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Abstract. An algebraic procedure to find extremal density matrices for the expectation
value of a finite Hamiltonian matrix is established. The extremal density matrices for pure
states provide a complete description of the system, that is, its corresponding energy spectrum
and projectors. For density matrices representing mixed states, one gets the most probable
eigenstates that yield extremal mean values of the energy. The procedure uses mainly the
stationary solutions of the von Neumann equation of motion, the orbits of the Hamiltonian,
and the positivity conditions of the density matrix. The method is illustrated for matrix
Hamiltonians of dimensions d = 2 and d = 3.

1. Introduction

There are mathematical problems emerging in quantum information theory and in finite-
dimensional quantum systems which can be studied by an algebraic parametrisation of the
density matrix. As examples one can consider Hamiltonian systems characterising symmetric
qubits [1], which appear in several branches of physics. The two-site Bose-Hubbard model to
study Josephson tunnelling between two-mode Bose-Einstein condensates [2,3]; or Hamiltonians
of the Lipkin-Meshkov-Glick type to study many body theories and quantum phase transitions [4,
5]. Additionally for symmetric qubits there are entanglement witnesses, i.e., observables that
can be measured in a given experimental set-up and thus provide an experimental verification
of entanglement [6, 7]. There are also many properties in quantum information related with
optimisation problems, for instance, in the detection and quantification of entanglement [8].
If we do not have information about an ensemble of systems, by maximizing the entropy the
probability of finding the system in any of its possible states is the same. On the contrary having
knowledge of the mean value of the energy one can determine the density matrix of a system
in thermal equilibrium; or by knowing the mean value of the spin operator the description of
the density matrix for the spins in terms of the Pauli matrices and the polarization vector is
obtained [9]. The definition of the relative entropy can be used to determine test density matrices
associated to a canonical distribution of eigenstates of finite dimensional matrix Hamiltonian,
which allows the determination of upper bounds to the exact free energy of Helmholtz to describe
stretch vibrations of triatomic molecules [10]. In the studies of indivisible systems the nature of
correlations is not obvious. However for these systems, the existence of quantum correlations can
be detected by different types of inequalities which are violated for entangled states or by entropic
and information inequalities written for the density matrices of systems and subsystems [11].

http://creativecommons.org/licenses/by/3.0
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In finite quantum systems the density matrices can be formulated into a su(d) description [12].
Actually, there are several parametrizations of finite density matrices: generalizations of the
Bloch vector [13], the canonical coset decomposition of unitary matrices [14], the recursive
procedures to describe n × n unitary matrices in terms of those of U(n − 1) [15], and by
defining generalized Euler angles [16]. Recently we have established a procedure to determine
the extremal density matrices of a qudit system associated to the expectation value of any
observable [17]. These matrices provide an extremal description of the mean values of the
energy; and in the case of restricting them to pure states the energy spectrum is recovered.
So, apart from being an alternative tool to find the eigen-system, one has information of mixed
states which minimize its mean value.

The aim of this work is to compute extremal density matrices in a qudit space by means
of an algebraic approach [18] that uses the stationary solutions of the von Neumann equation
of motion, the orbits of the Hamiltonian matrix, and the positivity conditions of the density
matrix. This approach complement and simplify the variational procedure as we are going to
shown. To establish this new method we review in the second section the variational procedure
and apply the method to the d = 2 dimensional case. In the third section, the algebraic approach
is introduced together with the determination of the orbits of the Hamiltonian through the
construction of the Gram matrix. An explicit method to get the eigen-system, for the pure case,
associated to the Hamiltonian matrices with or without degeneracy is also presented, together
with the determination of the density matrices of mixed states corresponding to the extremal
mean values of the energy. In section fourth, the Hamiltonian systems of d = 3 are studied.
Finally a summary and concluding remarks are presented.

2. Variational approach to extremal density matrices

In a previous work [17] we proposed an approach to obtain information of the mean value of a
finite dimensional Hamiltonian, in which a general test density matrix is written in terms of the
generators λ̂k of a special unitary algebra in d dimensions, su(d), i.e.,

ρ̂ =
1

d
Î +

1

2

d2−1∑

k=1

λk λ̂k , (1)

with λk = Tr(ρ̂ λ̂k). The operators λ̂k are completely characterized by means of the commutation
and anti-commutation relations [13]

[
λ̂j , λ̂k

]
= 2 i

d2−1∑

q=1

fjkqλ̂q , {λ̂j , λ̂k} =
4

d
δjkÎ + 2

d2−1∑

q=1

djkqλ̂q , (2)

where djkq and fjkq are the symmetric and antisymmetric structure constants given by

djkq =
1

4
Tr({λ̂j , λ̂k}λ̂q) , fjkq =

1

4i
Tr(

[
λ̂j , λ̂k

]
λ̂q) . (3)

The density matrix must satisfy the following three properties: (a) It is Hermitian, (b) it has
trace one, and (c) all its eigenvalues are positive semidefinite. While for dimension d = 2,
the condition Tr(ρ̂2) ≤ 1 implies (c), for d ≥ 3 that is not true. Therefore the positivity
conditions of the density matrix are established by the set {ak} of coefficients of its corresponding
characteristic polynomial. This set can be obtained by means of the recursive relation known
as Newton-Girard formulas [14, 19]

ak =
1

k

k∑

j=1

(−1)j−1 ak−j tj , (4)
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with the definitions a0 = a1 = 1, ad = det ρ̂, and tj = Tr(ρ̂j), for j = 1, . . . , d. Therefore the
allowed density matrix must be in the region given by [13,20, 21]

0 ≤ ak ≤
1

dk

(
d

k

)
, (5)

where
(
d
k

)
denotes a binomial coefficient. The upper bound defines the most mixed state while

the lower bound specifies pure states.
The compatible regions bounding the invariants ak are obtained through the intersection of

the positivity conditions of the density matrix (5) with the respective positivity conditions of
the symmetric matrix called Bezoutian [22–24].

In order to consider the mean value of the Hamiltonian together with the d − 1 constraints
to guarantee the positivity of the density matrix, we define the function

f(λk,Λj , hi, cl) ≡ Tr(Ĥ ρ̂) +
d∑

j=2

Λj(aj − cj) , (6)

which depends on d− 1 Lagrange multipliers {Λj}, d− 1 positive real constants {cj} to fix the
degree of purity of the density matrix, d2−1 independent variables {λk}, and d2 real parameters
associated to the expansion

Ĥ =
1

d
h0Î +

1

2

d2−1∑

k=1

hk λ̂k , (7)

where h0 = Tr(Ĥ) and hk = Tr(Ĥ λ̂k).
The extremal values of (6) one has to take the derivatives of f(λk,Λj , hi, cl) with respect to

the variables {λk} and the Lagrange multipliers {Λj}. Their respective derivatives give d2+d−2
algebraic equations,

1

2
hq +

d∑

j=2

Λj

∂aj
∂λq

= 0 , q = 1, . . . d2 − 1 , (8)

ap = cp , p = 2, . . . d . (9)

These sets of algebraic equations determine the critical values of the density matrix, i.e., λq = λc
q

and Λq = Λc
q for which the expectation value of the Hamiltonian takes an extremal value. If we

restrict the solutions to pure states {cp = 0}, we have shown explicitly that the energy spectrum
of the Hamiltonian is recovered for d = 2 and 3 [17]. Extremal expressions for the mean value
of the Hamiltonian can be obtained with density matrices representing mixed quantum states,
which determine also the corresponding mixture of eigenstates of the Hamiltonian.

2.1. d = 2

The generators {λ̂k} are realised in terms of the Pauli matrices, i.e., λ̂1 = σ̂1, λ̂2 = σ̂2 and

λ̂3 = σ̂3. Then the density and Hamiltonian matrices can be written as

ρ̂ =
1

2

(
1 + λ3 λ1 − i λ2

λ1 + i λ2 1− λ3

)
, Ĥ =

1

2

(
h0 + h3 h1 − i h2
h1 + i h2 h0 − h3

)
, (10)
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where λ is also called the polarization vector. Substituting the last expressions into the
expressions (8) and (9) one obtains the system of equations

hk − 2Λλk = 0 ,
1

4

(
1− λ2

1 − λ2
2 − λ2

3

)
= c2 , (11)

with k = 1, 2 and 3. The solutions of the system of equations are λc
k = ±δ/h hk and Λc = ±h/δ.

with h =
√
h21 + h22 + h23 and δ =

√
1− 4c2. Thus one gets two density matrices:

ρ̂c± =
1

2

(
1± δ h3/h ±δ (h1 − ih2)/h

±δ (h1 + ih2)/h 1∓ δ h3/h

)
, (12)

which yields the extremal mean values of the energy 〈H〉c± = 1
2 (h0 ± δ h). These values depend

on the parameter c2 whose value is bounded, 0 ≤ c2 ≤ 1/4. For c2 = 1/4, one has the maximally

mixed state ρ̂c± = 1/2Î2, which has maximum entropy. We can distinguish two types of solutions:

(a) Pure case (when c2 = 0, that is, δ = 1): The eigenvalues ε± = 1
2 (h0 ± h) of the Hamiltonian,

and from (12), the corresponding orthogonal projectors. (b) Mixed case (when 0 < c2 ≤ 1/4):
The extremal density matrices for the expectation value of the Hamiltonian are given in terms
of the convex sum

ρ̂mixed
± =

1

2
(1 + δ)ρ̂pure± +

1

2
(1− δ)ρ̂pure∓ , (13)

where p± = 1
2(1 + δ) indicates the probability of finding the system with eigenvalue ε+ while

p∓ = 1
2(1− δ) the corresponding probability of finding an energy ε−.

3. Algebraic approach

The stationary solutions of the von Neumann equation of motion, which satisfy [ ρ̂, Ĥ ] = 0,
are equivalent to the critical values of the generalised Bloch vector λ that make the expectation
value of the Hamiltonian an extremal [18]. By replacing Eqs. (1) and (7) into the last expression,

using the commutation relations of the generators λ̂k, multiplying by λ̂q, and tracing over the
result; one gets the homogeneous system of equations

∑

j

M q j λj = 0 , q = 1, 2, · · · , d2 − 1 , (14)

where we have defined the d2 − 1-dimensional skew symmetric matrix

M i,j =

d2−1∑

k=1

fi j k hk . (15)

The solution through the Gauss-Jordan elimination method of the underdetermined system of
equations (14) leads to the critical values for the components of the Bloch vector, λc. Notice
that it has n free components, whose number is associated to the dimension of the null space
of M . This implies that maximal mixed states (all the components of the Bloch vector equal
to zero) are always critical for any observable because the null space always contains the zero
vector.

On the other hand, notice that ŵq ≡ i [Ĥ , λ̂q] are hermitian vectors spanning the tangent

space of the orbits associated with Ĥ, with q = 1, 2, . . . , d2 − 1. Then by substituting the
Hamiltonian expression (7) one gets

ŵq =
∑

k,l

fqkl hk λ̂l . (16)
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Note that these vectors give the rows of M , and the number of independent vectors r is
determined by the rank of the Gram matrix

Gq,p = Tr(ŵq ŵp) =
∑

k1,k2,j

fq j k1 fp j k2 hk1 hk2 . (17)

Because the rankG is an invariant under unitary transformations [25], one has the freedom to
calculate the Grammatrix in the diagonal representation of the Hamiltonian, i.e., by means of the
diagonal components of the generalised Bloch vector of the Hamiltonian h = (h1, h2, · · · , hd2−1).
Thus, if all the eigenvalues of Ĥ are equal, any density matrix commutes with Ĥ, implying that
r = 0. The other extreme is when all the eigenvalues are different [26, 27]; then the dimension
of the orbit is associated to the quotient space U(d)/[U(1)× · · · × U(1)] and thus one has that
r = d(d − 1). Thus one has in this case n = d − 1 free components of the Bloch vector of
the critical density matrix. These components can be obtained by establishing the positivity
conditions of the density matrices given in expression (9).

3.1. Non degenerate case of Ĥ

In this case, the rank of the matrix M is given by r = d(d − 1) and the n free variables reach
its minimum number, i.e., n = d− 1. Therefore, λc is given by

λ
c = (λc

1, . . . , λ
c
d(d−1), λd(d−1)+1, . . . λd2−1) , (18)

where the d(d − 1) components {λc
q} are functions of the parameters of the Hamiltonian, the

antisymmetric structure constants and a set of d− 1 independent free variables.
The substitution of λ

c in (1) gives its associated critical density matrix denoted as ρ̂c.
Therefore, the determination of the d − 1 free variables is done by solving the system of d − 1
polynomial equations (9), which has at most d ! different solutions [28, 29]. They satisfy the

same polynomial system (9) but give different mean values of Ĥ. Therefore, the critical density
matrices can be written in the form

ρ̂cm =
1

d
Î +

1

2

d2−1∑

k=1

λc
m, k λ̂k , (19)

with m labelling the independent critical solutions. The variables {λc
m, k} are function only of

the known quantities, i.e., the structure constants, the parameters of the Hamiltonian (h0, hk),
and d − 1 constants {ck}. The number m of solutions decreases up to d when (19) represent
pure states (all {ck = 0}) and the extremal density matrices are one-dimensional orthogonal
projectors.

In general the expectation value of the Hamiltonian is given by

〈Ĥ〉cm ≡ Tr(Ĥ ρ̂cm) , (20)

for each critical (or extremal) density matrix ρ̂cm, with m = 1, 2, . . . d !. For the pure case the
expectation values yield the energy spectrum of the system and the extremal density matrices
are orthogonal projectors.

3.2. Degenerate case of Ĥ

In this case the rank of the matrix M satisfies that r < d(d − 1), whose value is associated
to the orbits of the Hamiltonian. As the critical Bloch vector λ

c has n free variables with
n = d2 − 1 − r, one then has that n > d − 1. Thus, if N denotes the number of variables
appearing in the expression for the mean value of the Hamiltonian in the state ρ̂c, there are two
cases to consider:
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i) When 1 ≤ N ≤ d − 1, one has to select n − N components of the density matrix Bloch
vector to have d− 1 free variables and then solve the polynomial system of equations (9).

ii) When d−1 < N ≤ n, one has only to pick up d−1 components of the density matrix Bloch
vector from the set of N elements, and again to solve the mentioned polynomial equation.

In both cases d− 1 free variables are determined by the polynomial system (9). The remaining
n− (d− 1) components can be taken equal to zero because they do not affect the commutator

of Ĥ with ρ̂c. Specifically, if we are interested in the eigensystem, i.e., all the set of {ck = 0},
one can apply the following method recursively:

1) Make zero the n− (d− 1) components, to solve the polynomial system (9), whose solution
give at least two extremal density matrices.

2) Ask the orthogonality of the first set of solutions ρ̂ck with the general density matrix ρ̂c, i.e.,
Tr(ρ̂c ρ̂ck) = 0, where k labels the number of solutions.

3) Substitute the solutions of the linear system, to express the new critical density matrix in
terms of the free variables, where d− 1 are fixed by means of the positivity conditions (all
{ck = 0}) and the rest of the components can be taken equal to zero.

4) Return to step 1 and repeat the procedure again, until one gets d orthogonal projectors.

Of course, one has in this case several solutions related with the degeneracy of the Hamiltonian
in similar form as in the standard diagonalization procedure of a finite Hamiltonian matrix.

4. Case d=3.

For the qutrit case, the generators λ̂k, with k = 1, 2, . . . 8 can be realized in terms of the Gell-
Mann matrices. Thus, an arbitrary density matrix is given by

ρ̂ =
1

2




λ7 +
λ8√
3
+ 2

3 λ1 − iλ4 λ2 − iλ5

λ1 + iλ4
λ8√
3
− λ7 +

2
3 λ3 − iλ6

λ2 + iλ5 λ3 + iλ6
2
3 − 2√

3
λ8


 . (21)

We will illustrate the procedure taking special cases. For the non-degenerate case we take

Ĥ =




b c√
2

0
c√
2

0 c√
2

0 c√
2

b


 , (22)

where b and c are real parameters. The Bloch vector for the Hamiltonian is given by

h = (
√
2 c, 0,

√
2 c, 0, 0, 0, b, −

√
3 b) .

Substituting the components of h into (15), one finds that the rank of M is 6, implying that the
Hamiltonian is non degenerate. Solving the system of equations (14) one obtains the extremal
Bloch vector for the density matrix

λ =

(
c λ2√
2 b
−
√
6 c λ8

b
, λ2,

c λ2√
2 b
−
√
6 c λ8

b
, 0, 0, 0,−

√
3λ8, λ8

)
.

Thus the associated critical density matrix is found by replacing the components of λc into (21),
which is denoted by ρ̂c. For this case, to guarantee the positivity of the density matrix, one
must consider

c2 =
1

2

(
1− Tr(ρ̂c)2

)
, c3 = det ρ̂c . (23)
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For the case d = 3, the positivity conditions (5) of the density matrix are

0 ≤ c2 ≤
1

3
, 0 ≤ c3 ≤

1

27
, (24)

while the Bezoutian matrix is

B3 =




3 1 t2
1 t2 t3
t2 t3 t4


 .

By applying the Cayley-Hamilton theorem and the formula (4) one obtains

t2 = 1− 2 c2 , t3 = 1− 3c2 + 3c3 , t4 = 1− 4c2 + 2c22 + 4c3 . (25)

Similarly to the case of d = 2, detB3 ≥ 0 is the only relevant positivity condition of B3.
Expressed in terms of {c2, c3}, it gives

c22 − 4c32 + 18c2c3 − c3(4 + 27c3) ≥ 0 . (26)

Thus, the inequalities system formed by (24) and (26) produces the compatible region between
c2 and c3. This is shown in Fig. 1(a). The bottom line is associated with one eigenvalue
zero (yielding the condition on c2 for the case d = 2), while the other curves imply two equal
eigenvalues for the density matrix. The (c2, c3) = (0, 0) case is associated to density matrices of
pure states and the highest is the maximal mixed state (all the eigenvalues are equal).

Again one has two types of solutions: (a) Pure case (taking c2 = c3 = 0): Solving the system
of equations c2 = 0 and c3 = 0, one arrives to 3 different solutions for λ2 and λ8, denoted by

(λ2, λ8)0 =
(
−1,− 1

2
√
3

)
, (λ2, λ8)± =

1

2

(
1± b

∆
,

√
3

6
∓
√
3 b

2∆

)
, (27)

where we defined ∆ =
√
b2 + 4 c2, which yield three independent Bloch vectors of the density

matrix, namely

λ0 =
(
0,−1, 0, 0, 0, 0, 1

2
,− 1

2
√
3

)
, (28)

λ± =
(
±
√
2 c

∆
,
1

2
± b

2∆
,±
√
2 c

∆
, 0, 0, 0,−1

4
± 3 b

4∆
,

√
3

12
∓
√
3 b

4∆

)
, (29)

whose norm is equal to 4/3 and the scalar products between them are equal to −2/3. Thus
it is straightforward to check that the corresponding extremal density matrices are orthogonal
projectors associated to the energy eigenvalues of the Hamiltonian ε0 = b, ε± = 1/2(b±∆). (b)
Mixed case: For any other values for c2 and c3 in the region shown in Fig. 1(a), one can solve
the polynomial system given by (23). As an example we take c2 = 29/100 and c3 = 1/50. There
are 6 different solutions for λ2 and λ8 which give rise to 6 Bloch vectors:

λ
(1)

± =
(
±
√
2 c

10∆
,
7

20
± b

20∆
,±
√
2 c

10∆
, 0, 0, 0,− 7

40
± 3 b

40∆
,

√
3

120
∓
√
3 b

40∆

)
,

λ
(2)

± =
(
±2

√
2 c

5∆
,− 1

10
± b

5∆
,±2

√
2 c

5∆
, 0, 0, 0,+

1

20
± 3 b

10∆
,−
√
3

60
∓
√
3 b

10∆

)
, (30)

λ
(3)

± =
(
±3

√
2 c

10∆
,−1

4
± 3 b

20∆
,±3

√
2 c

10∆
, 0, 0, 0,+

1

8
± 9 b

40∆
,−5

√
3

120
∓ 9

√
3 b

120∆

)
.

The corresponding extremal expectation values of the Hamiltonian are given by

〈Ĥ〉(1)± =
11 b

20
± ∆

20
, 〈Ĥ〉(2)± =

7 b

10
± ∆

5
, 〈Ĥ〉(3)± =

3 b

4
± 3∆

20
. (31)
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Figure 1. Regions of c2, and c3, where the positivity conditions of density matrix are satisfied. The horizontal
and vertical dashed lines taking the values c3 = {0, 1/27} and c2 = {1/4, 1/3}, respectively.

We find the expansion of the extremal density matrices for the mixed case in terms of the pure
case described before,

ρ̂
(1)
+ =

1

10
ρ̂0 +

1

2
ρ̂+ +

2

5
ρ̂− , ρ̂

(1)
− =

1

10
ρ̂0 +

2

5
ρ̂+ +

1

2
ρ̂− ,

ρ̂
(2)
+ =

2

5
ρ̂0 +

1

2
ρ̂+ +

1

10
ρ̂− , ρ̂

(2)
− =

2

5
ρ̂0 +

1

10
ρ̂+ +

1

2
ρ̂− ,

ρ̂
(3)
+ =

1

2
ρ̂0 +

2

5
ρ̂+ +

1

10
ρ̂− , ρ̂

(3)
− =

1

2
ρ̂0 +

1

10
ρ̂+ +

2

5
ρ̂− . (32)

Note that the expressions (31) can be checked by calculating the expectation value of the
Hamiltonian with the expansions given in the last expression.

4.0.1. Degenerate case. Now we consider the Hamiltonian matrix given by

Ĥ =




2 −1 + i −1− i
3

−1− i 13
3 1 + i 2

−1 + i
3 1− i 2 3


 . (33)

In this case the Bloch vector characterising the Hamiltonian is

h =

(
−2, −2, 2, −2, 2

3
, −4, −7

3
,

√
3

9

)
(34)

with h0 = 28
3 . Replacing this values into the matrix (15), the rank of M is r = 4, which

according to [26] exhibits a double degeneracy. Thus, if α > β the diagonal representation is
diag(α, β, β), or in opposite way, if β > α then diag(β, β, α).

Applying the Gauss-Jordan method to (14), one gets the solutions

λc

1 =
1

14

(
6λ5 + 8λ6 + λ7 + 7

√
3λ8

)
, λc

2 =
1

7

(
3λ5 − 3λ6 + 11λ7 − 7

√
3λ8

)
,

λc

3 =
1

42

(
24λ5 − 24λ6 + 11λ7 − 7

√
3λ8

)
, λc

4 =
1

42

(
−30λ5 + 30λ6 − 19λ7 + 35

√
3λ8

)
.
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Hence, the critical Bloch vector is given by λ
c = (λc

1, λ
c
2, λ

c
3, λ

c
4, λ5, λ6, λ7, λ8), with 4 free

parameters and its associated critical density matrix is denoted as ρ̂c.
In order to obtain the eigen-system of Ĥ, we use the procedure established before for the

degenerated case:
• We select λ5 = λ6 = 0, solve the polynomial condition (23) with c2 = c3 = 0, and get the

following Bloch vectors of the density matrix

λ
(1) =

1

11

(
6, 0, 0, 6, 0, 0, 7, 11/

√
3

)
, λ

(2) =
1

46

(
12, 36, 6, 0, 0, 0, 35, 19/

√
3

)
. (35)

These yield two density matrices ρ̂(1), and ρ̂(2) which are not independent. Both give an energy
eigenvalue ε = 4/3.
• We establish the algebraic system of equations,

{
Tr

(
ρ̂(1) ρ̂c

)
,Tr

(
ρ̂(2) ρ̂c

)}
= 0 , (36)

whose solution, together with the positivity condition, gives another independent Bloch vector

λ
(3) =

1

16

(
−6, −6, 6, −6, 2, −12, −7, 1/

√
3

)
. (37)

Thus we have obtained another extremal density matrix orthogonal to ρ̂(1), and ρ̂(2) and the
expectation value of the Hamiltonian yields the eigenvalue ε2 = 20/3. Until now we have
obtained 2 independent and orthogonal projectors, namely ρ̂(1) and ρ̂(3).
• We repeat the procedure by establishing the algebraic system of equations

{
Tr

(
ρ̂(1) ρ̂c

)
,Tr

(
ρ̂(3) ρ̂c

)}
= 0 , (38)

whose solution gives the Bloch vector

λ
(4) =

(
−15

88
,
3

8
, −3

8
, −15

88
, −1

8
,
3

4
, − 35

176
, − 17

16
√
3

)
. (39)

One gets then another orthogonal projector ρ̂(4) and the corresponding expectation value of the
Hamiltonian is ε3 = 4/3.

We have obtained the complete eigen-system of the degenerated Hamiltonian. For the
eigenvalue ε = 4/3, we indeed have a family of projectors yielding the same eigenvalue.

5. Summary and Conclusions

The main contribution of our work is to give an algebraic procedure to find extremal density
matrices for a given Hamiltonian. Our approach applies to both the degenerate and non
degenerate cases of the Hamiltonian. The examples of the procedure are given for dimensions
d = 2, 3 and show that the Hamiltonian spectrum for the pure case is recovered. For the mixed
case, we have verified that the extremal values of the expectation value of the Hamiltonian is a
convex sum of the corresponding results for the pure case. We want to enhance that the method
can be applied by replacing the Hamiltonian for any observable acting on a qudit space.

We established that an extremal density matrix commutes with the Hamiltonian operator
and optimizes its mean value. We demonstrated that at most d−1 variables are necessary to find
extremal density matrices with appropriate positivity conditions, for the non-degenerated case of
the finite matrix Hamiltonian. In the degenerate pure case, one has more free components of the
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extremal density matrix which can be selected by asking orthogonality between the projectors,
which allow to obtain the energy spectrum.

Finally, for the examples with d = 2, and d = 3 following the method given in [24], we
find also the compatible regions between the coefficients of the characteristic polynomial of the
density matrix in terms of the positivity conditions of the Bezoutian matrix in order to provide
a self-contained approach.
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2015 J. Phys. A: Math. Theor. 48 065301.
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