionless terms.

If one refers to msoft as the mass scale associated with the terms in Lsoft, the corres-

ponding corrections to the Higgs mass are of the form

∆m2
H = m2

soft

[
λ

16π2
ln

(
ΛUV

msoft

)
+ . . .

]
, (2.3.18)

with λ the general dimensionless coupling. The value of msoft is responsible for the

splitting between the SM and the SUSY spectrum. Once again, large contributions

from msoft provide large corrections for the Higgs mass which unnaturally sum to the

value ∼125 GeV. This implies, for example, an expected MSSM mass spectrum not

much higher than the TeV scale. The introduction of a similar, but more moderate,

fine tuning is referred to as little hierarchy problem.

The typical mechanism for SUSY breaking assumes a hidden sector communicating to
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the visible sector, such as the MSSM, via some mediator. Three major classes arise

depending on the mediator:

• gravity mediated or Planck-scale mediated

• gauge mediated

• extra dimension and anomaly mediated

They can result in different scenarios and phenomenology of the visible sector. Analog-

ously to EWSB, the vacuum is not invariant under a SUSY transformation and when

broken has a positive energy. The SUSY generators are fermionic operators, hence the

Nambu-Goldstone particle is the massless neutral goldstino. This would populate the

longitudinal components of the last particle of the MSSM called the gravitino: the 3/2

spin superpartner of the graviton. Depending on the procedure, the gravitino could be

the LSP. This is the case for gauge or anomaly mediated MSSM.

Supersymmetry can be spontaneously broken only when a D or a F -term appearing in

Eq. 2.3.3 and 2.3.10 has an expectation value not zero in the vacuum state. The two

mechanisms are referred to as Fayet-Iliopoulos [38] or O’Raifeartaigh [39] respectively

and provide different phenomenology. In MSSM the only D-term can not provide the

masses for the sfermions.

Independently from the procedure, one can write a soft Lagrangian with positive mass

dimension terms that explicitly breaks SUSY. For the MSSM such a generic Lagrangian

assumes the expression given by

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
ŨauQ̃Hu − D̃adQ̃Hd − ẼaeL̃Hd + c.c.

)
−Q̃†m2

QQ̃− L̃†m2
LL̃− ũ∗m2

uũ
∗† − d̃∗m2

dd̃
∗† − ẽ∗m2

e ẽ
∗†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + c.c.)

. (2.3.19)

The first line consists of the gaugino masses, the second contains the corresponding three
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scalar couplings of the Yukawa terms in the superpotential in Eq. 2.3.13, the third line

contains the scalar masses and the fourth contributions to the Higgs potential. A total

of 105 new independent parameters can be obtained counting the masses, phases and

mixing angles.

2.3.4 CMSSM

2.3.4.1 Flavour and phase constraints

Flavour physics measurements constrain the potential supersymmetric terms in the

LMSSM
soft , suppressing unwanted flavour mixing and CP violating contributions.

For example, an off-diagonal slepton mass term in Eq. 2.3.19 can result in the flavour

mixing µ → eγ, and similarly τ → eγ and τ → µγ, arising from the one-loop diagram

involving the right-handed sleptons and the Bino [40], which in typical gravity mediated

models can be approximated with the mass eigenstate of the LSP. The likelihood of

smuon-selectron conversion should be compared with the experimental upper limit of

BR (µ→ eγ) < 4.2 × 10−13 at 90% of confidence level [41]. Other diagrams could

involve left-handed sleptons and Winos or left and right-handed scalar leptons due to

the tri-linear coupling with the VEVs of the Higgs.

Similarly for the squark mass terms, tight constraints come from the measurements of

the oscillation of the neutral Kaon K0 ↔ K̄0 suppressing the mixing between down

and strange squarks, and weaker constraints on flavour violation arise from the systems

D0 ↔ D̄0 and B0 ↔ B̄0. A large class of phenomena involve rare meson decays with

flavour mixing via the parton level processes b→ sll, c→ ull and s→ dll.13 Moreover,

the B-factory measurements [42, 43] of the branching fraction for the beauty meson

decay via b→ sγ place stringent indirect constraints for massive SUSY particles in the

loop corrections.

13Here ll represents a pair of leptons.
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Other strict constraints for the CP violating phases arise from limits on the electric

dipole moments of the electron and neutron [44].

The idea is to constrain SUSY adopting a so-called soft supersymmetry breaking uni-

versality hypothesis, or a weaker version, in which the matrices for the slepton and

squark masses are diagonal as well as the three-scalar coupling matrices. These are

set proportional to the Yukawa couplings matrices via three A0i coefficients and all the

CP-violating phases different from the SM CKM contribution are set to zero.

2.3.4.2 EW breaking in the MSSM

Two complex Higgs doublets complicate EWSB in the MSSM. The important terms in

the classical potential are related to the neutral Higgs components and are F and D

terms plus contributions from Lsoft, while the terms relative to the charged Higgs can

be set to zero by performing a gauge transformation

V MSSM
H0 =

(
|µ|2 +m2

Hu

)
|H0

u|
2

+
(
|µ|2 +m2

Hd

)
|H0

d |
2 − (bH0

uH
0
d + c.c.)

+1
8

(g2 + g′2)
(
|H0

u|
2 − |H0

d |
2
)2

.
(2.3.20)

TheD-terms in the second line combine in a contribution always positive which stabilise

the potential. In the D-flat direction, where the quartic contribution in the Higgs fields

is set to zero (|H0
u| = |H0

d |), one can show that V has a minimum when

2b < 2
∣∣µ2
∣∣+m2

Hu +m2
Hd
. (2.3.21)

In order to have EWSB one must provide a negative mass term for a linear combination

of H0
u and H0

d and the following relation must be satisfied

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
. (2.3.22)
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Figure 2.3.2: RG evolution of gauginos and scalar masses in the MSSM with mSUGRA
boundary conditions imposed at Q0 = 1.5× 1016 GeV. Figure from [23].

Traditionally, one defines the ratio between the vacuum expectation values of the two

Higgs as

tan β ≡ vu
vd

=
〈H0

u〉
〈Hd

u〉
, (2.3.23)

which is related to the mass of the Z boson and electroweak couplings by the relation

given in Eq. 2.1.38, with v2 = v2
u + v2

d. The conditions for the potential to have a

minimum are
|µ|2 +m2

Hu
− b cot β − 1

2
M2

Z cos 2β = 0

|µ|2 +m2
Hu
− b tan β + 1

2
M2

Z cos 2β = 0
(2.3.24)

and the two parameters b and |µ| can be substituted for tan β and the sign of the

Higgsino mass. The RG evolution equations from the visible scale of the SUSY mass

spectrum up to the SUSY-breaking scale unify the masses for the scalars and gauginos

as shown in Figure 2.3.2.

Combining the principles of supersymmetry and general relativity, the theoretical frame-

work referred to as minimal supergravity (mSUGRA) is defined by four parameters and

a sign: the scalar superpartners have a common mass at the SUSY-breaking scale called

m0 while the gaugino masses unify in a parameter denoted m1/2; the universal tri-linear

scalar coupling is labelled A0, the ratio of the vacuum expectation values of the two

Higgs boson fields is tan β, and finally, the sign of the Higgsino mass parameter µ
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Gauge eigenstates Mass eigenstates Names

B̃0, W̃ 0, H̃0
u, H̃0

d χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4 Neutralinos

W̃+, W̃−, H̃+
u , H̃−d χ̃±1 , χ̃±2 Charginos

t̃L, t̃R t̃1, t̃2 Stops

b̃L, b̃R b̃1, b̃2 Sbottoms

τ̃L, τ̃R τ̃1, τ̃2 Staus

Table 2.3: The mass eigenstates of supersymmetric particles as the result of the mixing
of the gauge eigenstates in the MSSM.

remains undetermined.

The same parameters together with constraints provided by experimental measurements

describe the Constrained Minimal Supersymmetric Standard Model (CMSSM) scenario

for soft terms, which has been the target of a large proportion of SUSY searches in the

last years.

2.3.4.3 Eigenstates of mass

For fixed sign(µ), every point in this four-dimensional space of parameters in CMSSM

is per se a supersymmetric scenario. The evolution of nearby points down to the

electroweak scale can provide different mass spectra, allowing or prohibiting specific

decay modes, resulting in a completely different phenomenology at collider experiments.

When the electroweak symmetry is broken, the superpartners described in Tables 2.1

and 2.2, are not necessarily the mass eigenstates of the theory.

Three of the eight real scalar degrees of freedom associated to the Higgs doublets, are

the would-be Nambu-Goldstone bosons G0 , G± , which become the longitudinal modes

of the massive vector bosons. The remaining five mass eigenstates consist of two CP-

even neutral h0 and H0, one CP-odd neutral A0, and two charged H± Higgs scalar



42 CHAPTER 2. THEORETICAL MOTIVATION

fields. Hence, alongside the SM-like Higgs (h0) two other neutral and two charged

scalar particles are assumed to exist.

Electroweakinos are linear combinations of the fermionic partner of the gauge bosons

and the two Higgs bosons. Neutral Higgsinos and gauginos mix to form four eigenstates

of mass called neutralinos (χ̃0
i with i = 1, 2, 3 or 4) while charged winos and Higgsinos

form two eigenstates of mass referred to as charginos (χ̃±i with i = 1 or 2) .

For the supersymmetric scalar sector, the amount of mixing is proportional to the

corresponding Standard Model partner mass and is hence dominant for the third gen-

eration. Left and right-handed stops mix to form two eigenstates of mass t̃1 and t̃2 and

similarly for the sbottom and stau.

The mixing for the SUSY particles is summarised in Table 2.3 while the other eigenstates

of gauge correspond to the eigenstates of mass assuming a negligible mixing. Typically,

the t̃1 is the lightest squark, predominantly right-handed. Nevertheless, a light b̃1 is

expected because of the similarity of the RGE for the third generation of squarks and

the mixing is larger with increasing tan β.

2.3.4.4 Other constraints on the MSSM

Alongside flavour mixing processes associated with meson decays, indirect constraints

are set for example by the precision measurements provided by LHCb [45] for the two

rare beauty decays B0
(s) → µ+µ−. Once again, heavy superparticles could contribute

in the loop corrections. For the same reason, the anomalous magnetic moment of the

muon [46], g − 2, is a low-energy phenomenon with important implications for the

mSUGRA parameter space [47]. The mass of the W boson is another electroweak

precision observable.

The recent results of the Higgs physics, from the mass, production and decay rates and

coupling strengths measurements at the LHC experiments, provide additional inform-

ation to constrain the MSSM.
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Searches for the production of supersymmetric particles at LEP, Tevatron and LHC

experiments set tight limits on the parameter space of CMSSM. In the next chapter,

more details are presented for proton-proton collisions.

Other constraints arise from indirect searches due to the products from the annihilation

of LSPs at the freeze-out time and direct searches setting limits on the DM nature in

the mass - cross section plane.

The compatibility of SUSY models with the observed DM relic density is the most

important astrophysical constraint. While the CMSSM is not required to provide the

whole amount of the DM in the universe, many scenarios predict too high a relic

density due to a small annihilation cross section at the freeze-out time due to a large

LSP mass or a small coupling or both. For the WIMP miracle, the lightest neutralino

can reproduce the right relic density until its mass is not too large Mχ̃0
1
∼ O(100 GeV),

while the gravitino couples too weakly.

Four major mechanisms can reduce the DM relic density and allow for larger values

of the mass of the LSP. Regions of the SUSY parameter space with a small mass

difference between a superpartner of a fermion and the LSP are referred to as sfermion

co-annihilation regions. During the freeze-out, a comparable number between one, or

more sfermion species and the LSP could have contributed to reducing the DM relic

density. For fixed tan β, A0 and sign(µ), for example in a way to reproduce the Higgs

mass, these regions are located in the m0-m1/2 plane above the charged LSP region.

For a bino-like LSP a “bulk region” with small values of m0 and m1/2 requires a not

too heavy slepton exchange in the t-channel. Such models are strongly disfavoured

by recent results from LHC searches. An A-funnel or H-funnel region refers to Higgs

resonant processes due to a special proportion for the masses 2Mχ̃0
1
∼ mA0 ,mh0 ,mH0 .

The most efficient case is an s-wave annihilation with an A0 resonance, requiring a

large value for tan β. Finally, heavier gauginos can contribute to the annihilation of the

LSP via a co-annihilation process or through exchange in the t-channel if a significant

wino or Higgsino mixing occurs. In the focus point, with a large m0 and relative small



44 CHAPTER 2. THEORETICAL MOTIVATION

(a) (b) (c)

Figure 2.3.3: The profile likelihood ratio for the CMSSM with 68% and 95% CL con-
tour lines, in terms of Mχ̃0

1
and the relic abundance of the lightest neutralino 2.3.3a.

Confidence regions (within the 95% CL) in the m0-m1/2 parameter plane 2.3.3b and
tan β − A0 parameter plane 2.3.3c with µ > 0 for chargino co-annihilation (yellow),
resonant annihilation via the A0, H-funnel (brown) and stop co-annihilation (red). Fit
from the GAMBIT collaboration [48].

|µ|, heavy squarks and sleptons can be allowed assuming an LSP with a large Higgsino

component.

At the current time, in the CMSSM context, the χ̃0
1 relic density does not exceed

the measured value in confined parameter regions either through χ̃±1 co-annihilation,

resonant annihilation via the A0, H-funnel, or t̃1 co-annihilation. These regions are

shown in Figure 2.3.3 for Mχ̃0
1
< 3 TeV, together with the profile likelihood of the

CMSSM in the Mχ̃0
1
- log(Ωχ̃0

1
h2) plane.

Extensions of the MSSM can result in a completely different thermal relic abundance

prediction, sometimes with negligible changes to the collider phenomenology.

2.3.5 Decay phenomenology

Assuming R-parity conservation at pp collider experiments, the production of a pair

of LSPs could be investigated with the monojet analysis [49]. Most of the scenarios

assume a bino-like χ̃0
1, or a gravitino, as the LSP of the theory and in such a case the

typical cross section for the production of the two LSPs is too small compared to the
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SM background, or to generate any event in the LHC lifetime.

The production of superparticles heavier than the lightest one results in a final state

topology and phenomenologies related to the mass spectrum and branching fractions

for the different channels. In this section, a description of the SUSY decay modes is

presented. Herein, one uses the generic labels l, ν and q for charged leptons, neutrinos

and quarks and l̃, ν̃ and q̃ for the respective scalar partners.

Neutralino decays

Probably the richest for the channel phenomenology, the decay of heavy neutralinos

can be summarised by the expression

χ̃0
j → Zχ̃0

k, W
±χ̃±i , h

0χ̃0
k, ll̃, νν̃, A

0χ̃0
k, H

0χ̃0
k, H

±χ̃±i , qq̃ (2.3.25)

with j > 1 and k < j. The first five modes are dominant when allowed in the majority

of SUSY models. If all the two body decays are prohibited, the three-body decays via

off-shell W , and Z or h0 bosons, depending on the nature of the neutralinos, are the

dominant ones in most SUSY models.

Chargino decays

For the charginos, typically the two body-decay modes follow a trend with increasing

likelihood from left to right

χ̃±j → W±χ̃0
i , Zχ̃

±
1 , h

0χ̃±1 , lν̃, νl̃, A
0χ̃±1 , H

0χ̃±1 , H
±χ̃0

i , qq̃
′, (2.3.26)

with the squark and the quark different in flavour. Similarly to the neutralino case,

when all the two body decays are prohibited the three-body decays via W , and Z or

h0 bosons are dominant. Particularly interesting is the case χ̃±1 → W±χ̃0
1 via an on-

or off-shell W boson, being probably the most favourite mode in the entire electroweak
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sector.

Slepton decays

When kinematically allowed the decay channels are quite simple:

l̃→ lχ̃0
i , νχ̃

±
1 , (2.3.27)

ν̃ → lχ̃0
i , l
∓χ̃±1 . (2.3.28)

Right-handed sleptons typically decay to a bino-like LSP χ̃0
1, while left-handed sleptons

may prefer modes mediated by heavier wino-dominated electroweakinos.

Squark decays

The squark decay modes can be summarised by

q̃ → qg̃, qχ̃0
i , q

′χ̃±1 . (2.3.29)

The first mode is dominant when allowed because of the QCD strength of the vertex.

Similar to the slepton case, right-handed squarks likely decay directly in the LSP, while

left-handed squarks may prefer intermediate wino-like charginos or neutralinos and

provide a richer final state.

Only the third generation of squarks is likely to decay to Higgsino-dominated elec-

troweakinos due to the larger Yukawa coupling with respect to the other two families.

The phenomenology for the cascade decay of the lightest stop is worth noting. Reducing

progressively the mass splitting Mt̃1 −Mχ̃0
i
, when allowed, the dominant modes follow

the trend

t̃1 → tχ̃0
i , bχ̃

±
1 , bWχ̃0

i , cχ̃
0
i , bW

∗χ̃0
i . (2.3.30)
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For the last two channels, it may be the case that the scalar top has a lifetime long

enough to hadronise in a jet in a similar way to the partons of the Standard Model.

Gluino decay

The gluino decay is the simplest one, because it can only occur through a real or virtual

squark:

g̃ → qq̃(∗). (2.3.31)

In many SUSY scenarios the light stop and sbottom are assumed to be the lightest

coloured superparticles and if no other two-body decay is allowed, the modes through

t̃1 and b̃1 will dominate.

The gravitino LSP

This paragraph briefly treats the phenomenology for the fermionic partner of the grav-

iton and possible decays channels of heavier superparticles to G̃. In gravity mediated

models the lightest neutralino (χ̃0
1) is the most favoured LSP candidate, while the light-

est sneutrino is practically ruled-out. Gauge mediated and “no-scale” SUSY models

predict a gravitino LSP. It does not interact weakly making its hunting non-feasible in

direct searches.

At a pp collider experiment the typical phenomenological study assumes the χ̃0
1 as the

next-to-lightest supersymmetric particle NLSP when the gravitino is the LSP. There are

two main possibilities. When the half-life for the χ̃0
1 is long enough and the decay χ̃0

1 →

γG̃ (which is supposed to be the dominant one) occurs outside the detector or when

the mass difference between the two superpaticles is very small (less or O(10 GeV))

the missing transverse momentum ( 6ET ) can be simply approximated by the sum of

transverse momentum of the two χ̃0
1. When the mass difference is larger and the χ̃0

1

lifetime short enough, a peculiar signature appears with two high energy photons and

6ET [50].
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In the MSSM, sleptons are also likely to be the NLSP with a gravitino LSP. In such

a case, depending on the value of tan β, one can have a slepton co-NLSP scenario

or a stau-NLSP scenario. For long-lived sleptons a track with high ionisation can be

measured in the detector.

2.3.6 Theoretical guidelines

The mere philosophical argument, when extremely simplified as a battle between nat-

uralness and the anthropic principle, can be misleading for the scientific method. A

weak version of the anthropic principle is the following:

The observed values of all physical and cosmological quantities are not equally

probable but they take on values restricted by the requirement that there ex-

ist sites where carbon-based life can evolve and by the requirements that the

universe be old enough for it to have already done so.

Barrow and Tipler

When applied to the hierarchy problem it seems to suggest that human beings exper-

ience the mass of the Higgs ∼125 GeV almost by an accident in an infinite number of

possible universes (the multiverse).

On the other hand, taking naturalness too rigorously can be misleading as well. At

the present time, there are no observed SUSY signatures at the LHC in the CMSSM

context and many natural models were already excluded from LEP searches as shown

in Figure 2.3.4. In any case, often naturalness has guided the formulation of theoretical

models which have been later proved correct.14

14Here correct or right (wrong) refers to the capacity for the theoretical model to explain (not
explain) experimental results.
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Figure 2.3.4: The distribution of the “Naturalness probability” for the gluino mass in
the mSUGRA paradigm. The current LHC data allow a still more restricted region in
the tail of the distribution. Figure from [51] (2011).

The appearance of fine-tuning in a scientific theory is like a cry of distress

from Nature, complaining that something needs to be better explained.

Weinberg

Everything should be made as simple as possible but not simpler.

Einstein

These statements suggest that unnatural BSM theories are likely wrong and the further

one deviates from the SM the more likely the theory is wrong. Is natural SUSY ruled

out? It should be clear that supersymmetry is a large framework and not a simple

model.

From a pragmatic point of view there are only three possibilities:

• Supersymmetry is wrong.

• Supersymmetry is right, but the energies achieved by the experiments are too low

and it cannot be discovered yet.
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• Supersymmetry is right with a visible sector at the weak scale, but it eludes the

experiments for some reasons.

Betting on the third option, there are two main possible strategies to pursue. Consider

extensions of the MSSM that can produce unique signatures at collider experiments.

Parametrise our ignorance in the phenomenological MSSM (pMSSM) framework as-

suming the hints of organisation described in Section 2.3.4.1.

In the second case, one could scan the 19 weak-scale parameters with a rigorous statist-

ical investigation or make some assumptions on the available sparticle phase space and

take a subclass of these parameters, consider restrictions in which only a small number

of processes can contribute, and look in regions of phase space that are particularly

challenging to probe in experiments. In particular, the latter is the core of this thesis

and described in the next chapter with more details.

Following the Einstein and Weinberg suggestions, it is better to consider fine-tuning

quantitatively, since naturalness is a deep underlying motivation for weak-scale SUSY.

The expansion of the MSSM Higgs potential VHiggs = VTree + ∆V , with VTree given in

Eq. 2.3.20, for large tan β can be written in the form

M2
Z

2
= − |µ|2 +

(
m2
Hd

+
∑

d

)
−
(
m2
Hu

+
∑

u

)
tan2 β

tan2 β − 1
. (2.3.32)

Traditionally there are three classes or ways to evaluate fine tuning [52,53]:

• The Barbieri-Giudice (BG) measure ∆BG = max |Ai| = max
∣∣∣∂ lnM2

Z

∂a2
i

∣∣∣.
• The High-Scale (HS) measure ∆HS = maxi

|Bi|
(M2

Z/2)
with Bi containing log Λ de-

pendencies.

• The Electroweak scale (EW) measure ∆EW = maxi
|Ci|

(M2
Z/2)

with Ci defined at weak

scale.

The value of fine-tuning is not only model-dependent but also evaluation-dependent

with generally ∆EW . ∆BG . ∆HS. The simpler and unambiguous way to compute
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the fine-tuning is to take the EW version. All the terms on the right in Eq. 2.3.32 must

be of order M2
Z/2 to avoid fine-tuning, with the contributions

∑
d and

∑
u deriving from

derivatives of 4V evaluated at the minimum.

At tree level, the key observation that is relevant for SUSY collider phenomenology is

that Higgsinos must be light because their masses are directly controlled by the µ term.

At one-loop the main contribution to
∑

u comes from the stop. At the same time,

the stop cannot be too light since Mh ∼ MZ |cos 2β| at tree level, hence many natural

SUSY models require large tan β. Also the wino is involved in the one-loop corrections

and for a similar reason its mass is expected to be below or at the TeV scale. From

the two-loop corrections the gluino mass must be limited depending on the mass of the

stops.

Assuming a maximum tuning of 10% (∆EW . 10) natural inspired MSSMs suggest

that the charginos and neutralinos, depending on their nature, are around ∼ O(100

GeV) when more Higgsino-like, and ∼ O(TeV) when wino-like. Stops are expected to

be around the TeV scale or below m(t̃1), m(t̃2) . 1.5 TeV depending on the mixing.

The left-handed sbottom is part of the doublet with t̃L, and due to the evolution of the

masses described by the RGEs, sbottoms are expected to be not too much heavier than

the stops with the light sbottom limited to m(b̃1) . 1.5 TeV. Finally, depending on the

mass of the light stop, the gluino mass is expected to be limited to m (g̃) . 3 − 4.5

TeV.15

At collider experiments, some natural MSSM scenarios are challenging due to the mass

spectrum. For instance, when the electroweakino sector is compressed, due to a bunch

of Higgsino-dominated eigenstates of mass, light stops and sbottoms can decay more

or less democratically via involved cascade decays through charginos and neutralinos,

evading SUSY search limits. At the same time, the cross sections for the electroweakino

pair-production could be too small (see Figure 3.5.2) for discovery.

15Evaluating a la Barbieri-Giudice ∆BG = 10, the constraints beyond the tree level are more severe:
|µ|2 . 200 GeV, m

(
t̃1
)
. 400− 500 GeV, m (g̃) . 800− 1000 GeV.
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A vast class of extensions of the MSSM paradigm make SUSY still natural altering

significantly the considerations for the masses described so far. For example, the “Min-

imal Composite Higgs” symmetry breaking [54] provides heavy Higgsinos and hence a

potentially heavy LSP. In the next chapters one describes that experimental analyses

have low sensitivity for compressed spectra.

To conclude, suggestions related to naturalness are taken as a guideline for prospective

SUSY discovery and not as a no-lose theorem. In this thesis, the astrophysical con-

straint due to the DM relic density is considered in a way that one assumes R-parity

conservation and that the lightest neutralino (χ̃0
1) is the LSP of the theory. Motivated

by the naturalness-inspired MSSM (or extensions of the MSSM), special investigations

for compressed spectra in the electroweak sector and between the LSP and coloured

sparticles are performed with particular focus on gluino pair-production. The third

generation of squarks is treated separately with a particular interest in the sbottom,

with the typical mode b̃1 → bχ̃0
1 being much more plausible with respect to different

possible combinations of the stop decay channels (see Eq. 2.3.30 and Eq. 2.3.29).



Chapter 3

BSM at proton-proton collider

experiments

3.1 Introduction

Several experiments all around the world are designed to search for BSM physics.

Searches for dark matter can be categorised into three possible types as shown schem-

atically in Figure 3.1.1 resulting in a complementarity for its detection.

Indirect searches, based for example on probing DM annihilation to γ-rays, are per-

formed by experiments like Pamela [55], AMS [56] and Fermi-LAT [57]. Underground

experiments such as LUX [58] and Xenon1T [59] search for the direct interaction of DM

resulting in liquid Xenon nuclei recoils.

The detection of DM, together with a deep understanding of its phenomenology at col-

lider experiments, presupposes the possibility to produce the on-shell particle from SM

particles. The energy density achievable by the machine is a very important indicator

of the discovery potential. According to the Einstein formula (here rewritten in natural

units)

E = m (3.1.1)

53
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Figure 3.1.1: Searching for dark matter.

a particle of mass m could be produced only in the case of enough energy E being

carried by the colliding SM particles. Whenever a particle can be produced its detection

presupposes the ability to separate its phenomenology with respect to the background

noise. The key to any search is the capacity to discriminate signal-like events from

background-like events and a fundamental quantity to be considered is the ratio between

the number of events of the two types:

r =
S

B
. (3.1.2)

The number of events for the given process expected to be seen by a detector can be

summarised by the following relation

N = σ ×BR× ε×
∫

dtL (3.1.3)

where σ is the cross section, BR is the factor related to the branching fractions of

the channels, as described in the previous chapter, ε takes care of all the efficiencies

and acceptances for the reconstruction of the objects in the final states as discussed in
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Section 3.4.2 and
∫

dtL is the luminosity integrated in time.1

The modern experimental setup of particle colliders involves two beams of SM particles

of some kind accelerated and collided at an interaction point inside the detector. Con-

trary to the fixed target setup, all the energy of the beams can be converted into the

mass of new particles. Hadrons must be preferred to lighter particles in synchrotrons

due to the energy loss of charged particles moving along a curved trajectory

dE

dt
∝ E4

m4R
, (3.1.4)

with R the radius of curvature and E andm the particle’s energy and mass. Easy to get

from hydrogen, protons can be accelerated and brought together for head-on collisions

by electromagnetic fields.

Protons cannot be approximated to point-like particles at the small distance scales

probed at the LHC. The parton model is the theoretical framework [60] describing the

interactions between the constituents of the two hadrons (A and B) as schematically

shown in Figure 3.1.2a. At a hadron collider, a fraction of the momentum of the hadron

x is carried by the valence and sea quarks and gluons of protons and neutrons.

The inclusive cross section for the production of the final state X from two protons

p1and p2 is written with the factorisation

σp1p2→X =
∑

a,bε{q,g}

∫
dxa

∫
dxbf

p1
a

(
Q2, xa

)
fp2

b

(
Q2, xb

)
σab→X

(
Q2
)
, (3.1.5)

where σab (Q2) is the partonic cross section. The Parton Distribution Functions (PDFs)

fPa(b) describe the probability for a given parton of flavour a (b) to have a particular x

value for a transferred momentum Q as how in Figure 3.1.3. Figure 3.1.2b shows the

Standard Model cross sections as a function of the centre-of-mass energy achieved by

the collider.
1Often in this thesis, the integrated luminosity is referred to simply as

∫
L, omitting the time

integration.
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(a) (b)

Figure 3.1.2: Schematic diagram of a hard scattering process based on the parton
model (3.1.2a). MSTW 2008 NLO Standard Model process cross sections as a function
of collider energy (3.1.2b). Figures from [61].
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Figure 3.1.3: MSTW 2008 NLO parton distribution functions at Q2=10 GeV2 (left)
and Q2=104 GeV2 (right). Figure from [61].
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Figure 3.2.1: The CERN accelerator complex. Figure from [63].

3.2 LHC

Located in Geneva, at the Franco-Swiss border, the Large Hadron Collider (LHC) [62]

is the world’s largest particle accelerator designed to collide protons and lead ions at

higher energies than any other existing experiment. Installed in the 27 km LEP tunnel,

at CERN, the two-ring superconducting hadron collider is the final step of a number

of accelerating structures used to boost the energy of the particles along the way as

shown in Figure 3.2.1.

A gas bottle supplies hydrogen atoms. An electric field removes the electrons and the

protons are accelerated by linear and synchrotron apparatus to energy of 450 GeV. The

beam is then split in two and each part is accelerated in opposite directions around

the LHC in two ultra-high vacuum pipes. Operating with a peak magnetic field of 8

T, superconducting dipole and focusing de-focusing quadrupole magnets accelerate and

guide the protons in a close orbit and constraint the beams in transverse directions.

The two beams, travelling close to the speed of light, are forced to collide with the

nominal centre-of-mass energy for the two protons of
√
s = 14 TeV2 at four interaction

points corresponding to the locations of the four main experiments ALICE, ATLAS,

CMS and LHCb.

2At the current time the LHC is operating at
√
s = 13 TeV.
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3.2.1 Luminosity

The last term in Eq. 3.1.3 is the integral in time of the machine instantaneous luminosity

and can be written as

L =
N2
b nbfrevγr
4πεnβ∗

F (3.2.1)

where Nb is the number of particles per bunch, nb the number of bunches per beam, frev

the revolution frequency, γr the relativistic gamma factor, εn the normalised transverse

beam emittance, β∗ the beta function at the collision point, and F a geometric reduction

factor due to the non-zero crossing angle between the beams at the interaction point

[62].

The quadratic dependence onNb cannot be fully exploited in proton-antiproton colliders

due to the difficulty in achieving the necessary antiproton beam intensity, while, on the

other hand, too many particles per bunch can increase the noise due to the simultaneity

of multiple interactions.

The nominal instantaneous luminosity of the LHC machine is L = 1034cm−1s−1. For

the purposes of this thesis, fixed values will be assumed for the integrated luminosity

as projections for the proposed analyses.

3.2.2 Event structure

A single LHC event is the result of a combination of physics phenomena as schematically

summarised in Figure 3.2.2.

The two beams of ultra-relativistic protons are squeezed together and made to cross

at the interaction point inside the detector. Protons can interact as a whole object

with a small transferred momentum in a so called soft process. More interesting for

the discovery prospects of BSM physics are processes in which the proton reveal their

inner structure and the partons collide in a hard interaction. Multiple proton-proton

interactions in a single bunch crossing referred as in-time pileup can occur producing
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Figure 3.2.2: Pictorial representation of pp→ tt̄h→ hadrons event as produced by the
generator SHERPA 1.1. Figure from [64].

an inconvenient background of mainly soft hadronic activity. Out-of-time pileup refers

to the same phenomenon occurring in different bunches and can constitute a problem

when the time response of the detector hardware is comparable to the time between

two consecutive bunch crossings.3 Multi-parton interactions (MPI) refer to the cases

involving more than one parton of each proton in a hard process, while if only one parton

interacts hardly, the soft processes related to the interaction involving the remnant of

the proton are referred as underlying events (UE). Perturbative effects named initial

state radiation (ISR) and final state radiation (FSR) are due to electromagnetic and

strong emissions before or after the hard interaction. Finally, before they reach the

detector, coloured particles hadronise in a jet of mesons and baryons due to confinement.

The one exception is the top quark, as described in the next section.

3At
√
s=14 TeV, a time response of O(10 ps) would be necessary to resolve between a reasonable

average number of interactions per crossing of ∼ 50 (average in-time pileup).



60 CHAPTER 3. BSM AT PROTON-PROTON COLLIDER EXPERIMENTS

3.3 Detectors

3.3.1 Multi-detector

The ATLAS and CMS machines are complex multi-detectors designed for general pur-

pose experiments ranging from high precision Standard Model measurements to searches

for new physics.

Conventionally, one uses a right-handed coordinate system, with the origin at the nom-

inal interaction point. The x-axis points to the centre of the LHC ring, the y-axis

points upward (perpendicular to the LHC plane), and the z-axis points along the an-

ticlockwise beam direction. As the partons involved in the hard interaction can carry

different fractions of the proton momenta it is possible for there to be an asymmetry

in the collision and hence the centre-of-mass (CM) frame undergoes a Lorentz boost in

the z-direction. The detector does not have full azimuthal coverage near to the beam

axis, hence such an overall longitudinal boost is not known.

The spherical coordinate system has a polar angle (θ) measured from the positive z-axis

and the pseudorapidity (η) defined in term of θ as η = − ln (tan θ/2) which corresponds

to the rapidity y = − ln E+pz
E−pz for massless objects. Cylindrical coordinates are used in

the transverse plane (r, φ) where r is the radius denoting the distance from the z-axis

and φ the azimuthal angle measured from the positive x-axis. A really useful angular

distance (∆R) in the η − φ space is used to isolate different reconstructed “particle

objects” and is defined as ∆R =
√

∆η2 + ∆φ2. Pseudorapidity differences and ∆R are

Lorentz invariants under longitudinal boosts.

The only stable Standard Model particles to directly interact with the detector are

photons, muons and electrons. The Higgs boson, vector gauge bosons and τ -lepton

decay leptonically or into quarks. Due to confinement, coloured particles cannot be

detected as isolated objects, since they hadronise into mesons and baryons, reaching

the detector as jets. The top quark, with a mean lifetime of 2.5×10−25 s, decays to
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a W -boson and a bottom quark before hadronisation. Finally, detectors are blind to

weakly interacting neutrinos.

The general setup and characteristics of the two main detectors are quite similar. Built

around the interaction point concentric cylindrical layers of sub-detectors cover a full

azimuthal acceptance so as to extract a measure for the missing transverse momentum

leveraging on the conservation of the momentum in the transverse plane. Depending

on which sub-detector/s the particle interacts with, it can be identified as schematically

shown in Figure 3.3.1. Exploiting the Lorentz law, charged particle trajectories in the

inner detector are used for momentum reconstruction

p = Bqr, (3.3.1)

with r the radius of the circular orbit in the magnetic field B. The resolution for the

momentum has the dependence
dp

p
∝ p

Bl2
(3.3.2)

and can be improved increasing the magnetic field or the distance l.

Electromagnetic and hadronic calorimeters are used to stop photons-electrons, mesons

and baryons respectively and measure their release of energy. They consist of layers of

passive high-density material such as lead or steal interleaved with layers of an active

medium. An excellent energy resolution is a fundamental characteristic for several

analyses and is related to stochastic shower fluctuation a, readout electronic noise b

and constant instrumental effects c following the formula [65]

σ

E
=

a√
E
⊕ b

E
⊕ c. (3.3.3)

An outer sub-detector is used for the identification of the muons and the investigation of

their kinematics. Another main feature in the design of the detectors is a good symmet-

ric backward-forward coverage resulting from the combination of concentric cylinders

around the beam axis referred to as the barrel detectors and plates called endcap disks
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Figure 3.3.1: Schematic imprinting of the different particles in the sub-detectors of
ATLAS and CMS. Figure from [66].

that cover the ends of the barrel. Moreover, the ability to find secondary vertices is par-

ticularly important for the identification of bottoms, charms and hadronically decaying

τ -leptons.

3.3.2 ATLAS and CMS

The ATLAS detector [67], A Toroidal LHC ApparatuS, is a ∼ 7000 tonne machine

constructed around one of the interaction points of the LHC ring as shown in Figure

3.3.2. Three large superconducting toroids together with a thin central superconducting

solenoid dominate the apparatus design. The inner detector is located within a length

of 5.8 m and a diameter of 2.56 m solenoid providing a 2T magnetic field. Closest to the

pipe, it is responsible for the high precision measurements of position and momentum

of charged particle tracks. It is subdivided into a silicon pixel detector (PIX), to which

has recently has been added a new Insertable B-Layer (IBL) dedicated to the physics

of the bottoms, a semiconductor tracker (SCT) making use of silicon strips, and the

transition radiation tracker (TRT) which is a straw-tube tracking detector. Liquid

argon scintillator (LAr) and plastic scintillator tiles are employed as the active medium

in the calorimetry. The hadronic barrel calorimeter uses a tile scintillator while the EM

barrel, EM and hadronic endcaps, and hadronic forward calorimeters employ LAr. The

largest and outermost part consists of an array of detectors of the muon spectrometer
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(MS) surrounding the toroidal magnet system. Four different technologies are employed:

the Monitored Drift Tubes (MDT) and the higher granularity Cathode Strip Chambers

(CSC) are used for measurements of the track bending respectively for smaller and

larger pseudorapidity, while Resistive Plate Chambers (RPCs) are used in the barrel

and Thin Gap Chambers (TGCs) are used in the endcaps for the trigger.

The Compact Muon Solenoid [68], (CMS) is the other main general-purpose detector

at the LHC shown in Figure 3.3.3. The main feature is the superconducting solenoid

designed to reach a 4 T magnetic field and operating at 3.8 T in situ. This provides

an excellent momentum resolution when measuring charged particles with the silicon

tracker as follow from Eq. 3.3.2. The silicon pixel detector is surrounded by silicon strip

layers categorised in three subsystems: the Tracker Inner Barrel and Disks (TIB/TID)

the Tracker Outer Barrel (TOD) and Tracker EndCaps (TEC). The Electromagnetic

calorimeter ECAL, made up of a barrel and two endcap systems, employs active layers

of lead tungstate crystal located between the tracker and the hadronic calorimeter.

Covering different intervals of pseudorapidity and interaction depths, the barrel and

endcap sampling HCALs are made of repeating layers of dense brass or steel absorber

and tiles of plastic scintillator. Quartz fibers are used as the active medium in the

forward hadronic calorimeter (HF) to increase the radiation resistance. A reversal of

the curvature of the muon’s trajectory is due to the opposite direction of the magnetic

field passing from the solenoidal barrel to the return yoke sub-detectors. In order to

track the particles’ positions and provide a trigger one employs drift tubes (DTs) and

cathode strip chambers (CSCs), while resistive plate chambers (RPCs) are dedicated

only to the trigger. DTs and RPCs are arranged in concentric cylinder barrels around

the beam axis whilst CSCs and RPCs, make up the endcap disks.

A much more detailed description of the two detectors can be found elsewhere [68, 69]

together with their performances, objects combination-reconstruction, information for

the electronics, trigger, data collection.4 For the purpose of this thesis the specifics

4The acronyms used in this Section are typical of the ATLAS and CMS collaborations.
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(a)

(b)

(c) (d)

Figure 3.3.2: The ATLAS detector. The figures show schematic diagrams of: (a)
the whole apparatus, (b) the inner detector (left) layout of the different sub-detectors
of the inner detector in the barrel region (right), (c) calorimeter system and (d) muon
spectrometer. Figures from [67].
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(a)

(b) (c)

(d) (e)

Figure 3.3.3: The CMS detector. The figures show schematic diagrams of: (a) the
interaction of the particles with the sub-detectors in a transverse view of a CMS slide (b)
the whole machine (c) the inner detector, (d) the calorimeter system and (e) a quadrant
of the detector with the beam axis (z) horizontally and the radius (r) vertically with
the muon stations in red. Figures from [68].
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regarding the acceptances, isolation and efficiencies for the reconstruction of the objects

are described in Section 3.4.2.

3.4 Monte Carlo simulation

The procedure used in this thesis presupposes Monte Carlo (MC) simulations for Stand-

ard Model background and signal samples. One considers each of the SM processes

which are expected to constitute the dominant backgrounds to the SUSY signals as

described in the Snowmass study [70]. These samples are proton proton collision at
√
s = 14 TeV generated with Madgraph 5 [71] using the default CTEQ6l1 PDF [72].

The parton shower is performed with Pythia 6 [73] followed by a detailed detector sim-

ulation with Delphes 3 [74] in which a parameterisation for the performances of the

existing ATLAS and CMS experiments is implemented. The simulation procedure in-

volves the generation of events at leading order in bins of the scalar sum of the generator

level particles transverse momenta, with jet-parton matching and corrections for next-

to-leading order (NLO) contributions. The SM background include all the processes

described in Section 3.5.1 assuming the cross sections and k-factors in Ref. [75].

In this section some specifics of these tools are described. Because of the two extremes

in the QCD behaviour, corresponding to asymptotic freedom and confinement of the

partons, the generation of the events is separated into two parts.

Hard processes are characterised by a high value of Q2 corresponding to a low value

of the running αS based on the renormalisation group equation [3]. The perturbative

theory is used in the calculation of the different contributions and referred to as the

matrix element (ME) method.

At lower energies non-perturbative effects such as hadronisation and UE, must be com-

puted from QCD-inspired models. This is the case with soft-collinear emission, often

referred to as the parton shower (PS).
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3.4.1 Madgraph, Pythia, MLM matching

Madgraph 5 is the tool used for the generation of the hard processes, which are then

matched with the PS generator, and for the cross section computations. A detailed de-

scription can be found elsewhere [71]. The parton level resulting from perturbative QCD

corrections is interfaced with Pythia 6 [73] or Pythia 8 [76]. This latter general-purpose

high-energy physics events generator is employed for the parton shower described as

successive parton emissions and for the hadronisation.

In order to avoid overlap between the phase space explored by Madgraph and Pythia

in the presence of extra partons in the generation a parton-jet matching procedure is

required. The motivation to use both is related to the different QCD behaviour at

high-low energies: the ME description diverges as partons become soft or collinear,

while the PS description fails for high-momentum and widely separated partons. Two

philosophies are the CKKW technique [77–79] based on a shower veto and event re-

weighting and the MLM method [80,81] based on event rejection. Three MLM schemes

are implemented in Madgraph 5: the cone-jet, shower-pT and kT -jet MLM. The latter

is used in the analyses and described in more details.

The Durham kT algorithm is used to obtain the equivalent of the PS outcome for the

final-state partons in each event generated by Madgraph 5. The clusterings correspond-

ing to Feynman diagrams in the matrix element are kept while the others discarded. A

cutoff scale xqcut is used as the minimum value required for the smallest kT .

Events are passed to Pythia and the parton shower is implemented. The final-state

partons are clustered to form jets once again using the kT algorithm before the hadron-

isation and decays take place. A cutoff scale QCUT is used for this second clustering.

These jets are then compared to the partons: the matching is the case when the meas-

ure of kT (parton, jets) is smaller than QCUT. In the case of each jet matched to a

parton the event is kept except for the highest multiplicity sample, where extra jets are

allowed below the kT scale of the softest ME parton in the event. When partons are

too close to generate a unique jet, or a single parton has too low transverse momentum
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Figure 3.4.1: Example of Differential Jet Rates (DJR1 (a) and DJR2 (b)) in the context
of Madgraph + Pythia 6 matching. The sample is a chargino pair-production pp →
χ̃+

1 χ̃
−
1 , pp → χ̃+

1 χ̃
−
1 j, pp → χ̃+

1 χ̃
−
1 jj, with Mχ̃+

1
= Mχ̃−1

= 250 GeV and j refers to
additional partons hadronising in jets. Figure 3.4.1a shows log(DJR 0→ 1) and Figure
3.4.1b shows log(DJR 1 → 2) for xqcut=50 and QCUT =75. The passage from the
red to the green curve (a) and from the green to the blue curve (b) results in a smooth
transition at the merging scale for the distribution of the sum of contributions (black
curve).

to be reconstructed as a jet, a non-matched event is the result.

The typical procedure is based on the generation of N − 1 exclusive samples and one

inclusive sample. When generating a sample with N additional partons, the generation

of sub-samples with ≤ N−1 partons proceeds by rejecting events containing more than

the jet multiplicity required. The sub-sample with N additional partons is the inclusive

one and additional jets from the PS are allowed as there will be no overlap. Usually

the proposed analyses of this thesis assume next-to-leading order (NLO) contributions

and matching or next-to-leading order and next-to-leading logarithmic (NLO+NLL)

accuracy. Hence the generation assumes the tree level process plus one (or two) sub-

processes with extra partons: pp→ X and pp→ X j (+ pp→ X j j).

Figures 3.4.1 and 3.4.2 show differential jet rates normalised to the cross section, for two

examples of SUSY productions in the context of generation and matching Madgraph

+ Pythia. The differential jet rate is the scale at which the sample falls into a lower
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Figure 3.4.2: Example of differential jet rate (DJR1) in the context of Madgraph +
Pythia 6 MLM matching. The SUSY sample corresponds to a sbottom pair-production
with NLO corrections (pp → b̃1

˜̄b1, pp → b̃1
˜̄b1 j with Mb̃ = 900 GeV and j refers

to one additional parton hadronising in a jet). Figure 3.4.2a and 3.4.2b show log(DJR
0→ 1) for xqcut=200 and QCUT =300 and for xqcut=30 and QCUT =32 respectively.
Compare the transitions from the red to the green curves.

N-jet multiplicity based on the choices of QCUT and xqcut. The first example show

the distribution of log(DJR 0 → 1) in Figure 3.4.1a and of log(DJR 1 → 2) in Figure

3.4.1b for the SUSY sample corresponding to a chargino pair-production with Mχ̃+
1

=

Mχ̃−1
= 250 GeV and NLO+NLL corrections. Their values must be independent of the

cutoff scales chosen as these quantities do not have physical meaning.

The procedure consists of optimising the value for xqcut (and QCUT=1.5 xqcut for

example) in a way to make the transitions between the 0 and 1 (and between 1 and 2)

additional jet samples at the cutoff as smooth as possible. In addition one could check

the transverse momentum of the leading and sub-leading jet and tune the QCUT/xqcut

values in a way to stabilise the production cross section.

Figures 3.4.2a and 3.4.2b show distributions of DJR1 for a sbottom pair-production

sample with Mb̃ = 900 GeV and two possible QCUT/xqcut combinations. A smoother

transition at the merging scale results choosing xqcut=200 and QCUT=300 than xqcut=30

and QCUT=32.

Typical values used for the generation of the SUSY samples are xqcut between 1/6 and
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1/3 of the hard scale, identified with the mass of the superparticle parent produced, and

QCUT 50% larger.

3.4.2 Delphes and the definition of the physical objects

Final state events are passed to Delphes 3 [74] to simulate a fast detector response.

Signal and background samples are generated with no-pileup at the pp centre-of mass

collision of
√
s = 14 TeV and assuming a detector parametrisation based to the Snow-

mass study. The acceptances and efficiencies for the reconstruction of the different

objects are in between the ATLAS and CMS responses or close to the best perform-

ance.

The tool simulates the response of the detector in reconstructing the tracking of charged

particle. The electromagnetic and hadronic energy deposits are independently smeared

by a log-normal distribution from Eq. 3.3.3. Two algorithms referred to as particle-flow

tracks and particle-flow towers are used as input for reconstructing high resolution jets

and missing transverse momentum. In this section a brief description of the efficiencies

for the reconstruction of the objects together with the explanation of some physical key

features is presented.

Isolation of electrons, muons and photons

The isolation is a fundamental feature in order to reject contributions due to jet back-

grounds and accept prompt leptons reconstructed from the primary vertex, produced

for example from the decay of on-shell vector bosons. In Delphes 3 each reconstructed

electron, muon, or photon (P = e, µ, γ) is defined to be isolated if the ratio collecting

the activity of the i particles in its vicinity

I(P ) =
1

pT (P )

∆R<R, pT (i)>pminT∑
i 6=P

pT (i)

 (3.4.1)



3.4. MONTE CARLO SIMULATION 71

is smaller than a fixed value Imin. One uses the values Imin =0.1, R=0.3 and pminT =

0.1 GeV.

In the detector, any other source different from isolated photons, electrons and muons

is referred to as fake. A fake lepton includes in-flight decays of light or heavy hadrons

or hadrons mimicking lepton signatures. Converted photons can be reconstructed as

electrons. The neutral pion via the process π0 → γγ could mimic the signature of an

high energy isolated photon. At this regard, ATLAS employs an highly segmented first

ECAL compartment while CMS has a pre-shower detector in the endcap regions, where

the angle between the two emerging photons is likely to be small enough to cause this

problem. A simulation for the fake rate for electrons, muons and photons requires a

detailed input from the experimental collaborations and is not implemented in Delphes

3.

3.4.2.1 Photon object

True photons and electrons with no reconstructed track reaching the electromagnetic

calorimeter are identified as photons in Delphes 3 when isolated, with transverse mo-

mentum pT > 10 GeV and efficiency:

• ε = 0.9635, for |η| ≤ 1.5 and ε = 0.9624, for 1.5 < |η| ≤ 2.5

In SUSY analyses they are important, for instance, in the GMSB framework where the

gravitino is the LSP and a possible signature with two high energy photons occur with

a χ̃0
1 next-to-LSP.

3.4.2.2 Electron object

The electron object is defined when isolated, with transverse momentum pT > 10 GeV

and efficiency:

• efficiency: ε = 0.98, for |η| ≤ 1.5 and ε = 0.90, for 1.5 < |η| ≤ 2.5
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Figure 3.4.3: Schematic diagram for the production, parton shower, hadronisation and
measurement of a jet. Figure from [82].

The electron energy resolution is a combination of the ECAL and tracker resolution:

at low energy, the tracker resolution dominates and vice versa at high energy.

3.4.2.3 Muon object

Muons are the only SM particles to reach and interact with the outer layers of the CMS

and ATLAS detectors. In Delphes the Snowmass parametrisation is obtained with an

isolated muon candidate with pT > 10 GeV and efficiency

• ε = 0.98, for |η| ≤ 1.5 and ε = 0.90, for 1.5 < |η| ≤ 2.5

The final muon momentum is obtained by a Gaussian smearing of the initial four-

momentum vector. The resolution is parametrised as a function of the transverse mo-

mentum and pseudorapidity.

3.4.2.4 Jet objects

What is a jet?

Coloured gluons and quarks do not interact directly with the detector due to QCD

confinement. In a collision event, partons shower and hadronise in collimated jets

releasing energy in the hadronic calorimeter as shown in Figure 3.4.3.

A parton jet equivalence is not exact: strictly speaking the concept of a parton is not

valid beyond the tree level. In Section 3.2.2 one illustrates all the complications due to
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QCD and the physical phenomena combined in a single event. A jet is the result of a

jet-finding algorithm and depends on these phenomena.

In QCD ultraviolet (UV) divergences are reabsorbed into the parameters of the Lag-

rangian (being the theory renormalizable at high energy) and IR divergences in the

initial state are reabsorbed into the PDFs via the DGLAP equations [83]. In the final

state IR collinear and soft divergences can be seen from the amplitude describing the

splitting of the n-th parton into two (q → qg, g → qg g → qq̄). In the limit of massless

objects the amplitude for the single QCD splitting in the parton shower can be written:

|Mn+1|2 = |Mn|2
αs
2π

dθ2

θ2
P (z) dz (3.4.2)

where z, (1− z) are the fractions of momenta of the two partons relative to the original

one and θ the splitting angle. At leading logarithmic order the DGLAP splitting factors

P (z) have the dependence

P (z) ∝ 1

z
, (3.4.3)

for z � 1. From Eq. 3.4.2 one expects collimated jets in a parton final state resulting

from a pp event collision with quarks and/or gluons. For the Kinoshita–Lee–Nauenberg

theorem the collinear (θ → 0) and soft (z → 0) divergences cancel between real and

virtual diagrams at all orders of the perturbation theory. As a consequence the jet-

finding algorithm must be such that the observable is infrared and collinear safe.

The anti-kT algorithm [84] provides infrared and collinear safe jets by comparing the

distances
dij = min

(
p−2

T,i, p
−2
T,j

) (
∆y2

ij + ∆φ2
ij

)
diB = p−2

T,iR
2

(3.4.4)

where pT,i, yi and φi are the transverse momentum, rapidity and azimuthal angle of the

particle i. From all the objects the method defines the two distances dij and diB and

finds the minimal between the two. When the minimal distance is dij the two objects

are combined into a k = i+ j object and the procedure is repeated until the minimum
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is dkB. When the resulting transverse momentum is larger than a minimal value chosen

the object is defined as a jet.

Different choices for the value of the radius of the cone produce a different average

deviation between the transverse momentum of the jet and that of the original parton:

〈δpT〉 = 〈pT,jet − pT,parton〉 ∼ f(pT,parton, R). (3.4.5)

The R dependencies for 〈δpT〉 due to the physical phenomena described in Section 3.2.2

are ∼ − log 1
R2 for FSR, ∼ R2 for ISR and UE and −R−1 for hadronisation, but the

latter is important only for small values R . 0.2.

Though a jet-parton equivalence is not perfect, the jet multiplicity and their transverse

momenta are main features in the analysis of any hadronic final state topology in

addition to the jet category.

light-jet object

In Delphes 3 Particle-flow Jets are the result of clustering the particle-flow tracks and

particle-flow towers. The FastJet package [85] is integrated and the writer employs the

anti-kT algorithm with pT>20 GeV and R = 0.5.

A jet with |η| < 5 and no tag, as explained in the following paragraphs, is assumed to

come from the fragmentation of a light quark or a gluon and referred to as a light jet

or simply as a jet.

b-jet object

With the exception of the top, the quarks hadronise before they interact with the

detector. The bottom quark forms bound states in which a single B or D meson

carries most of the energy. Beautiful hadrons, and in particular the bb̄ meson variety

bottomonium, are rather unique in elementary particle physics and fundamental in
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Figure 3.4.4: Schematic diagram of two light jet and a b-decay within a jet.

investigations of QCD, CP-violation, and BSM physics. They have large masses (5-

10 GeV), a long life-time travelling on average 450 µm before decaying leptonically or

hadronically via a D-meson and they produce a jet with an high number of charged

particles and likely one or more in-flight leptons. A secondary vertex (or two) with

some tracks displaced from the interaction point is often reconstructed together with

nearby leptonic activity. The transverse impact parameter d0 defined as the transverse

component of the distance of closest approach of the track to the primary vertex point

is used as well in the identification algorithm. Modern techniques use decay chain

multi-vertex reconstruction or multivariate machine learning methods.

In Delphes 3 the algorithm for the identification of bottoms or hadronically decaying

τ leptons consists of defining a potential candidate whenever a generated b or τ is

in a nearby ∆R range from the jet axis. The parametrisation for the b-jet tagging

corresponds to a tight5 working point with efficiency

• ε = 0.7 tanh(0.01317pT − 0.062) for |η| ≤ 1.2 and ε = 0.6 tanh(0.0105pT − 0.101)

for 1.2 < |η| ≤ 2.5

and inefficiency for the misidentification of charm quark

• i = 0.1873 tanh(0.0183pT − 0.2196) for |η| ≤ 1.2 and i = 0.1898 tanh(0.00997pT −

0.143) for 1.2 < |η| ≤ 2.5.
5When not specified in the analyses this tight b-tagging is assumed.



76 CHAPTER 3. BSM AT PROTON-PROTON COLLIDER EXPERIMENTS

Figure 3.4.5: Branching fraction of the τ -lepton (left) and typical hadronic τ candidate
phenomenology (right).

and otherwise i =0.001 for light jets. While a loose working point assumes the following

parametrisation

• ε = 0.75 tanh(0.01317pT−0.062) for |η| ≤ 1.2 and ε = 0.69 tanh(0.0105pT−0.101)

for 1.2 < |η| ≤ 2.5

• i = 0.29 tanh(0.0183pT−0.2196) for |η| < 1.2 and i = 0.29 tanh(0.00997pT−0.143)

for 1.2 < |η| ≤ 2.5

A parametrisation for the identification of jets resulting from the hadronisation of charm

quarks is not implemented.

τ-jet object

Travelling on average 85 µm, the τ -lepton decays leptonically with two neutrinos or,

roughly two thirds of the time, to light quarks with an extra neutrino before being de-

tected. Hadronic τs result in collimated jets predominantly with one or three charged

pions and often with one neutral pion producing a large electromagnetic component

π0 → γγ. The experimental identification is based on the reconstruction of the tracks

associated to some ∆R < R cone around the axis of a τ -jet-candidate and the pro-

duction vertex. These few prongs tracks, compared to a typical track multiplicity of a

gluon or quark, are expected to provide an invariant mass smaller than 1.8 GeV.
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In Delphes 3 the hadronic τ identification is based on the same procedure as the b-

jet one. The parametrisation assumes a flat identification efficiency of 65% and a

misidentification rate of 4%.

fat-jet object

Boosted Higgs, vector bosons and top quarks can decay hadronically in 2-3 quarks

resulting in 2-3 pronged sub-jet cores clustered in a massive overall jet. The phe-

nomenology for the parton shower of QCD jets follows Eq. 3.4.3: they have mostly a

single hard core surrounded by soft radiation. Several techniques referred to as groom-

ing, filtering/trimming [86,87] and pruning [88] are used for the identification of these

heavy candidates with jet sub-structure. Other possible investigations are based on

constrain radiation patterns in the jet exploiting the different colours of the sub-jets

mother particles ; for example comparing a W boson with respect to a gluon splitting

in a qq̄ pair.

In the analyses, one defines a fat-jet object as a jet with mass M > 60 GeV, which

is a candidate for heavy SM particles. Such a simple tagged jet is sometimes used to

distinguish light quarks from supersymmetric decay objects or ISR candidates from jets

produced via the decay of boosted h, W , Z and t-quarks.

3.4.2.5 Missing transverse momentum

Experimentally the x and y components of the missing transverse momentum are

defined as

Emiss
x(y) = Emiss,γ

x(y) + Emiss,e
x(y) + Emiss,µ

x(y) + Emiss,τ
x(y) + Emiss,jets

x(y) + Emiss,soft
x(y) . (3.4.6)

Due to their particular mix of charged and neutral pions in a narrow cone, hadronic

τs have their own energy calibration and associated missing momentum term, while

the soft terms correspond to clusters of energy in the calorimeters matching tracks
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associated to the primary vertex but not reconstructed to high pT objects. In the first

approximation its resolution follows the calorimeter resolution.

In Delphes 3 particle-flow tracks and particle-flow towers are the input for the definition

of the missing transverse momentum computed as

~6ET = −
∑
i

~pT (i). (3.4.7)

The absolute value of this quantity is a key observable to distinguish models with DM

candidates from the SM. In this thesis the two degrees of freedom associated to the

modulus and the polar angle of the missing transverse momentum are exploited as

described in Chapter 4.

3.4.2.6 Shortcomings of simulated samples

One of the issue with simulated samples is a lack of coverage for low-momentum objects.

This is particularly problematic for compressed scenarios studied in this work. The min-

imum lepton momentum of 10 GeV and jet momentum of 20 GeV is insufficient to cover

the extreme compressed region probed by the experiments (see for instance [89]). While

this prevents demonstrating the power of the method shown in this thesis in certain

regions of phase space, we would anticipate that with suitable object identification the

conclusions of this work would hold in this extreme regime.

3.5 Typical strategy: how to discriminate the signal

from the background

3.5.1 The SM background and the signal

A deep understanding and control of the Standard Model backgrounds is a sine qua

non condition for the discovery of different physics. The four-vectors of electron, muon,
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photon and jets objects are measured at collider experiments. These known degrees

of freedom, in concert with the two resulting from the conservation of the transverse

momentum, plus the identification of the particles and the jet category are all the

information from the final state experimentalists can leverage on. In high energy physics

these quantities and their combinations are experimental observables.

Whenever produced at the LHC, new particles with electromagnetic or colour charge

and lifetime long enough to interact with the detector can provide characteristic BSM

signatures. Heavy particles not belonging to the SM paradigm can decay to a pair of

leptons, photons or quarks and resonances could be observed appearing as bumps on an

otherwise smooth invariant mass distribution. The conservation of a discrete Z2 sym-

metry of some type, such as R-parity for SUSY described in Section 2.3.2, is assumed

to solve some of the shortcomings of the SM. In cases with a weakly interacting LSP, all

the game is based on the ability to separate the object kinematics of background-like

events from the signal-like events.

Figure 3.5.1 shows the cross sections of various SM processes for different values of the

pp centre-of-mass collision energy. The multi-jet processes, except for the top-quark

production, are colloquially referred to as QCD backgrounds and typically they result

in a final state with low missing transverse momentum. Prompt mesons such as char-

monium and bottomonium can provide pairs of opposite-sign leptons with low invariant

mass (. 10 GeV). They are typical products of charm and bottom fragmentation and

they can rarely provide isolated leptons. All these processes of hadronic nature can

constitute a problem in the case of fake contributions due to the huge cross sections

compared to the rare signal events. Data-driven analyses are often employed to sup-

press such contributions and specific investigations lie outside of the purpose of this

phenomenological thesis.

For the signal, as in a large proportion of the ATLAS and CMS searches for super-

symmetry, one assumes the benchmark of a simplified topology [91,92]. The idea is to

impose restrictions on the available sparticle phase space, namely on the few masses of
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Figure 3.5.1: Theoretical and measured cross sections for SM processes at
√
s = 7, 8, 13

TeV. Figure from [90].

the superparticles investigated, such that only a small number of processes contribute.

Most of the proposed analyses focus on one or few topologies and hence on a specific

or few final states. The benefit of this strategy is an unambiguous interpretation of

the results. The results could be then re-interpreted for more complicated models, for

example, by taking linear combinations of the signal and backgrounds yields of several

simplified models and assigning each different production cross sections and branching

ratios. In any case, the method treated in this thesis can be extended to less exclusive

topologies such as the case of compressed scenarios as described in Chapters 5 and 6.

The number of signal events are related to the cross section for the production of a pair

of superparticles as described in the general expression given in Eq. 3.1.3. Figure 3.5.2

shows the SUSY cross sections at
√
s=8 TeV and the number of signal events expected

to be produced by the LHC for an integrated luminosity of 20 fb−1 as a function of the

mass of the supersymmetric particles.
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Figure 3.5.2: Cross sections as a function of the mass for SUSY productions at
√
s=8

TeV. Figure from [93].

The SM backgrounds topologically similar to the SUSY signal include the production

of heavy bosons, top and additional jets and any combination of these. The phenomen-

ology of these processes will be described analysis-by-analysis with a focus on the main

background contributions. The trend shown in Figure 3.5.1 is that a higher multiplicity

of final state objects or the production of heavy SM particles lowers the cross section.

The Snowmass study assumes the generation of the orthogonal background processes

categorised in Table 3.1. The processes follow the increasing in cross section trend

(equivalent of the left to right trend of Figure 3.5.1) and the “+ jets” indicates the fact

that the QCD radiation of generator-level jets is allowed up to a total of four final state

partons for each category.

Searching for new physics requires collection of sufficient data and application of se-

lection criteria on experimental observables such to provide a statistical significance

for the signal-to-background ratio in Eq. 3.1.2. This requires to minimise as much as

possible the systematic uncertainties and the canonical procedure consists in defining

orthogonal control and validation regions (based for example on a different multiplicity

of one of the objects) in order to estimate the SM background in the signal region care-

fully. A typical cut and count analysis is based on a likelihood defined as a Poissonian

P distribution with the average number of events assumed to be λ = S +B and O the
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Category Snowmass label (sub-categories description)

Boson+jets BJ-B-LL (Vector Boson + jets, off-shell V in di-lepton + jets)
tt̄ TT-TB (top pair + jets-top pair (off shell t∗ →Wj) + jets)

Single-top TJ (single top + jets)
di-boson BB-BLL (Di-Vector + jets, off-shell Di-Vector in di-lepton +jets)
BJJ Vector boson fusion (V and H) + jets
H Higgs (gluon fusion plus jets)

tt̄+V TTB (top pair plus bosons, tt̄+Z, tt̄+W and tt̄+h + jets)
tri-boson BBB (tri-Vector +jets, Higgs associated +jets)

Table 3.1: Eight categories summarising all the main Standard Model backgrounds as
part of the Snowmass study.

number of observed events

L =
e−λλO

O!
. (3.5.1)

The several background and signal systematic uncertainties are summed in quadrature

with the likelihood weighted by a Gaussian distribution.

In the proposed analyses of this thesis one cannot define observed discovery reach or

exclusion limit. Monte Carlo simulations of signal and background samples are the

Madgraph + Pythia + Delphes output of pp collisions at
√
s = 14 TeV as described

in this chapter. Once generated, all the SM background samples are scaled using the

procedure outlined in [75] applying the input cross sections and k-factors provided

therein and choosing a value for the integrated luminosity. The same procedure is

applied for the signal samples and the cross sections will be described in the relative

analyses.

The results of the strategies developed for the proposed analyses will be expressed by

the Z-value (or standard score) representing the significance of a given signal measured

in standard deviations in the presence of a background hypothesis. The simple metrics

ZSB = S√
B

and ZSSB = S√
B+S

are often used to give a significance for the ratio in Eq.

3.1.2.

The more conservative metric ZBi (Z binomial), particularly in the case of a low number

of background events, is used in this thesis and described in Ref. [94]. In a frequentist
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approach, the relative background uncertainty is treated as being due to an auxiliary

or sideband observation, equivalent to an experimental control region in HEP with no

signal. The Likelihood is the product of two Poissonians distributed around S+B and

τB

L(x, y|S,B, τ) = P (x|S +B)P (y|τB) (3.5.2)

where τ is the ratio of the expected means under the background-only hypothesis H0.

The BG mean is assumed to have a normal statistics and τ assume the expression given

by

τ =
µ̂B
σ2
B

=
1

f 2µ̂B
(3.5.3)

with µ̂B the estimate mean of the null hypothesis and the standard deviation σB as-

sumed a fraction f of the background yield (µ̂B = B). The expression in Eq. 3.5.2 can

be rewritten as the product of a single Poisson probability with mean S +B + τB and

a binomial probability with

ρ =
1

1 + τ
. (3.5.4)

The binomial p-value pBi is the one-tailed probability for the test of H0 and can be

computed as the ratio of incomplete and complete beta functions

pBi =
B(ρ,B + S, 1 + τB)

B(B + S, 1 + τB)
=

∫ ρ
0
uB+S−1(1− u)τBdu∫ 1

0
vB+S−1(1− v)τBdv

. (3.5.5)

Its value can be given by specifying the corresponding Z-score: the number of standard

deviations in a one-tailed test of a Gaussian variate

ZBi = Φ−1(1− pBi) = −Φ−1(pBi), (3.5.6)

where Φ has the form

Φ(Z) =
1

2π

∫ Z

−∞
e−x

2

dx =
1

2
[1 + erf(Z/

√
2)] , (3.5.7)
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and one has the expression given by

ZBi =
√

2erf−1(1− 2pBi). (3.5.8)

Hence the binomial Z-value takes as inputs the signal and the overall Standard Model

background yields, and a systematic uncertainty for the background, usually assumed

to be flat across the SUSY parameter space.6

A perfect comparison with current experimental results is not possible with the same

assumed integrated luminosity. At the current time, the LHC is operating at
√
s = 13

TeV and the parametrisation implemented by Delphes is in between the ATLAS and

CMS performances. Finally, a deep understanding and control of the systematics must

be based on SM candles and is an experimental prerogative.

3.5.2 The jungle: an overview of the main observables

The ability to distinguish the kinematics of signal-like events from the SM ones requires

carefully designed variables. Herein an incomplete list of experimental observables used

for searches of BSM physics, in particular in supersymmetry is presented. A much more

detailed description can be found elsewhere in the literature [96–107].

6ET or Emiss
T (or MET) is defined experimentally in Eq. 3.4.6. For a perfect response of

the detector it corresponds to
√

(
∑

w px)
2 + (

∑
w py)

2 where the sum is extended

to all the weakly interacting particles in the final state.

6HT or Hmiss
T is the equivalent of 6ET considering only the response of the hadronic

calorimeter. In most analyses it is defined only with the jets:

Hmiss
T =

∣∣∣∣∣∑
jets

~p jetT

∣∣∣∣∣ (3.5.9)

6From practical purposes, one can use the BinomialExpZ (S, B, f ) method implemented in ROOT
[95] with S the signal yield, B the background yield and f the relative background uncertainty.
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with (pjetT > pminT ) and pminT is the value assumed in the anti-kT algorithm. In

practice this is found not to be useful.

HT is the scalar sum of the transverse momentum of the jets HT =
∑

jets pT , with

(pjetT > pminT ) . Often pminT is chosen larger than the minimal transverse momentum

used for the anti-kT algorithm. A similar observable can be defined with leptons.

meff is defined in different ways. It can include all the jets minc
eff =

∑
jets pT + 6ET or

only the the first n leading jets

meff =
n∑
jets

pT + 6ET (3.5.10)

or all the jets with pjetT > pminT . A similar observable can be defined with the

leptons or including all the visible objects in the final state. This simple scale

variable gives information of the overall energy of the hard collision.

6ET√
HT

and 6ET
meff

are a measure of 6ET weighted by the hadronic activity HT . They give

information on the genuineness of the missing transverse momentum: since the

intrinsic calorimeter resolutions scale approximately as
√
E, the factor 1/

√
HT is

appropriate for an approximate significance measure ( 6ET√
HT

).

pobjT is the transverse momentum of an object
√
p2
x + p2

y. Analysis strategies based on

selection criteria applied in particular to the leading jet(s) transverse momenta

are often used to define signal regions.

∆φ
(
obj, ~6ET

)
is the polar angle between the direction of an object and Emiss

T . In partic-

ular ∆φ
(
jet, ~6ET

)
is used to control the QCD/multi-jet backgrounds measuring

the angular deviation of the leading and sub-leading jets (or more) with ~6ET and

rejecting the events in cases in which one of the two satisfies ∆φ < ∆φmin.

Moo is the invariant mass between two objects of the same kind (l, γ, b-jets, τ -jets,

light jets) and it is useful to discover/reject resonances. For two particles 1 and
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2, it is defined as

M2
12 = [ET (1) + ET (2)]2 − [~pT (1) + ~pT (2)]2 (3.5.11)

No is the multiplicity of the objects of a specific kind, useful in any analysis.

M jets is the sum of the jet masses
∑

jetM
jet with (pjetT > pminT or M jet > Mmin) and it

can be used to have information about the number of boosted objects.

MT is the transverse mass defined for the two particles 1 and 2 as

M2
T = [ET (1) + ET (2)]2 − [~pT (1) + ~pT (2)]2 (3.5.12)

and in the limit of massless objects corresponds toM2
T = 2pT (1) pT (2) (1− cosφ12).

It can be defined also between an object and ~6ET . It is invariant under longitudinal

boosts.

αT is constructed to observe deviations from a di-jet event: αT =
E
j2
T

MT
, where the

numerator is the energy of the second jet in pT . In the massless limit, the variable

is one half for a perfect measured di-jet event. Lower values depend on jets

resulting from the hadronisation of bottom or charm with collinear neutrinos or

mis-measurement while values significantly greater than 0.5 are observed when

the two jets are not back-to-back and are recoiling against a genuine ~6ET , or a

jet that has not been reconstructed, typically in QCD events. The generalisation

consists in defining two pseudo-jets as a combination of all the jets in the event

αT =
HT −∆HT√
H2
T − 6H

2
T

, (3.5.13)

with ∆HT the energy imbalance of the pseudo-dijet system.

MT2 is the stransverse mass, a generalisation of MT constructed to probe final state

events with two weakly interacting particles. Imagine two (super)particles of mass
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MP decaying to a massless visible particle V and an invisible object of mass Mχ.

The parent sparticle mass is bounded from below by the transverse mass

M2
P = M2

χ + 2
[
EV
T E

χ
T cosh (∆η)− ~pVT · ~p

χ
T

]
≥MT (3.5.14)

The transverse momentum of the single invisible object is unknown, hence the

observable is based on a minimisation over under-constrained kinematic degrees

of freedom associated with the weakly interacting particles and defined as

M2
T2 (Mχ) = min

~p
χ1
T +~p

χ2
T =~6ET

{
max

[
M2

T (1) ,M2
T (2)

]}
. (3.5.15)

withM2
T

(
Mχ, ~p

V1(2)

T , ~p
χ1(2)

T

)
= M2

χ+2
(
E
V1(2)

T E
χ1(2)

T − ~pV1(2)

T · ~pχ1(2)

T

)
the transverse

mass in each hemisphere (1 and 2) and V1(2) the massless visible particle in the

hemisphere 1 (2). With the right test mass MT2 (Mχ) has a kinematic endpoint

at the parent mass Mmax
T2 (Mχ) = MP , while with the zero-test mass one can infer

the information related to the mass splitting Mmax
T2 (0) = M∆ =

M2
P−M

2
χ

MP
.

MCT is the contrasverse mass defined with an opposite sign to the transverse mass

M2
CT = [ET (1) + ET (2)]2 − [~pT (1)− ~pT (2)]2 (3.5.16)

and hence for massless particles: M2
CT = 2pT (1) pT (2) (1 + cosφ12). This corres-

ponds to the (1+2) dimension version of the contra-variant or Euclidean massMC

which has the opposite space sign with respect to the invariant mass: m2
1 +m2

2 +

2E1E2 + 2~p1 � ~p2 and is invariant under contra-linear equal magnitude Lorentz

transformations of the two particles. The observable MCT is invariant under

longitudinal boosts and the maximum is invariant under contra-linear Lorentz

boosts: MCT ≤MC ≤Mmax
CT .

M2 and other modifications of MT2. For long chains MT2 (and MCT ) can be defined

on several single decay steps or on the overall chain. The variable M2 is a (1+3)
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dimension generalisation of MT2

M2 (Mχ) = min
~pχ1+~pχ2

{max [MP1 (1) ,MP2 (2)]} . (3.5.17)

In this case the minimisation is made on the three-momenta and one demands

the constraint ~pχ1

T + ~pχ2

T = ~6ET . Two other constraints can be required and the

complete constraint observable is referred to as M2CC demanding MP1 = MP2

and MR1 = MR2, namely the same mass for the two parents and the same mass

for the relatives.

Modifications of MCT . The contransverse mass is bounded from above by MT2, and

MR
T : Mmax

CT = M∆ in the limit of massless visible objects, but the endpoint is not

invariant under Lorentz boosts of the CM system due to initial state radiation or

something else extraneous to the heavy particle decays 1 and 2. Several attempts

have been made to mitigate this problem and correct MCT to be less than the

endpoint. Maybe the simplest one is to look at the event only along an axis

perpendicular to the boost [102]. Another possibility is to correct a la Polesello-

Tovey [101], defining the x-axis parallel and the y-axis perpendicular to the boost

and the quantities

Ax = px(1)Ey(2) + px(2)Ey(1)

M2
Cy = M2

CT⊥ = [Ey (1) + Ey (2)]2 − [~py (1)− ~py (2)]2
(3.5.18)

The variable Ax(lab) and A′x are the value of Ax evaluated in the Lab frame and

after the boost in the positive x̂ direction. One can define two velocities β1 = pb
ECM

or β2 = pb
Ê
with pb the net transverse momentum of upstream objects and an upper

and a lower bound of the energy of the two particles produced at the collider:

ECM is the proton-proton centre of mass energy while Ê is obtained summing the

energies of the visible objects with the missing transverse momentum and it is

equal to the true one for massless, co-linear weakly interacting particles moving

in the transverse plane. The two velocities result in a low and a high value for A′x
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and the correction is one of the three following possibilities:

M corr
CT =


MCT after boosting by β1, if Ax(lab) ≥ 0 and A

′

x(lo) ≥ 0

MCT after boosting by β2, if A
′

x(hi) < 0

MCy if A
′

x(hi) ≥ 0

(3.5.19)

R and MR are the razor variables. A special treatment should be dedicated to these

observables defined as
R =

MR
T

MR

M2
R =

(
EV1 + EV2

)2 −
(
pV1
z + pV2

z

)2

MR
T =

√
6E[pV1

T +p
V2
T ]

2
− ~6E�[~pV1

T +~p
V2
T ]

2

4

. (3.5.20)

It can be extended to multi-object final states by defining a collection of two

pseudo-objects as in the case of two mega-jets originally introduced in the case of

hadronic final states [108]. It is constructed to have an endpoint for MR
T and a

peak forMR atM∆, while backgrounds with no real missing transverse momentum

populate values of R close to zero. The super-razor observable MR
∆ [104] can be

considered as another correction to MCT .

These variables have been used with success in order to measure Standard Model heavy

particles and have been employed for probing BSM physics. Most of them have sens-

itivity to SUSY if the mass scale is larger than the SM scale. This results in a high

correlation and redundancy in the information. Some of these variables give informa-

tion on the masses, or mass splittings, but only for the endpoint configurations. They

are thus colloquially referred to singularity observables: “a singularity is a point where

the local tangent space cannot be defined as a plane or has a different dimension than

the tangent spaces at non singular point” [109]. Moreover, a statistical issue follows

due to the fact that signal events can be distinguishable from backgrounds only in the

tail of the distributions: few signal events or none can populate this configuration. Fi-
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nally, the impact of a variable like MT2, constraining all the unknown d.o.f. in once,

is compromised if the mass or mass-difference targeted is similar to a SM background

process.

If selection criteria on the object multiplicity are necessary in any kind of analysis,

an extreme optimisation based on only endpoint scale variables can compromise the

discovery prospects. This is the case of an overestimation of the number of expected

SUSY events S due to the simplified hypothesis assumption (BR(P̃ → C̃) = 1, with P̃

and C̃ the generic parent and child superparticle) or an overestimation of the production

cross section. Philosophically similar it is a kind of optimisation based on the definition

of too many signal regions in the phase space, such as the MP̃ vs MC̃ plane, that

can be seen from an experimental point of view, as an exacerbation for the control

of the systematics uncertainties. Furthermore, an extreme optimisation on endpoint

observables excludes the possibility of discovery in cases with similar signal-background

mass scale. For these reasons, the strategy employed in this thesis is based on the

definition of few signal regions based on a moderate optimisation of mainly scaleless

variables.

Depending on the final state topology, main SM backgrounds, sparticle/particle spin

and masses, luminosity and so on, the experimental observables can have different

impacts and provide different information. The natural question that follows is this:

what is the best basis or combination of variables?

“The guiding principle we employ to create useful hadron-collider observ-

ables: we should place the best possible bounds on any Lorentz invariants

of interest, such as parent masses or the centre-of-mass energy
√
ŝ, in any

cases where it is not possible to determine the actual values of those Lorentz

invariants due to incomplete event information.” [110]



Chapter 4

Recursive Jigsaw Reconstruction

4.1 Introduction to RJR: some nomenclature and con-

ventions

In this section, we introduce the Recursive Jigsaw Reconstruction (RJR) technique. In

the subsequent sections, some specific examples are used to illustrate the method in

more detail and to match the proposed studies described in the following chapters of

this thesis. More information can be found elsewhere [111–116].

RJR is a method for probing open final state topologies at collider experiments. Hence

it can be used to investigate theories beyond the Standard Model characterised by a

discrete Z2 symmetry such as SUSY when R-parity conservation is assumed. Event-by-

event the procedure consists of finding an approximation for the relevant inertial frames

of reference after imposing a decay tree diagram that mimics the signal topology. As

a result, we introduce a basis of kinematic variables that can discriminate between the

BSM signal and the SM backgrounds.

The algorithm reconstructs the relevant reference frames using a series of jigsaw rules.

Frame-to-frame these rules are specified by only the relevant d.o.f. related to the specific

Lorentz transformation. The jigsaw rules are customisable and interchangeable (like a

91
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jigsaw puzzle) and are applied recursively, travelling through each step of the topology

chains.

For each event, a complete basis of variables is obtained. These kinematic observables

are diagonalised resulting in quantities with physical meaning that are referred to col-

loquially as either scale variables when sensitive to masses or mass splittings, angular

variables when spin-sensitive, or scaleless when constructed as ratios of scale variables

or as a dimensionless combination. Scale(less) and angular variables are sometimes

referred to globally as RJR or simply jigsaw observables. Similar variables describe

similar physical proprieties along the decay chains, while unique variables are sensitive

to overall masses or angular relations between different chains.

The studies described in this thesis exploit the largely uncorrelated nature of the kin-

ematic variables or, in other words, the independent information that can be extracted

from their distributions. This orthogonality is the result of the philosophy used to spe-

cify the jigsaw rules as the outputs of extremisations1 as will be clear in the following.

Hence the purpose of the RJR method is to obtain a basis of variables containing all

the useful information and avoiding redundancies. Finally, the basis is always well-

defined or unambiguous: the jigsaw rules are never so over-constrained as to prevent

real solutions.

At collider experiments, open final state topologies are characterised by visible and

invisible objects. Conventionally in this chapter we label the visible objects as phe-

nomenological φ particles, while the weakly interacting or invisible objects are called

k particles when some of the kinematic d.o.f. are not measured. An upside-down

particle decay tree is assumed to specify the jigsaw rules that assign four-momenta

to the particles not interacting with the detector. The number of constraints to be

imposed, corresponding to the number of unknown d.o.f., follows the general rule

Nc = 4nk − 2 +Ncomb (4.1.1)

1We use “extremisation” as a term to refer to either minimisation or maximisation.



4.1. SOME NOMENCLATURE AND CONVENTIONS 93
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Figure 4.1.1: Decay tree for the prototype topology: the pair-production of the parents
P1 and P2 in a final state with four visible and two invisible objects. The tree is
generated using the RestFrames software package [117].

with nk the number of weakly interacting particles. The two degrees of freedom for the

vectorial sum of the transverse momenta of all of the invisible particles are constrained

to be ~6ET , while Ncomb = 0 in the hypothesis of a trivial assignment of the visible objects

reconstructed by the detector in each position in the decay tree: a final state event with

exactly the same number of objects expected from the final state topology investigated

and all distinguishable from each other with no ambiguity. The jigsaw rules are a recipe

to assign the Nc constraints in Eq. 4.1.1.

In order to examine quantitatively the RJR algorithm the specific decay tree in Figure

4.1.1 is treated in detail. Two particle parents P are assumed to be produced at the

collider experiment, each decaying to a child C and a visible state. Each child decays to

a visible and an invisible particle. The decay tree specifies the systems of reconstructed

(φ-states) and invisible (k-states) particles in the final state and the reference frames

corresponding to each intermediate combination of these objects (C and P rest frames

and the centre-of-mass of the two parents, CM-frame), which are considered decay

states.
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This prototype topology has all the essential ingredients to describe the RJR method in

an exhaustive way for the prospect of SUSY discovery. In order to establish the jigsaw

rules for this topology, two simpler physical examples are analysed in Sections 4.2 and

4.3. More complex topologies characterised by longer chains, an asymmetry of the two

hemispheres, a higher multiplicity of visible or weakly interacting particles or additional

phenomena such as ISR, can be substantially analysed with a rearrangement of the

jigsaw rules treated herein. Some of these complications together with combinatoric

issues are described in the other sections of this chapter.

As a convention, in this chapter we refer to the covariant four-momenta of the particle a

in the reference frame F as aFµ =
(
EF
a ,−āF

)
. The superscripts are often omitted when

the frame of reference is the Lab frame and the absolute value of the three-momentum

is written simply
√

(aFx )2 +
(
aFy
)2

+ (aFz )2 = aF .

4.2 The two hemispheres and the weakly interacting

mass

4.2.1 The contra-boost

Events with two identical, or similar, hemispheres are typical of a discrete Z2 symmetry

phenomenology such as the case of a pair of superparticles produced at a collider, each

decaying via the same particle cascade. In order to study these topologies, we describe

the following example. Suppose a parent P particle decays to two identical children C1

and C2, each decaying to a visible φ particle and a kinematically invisible k particle as

in Figure 4.2.1. At the collider experiment, this example is equivalent to assuming that

the parent is at rest in the detector frame of reference.

The two children fly back-to-back in the P = Lab frame and their masses, equal which
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Figure 4.2.1: Decay tree: a parent P decays in two children C1 and C2. In each
hemisphere (1 and 2) there is one visible φ and one invisible k particle.

one for identical particles (MC1 = MC2 = MC), satisfy

MC = EC1
φ1

+ EC1
k1

= EC2
φ2

+ EC2
k2
, (4.2.1)

with the relations valid in each proper Ci frame.

The decay is symmetric with respect to φ and k when the relation mφ = mk is assumed.

In this case the masses of the children satisfy the relation:

MC = EC1
φ1

+ EC2
φ2

= EC1
k1

+ EC2
k2
. (4.2.2)

The sum of the energies of the visible particles in their respective production frame is

an estimate for MC , independently of the invisible masses.

Consider the antisymmetric, or contra-linear, or contra-boost velocity β̄c from P to C1

β̄c ≡ β̄(P → C1) = −β̄(P → C2) (4.2.3)

as the equal and opposite Lorentz boost associated with the estimate of the Ci rest
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frame.2

The first jigsaw rule is introduced as a result of an extremisation, a minimisation ofMC

in Eq. 4.2.2 in this case, obtained via the following partial derivative:

∂

∂β̄c

(
EC1
φ1

+ EC2
φ2

)
= 0, (4.2.4)

in order to chose β̄c such that all the observables (like the visible energies in the Ci

frame or the estimate of MC) are independent of β̄c, or are contra-boost invariants.

This principle is described in more detail in Section 4.2.5.

Suppose the two children fly back-to-back along the x-axis. A simple manipulation

0 = ∂
∂βx

(
EC1
φ1

+ EC2
φ2

)
= ∂

∂βx

{
γx
[
EP
φ1

+ EP
φ2
− βx

(
φPx1
− φPx2

)]}
=

[
1

(1−β2
x)

3/2

] [
−β2

x

(
φPx1
− φPx2

)
+ βx

(
EP
φ1

+ EP
φ2

)
−
(
φPx1
− φPx2

)
+ β2

x

(
φPx1
− φPx2

)]
(4.2.5)

gives

βx =
φPx1
− φPx2

EP
φ1

+ EP
φ2

. (4.2.6)

The three-dimensional version is

β̄c =
φ̄P1 − φ̄P2
EP
φ1

+ EP
φ2

(4.2.7)

and is the guess for the contra-boost velocity for the reconstruction of the child frames

of reference based on the hypothesis of symmetry between the two hemispheres.

The velocity β̄c respecting Eq. 4.2.7, for visible and invisible massless particles mk1 =

mk2 = mφ1 = mφ2 = 0 gives for MC the minimum value

MC =
(
2EP

φ1
EP
φ2

+ 2φ̄P1 · φ̄P2
)1/2

=
[
2φP1 φ

P
2 (1 + cos θ12)

]1/2
= ME(0, 0) (4.2.8)

2They can be referred to also as β̄PCi
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where ME(m1 = m2 = 0) is the Euclidean or contra-boost mass for two massless

particles and a quantity that is itself contra-boost invariant by definition.

In general the contra-boost velocity can be described by the four-momenta of the visible

and invisible particles via the following system of equations:
β̄(P → C1) =

φ̄P1 −φ̄P2
EPφ1

+EPφ2

=
φ̄P1 +k̄P1
EPφ1

+EPk1

=
C̄P1
EPC1

β̄(P → C2) =
φ̄P2 −φ̄P1
EPφ2

+EPφ1

=
φ̄P2 +k̄P2
EPφ2

+EPk2

=
C̄P2
EPC2

. (4.2.9)

Assuming the same mass for the two children MC1 = MC2 the relation

EP
φ1

+ EP
k1

= EP
φ2

+ EP
k2

(4.2.10)

is valid. Notice that for identical children Eq. 4.2.10 and Eq. 4.2.3 are equivalent.

From now on the superscript (P ) referring to the parent frame and coinciding with an

ideal Lab frame is erased.

4.2.2 Bounding the weakly interacting mass

Supposing mk1 = mk2 = 0 and mφ1 = mφ2 = m, the visible and invisible squared

masses are written M2
φφ = 2m2 + 2Eφ1Eφ2 − 2φ̄1 · φ̄2 = M2

E − 4φ̄1 · φ̄2 and M2
χχ =

2Ek1Ek2 − 2k̄1 · k̄2 = 2k1k2 (1− cos θ). Introducing a normalisation factor N we can

separately compare the numerator and the denominator in Eq. 4.2.9

k̄1 = (N − 1) φ̄1 −Nφ̄2

k̄2 = (N − 1) φ̄2 −Nφ̄1

Ek1 = (N − 1)Eφ1 +NEφ2

Ek2 = (N − 1)Eφ2 +NEφ1

. (4.2.11)
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Finally, imposing the condition that one of the invisible particles is massless we have

m2
k1

= 0 = (EC1 − Eφ1)2 −
(
C̄1 − φ̄1

)2

= (N − 1)2E2
φ1

+ 2N (N − 1)Eφ1Eφ2 +N2E2
φ2

−
[
(N − 1)φ2

1 − 2N (N − 1) φ̄1 · φ̄2 +N2φ2
2

]
= (N − 1)2m2 +N2m2 +N(N − 1)(2Eφ1Eφ2 + 2φ̄1 · φ̄2)

= N2M2
E −NM2

E +m2

(4.2.12)

and the same expression is valid for m2
k2

= 0. Solving for the normalisation factor

⇒ N1,2 =
1

2
± 1

2

(
M2

E − 4m2

M2
E

)1/2

(4.2.13)

with N2 = 1−N1 and N1,2 > 0. We choose the positive sign, equivalent to N close to

1, motivated from the expectation EP
φ1

+ EP
φ2
' EP

φ1
+ EP

k1
' EP

φ2
+ EP

k2
for m → 0 in

Eq. 4.2.9:

N =
1

2
+

1

2

(
M2

E − 4m2

M2
E

)1/2

=
1

2
+

1

2

(
M2

C − 2m2

M2
C + 2m2

)1/2

(4.2.14)

Using Eq. 4.2.11 we evaluate the invisible invariant mass

M2
χχ = 2Ek1Ek2 − 2k̄1 · k̄2

= 2 [(N − 1)Eφ1 +NEφ2 ] [(N − 1)Eφ2 +NEφ1 ]

−2
[
(N − 1) φ̄1 −Nφ̄2

] [
(N − 1) φ̄2 −Nφ̄1

]
= 2N(N − 1)

(
2Eφ1Eφ2 − 2φ̄1 · φ̄2 + E2

φ1
+ E2

φ2
+ φ2

1 + φ2
2

)
+2
(
Eφ1Eφ2 − φ̄1 · φ̄2

)
(4.2.15)

and using Eq. 4.2.14 the following simple expression based on visible observables can

be written:
M2

χχ = M2
φφ(1− 2m2

M2
E

)− 2m2
(

2φ2
1+2φ2

2

M2
E

)
= M2

φφ − 2m2 − 2m2
(
M2
φφ+2φ2

1+2φ2
2

M2
φφ+4φ̄1·φ̄2

)
= M2

φφ − 4m2

[
M2
φφ+(φ̄1+φ̄2)

2

M2
φφ+4φ̄1·φ̄2

] . (4.2.16)
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In proton-proton final state analyses an ideal detector with Lab = P does not exist.

We choose the mass of the weakly interacting particles Mw, as the smallest Lorentz

invariant always bounding Mχχ|mk1
=mk2

=0 from above:

M2
χχ|mk1

=mk2
=0 ≤M2

w = M2
φφ − 4m2. (4.2.17)

Notice M2
χχ|mk1

=mk2
=0 = M2

w when φ̄1 = φ̄2; in this case M2
φφ − 4m2 = 0. A more

detailed description is in Section 4.4, where we illustrate as every invariant smaller than

M2
w = M2

φφ− 4m2 can potentially give tachyonic problems (m2
k < 0). Indeed, in case of

a real detector with P 6= Lab, the estimate ofM2
χχ is important for the reconstruction of

the relevant frames of reference and we want to avoid that the rest frame of an invisible

particle in the final state is reconstructed so to result in an imaginary value for the

mass mk.

The squared difference between the Lorentz invariant choice for the mass of the weakly

interacting particles and the invariant mass is a positive quantity

M2
w −M2

χχ|mk1
=mk2

=0 =
4m2

(
φ̄1 − φ̄2

)2

M2
φφ + 4φ̄1 · φ̄2

(4.2.18)

giving a mass for k1 and k2 (see Sec. 4.2.4). On the other hand, assuming from the

beginning mk1 = mk2 = mk ≥ 0 other invariants can be considered. This assumption

will be interesting if we know mk or want to use a test mass, or if each invisible particle

is a combination of a multitude of weakly interacting particles with invariant mass

larger than a known quantity. An exhaustive description of these cases can be found

elsewhere [112], but eludes the purposes of this thesis.

4.2.3 A bit of asymmetry

Suppose mφ1 = m1 > mφ2 = m2. This could be the case with a more complex topology

when each visible particle is substituted by a collection of visible observables. In this
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scenario we loose part of the symmetry between the two hemispheres.

There are two main possibilities: maintain or abandon the assumption of equal and

opposite boosts.

For example, if we consider different masses for the two children, Eq. 4.2.10 and Eq.

4.2.3 are not valid anymore. In this case we can use a different normalisation such that

k̄1 = (N − 1) φ̄1 −Nφ̄2

k̄2 = (L− 1) φ̄2 − Lφ̄1

Ek1 = (N − 1)Eφ1 +NEφ2

Ek2 = (L− 1)Eφ2 + LEφ1

. (4.2.19)

As a result the expressions for the masses of kinematic particles are

m2
k1

= (N − 1)2m2
1 +N2m2

2 +N(N − 1)M2
C

m2
k2

= (L− 1)2m2
2 + L2m2

1 + L(L− 1)M2
C

. (4.2.20)

Imposing mk1 = mk2 = 0 we can write the expressions

N =
1

2
+

1

2

m2
1 −m2

2 +
√
M4

c − 4m2
1m

2
2

m2
1 +m2

2 +M2
c

, (4.2.21)

L =
1

2
+

1

2

m2
2 −m2

1 +
√
M4

c − 4m2
1m

2
2

m2
1 +m2

2 +M2
c

, (4.2.22)

where the difference is related to the mass squared difference of the phenomenological

particles

N − L =
m2

1 −m2
2

M2
φφ + 4φ̄1 · φ̄2

. (4.2.23)

The second possibility is physically more reasonable for the SUSY phenomenology.

We maintain the equal contra-boost relation β̄(P → C1) = −β̄(P → C2) assuming

MC1 = MC2 , a direct consequence of C1 identical to C2. Clearly imposing N = L the
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condition mk1 = 0 in Eq. 4.2.20 gives mk2 ≥ 0 :

m2
k2

=
(
m2

1 −m2
2

) m2
1 −m2

2 +
√
M4

c − 4m2
1m

2
2

m2
1 +m2

2 +M2
c

. (4.2.24)

Rewriting the relation for equal and opposite Lorentz boosts as

−φ̄2 − k̄2

Eφ2 + Ek2

=
φ̄1 − φ̄2

Eφ1 + Eφ2

=
φ̄1 + k̄1

Eφ1 + Ek1

(4.2.25)

for m1 > m2 the normalisation factors can be rearranged such that:

k̄1 = (N − 1) φ̄1 − Lφ̄2

k̄2 = (L− 1) φ̄2 −Nφ̄1

Ek1 = (N − 1)Eφ1 + LEφ2

Ek2 = (L− 1)Eφ2 +NEφ1

. (4.2.26)

The weakly interacting masses can be written



m2
k1

= E2
k1
− k2

1 = [(N − 1)Eφ1 + LEφ2 ]2 −
[
(N − 1) φ̄1 − Lφ̄2

]2
m2
k2

= E2
k2
− k2

2 = [(L− 1)Eφ2 +NEφ1 ]2 −
[
(L− 1) φ̄2 −Nφ̄1

]2
M2

χχ = m2
k1

+m2
k2

+ 2 [(N − 1)Eφ1 + LEφ2 ] [(L− 1)Eφ2 +NEφ1 ]

−2
[
(N − 1) φ̄1 − Lφ̄2

] [
(L− 1) φ̄2 −Nφ̄1

]
. (4.2.27)

The system for the first two equations m2
k1

= (N − 1)2m2
1 + L2m2

2 + L(N − 1)M2
C

m2
k2

= (L− 1)2m2
2 +N2m2

1 +N(L− 1)M2
C

(4.2.28)

has no solutions. In any case, we can parametrise N and L in order to obtain the

correct asymptotic behaviour for ∆M2
k = m2

k2
−m2

k1

3 and in analogy with Eq. 4.2.17

3Choosing m1 > m2 follows mk2 > mk1 .
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we choose the lowest Lorentz invariant greater than or equal to M2
χχ

M2
w = M2

φφ − 4m1m2. (4.2.29)

The Lorentz invariant in Eq. 4.2.29 is an educated guess for the mass of the weakly

interacting system and can be extended in the more general cases of longer chains and

higher multiplicity of the visible objects by substituting the masses of the phenomen-

ological particles for the invariant masses of the hemispheres as described in Section

4.4.

4.2.4 Estimating the unknown d.o.f.

In order to assign reasonable values for N and L choosing Mw from Eq. 4.2.29 we

exploit what we expect for the simpler case m1 = m2 = m and N = L. Manipulating

from Eq. 4.2.15 and 4.2.17 we find

N =
1

2
+

1
[
(Eφ1 + Eφ2)2 − 4m2

]1/2
2 (Eφ1 + Eφ2)

(4.2.30)

and substituting in Eq. 4.2.12 the weakly interacting particles gain a mass

m2
k1

= m2
k2

= m2

(
φ̄1 − φ̄2

)2

(Eφ1 + Eφ2)2 . (4.2.31)

Note this squared mass is always positive being M2
w ≥ M2

χχ|0 and the two invisible

masses are the same assuming symmetry between the two hemispheres (m1 = m2).

When m1 6= m2 we re-partition the weakly interacting d.o.f. with two weights a1 and

a2 taking into account the mass difference

a1 = m2
1 −m2

2 +M2
C − 2m1m2

a2 = m2
2 −m2

1 +M2
C − 2m1m2

. (4.2.32)
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Defining a common quantity contra-boost invariant

A =
|a1m

2
1 − a2m

2
2| − 1/2 |a2 − a1|M2

C + 1/2 (a1 + a2)
√
M4

C − 4m2
1m

2
2

a2
1m

2
1 + a2

2m
2
2 + a1a2M2

C

(4.2.33)

where the modules can be omitted for m1 > m2 and

B =
Eφ1 + Eφ2 +

√(
φ̄1 + φ̄2

)2
+M2

w

2 (c1Eφ1 + c2Eφ2)
, (4.2.34)

with
c1 = 1

2
(1 + a1A)

c2 = 1
2

(1 + a2A)
, (4.2.35)

we write the normalisation factors as

N = c1B

L = c2B
. (4.2.36)

Notice when m1 = m2 → a1 = a2 = M2
C − 2m2, c1 = c2 = 1 and B takes the value in

Eq. 4.2.30. In the limit m1,m2 → 0 the asymptotic behaviour B → 1 is satisfied.

Finally, the four-momenta of the two invisible particles are given by the expressions

k1µ =
[
(N − 1)Eφ1 + LEφ2 , − (N − 1) φ̄1 − Lφ̄2

]
k2µ =

[
NEφ1 + (L− 1)Eφ2 ,−Nφ̄1 − (L− 1) φ̄2

] . (4.2.37)

As described in Section 4.5, this is the result of the contra-boost invariant jigsaw rule

and the other invisible jigsaw rules, valid for symmetric (m1 = m2) and asymmetric

(m1 > m2) hemispheres.

In this thesis reconstructions based on MC1 = MC2 are assumed. Possible constraints

include the assumption of the same mass for other particles along the decay chains, or

the minimisation of the quantitiesM2
C1

+M2
C2

orM2
C1
−M2

C2
(see Eq. 4.2.23). A detailed

description can be found in Ref. [112], where is shown as the MC1 = MC2 approach
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yields the best mass-sensitive estimators and is the most suitable reconstruction for

probing SUSY topologies.

4.2.5 The contra-boost invariants

By definition, it follows from Eq. 4.2.4 that MC , evaluated as the sum of the visible

energies, is independent of β̄c. Considering the same masses for the children, the equal

and opposite boosts provide for the energies of the visible particles in each Ci frame:

EC1
φ1

= 1

(1−β2
c )

1/2

(
Eφ1 − β̄c · φ̄1

)
=

2m2
1+M2

C

2(m2
1+m2

2+M2
C)

1/2

EC2
φ2

=
2m2

2+M2
C

2(m2
1+m2

2+M2
C)

1/2

. (4.2.38)

These expressions are the same and are contra-boost invariants, since they depend only

onm2
φ1

= m2
φ2

andM2
C . Similarly, the absolute values of the visible and invisible particle

three-momenta are contra-boost invariants in the Ci frame, given by

φC1
1 = kC1

1 =
[(
EC1
φ1

)2 −m2
1

]1/2

= 1
2

√
M4
C−4m2

1m
2
2

m2
1+m2

2+M2
C

φC2
2 = kC2

2 =
[(
EC2
φ2

)2 −m2
2

]1/2

= 1
2

√
M4
C−4m2

1m
2
2

m2
1+m2

2+M2
C

(4.2.39)

and they are the same. All of these quantities are contra-boost invariants, while mk1

and mk2 are not. When the phenomenological particles are parents of other visible and

invisible particles the contra-boost invariance becomes an inheritance of the “children”

frames.

For the choice used when m1 6= m2, the energies in Eq. 4.2.38 are generalised by the

expressions
EC1
φ1

=
2c1m2

1+c2M2
C

2(c21m2
1+c22m

2
2+c1c2M2

C)
1/2

EC2
φ2

=
2c2m2

2+c1M2
C

2(c21m2
1+c22m

2
2+c1c2M2

C)
1/2

. (4.2.40)

These quantities are obtained by simplifying the B2 terms, appearing in quadratic

terms in N and L, and they are still contra-boost invariants as well as φC1
1 and φC2

2 .
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The mass-squared difference ∆M2
k is not contra-boost invariant

∆M2
k = m2

k2
−m2

k1
= m2

1 (2N − 1) +m2
2 (−2L+ 1) +M2

C (L−N) , (4.2.41)

but taking the limit B → 1 (hence N = c1 and L = c2), it assumes the form given by

∆M2
k = A

[
a1m

2
1 − a2m

2
2 + 1

2
M2

C (a2 − a1)
]
. (4.2.42)

For the definition given in Eq. 4.2.32 we write

∆M2
k = A (m4

1 −m4
2 +m3

2m1 −m3
1m2) = A (m1 −m2) (m3

1 +m3
2) (4.2.43)

and ∆M2
k → 0 for m1 → m2 and for MC → ∞ being the asymptotic value given by

Eq. 4.2.33

A|MC→∞ ∼M−2
C . (4.2.44)

Hence, the choices for the Eq. 4.2.32 and A, resulting from mk1 = 0 in Eq. 4.2.28 and

N = c1 and L = c2, are such that the difference ∆M2
k , and consequently mk2 , is as

small as possible. The only non contra-boost invariant quantity is the B-term given

by the Eq. 4.2.34, which has the behaviour B → 1 in the limit of massless visible and

invisible objects.

4.3 The transverse plane

Consider now a less ideal detector with Lab 6= P , but a much simpler topology as in

Figure 4.3.1.

In the case of no full azimuthal coverage of the detector acceptance, the two unknown

d.o.f. are the mass and the z -momentum of the invisible particle assuming that the

constraints 6Ex = kx and 6Ey = ky are valid. For this topology the choices mk = 0

and kz = φz for a massless visible particle are simple to guess, but in this section we
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Lab State

Decay States

Visible States

Invisible States

Figure 4.3.1: The decay tree: a particle P decays in a visible and an invisible object.

illustrate the motivations for this case and the implications for more complex topologies.

In order to boost our system from the Lab frame to P a longitudinal boost along the

beam axis from the Lab to a transverse frame βz (Lab→ Tra) and a successive trans-

verse boost from that frame to P : βT (Tra→ P ) are necessary. In the true transverse

frame of reference the relation P Tra
z = 0 is valid.

We want to chose βz (Lab→ Tra) such that all the observables in the transverse frame

and any frames that recursively follow from it are independent of the true value. With

the same argument described for the contra-boost velocity we adopt a strategy based

on the minimisation of the partial derivative:

0 =
∂ETraφ

∂βz

= (1− β2
z )
−3/2

(βzEφ − φz)
, (4.3.1)

and the resulting velocity is:

βz =
φz
Eφ

. (4.3.2)

This transverse frame is our guess for P Tra
z = 0 and being the frame where φTraz = 0

provides kTraz = 0 independently from mk.

In the true P frame the energy for the visible particle is

EP−true
φ =

M2
P −m2

k +m2
φ

2MP

(4.3.3)
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Using once again an extremisation rule

0 =
∂EPφ
∂βT

= (1− β2
T )
−3/2 (

βTE
Tra
φ − β̄TraT · φ̄TraT

) (4.3.4)

we have a transverse boost velocity

β̄T =
β̂TraT · φ̄TraT

ETra
φ

=
β̂T · φ̄T
ETra
φ

(4.3.5)

having β̂T · φ̄T the same value in the Tra and Lab frames.

This quantity can be negative giving a velocity to k greater than the speed of light and

imaginary values for mk. In order to avoid tachyonic problems the smallest Lorentz

invariant we can choose for the mass of the invisible particle is zero. In this case the

transverse boost assumes the expression:

β̄T =
φ̄T + k̄T
ETra
φ + kT

. (4.3.6)

Considering the velocities in Eq. 4.3.2 and 4.3.6 and choosing mk = 0 in Eq. 4.3.3 the

following relation is valid

MP =
[
m2
φ + 2kT

(
m2
φ + φ2

T

)1/2 − 2φ̄T · k̄T
]1/2

≡MT (0); (4.3.7)

which is the transverse mass. As we have seen in Section 3.5.2 this expression is invariant

for longitudinal boosts, depending only on the transverse components of the momenta

and mφ.

The procedure based on the factorisation of the problem in different jigsaw rules as-

signing only the d.o.f. relevant to the Lorentz transformation should now be clear.

In the hypothesis of a more complicated tree, for example when the φ particle decays

to other visible and/or invisible particles, any successive boost would be independent

from the choice used for the longitudinal velocity, and only moderately dependent on
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Figure 4.4.1: RJR tree for the prototype topology as in Figure 4.1.1: the pair-production
of the parents P1 and P2 in a final state with four visible and two invisible objects.

the transverse velocity. The first one is based on longitudinal boost invariance and is a

quantity that is wrong event-by-event but correct on average, independent of the estim-

ation of MP : the best estimate for the rapidity of the invisible particle is the rapidity

of the visible one. This is the prototype of the Set Rapidity jigsaw rule. The transverse

velocity is the approximated quantity in Eq. 4.3.6 and provides the transverse approx-

imation MT (0) of M true
P , hence reconstructing the true P frame for events populating

the endpoint configuration for a massless invisible particle and a correct longitudinal

boost.

4.4 RJR in practice

4.4.1 Choose the topology

We can now consider the decay tree in Figure 4.4.1. Two particle parents P are

produced each decaying to a child C and a visible state, the children subsequently

decay to a visible and an invisible state. The final states are characterised by four
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visible φ particles and two weakly interacting or invisible k particles.4

This topology has all the characteristics useful to treat the jigsaw rules in an exhaustive

way. There are two hemispheres (labelled 1 and 2) and a two step decay. The symmetry

between the two hemispheres is typical of a BSM physics model characterised by a Z2

discrete symmetry like SUSY in which k = χ̃0
1.

For convention, we define covariant four vectors V1µ ≡ φ1aµ + φ1bµ =
(
EV1 ,−V̄1

)
=(

Eφ1a + Eφ1b
,−φ̄1a − φ̄1b

)
, V2µ describing the “visible” hemispheres 1 and 2 and H1µ ≡

φ1aµ+φ1bµ+k1µ =
(
Eφ1a + Eφ1b

+ Ek1 ,−φ̄1a − φ̄1b − k̄1

)
=
(
EH1 ,−H̄1

)
, H2µ describing

the entire hemispheres.

4.4.2 Evaluation of the invisible particles four-momenta

The first assumption we make is MP1 = MP2 . The first transformation is a longitudinal

boost Lab→ Tra along the beam axis

βL =
V1z + V2z

EV 1 + EV 2

. (4.4.1)

This is the best reconstruction of the transverse plane having no information from

the z component of the missing energy. It is equivalent to setting the rapidity of

the invisible objects equal to that of all the visible objects, and in the massless limit

k1z +k2z = V1z +V2z. The minimisation of the energy of the visible particle in Eq. 4.3.1

is proportional to the minimisation in MP and hence Eq. 4.4.1 is the analogue of Eq.

4.3.2 satisfying a minimisation of the energy of CM

∂
√
spar−par

∂βL
⇒ βL =

V1z + V2z

EV 1 + EV 2

. (4.4.2)

We have reconstructed an approximation of the Tra frame and all the subsequent

transformations are invariant under longitudinal boosts.
4The centre-of-mass frame (CM) of the two parents is often referred to as PP or simply to as S in

the studies involving a supersymmetric system.
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In order to perform the transverse boost in the PP centre-of-mass frame (CM) we need

to guess the energy and so the invariant mass of the weakly interacting system Mw.

The choice used is

M2
w = M2

V1V2
− 4MV1MV2 (4.4.3)

where MV1V2 =

√
(EV1 + EV2)2 −

(
~V1 + ~V2

)2

=
√
E2

4φ − ~P 2
4φ is the invariant mass of all

the phenomenological objects in the final state and MV1 =

√
E2
V1
−
(
~V 1
)2

, (MV2) is

the invariant mass of the visible hemisphere 1 (2).

This choice, a generalisation of Eq. 4.2.29, does not use information other than the

d.o.f. accessible in the event, and preserves the Lorentz invariance avoiding tachyonic

problems: the masses of the decay products in the final state are preserved real.

The transverse energy of the weakly interacting system can be approximated as

E2
w = M2

w + 6E2
T (4.4.4)

and we define a two-dimensional vector combining the transverse information of visible

and invisible momenta

p̄T =
(
6Ex + V1x + V2x, 6Ey + V1y + V2y

)
. (4.4.5)

Using Eq. 4.4.4 and 4.4.5 it is possible to perform a boost in the transverse plane with

the velocity

β̄T (Tra→ CM) =
p̄T

E4φ + Ew
. (4.4.6)

A smaller Lorentz invariant than Mw can “over-boost” the CM-frame since the value

in Eq. 4.4.3 is always greater than, or equal to, the true value. Smaller invariants can

provide an approximation for β̄T larger than the true value and produce unphysical

results: mk1 and mk2 imaginary. In other words M2
w is the smallest invariant large

enough to accommodate the subsequent contra-boost.
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At this point, we have an approximation for the PP centre-of-mass frame and every

four-momentum can be boosted into this frame. In the CM frame, we estimate the

invisible four-momenta in order to partition the invisible system into the two hemi-

spheres.

The equations in Section 4.2.4 can be rewritten with the substitutions m1 → MV1 and

m2 →MV2 providing the final re-partition

kCM1µ =
[
(N − 1)EV1 + LEV2 , − (N − 1) V̄1 − LV̄2

]
kCM2µ =

[
NEV1 + (L− 1)EV2 ,−NV̄1 − (L− 1) V̄2

] . (4.4.7)

4.4.3 Boosting the objects to the relevant frames of reference

The invisible four-momenta are now boosted back: kCM1µ and kCM2µ are calculated in the

Lab frame using Lorentz transformations with velocities given by the Eq. 4.4.6 and

4.4.1, except for the opposite signs. We have estimated all the d.o.f. of the invisible

objects and we can write the two hemispheres in the Lab frame:

H1µ = φ1aµ + φ1bµ + k1µ

H2µ = φ2aµ + φ2bµ + k2µ

. (4.4.8)

The velocity boosting the system to the CM frame is:

β̄ (Lab→ CM) = H̄1+H̄2

EH1
+EH2

, (4.4.9)

which corresponds to the composition of the longitudinal and transverse boosts (defined

by the velocities in Eq. 4.4.1 and Eq. 4.4.5). This estimate of the CM -system velocity

in the Lab frame is based on the constraint of two unknown d.o.f.: the assumption of

the same rapidity for visible and invisible objects (a consequence of Eq. 4.4.2) and Mw
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as the guess for the weakly interacting mass resulting from

∂MP

∂βCMc

∣∣∣∣
MP1

=MP2
=MP

⇒Mw. (4.4.10)

We boost visible and invisible objects in the CM frame of reference.

From here, the velocities for the contra-boost transformations from the centre-of-mass

frame to each parent rest frame are:

β(CM → P1) =
H̄CM

1

ECMH1

β(CM → P2) =
H̄CM

2

ECMH2

(4.4.11)

and βCMc ≡ β(CM → P1) = −β(CM → P2) by definition, being that the two parents

identical. Finally, the velocity for the boosts from each P rest frame to each child rest

frame can be expressed by

β(P1 → C1) =
φ̄
P1
1b +k̄

P1
1

E
P1
φ1b

+E
P1
k1

β(P2 → C2) =
φ̄
P2
2b +k̄

P2
2

E
P2
φ2b

+E
P2
k2

, (4.4.12)

where the objects are evaluated in the approximate P1(2) frames. The remaining un-

known degrees of freedom necessary to define the velocities in Eq. 4.4.11 and perform

the transformation for the reconstruction of the P1(2) frames (and successive C1(2) frame)

are the results of the repartition described in Section 4.2.4.

4.4.4 Construct the observables

Event-by-event a basis of experimental observables with a real physical meaning can be

extracted. Imposing the decay tree in Figure 4.4.1, once the main frames of reference

are reconstructed, the kinematic variables include:

Scale variables
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• MPP is a variable sensitive to the invariant mass of the two hemispheres, hence

the overall mass scale. In the case of no other activity,5 it corresponds to the

estimate of centre-of-mass energy of the hard collision:

MPP = ECM
CM ≡MCM =

√
spar−par =

√
sxaxb (4.4.13)

where in the last expression xa and xb are the fractions of the proton momentum

carried by the two interacting partons.

• EP1
φ1a

, EP2
φ2a

, EC1
φ1b

and EP2
φ2b

, are variables sensitive to the mass splitting between

parent and children particles in each hemisphere. They correspond to the energies

of the visible objects in the Pi and Ci approximated rest frames described in

this chapter. If the frames of reference could be reconstructed perfectly in each

hemisphere, they would satisfy the relations as in Eq. 4.3.3:E
P−true
φa

=
M2
P−true−M

2
C−true+m2

φ−true

2MP−true

EC−true
φb

=
M2
C−true−m

2
k−true+m2

φ−true

2MC−true

. (4.4.14)

• MP1 , MP2 , MC1 and MC2 are the masses associated with the P (C) systems. In-

stead of the energies, the reconstructed masses of P and C systems can be used,

being MCi = ECi
φb

+ ECi
k

MPi = EPi
φia

+ EPi
Ci

. (4.4.15)

In the limit of massless visible and invisible objects they reduce to MCi = 2pCφib ,

MPi = pPCi +
√
M2

Ci
+
(
pPCi
)2
. These observables are particularly accurate in the

case of massless weakly interacting particles, for example in SM final states in-

volving neutrinos. As described in this chapter and for all the proposed analyses

in this thesis, we use the RJR method assuming the MP1 = MP2 approach.

5Other activity refers mainly to radiation or noise in the detector response.
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Angular variables

• cos θPP is the cosine of half of the angle between the two parents. It is evaluated

as:

cos θPP = P̂ PP
1 · β̂LabPP (4.4.16)

• 4ϕP1P2 is the azimuthal angle between the decay planes of P1 and P2. It corres-

ponds to

4ϕP1P2 = 4ϕ
[
φ̄PP1a ×

(
φ̄PP1b + k̄PP1

)
, φ̄PP2a ×

(
φ̄PP2b + k̄PP2

)]
(4.4.17)

• cos θP1 (cos θP2) is the cosine of the parent decay angle. It can be computed as

cos θPi = φ̂Piia · β̂PPPi (4.4.18)

• cos θC1 (cos θC2) is the cosine of the child decay angle in the hemisphere 1 (2). It

is:

cos θCi = φ̂Ciib · β̂
Pi
Ci

(4.4.19)

• 4ϕP1C1 , (4ϕP2C2) is the azimuthal angle between the first and second decay plane

in the hemisphere 1 (2). It is evaluated as:

4ϕPiCi = 4ϕ
(
φ̄Piib × k̄

Pi
i , φ̄

Pi
ia × β̄PPPi

)
(4.4.20)

Notice how4ϕ
[
φ̄Piib × k̄

Pi
i , φ̄

PP
ia ×

(
φ̄PPib + k̄PPi

)]
would be the angle between two quant-

ities computed in different frames.

Scaleless variables

Angular observables are scaleless variables. In any case, this definition is used to refer

to any non-trivial dimensionless combination of scale and angular variables. Scaleless
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observables are described analysis-by-analysis. In a two hemisphere topology, good

scaleless observable are the simple relations

γc =
MPP

2MP

or 1− β2
c = γ−2

c =
M2

V1
+M2

V2
+M2

c(
EPP
V1

+ EPP
V2

)2 (4.4.21)

with βc the absolute value of the contra-boost velocity β̄c = β̄P1
C1

= −β̄P2
C2
. The last

expression can be computed from Eq. 4.2.9 with Mc = ME (0, 0) and mφ → MV .

Notice that if the contra-boost velocity is identified correctly the boost factor γc satisfies

γtrue
c =

Mtrue
PP

2Mtrue
P

in the hypothesis of equal masses MP1 = MP2 = MP = M true
P , and

M true
PP =

√
strue

par−par in the absence of extra activity in the event.

In the case of the production of a resonant grandparent pp→ G→ P1P2, and otherwise

identical tree, the scale observable MPP corresponds to the estimate of MG, cos θPP

corresponds to the cosine of the G decay angle cos θG and another interesting angular

observable would be the azimuthal angle between the G decay plane and the plane

spanned by the beam axis and the boost from the laboratory frame to G:

4ϕG = 4ϕ
(
φ̂GP1
× β̂LabG , n̂z × β̂LabG

)
. (4.4.22)

4.5 The jigsaw rules: customisable and interchange-

able like a strange puzzle

4.5.1 More complex topologies

The jigsaw rules applied to the decay tree in Figure 4.5.1 assign the unknown degrees

of freedom. In a final state with two invisible particles the relation k̄1,T + k̄2,T = ~6ET

is assumed, and the observables summarised in the visible hemispheres Vi are used

to define the rules. The rapidity of the invisible system is chosen be equal to the



116 CHAPTER 4. RECURSIVE JIGSAW RECONSTRUCTION

LAB

CM

1P

1a
φ

1C

1b
φ

1k

2P

2a
φ

2C

2b
φ

2k

LAB

CM

1P

1a
φ

1C

1b
φ

1k

2P

2a
φ

2C

2b
φ

2k

Lab State

Decay States

Visible States

Invisible States

Set Invisible Rapidity

Set Invisible Mass

Contra-boost Invariant

Figure 4.5.1: Decay tree and specific jigsaw rules for the weakly interacting particles.

visible one applying the rule Set Invisible Rapidity. The mass is chosen as in Eq.

4.4.3 via the Set Invisible Mass jigsaw rule. The remaining d.o.f. are assigned via

the Contra-boost Invariant rule. The asymmetry due to different masses of the visible

hemispheres results in a difference for the masses of the two invisible objects. In the

case of perfect symmetry between the two hemispheres the jigsaw rules specifying four

(8-4) d.o.f. assume the constraint for the weakly interacting transverse momentum,

MP1 = MP2 and the validity of the relation mk1 = mk2 , zero in the limit of massless

visible hemispheres.

Final states with an higher multiplicity of visible or invisible particles can arise from

a more complex topology maintaining a two hemispheres structure, typical of SUSY

topologies, or by providing still more complicated and asymmetric ramifications. In the

case of similar topologies with longer chains involving visible states, the jigsaw rules are

the same with the visible hemispheres defined as the sum of the visible four-momenta

on each side. The same goes for a larger multiplicity of invisible particles, except for

cases when lower bound or test masses can be assumed for the invisible systems.

Whenever any node divides in two sub-branches, each one with visible and invisible

particles, an additional set invisible mass rule must be applied to guess the node frame,

and a contra-boost invariant jigsaw rule must be applied to reconstruct subsequent

frames of reference. In the case of multiple weakly interacting particles in the same

branch; for example for the SM process τ → eνν, the combination of the two neutrinos



4.5. JIGSAW RULES 117

LAB

CM

X
3

φ
4

φ
PP

1P

1a
φ

1C

1b
φ

1k

2P

2a
φ

2C

2b
φ

2k

LAB

CM

X
3

φ
4

φ
PP

1P

1a
φ

1C

1b
φ

1k

2P

2a
φ

2C

2b
φ

2k

Lab State

Decay States

Visible States

Invisible States

Set Invisible Mass

Set Invisible Rapidity

Contra-boost Invariant

Figure 4.5.2: Decay tree: the two parent particles recoil against X.

can be summarised in a unique invisible object. In practice, this does not force the

mass of the invisible system to resemble that one of a simple two-body decay (τ → eI

with MI = 0), but instead the jigsaw rules allow the invisible system to gain a mass

related to the kinematics of the visible objects in the final state and hence, event-by-

event, to the number of WIMPs (see Eq. 4.2.31). Furthermore, in case of asymmetry

between the two hemispheres this mass is larger for the invisible system collection of

more invisible objects. For instance, for the SM tt̄ production with t̄ → b̄(W−(e−ν))

and t → bW+(ντ+(e+νν)), the squared mass of the invisible system associated to the

positron results larger of a quantity given by Eq. 4.2.41-4.2.43 with m1 → Mb̄e− and

m2 →Mbe+ .

Suppose now that the PP system is boosted against something else X. This could be

the case of another visible particle, an invisible one or a decay state. Suppose that it

is a particle decaying to two visible objects as in Figure 4.5.2. A typical case could

be SM tt̄ production plus a boson decaying to two visible objects. Similarly, a pair of

superparticles recoiling against some X or ISR; in this latter case the X state can be

thought as an ISR-system composition of a non-specified number of visible objects.

For the decay tree considered, the main changes are as follows. The rapidity of the

invisible system must to be set in the PP frame, hence set equal to the rapidity of the

four visible decay products of the PP -system. The mass and the contra-boost invariant

jigsaw rules must be defined with the same four objects. In practice a contra-boost must
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Figure 4.5.3: Minimisations of the masses to assign each visible object in the right
position in the decay tree.

be performed to separateX from PP in the CM frame. Given that theX-system is fully

reconstructed, namely all the decay products are visible, such as rule is trivial and not

defined as a jigsaw rule. The same argumentation is valid for the contra-boost between

C1(2) and φ1(2)a. Whenever both branches are not fully reconstructed an additional

contra-boost invariant jigsaw rule must be applied, as is the case with invisible decay

products in the X branch. The Set Invisible Mass and Rapidity rules will be defined

with all the observable objects associated to the PP -system in the final state.

4.5.2 Combinatoric Jigsaw

In a real detector visible objects are not necessarily distinguishable from each other, in

other words they have no label. Consider the worst scenario for the topology in Figure

4.5.3 where all the four phenomenological particles are identical objects (for example

all jets coming from the fragmentation of light quarks). In this case, assigning every

particle in the right position is a combinatoric challenge. Event-by-event there are

twelve possible combinations for the assignment of each jet to the corresponding quark

Ncomb =
Nφ!

2
(4.5.1)

given that the two hemispheres are identical.

We can categorise the twelve possible choices using the invariant mass of the potential
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hemispheres and another criteria to distinguish the first and second visible particle in

each hemisphere. In the CM frame the two parents are back-to-back, so we use the

minimum invariant mass between the three possible pair combinations

min
i=1,2,3

[V1µ(i)V µ
1 (i) + V2µ(i)V µ

2 (i)] , (4.5.2)

where V1(2)µ(i) are the visible objects in the first (second) hemisphere introduced in

Section 4.4.1. The invariant in Eq. 4.5.2 minimised in the Lab frame can be the

first rule to be applied requiring simply the four-momenta of the visible objects. It is

equivalent to minimising the visible MP1(2)
.

We need to assign the first and second object in each hemisphere. Once again a min-

imisation is performed:

min
i 6=j=a,b

[
φ1iµφ

µ
1i + (φ1j + k1)µ (φ1j + k1)µ

]
min
i 6=j=a,b

[
φ2iµφ

µ
2i + (φ2j + k1)µ (φ2j + k1)µ

] , (4.5.3)

where the second term in this minimisation corresponds to the two possible values

of M2
C , computed with one of the two phenomenological particles and the invisible

one in each hemisphere. This minimisation is feasible because the estimation of the

four-momenta of the invisible objects does not depend on the distinction between the

first and second visible object in each hemisphere as in Eq. 4.2.37. In other words,

the jigsaw rules described in the previous section depend only on the total visible

hemisphere objects V1(2) and can be applied before the second minimisation. Once we

have estimated the invisible four-momenta we can use their values in the Lab frame

in order to take the minimum between the two possible invariants. This choice is

independent of the mass spectrum and coherent with the Jigsaw philosophy: in the

decay chain we use all, and only, the information relative to each step. Figure 4.5.3

on the right shows all the rules applied in the correct sequence: different concentric

colours, ordered from outside to inside, surround the objects involved in the rule.
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Figure 4.5.4: Combinatoric and invisible jigsaw rules for the decay tree in Figure 4.5.3.

Another way to see the jigsaw rules is to divide them in two categories. Combinatoric

or visible rules are necessary to assign a label to the indistinguishable visible objects,

while WIMP or invisible rules are used to assign a value for the unknown d.o.f. of the

weakly interacting particles. Figure 4.5.4 shows the results for the visible rules based on

minimisation of the masses as illustrated in Eq. 4.5.2 and Eq. 4.5.3, while all the three

WIMP rules are necessary to guess the full four-momenta for the invisible particles.

Motivated by back-to-back kinematics of the decay products in the parent rest frame,

the combinatoric jigsaw rules are the result of the minimisation of the masses. Any

such minimisation can be considered a maximisation for the momentum of one of the

two parts. For example, the minimisation of MC in one of the two hemispheres in Eq.

4.5.3 is equivalent to maximise p for values of MP and mφ fixed, since

EP
P ≡MP = EP

C + EP
φ =

√
M2

C + p2 +
√
m2
φ + p2 (4.5.4)

with p the equal absolute three-momentum of the C and φ particles. It should now be

clear the philosophy of the definition of a jigsaw rule as the result of an extremisation

of a quantity related to the only d.o.f. relative to the transformation.

The last combinatoric challenge described in this section involves the presence of more

visible objects in the final state than those expected from the topology. Typical is the

case of high jet multiplicity for the phenomena described in Section 3.4.2.

Consider once again the decay tree in Figure 4.5.3 and suppose a final state with n ≥ 4
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indistinguishable jets. A veto for the events with more than four reconstructed jets is

certainly too stringent a criterion. There are three main possible strategies for these

scenarios.

• Select the four leading jets in pT and use these for the definition of the jigsaw rules.

This simple choice is driven from the expectation of large transverse momenta for

the objects of interest.

• Take all the jets in the final states and treat every phenomenological state φi as

a pseudo-jet or mega-jet, each one defined with at least one jet.6 In this case the

minimisation is the generalisation of the rules described in this section with an

arbitrary number of jets ≥ 4. This choice, certainly useful in case of only FSR,

has a bias in case of ISR, UE and multiple interactions. In particular, in the case

of the production of heavy pairs PP , ISR is expected to have a large contribution

due to the hard scale, while FSR is mostly collinear and expected to be collected

inside the jet cone.

• The third procedure consists of dividing the study into two orthogonal regions:

n = 4 and n > 4. For the first region, with exactly four jets, the decay tree and

rules can be applied as illustrated. For the n > 4 region, an extra ISR-system

with at least one jet can be required, then optional are minimisation of masses

jigsaw rules performed to distribute all the remaining final state jets between the

four visible decay products φij and ISR.

The first and last options, together with b-jet combinatoric criteria, will be investigated

in proposed analyses in Chapter 7 and Chapter 8.

6The combinatoric jigsaw rules can be defined with exclusive systems, namely requiring a specific
number of objects in the state, or with inclusive systems, namely assuming a minimal number of
objetcs.
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4.5.3 Summary, and another example!

Non-trivial jigsaw rules constrain the unknown d.o.f. in the final state due to the

combinatoric challenge of assigning indistinguishable visible objects in the right position

in the tree or the lack of information from multiple weakly interacting particles. Once

the jigsaw rules are applied we can estimate the four-momenta of the invisible objects

and recursively reconstruct an approximation for the relevant frames of reference in

the topology. The rules are never over-constraining so as to preserve real solutions

and are the result of extremisation of quantities such as energies, masses and momenta

considering the only known and unknown d.o.f. relevant to the Lorentz transformation

or combinatoric choice in the assignment.

To summarise consider a final state with six phenomenological particles, four identical

and two distinguishable, and two invisible particles as in the decay tree in Figure 4.5.5.

A SM final state topology matching the tree is for example tt̄ + h → (t → bνe+, t̄ →

b̄νµ−, h→ bb̄) → 4b−jets + e++ µ−+~6ET and conventionally the first hemisphere can

be chosen as that one with the positron. In this way e+and µ− are assigned with no

ambiguity in the tree.

To assign the four identical objects (b-jets) we need firstly a minimisation of the masses

to separate those associated with X = h from those assigned to PP = tt̄. Then we

could separate the other two b-jets in the two hemispheres P1 = t and P2 = t̄ performing

a second combinatoric rule. Notice how the two minimisations of the masses can be

performed before the WIMP rules and involve the two leptons four momenta together

with ~6ET , regulating an ambiguity Ncomb = 6×2 = 12. In this case h and tt̄ are different

systems and one of the six possibilities must be chosen to assign two b-jets in both. At

this point, the second minimisation is roughly equivalent to associate each b-jet to the

closer lepton in the tt̄ system.

Then we can perform set invisible rapidity, set invisible mass and contra-boost invariant

jigsaw rules and assign the weakly interacting degrees of freedom. Also in this case the

minimisation can be generalised to the case of higher b-jet multiplicity requiring at least
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Figure 4.5.5: RJR decay tree for the analysis of PP+X.

one jet in each visible φ object.

Once the rules are specified, the frames are reconstructed recursively along the decay

chains and a complete basis of variables can be extracted to probe the signal.

4.6 RJR for compressed spectra

4.6.1 Introduction to the compressed kinematics

In this section the RJR technique is described for compressed spectra of a generic su-

persymmetric topology. Herein a compressed scenario refers to a small supersymmetric

spectrum mass-splitting, namely a small mass difference between the pair-produced

parent superparticles P̃ and the LSPs χ̃ [111].7 In Section 2.3.6 it is described how

compressed supersymmetric mass spectra in the EW-sector are quite common and how

extensions of the MSSM can provide a heavy LSP and a compressed spectrum with col-

oured superparticles. A specific Recursive Jigsaw Reconstruction strategy is dedicated

for such natural and not excluded scenarios.

7In this Section the general labels P̃ and χ̃ are used to identify the parent sparticle and the lightest
supersymmetric particle while in the specific analyses or examples conventional labels are used. The
previous generic φ / k labels for visible/invisible objects in the final state would not be useful for
compressed spectra.



124 CHAPTER 4. RECURSIVE JIGSAW RECONSTRUCTION

4.6.1.1 The challenge

Supersymmetric final state topologies are challenging in the compressed regime. The

challenge is due to the inefficiency of the detector to reconstruct low-momentum ob-

jects and the low impact of typical variables, such as the missing transverse momentum,

exploited to separate signal-like events from the Standard Model backgrounds. For com-

pressed scenarios the majority of the energy from sparticle decays that escapes detection

is in the mass of the LSPs. This behaviour, specific to the compressed phenomenology,

is now described more in detail.

Why low-transverse-momentum objects?

The product decay objects reconstructed by the detector and described in Section 3.4.2

have a momentum related to the mass-splitting of the overall supersymmetric mass

spectrum associated to the event. The momentum of a massless object in the parent

frame, as described in Eq. 4.3.3 is

pP̃o =
M2

P̃
−M2

χ̃

2MP̃

, (4.6.1)

here rewritten for the parent sparticle P̃ decaying to a LSP χ̃ and one SM object

o. Consider the same mass for the two parent superparticles produced by the fusion

of two partons.8 The fraction of momentum of the two partons must be such that

the energy of the collision √spar−par is greater than the production threshold 2MP̃ .

The events populate the tails of the parton distribution functions and in the absence

of radiation from the initial state, the transverse momentum of the two interacting

partons is negligible with respect to their z-momenta. In the limit of no ISR, for

the conservation of momentum, the transverse momentum of the centre-of-mass of the

parent frame P̃ P̃ is negligible. In the P̃ P̃ frame the two parents fly back-to-back with

a momentum related to the difference between the collision energy of the two partons
8In this section we refer to the true masses.
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and the threshold √spar−par − 2MP̃ . With no ISR, it is likely that the two parent

superparticles are produced not too far from the threshold and the result is a low

transverse momentum of the parent sparticles in the detector frame.

For compressed scenarios the majority of the energy from sparticle decays provides the

mass for the LSPs, quantified in the Eq. 4.6.1, resulting in a low transverse momentum

for visible and invisible objects.

Why is the missing transverse momentum low?

In the limit of no initial state radiation the transverse momentum of the P̃ P̃ -system

is negligible and in the P̃ P̃ centre-of-mass frame, the two parent superparticles are

back-to-back by definition. In the limit of nearly degenerate masses Mχ̃ ∼ MP̃ special

relativity implies that ~pχ̃ ∼ ~pP̃ . The directions of the parent and child momenta are

similar and in the transverse Lab frame the two LSPs fly almost back-to-back. We

have seen how the transverse momenta of all the objects are low and so for the LSPs,

the vectorial sum is still lower. The result is a low value for the missing transverse

momentum.

4.6.1.2 ISR to increase the momentum of the objects

For supersymmetric compressed mass spectra, the large absolute mass-scale of the LSPs

could be distinctive from the typical Standard Model background scale, while the mass-

splitting scale is certainly very similar if not smaller. While we cannot measure Mχ̃

from ~6ET , indirect sensitivity by observing the reaction of the LSP to a probing force

can be gained.

The initial state radiation from interacting partons is the natural probe provided in

the laboratory of a hadron collider. The ISR can provide large momentum to the

sparticles produced in these reactions, in turn endowing their decay products with this

momentum.
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For compressed scenarios, in order to separate signal-like events from background-like

events, the focus is on final states with ISR. Particularly for supersymmetric final state

topologies with jets produced from heavy parent superparticles we focus on a high

momentum of the ISR-system.

In Section 4, it is noted that detectors such as ATLAS and CMS provide no information

about the z-component of the missing energy, and that the pseudorapidity rule addresses

this issue. For compressed scenarios, the Recursive Jigsaw Reconstruction technique

focuses on the transverse plane. This is performed by setting to zero all the z-component

momenta as shown in the subsequent chapters. It is roughly the same as using special

relativity with only two dimensions of space. All the momenta, energies, masses and

frames should be labelled as transverse, nevertheless the subscript T is often omitted.

To be more precise, in the compressed regime, the RJR technique leverages cases with

initial state radiation where the transverse momentum of the ISR-system causes the

SUSY-system to recoil against it in the transverse plane, enhancing the transverse

momenta of the visible and invisible decay products.

Compressed kinematics in the presence of ISR: first approximation

In the limit of nearly degenerate masses, MP̃ ∼Mχ̃, a very rough approximation in the

Lab frame can be computed 9

~p Labχ̃ ∼ Mχ̃

MP̃

~p Lab
P̃

. (4.6.2)

With this approximation the missing transverse momentum and the transverse mo-

mentum of the ISR-system are related by a simple rule. Combining for the two LSPs

~p Lab1χ̃ + ~p Lab2χ̃ ∼
Mχ̃

MP̃

~p Lab
1P̃

+
Mχ̃

MP̃

~p Lab
2P̃

(4.6.3)

9The transverse view of the event implies all the momenta, reconstructed masses, energies and
reference frames should be labelled transverse, but the subscript T is often omitted.



4.6. RJR FOR COMPRESSED SPECTRA 127

and assuming for the vectorial sum of the transverse momentum of the two χ̃ the value
~6ET reconstructed by the detector, the relation

~6ET ∼ −
Mχ̃

MP̃

~pT,ISR (4.6.4)

is valid in the absence of additional weakly interacting particles.

For compressed scenarios most of the transverse momentum of the ISR-system is ex-

pected to result in ~6ET . In the presence of a non negligible transverse momentum of the

ISR-system the absolute scale can be investigated (being that the ratio of the masses

is roughly the ratio 6ET/pT,ISR).

Recent studies for probing supersymmetric topologies in the compressed regime have

suggested exploiting this feature [118–120]. In these analyses, a kinematic selection is

used to isolate events where a single, hard ISR jet recoils approximately opposite to ~6ET

in the event transverse plane. One can then use various reconstructed proxies of pT,ISR,

such as the leading jet or
√
HT , and use observables such 6ET/p

lead−jet
T or 6ET/

√
HT in

order to be sensitive to the presence of massive LSPs [118,119].

Alternatively, using assumed knowledge of the sparticle mass-splittings, one can attempt

to sort non-ISR jets from radiative ones using, for example, the sum of jet energies in

each class and multiplicities as discriminating observables [120].

Choosing the subset of events where the momentum of the ISR-system is carried pre-

dominantly by a single clean high-momentum jet radiated in the initial state limits

the available event sample. For less restrictive event selections, the suggested ob-

servables become progressively less accurate estimators of 6ET/pT,ISR. Furthermore,

low-momentum jets produced by other radiation or underlying events, such as pile-up,

exacerbate the difficulty in the discrimination between the “ISR-jets” with respect to

the “signal jets” when an a priori knowledge of the mass difference is used.
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Compressed kinematics in the presence of ISR: a more careful examination

In the next section, the RJR technique for the compressed scenario is described. Here

a more careful examination of the approximate relation given by Eq. 4.6.4 is shown.

Assume an ideal detector capable of reconstructing all of the visible objects and the sum

of the invisible particle momenta with infinitesimal resolutions. Consider this detector

blind to the longitudinal values of the momenta, or, in other words, we focus on the

transverse view of the event. For such a detector, the transverse centre-of-mass frame,

CM , of the ISR+ P̃ P̃ system coincides with the Lab frame. Assuming the case of two

identical parent superparticles, MP̃1
= MP̃2

, each decaying to a visible particle and an

invisible LSP, χ̃, the expression

~6ET · β̂P̃ P̃ = (p̄χ̃1 + p̄χ̃2) · β̂P̃ P̃ , (4.6.5)

is satisfied in the Lab frame, where β̂P̃ P̃ is the unit vector for the velocity defining the

Lorentz boost from Lab to the P̃ P̃ centre-of-mass frame: β̄P̃ P̃ = βP̃ P̃ β̂P̃ P̃ .
10 Introduced

in Eq. 4.2.3, the velocity for the Lorentz contra-boosts from P̃ P̃ to each P̃ rest frame

is here rewritten β̄P̃ P̃
P̃1

= βcβ̂
P̃ P̃
P̃

= −β̄P̃ P̃
P̃2

and Eq. 4.6.5 can be expressed as

~6ET · β̂P̃ P̃ = γP̃ P̃βP̃ P̃

(
EP̃ P̃
χ̃1

+ EP̃ P̃
χ̃2

)
+ γP̃ P̃

(
p̄P̃ P̃χ̃1

+ p̄P̃ P̃χ̃2

)
· β̂P̃ P̃

= γP̃ P̃βP̃ P̃γc

(
EP̃1
χ̃1

+ EP̃2
χ̃2

)
+ γP̃ P̃βP̃ P̃γcβc

(
p̄P̃1
χ̃1
− p̄P̃2

χ̃2

)
· β̂P̃ P̃

P̃

+γP̃ P̃

(
p̄P̃1
χ̃1

+ p̄P̃2
χ̃2

)
· β̂P̃ P̃

+γP̃ P̃ (γc − 1)
(
β̂P̃ P̃ · β̂P̃ P̃P̃

)(
p̄P̃1
χ̃1

+ p̄P̃2
χ̃2

)
· β̂P̃ P̃

P̃

. (4.6.6)

Since a perfect symmetry between the two hemispheres is assumed, with same masses

for the two parent superparticles and for the two LSPs, the relation EP̃1
χ̃1

= EP̃2
χ̃2

= EP̃
χ̃

is satisfied and used in Eq. 4.6.6.

Furthermore, we can write p̄P̃1
χ̃1

= pP̃χ̃ p̂
P̃1
χ̃1

and p̄P̃2
χ̃2

= pP̃χ̃ p̂
P̃2
χ̃2
, and in the limit of pP̃χ̃ �Mχ̃,

10As usual, when not specified, the frame of reference is Lab and vectors are two-dimensional objects
in the transverse plane.
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the approximations EP̃
χ̃ ∼ Mχ̃[1 + 1

2
(
pP̃χ̃
Mχ̃

)2 + . . .] ∼ Mχ̃ and pP̃χ̃

EP̃χ̃
∼ [

pP̃χ̃
Mχ̃
− 1

2
(
pP̃χ̃
Mχ̃

)3 +

. . .] ∼ pP̃χ̃
Mχ̃

are valid. We substitute the contra-boost factor introduced in Eq.4.4.21,

γc = MP̃ P̃/2MP̃
11, and

βP̃ P̃ =
pISRT

EP̃ P̃
=

pISRT√
(pISRT )

2
+M2

P̃ P̃

, γP̃ P̃βP̃ P̃ =
pISRT

MP̃ P̃

(4.6.7)

in Eq 4.6.6. Neglecting O[(
pP̃χ̃
Mχ̃

)2] terms we have

~6ET ·β̂P̃ P̃
pISRT

∼ Mχ̃

MP̃
+

pP̃χ̃
2MP̃

βc

(
p̂P̃1
χ̃1
− p̂P̃2

χ̃2

)
· β̂P̃ P̃

P̃

+
pP̃χ̃

2MP̃

√
(pISRT )

2
+M2

P̃ P̃

pISRT
γ−1
c

(
p̂P̃1
χ̃1

+ p̂P̃2
χ̃2

)
· β̂P̃ P̃

+
pP̃χ̃

2MP̃

√
(pISRT )

2
+M2

P̃ P̃

pISRT

(
γc−1
γc

)(
β̂P̃ P̃ · β̂P̃ P̃P̃

)(
p̂P̃1
χ̃1

+ p̂P̃2
χ̃2

)
· β̂P̃ P̃

P̃

, (4.6.8)

where the second and forth contributions, with factors βc and γc−1
γc

respectively, are

expected to be relatively small, while the third contribution tends asymptotically to
pP̃χ̃

2MP̃
for pISRT �MP̃ P̃ except for a combination of unit vectors.

Indeed, in the extreme compressed regime (Mχ̃ ∼ MP̃ ), the asymptotic behaviours

βc → 0, γc → 1 and

~6ET · β̂P̃ P̃
pISRT

∼ Mχ̃

MP̃

+
pP̃χ̃

2MP̃


√

(pISRT )
2

+M2
P̃ P̃

pISRT

(
p̂P̃1
χ̃1

+ p̂P̃2
χ̃2

)
· β̂P̃ P̃

 (4.6.9)

are expected, with the first contribution close to one and the second term non negligible

for pISRT �MP̃ P̃ . The expression given in Eq. 4.6.8, and this last approximation, can be

seen as the SUSY mass ratio first term plus corrections proportional to the momentum

of the LSP in the parent sparticle frame and inversely proportional to the SUSY mass

11Here γc = MP̃ P̃/2MP̃ refers to the ratio of the true masses, while Eq.4.4.21 refers to the the ratio of
the observables reconstructed by the RJR technique event-by-event.
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scale: ∣∣∣~6ET · p̂ISRT

∣∣∣
pISRT

∼ Mχ̃

MP̃

+O

(
pP̃χ̃

2MP̃

)
√

(pISRT )
2

+M2
P̃ P̃

pISRT

 sin Ω, (4.6.10)

where β̂P̃ P̃ = −p̂ISRT is valid assuming a transverse view of the event. The quantity

sin Ω represents a function of dot products between the velocities relating the laboratory

frame, the P̃ P̃ frame, and P̃ rest frames and the directions of the LSP momenta in their

respective production frames. For extreme compressed scenarios sin Ω is independent of

the contra-boost direction (β̂P̃ P̃
P̃

) and is expected to be zero on average when nontrivial

spin correlations are absent.

4.6.2 The compressed RJR tree

In the compressed regime, the focus is on final state topologies with one or more addi-

tional radiations from the initial state. The Recursive Jigsaw Reconstruction technique

is based on a simplified tree assuming a transverse decay view of the event.

The compressed decay tree specifies both the systems of relevant reconstructed objects

and the transverse reference frames. The tree is simple and generic for any compressed

topology as shown in Figure 4.6.1.

In the compressed decay tree CM represents the centre-of-mass system of the whole

reaction S+ISR, ISR is the system assigned to the radiation from the initial state, and

S is the signal or sparticle system decaying to visible and invisible products in the V

and I systems. In each event, the missing transverse momentum is assigned to the I-

system, while reconstructed objects are assigned to the V-system or to the ISR-system.

The jigsaw rules specify those hypothesised to come from the decay of sparticles and

assigned to the V-system as opposed to those identified as initial state radiation and

associated with ISR.

For an ideal detector the Lab frame coincides with the CM frame, nevertheless herein we
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LAB

CM

ISR S
V I

Lab State

Decay States

Visible States

Invisible States

Figure 4.6.1: The compressed decay tree: Lab is the laboratory system, CM is the
centre-of-mass system (S+ISR), ISR is the initial state radiation system, S is the signal
or sparticle system, V is the visible system and I the invisible system.

emphasise the distinction because the final states of compressed topologies are expected

to be rich in low momentum objects. The transverse momentum of the CM frame is

not zero mainly due to the energy not reconstructed in the objects:

~pT (CM) = ~6ET +
∑
i

~pT (oi) (4.6.11)

with i objects reconstructed from the detector in the event.

The full substructure of the SUSY topology is not defined and a basis of useful ob-

servables utilised for the analyses are defined in the CM frame as shown in the next

section. The jigsaw rules associated to the compressed tree are simple. The transverse

view of the event is equivalent to set all the z-momenta to zero ~pz(oi) = 0. The mass

of the invisible system is set to zero: all the weakly interacting particles are treated

as a unique massless object. When identical objects, such as jets resulting from the

fragmentation of light quarks, can be associated both to the V and the ISR-system a

combinatoric rule is applied. The hadronic final state ambiguity due to the provenance

of reconstructed jets, is addressed by a rule based on the minimisation of the masses,

analogous to the one described in Section 4.5.2, to separate the ISR-system with re-
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spect to the SUSY system. Objects different from the light jets can be forced into the

V-system, or assigned with a minimisation of the masses, or with a combination of the

two strategies and the final resulting rule will be specified analysis-by-analysis for the

topology investigated.

What do minimisations of the masses mean for the compressed tree?

Consider a final state with all identical objects and missing transverse momentum. In

the true centre-of-mass frame the relation

MCM =
√
M2

S + p2 +
√
M2

ISR + p2 (4.6.12)

is valid and event-by-event, MCM ≡ ECM is a fixed value, which for an ideal detector

is equivalent to ELab ≡
√
spar−par. Minimising Ms and MISR means maximising the

momentum p.

In the compressed tree the missing transverse momentum is a massless two-dimensional

momentum object assigned to the I-system and so to the S-system, because I inherits

from S. The other reconstructed objects are combined by minimising the invariant

masses in a generalisation of Eq. 4.5.2 with at least one object assigned to the ISR-

system. Assuming a transverse view of the event, the combinatoric rule, translates to

a maximisation of the transverse momentum of the ISR or S-system (~p CM
S,T = −~p CM

ISR,T ).

The result of this jigsaw rule is equivalent to an estimate of the thrust axis in the CM

frame.

4.6.3 Compressed variables

In this section a collection of kinematic observables which can be used to probe com-

pressed scenarios is described. A detailed description is provided for the RJR observable
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used as a proxy for the ratio 6ET/p
ISR
T . This scaleless variable is defined as follows:

RISR ≡
∣∣~pCM

I,T · p̂CM
ISR,T

∣∣
pCM

ISR,T

, (4.6.13)

where subscripts indicate the system and superscripts the reference frame the mo-

mentum is evaluated in. It is the ratio between the projection of the transverse mo-

mentum of the invisible system to the S-system and the magnitude of the transverse

momentum of the S-system, being ~pCM
ISR,T = −~pCM

S,T . This is the same quantity given by

the Eq. 4.6.10. For a realistic detector with the CM=ISR+P̃ P̃ frame different from

the laboratory reference frame and in the limit of a low-momentum of the LSP in the

parent sparticle rest frame pP̃χ̃ with respect to the parent sparticle mass MP̃ , the ratio

RISR is

RISR ∼
Mχ̃

MP̃

+O

(
pP̃χ̃

2MP̃

)
√

(pISRT )
2

+M2
P̃ P̃

pISRT

 sin Ω. (4.6.14)

The order one dot products between the velocities relating the CM frame, the P̃ P̃ rest

frame, and P̃ rest frames summarised by sin Ω are zero on average in the absence of

non-trivial spin correlations or efficiency dependence from decay product reconstruction

and selection.

The behaviour expected is a distribution peaked at Mχ̃

MP̃
with a theoretical width of

order O
(

pP̃χ̃
2MP̃

)
in the limit pISRT � MP̃ P̃ . The resolution of order O

(
pP̃χ̃

2MP̃

)
can be

approximated for a parent sparticle decaying in a LSP and a Standard Model object

with negligible mass to O(
M2
P̃
−M2

χ̃

4M2
P̃

) using Eq. 4.6.1, while for a multi-body decay to

O(
M2
P̃
−M2

χ̃+m2
oi

4M2
P̃

) with m2
oi
the invariant mass of the i objects.

In order to elucidate the behaviour of RISR, consider a case with no ambiguity between

the ISR and S-systems. As an example, a pair of heavy neutralinos (for example χ̃0
2) are

produced at a hadron collider with decays χ̃0
2χ̃

0
2 → Z(l+l−)χ̃0

1, h(γγ)χ̃0
1. Two leptons

and two photons are required to be reconstructed in each event and are assigned to the

V-system, ~6ET to the I-system and one or more reconstructed jets are associated to the
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Figure 4.6.2: The left figure shows the normalised distribution ofRISR for the production
and decay of χ̃0

2χ̃
0
2 → Z(l+l−)χ̃0

1, h(γγ)χ̃0
1 at the 13 TeV LHC for different masses of

the LSP and MP̃=500 GeV. The figure on the right refers to the two-dimensional
distribution of pCM

ISR,T as a function of the ratio for the sample with 4M= 50 GeV.
Figures from [111]. Simulated particle-level events are generated and analysed using
the RestFrames software package [117].

ISR-system.

As shown in Figure 4.6.2, the RISR distribution for these events scales with ratio Mχ̃

MP̃
,

as expected from Eq. 4.6.14, with increasingly fine resolution for progressively smal-

ler mass-splittings between the two sparticle states. Similarly, the resolution of the

kinematic feature improves with increasing ISR transverse momentum.

The absolute value of the transverse momentum of the ISR-system evaluated in the CM

frame pCM
ISR,T is another RJR observable. Its distribution is expected to be related to

the hard scale of the process investigated. In particular, the heavier the parent super-

particles produced at the proton collider (and hence the LSP for compressed scenarios)

in the final state, the more the observables should discriminate SM backgrounds.

Other masses and angles constitute a basis of complementary observables. Different

observables are useful for the investigation of different topologies and different hard

scales.

The variables that can be extracted from all the compressed scenarios are the follow:

• RISR =
|~pCM

I,T ·p̂
CM
ISR,T |

pCM
ISR,T

: variable sensitive to the mass ratio parent/LSP.
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• pCM
ISR,T : modules of the jets vector-sum transverse momentum of the ISR-system

evaluated in the CM frame.

• MS
T : transverse mass of the S-system (V+I).

• MV
T : transverse mass of the V-system.

• ∆φISR,I: opening angle between the ISR-system and the I-system, evaluated in

the CM frame.

• ∆φCM,I: opening angle between the CM system and the I-system.

Once the ISR-system is separated from the S-system other more conventional and

system-related variables can be used.

A specific example is once again useful to understand this concept. Consider a vari-

ation of the previous topology with an Higgs boson decaying to bottoms: χ̃0
2χ̃

0
2 →

Z(l+l−)χ̃0
1, h(bb)χ̃0

1. Suppose that the separation between the ISR-system and the S-

system is made forcing the leptons into V and assigning the jets minimising the masses;

independently if tagged or not as bottom. The supersymmetric final state topology

has two b-jets and hence, for signal events, the b-jets multiplicity in the V-system is

expected to be higher than in the ISR-system. Different criteria based on the object

multiplicities can be applied in the ISR and V systems in order to discriminate the SM

backgrounds. In this example a b-jet veto in the ISR-system and a requirement of at

least one b-jet in the V-system could be a reasonable choice.

These additional system-related handles are topology dependent. The possibilities are

quite vast and can be summarised as follow:

• NV
oi
: number of objects of type i in the V-system

• N ISR
oi

: number of objects of type i in the ISR-system

• pV
oji,T

: transverse momentum of the j-th object of type i in the V-system
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• pISR
oji,T

: transverse momentum of the j-th object of type i in the ISR-system

• MV
oioj

:invariant mass of the i-j objects in the V-system

• ∆φISR,oi : opening angle between the ISR-system and a specific object in the CM

or Lab frame.

• ∆φI,oi : opening angle between the I-system and a specific object in the CM or

Lab frame.

The Standard Model objects o of different type i (oi) are the same as described in

Section 3.4.2.12

12The choice illustrated in the example considered would be NV
b−jet ≥ 1 and N ISR

b−jet = 0.



Chapter 5

Sparticles in Motion

5.1 Introduction

This chapter is dedicated to the study “Sparticles in Motion - Analyzing compressed

SUSY scenarios with a new method of event reconstruction” [111]. In this paper the

approach for the analyses of supersymmetric compressed spectra is based on the gen-

eric RJR compressed tree described in Section 4.6.2. Compressed scenarios of squark

and gluino pair-production topologies are investigated. The focus is on mass-splittings

between parent super-particles and their lightest decay products between 25 and 200

GeV.

In the case of a final state topology with all the objects identifiable by their type and

different from jets, there is no ambiguity: the reconstructed objects expected to come

from sparticle decays are assigned to the V-system, while jets are assigned to the ISR-

system. For final state topologies involving light jets a combinatoric rule is necessary to

solve the ambiguity. When jets are tagged as b, τ or fat both strategies can be adopted

and the choice depends on the multiplicity of the objects, efficiency and inefficiency

for the detector to tag or mis-tag the object, the behaviour expected for the main

backgrounds and so on.

137
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LAB

CM

ISR S
V I

LAB

CM

ISR S
V I

Lab State

Decay States

Visible States

Invisible States

Minimize Masses

Figure 5.1.1: The compressed decay tree: Lab is the laboratory system, CM is the
centre-of-mass system (S+ISR), ISR is the initial state radiation system, S is the signal
or sparticle system, V is the visible system and I the invisible system. The visible
objects are assigned between the ISR and V-system using a jigsaw rule based on the
minimisation of the masses.

In this study, probably the worst scenario is considered: the final state topologies involve

only identical light jets and missing transverse momentum and a complete ambiguity

is due to the assignment of reconstructed jets. Figure 5.1.1 shows the compressed tree

and the jigsaw rule used to distinguish between the ISR and V objects. Once ~6ET is

assigned to the I-system the light jets are assigned to the appropriate system minimising

the masses.

The samples of all major Standard Model backgrounds are proton-proton collisions

simulated at 14 TeV as part of the Snowmass study. All signal and BG samples are

generated-simulated using the same versions and data-cards of Madgraph + Pythia

+ Delphes with jet-parton matching and corrections for next-to-leading order (NLO)

contributions. The specifics are described in Section 3.4.

The signal samples are the simplified topologies in Figure 5.1.2 generated within the

mass ranges 0.5 TeV ≤Mg̃ ≤ 1.4 TeV and 0.5 TeV ≤Mq̃ ≤ 1 TeV, with intervals of 100

GeV for the parent sparticle masses and with four mass splittings ∆M = MP̃ −Mχ̃ =

25, 50, 100 and 200 GeV. The cross sections for gluino and squark pair-production with

the other superparticles decoupled at
√
s=14 TeV can be found in Ref. [121].

All the signal and background samples are passed to the algorithm summarised by
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(a) Gluino pair-production in a final state
with four light jets and MET.

(b) Squark pair-production in a final state
with two light jets and MET.

Figure 5.1.2: Feynman diagrams for the simplified topologies of gluino and squark
pair-production in final state with light jets and missing transverse momentum.

the compressed tree in Figure 5.1.1 and event-by-event the basis of RJR variables is

extracted and analysed for a projection of
∫
L = 100 fb−1.

In Section 5.2 the distributions of the main RJR observables used are described, while

in Section 5.3 the necessity to focus on the high ISR-regime for this analysis is shown.

In Section 5.4 the signal regions defined with the compressed RJR observables are

described and in Section 5.5 the results obtained are shown.

5.2 Preselection criteria

In this section the distribution of the compressed RJR observables are shown for the

events satisfying minimal preselection criteria. The signal final state topologies invest-

igated are expected with no leptons and a veto is applied for electrons and muons. A

minimal value for the missing transverse momentum is required: 6ET > 100 GeV, while

all the jets reconstructed from the detector with pjet
T > 20 GeV are considered. No

criteria are applied to fat or tau tagged jets, while a b-jet veto will be applied to all the

jets in the final states.

The observables used in the analysis and described in the Section 4.6.3 are the generic
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Category Snowmass label (sub-categories description)
Boson + jets BJ-BJJ (Vector boson + jets, vector boson fusion)

tt̄ (+V) TT, TTB (Top pair +jets,
top pair plus bosons: tt̄+Z, tt̄+W and tt̄+h + jets)

single top TJ-TB (Single top + jets, top pair (off shell t∗ → Wj) + jets)

Di-/Tri-Boson BBB-BB-BLL-B-LL (tri-Vector + jets,
Di-Vector + jets, Drell-Yan in leptons)

Higgs H(Gluon fusion + jets)

Table 5.1: Five categories summarizing all the main Standard Model backgrounds as
part of the Snowmass study. The category name is indicative of the dominant sub-
category backgrounds.

observables for the compressed tree 1 plus a couple of topology dependent variables.

Figures 5.2.1 and 5.2.2 show the distributions of the RJR observables sensitive to com-

pressed scenarios for events that have satisfied the preselection criteria. All the Stand-

ard Model backgrounds are stacked together and categorised in five groups, while the

overlaid dashed curves refer respectively to gluino and squark pair-production samples.

The SM category names are explained in Table 5.1.

Figures 5.2.1a and 5.2.2a show the distributions of RISR. The variable provides little

signal-to-background discrimination in the absence of more stringent selection criteria.

The signal distributions are progressively closer to one for smaller mass splittings, while

the tt̄ background events tend to populate smaller values of the ratio with respect the

other SM backgrounds. Notice that RISR cannot assume a value larger than one if all

the objects are assigned minimising the masses.

Figures 5.2.1b and 5.2.2b show the distributions of pCM
ISR,T . The slopes are related to the

hard scale, namely the mass of particles produced by the scattering of the two partons.

They appear less severe for the signal samples , since MP̃ is greater than the typical

Standard Model mass scale.

The distributions of the jet multiplicities in the V-system are shown in Figures 5.2.1c
1Herein the transverse mass of the visible system MV

T is not considered because the mass splitting
scale is similar to typical Standard Model scales. Furthermore, the observable looses resolution when
computed with jets momenta and particularly in cases of jets misassignment for signal events.



5.2. PRESELECTION CRITERIA 141

 ISRR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 E

ve
nt

s 
/ 0

.0
2

1

10

210

310

410

510

610

710

810

910

1010
Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(a) Distribution of RISR =
|~pCM

I,T ·p̂CM
ISR,T |

pCM
ISR,T

: variable
sensitive to the mass ratio parent sparticle LSP

   (GeV) CM
ISR,TP

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r 

of
 E

ve
nt

s 
/ 4

0 
G

eV

1

10

210

310

410

510

610

710

810 Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(b) Distribution of pCM
ISR,T : magnitude of the jets

vector-sum transverse momentum of ISR-system
evaluated in the CM frame

V
jetN

1 2 3 4 5 6

N
um

be
r 

of
 E

ve
nt

s 

1

10

210

310

410

510

610

710

810

910

1010 Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(c) Distribution of the NV
jet: light jet multiplicity in

the V-system.

  (GeV) S
 TM

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 E

ve
nt

s 
/ 2

0 
G

eV

1

10

210

310

410

510

610

710

810 Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(d) Distribution of MS
T : transverse mass of S-

system (V+I).

 ISR , I 
φ∆

2.6 2.7 2.8 2.9 3 3.1

π
N

um
be

r 
of

 E
ve

nt
s 

x 
20

0/

1

10

210

310

410

510

610

710

810

910

1010
Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(e) Distribution of ∆φISR,I: opening angle between
the ISR-system and the I-system, evaluated in the
CM frame.

 CM , I 
φ∆

0 0.5 1 1.5 2 2.5 3

π
N

um
be

r 
of

 E
ve

nt
s 

x 
10

/

1

10

210

310

410

510

610

710

810

910

1010 Boson(s)+jets
tt (+V)
Single top
Di-/Tri-Boson
Higgs

 ) = 775 GeV
0

Χ
∼

 )= 800 GeV ,  M( g~M( 
 ) = 850 GeV

0
Χ
∼

 )= 900 GeV ,  M( g~M( 
 ) = 900 GeV

0
Χ
∼

 )= 1 TeV ,  M( g~M( 

=14 TeVs,  -1Madgraph + Pythia + Delphes                             L = 100 fb∫

(f) Distribution of ∆φCM,I: opening angle
between the CM system and the I-system.

Figure 5.2.1: Distribution of the RJR observables sensitive to compressed scenarios
for events that have satisfied the preselection criteria (Table 5.2). Standard Model
backgrounds are stacked together while the overlaid dashed curves refer to gluino pair-
production samples. All the contributions are scaled with an integrated luminosity of
100 fb−1 at 14 TeV.
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Figure 5.2.2: Distribution of the RJR observables sensitive to compressed scenarios
for events that have satisfied the preselection criteria (Table 5.2). Standard Model
backgrounds are stacked together while the overlaid dashed curves refer to squark pair-
production samples. All the contributions are scaled with an integrated luminosity of
100 fb−1 at 14 TeV.
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and 5.2.2c. For the topologies investigated this observable is equivalent to the multi-

plicity of all the objects reconstructed in the V-system. The tt̄ events tend to provide

higher values than the other Standard Model backgrounds as expected.

Figures 5.2.1d and 5.2.2d are the distributions of MS
T and little signal-to-background

discrimination is provided in the absence of more stringent selection criteria. Signal

distributions have a progressively more severe slope for smaller mass splittings: the

observable is expected to have a higher discrimination impact for larger mass differences.

Figures 5.2.1e and 5.2.2e refer to the distributions of the opening angle between the

ISR-system and the invisible system. Both signal and background distributions tend

towards π, but the signal has a much stronger tendency to do so and this behaviour

remains valid when more stringent criteria are required.

Finally, Figures 5.2.1f and 5.2.2f refer to the distributions of the opening angle between

the CM system and the invisible system. This variable has no great impact for the

topologies investigated. This is true both at the preselection level and after further

selection criteria and will not be considered anymore.

5.3 High-ISR regime

In this section we focus on the high ISR regime, specifically pCM
ISR,T> 800 GeV. For the

topologies investigated an high value of the transverse momentum of the ISR-system

provides several advantages.

Firstly, in the study considered there is a complete ambiguity between the jets from

the sparticle decay and those from the radiation in the initial state. The jigsaw rule,

based on the minimisation of the masses, is progressively more efficient to distinguish

the two jet categories increasing the minimal requirement on pCM
ISR,T .

Secondly, a high value for the transverse momentum of the ISR-system guarantees a

focus on final states with real ISR as shown in the Feynman diagrams in Figure 5.3.1
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(a) Gluino pair-production in final state
with light jets and 6ET .

(b) Squark pair-production in final
state with light jets and 6ET .

Figure 5.3.1: Feynman diagrams for the simplified topologies of gluino and squark pair-
production in final states with light jets and missing transverse momentum. To focus
on final states with ISR we require a large value of pCM

ISR,T .

and the distributions of the RJR observables assume the behaviour expected for the

signal samples.

Third, in the high ISR regime a moderate discrimination is provided by pCM
ISR,T : in

Figures 5.2.1b and 5.2.2b we have seen how the slope of the distribution is less severe

for the signal examples.

Finally, and most importantly, in the high ISR regime a peculiar feature appears due to

the complementarity of pCM
ISR,T with RISR. Figure 5.3.2 shows the distribution of pCM

ISR,T

as a function of the ratio RISR for a gluino (5.3.1a) and a squark (5.3.1b) sample. The

behaviour is analogous to what we have seen in Figure 4.6.2. The resolution cannot be

as good as that of a final state where all the objects in the V-system can be identified

as products of the sparticle decays. This is due to the detector noise related to the

physics of the jets, as discussed in Section 3.4.2, and the ambiguity in the assignment,

particularly for jets from additional low-momentum radiation, between the V and ISR-

system.

For the zero lepton Standard Model backgrounds the behaviour is completely different.

Figure 5.3.3 shows how it is increasingly hard for the backgrounds to have a large value
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(a) Scatter plot RISR vs pCM
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pology in Figure 5.3.1a with Mg̃ = 1 TeV and
∆M = 100 GeV.
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(b) Scatter plot RISR vs pCM
ISR,T refers to the to-

pology in Figure 5.3.1b with Mq̃ = 700 GeV and
∆M = 50 GeV.

Figure 5.3.2: Distribution of the pCM
ISR,T as a function of RISR for gluino (a) and squark (b)

signal samples. The two-dimensional histograms shows the number of events expected
per bin for an integrated luminosity of 100 fb−1 satisfying the preselection criteria and
pCM

ISR,T > 800 GeV.

of the ratio for higher values of pCM
ISR,T . In the high ISR regime the events for all the

main backgrounds, vector boson + jets (Figure 5.3.3a) single top and tt̄ (Figure 5.3.3b)

and multi-bosons (Figure 5.3.3c), tend to populate low value of RISR.

For large values of pCM
ISR,T , the ratio RISR remains a proxy for the mass ratio parent

sparticle to LSP and becomes an excellent discriminant between signal and background-

like events.

The other compressed RJR observables are mainly orthogonal to the ratio RISR. This

uncorrelation is shown in the two dimensional distributions in Figures 5.3.4-5.3.6 for

the vector boson +jet, single top and tt and di-tri-bosons respectively. Figures 5.3.7

and 5.3.8 show the scatter plots of the RJR observables as a function of RISR for gluino

and squark samples.

The complementarity of MS
T with RISR is shown in Figures 5.3.4a-5.3.8a. When signal

samples with larger mass-splittings are investigated the relaxation of the selection on

RISR can be compensated by tightening the selection requirement on the transverse

mass of the S-system.
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(a) The scatter plot RISR vs pCM
ISR,T refers to the

Standard Model background Boson (Z and W ) +
jets.
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(b) The scatter plot RISR vs pCM
ISR,T refers to the

Standard Model backgrounds single top and tt̄.
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(c) The scatter plot RISR vs pCM
ISR,T refers to the

Standard Model background involving multi-bosons
(Z and W ).

Figure 5.3.3: Distribution of the pCM
ISR,T as a function of RISR for boson + jet (a) single

top and tt̄ (b) di/tri bosons (c) samples. The two-dimensional histograms shows the
number of events expected per bin for an integrated luminosity of 100 fb−1 satisfying
the preselection criteria and pCM

ISR,T > 800 GeV.
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(a) The scatter plot: RISR vsMS
T .
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(b) RISR vs NV
jet.
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(c) RISR vs ∆φISR,I.

Figure 5.3.4: Distribution of MS
T (a), NV

jet (b) and ∆φISR,I (c) as a function of RISR.
The two-dimensional histograms show the number of events expected for the vector
boson + jets background per bin for an integrated luminosity of 100 fb−1 satisfying the
preselection criteria and pCM

ISR,T > 800 GeV.
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(a) The scatter plot: RISR vsMS
T .

  ISRR
0 0.2 0.4 0.6 0.8 1

  
V je

t
N

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-1
E

ve
nt

s 
/ 0

.0
1 

/ 1
00

 fb
1

10

210

=14 TeVsTop (+X)                                           

(b) RISR vs NV
jet.
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(c) RISR vs ∆φISR,I.

Figure 5.3.5: Distribution of MS
T (a), NV

jet (b) and ∆φISR,I (c) as a function of RISR.
The two-dimensional histograms show the number of events expected for the tt̄ and
single top backgrounds per bin for an integrated luminosity of 100 fb−1 satisfying the
preselection criteria and pCM

ISR,T > 800 GeV.
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(a) The scatter plot: RISR vsMS
T .
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(b) RISR vs NV
jet.

  ISRR
0 0.2 0.4 0.6 0.8 1

  
 IS

R
 , 

I 
φ∆

  

2.6

2.7

2.8

2.9

3

3.1

-1
/2

00
) 

/ 1
00

 fb
π

E
ve

nt
s 

/ (
0.

01
 x

 

1−10

1

10

=14 TeVsDi-/ Tri-Boson                                         

(c) RISR vs ∆φISR,I.

Figure 5.3.6: Distributions ofMS
T (a), NV

jet (b) and ∆φISR,I (c) as a function of RISR. The
two-dimensional histograms show the number of events expected for the Di-/tri-bosons
background per bin for an integrated luminosity of 100 fb−1 satisfying the preselection
criteria and pCM

ISR,T > 800 GeV.
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(a) The scatter plot: RISR vs MS
T
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(b) RISR vs NV
jet.
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(c) RISR vs ∆φISR,I

Figure 5.3.7: Distributions ofMS
T (a), NV

jet (b) and ∆φISR,I (c) as a function of RISR.The
two-dimensional histograms show the number of events expected for signal sample Mg̃

= 1 TeV, Mχ̃0
1
= 900 GeV per bin for an integrated luminosity of 100 fb−1 satisfying

the preselection criteria and pCM
ISR,T > 800 GeV.
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(a) The scatter plot: RISR vsMS
T .
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(b) RISR vs p jet2,V
T .
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Figure 5.3.8: Distributions of MS
T (a), p jet2,V

T (b) and ∆φISR,I (c) as a function of RISR.
The two-dimensional histograms show the number of events expected for signal sample
Mq̃ = 700 GeV, Mχ̃0

1
= 650 GeV per bin for an integrated luminosity of 100 fb−1

satisfying the preselection criteria and pCM
ISR,T > 800 GeV.
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The distribution of the jet multiplicity in the V-system as a function of RISR is shown in

Figures 5.3.4b-5.3.7b for the main Standard Model backgrounds and the gluino sample

Mg̃ =1 TeV Mχ̃0
1

=900 GeV. Notably, the large background contributions from bo-

son+jets and di-boson in the high RISR region occur atNV
jet = 1. These processes include

the Z boson decaying invisibly with an additional jet associated to the V-system and

W → τ(had)ν.2 These processes can be discriminated from the gluino signals requiring

a minimum value of three or four for NV
jet, while for the squark topology only two jets

are expected in the V-system. Figure 5.3.8b shows the two-dimensional distribution of

the second jet ordered in pT as a function of RISR for the squark sample Mq̃ =700 GeV

and Mχ̃0
1

=650 GeV. This is the second topology dependent observable used in concert

with NV
jet in this study and it is largely uncorrelated with respect to the ratio.

Finally the scatter plots RISR vs ∆φISR,I are shown in Figures c). The two variables

are mostly independent for the signal samples and a criterion close to π can be used to

improve the discrimination with respect to the Standard Model background events.

Similar features appear for all the other signal samples with the distribution of RISR

scaling with ∆M as expected.

5.4 Signal regions

The RJR observables are used to define selection criteria resulting in signal regions

targeting the four mass splittings investigated for gluino and squark pair-production.

Figures 5.4.1 and 5.4.2 show distributions of the variables with greater impact to dis-

tinguish between signal-like events and background-like events when the respective N-1

requirements in Table 5.2 are applied.

Figures 5.4.1a and 5.4.1b show the distributions of RISR for the backgrounds, and for

gluino and squark samples respectively, for the events respecting the criteria in Table

2No criteria for the τ tagging are applied in this study: the misidentification of an hadronically
decay τ lepton in a light jet is high as described in Section 3.4.2.
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5.2 column 3 and 2 respectively. In the high ISR regime the variable is the best signal-

to-background discriminant: final state events for gluino and squark pair-production

topologies tend to populate higher values than background-like events.

Figures 5.4.1b and 5.4.2b show the distributions of pCM
ISR,T for some gluino and squark

samples with ∆M =100 GeV and 50 GeV respectively. The discriminant impact is

moderate and a common threshold value of 1 TeV is chosen representing the order of

the hard scale investigated.

Figure 5.4.1c and 5.4.2c show the number of jets with transverse momentum higher

than 20 GeV associated to the V-system. Four and two jets are expected as decay

products of the gluino and squark topologies and roughly a smaller multiplicity can be

attributed to the inefficiency of the detector to reconstruct low-momentum jets while a

larger multiplicity is due to the presence of additional low radiation in the direction of

the S-system. Notably, the distributions fall down on the 5th bin for the gluino samples

and on the 3rd bin for squark samples.

In concert with the jet multiplicity an extra topology dependent variable can be used

to improve the discovery prospects of such supersymmetric signals. Focusing on the

2nd and 3rd bin of NV
jet the transverse momentum of the corresponding jet can be

investigated. Figures 5.4.1e and 5.4.2e show the distributions of these observables.

The transverse mass of the S-system is a scale variable related partially to the overall

scale (Mχ̃ for the signal) and mostly to the mass splitting scale (∆M for the signal). It

becomes a good discriminant for signal samples with a large value of the mass difference

respect Standard Model processes involving real Z, W bosons or top assigned to the

V-system with some source of missing transverse momentum. Figures 5.4.1e and 5.4.2e

show the N-1 distributions of MS
T for gluino and squark samples with ∆M = 200 GeV.

Notably, from Figures 5.4.1f and 5.4.2f additional improvement can be made by tuning

selection criteria on ∆φISR,I.

The inclusive signal regions targeting the four mass splittings are shown in Table 5.2.

The word inclusive refers to the fact that the same signal regions are used to investigate
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(a) The distribution of RISR for gluino signals with
∆M = 100 GeV and SM backgrounds.
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(d) The distribution of p jet3,V
T for gluino signals

with ∆M = 100 GeV and SM backgrounds after
the application of the N-1 requirements in Table
5.2 column 3 in final states with 3 jets in the
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Figure 5.4.1: Distribution of the RJR observables sensitive to compressed scenarios for
events that have satisfied all the selection criteria in Table 5.2 except the requirement on
the variable that is displayed. Standard Model backgrounds are stacked together, while
the overlaid dashed curves refer to gluino pair-production samples with ∆M = 100 GeV
and ∆M = 200 GeV. All the contributions are scaled with an integrated luminosity of
100 fb−1 at 14 TeV.
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Figure 5.4.2: Distribution of the RJR observables sensitive to compressed scenarios for
events that have satisfied the selection criteria in Table 5.2. Standard Model back-
grounds are stacked together while the overlaid dashed curves refer to squark pair-
production samples. All the contributions are scaled with an integrated luminosity of
100 fb−1 at 14 TeV.
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Mass Splitting [GeV]

Variable ∆M = 25 ∆M = 50 ∆M = 100 ∆M = 200

Preselection criteria
Lepton (e and µ) and b-jet veto

6ET > 100 GeV, pT (jet) > 20 GeV

pCM
ISR,T [GeV] > 1000

RISR =
|~pCM

I,T ·p̂CM
ISR,T |

pCM
ISR,T

> 0.9 > 0.85 > 0.75 > 0.65

MS
T − > 100 > 250 > 400

NV
jet ≥ 3(≥ 2) ≥ 4(≥ 2)

p
jet3(2),V
T [GeV] > 20(> 40) > 30(> 60) > 40(> 120) > 50(> 160)

∆φISR,I > 3

Table 5.2: A conservatively optimised set of selection criteria for signal regions in the
analysis of gluino (squark) pair-production. The selection assumes a sample of 100
fb−1 collected in proton-proton collisions with a centre-of-mass energy of

√
s = 14 TeV.

The natural pattern is to loosen the scaleless criteria as the criteria with units GeV are
tightened.

the gluino and squark topologies except the criteria applied to the two more topology

dependent observables NV
jet and p

jeti,V
T . For these two observables different requirements

are applied to the gluino (squark) topologies. The natural pattern is related to the ∆M

targeted as follow: the smaller the mass difference the tighter the criterion on RISR,

while the scale selection criteria are progressively more relaxed.

The signal regions can be substantially modified and partially optimised adopting sev-

eral strategies.

The two variables NV
jet and p

jeti,V
T are the only two model-dependent observables utilised

in this study. Other possibilities could be the opening angle between the i-th jet in the

V and the I-system or the ISR-system.

The requirement pCM
ISR,T > 1 TeV is common with a value in between the hard scales of

the squark and gluino samples investigated. An optimisation can be made by tuning
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the value to MP̃ using a smaller value for the squark samples with respect the gluino

one or tightening the criterion when ∆M is larger and the RISR requirement is relaxed.

The criteria on RISR are mass-splitting related. Improvement can be made by using

a careful examination of the relative mass splitting or the mass ratio for the different

samples from the moment the distribution scales for the signal with M
χ̃0

1
/MP̃ (see Eq.

4.6.10). To extract the optimal significance for each signal point considered we could

increase the number of signal regions matching the RISR requirement to the mass ratio

parent sparticle to LSP.

Finally, the requirement for the distribution of ∆φISR,I is not optimised at all. Tuning

a selection criterion on this quantity means choosing a value between 3 and π. Never-

theless, data analysis can leverage the discriminant power provided by the distribution

of this variable .

The purpose of this phenomenological study is not to obtain the best values for the

significances, but rather show the power of the Recursive Jigsaw Reconstruction tech-

nique. The RJR technique is already used by the ATLAS collaboration in order to

investigate the compressed regime [122].

5.5 Results and summary

The inclusive signal regions resulting from selection criteria of the RJR observables

defined in Table 5.2 are applied to calculate projected sensitivities for the gluino and

squark samples in the compressed regime.

Figures 5.5.1 and 5.5.2 show the value of ZBi calculated assuming the metric [94] with

inputs the yields of each signal sample, the overall Standard Model background and

assuming for this a systematic uncertainty of 15%. The Z-value represents the signific-

ance of a given signal expressed in standard deviations in the presence of a background

hypothesis, as described in Section 3.5.1.
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Figure 5.5.1: Projected exclusion and discovery reach for gluino pair-production in the
compressed regions: 25 GeV ≤ ∆M ≤ 200 GeV
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compressed regions: 25 GeV ≤ ∆M ≤ 200 GeV.



156 CHAPTER 5. SPARTICLES IN MOTION

The results are the expected significances for the simplified topologies in Figure 5.1.2,

in the compressed scenarios 25 GeV≤ ∆M ≤200 GeV, in proton-proton collisions with

a centre-of-mass energy of 14 TeV projected to an integrated luminosity of 100 fb−1.

The curves refer to the values 5σ and 2σ of significances and can be interpreted as

benchmark lines for the discovery of potential supersymmetric signatures and exclusion

at the 95% confidence level.

In the compressed regime gluinos would be discovered with masses above 1 TeV and

excluded up to 1.4 TeV, while for squarks the 5σ contour line is above 600 GeV and the

exclusion between 800 GeV and 900 GeV.

The Recursive Jigsaw Reconstruction technique provides excellent results for the discov-

ery prospects of compressed spectra of gluino and squark pair-production in final states

with light jets and missing transverse momentum. Leveraging on high ISR transverse

momentum, the method, summarised by the compressed tree in Figure 4.6.1, assigns

identical objects between the ISR and the V-system using a jigsaw rules based on the

minimisation of the masses, equivalent to the maximisation of the transverse momentum

of the ISR-system. The RJR technique provides a basis of complementary observables

used to define inclusive signal regions. The guidelines for an optimisation of the selec-

tion criteria are given and can be used in the analysis of the experimental data in order

to increase the potential signal to background yield ratio.

The RJR technique has already been used by the ATLAS collaboration in order to

probe the sensitivity to these topologies. Details for this investigation can be found

elsewhere [122].

The primary focus of this work has been on solely hadronic final states, in particular

jets resulting from the hadronisation of light quarks. In principle, the same strategy

can trivially be applied to any final state in order to study compressed regimes. In the

next section we focus on the opposite extreme: final state topologies with no ambiguity

between the ISR-system and the products from sparticle decays.
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Figure 5.5.3: Recent exclusion limits at the 95% CL from the ATLAS collaboration for
the SUSY simplified topologies pp → q̃q̃(q̃ → qχ̃0

1) (a) and pp → g̃g̃(g̃ → qqχ̃0
1) (b).

Figures from [122].

 [GeV]q~m
400 600 800 1000 1200 1400 1600

 [G
eV

]
0 1χ∼

m

0

200

400

600

800

1000

1200

3−10

2−10

1−10

1

 (13 TeV)-135.9 fbCMS   

  NLO+NLL exclusion
1

0χ∼ q → q~, q~ q~ →pp 

)c~, s~, d
~

, u~ (
R

q~+
L

q~

q~one light 

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 

95
%

 C
L 

up
pe

r 
lim

it 
on

 c
ro

ss
 s

ec
tio

n 
[p

b]

(a)

 [GeV]g~m
600 800 1000 1200 1400 1600 1800 2000 2200

 [G
eV

]
0 1χ∼

m

0

200

400

600

800

1000

1200

1400

1600

1800

3−10

2−10

1−10

1

 (13 TeV)-135.9 fbCMS   

  NLO+NLL exclusion
1

0χ∼ q q → g~, g~ g~ →pp 

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 
95

%
 C

L 
up

pe
r 

lim
it 

on
 c

ro
ss

 s
ec

tio
n 

[p
b]

(b)

Figure 5.5.4: Current results from the CMS collaboration for the SUSY simplified
topologies pp→ q̃q̃(q̃ → qχ̃0

1) (a) and pp→ g̃g̃(g̃ → qqχ̃0
1) (b). Figures from [123].
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Chapter 6

Probing the supersymmetric

electroweak sector phenomenology for

compressed mass spectra with RJR

6.1 Introduction to the topologies investigated

This section is dedicated to the study of supersymmetric compressed scenarios in the

electroweak sector [115]. The production of charginos (χ̃±i with i = 1 or 2) and/or heavy

neutralinos (χ̃0
i with i = 2, 3 or 4) provides a plethora of final state topologies having the

missing transverse momentum as a unique common denominator. Phenomenological

studies involving compressed electroweakinos can be found elsewhere in literature [124–

130].

Compressed scenarios involving electroweakinos are common in supersymmetric models

as described in Section 2.3.6. Particularly, mass spectra with a χ̃±1 and/or χ̃0
2 next-to-

LSP and the resulting simplified assumption χ̃±1 → W±χ̃0
1 and χ̃0

2 → Z(h)χ̃0
1 are well

motivated. This is related to the light Higgsino-component and limited wino-component

expected in naturalness-inspired models [52] appearing at the tree-level and one-loop

159
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Figure 6.1.1: Feynman diagram for chargino-neutralino associated production in final
states with three leptons and missing transverse momentum.

Figure 6.1.2: Feynman diagram for chargino pair-production in final states with two
leptons and missing transverse momentum.

corrections to the Higgs mass respectively. Qualitatively, the smaller the mass splitting

∆M = MP̃ −Mχ̃, the less the opportunity to accommodate an additional superparticle

with intermediate mass. At the current time, there are very low exclusion limits from

CMS and ATLAS searches for charginos and neutralinos decaying via W and Z bosons

to χ̃0
1. The challenge, aside from the main irreducible di-boson backgrounds, is once

again related to the inefficiency of the detector in reconstructing low-momentum objects

and the low value of the missing transverse momentum in the compressed regime.

Herein the focus is on the topologies in Figures 6.1.1 and 6.1.2. A specific analysis

is dedicated to each topology: the lepton multiplicity in the final state is different, the

expected Standard Model backgrounds differ, and the expected signal distributions of



6.1. INTRODUCTION TO THE TOPOLOGIES INVESTIGATED 161

the RJR observables are different.

From the previous study focused on compressed RJR observables, and in particular

RISR ≡
|~pCM

I,T ·p̂
CM
ISR,T |

pCM
ISR,T

discussed in Section 4.6.3, it is clear how the adjective compressed

has a meaning relative to the mass of the parent superparticle. In this work, we probe

electroweakino samples with masses in the range 100 GeV≤MP̃ ≤ 500 GeV, while the

mass splittings considered are 15 GeV≤ ∆M ≤ 75 GeV; in other words the W and Z

bosons are off-shell.

6.1.1 The golden channels

In principle, all the final states resulting from the different vector boson channels can be

probed with the compressed RJR tree. Nevertheless, focusing on electrons and muons

as supersymmetric visible decay products provides several advantages, which, when

properly exploited, promote the branches of the topologies in Figures 6.1.1 and 6.1.2

as golden channels.

Firstly, from a simple pre-analysis based only on the object multiplicities, the ratio of

signal-to-background events for the final states with the largest number of leptons is

orders of magnitude higher with respect final states with W and/or Z bosons decaying

hadronically. Secondly, the channels result in clean final states with high efficiencies for

the reconstruction of leptons1. Finally, for our purposes all leptons are identifiable as

reconstructed objects expected to come from sparticle decays and so they are assigned

to the V-system, while all the jets can be placed into the ISR-system with no ambiguity.

This allows us to avoid focusing on a high ISR regime in order to exploit the compressed

RJR strategy.2

1In this study the conservative minimum value for the reconstructed leptons pT > 10 GeV is
assumed. A recent effort by the ATLAS and CMS collaborations is dedicated to the improvement of
the efficiency for the identification of soft isolated electrons and muons (3-4 GeV. plepT . 10 GeV )
[89].

2For the chargino pair analysis we define the substructure of the S-system in a more complete vision
than the simplified S→VI, but all the considerations of this section remain valid.
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Figure 6.1.3: All the jets in the final state are assigned to the ISR-system: a minimal
criterion on pCM

ISR,T is required.

A minimal value of the transverse momentum of the ISR-system can produce some value

for 6ET and give the leptons some transverse momentum. The compressed RJR variables

can be used to probe supersymmetric spectra with small mass splittings. In the next

sections, we demonstrate how RISR maintains its impact to discriminate the signal from

the background: the lost of resolution in the low ISR regime is compensated for the

lack of ambiguity in the assignment of the objects between the V and ISR-system.

On the other hand, the mass scales investigated are close to the typical scale of Standard

Model backgrounds. For this reason pCM
ISR,T is not expected to have a great impact in

the discrimination, but rather to ensure a focus on final states with real jets radiated

from the initial state as in the Figures 6.1.3. In this way we can leverage the impact of

the RJR compressed observables without requiring a restrictive event selection based

on a huge value of the ISR transverse momentum.

6.1.2 Validation of the cross sections and branching fractions

for the simplified topologies

A careful examination of the number of signal and backgrounds events is a key feature

in any search in particle physics. This section provides a brief description for the

evaluation of the cross sections and branching fractions used for the investigation of the
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two topologies shown in the Feynman diagrams in Figures 6.1.1 and 6.1.2.

6.1.2.1 The cross sections

The cross sections for wino-like chargino pair-production and chargino-neutralino as-

sociated production at 13 TeV at next-to-leading logarithmic accuracy (NLL) can be

found here [131, 132]. The writer has estimated the NLL cross sections for
√
s = 14

TeV as follows.

A wino-like parameter-card is used for the generation of the electroweakinos pair-

production from proton-proton collisions at 13 TeV at next-to-leading order (NLO)

with Madgraph. A k−factor is computed as the ratio of the NLL/NLO cross sections

at 13 TeV
ki =

σi,NLL[pp(
√
s=13 TeV)→χ̃±1 χ̃0

2]
σi,NLO[pp(

√
s=13 TeV)→χ̃±1 χ̃0

2]
=

σi,LHC−SUSY

σi,Madgraph

kj =
σj,NLL[pp(

√
s=13 TeV)→χ̃±1 χ̃

∓
1 ]

σj,NLO[pp(
√
s=13 TeV)→χ̃±1 χ̃

∓
1 ]

=
σ
j,LHC−SUSY

σj,Madgraph

(6.1.1)

where i (j) refers to the different degenerate mass Mχ̃±1
= Mχ̃0

2
(Mχ̃+

1
= Mχ̃−1

) samples

investigated.

The NLO cross sections are computed at
√
s = 14 TeV with the same data_cards. The

same k-factors as in Eq. 6.1.1 are assumed for the corrections:

σi,NLL

[
pp (
√
s = 14 TeV)→ χ̃±1 χ̃

0
2

]
= ki × σi,NLO

[
pp (
√
s = 14 TeV)→ χ̃±1 χ̃

0
2

]
σj,NLL

[
pp (
√
s = 14 TeV)→ χ̃±1 χ̃

∓
1

]
= kj × σj,NLO

[
pp (
√
s = 14 TeV)→ χ̃±1 χ̃

∓
1

]
(6.1.2)

The resulting NLL cross sections are shown in Figure 6.1.4 and used as inputs for the

analysis of the simplified supersymmetric topologies in Figures 6.1.1 and 6.1.2.

At 13 TeV the values for the relative cross section uncertainties are in the range 4.5%

. 4σ . 9% for the samples studied [131,132]. The procedure here described provides

small corrections (. 5%) from the k-factors and can be considered a check for the
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Figure 6.1.4: Estimated NLL cross sections for wino-like chargino pair-production (blue
curve) and chargino-neutralino associated production (red curve) at

√
s = 14 TeV.

matched Madgraph cross sections and their potential dependences from the cutoff scales

chosen.

6.1.2.2 The branching fractions

For the signal samples the number of events with highest lepton multiplicity is a small

portion of the total number of events generated because of the low branching fractions

of the W and Z bosons golden channels. As a consequence assuming the true W and Z

branching fractions is inefficient requiring a large amount of time and storage capacity.

In order to enhance the statistics for the lepton decay modes the complete topologies as

in Figures 6.1.1 and 6.1.2 are generated. In this section a brief description of the method

of re-weighting with the proper branching fractions is shown, along with a validation.

Section 3.4 shows how the number of events expected to be seen by a detector is

expressed by the relation N = σ×BR× ε×
∫

dtL, where σ is the cross section, BR is

the branching ratio of the channels, ε takes care of all the efficiencies and acceptances

for the reconstruction of the objects in the final states as discussed in Section 3.4.2 and∫
dtL is the integrated luminosity.



6.1. INTRODUCTION TO THE TOPOLOGIES INVESTIGATED 165

Figure 6.1.5: Branching fractions for the decay of two W -bosons to 0,1 and 2 leptons
(electrons plus muons) independently from the number of jets. The arrows show the
decrement of the higher lepton multiplicity statistics in advantage of the lower one due
to the detector response (ε). An arrow with opposite direction can be interpreted as a
fake contribution and can be neglected for the signal.

With σ×
∫

dtL held fixed from a Monte Carlo simulation point of view, the number of

events is N = BR× ε×n where n is the number of events generated.3 For our purposes

we can categorize the branching ratios based on the lepton multiplicity, indeed the

number of electrons plus muons in the final state.

Consider the chargino pair-production samples pp → χ̃±1 χ̃
∓
1 . The number of events

with 0, 1 or 2 leptons is related to the BR of two W s in different channels, while ε

substantially decreases the higher multiplicity statistics increasing the 0 and 1 lepton

cases as in Figure 6.1.5.

The decay of the W -boson is forced with equal probability (1/3) to electron, muon

or tau leptons and the final number of events is re-weighted properly.4 As a check,

for some signal samples, the generation is performed for the two cases pp → χ̃±1 χ̃
∓
1 →

W ∗(→ all)W ∗(→ all)χ̃0
1χ̃

0
1 and pp → χ̃±1 χ̃

∓
1 → W ∗(→ L+ν)W ∗(→ L−ν)χ̃0

1χ̃
0
1, where in

3To be more specific it is the number of events from the Madgraph-Pythia matching.
4The τ -lepton channel is considered due to the two additional neutrinos in the final state: the

branching ratios are assumed 0.33 for the electron and muon channels and 0.34 for the tau channel.
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Figure 6.1.6: Normalised distributions of RISR and pCM
ISR,T for high (pp → χ̃±1 χ̃

0
2 →

W ∗(→ L+ν)Z∗(→ l−l+)χ̃0
1χ̃

0
1 in black) low (pp → χ̃±1 χ̃

0
2 → W ∗(→ all)Z∗(→ all)χ̃0

1χ̃
0
1

in red) statistics for the signal sample Mχ̃0
2

= Mχ̃±1
= 500 GeV, Mχ̃0

1
=425 GeV.

the first simulation the decay of the off-shell W boson is performed by Pythia, while in

the second case the three body decay χ̃±1 → L±νχ̃0
1 assumes equal probability for the

different flavours L = e, µ, τ .

For the two cases, the number of events with two leptons can be schematically written

as Nl = BRl × ε × nall and Nh = BRh × ε × nLep with l =low and h=high statistics

expected.

The same procedure is assumed for chargino-neutralino associated production focusing

on final states with three leptons. In this case the off-shell Z is forced 50% to e+e− and

50% to µ+µ−, with the channels mediated by ττ being negligible.

The first check is to verify the ratio BRl/BRh = NlNLep/NhNall with the number of

events generated and resulting final states with two (three) leptons. As a double check

the RJR observables for high and low statistics are compared. Figure 6.1.6 shows the

RISR and pCM
ISR,T normalised distributions for a signal example.

The fractions of the number of events and the distributions are double checked for some

signal samples and the values w = BRl/BRh used to re-weight are the follow:

w(2χ̃±1 → 2l) =
BR(2W → 2l)

(2/3 + 1/3×BR(τ → l))2
∼ 0.105677 (6.1.3)
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w(χ̃0
2χ̃
±
1 → 3l) =

BR(ZW → 3l)

(1− 1/3×BR(τ → l))
∼ 0.022017 (6.1.4)

where BR(2W → 2l) = BR2(W → l) + 2BR(W → l)BR(W → τ)BR(τ → l) +

BR2(W → τ)BR2(τ → l), and BR(ZW → 3l) ∼ BR(Z → l+l−) × [BR(W →

l) + BR(W → τ)BR(τ → l)] with l in short an electron or a muon.5 The weights are

computed using the branching fractions in [41].

To conclude, this procedure is simple and rigorous only for the highest lepton mul-

tiplicity case. In particular in the compressed regime it cannot be trivially used for

the other cases. Indeed, the minimum value for the transverse momentum of isolated

electrons and muons is chosen to be 10 GeV, and investigating mass splittings down

to 15 GeV means approaching a regime with low efficiency ε for the reconstruction of

the two (three) leptons. For example, for chargino pair-production the two lepton slice

in Figure 6.1.5 is reduced towards mainly the 0 lepton category, with a progressively

higher effect the smaller the mass difference studied. Final states with no leptons will

be a mixture of different channels, with different weights, including topologies with no

reconstructed leptons. If not properly re-weighted, the RJR observables can be biased

and in such cases a generation including all the channels is preferable.

6.2 Chargino-neutralino associated pair-production in

final states with three leptons

The signal samples are the simplified topologies as in Figure 6.1.1 generated within

the mass ranges 125 GeV ≤ Mχ̃±1
= Mχ̃0

2
≤ 500 GeV, with five mass splittings ∆M =

MP̃ −Mχ̃ = 15, 25, 35, 50 and 75 GeV.

All the signal and background samples are passed to the algorithm summarised by the

compressed tree in Figure 6.2.16. Assuming a transverse view, event-by-event a basis of
5Notice in BR(ZW → 3l) the contribution of order BR2(τ → l) has been neglected.
6A more sophisticated reconstruction of the S-system could be applied where all the supersymmetric
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LAB

CM

ISR S
V I

Lab State

Decay States

Visible States

Invisible States

Figure 6.2.1: The compressed decay tree: LAB is the laboratory system, CM is the
centre-of-mass system (S+ISR), ISR is the initial state radiation system, S is the signal
or sparticle system, V is the visible system (the system associated with the three leptons)
and I the invisible system.

RJR variables is extracted and analysed to probe compressed spectra for a projection

of
∫
L = 300 fb−1.

6.2.1 Compressed RJR observables-preselection criteria

In this section the distributions of the main RJR observables are described for the

events satisfying minimal preselection criteria. Three leptons (electrons and muons) are

required in the final state with pT > 10 GeV, while at least one jet with pT > 20 GeV is

associated to the ISR-system. A minimal value for the missing transverse momentum is

required 6ET > 50 GeV. This choice guarantees a focus on the signal events of interest,

and together with the three leptons requirement substantially reduces the backgrounds

with no weakly interacting particles.

Figures 6.2.2 and 6.2.3 show the distributions of the main RJR observables sensitive

to compressed scenarios for events that have satisfied the preselection criteria. All the

visible objects are assignable with no ambiguity. For this study the writer presents the performances
of the RJR technique resulting from selection criteria of only the transverse observables associated to
the simplified tree.
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Figure 6.2.2: Distributions of the RJR observables sensitive to compressed scenarios
for events that have satisfied the preselection criteria. Standard Model backgrounds
are stacked together while the overlaid dashed curves refer to four signal samples as in
Figure 6.1.1. All the contributions are scaled with an integrated luminosity of 300 fb−1

at 14 TeV.
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Figure 6.2.3: Distributions of the jet multiplicities for events that have satisfied the
preselection criteria. Standard Model backgrounds are stacked together while the over-
laid dashed curves refer to four signal samples as in Figure 6.1.1. All the contributions
are scaled with an integrated luminosity of 300 fb−1 at 14 TeV.
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Category Snowmass label (sub-categories description)

Di-boson BB-BLL (Di-boson + jets, off-shell Di-boson in di-lepton + jets)
tt̄+V TTB (top pair plus bosons, tt̄+Z, tt̄+W and tt̄+h + jets)

Tri-boson BBB (tri-vector-boson + jets, Higgs associated + jets)

Boson+jets
BJ-B-LL-BJJ (Vector Boson + jets,

off-shell V in di-lepton, vector boson fusion)

Single-top tt̄
TT-TB-TJ (top pair + jets,

top pair (off shell t∗ →Wj) + jets, single top + jets)

Table 6.1: Five categories summarizing all the main Standard Model backgrounds as
part of the Snowmass study. The category name is indicative of the dominant sub-
category backgrounds.

Standard Model backgrounds are stacked together and categorised in five groups as in

Table 6.1, while the overlaid dashed curves refer to the signal samples.

The main SM contributions are WZ boson associated production and tt̄ processes with

an additional vector boson.

The number of events passing the preselection criteria is smaller for the signal sample

Mχ̃±1
= Mχ̃0

2
=200 GeV, ∆M =15 GeV than the sampleMχ̃±1

= Mχ̃0
2
=300 GeV, ∆M =50

GeV as can be seen from all the RJR observables. Since the electron and muon objects

are assumed to have a minimal transverse momentum of 10 GeV, when the mass splitting

approaches this regime the efficiency of the detector for the reconstruction of three

leptons dramatically decreases. In order to probe this extreme phase space ∆M < 15

GeV, a parametrisation for the efficiencies of soft leptons must be implemented [89].

Figures 6.2.2a shows the distributions of RISR. The variable provides great signal-

to-background discrimination in the absence of more stringent selection criteria. The

assignment of the different objects in the compressed tree is performed with no ambi-

guity and it is unnecessary to focus on the high ISR regime. Notice that RISR assumes

values larger than unity when some objects are forced in the V-system. The signal dis-

tributions scale with the mass ratio LSP to parent sparticle: the observable is expected

to be peaked for values greater than Mχ̃/MP̃ due to the additional contribution to 6ET

coming from the neutrino. Since the hard scale is low, the mass ratio, rather than the



172 CHAPTER 6. COMPRESSED EW SUSY SECTOR

absolute mass difference, will be considered for the RISR requirements.

Figure 6.2.2b shows the distribution of pCM
ISR,T . The hard scales for the signal and

background samples are similar and the variable has no impact. In the absence of

other requirements the slope for the signal is paradoxically more severe because of the

background events with non radiative jets forced in the ISR-system. We have seen how

a minimal requirement on pCM
ISR,T is essential to exploit the RJR technique with multi-

leptons final states. The requirement applied to this variable, being the only large scale

observable in this study together with 6ET , will be moderately tighter for large mass

splittings, when the criterion on RISR is relaxed.

Figures 6.2.2c and 6.2.2d show the distributions of the opening angle between the ISR-

system and the invisible system and between the CM system and the invisible system

respectively. Both of the variables are useful to decrease the SM background yields.

Once again, for ∆φISR,I, both signal and background distributions tend towards π, but

the signal has a stronger tendency to do so. The distributions of ∆φCM,I for the signal

samples are almost independent of ∆M .

Two transverse masses, one compressed and one topology dependent, are used in the

analysis. Figure 6.2.2e shows the transverse mass of the visible system. Signal events

tend to populate lower values than SM backgrounds events. This feature is expected, in

particular in the low-ISR regime, since the variable is the transverse mass of the three

leptons. The selection criteria applied to this scale observable will be an upper bound:

a maximum, rather than a minimum value, will be required.

Figure 6.2.2f shows the transverse mass of two leptons when the third lepton in the final

state has different flavour: the variable corresponds to MT, e+e− when the third lepton

is a muon and MT, µ+µ− when the third lepton is an electron7. A pair of leptons with

same flavour (SF) is expected from the off-shell Z boson produced from the χ̃0
2. The

distribution for the signal samples has an end-point at the mass difference. A check on

the electric charge is performed and the distribution refers to roughly half of the total
7The variable is simply labelled Ml+l− , avoiding to write the transverse subscript: MT,l+l−
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number of events.

Finally, Figure 6.2.3 shows the distributions for the b-jet, τ -jet, fat-jet and light jet

multiplicities.8 A veto is applied to the b-jets, helpful against tt̃ +V, while vetoing on

fat and τ have no impact. For the light jet number an opposite strategy will be used.

The Standard Model backgrounds are expected to have a higher jet multiplicity due to

non-ISR jets, hence upper bounds will be applied in the signal regions.

This is a complete basis of transverse observables: other possible general and topology

dependent variables give redundant or no additional information. The scale variable

MS
T has no great impact since the hard scale and the mass-difference scale are too

small for the signal. Other topology dependent variables such as the i-th lepton pT

are not exploited: MV
T , in such a way, treats the three lepton transverse momenta

and the relative angles in one. No additional information can be extracted from the

distributions of pV
lep1,T , pV

lep2,T or pV
lep3,T .

Additional handles could be extracted considering the whole supersymmetric tree restor-

ing the three-dimensional view of the event. For this analysis we want to emphasize

the performance of the RJR technique obtained exploiting only transverse observables.

6.2.2 Two-dimensional distributions

The transverse momentum of the ISR-system pCM
ISR,T has a small impact on the dis-

crimination of the SM backgrounds, but a minimal requirement (> 50 GeV), together

with 6ET >50 GeV, is a sine qua non condition in order to focus on the final states

of interest and exploit the RJR technique for compressed scenarios. From now on this

requirement, together with a veto on jets tagged as bottoms is applied.

The ratio RISR, sensitive to the the mass ratio Mχ̃/MP̃ , has a high impact also in the

low-ISR regime due to the unambiguity in the separation of the V and ISR systems. The

8The numbers of light jets, b-jets, τ -jets and fat-jets in the ISR-system are equivalent to the re-
spective multiplicities in the final state, because no jets are assigned to the V-system.
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visible system, corresponding to three leptons, is expected to provide a small transverse

mass for the signal samples. An increment for the value of pCM
ISR,T is expected to increase

mainly the transverse momentum of the two LSPs.

Figures 6.2.4 and 6.2.5 show the two dimensional distributions of MV
T as a function of

RISR for the two main Standard Model backgrounds and two signal samples for events

passing the preselection criteria, N ISR
b−jet = 0 and pCM

ISR,T > 50 GeV. The final state signal

events populate low values of MV
T with a complementarity with high values of RISR.

Vice versa for the backgrounds events, in particular for the di-boson Standard Model

background which is shown in Figure 6.2.4a, simultaneous low values of MV
T and RISR

close to one are unlikely.

Using the two RJR observables in concert provides a increasingly powerful discrimina-

tion the smaller the absolute and relative mass splitting of the signal samples.
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b−jet = 0 and pCM
ISR,T > 50 GeV for low values of the transverse mass of the
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(b) The scatter plot RISR vsMV
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1
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Figure 6.2.5: Distribution of the MV
T as a function of RISR for two signal samples with

∆M = 15 GeV (6.2.5a) and ∆M = 25 GeV (6.2.5b). Preselection criteria, N ISR
b−jet = 0,

pCM
ISR,T > 50 GeV and MV

T < 100 GeV are demanded.

In the low MV
T regime, additional handles to decrease the SM background yields are

provided by the compressed-transverse RJR angles and Ml+l− . Figures 6.2.6 show

the two-dimensional distributions of ∆φISR,I, ∆φCM,I and Ml+l− as a function of the

ratio RISR for MV
T < 100 GeV for the di-boson processes, the tt̄+V backgrounds and

two signal samples. For high values of RISR, signal events tend to populate higher

values of the angular variable ∆φISR,I, and values closer to zero for ∆φCM,I than the

backgrounds. The distributions of Ml+l− vs RISR are shown for final states with two

leptons with same flavour and opposite electric charge or sign (SFOS), while the third

lepton in the V-system is identified with different flavour. The transverse mass for

the two SFOS leptons provides an additional handle in order to discriminate between

putative compressed sparticle signals and SM backgrounds. For the signal, as shown in

Figures 6.2.6i and 6.2.6l, the transverse mass of the two leptons has a clean maximum

at 4M . Figure 6.2.7 shows the one-dimensional distributions for RISR > 0.6.
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(c) RISR vs Ml+l− for final
states with two SFOS leptons.
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(f) RISR vs Ml+l− for final
states with two SFOS leptons.
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(i) RISR vs Ml+l− for two SFOS
leptons.
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(l) RISR vsMl+l− for final states
with two SFOS leptons.

Figure 6.2.6: Two-dimensional distributions of ∆φISR,I (left), ∆φCM,I(centre) andMl+l−

(right) as a function of RISR for the Standard Model di-boson background (6.2.6a -
6.2.6b - 6.2.6c), tt̄+V background (6.2.6d - 6.2.6e - 6.2.6f), the signal sample MP̃=200
GeV, Mχ̃=185 GeV (6.2.6g - 6.2.6h - 6.2.6i) and the signal sample MP̃=150 GeV,
Mχ̃=125 GeV (6.2.6j - 6.2.6k - 6.2.6l). The two-dimensional histograms show the num-
ber of events expected per bin for an integrated luminosity of 300 fb−1 satisfying the
preselection criteria, N ISR

b−jet = 0, pCM
ISR,T > 50 GeV and MV

T < 100 GeV.
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Figure 6.2.7: Distributions of the ∆φISR,I (6.2.7a), ∆φCM,I(6.2.7b) andMl+l− (6.2.7c) for
the events satisfying the preselection criteria, N ISR

b−jet = 0, pCM
ISR,T > 50 GeV, MV

T < 100
GeV and RISR > 0.6.

6.2.3 Signal regions

Selection criteria defined with the compressed RJR observables result in signal regions

used to investigate chargino-neutralino associated pair-production in final states with

three leptons and missing transverse momentum. One or more additional jets are

assumed to be radiated from the initial state and a minimal requirement on pCM
ISR,T

allow us to focus on the final states of interest. The strategy is based on a simple cut

and count analysis with a moderate optimisation.

The signal regions target five mass splittings as shown in Table 6.2. A special treatment

is assumed for RISR for the samples investigated, being the ratio related to the mass

ratio Mχ̃/MP̃ rather than the absolute value of the mass splitting.

The first row refers to common objects-criteria and a veto is applied on the number of

b-jets. Tighter criteria are used for the only large scale variables ( pCM
ISR,T and 6ET ), and

∆φCM,I whereas for larger mass differences (∆M = 50, 75 GeV) the RISR requirement

is relaxed.

The highest impact of the RJR observables is for the samples of mass difference in

the range 20-40 GeV. For ∆M=15 GeV the challenge come from the inefficiency in

the reconstruction of three leptons while for the highest values (∆M = 50, 75 GeV)

the ratio Mχ̃/MP̃ decreases substantially. For these scenarios the light jet multiplicity

in the ISR-system is constrained to a maximum of two jets in order to restrict the
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(b) The distribution of MV
T for signal samples

with ∆M = 35 GeV and SM backgrounds after
the application of the requirements in Tables 6.2.
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(c) The distribution of ∆φCM,I for signal samples
with ∆M = 25 GeV and SM backgrounds after the
application of the N-1 requirements in Tables 6.2.
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(d) The distribution of ∆φISR,I for signal samples
with ∆M = 35 GeV and SM backgrounds after
the application of the N-1 requirements in Table
6.2.
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the N-1 requirements in Table 6.2 in final states
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ferent flavour.
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(f) The distribution of MV
T for signal samples

with ∆M = 50 GeV and SM backgrounds after
the application of the N-1 requirements in Table
6.2.

Figure 6.2.8: The distributions of the RJR observables sensitive to compressed scenarios
for signal and Standard Model background events passing the selection criteria in one
signal regions of Table 6.2. All selection criteria are applied, except the requirement on
the variable that is displayed.
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Mass Splitting [GeV]

Variable ∆M = 15 ∆M = 25 ∆M = 35 ∆M = 50 ∆M = 75

Object multiplicity 3 Leptons (e and µ) with plep
T > 10 GeV,

selection criteria At least one jet, p jet
T > 20 GeV, N ISR

b−jet = 0

pCM
ISR,T ( 6ET ) > [GeV] 50 70 120

N ISR
jet < 3 4 3

MV
T <, for 3 SFL [GeV] 40 50 65 75 90

Ml+l− <, for 2 SFL
[GeV] (MV

T < 100 GeV)
15 25 35 50 75

∆φCM,I < 1 0.7 0.5

∆φISR,I > 3

RISR > 0.85, 0.9
0.8, 0.85

0.9
0.8, 0.85

0.7, 0.8
0.85

0.65, 0.7
0.75

Table 6.2: A conservatively optimised set of selection criteria for signal regions in the
analysis of chargino neutralino production in final states with three leptons and missing
energy.

background events.

The requirement on MV
T is an upper bound and the maximum grows with ∆M , while

Ml+l− has a maximum defined exactly by the mass splitting itself. In final states with

three electrons or three muons only the MV
T requirement is applied while for events

with two same flavour leptons and one different flavour lepton the selection on Ml+l−

is required together with MV
T <100 GeV. An optimisation based on the distribution

of ∆φISR,I could be performed. We tune the criterion on RISR so that the minimal

requirement increases for decreasing relative mass splittings: equivalent to increasing

MP̃ maintaining ∆M fixed or decreasing ∆M with MP̃ fixed. The criteria assume

values interspersed by 0.05, which provides a moderate optimisation.

For example, Figure 6.2.8a suggests to demand R > 0.8 for the signal sample with

MP̃ = 150 GeV, R > 0.85 for MP̃ = 200 and 250 GeV and R > 0.9 for the remaining

three samples. Other distributions for the RJR observables are shown in Figure 6.2.8

applying the N-2 criteria in Table 6.2 and a fixed requirement for RISR.
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6.2.4 Results

Selection criteria on the RJR observables are imposed for the definition of the signal

regions in Table 6.2. Such signal regions are applied to calculate sensitivities for com-

pressed spectra signal samples for a projection of 300 fb−1. The topology investigated is

shown in the Feynman diagram in Figure 6.1.1: the
√
s=14 TeV proton-proton scatter-

ing produces a chargino neutralino pair, with 125 GeV≤MP̃ ≤ 500 GeV, in final states

with three leptons and two LSPs, with mass differences in the range 15 GeV≤ ∆M ≤ 75

GeV. Figures 6.2.9 shows the Z-score or ZBi calculated assuming the metric [94] and

described in Section 3.5.1. A flat systematic uncertainty of 20% is assumed for the

overall Standard Model background. The main contribution arises from the irreducible

WZ associated production.
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Figure 6.2.9: Projected exclusion and discovery reach for chargino-neutralino associated
production in the compressed region (15 GeV ≤ ∆M ≤ 75 GeV) at

√
s = 14 TeV for

an integrated luminosity of 300 fb−1.

For mass splittings in the range 20-40 GeV the RJR observables provide great potential

to distinguish signal from background. The signal yields in the extreme compressed

scenarios can benefit from an improvement in the efficiencies of the detector in the
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Figure 6.2.10: Observed and expected exclusion contours at the 95% CL in the Mχ̃±1
=

Mχ̃0
2
vs Mχ̃0

1
plane. Current results from the ATLAS collaboration for the search of

the SUSY simplified topology pp → χ̃±1 χ̃
0
2, (χ̃

±
1 → W±χ̃0

1), (χ̃0
2 → Zχ̃0

1) at
√
s=13 TeV

[133] (a). Summary plot for the topologies pp→ χ̃±1 χ̃
0
2, (χ̃

±
1 → W±χ̃0

1), (χ̃0
2 → Z(h)χ̃0

1)
and pp → χ̃+

1 χ̃
−
1 (χ̃±1 → W±χ̃0

1), at
√
s=8 TeV (b). Few scenarios are excluded in the

compressed region.

reconstruction of low-momentum leptons, which is outside the scope of this work. On

the other hand, the significances decrease for mass differences close to the W pole mass

due the difficulty of discriminating background events derived from topologies with

absolute and relative mass scales very close to the signal ones.

For an integrated luminosity 300 fb−1, degenerate charginos and neutralinos would be

discovered for masses Mχ̃±1
= Mχ̃0

2
>150 GeV for a portion of the samples investigated

and excluded up to 300 GeV for the best scenarios.

The value ∆M =15 GeV must not be considered as a threshold: the minimum mass

difference achievable with any technique is strongly related to the efficiencies for the

detector to reconstruct low-momentum leptons. For extremely compressed scenarios,

a similar analysis could be used to probe the same final states topology with only two

low-momentum leptons reconstructed, although the background would differ in that

case. In such analysis, one could require two same sign leptons to suppress the SM

yield.
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Figure 6.2.11: Current results from the CMS collaboration for the search of the SUSY
simplified topology pp→ χ̃±1 χ̃

0
2, (χ̃

±
1 → W±χ̃0

1), (χ̃0
2 → Zχ̃0

1) in final states with two soft
leptons [89] (a). The exclusion limits at the 95% CL correspond to the black lines in
Figure (b). The study in this thesis should be compared with the red line.

6.3 Chargino pair-production

The signal samples are simulated proton-proton collisions at
√
s = 14 TeV producing

a pair of charginos with opposite electric charge. The focus is on final states with

two leptons as illustrated in the Feynman diagram in Figure 6.1.2. The samples are

generated within the mass ranges 100 GeV ≤ Mχ̃±1
≤ 300 GeV, with the five mass

splittings ∆M = MP̃ −Mχ̃ = 15, 25, 35, 50 and 75 GeV.

In order to improve the signal-to-background discrimination we enrich the simplified

version of the compressed RJR tree by specifying the substructure of the S-system.

This is feasible since in the two lepton final state one has no doubt of reconstructing

all the visible sparticle decay products. In any case, the useful transverse variables of

the simplified tree can be computed. In the previous study, a similar approach could

be used to increase the number of RJR observables and improve the performance of the

method.

For the chargino pair topology, there are two options: reconstruct the whole chain or

consider each chargino to decay to a visible and an invisible object. In the first case

each hemisphere of the S-system would have two invisible and one visible object.
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Figure 6.3.1: The RJR decay tree for the analysis of compressed chargino pair-
production in events with ISR. The substructure of the SUSY system is the follow:
each chargino decays in a visible (lepton) and an invisible (neutrino + neutralino)
object.

There are not enough jigsaw rules in order to assign the unknown d.o.f. for the four

invisible weakly interacting particles, because two leptons are the only particles recon-

structed by the detector decaying from the S-system. Test masses for the invisible

systems are not suitable for the three body decay kinematics. We could fake the neutri-

nos by assigning the same three-momenta of the correspondent leptons. In this case each

W -system would be faked by a massless object with twice the lepton three-momentum.

Here, we do not adopt this strategy. One of the purposes of the RJR technique is to

amplify the uncorrelation, avoiding redundant information, for the basis of observables.

Reconstructing the whole tree assuming a priori the three-momenta of the neutrinos

means to redistribute, event-by-event, the same final state information between more

RJR observables.

The RJR tree is shown in Figure 6.3.1. Electrons and muons are associated with the

l+ and l− systems, depending to the electric charge, while the jets are associated with

the ISR-system. The S-system frame is the approximation for the centre-of-mass of the

two charginos and each one decays to a lepton and an invisible system. Each invisible

system collects the neutrino-neutralino contribution of the hemisphere a and b.
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In the overall centre-of-mass frame the ISR and S-system are back-to-back. The invari-

ant mass of the invisible objects in this simple case would correspond to the invariant

mass of the two leptons (see Eq. 4.2.17). The rapidity is assigned as to the chargino

centre-of-mass (S-system) and the contra-boost invariant jigsaw rule repartitions the

remaining two unknown degrees of freedom.

The lepton multiplicity of the final state determines the main contributions of the

Standard Model processes. Roughly, the smaller the number of electrons plus muons,

the larger the main contributions from the Standard Model backgrounds. The di-

leptonic channels of a pair of W bosons, constitute the main process resulting in a final

state with two opposite sign leptons and missing transverse momentum, in the absence

of hadronic jets.

Searches for chargino pair-production in a final state with two leptons are challenging

for open mass spectra due to the huge W+W− irreducible background, while other

contributions are often negligible. As amply discussed, in the compressed regime the

challenge is exacerbated by the low momenta of invisible and visible objects and the sub-

sequent kinematics. Requiring a transverse momentum for the ISR-system introduces

an additional complication for the analysis in the compressed regime: other Standard

Model backgrounds can contribute significantly.

6.3.1 Another look at the RJR observables

Considering the three-dimensional view of the event, and the S-system not divided into

the simple V-I substructure, a basis of RJR observables can be extracted. Nevertheless,

having in mind the simplified tree, where I corresponds to the sum of the two invisible

systems I = Ia + Ib and V to the sum of the two lepton systems V = l+ + l−, we can

still define the transverse observables:

• RISR =
|~pCM

I,T ·p̂
CM
ISR,T |

pCM
ISR,T

: variable sensitive to the mass ratio parent LSP.
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• pCM
ISR,T : magnitude of vector-sum of the jets transverse momentum evaluated in

the CM frame.

• ∆φISR,I: opening angle between the ISR-system and the I-system, evaluated in

the CM frame.

The observables assume values slightly different from the case with the simplified com-

pressed RJR tree since the old I-system is treated as a unique massless particle. Three-

dimensional scale-mass variables and additional angular observables include:

• MV: mass associated to the V-system (invariant mass of l+ + l−).

• M χ̃± : mass associated to the chargino system.

• ∆φl+,I (∆φl−,I): polar angle between the positive (negative) charge lepton and 6 ~ET

computed in the Lab frame.

• ∆φCM,I: opening angle between the CM system and the I-system.

• cos θ ≡ β̂CM
S ·pS

I,T : the dot product between the direction of the boost from CM to

the reconstructed S frame and the transverse momentum of the I-system in the S

frame.

• object multiplicities.

For the RJR tree specified in Figure 6.3.1, the contra-boost invariant rule for the two

chargino S-system depends on the d.o.f. of only two visible objects: the two leptons in

the final state. In such a case, not only the re-partition of the unknown d.o.f. is such

that M χ̃+
= M χ̃− , but in each chargino frame the three-momenta of the lepton and the

invisible system are identical and correspond to half of M χ̃± in the limit of massless

objects (see Eq. 4.2.37 with N = L). In other words, the energies of the leptons in the

reconstructed chargino rest frames give no additional information.
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Category Snowmass label (sub-categories description)

Boson + jets BJ-B-LL(Vector Boson + jets, Drell-Yan in di-lepton)
t + X TT-TB-TJ-TTB (top pair, top pair (off shell t∗ →Wj),

single top plus jets, top pair plus bosons + jets)
Di-boson BB-BLL (Di-Vector + jets, off-shell Di-Vector in di-lepton +jets)
Others BJJ-BBB-H (Vector boson fusion, tri-Vector +jets, Higgs associated +jets)

Table 6.3: Four categories summarizing all the main Standard Model backgrounds as
part of the Snowmass study. The category name is indicative of the sub-processes.

The important scale observable, labelled M χ̃± , will not reproduce the true chargino

mass, being that the true LSP is massive and the Ia,b systems, in each hemisphere, are

simplifications of the neutralino+neutrino contribution. Nevertheless, the distribution

of M χ̃± is expected to be particularly useful to distinguish the signal from the SM

processes in which small mass objects populate the χ̃± system.

Since the experimental observables are a combination based on the imposition of a

simplified transverse RJR tree and a more complicated tree plus additional canonical

handles, several details are described for their key features and impact to reduce differ-

ent SM background yields.

6.3.2 Preselection

In this section the distributions of the main RJR observables are described for the events

satisfying preselection criteria. Two leptons (electrons and muons) are required in the

final state with pT > 10 GeV and at least one jet with pT > 20 GeV is associated to the

ISR-system. The requirement of jets in the final state associated with the ISR-system,

in order to exploit the RJR technique in the compressed regime, inevitably increases

the contribution of several Standard Model backgrounds otherwise negligible with a jet

veto.

The main Standard Model backgrounds are categorised in four groups and specified in

Table 6.3. The boson + jet (in blue) background is mainly Z → l+l−+ jets. The t+X (in

yellow) background is the sum of all the Standard Model contributions with at least one
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Figure 6.3.2: The distributions of the invariant mass of the two leptons for same (6.3.2a)
or different (6.3.2b) flavour.

top quark. The LHC can be considered a tt̄ factory due to the production cross section

and the di-leptonic channel for the two tops provides a non-negligible contribution.

The green background is substantially the irreducible W+W− in final states with two

leptons and missing transverse momentum. Finally “other” contributions, summarised

in red and described in Table 6.3, are mainly di-boson fusion and h → W+W− or

h→ τ+τ−processes.

Firstly, consider the invariant mass of the two leptons, corresponding to the RJR ob-

servableMVfor the final state topology investigated. Figure 6.3.2 shows the distribution

of the invariant mass of the two leptons for same and different flavour assuming a min-

imal value for the missing transverse momentum 6ET > 20 GeV. A feature which is

worth to notice is the peak around 90 GeV for same flavour leptons in the MV dis-

tribution, due to the Standard Model backgrounds Z + jets (in blue), moderately for

the WZ (in green) and di-boson fusion and tri-boson (in red). Requiring a different

flavour for the two leptons cuts all the backgrounds with a contribution Z → l+l−, but

reduces the statistics by half. Stringent criteria on 6ET and pCM
ISR,T are efficient only for

the single Z background. In the compressed regime the final state events for all the

signal distributions tend to populate low values of MV and a requirement MV < 70,

or more stringent, will be used in the signal regions. Here, in order to have a better



188 CHAPTER 6. COMPRESSED EW SUSY SECTOR

understanding of the distributions of the RJR observables, final states with two same

flavour leptons with an invariant mass in the Z window are excluded: MV
SF < 70 GeV

or MV
SF > 110 GeV.

Notice the additional peak for low values of MV, mainly due to the Z+ jets and di-

boson fusion contributions resulting in a comparable number of events for the cases

with two leptons with same or different flavour. The main processes to contribute are

Z → τ+τ− → l+l−νννν, and moderately Dell-Yan processes with missing transverse

momentum (Z∗(γ∗) → τ+τ−) or the single W boson via the leptonic channel with an

additional lepton faked by a jet or a photon. For the di-leptonic decay of the Z boson

via taus the value of MV is clearly expected to be smaller than the Z mass, challenging

the analysis for the compressed scenarios of chargino pair-production.

Herein, the preselection criteria are the following: two leptons, at least one jet, and a

minimal 6ET > 50 GeV are required. In addition, for final states with two same flavour

leptons, MV
SF< 70 GeV or MV

SF > 110 GeV is imposed.

The RJR observables are shown in Figures 6.3.3 and 6.3.4 for the events passing the

preselection criteria.

For the signal sample with ∆M =15 GeV (green dashed curve) the number of events

passing the preselection criteria is small, considering the production cross section, when

compared to the other samples. Similarly to the previous study this is a consequence

of the conservative minimal value chosen for the transverse momenta of electrons and

muons (10 GeV). The number of events passing the criteria decrease significantly when

the mass splitting approaches this regime because the kinematics is such that one of

the two leptons likely has a transverse momentum smaller than 10 GeV and so is not

considered as a reconstructed object by the detector.

Figure 6.3.3a shows the distribution of RISR. The observable provides a good signal-

to-background discrimination, but additional selection criteria are necessary. The RISR

distributions have the shapes expected. The signal distributions scale with the ratio of

the LSP mass to the parent sparticle mass. The observable is expected to be peaked
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Figure 6.3.3: Distributions of the RJR observables sensitive to compressed scenarios
for events that have satisfied the preselection criteria. Standard Model backgrounds
are stacked together, while the overlaid dashed curves refer to five signal samples as in
Figure 6.1.2. All the contributions are scaled with an integrated luminosity of 3 ab−1

at 14 TeV.
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(c) Distribution of N ISR
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(d) Distribution of N ISR
τ−jet: number of τ -jet in the

final state.
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(e) Distribution of N ISR
fat : number of fat-jet in the

final state (M(jet) > 60 GeV).

1 2 3 4 5 6
ISR
jetN

1
10

210

310

410

510

610

710

810

910

1010

1110

N
um

be
r 

of
 E

ve
nt

s 

Boson + jets

t + X

Di-Boson

Others

 )= 75 GeVΧ
∼

 )= 100 GeV , M( P
~

M( 

 )= 110 GeVΧ
∼

 )= 125 GeV , M( P
~

M( 

 )= 75 GeVΧ
∼

 )= 150 GeV , M( P
~

M( 

 )= 150 GeVΧ
∼

 )= 200 GeV , M( P
~

M( 

 )= 215 GeVΧ
∼

 )= 250 GeV , M( P
~

M( 

=14 TeVs -1,            L=3 ab
0

1Χ∼ 
0

1Χ∼ *- W*+ W→ 
-

1Χ∼ 
+

1
Χ∼ SM, →Madgraph + Pythia + Delphes,   p p ∫
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jet : number of light jet in the

final state.

Figure 6.3.4: Distributions of the jet multiplicities and additional RJR observables for
events that have satisfied the preselection criteria. Standard Model backgrounds are
stacked together, while the overlaid dashed curves refer to four signal samples as in
Figure 6.1.2. All the contributions are scaled with an integrated luminosity of 3 ab−1

at 14 TeV.
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for values greater than Mχ̃/MP̃ due to the additional contribution to 6ET due to the

two or more neutrino momenta. The ratio assumes values greater than one when some

objects are forced into the V-system. The assignment of the different objects in the

compressed tree is performed with no ambiguity: it is unnecessary to focus on the high

ISR regime in order to have a good resolution for the ratio.

Notably the resolution is not only accurate but also moderately dependent to the ab-

solute value of the mass difference as can be seen comparing the distributions of the

two samples with same mass ratio Mχ̃/MP̃ . The dashed red and yellow lines peak to

the same maximum, while the widths are moderately dependent on ∆M because only

two, among the six or more supersymmetric decay products, are visible. For this reason

values of RISR larger than one are not considered in this study.

Figure 6.3.3b shows the distribution of pCM
ISR,T . The hard scales for the signal and

background samples are similar and the variable has no impact. A minimal requirement

on pCM
ISR,T is essential to exploit the RJR technique with multi-lepton final states.

Figure 6.3.3c shows the distribution for the mass associated to the chargino system.

This scale observable is extremely useful to discriminate the signal respect the single

boson plus jets background.

Figures 6.3.3d, 6.3.3e and 6.3.3f refer to the distributions of cos θ ≡ β̂CM
S · pS

I,T , the

opening angles between the CM system and the invisible system and between the ISR-

system and the invisible system respectively.

Figure 6.3.4 shows the distributions for the b-jet, τ -jet, fat-jet and light jet multiplicities.

A veto is applied to all the jets tagged as different with respect the light ones. The

Standard Model backgrounds are expected to have an higher light jet multiplicity due

to non-ISR jets: in particular restrictive criteria will be applied in order to suppress the

tt̄ Standard Model background. As can be seen from Figure 6.3.4b, requiring opposite

charge leptons we can get rid of a class of events attributable to SM background, in

particular processes with a high lepton multiplicity, but only two same-sign leptons

reconstructed by the detector.
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6.3.3 Reducing the boson plus jets and tt̄ Standard Model back-

grounds

Several Standard Model contributions challenge the feasibility to probe compressed

chargino-LSP spectra at the LHC. In this section the focus is on the boson plus jets

and the Standard Model processes involving at least one top quark. These backgrounds

are reducible in an analysis dedicated to open mass spectra vetoing jets in the final state

and requiring a large value for the missing transverse momentum.

From now on, we consider events with only opposite charge leptons and a veto is applied

for all final states with jets tagged as b, τ and fat: N ISR
b−jet = 0, N ISR

τ−jet = 0 and N ISR
fat = 0.

For all the chargino masses, and until ∆M = 75 GeV, signal events tend to populate

low values for the invariant mass of the two leptons so the criterion MV < 70 GeV is

considered. This requirement excludes a large portion of the Standard Model final state

events, in particular tt̄ and multi-bosons processes, independently from the flavour of

the two leptons reconstructed.

Nevertheless, numerous Standard Model processes result in a low value of MV, in par-

ticular the boson plus jets contribution. The focus is on the process Z → τ+τ− →

l+l−νννν plus jets. For such events the role of the chargino system in Figure 6.3.1 is

assumed by the leptonically decaying tau, while the I systems reconstruct the inform-

ation of the two neutrinos in each hemisphere. For these background events M χ̃± is a

reconstruction for the mass of the lepton and two neutrinos resulting from the τ .

The first three plots in Figure 6.3.5 show the two-dimensional distributions between

M χ̃±and the ratio RISR for the boson plus jets backgrounds and two signal samples

with same ratio Mχ̃/MP̃ , but different values for ∆M and for the hard scale. The

larger the parent sparticle mass, the larger the separation between the signal-like events

with respect the events resulting from a single vector boson. Figure 6.3.5d shows the

distribution of M χ̃± for the five signal samples and for the on-shell and off-shell boson

plus jets backgrounds.
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Figure 6.3.5: Two-dimensional distribution of M χ̃± as a function of RISR for the
Standard Model di-boson background and the signal samples Mχ̃±1

=100, 200 GeV and
Mχ̃0

1
=75, 150 GeV. Figure 6.3.5d shows the distribution of M χ̃± for the boson plus jets

background and five signal samples. The histograms show the number of events expec-
ted per bin for an integrated luminosity of 3 ab−1 satisfying the preselection criteria
and the additional requirements N ISR

b−jet = 0, N ISR
τ−jet = 0, N ISR

fat = 0 and MV < 70 GeV.

We impose M χ̃±> 24 GeV in order to suppress the V+jets background.

With this requirement the SM background is dominated by t+X processes as described

in Table 6.3. The main subprocess contributions involve a pair of (on-shell or off-shell)

top quarks in the di-leptonic channels. Figure 6.3.6 shows the distribution of the light

jet multiplicity as a function of the ratio.
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Figure 6.3.6: Two-dimensional distributions of N ISR
jet as a function of RISR for the Stand-

ard Model t̄t background and the signal samples Mχ̃±1
=100, 200 GeV and Mχ̃0

1
=75, 150

GeV. Preselection criteria, N ISR
b−jet = 0, N ISR

τ−jet = 0, N ISR
fat = 0, MV < 70 GeV and M χ̃±>

24 GeV are required.

In order to attenuate the tt̄ contribution only one jet in the final state is required.

At this stage, the veracity of the statement of the LHC as a top pair factory can be

appreciated. Despite the N ISR
jet = 1 requirement, and vetoing on jets coming from the

fragmentation of bottoms, the tt̄ backgrounds is still not suppressed sufficiently. If the

requirement N ISR
fat = 0 moderates the contribution with the two jets flying in the same

direction, one of the two jets could be outside the geometrical acceptance or too soft

to be reconstructed. Also if these events are relatively rare, their contribution is not

negligible due to the cross section σtt̄ ∼O(103 pb) of LHC14.

Figures 6.3.7a and 6.3.7b show the two-dimensional distributions of the opening angle

between the positive electric charge lepton and the missing transverse momentum as

a function of the ratio for the tt̄ processes and the signal sample Mχ̃±1
=200 GeV and

Mχ̃0
1
=150 GeV. Figures 6.3.7c and 6.3.7d show the distribution of ∆φl+,I and ∆φl−,I

respectively, for the signal samples and the t + X backgrounds. The subprocesses in-

volving at least one top quark, categorised in TB, TT, Tj, TTB in the Snowmass study,

are stacked together as shown in the legend. The events from top pair contributions

(TB and TT) tend to populate value close to π, while signal-like events populate low

values.
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Figures 6.3.7e and 6.3.7f show the two-dimensional distribution ∆φl+,I vs ∆φl−,I for the

tt̄ background and the signal sample Mχ̃±1
=200 GeV and Mχ̃0

1
=150 GeV, with the selec-

tion criteria described and requiring RISR > 0.6. The requirements select background

events with kinematics similar to the signal events: in particular a simultaneous large

value of ∆φl±,I for both the leptons is disfavoured. A similar two-dimensional distribu-

tion as in Figure 6.3.7f is provided by all the signal samples.

In order to suppress the t + X SM processes we demand a unique light jet associated

to the ISR-system and ∆φl+,I + ∆φl−,I < 2. This is a two-dimensional requirement

and must be explained. Events passing the selection criteria applied, likely contain two

top quarks produced with low transverse momenta resulting in a final state with two

reconstructed leptons and one jet not properly tagged. In the transverse plane, one

of the two leptons is expected to fly close to the reconstructed jet (associated to the

ISR-system), while the other is expected to be closer to the invisible system. As a

consequence the sum ∆φl+,I + ∆φl−,I is expected to be large, while for the signal events

is expected to be limited.

In the low-ISR regime, the two low-momentum leptons do not necessarily fly in the

direction of the invisible system, and a portion of the signal events are excluded by the

criterion ∆φl+,I +∆φl−,I < 2. Nevertheless, this requirement reduces the tt̄ backgrounds

by two orders of magnitude. More stringent criteria on pCM
ISR,T , the ratio, ∆φISR,I or cos θ

select signal events with still lower values of ∆φl+,I + ∆φl−,I.

6.3.4 The irreducible W+W− background

In the last section a strategy based on a few RJR observables has been used to reduce

the boson plus jets and tt̄ Standard Model backgrounds. Applying these selection

criteria, the dominant Standard Model process is the irreducible di-boson background:

W+W−.

The goal is to distinguish between signal and background events with similar kinematics,
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overlaid dashed curves refer to five signal samples.
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Model t + X backgrounds are stacked together,
while the overlaid dashed curves refer to five sig-
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(e) The scatter plot ∆φl+,I vs ∆φl−,I for the tt̄ back-
ground. The additional criterion RISR > 0.6 is re-
quired.
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Figure 6.3.7: One and two-dimensional distributions of the opening angle between
the lepton and the I-system for events passing preselection criteria and the additional
requirements N ISR

b−jet = 0, N ISR
τ−jet = 0, N ISR

fat = 0, MV < 70 GeV, M χ̃±> 24 GeV and
N ISR

jet = 1 All the contributions are scaled with an integrated luminosity of 3 ab−1 at√
s =14 TeV.
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Figure 6.3.8: Distributions of RJR observables for signal samples and di-boson Standard
Model background, for events passing preselection criteria and the additional require-
ments N ISR

b−jet = 0, N ISR
τ−jet = 0, N ISR

fat = 0, MV < 70 GeV, M χ̃±> 24 GeV, N ISR
jet = 1,

RISR > 0.6 and ∆φl+,I + ∆φl−,I < 2. All the contributions are scaled with an integrated
luminosity of 3 ab−1 at 14 TeV.

in particular when selection criteria close to the final configuration are applied. The

only difference is as follows: mainly, the I-system (Ia + Ib) for the W+W− background

is constituted by two neutrinos, while for the signal-events by four weakly interacting

particles. Figure 6.3.8 shows the RJR observables sensitive to separate events resulting

from compressed charginos samples with respect to W+W−sample. The ratio RISR is

once again the variable with greater impact for the signal-background distinction and

selection criteria can be tuned depending on the ratio Mχ̃/MP̃ . Figure 6.3.8b shows

the distribution of ∆φISR,I. Signal events tend to have values closer to π, the smaller
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the mass difference ∆M = MP̃ −Mχ̃. Figure 6.3.8c shows the distribution of the angle

between the CM and I-system. Signal events tend to zero almost independently of ∆M

or Mχ̃/MP̃ . Finally, the distribution of cos θ ≡ β̂CM
S · pS

I,T is shown in Figure 6.3.8d.

For nearly degenerate parent-child superparticles, the direction of the LSP is roughly

the same as that of the parent sparticle as seen in Section 4.6.2. For the signal, the

sum of the transverse momenta of the two charginos is the transverse momentum of

the S-system, while the main contribution to the direction of the transverse momentum

of the I-system is given by the two LSPs: each neutrino has an angular separation

with respect to the associated LSP direction, but the sum of the two contributions is

expected to be zero on average. In the transverse plane the resulting direction of the

V-system is expected to be very close to the I-system resulting from four particles. For

the background instead the angular separation of each neutrino with respect to the

original W direction is distributed much more democratically. The resulting I direction

can differ considerably from the S direction of the two W s, providing in such a case a

larger separation from the V-system in the transverse plane. The same behaviour must

occur in three dimensions.

The observable cos θ is expected to be sensitive to the angular separation between the

V=l+ + l− and the I=Ia + Ib system and the imposition of pS
I,z = 0 tends to subtract

the rapidity contribution of the invisible system. Hence the observable, also partially

correlated to ∆φISR,I, is expected to provide additional information. Figures 6.3.9 and

6.3.10 show all the two-dimensional distributions of these four experimental observables

for the di-boson background and two signal samples.

6.3.5 Signal regions

Selection criteria defined with the compressed RJR observables result in signal regions

used to investigate chargino pair-production in final states with two leptons and missing

transverse momentum. Table 6.4 presents the signal regions. The trend is similar to the

previous analysis and once again the requirements for the observable RISR are tuned
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(a) RISR vs ∆φISR,I for the di-
boson background.
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=200 GeV and
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=150 GeV.
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(d) RISR vs ∆φCM,I for the di-
boson background.
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(g) RISR vs cos θ for the di-
boson background.
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Figure 6.3.9: The two-dimensional distributions of the RJR observables for the Standard
Model di-boson background and the signal samples Mχ̃±1

=100, 200 GeV and Mχ̃0
1
=75,

150 GeV. We require preselection criteria, N ISR
b−jet = 0, N ISR

τ−jet = 0, N ISR
fat = 0, MV < 70

GeV, M χ̃±> 24 GeV, N ISR
jet = 1, RISR > 0.6 and ∆φl+,I + ∆φl−,I < 2.
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(a) ∆φISR,I vs ∆φCM,I for the
di-boson background.

 ISR , I 
φ∆

2.9 3 3.1
  

 C
M

 , 
I 

φ∆

0

0.5

1

1.5

2

2.5

3 -1
/2

0)
 / 

3 
ab

π
/2

00
 x

 
π

E
ve

nt
s 

/ (

1−10

1

10

=14 TeVs )= 75 GeV                                 
0

1Χ
∼

 )= 100 GeV,  M( 
±
1Χ

∼
M( 

(b) ∆φISR,I vs ∆φCM,I for the
signal sample Mχ̃±

1
=100 GeV

and Mχ̃0
1
=75 GeV.
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(c) ∆φISR,I vs ∆φCM,I for the
signal sample Mχ̃±

1
=200 GeV

and Mχ̃0
1
=150 GeV.
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(d) ∆φCM,I vs cos θ for the di-
boson background.
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(e) ∆φCM,I vs cos θ for the sig-
nal sample Mχ̃±
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=100 GeV and

Mχ̃0
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(f) ∆φCM,I vs cos θ for the sig-
nal sample Mχ̃±

1
=200 GeV and

Mχ̃0
1
=150 GeV.
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(g) ∆φISR,I vs cos θ for the di-
boson background.
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(h) ∆φISR,I vs cos θ for the sig-
nal sample Mχ̃±
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=100 GeV and

Mχ̃0
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(i) ∆φISR,I vs cos θ for the sig-
nal sample Mχ̃±
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=200 GeV and
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Figure 6.3.10: The two-dimensional distributions of the RJR observables for the Stand-
ard Model di-boson background and the signal samples Mχ̃±1

=100, 200 GeV and
Mχ̃0

1
=75, 150 GeV. We demand preselection criteria, N ISR

b−jet = 0, N ISR
τ−jet = 0, N ISR

fat = 0,
MV < 70 GeV, M χ̃±> 24 GeV, N ISR

jet = 1, RISR > 0.6 and ∆φl+,I + ∆φl−,I < 2.
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Mass Splitting [GeV]

Variable ∆M = 15 ∆M = 25 ∆M = 35 ∆M = 50 ∆M = 75

Object multiplicity 2 OS Leptons (e and µ) with plep
T > 10 GeV,

selection criteria N ISR
jet = 1, N ISR

b−jet = 0, N ISR
τ−jet = 0 and N ISR

fat = 0

pCM
ISR,T (6ET )> [GeV] 50

MV < [GeV] 50 60 70

∆φl+,I + ∆φl−,I < 2

M χ̃±1 > [GeV] 24

∆φCM,I < 0.5 0.5 0.45

∆φISR,I > 3.12 3.10 3.06 3.05 3.04
cos θ > 0.9 0.85 0.8 0.75 0.7

RISR > 0.85, 0.9 0.85, 0.9
0.8, 0.85

0.9
0.8, 0.85

0.75, 0.8
0.85

Table 6.4: Selection criteria for signal regions in the analysis of chargino pair-production
in final states with two leptons and missing transverse momentum.

depending on the mass ratio. These criteria are more stringent than the chargino-

neutralino associated study due to the larger multiplicity of weakly interacting particles

in the final state.

Figure 6.3.11 shows the distributions of two RJR observables for SM background and

signal sample events passing the selection criteria in Table 6.4 with a fixed value of RISR.

Figure 6.3.12 shows the distributions of RISR and M χ̃± for the signal region selection

criteria. For the lowest mass splitting the requirement RISR > 0.85 is applied only for

the sample Mχ̃±1
= 100 GeV, while for ∆M = 25 GeV we demand this criterion for

three samples (Mχ̃±1
≤ 150 GeV).

6.3.6 Results

The signal regions expressed by the selection criteria of the RJR observables defined in

Table 6.4 are applied to calculate projected sensitivities for compressed spectra signal

samples. Figure 6.3.13 shows the value of ZBi described in Section 3.5.1 at
√
s=14

TeV for an integrated luminosity of 3000 fb−1. We consider a systematic uncertainty
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Figure 6.3.11: Distributions of the RJR observables for signal and background events
passing N-2 selection criteria in table 6.4 and a requirement for RISR.
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Figure 6.3.12: The distributions of RISR for the signal and BG events passing the N-1
selection criteria in Table 6.4 column 1 (6.3.12a) and of M χ̃± imposing the requirements
in column 2 with RISR > 0.85 (6.3.12b).
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Figure 6.3.13: Projected exclusion and discovery reach for chargino pair-production in
the compressed regions: 15 GeV ≤ ∆M ≤ 75 GeV at

√
s = 14 TeV for an integrated

luminosity of 3000 fb−1.

of 20% for the overall Standard Model background: a compromise between a large

data sample projection (10 times the integrated luminosity of the associated chargino-

neutralino production analysis) and stringent selection criteria assumed to suppress the

background yields.

With enough data collection limits for the compressed chargino pair-production topol-

ogy at LHC14 can be set. Leveraging the RJR technique one can exclude masses up to

∼ 150 GeV at the 95% CL in the best scenarios.

6.4 Summary

We have introduced an original approach to searches for compressed electroweakinos

based on the imposition of the decay trees as in Figures 4.6.1 and 6.3.1 for the interpre-

tation of reconstructed events, using the Recursive Jigsaw Reconstruction technique.

Putative wino-like chargino neutralinos could be discovered at LHC14 with masses
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Mχ̃±1
= Mχ̃0

2
>150 GeV for a large portion of the samples investigated (15 GeV. ∆M .

50 GeV) assuming an integrated luminosity of 300 fb−1 and leveraging only transverse

observables. The RJR technique is sensitive to the extremely challenging chargino pair

topology scenarios in the compressed regime. A strategy based on several experimental

observables has been used to reduce the W+W− and the other main background yields

due to the necessity of requiring jets in the final state to be associated to the ISR-system.

A potential 95% confidence level exclusion limit can be obtained for an assumed data

set of 3 ab−1 and assuming a 20% of systematic uncertainty for sample spectra with

∆M . 50 GeV.

For both the topologies, the signal yields in the extreme compressed scenarios can ben-

efit from an improvement in the efficiencies of the detector in the reconstruction of low

transverse momentum leptons (< 10 GeV). On the other hand, for large mass splittings

(∆M &MZ) the bulk analysis should be preferred to a compressed investigation, while

for intermediate scenarios 60 GeV . ∆M . MZ one can exploit the complementarity

of observables based on a reconstruction of the event with or without the ISR-system.

The method is expected to have still more impact in the cases of final state topologies

with larger lepton multiplicity: pair-production of charginos and/or neutralinos with

slepton mediated decays. The RJR technique can be extended to these studies and

to the pair-production of heavy neutralinos in final states with four leptons exploiting

the simplified tree in Figure 4.6.1, with a simple modification in the assignment of the

objects in the case of sleptons of the third generation.

The results from the simplified models investigated in this work can be partially rein-

terpreted assuming different compositions for the electroweakinos. The method can

be applied for Higgsino-dominated charginos and neutralinos, with the last one decay-

ing via an off-shell Standard Model Higgs, requiring two b-jets and one lepton in the

V-system. For chargino pair-production with a mixed Higgsino-wino nature, one can re-

weight the signal yields with the appropriate cross sections; typically the contributions

from off-shell charged Higgs or other sparticles can be neglected sinceMS,MH± �MW
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in most SUSY models.
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Chapter 7

Study of gluino mediated sbottom

pair-production in final states with

four b-jets and missing transverse

momentum

7.1 Preamble

Although some of the SUSY regions probed in this study have been excluded by the

recent limits obtained by the ATLAS and CMS collaborations, the results can be ex-

tended considering a larger integrated luminosity, comparable to the LHC data-sample

collected with Run 2. Furthermore, evidence and exclusion reaches demonstrated in

this study can be re-interpreted considering proper branching fractions (or re-weighting

σ × BR in Eq. 3.1.3) for the simplified topology. More generally, the results and

strategy developed in this chapter for a challenging final state topology, reaches of kin-

ematic and combinatoric ambiguities, can be translated to probe a wide variety of final

state phenomenologies, typical of models based on a Z2 symmetry. In particular, the

207
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sensitivity of the RJR observables demonstrated in this study can be exploited for the

discovery prospects of many SUSY open mass spectra cascades.

7.2 Introduction

Pair-production of gluinos and squarks by either quark-gluon or gluon-gluon fusion

are considered the dominant production modes in practically all supersymmetric scen-

arios. How a SUSY signal may be evidenced at one of the LHC discovery experiments

greatly depends on the mass spectrum and the branching fractions of the produced

superparticles.

Section 2.3 describes how the mass eigenstates q̃1 and q̃2 of squarks are a mixture of

the gauge eigenstates q̃L and q̃R. This mixing effect is proportional to the Yukawa

couplings, hence to the masses of the SM fermion partners and definitively larger for

the third generation. Natural models suggest limited masses for the sparticles with the

largest coupling to the Higgs. In particular the mass eigenstates of the superpartners

of the top and bottom quark must be not too far above the electroweak scale and the

gluino, involved in the second loop corrections, is expected to be not too much heavier

in order to prevent an unnatural fine tuning for the Higgs mass. Most natural SUSY

scenarios provide relatively light stops and sbottoms with respect to all other squarks

considering the renormalisation group equations.

Searching for evidence of the t̃1 and b̃1, either produced directly or from the decay of

gluinos, is therefore highly topical. Since the direct pair-production cross sections of the

stop and sbottom are in general smaller than that of gluino pair-production, searches

for third generation squarks produced via gluino decay present an attractive avenue to

probe SUSY. The additional objects afforded by the richer final states can be used to

reduce several pernicious SM backgrounds.

In this work new observables are introduced for the study of the gluino mediated light

sbottom (b̃1) pair-production in final states with four b−jets and missing transverse
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Figure 7.2.1: Feynman diagram for gluino pair-production and its decay chain (pp→ g̃g̃,
g̃ → b̃b, b̃ → bÑ) (7.2.1a). The corresponding RJR tree (7.2.1b). The two decay
hemispheres are separated using the labels “1” and “2”. Visible decay objects are drawn
in blue circles: “B” denotes a b-jet and “G” or “S” the superparticle mother. Invisible
LSPs are drawn in green circles while intermediate states are drawn in red circles.

momentum. The gluino is a Majorana fermion and can decay with equal probability

to a particle or an antiparticle, but just through an on-shell or off-shell squark. In this

study we do not specify the electric charge and we refer to the light mass eigenstate

of the sbottom as b̃ and to the LSP as Ñ . If a two body decay g̃ → qq̃ is open it

will dominate because of the QCD strength of the coupling. In the simplified model

studied in this work the b̃ is the lightest squark and all the other squarks are heavier

than the gluino so we can assume BR
(
g̃ → bb̃

)
= 100% until the bound mg̃ > mb+mb̃

is passed. Each sbottom is assumed to decay exclusively to the LSP via b̃→ bÑ .

The Feynman diagram is shown in Figure 7.2.1a and the final state topology can be

investigated imposing the same decay tree introduced in Section 4.4.1. In Figure 7.2.1b

the RJR tree is illustrated naming the four bottoms as B1G, B1S, B2G and B2S, where

1 and 2 once again denote the hemisphere and the labels G and S are a reminder for the

gluino or sbottom “mother” superparticle. The WIMP and combinatoric jigsaw rules

for the assignment of the four identical visible objects in the final state are described

in Section 4.5.2. Other possible strategies and results are shown in the next sections.
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Mg̃ Mb̃ MÑ ∆Mg̃b̃ = Mg̃ −Mb̃ ∆Mb̃Ñ = Mb̃ −MÑ

1500 GeV 600 GeV 100 GeV 900 GeV 500 GeV
1500 GeV 800 GeV 100 GeV 700 GeV 700 GeV
1500 GeV 1000 GeV 100 GeV 500 GeV 900 GeV
1500 GeV 1400 GeV 100 GeV 100 GeV 1300 GeV
1500 GeV 510 GeV 500 GeV 990 GeV 10 GeV
1500 GeV 600 GeV 500 GeV 900 GeV 100 GeV
1500 GeV 800 GeV 500 GeV 700 GeV 300 GeV
1500 GeV 1000 GeV 500 GeV 500 GeV 500 GeV
1500 GeV 1200 GeV 500 GeV 300 GeV 700 GeV
1500 GeV 1400 GeV 500 GeV 100 GeV 900 GeV
1700 GeV 1400 GeV 100 GeV 300 GeV 1300 GeV
1700 GeV 1400 GeV 500 GeV 300 GeV 900 GeV
2000 GeV 1400 GeV 100 GeV 600 GeV 1300 GeV
2000 GeV 1400 GeV 500 GeV 600 GeV 900 GeV
2000 GeV 1900 GeV 500 GeV 100 GeV 1400 GeV

Table 7.1: Superparticle masses and mass splittings.

Figure 7.3.1: Three qualitative sample mass spectra showing the superparticles we are
interested in: a) ∆Mg̃b̃ < ∆Mb̃Ñ , b) ∆Mg̃b̃ ' ∆Mb̃Ñ and c) ∆Mg̃b̃ > ∆Mb̃Ñ .

7.3 Preselection and RJR observables

The main SM processes expected to contribute to the background, as described in

Chapter 3, are compared with the SUSY signal scenarios shown in Tab. 7.1. We

demand the preselection criteria described in Table 7.2.

The jets are ordered based on their transverse momentum (jet1 is the leading jet in

pT , and so on). The b−tagging requirement is not extended to four jets, hence the full

acceptance for the hadronic calorimeter (|η| < 5) is considered.

These selection criteria are minimal and no selection is applied for the missing transverse
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Variable Requirement
Njet ≥ 4, with |η| < 5

p jet
T p jet1T > 120 GeV, p jet2T > 100 GeV, p jet3T > 60 GeV (p jet4T > 20 GeV)

Nb−jet ≥ 3
Nlep Lepton veto (Ne = 0 and Nµ = 0)

Table 7.2: Preselection criteria.

momentum. The selection criteria on the transverse momentum of the jets are not

stringent and the one on the third jet is the most efficient to reduce the main Standard

Model backgrounds (tt̄ plus bosons and tt̄ ).

Imposing the RJR tree in Figure 7.2.1b, the same basis of experimental observables

illustrated in Section 4.4.4 are obtained, here rewritten with the proper superparticle

labels:

• Mg̃g̃ is a variable sensitive to the invariant mass of the two hemispheres, hence to

the overall mass scale.

• cos θg̃g is the cosine of half of the angle between the two gluinos.

• 4ϕg̃1g̃1 is the azimuthal angle between the decay planes of g̃1and g̃2.

• cos θg̃1 (cos θg̃2) is the cosine of the gluino decay angle: half of the angle between

the b-jet produced by the gluino and sbottom in the hemisphere 1(2).

• cos θb̃1 (cos θb̃2) is the cosine of the sbottom decay angle: half of the angle between

the b-jet produced by the sbottom and the neutralino in the hemisphere 1 (2).

• 4ϕg̃1b̃1
(4ϕg̃2b̃2

) is the azimuthal angle between the first and second decay planes

in the hemisphere 1(2): the first plane is described by the b-jet from gluino and

sbottom B̂G − b̃ the second by the b-jet from sbottom and neutralino B̂S − Ñ .

• B1G
0 , B2G

0 , B1S
0 and B2S

0 are the energies of the b-jets in the gluino and sbottom

approximated rest frames.
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These last scale variables, have a monochromatic value in the hypothesis of perfect

reconstruction of the rest frames and perfect assignment of the objects in the right po-

sition. Their distributions are expected to give information to the mass of the sbottom

(see Figure 7.3.1) in the hypothesis of unambiguous assignment.

7.4 Combinatoric jigsaw rule

7.4.1 Additional motivations

In this work we refer to hemisphere 1 as the one with the highest transverse momentum

b-jet. This results in a moderate asymmetry for the RJR observables. Event-by-event,

twelve possible combinations result for the assignment of each b-jet to the corresponding

b-quark as seen in Section 4.5.2.

Experimentally, we cannot know a priori which b-jet is the result of the fragmentation

of the bottom produced by the first or second gluino or by the first or second scalar

bottom. A hypothetical knowledge of the original b electric charges cannot completely

solve this ambiguity because of the Majorana fermion nature of the gluino. For example,

knowing with full efficiency the electric charge of all the four b-jets would reduce the

ambiguity for the separation of the two hemispheres to two possible choices, because

each hemisphere must contain a bottom and an antibottom.

Considering the four leading jets (b-jets) in pT , the minimum between the three possible

invariant mass combinations of b-jet pairs, as seen in Eq. 4.5.2, remains the only

plausible way to separate the two hemispheres. The efficiency for the correct separation

is related to several factors like the jet multiplicity or HT . For example, it improves

with increasing missing transverse momentum or if the two gluinos recoil against ISR

in cases where the ISR jets satisfy pT < p jet4T , while it is practically 1/3 for gluinos

produced near the threshold or for low values of pCM
T . Applying the preselection criteria

it is in the range ∼ 40%− 50% for the samples investigated.
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For the assignment of the first and second b-jet in each hemisphere we use the second

minimisation as in Eq. 4.5.3. As emphasised in Section 4.5.2, it corresponds to a

minimisation of Mb̃ in the two hemispheres and it is feasible because the estimation

of the neutralino four-momenta depends of the overall visible hemisphere 1 and 2 and

hence, it has a dependence only on the first combinatoric minimisation.

Consider another possible approach based on the energy hierarchy (or the transverse

momentum hierarchy) between the first and second b-jet in each hemisphere. For ex-

ample, we could choose ELab
1G > ELab

1B and ELab
2G > ELab

2B or ELab
1G < ELab

1B and ELab
2G < ELab

2B ,

while an opposite hierarchy for the two hemispheres has no deep meaning. In these two

cases the assignment can be made at the beginning, namely in the Lab frame before

the WIMP jigsaw rules. These possibilities are motivated by the ratio R in the limit of

massless jets

R =
Btrue g̃1

0

Btrue b̃1
0

=
Btrue g̃2

0

Btrue b̃2
0

=
Mb̃(M

2
g̃ −M2

b̃
)

Mg̃(M2
b̃
−M2

Ñ
)

(7.4.1)

which is valid if we could exactly estimate the superparticles rest frames and assign the

objects with no ambiguity. A complete analysis has been made choosing ELab
1(2)G < ELab

1(2)B

for mass spectra like a) and b) in Figure 7.3.1 and ELab
1(2)G > ELab

1(2)B for the mass spectrum

like c). Those choices were motivated by the assumption that Eq. 7.4.1 tends to favour

the denominator for mass spectra of type b) (R < 1) and the same behaviour is expected

in the Lab frame. The results of this analysis are not described in this thesis, but the

final significance can reproduce, in the best scenarios, the same results obtained with the

double minimisation procedure, when more signal regions based on different selection

criteria are defined to target the specific samples.

Assuming the four leading jets in the final state are the visible decay products, the

efficiency for the right assignment is most of all due to the first combinatoric minimisa-

tion. The observables have different dependences from the specific combinatoric jigsaw

rule. For example, cos θg̃g depends only on the first minimisation, B1G
0 on the first and

the second minimisation relative to only the first hemisphere, while 4ϕg̃1g̃1 depends on

the entire assignment of the four objects. Hence a choice based on a priori assumption
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of the mass spectrum that does not improve significantly the efficiency and reduces

the final sensitivity, or requires numerous optimised signal regions, must be disfavoured

with respect to a more robust and scenario-independent approach.

Each time we want to distinguish between two experimental identical objects in a node

along the chain a combinatoric mass minimisation is applied.

7.4.2 Knowing the assignment

What if there exists a method to solve the combinatoric challenge without ambiguity?

From our simulation, we know the four-momentum of each parton. Even if a perfect

parton-jet equivalence does not exist, we can associate each of four (b)-jets from the

Delphes final state response to the best matching the b-particle kinematic from Pythia

comparing ∆R and the two energies. This gives a sort of best detector scenario output.

The distributions for the RJR variables are presented in Figures 7.4.1-7.4.2c. The

distributions for the scale observables relative to the signal samples are overlapped

with the overall SM backgrounds obtained with the double minimisation procedure. All

the background distributions are scaled for an integrated luminosity of 10 fb−1 using

the procedure outlined in [75] applying the input cross sections and k-factors provided

therein as described in Chapter 3. The signal distributions are scaled with the same

procedure applying a k-factor=1 and the cross sections for simplified topologies are

σ = 0.0219, 0.00757 and 0.00170 pb for Mg̃ =1.5, 1.7 and 2 TeV respectively [121].

In Figure 7.4.1 supersymmetric signal samples with fixed Mg̃ =1.5 TeV span values for

∆Mg̃b̃ and ∆Mb̃Ñ of 900, 700, 500 and 300 GeV. The dominant background to contribute

to the phase space arises from tt̄ and tt̄+ V .

In this study all the scale variables are extremely useful in order to increase the signal-to-

background ratio, because signal-like events populate higher values than background-

like events. We expect high energy b-jets in the reconstructed decay frames for the

signal distributions, while for the background, their energies are expected to be lower
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Figure 7.4.1: Distributions of the scale observables for the events satisfying the preselec-
tion criteria. Contributions of all SM backgrounds and the overlaid signal curves are
scaled to a luminosity of 10 fb−1 at 14 TeV. For the signal samples, the assignment is
resolved matching the four jets in the final state with the parton-level. Figures 7.4.1a
and 7.4.1b show the distributions for the variables sensitive to the size of the first mass
splitting plotted for each of the two hemispheres, Figures 7.4.1c and 7.4.1d for the
second mass splitting and Figure 7.4.1e for the overall mass scale. The SUSY scenarios
refer to fixed Mg̃ = 1.5 TeV, MÑ=100 GeV (solid lines) and MÑ=500 GeV (dashed
lines) while in Figure 7.4.1f are presented SUSY samples with fixed Mb̃ = 1.4 TeV.
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(a) Azimuthal angle between the first decay planes of the two hemispheres.
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(b) Angular distribution of the decay angle from the first mass splitting for the first hemisphere.
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(c) Azimuthal angle between the gluino and sbottom decay planes in the hemisphere 1.

Figure 7.4.2: Normalised angular distributions for SUSY samples with Mg̃ = 1.5 TeV
and MÑ = 100 GeV (left), MÑ = 500 GeV (right).
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because the SM spectrum is below the SUSY spectra investigated.

There is not a perfect symmetry between the two hemispheres due to the choice of the

first hemisphere being the one with the highest momentum b-jet. This asymmetry can

be noticed both for the signal and for the backgrounds and with an overall shift to

higher values for the scale variables.

The scale variables scale with the mass splittings: with the neutralino mass fixed, we

can appreciate in Figures 7.4.1a and 7.4.1b how the distributions of BiG
0 , where i = 1

or 2, are sensitive to the first mass splitting and in Figures 7.4.1c and 7.4.1d how BiS
0

give information for the second mass spitting. We have demonstrated that the mass for

the invisible system is a Lorentz invariant greater than or equal to the true value based

on the asymptotic requirement of massless invisible objects (see Eq. 4.4.3); hence the

distributions for the scale observables have an overall shift to lower values compared to

the monochromatic one due to a massive LSP. In other words, the smaller the phase

space, the less accurate the reconstruction of the rest frames: the shift increases going

from MÑ =100 GeV (solid lines) to MÑ =500 GeV (dashed lines).

Figure 7.4.1e shows the distribution ofMg̃g̃ for the SM backgrounds and the same SUSY

samples mass spectra of the other scale variables, while Figure 7.4.1f shows scenarios

with Mb̃= 1.4 TeV. In the absence of strange correlations or dependences from the

selection criteria, the observable should peak at twice the mass of the gluino for a

massless LSP. The peak is shifted to lower values of a quantity roughly equal to the

neutralino mass hence this variable is, in such a way, sensitive to the overall mass scale.

Figures 7.4.2a-7.4.2c show the normalised distributions for some of the angular ob-

servables for the SUSY samples with different values of Mb̃ maintaining fixed Mg̃ and

MÑ = 100 GeV (left) and MÑ = 500 GeV (right). They provide moderate additional

sensitivity to the mass splittings and hence to the sbottom mass. Figures 7.4.3a and

7.4.3b show the evolutions of a two-dimensional distribution for different mass split-

tings with MÑ fixed to 100 and 500 GeV respectively. We see how the shapes are quite

similar and particularly sensitive to the first mass splitting.
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Figure 7.4.3: Scatter plot of the decay angle from the first mass splitting for the first
hemisphere and the azimuthal angle between the decay planes of the first and second
mass splittings for the two hemispheres.
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7.5 The analysis

7.5.1 Signal and background RJR variable distributions

The four leading jets in pT , three of them identified as resulting from the hadronisation

of a bottom quark, are assigned to one of the positions in the RJR tree in Figure

7.2.1b. The procedure for the assignment of identical objects into the RJR tree is the

combinatoric jigsaw rule based on the minimisation of the masses. Figures 7.5.1 and

7.5.2 show the distributions for the scale and angular RJR observables for signal and

background events satisfying the preselection criteria.

The distribution of Mg̃g̃ remains substantially unchanged comparing the signal distri-

butions with the case where the assignment was reconstructed using the simulation

information. The minimum invariant mass between the pairs of visible objects provides

an observable sensitive to the overall mass scale also in the hypothesis of wrong as-

signment. This is because the evaluation of the neutralino four-momenta (Eq. 4.2.4)

moderately depends on the choice for the masses. Moreover, an incorrect assignment is

likely in the cases of similar values for the mass pairs: large angular separations between

the directions of the four objects.

The other scale and angular variables lose sensitivity to the mass splittings. With a

fixed overall mass scale, the dashed and solid lines are overlapped for the scale vari-

ables while the angular variables provide similar distributions independently from the

mass spectrum. Figure 7.5.3 shows the comparison for the normalised distributions of

B1G
0 knowing the correct assignment as described in Section 7.4.2 (left) or using the

combinatoric jigsaw rule (right).
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Figure 7.5.1: The RJR scale observables. Distributions of the scale observables for
the events satisfying the preselection criteria. Contributions of all SM backgrounds and
the overlaid signal curves are scaled to a luminosity of 10 fb−1 at 14 TeV. SUSY scenarios
with fixed Mg̃ = 1.5 TeV, MÑ=100 GeV (solid lines) and MÑ=500 GeV (dashed lines).
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Figure 7.5.2: The RJR angular observables. Distributions of the scaleless variables
for the events satisfying the preselection criteria. Contributions of all SM backgrounds
and the overlaid signal curves are scaled to a luminosity of 10 fb−1 at 14 TeV. SUSY
scenarios with fixed Mg̃ = 1.5 TeV, MÑ=100 GeV (solid lines) and MÑ=500 GeV
(dashed lines).
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Figure 7.5.3: Normalised distributions of B1G
0 for the truth-level matching case (left)

and the RJR combinatoric jigsaw assignment (right). Supersymmetric scenarios with
Mg̃ = 1.5 TeV MÑ =100 GeV and different values of Mb̃ are compared.

7.5.2 Angular and scale signal regions

A determined effort to correctly assign the four identical objects in the final state in

order to gain sensitivity to intermediate mass splittings is not necessarily worthwhile.

The combinatoric jigsaw rules based on the minimisation of the masses provide RJR

scale and angular variables with great impact in the discrimination of the signal with

respect to the SM background processes.

Signal-like events tend to populate higher values than background-like events for the

scale variables as evident from Figure 7.5.1. Furthermore, signal-like events tend to have

different features than background-like events for the decay angle distributions. The

backgrounds differ significantly from the signal distributions around ±1 for cos θg̃1 and

cos θg̃2 and for cos θg̃g , while the difference becomes pronounced around one for cos θb̃1

and cos θb̃2 . The distributions of the SM background for the azimuthal angle between

the two decay planes in each hemisphere are somewhat peaked around 0, π and 2π. To

conclude, consider closely the signal distribution of4ϕg̃1g̃2 , the azimuthal angle between

the decay planes of the two gluinos picked around π. In principle, the combinatoric

jigsaw based on the double minimisation is sensitive to the property that the two gluinos

are back-to-back in the gluino CM frame and the sbottom and the beauty quark are
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Figure 7.5.4: Two-dimensional distributions between the scale jigsaw variables applied
in the analysis. A sample with Mg̃ = 1.5 TeV, Mb̃ = 1 TeV and MÑ = 100 GeV is used.

back-to-back in each gluino decay frame. In the CM frame, 4ϕg̃1g̃2 is computed as

the difference between the unit vectors of ~BG ∧ ( ~BS + ~N) in each hemisphere. The

second minimisation tends to associate to the LSP the b-jet closer in direction, so the

reconstructed b̃ direction is close to this b-jet. In this way, the minimisation of the two

hemispheres, computed only with the visible objects, is substantially maintained and

the two gluinos are reconstructed mostly back-to-back. For a simpler one-step decay

topology, with the superparticle produced by the proton scattering decaying directly to

the LSP and a visible particle of the SM, 4ϕg̃1g̃2 = π.

In order to use our variables to increase the signal-to-background ratio we wish to study

their correlations. Figures 7.5.4-7.5.6 display the two-dimensional distributions between

the RJR variables applied in the ensuing analysis for the signal sample with Mg̃ = 1.5

TeV, Mb̃ = 1 TeV and MÑ = 100 GeV.
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Figure 7.5.5: Two-dimensional distributions between the main angular jigsaw variables
applied in the analysis. A sample with Mg̃ = 1.5 TeV, Mb̃ = 1 TeV and MÑ = 100 GeV
is used.

Signal scale RJR variables are slightly correlated (Figure 7.5.4) while angular variables

are mostly uncorrelated with their own and with the scale observables (Figures 7.5.5

and 7.5.6). The jigsaw observables are largely uncorrelated for all the signal scenarios

investigated in this work.

The double minimisation procedure used to solve the assignment issue provides us

with a powerful method to increase the signal-to-background ratio. Angular Jigsaw

distributions are similar for all the SUSY mass spectra investigated in this work and the

kinematic distributions depend mostly on Mg̃ and MÑ . We exploit this characteristic

by defining a simple strategy with a single signal region based on angular variables

only. These angular selection criteria are complemented by selections imposed on scale

sensitive variables.
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(a) Scatter plots between Mg̃1g̃2 and the angular jigsaw variables.
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(b) Scatter plots between B1G
0 and the angular jigsaw variables.
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(c) Scatter plots between B2G
0 and the angular jigsaw variables.
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(d) Scatter plots between B1S
0 and the angular jigsaw variables.
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(e) Scatter plots between B2S
0 and the angular jigsaw variables.

Figure 7.5.6: Two-dimensional distributions between the scale and angular RJR vari-
ables applied in the analysis. A sample with Mg̃ = 1.5 TeV, Mb̃ = 1 TeV and MÑ =
100 GeV is used.
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Angular jigsaw selection criteria

• −0.9 < cos θg̃1 < 0.8

• −0.9 < cos θg̃2 < 0.6

• cos θb̃1 < 0.8

• cos θb̃2 < 0.8

• 4ϕg̃1b̃1
< 5

6
π and 4ϕg̃1b̃1

> 7
6
π

• 4ϕg̃2b̃2
< 5

6
π and 4ϕg̃2b̃2

> 7
6
π

• π
4
< 4ϕg̃1g̃1 <

7
4
π

• −0.9 < cos θg̃g̃ < 0.9

Figures (7.5.7 - 7.5.8) show some of the RJR variable distributions after the angular

only selection criteria.1 The comparison of Figures 7.5.1 with 7.5.7 demonstrates the

efficiency of the angular selection criteria to increase the signal-to-background ratio

for the scale distributions. Signal and background distributions maintain their own

shapes and their different features before and after the angular selection criteria. The

backgrounds differ significantly from the signal distributions around ±1 for cos θg̃1 and

cos θg̃2 while 4ϕg̃1g̃2 is peaked around π. Now we complement the angular selection

criteria by selections on scale variables.

Scale jigsaw selection criteria

• B1G
0 > 240 GeV

• B2G
0 > 220 GeV

1The figures in 7.5.8 show the N − 1 selection criteria: the requirement of the displayed angular
variable is under the shaded region.
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Figure 7.5.7: Distributions of the scale observables for the events satisfying the angular
selection criteria. Contributions of all SM backgrounds and the overlaid signal curves
are scaled to an integrated luminosity of 10 fb−1 at

√
s = 14 TeV. SUSY scenarios with

MÑ=100 GeV (solid lines) and MÑ=500 GeV (dashed lines).
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Figure 7.5.8: Distributions of the scaleless observables for the events satisfying the N-1
angular selection criteria. Contributions of all SM backgrounds and the overlaid signal
curves are scaled to an integrated luminosity of 10 fb−1 at

√
s = 14 TeV. SUSY scenarios

with fixed Mg̃ = 1.5 TeV, MÑ=100 GeV (solid lines) and MÑ=500 GeV (dashed lines).
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• B1S
0 > 80 GeV

• Mg̃g̃ > 2.4 TeV

Figures 7.5.9 and 7.5.10 show the distributions of the RJR observables after the angular

and scale selection criteria. Notice that a requirement on B2S
0 seems not to be necessary.

One could have chosen to randomise the two hemispheres instead of defining the first

one, the one with the leading pT jet. One can demonstrate how the distributions for

the RJR observables and the following selection criteria would be symmetric in such a

case.

The RJR selection criteria for the signal region are applied primarily to angular variables

and increase the sensitivity to distinguish between signal or background-like events. The

variable sensitive to the overall mass scale maintains its shape after the RJR selection

criteria for the signal distributions. There is a negligible overall shift to higher values

because of the selection criteria on the other scale variables.

7.6 Conclusions

7.6.1 Results

This signal region can be used to obtain the discovery prospects of gluino mediated pair-

production of sbottoms (Figure 7.2.1). Figure 7.6.1 shows the significance as function

of Mb̃ for all the scenarios studied with Mg̃=1.5 TeV for a 30% total uncertainty of the

Standard Model background using this single signal region.

Figure 7.6.1 displays significances roughly constant for fixed MÑ and Mg̃ while varying

Mb̃. The small reduction of the Z-score, described in Section 3.5.1, for a small value of

Mb̃ is due to the selection criteria applied on cos θb̃1 and cos θb̃2 , while the gap between

MÑ = 100 GeV and MÑ = 500 GeV increases with more stringent scale selection

criteria. For an integrated luminosity of 2 fb−1 and 30% background uncertainty, 3 σ
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Figure 7.5.9: Distributions for the angular observables for the events satisfying the RJR
selection criteria. Contributions of all SM backgrounds and the overlaid signal curves
are scaled to a luminosity of 10 fb−1 at 14 TeV. SUSY scenarios with fixed Mg̃ = 1.5
TeV, MÑ=100 GeV (solid lines) and MÑ=500 GeV (dashed lines).
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Figure 7.5.10: Distributions for the scale observables for the events passing the RJR
selection criteria. Contributions of all SM backgrounds and the overlaid signal curves
are scaled to a luminosity of 10 fb−1 at 14 TeV. SUSY scenarios with MÑ=100 GeV
(solid lines) and MÑ=500 GeV (dashed lines).
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Figure 7.6.1: Significance as a function of the sbottom mass for the total integrated
luminosity for the jigsaw signal region. The uncertainty on the total SM background
is fixed to 30%. SUSY scenarios have fixed Mg̃ = 1.5 TeV, MÑ=100 GeV and 600 GeV
≤Mb̃ ≤ 1.4 TeV (solid lines) and MÑ=500 GeV and 510 GeV ≤Mb̃ ≤ 1.4 TeV (dashed
lines).

evidence can be obtained for Mg̃ = 1500 GeV, all the sbottom masses investigated in

this work and MÑ above 500 GeV.

The sensitivity achieved, mostly independent of the sbottom mass, can be extended

from MÑ + mb < Mb̃ < Mg̃ −mb to Mb̃ > Mg̃. For the topology studied, the double

minimisation procedure provides angular jigsaw distributions with a similar shape and

a small dependence on the mass spectrum. In order to investigate higher values for

Mg̃ and Mb̃ it is sufficient to use more stringent scale selection criteria. Figure 7.5.10f

anticipates what happens when we increase the selection criterion for the overall mass

scale: we gain sensitivity for higher values of the gluino mass with a negligible loss for

the yields resulting from lower mass spectra. This feature is common for all of the scale

variables and the loss in sensitivity is higher for higher values of the LSP mass because

of the more compressed mass spectra. For example, if we maintain the same angular

selection criteria yet tighten the scale variables such that:

• B1G
0 > 300 GeV,
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Figure 7.6.2: Significance as a function of the gluino mass for the total integrated
luminosity for the jigsaw signal region. The uncertainty on the total SM background
is fixed to 30%. SUSY scenarios have fixed Mb̃ = 1.4 TeV, MÑ=100 GeV (solid lines)
and MÑ=500 GeV (dashed lines).

• B2G
0 > 300 GeV,

• B1S
0 > 120 GeV,

• Mg̃g̃ > 3 TeV,

the discovery reach (ZBi > 5σ) is achieved for Mg̃ until 2 TeV and beyond for
∫
L = 50

fb−1, as displayed in Figure 7.6.2.

Figure 7.6.2 shows how with the signal region defined with the fixed angular selection

criteria and more stringent scale criteria and with the 30% background uncertainty, 4σ

evidence can be obtained for Mg̃ ∼1900 GeV, Mb̃= 1400 GeV, MÑ= 100 GeV with an

integrated luminosity of 10 fb−1, while 2σ exclusion limit for Mg̃ ∼2 TeV, Mb̃= 1400

GeV, MÑ= 500 GeV with an integrated luminosity of 5 fb−1. These results are mostly

insensitive to the intermediate Mb̃.
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Figure 7.6.3: Current results from ATLAS and CMS collaborations for the search of
the SUSY simplified topology pp→ g̃g̃(g̃ → bb̄χ̃0

1). Figures from [134] (a) and [123] (b).

7.6.2 Summary

We have applied the Recursive Jigsaw Reconstruction technique to study a final state

with gluino mediated third generation particles with on-shell bottom squarks decaying

to a b-jet and the LSP. This analysis neglects final states with top quarks and their

SUSY partners. Such topologies will be studied in a future work as outline in the

Chapter 9, leveraging hadronic top decays and boosted object reconstruction methods.

A selection applied primarily to scaleless variables can reduce the SM background to

a level where discovery of certain scenarios can be made with the data collected so far

from the LHC experiments. Gluinos with mass above 2 TeV would be discovered with an

integrated luminosity of 50 fb−1 for all the scalar bottom and LSP masses investigated.

With this approach we demonstrate useful features that may be exploited, not only in

measuring a signal for this channel, but in using the various scale sensitive variables to

extract the properties of the particle spectrum once discovery is made.

The sensitivity to the gluino mass remains constant as a function of the bottom squark

mass as shown in Figure 7.6.1. This feature suggests that it is useful to investigate

the corresponding three body decay simplified SUSY topology (g̃ → bb̄χ̃0
1) with the

RJR technique and estimate reach/exclusion limits in the Mg̃ vs Mχ̃0
1
plane. Such a
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study should probe larger masses for the LSP, including the analyses of the compressed

phenomenology for small mass splittings (see Figure 4.6.2), by imposing an ISR branch

in the RJR tree for final states with Njet > 4.
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Chapter 8

Sbottom pair-production in final

states with two b-jets and missing

transverse momentum

8.1 Introduction

Among the SUSY sought-after experimental outcomes, the observation of signatures

due to the sbottom pair-production is topical since relatively light scalar partners of

the beauty quark are motivated by natural models as described in Section 2.3.6. This

study [116] focuses on the simplified topology represented by the Feynman diagram in

Figure 8.1.1. A pair of light sbottoms are assumed to be produced at the LHC each

decaying to a b-quark and a neutralino LSP: pp→ b̃1
˜̄b1, (b̃1 → bχ̃0

1,
˜̄b1 → b̄χ̃0

1).1

Armed with the strategies and results obtained with the RJR technique in the previous

proposed analyses concerning fully hadronic final states and compressed studies; open,

intermediate and compressed scenarios are probed in this chapter. In Chapter 7 we use

the canonical strategy for open mass spectra based on the assumption that the leading

1From now on, we refer to the light sbottom simply as b̃ with no distinction for the antiparticle.

237
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Figure 8.1.1: Feynman diagram for the scalar bottom pair-production in final states
with two b-jets and missing transverse momentum.

jets in pT are the result of the hadronisations produced by the quark decay products.

On the other hand, in Chapter 5 the minimisation of the ISR vs SUSY masses is

implemented for the assignment of the light jets in the compressed regime, while in

Chapter 6 electrons and muons are assumed to be decay products of the S-system.

In this study, we elaborate a sort of combination of these strategies together with the

b-tagging information, with the purpose to reconstruct not just the centre-of-mass of

the two sbottoms or S-system, but to have additional handles useful for compressed or

intermediate mass spectra. For this reason, QCD radiation from initial and final states

hadronising into isolated jets provide information that is useful to maintain in order

to probe the SUSY scale more accurately, constructing additional RJR observables to

distinguish possible signals of new physics from SM-like events.

8.2 RJR tree motivation

Signal samples are pp collision at
√
s = 14 TeV producing a pair of light sbottoms with

masses in the range 600 GeV≤ Mb̃ ≤ 1.5 TeV, while the mass splittings span from full

open (Mχ̃0
1

= 0 GeV), to extremely compressed (∆M = Mb̃−Mχ̃0
1

= 25 GeV), scenarios.

Since a large mass of the sbottom, the scattering partons carry a large fraction of the

proton momenta. Initial state QCD radiation can result in high energy jets in the signal
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Figure 8.2.1: Final state jet multiplicity for open (a) and compressed (b) SUSY samples
with the activation of different effects in the Madgraph + Pythia + Delphes simulation.

events. Figure 8.2.1 shows the jet multiplicity of two signal samples in the Madgraph

+ Pythia + Delphes framework turning on different effects described in Section 3.2.2.2

We notice how the dominant impact in increasing the jet multiplicity from the value

two is due to ISR more than FSR. For example, the black and red continuous lines in

Figure 8.2.1a with means respectively ∼ 2.6 and ∼ 3.8 can be compared. The dashed

lines refer to the distribution of the jet multiplicity for events resulting from the MLM-

matching in the Madgraph + Pythia context. The mean value of the black dashed

curve is slightly larger than the corresponding solid one due to the veto effect resulting

in non-matched events when two jets fly in the same direction as described in Section

3.4.1. The final effect in the jet multiplicity due to FSR can be seen comparing the two

dashed lines.3

Furthermore, we demonstrate that QCD radiation in the initial state results in jets gen-

erally with higher transverse momentum than FSR, with increasing separation reducing

the mass difference between the superparticles. This effect can be inferred from Figure

2The samples used in this study and in any other proposed analyses are the equivalent of the dashed
green lines plus the multiple interaction (MPI) effect. For signal samples, the contribution from MPI
can be neglected and it is not reported separately in the figure.

3This final FSR effect corresponds to the Pythia parton shower contribution from sbottoms, b-
quarks and additional partons in the matrix elements hadronising in isolated jets. Hence, strictly
speaking, it contains QCD radiation from ISR.
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8.2.1b showing the same distributions for ∆M = 50 GeV. Compressed spectra result in

an overall lower jet multiplicity due to the possibility of no reconstruct low-momentum

b-quarks as jets, as can be seen by comparing to the corresponding distributions of

Figure 8.2.1a. Moreover, final states with only one jet are favoured when the FSR ef-

fect is activated with respect to the distribution referred to as the “only hadronisation”

case (red vs blue curve). Imagine an event with two b-quarks with transverse momenta

close to the lower bound defined by the anti-kT algorithm (pT = 20 GeV). When one of

the two partons radiates a consistent fraction of its energy outside the jet cone likely

neither the bottom-quark initiated jet, nor the FSR-jet are reconstructed.

We then must decide which jets should be assigned to the b-systems, assumed to be

the decay products of the sbottoms. The choice of the two leading jets in pT is not the

optimal one, in particular for compressed mass spectra. Assuming a minimum of two

jets in the final state and minimising the masses for the distinction of an ISR vs SUSY

system tends to assign QCD ISR in the wrong system resulting in a biased reconstruc-

tion for the S-system and relative observables. The choice of the two leading b-jets in

pT is much better, but we want to take care of the information due to perturbative

effects in the event.

We define two orthogonal regions depending on the jet multiplicity and applies two

corresponding RJR trees as shown in Figure 8.2.2. When in the final state there are

only two b-jets, we use the tree in Figure 8.2.2a. For a higher multiplicity the two

leading b-jets are assigned to the S-system while the other jets to the ISR-system as

in Figure 8.2.2b. In both cases the S-system is divided into two hemispheres (1 and

2) and each branch is a b̃1(2)-system decaying to a visible b1(2) and to an invisible I1(2)

object which corresponds to the contribution of χ̃0
1.

The RJR tree in Figure 8.2.2b is the same to the tree employed for the compressed study

of chargino pair-production in final states with two leptons and additional jets assigned

to the ISR-system with the only difference being the number of weakly interacting

particles that the I1(2) system should represent. Similar observables can be defined
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Figure 8.2.2: RJR trees for the sbottom pair-production in final states with two b-jets
and missing transverse momentum. The two trees correspond to the two orthogonal
regions with Njet = 2 and Njet ≥ 3.

considering the S-system as divided into a V-system (b1 + b2) and I-system (I1+I2) as

for the compressed simplified RJR tree in Figure 4.6.1. As described in Chapter 3, the

two b-jets are required to have |η| < 2.5, while for light jets |η| < 5 is assumed.

We could use a different strategy based on the minimisation of the masses in order to

assign the N-2 jets in the final state not associated with the b-systems. For example,

we can impose a first combinatoric jigsaw rule, requiring at least one jet in the ISR

system which is equivalent to defining an additional orthogonal region. In other words,

for the case (Njet > 3), N-2 jets would be assigned to ISR or identified as FSR for the

b̃1 or b̃2 system using two combinatoric minimisation of masses jigsaw rules, requiring

inclusively at least one jet in the ISR-system. This decay tree is shown in Figure 8.2.3,

where the J1-system expresses explicitly the fact that at least one jet is associated to

ISR and FSR1 and FSR2 are potential QCD radiations associated to the sbottoms or

to the b-quarks.

This strategy for Njet > 3 is not used for two reasons. From the two expected jets,

additional hadronic activity in the final state is likely ISR as shown in Figure 8.2.1 with

generally non preferential direction. The bias due to the wrong assignment of QCD
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Figure 8.2.3: Potential RJR tree for Njet ≥ 4 not used in this study (a). Feynman
diagram for the uū fusion in two sbottoms (with b̃→ bχ̃0

1) and QCD radiation expected
to result in three additional reconstructed jets (b).

ISR in a FSR-system, and hence in the S-system, would be worse than the converse.

In other words, FSR-jets are expected to be low, both in number and in pT , and their

incorrect assignment has a negligible effect. Nevertheless, an analysis with three trees

for three regions (Njet = 2, Njet = 3 and Njet > 3 ) produces results very close to those

presented in this chapter.

Herein we refer to the mass of a system as M sys to avoid ambiguity. For example,

MS is the equivalent of MPP of Section 4.4.4 and corresponds to the centre-of-mass

energy of the two sbottoms in their CM frame. Its value is considered an estimate for

the collision energy of the two partons,
√
ŝ, in the absence of other effects (see Section

4.4.4). In principle, one could define ISR as all the radiation not associated with the

two sbottoms or the two b-quarks in the final state and the question if this perturbative

effect should be considered or not in the estimate of
√
ŝ is more an interpretation due to

the vision of the mind than a rigorous definition. Consider for example the three gluons

(7, 8 and 9) in Figure 8.2.3b. The RJR tree in Figure 8.2.3 is based on the expectation

to associate the gluon number 7 to ISR and the gluon number 9 to FSR. Nevertheless,

the incorrect assignment of an ISR-jet to the S-system results in an overestimation for

MS, and for all the other scale observables inheriting the wrong information. In the
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presence of perturbative effects, we consider MCM the estimate for
√
ŝ.

In the extreme compressed regime, another possibility consists in taking a transverse

view of the events and in assigning the jets between the ISR and S-system minimising

MS and M ISR. Then one can apply selection criteria on the number of b-jets in the

two systems. At this point, requiring for example N ISR
b−jet = 0 and NS

b−jet ≥ 1 is not

optimal, while much better are the criteria NS
b−jet = 2 or NS

b−jet ≥ 2. In such a case,

the number of signal events would be less than the number obtained by assigning the

two low-momentum b-jets to the S-system from the beginning because a fraction of the

events would be vetoed when reconstructed in the ISR-system. Furthermore, real ISR

could populate the S-system compromising for example the reconstruction of MV , as

will be clear in the following.

The ATLAS and CMS detectors provide remarkable efficiencies for the identification

of, and hence distinction between, different objects in the final state (leptons vs jets or

b-jets vs light jets). Neglecting the contribution of QCD radiation in the initial state

due to b-quarks, light jets can be assigned with no ambiguity to the ISR-system when

no expected from the SUSY chains as in the case of the electroweakinos study in fully

leptonic decay products. The combinatoric jigsaw rule for the distinction between ISR

and S system are leveraged for the assignment of identical objects (light jets vs light

jets or photons vs photons) or can be used when the identification efficiencies are too

low (or inefficiencies for the mis-tagging too high) as can be the case of c-jets vs light

jets (or vs b-jets) at the current time [135,136].

With the choice used in this work all the RJR observables reconstructed in the S-system

are identical applying the tree in Figure 8.2.2a or the tree in Figure 8.2.2b for Njet ≥ 2.

The jigsaw rules (Set Invisible Rapidity, Set Invisible Mass and Contra-Boost Invariant)

defined by the d.o.f. of the only two leading b-jets in pT and ~6ET reconstruct the same

approximation for the S-system and recursively for the two b̃-systems independently of

the ISR-system. In other words, the two trees in Figure 8.2.2 can be summarised by

the tree in Figure 8.2.2b where the ISR-system can be populated from a number of jets
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Category Snowmass label (sub-categories description)
Boson + jets BJ-BJJ (Vector boson + jets, vector boson fusion)

tt̄ (+V) TT, TTB (Top pair +jets,
top pair plus bosons: tt̄+Z, tt̄+W and tt̄+h + jets)

single top TJ-TB (Single top + jets, top pair (off shell t∗ → Wj) + jets)

Di-/Tri-Boson BBB-BB-BLL-B-LL (tri-Vector + jets,
Di-Vector + jets, Drell-Yan in leptons)

Higgs H (Gluon fusion + jets)

Table 8.1: Five categories summarizing all the main Standard Model backgrounds as
part of the Snowmass study. The category name is indicative of the dominant sub-
category backgrounds.

greater than or equal to zero.

8.3 Preselection

Zero leptons (electrons and muons), two jets tagged as originating from the fragment-

ation of bottom quarks and the minimal value of the missing transverse momentum

6ET > 50 GeV are the preselection criteria for this proposed analysis. The SM back-

grounds are summarised in Table 8.1 characterised by the Snowmass labels described

in Section 3.5.1.

From Figure 8.2.1 we see how the case with exactly two jets in the final state corresponds

to ∼10-15% of the signal events and this proportion is maintained requiring two b-

jets. The orthogonal region Njet = 2 could be used to increase the signal yields by

applying more stringent selection criteria on the observables related to the S-system,

neglecting additional handles defined with the ISR-system. To avoid ambiguity, the

same requirements will be employed for the two cases. Herein, we show the distributions

for the case Njet ≥ 3.

Figures 8.3.1, 8.3.2 and 8.3.3 show the distributions of the main scale, angular and

other scaleless RJR observables used in this study for the signal and background events

satisfying preselection criteria assuming an integrated luminosity of 50 fb−1. These
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variables correspond to the basis associated with the RJR tree in Figure 8.2.2b and

other observables associated to the simplified version of the tree S→VI. The six SUSY

signals are scenarios with two values for the masses of the sbottom Mb̃ = 1 TeV (solid

lines) and Mb̃ = 1.3 TeV (dashed lines) and with three values for the mass splitting or

types of compression: open with ∆M ∼ 1 TeV (blue), intermediate with ∆M = 200

GeV (pink) and compressed with ∆M = 50 GeV (black).

The main SM background arises from vector boson + jets, with two processes dominat-

ing. The dominant background arises from the Z-boson decaying invisibly (Z → νν)

plus additional jets and b-jets, due for example to QCD radiation such as g → bb̄ or mis-

tagged jets. Secondly, the W + jets contribution where neutrinos and unreconstructed

leptons (W → lν) or mis-reconstructed jets provide a source of missing transverse mo-

mentum. The minimal requirement on the missing transverse momentum together with

the lepton veto in the preselection, reduces the tt̄ background, involving semi-leptonic

decay with unreconstructed leptons and processes with additional vector bosons or ISR,

as sub-dominant contributions. Processes involving single-top, multi-boson and Higgs

boson contributions are sub-dominant or negligible.

The scale variable with the most impact for the discrimination of open signal samples

w.r.t. background processes is the mass of the sbottom systems M b̃, followed by the

missing transverse momentum reconstructed in the CM frame pCM
T,I as shown in Figures

8.3.1a and 8.3.1b. For open mass spectra a large proportion of signal events populates

the tail of the BG distribution for the the reconstruction of M b̃1 = M b̃2 ≡M b̃.

Other scale observables, such MCM = ECM
S + ECM

ISR or MS, have less sensitivity, with

the distribution for the latter shown in Figure 8.3.1c. The distribution for the inverse

of the contra-boost Lorentz factor, γ−1
c , is shown in Figure 8.3.1d. It is the scaleless

variable introduced in Section 4.4.4 and its importance to reduce the SM background

process yields will be clear when other selection criteria are imposed.

Figures 8.3.1e and 8.3.1f show histograms for the number of jets in the ISR-system

tagged as τ and b respectively. A veto can be applied for these two categories with the
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Figure 8.3.1: Distributions of RJR observables for events satisfying the preselection
criteria. Contributions of all SM backgrounds and the overlaid signal curves are scaled
to an integrated luminosity of 50 fb−1 at 14 TeV. Solid lines refer to signal samples with
Mb̃ = 1 TeV, while dashed lines to Mb̃ = 1.3 TeV.
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Figure 8.3.2: Distributions of RJR observables for events satisfying the preselection
criteria. Contributions of all SM backgrounds and the overlaid signal curves are scaled
to an integrated luminosity of 50 fb−1 at 14 TeV. Solid lines refer to signal samples with
Mb̃ = 1 TeV, while dashed lines to Mb̃ = 1.3 TeV.
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Figure 8.3.3: Distributions of RJR observables for events satisfying the preselection
criteria. Contributions of all SM backgrounds and the overlaid signal curves are scaled
to an integrated luminosity of 50 fb−1 at 14 TeV. Solid lines refer to signal samples with
Mb̃ = 1 TeV, while dashed lines to Mb̃ = 1.3 TeV.
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main impact given from the requirement N ISR
τ−jet = 0.

Figure 8.3.2a shows the distribution of ∆φCM,b̃, the azimuthal angle between the plane

formed by the ISR and S systems and the decay plane of one of the sbottom system

(∆φCM,b̃1
= ∆φ

(
¯ISR

Lab × S̄ Lab, b̄ S
1 × Ī S

1

)
).

Figure 8.3.2b shows the distribution of cos θb̃ with θb̃ the decay angle of the sbottom,

Figure 8.3.2f shows the distribution of cos θb̃1b̃2 where θb̃1b̃2 is half of the opening angle

between the two b̃-systems and the opening angle between the momenta of the CM-

system and the I-system evaluated in the Lab frame ∆φCM,I = ∆φ (p̂CM, p̂I) is shown in

Figure 8.3.2e.

Figures 8.3.2c and 8.3.2d show two non RJR observables: the ranking of the leading and

sub-leading b-jets in pT with respect to the other jets in the final state. For example,

“Ranking pbT1 ”, is 1 when a b-jet is the leading jet in pT , 2 if it is the second and so

on. Of course “Ranking pbT2 ” starts from two. Notice the opposite trend for the signal

distributions for open and compressed mass spectra.

Other RJR observables with low impact in the discrimination of SUSY-like events w.r.t.

SM-like events are not discussed. Remember how for the one step decay topology in

the SUSY-system, other observables are dependent with respect to the ones presented

here; for example: E b̃1
b1

= E b̃2
b2
' 1/2M b̃, except for nonphysical and negligible deviations

related to the mass of the jets, cos θb̃1 = − cos θb̃2 , ∆φCM,b̃1
= π−∆φCM,b̃2

and ∆φb̃1,b̃2
=

π. Those observables provide additional information in the case of longer chains as

described in the analysis of Chapter 7 with the gluino taking the place of the sbottom.

Figure 8.3.3 shows the distributions of the RJR observables useful for probing com-

pressed scenarios. Notably, RISR =
∣∣~pCM

I,T · p̂CM
ISR,T

∣∣ (pCM
ISR,T

)−1 assumes the characteristic

shape with a peak on the SUSY mass ratio M
χ̃0

1
/Mb̃, with finer resolution moving from

open to intermediate and compressed mass splittings. The modulus of the transverse

momentum of the ISR-system evaluated in the CM frame pCM
ISR,T is shown in Figure

5.2.2b. Differently from the other scale observables, the signal slopes are mostly inde-

pendent of the mass splittings.
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Figure 8.3.2g shows the distribution of ∆φISR,I: the opening angle between the ISR-

system and the I=I1+I2 system in the transverse plane. Figures 8.3.3d and 8.3.3e show

the distribution of the two observables cos θ ≡ β̂CM
S · p̂S

I,T and ∆φS,I = ∆φ
(
β̂CM
S , ÎS

)
.

Although these observables are partially correlated to ∆φISR,I, they provide additional

information because they are defined with one or two three-dimensional unitary vectors.

Finally, MV, shown in Figure 8.3.3f, is a scale variable that can be used both for open

and compressed mass spectra requiring a lower or an upper limit respectively. The rules

applied for the separation of the ISR vs SUSY objects result in a precise estimate of

this observable related to the mass difference. For compressed scenarios a peak resolves

below the hard scale associated with a top pair, the single top and below the Z and

Higgs masses associated to the SM contributions Z → bb̄ and h → bb̄ respectively in

green and red, while SM processes involving g → bb̄ present no resonance bumps.

8.4 RJR complementarity

In this study we define seven signal regions: SRO1, SRO2, SRI1, SRI2, SRI3, SRC1

and SRC2, depending on the mass splitting. They can be summarised in three types:

compressed 25 GeV≤ ∆M < 100 GeV where the observables constructed with the ISR-

system are the most useful, open ∆M ≥ 500 GeV when the variables related to the

SUSY system have more impact and intermediate 100 GeV≤ ∆M < 500 when both

the observable categories are necessary to improve the signal to background ratio. For

intermediate scenarios the typical background hard scale, identifiable with the sum of

the masses of SM particles produced in the pp collision event, is comparable with ∆M .

Generally, the RJR observables are largely orthogonal between them with a moderate

correlation between scale vs scale variables and some angular vs angular compressed

variables. Some of the most interesting features are presented in Figures 8.4.1-8.4.3.

Figure 8.4.1 shows two-dimensional distributions of the RJR observables particularly

useful in the open regime. Figure 8.4.1a shows that BG events can populate low values



8.4. RJR COMPLEMENTARITY 251

of pCM
I,T for large values of M b̃ while for open mass spectra a partial correlation between

the two observables as expected is shown in Figure 8.4.1b.

Figure 8.4.1d shows the two-dimensional distribution of M b̃ as a function of cos θb̃ for

the signal sample Mb̃ = 1 TeV, Mχ̃0
1

= 1 GeV. For signal events, the distribution

of the decay angle of the sbottom is mostly independent of the reconstructed mass,

while for large value of M b̃, BG events can populate values close to ±1 due to cases

where the missing transverse momentum is close in direction to one of the two b-jets

(cos θb̃1 = − cos θb̃2) as notable from Figure 8.4.1c.

Figures 8.4.1e and 8.4.1g show the two-dimensional distributions of the scaleless ob-

servable γ−1
c = 2M b̃/MS as a function of cos θb̃ for the overall BG and the open signal

sample demanding M b̃ > 400 GeV. Different SM processes with different kinematic

provide peculiar behaviours for this distribution as shown in Figure 8.4.1f where we

demand pCM
I,T > 450 GeV.

For tt̄ background the two b-jets are likely associated to the S-system, but the two

top quarks are mostly back to back in the Laboratory frame and hence, the two b-

jets tend to fly apart with large angular separation in the reconstructed CM frame of

reference. The value of MS for such background events tends to be large compared

to M b̃ resulting in a low value for γ−1
c . For vector boson plus jets processes, such as

Z → νν or W → lν with unreconstructed lepton plus g → bb̄, the reconstructed mass

of the S-system arising from the d.o.f. of the two jets and ~6ET can be low relatively

to M b̃ when the vector boson and gluon fly in a similar direction. For the signal, the

distribution of γ−1
c exhibits no visible dependence on the mass splitting and ultimately

on the true LSP and sbottom masses. The shape of the distribution is common for all

the SUSY scenarios with the number of events decreasing with the production cross

section.

For intermediate mass spectra we must relax selection criteria on scale sensitive observ-

ables such as MS and M b̃, the smaller ∆M . Figure 8.4.2 shows two-dimensional distri-

butions for some RJR observables for the overall SM background in the first column,
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Figure 8.4.2: Two-dimensional distributions of RJR observables for the overall SM
background (first column) and three SUSY scenarios: open with Mb̃ = 1 TeV, Mχ̃0

1
= 1

GeV (second column), intermediate withMb̃ = 800 GeV,Mχ̃0
1

= 600 GeV (third column)
and compressed with Mb̃ = 1 TeV, Mχ̃0

1
= 950 GeV (fourth column).
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(e) RISR > 0.8, MV < 100 GeV
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(f) RISR > 0.8, MV < 100 GeV

Figure 8.4.3: Two-dimensional distributions of RJR observables for the overall SM
background (left) and the signal sample Mb̃ = 1 TeV, Mχ̃0

1
= 950 GeV (right). The

figures show the number of events expected per bin for an integrated luminosity of
50 fb−1 at

√
s = 14 TeV satisfying the preselection criteria. We demand RISR > 0.8,

MV < 100 and pCM
ISR,T > 200 GeV in Figures (e) and (f).
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the open signal sample Mb̃ = 1 TeV, Mχ̃0
1

= 1 GeV in the second column, the interme-

diate sample Mb̃ = 800 GeV, Mχ̃0
1

= 600 GeV in the third column and the compressed

sample Mb̃ = 1 TeV, Mχ̃0
1

= 950 GeV in the fourth one.

The scatter plot of Ranking pbT1 vs Ranking pbT2 is shown for the overall SM BG process

in Figure 8.4.2a and open, intermediate and compressed SUSY scenarios in Figures

8.4.2b, 8.4.2c and 8.4.2d respectively. Compressed SUSY sample events tend to have

low-momenutum b-jets and likely large value of the rankings, while the distribution

for the intermediate scenario is much similar to the BG one. The observables are

particularly useful in the open regime: requiring the two b-jets being the leading and

sub-leading jets in pT can reduce the V + jets yield.

Figures 8.4.2e-8.4.2h show the two-dimensional distributions of pCM
ISR,T as a function

of MV for the SM backgrounds and same signal samples. We require a lower bound

for MV for open and intermediate scenarios and an upper bound in the compressed

regime. The MV sensitivity for intermediate mass splittings is moderate and we use

more stringent criteria on pCM
ISR,T since it is independent from the S-system observables.

The distribution of pCM
ISR,T can provide additional information in order to distinguish the

SUSY hard scale from the background one: QCD radiation from partons with a large

fraction of the proton momentum can result in high-energy jets.

Figures 8.4.2i-8.4.2t show two-dimensional distributions of pCM
ISR,T as a function of the

scale observable MS, useful for open and intermediate scenarios, the scaleless variable

γ−1
c , used independently of ∆M , and the angular observable cos θ, useful in the com-

pressed regime. We exploit the complementarity of pCM
ISR,T with other observables related

to the S-system.

Requiring large values of the transverse momentum of the ISR-system promotes com-

pressed observables in the intermediate regime. An example is given by the two-

dimensional distributions of ∆φISR,I as a function of RISR shown in Figures 8.4.2u-8.4.2x

demanding pCM
ISR,T > 600 GeV. Differently from background and open distributions, in-

termediate and compressed signal events tend to populate values close to π for ∆φISR,I
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and values close to one for RISR with increasing tendency reducing the mass difference.

Figure 8.4.3 shows two-dimensional distributions of compressed RJR observables for

the overall SM background and the signal sample Mb̃ = 1 TeV, Mχ̃0
1

= 950 GeV. The

similarities to the figures referring to analogous observables in the previous compressed

studies is quite remarkable.

For background events it is increasingly hard to have large values of RISR for higher

values of pCM
ISR,T as shown in Figure 8.4.3a, while for the SUSY compressed scenarios

RISR is a proxy for Mχ̃0
1
/Mb̃ with increasingly fine resolution for larger values of pCM

ISR,T as

shown in Figure 8.4.3b.

Figures 8.4.3c and 8.4.3d show the two-dimensional distributions of MV as a function

of RISR. The lack of correlation between the two observables provides us with the

possibility to impose an upper bound on the mass of the V = b1 + b2 system in order

to suppress the background yield. This kinematic feature, used in the electroweakino

study for leptonic decay products, would be biased employing a different jigsaw rule

based on the minimisation of the masses resulting in an overestimate of MV in the case

of wrong assignment of ISR-jets in one of the b-systems and hence in the V-system.

Requiring values for RISR close to one, and small values for MV, other angular RJR

observables can be used as shown in Figure 8.4.3e and 8.4.3f for the distribution of

pCM
ISR,T as a function of the opening transverse angle between the ISR and I systems.

Compressed SUSY-like events populate values closer to π than SM-like events with an

increasing tendency for larger values of pCM
ISR,T .

8.5 Signal regions

Selection criteria applied on RJR observables define seven signal regions targeting dif-

ferent mass splitting intervals. Two open signal regions, SRO1 and SRO2, are applied

for scenarios with ∆M ≥ 1 TeV and 500 GeV≤ ∆M < 1 TeV respectively and are

the results of selection criteria mainly on observables related to the SUSY branches
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of the tree. Only open signal regions use final states with exactly two b-jets and the

corresponding RJR tree in Figure 8.2.2a.

Three intermediate signal regions, SRI1, SRI2 and SRI3, are constructed with require-

ments on observables related to the S-ISR ensemble and are applied for probing samples

with 350 GeV≤ ∆M < 500 GeV, 200 GeV≤ ∆M < 350 GeV and 100 GeV≤ ∆M < 200

GeV respectively. The requirements on SRI1 are more focused on open SUSY observ-

ables while SRI3 on compressed observables.

The signal regions SRC1 and SRC2 target extremely compressed mass spectra: 100

GeV≤ ∆M < 50 GeV and 50 GeV≤ ∆M < 25 GeV. In the compressed and partially in

the intermediate regime, except for the object requirements in the final state, we define

selection criteria resembling those used in the previous studies in Chapters 5 and 6.

The categorisation of signal regions by mass splitting intervals is driven by the expect-

ation to have common features for most of the RJR signal distributions, independently

of the selection applied: similar shapes scaled by different cross sections. For the dis-

tribution of RISR the idea is to encode an average behaviour.

The signal regions are described in Table 8.2, where selection criteria on observables

typical of the open regime are written in blue, while compressed RJR requirements

appear in red. The scaleless observable γ−1
c is used in all the signal regions, while a

lower or upper bound is imposed on MV depending on the scenario investigated. For

intermediate SUSY scenarios all the selection criteria on scale observables are lower

limits, tight for SRI1, while a stringent requirement on pCM
ISR,T is defined in SRI2 and

SRI3 in order to exploit the other compressed handles. In the same regime, we impose

an upper limit on RISR of greater than one, in order to improve the signal yields,

due to the lower resolution of the signal distributions w.r.t. the extremely compressed

scenarios. For final states with exactly two jets, the same criteria of higher multiplicity

are applied in SRO1 and SRO2 except for a moderate requirement on ∆φCM,b̃ and

∆φISR,I.4 For intermediate and compressed mass spectra only final states with Njet ≥ 3

4The variables need an ISR-system to be computed and the asterisks remind the impossibility to
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Signal Region

Variable SRO1 SRO2 SRI1 SRI2 SRI3 SRC1 SRC2

Preselection Lepton veto (no isolated electrons and muons)

criteria At least two b-jets, p jet
T > 20 GeV, 6ET > 50 GeV

N ISR
τ−jet = 0

N ISR
b−jet = 0 ≥ 0 = 0

N ISR
jet ≥ 0 ≥ 1

M b̃ > [GeV] 650 500 420 200 140 − −

pCM
I,T > [GeV] 650 550 450 − − − −

MS > [GeV] 1700 1200 1050 650 − − −∣∣cos θb̃
∣∣ < 0.8 0.75 0.75 0.8 0.9 − −

< ∆φCM,b̃ <
π
3 −

2π
3 * π

3 −
2π
3 * 0.5− 2.2 0.5− 2.8 − − −

ranking pT (b1) (= 1) (= 1) − − − − −

ranking pT (b2) = 2 = 2 − − − − −

∆φCM,I <
3
4π

MV [GeV] >400 >400 >300 >200 − <100 <80

pCM
ISR,T > [GeV] − − − 530 580 600 600

< RISR < − − − 0.7− 1.3 0.8− 1.1 0.9− 1 0.9− 1

∆φISR,I > − 0.4* 2.0 2.6 2.9 3.05 3.07

∆φS,I < − − − − − 4π
25

3π
25

cos θ > − − 0.1 0.2 0.45 0.7 0.8

< γ−1
c < 0.4− 0.85 0.4− 0.85 0.55− 0.85 0.5− 0.9 0.5− 0.9 0.5− 0.9 0.35− 0.9

Table 8.2: A set of selection criteria for signal regions in the analysis of sbottom pair
production in final states with two b-jets and missing transverse momentum.
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(e) SRC1: SUSY samples with ∆M = 50 GeV.

0 20 40 60 80 100 120 140 160 180 200

  [GeV] VM

2−10

1−10

1

10

N
um

be
r 

of
 E

ve
nt

s 
/ 1

0 
G

eV

Boson + jets
 (+V)tt 

Single-top
Di/Tri-Boson
Higgs

 )= 775 GeVΧ
∼

 )= 800 GeV , m( b
~

m( 
 )= 875 GeVΧ

∼
 )= 900 GeV , m( b

~
m( 

 )= 975 GeVΧ
∼

 )= 1 TeV , m( b
~

m( 
 )= 1075 GeVΧ

∼
 )= 1.1 TeV , m( b

~
m( 

 )= 1175 GeVΧ
∼

 )= 1.2 TeV , m( b
~

m( 
 )= 1275 GeVΧ

∼
 )= 1.3 TeV , m( b

~
m( 

=14 TeVs -1,                         L=50 fb
0

1Χ∼ 
0

1Χ∼ b b  → b
~
 b

~
 SM, →Madgraph + Pythia + Delphes,   p p ∫
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Figure 8.5.1: Distributions of the RJR observables for events passing the selection
criteria defined in the corresponding SR column in Table 8.2. Contributions of all SM
backgrounds and overlaid signal curves are scaled to an integrated luminosity of 50 fb−1

at
√
s =14 TeV.
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(d) SRC2: SUSY samples with ∆M = 25 GeV.
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(e) SRO2: SUSY samples with ∆M = 500 GeV.
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(f) SRI3: SUSY samples with ∆M = 100 GeV.

Figure 8.5.2: Distributions of the RJR observables for the events passing the selection
criteria defined in Table 8.2. Contributions of all SM backgrounds and overlaid signal
curves are scaled to an integrated luminosity of 50 fb−1 at

√
s =14 TeV.
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Figure 8.5.3: Distributions of the RJR observables for the events passing the selection
criteria defined in Table 8.2. Contributions of all SM backgrounds and overlaid signal
curves are scaled to an integrated luminosity of 50 fb−1 at

√
s =14 TeV.
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are taken into account: at least one jet is assigned to the ISR-system. The scaleless

observable ∆φCM,I has limited sensitivity in the open and compressed regimes and is

employed for intermediate scenarios only, where selection criteria on dedicated handles

are relaxed.

Figures 8.5.1, 8.5.2 and 8.5.3 show distributions of the RJR observables used for probing

open, intermediate and compressed sbottom scenarios for events that have satisfied all

the relative selection criteria in Table 8.2 except for the requirement on the variable

that is displayed. The impact of the selection criterion on the displayed variable can be

observed in the shaded region. The histograms show the distribution for the overall SM

background with the five categories described in Table 8.1 in different colours stacked

together and for SUSY samples belonging to a common SR. The overlaid dashed lines

are signal distributions for a fixed value of the LSP mass (Mχ̃0
1

= 1 GeV) for SRO1

and for fixed mass splittings for the other signal regions corresponding to the minimum

value of ∆M in the SR interval (SRC2 with ∆M = 25 GeV, SRC1 with ∆M = 50 GeV,

SRI3 with ∆M = 100 GeV, SRI2 with ∆M = 200 GeV, SRI1 with ∆M = 350 GeV

and SRO2 with ∆M = 500 GeV ).

The distributions of the RJR observables shown in Figure 8.5.1 are the most useful in

discriminating signal to background events in one or more regimes. Lower limits on

the scale observable M b̃ are required in the open and intermediate signal regions and

its distribution is shown in Figure 8.5.1a. For intermediate and compressed scenarios

stringent criteria are imposed on pCM
ISR,T , shown in Figure 8.5.1b for SRI2. Figure 8.5.1c

shows the inverse of contra-boost factor γ−1
c useful in any regime. The ratio RISR and

∆φISR,I, provide progressively improving discrimination between signal and background

events reducing the mass splitting investigated. Their distributions are shown in Figures

8.5.1d and 8.5.1e for SRC1. An upper limit is imposed on the only scale observableMV

in the compressed regime whose distribution is shown in Figure 8.5.1f for SRC2.

Background yields can be decreased imposing selection criteria on the other RJR vari-

apply the selection criterion for the case of exactly two jets in the final state.



8.6. RESULTS AND SUMMARY 263

ables as shown for the distributions in Figures 8.5.2 and 8.5.3. The scale observables

pCM
T,I and MS have limited impact when other requirements are applied and the corre-

sponding selection criteria in Table 8.2 are specified for completeness. The distribution

of MS can provide information for the mass spectrum in case of SUSY discovery main-

taining for example a maximum around twice the sbottom mass in the limit of massless

LSP.

8.6 Results and summary

The imposition of the RJR trees and rules shown in Figure 8.2.2 result in a basis of

variables proposed for analysing the simplified topology corresponding to the Feynman

diagram in Figure 8.1.1. Seven signal regions described in Table 8.2 are defined by se-

lection criteria on these RJR observables and are used to compute discovery-exclusion

prospects of sbottom pair-production in final states with two b-jets and missing trans-

verse momentum at the LHC experiments.

Figure 8.6.1 shows the value of ZBi, defined by Eq. 3.5.5 and 3.5.8, describing the

significance for the expected SUSY final state events in the SM background hypothesis

for pp collisions with a centre-of mass energy of 14 TeV and for an integrated luminosity

of 50 fb−1.

A common value of 20% is assumed for the SM systematic uncertainty (∆B/B) in the

Mb̃ vs Mχ̃0
1
plane, where explicitly 2σ and 4σ continuous contour lines are drawn in

black and red respectively. Assuming the same selection criteria as in Table 8.2, other

projections are drawn. The 2σ (red) and 4σ (black) dashed contour lines are computed

assuming ∆B/B = 30%, while the continuous gray line refers to the 95% CL exclusion

limit assuming ∆B/B = 20% and BR2(b̃ → bχ̃0
1) = 50%. This can be interpreted as

the 2σ contour obtained from any product σLHC14(pp → b̃b̃) × BR resulting in half of

the signal final state events (see Eq. 3.1.3). Assuming ∆B/B = 20%, the 2σ exclusion

lines are computed for an integrated luminosity of 30 fb−1 and 200 fb−1. The latter
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reach can be simply extended requiring more stringent selection criteria.

Selection criteria on RJR observables related mainly to the S-system provide excellent

results for open mass spectra and good reach in SRI1. The complementarity of RISR,

pCM
ISR,T , MV and the other angular observables, such as ∆φISR,I, provide sensitivity for

probing compressed scenarios, while requiring a stringent criterion on the scale observ-

able pCM
ISR,T we exploit its orthogonality with the other open RJR variables and RISR

increasing the sensitivity in the intermediate regions SRI2 and SRI3.

Although a correct estimate and understanding of the systematic uncertainty based on

SM candles and control regions remains an experimental prerogative, in the compressed

regime the results appear quite robust or almost independent of ∆B/B due to the

suppression of the SM background yield, as can be noticed in the corresponding figures

in the previous section. For intermediate, and partially for open mass spectra, the

assumption of larger systematic uncertainties can result in a larger separation between

the contour lines. This is the case for low masses of the sbottom (. 600 GeV) due to a

stringent requirement on RISR in the intermediate regime or on the scale observables in

SRO2 and SRI1. An improvement requires more signal regions for the corresponding

∆M orMb̃, or a relaxation of such requirements to the detriment of the results obtained

for larger sbottom masses. Overall, in this phenomenological study as in the previous

one, the parametrisation for the b-tagging efficiency [70] is very conservative with respect

to the recent improvements in the ATLAS [137] and CMS [135] performances.

For an integrated luminosity of 50 fb−1, the RJR technique provides sensitivity to

compressed sbottom-neutralino scenarios at LHC14 excluding spectra with Mb̃ above

800 GeV assuming ∆B/B = 20%, well beyond the current experimental limits [123,138,

139] shown in Figure 8.6.2.

For scenarios with mbottom < ∆m < mW , the assumption BR(b̃ → bχ̃0
1) = 100%

is well motivated, since the multi-body decay modes via top and stop such as b̃ →

t∗(W ∗b)χ̃±i (W ∗χ̃0
1) and b̃→ W ∗t̃(bχ̃±i (W ∗χ̃0

1)) are expected to be suppressed.

Compressed results are paradoxically better than some intermediate outcomes (100
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GeV. ∆M .300 GeV) where the efficacy of both open and compressed observables is

limited: regions where the mass splitting ∆M approaches the value corresponding to

the dominant SM processes hard scale.

While for compressed and intermediate scenarios the observable RISR is a proxy for

the LSP-to-sbottom mass ratio, with increasing resolution for smaller ∆M and larger

pCM
ISR,T , for open scenarios the scale observableM b̃ maintains substantially the end-point

and tail shape dependency on ∆M after the imposition of other selection criteria. This

is due to the orthogonality between the RJR observables, which provides the possibility

to extract additional information on the mass spectrum from the distribution of MS in

the hypothesis of discovery. The bottom squark would be excluded with masses above

1.2 TeV and LSP with masses up to 400 GeV assuming ∆B/B = 20% for an integrated

luminosity of 50 fb−1 at
√
s = 14 TeV.

In the compressed regime, the same RJR tree and strategy can be applied for probing the

production of a pair of scalar tops decaying to charm quarks and LSPs (t̃→ cχ̃0
1) with

the differences arising from the charm tagging [136] and SM processes to contribute. In

such a case a jigsaw rule based on the minimisation of the masses in order to separate

the ISR and S systems as adopted in [111] is expected to be favoured considering the

current experimental efficiency in the c-tagging.

Comparing Figure 8.6.1 with the expected curves from ATLAS and CMS in Figure

8.6.2 we see dramatic improvements are possible in the compressed regions, while there

are still improvements in open cases. Coupled with developments in heavy flavour jet

identification demonstrated by the experiments [135,137], compared to the conservative

approach taken herein, we could envisage further improvements.
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ATLAS and CMS collaborations for the search of the SUSY simplified topology pp →
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Chapter 9

Outlook

9.1 Higgs plus tt̄ in the di-leptonic channel

9.1.1 Preamble

On 2012, both the CMS and ATLAS experiments announced the discovery of a particle,

with a significance exceeding 5σ, compatible with the SM Higgs combining the obser-

vations for the processes h → γγ and h → ZZ∗ → 4l. Precision measurements from

the LHC Run 2 point still more strongly towards the boson JPC = 0++ with mass

∼ 125 GeV introduced by Higgs which completes the missing peace of the SM. The

golden channel to study the CP-nature of this scalar is the final state with four leptons

(electrons plus muons) via an on-shell and an off-shell Z-boson. In this brief section

we present some features for the associated production of a boson with a top-antitop

using the RJR strategy.

9.1.2 Introduction

We apply the RJR technique as example for the study the CP-nature of the Higgs

boson in a complex final state. The samples are three MadGraph + Pythia + Delphes

267



268 CHAPTER 9. OUTLOOK

simulations of proton-proton collision at
√
s=13 TeV of the associated production of a

pair of tops in the di-leptonic channel and a boson decaying to a pair of b-jets. Hence,

the final state investigated has two leptons (electrons or muons), four b-jets and missing

transverse momentum following the process cascade pp→ tt̄+X with t→ bW+(l+v),

t̄→ b̄W−(l−v̄) and X → bb̄.

Figure 9.1.1 shows the process and resulting RJR tree with the positively charged lepton

associated with the hemisphere 1 in the tt̄ system by convention. For this tree the five

jigsaw rules are the same described in Section 4.5.3 and correspond to two combinatoric

minimisations of the masses for the assignment of four identical b-jets and three WIMP

jigsaw rules (the Set Invisible Rapidity, Mass and Contra-Boost jigsaw rules). The

RJR tree shows two systems: an H-system and a tt̄-system, the latter divided in two

identical hemispheres.

(a) (b)

Figure 9.1.1: Feynman diagram (a) and corresponding RJR decay tree (b) for the
process pp→ H + tt̄ in the di-leptonic channel.

This study focuses on the nature of the Higgs boson and three different samples are

considered depending on the boson decaying in a pair of bottom quarks X → bb̄: a
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CP-even or SM-like Higgs boson and a CP-odd Higgs boson with masses 125 GeV, and

what is assumed to constitute the main irreducible background Z → bb̄.

9.1.3 CP-sensitive observables

We require final states with two opposite sign leptons (l = e or µ) and four jets among

which at least one is reconstructed as b-jet in each system NH
b−jet ≥ 1 and N tt̄

b−jet ≥ 1.

The normalised distributions of the main experimental observables sensitive to the CP-

nature of the Higgs boson are shown in Figure 9.1.2.

Figure 9.1.2a shows a good resolution for the reconstruction of the mass for the H-

system. Considering the complexity of the final state topology and the uncertainty

related to the physics of the jets for the reconstruction of an invariant mass, the result

is a remarkable separation between the Higgs and Z-boson mass peaks.

Figure 9.1.2b shows the distribution of pCM
h : the three-momentum of the H-system (or

tt̄-system) estimated in the centre-of-mass frame. The CP-odd Higgs events tend to

populate larger values.

The remaining figures show the distributions of the main angular observables sensitive

to the nature of the boson produced in association with a pair of top-quarks decaying

leptonically. For such variables, the distributions corresponding to the CP-odd Higgs

boson sample are similar to the spin 1 gauge boson ones, while the distributions for the

CP-even scalar tend to have a different behaviour. Figure 9.1.2c shows the distribution

of cos θH,tt̄, namely the cosine of half of the angle between the two systems (H and tt̄)

computed in the CM frame, while Figure 9.1.2d shows the distribution of cos θtt̄ sensitive

to the angular separation of the two tops evaluated in the tt̄-system. Figure 9.1.2e is

the distribution of cos θ(lt, lt̄) where θ is the angular separation between the direction

of the positively charged lepton evaluated in the top rest-frame and the direction of the

negative charged lepton evaluated in the anti-top rest frame: p̂t(l+) · p̂t̄(l−). Finally,

Figure 9.1.2f shows the distribution of ∆φCM,tt̄: the azimuthal angle between the decay
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plane spanned by the H-system and the tt̄-system and the decay plane formed by the

two tops: (4ϕ
[
H̄ Lab × (tt̄) Lab, tCM × t̄CM

]
).

Figure 9.1.3 shows two-dimensional distributions of scale and angular observables for

the CP-even Higgs sample. The first three distributions show the correlation between

scale variables.

Figure 9.1.3a shows the reconstruction for the masses of the two W systems. The

reconstructions are close to the true values and a large uncorrelation between the two

hemispheres is shown. This feature is common among the other samples sign that

the combinatoric and WIMP jigsaw rules are such that the W+ and W− systems and

hence, the top and antitop systems, and the overall tt̄-system are reconstructed with

remarkable precision for this complex final state topology involving massless weakly

interacting particles. This behaviour is mostly independent of the jet multiplicity of

the final state suggesting that the correct b-jet is associated to the corresponding lepton

in the tree. Figure 9.1.3b shows the two-dimensional distribution between the two scale

variables sensitive to the X nature, while Figure 9.1.3c shows the histogram between

the mass of the H-system and Mtt̄: the mass of the tt̄-system. The scale variables

present an overall low correlation between them and the same is observed for the other

samples.

Figures 9.1.3d, 9.1.3e and 9.1.3f show the two-dimensional distributions between the

mass of the H-system and ∆φCM,tt̄, cos θ(lt, lt̄) and cos θH,tt̄ respectively. These figures

manifest the uncorrelated nature between scale and angular variables and similar fea-

tures appear for the other two samples with a concentration of the events around the

Z-pole for the gauge boson sample.

Finally, Figures 9.1.3g, 9.1.3h and 9.1.3i show orthogonality between angular vs angular

RJR observables. Furthermore, SM-like Higgs events tend to populate higher values

for cos θ(lt, lt̄) independently of the other observables.

A detailed analysis requires the generation of all the main possible backgrounds includ-

ing tt̄ in the di-leptonic channel + ISR, with focus on the radiation g → bb̄ and any other
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Figure 9.1.2: Distributions for the main scale and angular RJR observables sensitive to
the nature of the Higgs boson for the process pp→ tt̄+h,

(
t→ bνl+, t̄→ b̄ν̄l−, h→ bb̄

)
.

The black line corresponds to a SM-like Higgs boson, the green line to a CP-odd Higgs
boson and the red line to a Z boson.



272 CHAPTER 9. OUTLOOK

 )-
 )

 d
M

( 
W

+
dM

( 
W

dN
 

N1

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

 )  [GeV]-M( W

0 20 40 60 80 100 120 140 160 180 200

 )
  [

G
eV

]
+

M
( 

W

0

20

40

60

80

100

120

140

160

180

200

(a)

) 
d(

M
( 

h 
))

 hC
M

d(
p

dN
 

N1

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

  [GeV]
 h
CMp

100 150 200 250 300 350 400 450 500

M
( 

h 
) 

 [
G

eV
]

40

60

80

100

120

140

160

180

200

(b)

) 
d(

M
( 

h 
))

t
 t 

d(
M

dN
 

N1

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

  [GeV]
t t 

M

200 300 400 500 600 700 800 900 1000

M
( 

h 
) 

 [
G

eV
]

40

60

80

100

120

140

160

180

200

(c)

) t
 C

M
, t

φ∆
d(

M
(h

))
 d

(
dN

 
N10.0002

0.0004

0.0006

0.0008

0.001

M(h)  [GeV]

40 60 80 100 120 140 160 180 200

t
 C

M
, t

φ∆

0

1

2

3

4

5

6

(d)

))t
, lt l (θ

d(
M

(h
))

 d
(c

os
dN

 
N10.0002

0.0004

0.0006

0.0008

0.001

M(h)  [GeV]

40 60 80 100 120 140 160 180 200

)t
, lt l

 (θ
co

s

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

(e)

) t
 t,

 
θ

d(
M

(h
))

 d
(c

os
dN

 
N1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3−10×

M(h)  [GeV]

40 60 80 100 120 140 160 180 200

t
 t,

 
θ

co
s

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

(f)

))t
, lt l (θ

) 
d(

co
s

t
 t,

 
θ

d(
co

s
dN

 
N10.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

t t, 
θcos

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

)t
, lt l

 (θ
co

s

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

(g)

) t
 C

M
, t

φ∆
))

 d
(

t
, lt l (θ

d(
co

s
dN

 
N10.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

)t, l
t

l (θcos

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

t
 C

M
, t

φ∆

0

1

2

3

4

5

6

(h)

) t
 C

M
, t

φ∆
) 

d(
t

 t,
 

θ
d(

co
s

dN
 

N1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

3−10×

t t, 
θcos

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

t
 C

M
, t

φ∆

0

1

2

3

4

5

6

(i)

Figure 9.1.3: Two-dimensional distributions between scale and angular RJR observables
for the events of the process: CP-even Higgs boson produced in association with a pair
of tops decaying in the di-leptonic channel.
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possible process involving two opposite-sign leptons, high jet multiplicity and missing

transverse momentum such as tt̄ + W (→ had) with mis-tagged jets. This analysis is

supposed to investigate the feasibility of the process tt̄ + h in the di-leptonic channel

at LHC as well as study the CP-nature of the Higgs boson. Selection criteria applied

to scale observables such as the mass of the H-system, Mtt̄ and the missing transverse

momentum could be used to suppress possible background processes together with ap-

propriate b−tagging requirements, while one can leverage the distribution of pCM
h and

in particular on the other angular observables described in this section, in order to

both increase the significance for the signal-to-background ratio and extract additional

information regarding the nature of the Higgs.

9.2 Other potential future works

The RJR technique has been used for probing open mass spectra, investigating two

hemisphere topology examples, and for compressed mass spectra leveraging on an ISR-

system. In Chapter 8 we fuse the two strategies in order to probe the entire supersym-

metric phase-space.

The SUSY phenomenology allows a multitude of possible investigations. Furthermore,

the re-interpretation of the results using different branching fractions for different modes

allow the opportunity to study a vast variety of final state topologies assuming the same,

or similar, superparticle pair-production. A typical example consists in assuming a 50%

branching ratio for each of the two modes q̃ → χ̃0
1q and q̃ → χ̃±1 q, which is equivalent

to employ the simplified topology assumption (BR = 1) for each gauge eigenstates

q̃R → χ̃0
1q and q̃L → χ̃±1 q. Another possibility consists in combining results obtained

analysing a specific final state produced from similar topologies with similar kinematics.

The unambiguous way to present a re-interpretation of an analysis result consists in the

assumption of a branching fraction for the specific process, which is equivalent to scale

the quantity σ × BR, and hence the number of expected signal events, independently
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of the other decay modes.

The jigsaw rules described in this thesis can be customised and applied to study any

supersymmetric final state topology. Some additional examples considering the only

third generation of squarks include:1

• Stop pair-production: pp → t̃t̃(t̃ → Xχ̃0
1). In such a case X summarises differ-

ent potential decay products depending on the mass splitting. In particular the

different modes described in Eq. 2.3.30 should be investigated.

• Gluino mediated stop production. For example, the process pp→ g̃g̃(g̃ → t̃(tχ̃0
1)t)

can produce a final state reach of extra b-jets and one can leverage the large cross-

section for the gluino pair-production.

• Sbottoms mediated stop production: pp→ b̃b̃(b̃→ t̃(Xχ̃0
1)b). Except for b̃→ bχ̃0

1,

this is the favourite mode for the sbottom and when the stop-sbottom mass split-

ting is reasonably small, similar cross section respect the direct stop production

can be exploited together with the two potential additional b-jets reconstructed

by the detector.

• Di-gluino production pp → g̃g̃(g̃ → bbχ̃0
1). In Chapter 7 we have shown how

applying RJR to the two step decays study provides results mostly independent

of the mass of the sbottom. One can extend the investigation to the three body

decay using a similar strategy as adopted in Chapter 8 employing an ISR-system

for large jet multiplicity (Njet > 4).

• Other possible topologies including intermediate electroweakinos can be invest-

igated either for the direct production of sbottoms or mediated by the gluino

pair.

For on-shell tops, and in particular for scenarios with large mass splittings, boosted

1The labels for the anti-particles and light eigenstates of mass are erased.
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tops technique should be employed. While disfavoured, RJR can be applied to mixed

gluino two/three body decays as described in Ref. [112] (g̃ → bb̃ and g̃ → bbχ̃0
1).

More generally, RJR can be used for probing any final state with weakly interacting

particles. For example, two classes of theoretical frameworks called Little Higgs Mod-

els [140–143] and theories of extra dimensions [144–147] are alternative approaches to

SUSY for the solution of the hierarchy problem. Some of the possible interactions

of the Little Higgs models are constrained by experimental measurements and can be

removed imposing the conservation of a Z2 symmetry, referred to as T -parity. Theor-

ies of extra dimensions assume the strong and electroweak forces are confined in the

four-dimensional space, while gravity can propagate to additional dimensions, includ-

ing models of compact extra dimensions and warped geometries a la Randal-Sundrum.

For example, with one compact extra dimension new fields are odd under a discrete

symmetry called KK-parity.

In both cases the conservation of such discrete symmetries provide a lightest stable

weakly interacting particle KK- or T -odd which would be consistent with a candidate

for dark matter. At the LHC, a pair of odd particles under KK or T -parity could be

produced providing cascades resembling those one of the SUSY phenomenology. Final

state topologies would involve SM particles plus a pair of DM candidates and the RJR

technique could be applied imposing trees and rules as described in this thesis.
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Chapter 10

Summary

Recursive Jigsaw Reconstruction (RJR) introduced in Chapter 4 is a proposed high

energy physics technique dedicated to the study of final state topologies containing

ambiguities due to unknown kinematic degrees of freedom when particles not interacting

with the detector are present and/or combinatoric challenges due to the presence of

indistinguishable visible particles. The problem is factorised by the imposition of jigsaw

rules moving recursively through the decay tree to reconstruct the event approximating

the relevant frames of reference.

The result is a complete basis of kinematic observables sensitive to the masses and

decay angles of the resonances appearing in the tree which can be used to distinguish

signatures of new physics from the SM background. In this thesis, RJR is applied to

analyses in the context of the supersymmetric theoretical framework. Selection criteria

applied on RJR variables are imposed for the definition of signal regions targeting the

final state topologies investigated.

Gluino and squark compressed scenarios in fully hadronic final states (g̃ → qqχ̃0
1 and

q̃ → qχ̃0
1) are studied in Chapter 5. Results are presented in Figures 5.5.1 and 5.5.2

for an integrated luminosity of 100 fb−1 and for a centre-of-mass collision energy of 14

TeV, assuming a systematic uncertainty of 15% for the SM background.

277
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In Chapter 6 RJR is used to investigate the SUSY electroweak sector. Associated

neutralino-chargino production in final states with three leptons (χ̃0
2 → Z∗(l+l−)χ̃0

1,

χ̃±1 → W ∗±(l±ν)χ̃0
1) are probed leveraging on only compressed transverse observables.

Discovery reach and exclusion limits are shown in Figure 6.2.9 for an integrated lumin-

osity of 300 fb−1 at
√
s = 14 TeV assuming a 20% systematic uncertainty constant in

the SUSY phase space. A more sophisticated investigation is dedicated to the scenarios

involving compressed charginos in final states with two opposite charge leptons and

missing transverse momentum (χ̃+
1 → W ∗+(l+ν)χ̃0

1, χ̃
−
1 → W ∗−(l−ν̄)χ̃0

1). A large data

sample of 3 ab−1 is necessary to put the first exclusion limits in the Mχ̃0
1
vs Mχ̃±1

plane

assuming a flat 20% systematic uncertainty for the SM background processes at LHC14

as shown in Figure 6.3.13.

Gluino mediated sbottom production in final state with four b-jets and missing trans-

verse momentum (g̃ → bb̃1(bχ̃0
1)) are investigated in Chapter 7 for several scenarios

spanning on the gluino, sbottom and LSP masses. Two signal regions are defined for

the discovery prospects of such scenarios and the significances are presented in Figure

7.6.1 and Figure 7.6.2 for different projections of the integrated luminosity assuming a

30% systematic uncertainty for the SM background at
√
s = 14 TeV.

Scenarios involving the direct production of light sbottoms in final states with two b-jets

and missing transverse momentum (b̃1 → bχ̃0
1) are studied in Chapter 8 with results

presented in the Mb̃1
vs Mχ̃0

1
plane in Figure 8.6.1 assuming a data sample of 50 fb−1

of LHC14 and systematic uncertainties of 20% and 30% for the SM background.

Using the data collected during 2015 and 2016 of Run 2 of LHC13, no significant

deviations from the SM expectation arise from the myriad searches for BSM physics

performed by the experiments. A large proportion of the SUSY phase space has been

excluded assuming the hypothesis of simplified models or in the context of MSSM and

beyond. The difficulty arising for probing regions of the SUSY phase space particu-

larly challenging, such as the case of compressed scenarios, or due to combinatoric and

kinematic ambiguities in the final state can be attenuated by employing RJR. Novel
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searches by the ATLAS collaboration leverage RJR for probing light squarks and glui-

nos in final states with jets and missing transverse momentum [122]. Analyses in the

SUSY electroweak sector and concerning squarks of the third generation are highly

topical and it has been demonstrated in this thesis how significant improvements can

be made in performing these searches.
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