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To my grandparents



... und wir sind grundsätzlich geneigt zu behaupten, dass ... ohne eine beständige Fälschung

der Welt durch die Zahl der Mensch nicht leben könnte. (F. Nietzsche)

“Ach”, sagte die Maus, “die Welt wird enger mit jedem Tag. Zuerst war sie so breit, daß ich Angst

hatte, ich lief weiter und war glücklich, daß ich endlich rechts und links in der Ferne Mauern sah,

aber diese langen Mauern eilen so schnell aufeinander zu, daß ich schon im letzten Zimmer bin, und

dort im Winkel steht die Falle, in die ich laufe.” “Du mußt nur die Laufrichtung ändern”, sagte die

Katze und fraß sie. (F. Kafka)
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Abstract

We study geometric aspects of 3d N = 2 and N = 4 supersymmetric gauge theories on the product

of a line and a Riemann surface. Performing the topological twist on the Riemann surface, the

theories preserve a supersymmetric quantum mechanics on the line. The quantum mechanics has an

effective description where its target space is a moduli space of configurations that satisfy generalized

vortex equations on the Riemann surface. We propose a construction of the space of supersymmetric

ground states of selected N = 2 theories as a graded vector space in terms of a certain cohomology of

the moduli spaces. This exhibits a rich dependence on deformation parameters compatible with the

topological twist, including superpotentials, real mass parameters, and background vector bundles

associated to flavour symmetries. By matching spaces of supersymmetric ground states, we perform

new checks of 3d abelian mirror symmetry. We go on to the study of the twisted indices of a 3dN = 4

quiver gauge theories that have isolated vacua under generic mass and FI parameter deformations.

These can be viewed as virtual Euler characteristics of the moduli spaces of generalized vortex

equations, which in this case can be understood algebraically as quasi-maps to the Higgs branch.

We demonstrate that this description agrees with the contour integral representation introduced in

previous work. We then investigate 3d N = 4 mirror symmetry in this context, which implies an

equality of enumerative invariants associated to mirror pairs of Higgs branches under the exchange

of equivariant and degree counting parameters.



Introduction

In the last few decades, supersymmetry has been a powerful tool for the theoretical understanding

of the behaviour of quantum field theories. While in non-supersymmetric quantum field theories

phenomena in strongly-coupled regimes such as confinement can only be treated by means of heuristic

arguments, supersymmetry can famously yield detailed and exact answers [1]. Often, the answers are

based on remarkable mathematical theories or frameworks, which greatly benefit from the interaction

with supersymmetric gauge theories. An example relevant to this thesis is the important results

derived in the context of three- and four-manifolds invariants [2, 3, 4, 5, 6]. Other spectacular results

close in spirit to this thesis have recently been obtained in the context of enumerative geometry [7,

8, 9], a field with a strong tradition of successes [10].

This thesis is devoted to the study of a specific class of supersymmetric gauge theories, namely

3d N = 2 and N = 4 theories topologically twisted on the product of a real line R and a Riemann

surface Σ. In line with the general motivation for the study of supersymmetric quantum fields, our

aim is to emphasize geometric aspects of the theories, and to show that a geometric point of view is

beneficial for both physics and mathematics.

⇥

⌃R

Figure 1: We consider 3d N = 2 supersymmetric gauge theories on the product of a line and a
Riemann surface Σ.

We achieve this by following a programme initiated in [11], which consists in interpreting the 3d

supersymmetric gauge theories as an effective quantum mechanics on the line R. The application of

this point of view to our setup is new, and turns out to be particuarly fruitful. In the remainder of this

introduction, we contextualise our research by highlighting important aspects of 3d supersymmetric

gauge theories, and provide a summary of our contributions.
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QM Fields on ⌃

Figure 2: We interpret the system as a supersymmetric quantum mechanics on R.

Background on (twisted) N = 2 and N = 4 3d supersymmetric
gauge theories

Although supersymmetric gauge theories in four dimensions may be thought to be more realistic

than their three-dimensional counterparts, there are many interesting physical phenomena that are

absent in the former but present in the latter. This is essentially because of the constraining power of

holomorphy [12]. In fact, most of the stunning results of supersymmetric four-dimensional theories,

such as the understanding of confinement, are based on the holomorphic dependence of the effective

superpotential on complex parameters. Deformation parameters, in four dimensions, arise from

expectation values of background chiral multiplets, and are therefore necessarily complex. This

implies, for instance, that there cannot be any phase transition in these parameters. Some of the

precluded phenomena can be accessed, without renouncing the power of supersymmetry, by studying

theories in three dimensions.

In three-dimensional theories with at least N = 2 supersymmetry there are natural real deforma-

tion parameters that correspond to expectation values of background vectormultiplets. In addition,

unlike in four dimensions, three-dimensional theories allow for Chern-Simons terms. Notably, Chern-

Simons terms were at the heart of the original physical construction of knot invariants [2], and have

a long history of mathematical applications. They come together with discrete parameters, namely,

the Chern-Simons levels, which are obviously also not subject to the constraints of holomorphy. The

presence of all these parameters implies, in the first instance, the existence of remarkable phases in

the moduli space of vacua of three-dimensional theories.

Moduli spaces of vacua In order to demonstrate this, and given the intricacy of the moduli

spaces, it is best to consider an example. We follow [13]. Let us take a N = 2 theory with a

U(1) gauge group and an unbroken U(1)R subgroup of the R-symmetry. We assume N matter

fields φi of charge Qi. To each U(1) factor in the gauge group there is, in three dimension, a

U(1) topological symmetry, U(1)T . This symmetry acts by rotating the dual photons γ, which

are periodic scalars defined by dγ = ∗dA, where A is the gauge connection (notice that this is

only possible in three dimensions). The unbroken maximal torus of the total symmetry group
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is U(1)R × U(1)T ×
∏N
i U(1)i/U(1), where the product over i is a flavour symmetry and we are

dividing by gauge transformations. For each U(1) factor in the flavour symmetry, we can turn on

a real parameters mi associated to background vectormultiplet for this factor. This is known as a

‘real mass’. We also introduce a Fayet-Iliopoulos parameter ζ, which corresponds to a real mass for

U(1)T , and a Chern-Simons level k.

Notice that being bottom components of supermultiplets, the parameters ζ, mi can only get

one-loop renormalizations. The computation of the semi-classical potential shows that the effective

real masses of the fields are

mi(σ) = mi +Qiσ , (1)

where σ is the real bottom component of the gauge multiplet. For σ 6= 0, φi therefore becomes

massless at

σQi = −mi/Qi . (2)

When integrating out matter fields, the parameters ζ and k get renormalisations

ζeff = ζ +
1

2

N∑
i=1

Qimisign(mi(σ))

keff = k +
1

2

N∑
i=1

Q2
i sign(mi(σ)) .

(3)

The potential attains its minimum at

N∑
i=1

2πQi|φ|2 = ζeff + keffσ , mi(σ)Qi = 0 . (4)

There are therefore three kinds of vacua:

• ‘Higgs’: the expectation value 〈φi〉 of some φi is non-zero, σ = σQi and so the gauge group is

fully broken. There may be non-compact moduli spaces of Higgs vacua, but for generic mass

parameters, they are isolated. They only exist if the RHS of (4) is positive;

• ‘Coulomb’: characterised by 〈φi〉 = 0 for all i, and ζeff = keff = 0 so that there is a continuous

moduli space;

• ‘Topological’: 〈φi〉 = 0 for all i, but keff 6= 0. They are isolated.

We will only consider non-abelian gauge theories in the presence of N = 4 supersymmetry, so

let us discuss this case briefly. When N = 4, necessarily keff = 0 and there are only Higgs or

Coulomb branch vacua. [14]. Typically, the moduli space of vacua is a union of ‘branches’ that can

be products of the two types [15]. When only one type is present, say Higgs vacua, the branch is

known as ‘Higgs branch’. Analogously, there are also ‘Coulomb’ branches. Supersymmetry implies

that both kinds of branches are hyperkähler manifolds. The Higgs branch has a neat geometric and
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exact description, which we are going to review at length in the bulk of this thesis. Briefly, it is a

hyperkähler quotient which can be resolved by introducing FI parameters, and has isometries coming

from the flavour symmetries that rotate hypermultiplets scalars. Real masses can be thought of as

generators of these isometries. The Coulomb branch in flat space is classically spanned by monopole

operators, which are operators constructed from the vectormultiplet scalars σ, and dual photons.

Classically, it is

MC = (R3 × S1)rk(G)/WG (5)

where G is the gauge group and WG is its associated Weyl group. However, the Coulomb branchs

receives one-loop and nonperturbative quantum corrections, whose structure is in general unknown.

This makes the rigorous definition of the Coulomb branch a substantial challenge. Notice that the

classical expression manifests the isometries coming from rotating the dual photons. This means

that the Coulomb branch has at least the topological symmetry group as an isometry group. In fact,

the role of mass and FI parameters in interchanged in the Higgs and Coulomb branch.

Progress in understanding the structure of the Coulomb branch has been made for example in

refs. [16, 15], and was part of the motivation for the program of [11] that we are following in this

thesis. See also [17] for a proposed rigorous definition of the Coulomb branch in a large class of

examples.

Mirror symmetry Another distinctive feature of three-dimensional N = 2 is a duality known as

‘mirror symmetry’. This was first discovered in ref. [18], but see also ref. [19] for the analogue in

N = 2 theories. The starting point is that three-dimensional theories have an intricate IR dynamics,

which –unlike in the case of four dimensions– is present even in abelian cases [13]. Two theories can

become identical in a non-trivial way at low energy scales. In this case, the theories need to share

properties that are independent of the scale, and are therefore called ‘mirror duals’.

Three-dimensional mirror symmetry can have very surprising consequences. For example, the

moduli spaces of superymmetric vacua of mirror-dual theories need to be identical. It turns out that

for N = 4, the Coulomb and the Higgs branch of the moduli space of vacua are interchanged by

the duality. Given their very different descriptions, this is very striking. It is the first and simplest

instance of a physics-inspired mathematical duality known as ‘symplectic duality’, which can be

enriched by studying other physical observables and deformations. It has profound mathematical

implications, on which see for example [11, 20, 21].

The topological twist and the twisted index After this general introduction, we now turn

to the setup which is the focus of the thesis, R × Σ. 3d N = 2 supersymmetric gauge theories can

be put on this geometry by means of a topological twist. We recall that the procedure of the twist

involves redefining the Lorentz group U(1)L on the plane by mixing it with the U(1)R symmetry
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group. One then selects scalar nilpotent supercharges, so that the metric tensor on the plane is

exact. Obervables which are closed under the action of the supercharge will be independent of the

metric, and define a subsector of the theory that can be put on any Riemann surface. In the presence

of N = 4 supersymmetry there are two qualitatively distinct twists that utilise a U(1) subgroup

from each factor of the R-symmetry, which is a product of two groups SU(2)H × SU(2)C acting on

hypermultiplet and vectormultiplet scalars respectively. These are commonly referred to simply as

the ‘H-twist’ and ‘C-twist’.

One of the basic observables of the twisted theory is the (graded) Witten index. We replace R

by S1 and compute

I = TrH(−1)F e−2πβHyJf , (6)

where H is the Hamiltonian on the S1, y represents ‘fugacities’ for the flavour symmetries of the

theory (which for the moment we also take to include topological symmetries), and Jf are generators

for the Cartan subgroup of the flavour symmetry group. Fugacities are, essentially, exponentiated

real masses complexified by holonomies of background connections on S1. The trace is over the

Hilbert space H of states, and β is related to the radius on S1. By standard arguments, in the case

of N = 2 the only states that contribute to the index are those satisfying

Q2 = H −mf · Jf = 0, (7)

where mf is a real mass for flavour symmetry and Q is a supercharge. In the presence of N = 4

supersymmetry, the constraints are stronger.

The twisted indices of three-dimensional supersymmetric gauge theories were first computed by

Nekrasov and Shatashvili [22] in the context of the Bethe/Gauge correspondence. More recently,

the twisted indices of 3d N = 2 supersymmetric gauge theores have also been derived from UV

localization on the classical Coulomb branch of the theory [23, 24, 25, 26]. The localization technique

consist in writing some components of the action in terms of pieces that are exact with respect to

the preserved supercharges. The bosonic parts of these actions are total squares. Because of Q-

exactness, one can freely tune the parameters in front of the exact pieces, so that the path integral

localizes to configurations that attain the minimum. We will not review the localization procedure

in this thesis. Some foundational pieces of work can be found in refs. [27, 28]. For a more recent

review, see e.g. [29].

The result of refs [25, 26] is a sum of contour integrals over the complexified maximal torus of

the gauge group G. When G is a product of unitary groups, as is the case in this thesis, we have

schematically

I(y, q) =
1

|WG|
∑

m∈ΛG

(−q)Tr(m) JK-Res
u=u∗

du ZclassZ1-loop(u, y)Hg(u, y) , (8)
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where the summation is over GNO quantized magnetic fluxes on Σ, or co-character lattice ΛG. WG

is the Weyl group, q and y stand for the fugacities of Coulomb and Higgs branches respectively.

The integrand is formed by classical and one-loop contributions from the matter content and the

‘Hessian’ H is related to the toplogy of the curve. The contribution from each flux sector is given

by a Jeffrey-Kirwan residue that specifies the choice of contour. Notice that although the Jeffrey-

Kirwan prescription finds its origin in the study of the cohomology of symplectic quotients [30],

prima facie this interpretation is not manifest in supersymmetric localization computations. This

was one of the motivation for our more geometric point of view.

Finally, we should mention a basic consequence of mirror symmetry –namely, the twisted indices

of two mirror-dual theories need to be the same. In refs.[23, 25, 26] it was checked that this is indeed

the case.

Vertex Operator Algebras and the Geoemtric Langlands Programme Many interest-

ing aspects of three-dimensional theories, which we barely mention, also arise by viewing three-

dimensional theories as boundary theories for four-dimensional theories. When N = 4, the setup

R×Σ can be fitted in this way into the broader context of the Geometric Langlands Programme [31,

32, 33]. This has a wide range of mathematical applications, well beyond the scope of this thesis.

There is a single yet important point that we cannot avoid mentioning. This is a proposal

put forward in refs. [34] and further studied in [35, 36]. Consider first the topologically twisted

theory on R+ × Σ, with a boundary at {0} × Σ. In inserting local operators at the boundary,

and imposing an asymptotic state at infinity, one gets a collection of correlation functions of local

operators of a boundary Vertex Operator Algebra (VOA). This collection is consistent with the

OPE, and corresponds by definition to the spaces of conformal blocks of the VOA. In this way, we

get a map from the Hilbert spaces of a theory on R×Σ, (7), to the spaces of some conformal blocks

of an associated VOA. This map is often an isomorphism. However, the explicit computation of the

number of conformal blocks remains difficult.

Summary of our contributions

We now turn to our own contributions. Our starting point is that topologically twisted N = 2

theories on R×Σ preserve at least the algebra of a N = (0, 2) supersymmetric quantum mechanics

on R. In general, we would like to study observables of the three-dimensional theories in terms of

an effective supersymmetric quantum mechanics, where neat geometric tools become available. As a

first step, in this thesis we focus on the twisted indices (6) and the spaces of supersymmetric ground

states (7).
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A different localization locus and the generalized vortex equations Our first step towards

a geometric description of the quantum mechanics amounts to introducing an additional Q-exact

action, so that the path integral is dominated at given scales by configurations on Σ satisfying

‘generalised vortex equations’. These take the schematic form

∗FA + e2 (µ(φ)− τ − keffσ) = 0

∂̄Aφ = 0 , (9)

where φ represents the chiral multiplet fields transforming in a given representation of the gauge

group. µ is a moment map for the action of the gauge group on this representation. In this thesis,

we always study theories for which keff = 0. The solutions to these equations form a moduli space

M, which is a disjoint union of topologically distinct sectors labelled by the degree of the gauge

bundle

M =
⋃

m∈ΛT

Mm , (10)

where ΛT is the character lattice of the topological symmetry. The description of the moduli space

depends on the combination s = τe2Vol(Σ) of a parameter τ valued in the Lie algebra of the

topological symmetry, e2, and the volume of the curve. τ plays the role of the FI parameter, and

it can be seen as a FI parameter in the effective theory. Although this parameter appears in an

exact deformation of the action, there can be an intricate wall-crossing behaviour in the parameter

space. In this thesis, we formally take the limit s → ∞ in a prescribed direction and avoid any

wall-crossing behaviour. This limit, we argue, is related to the IR limit and is therefore relevant

for mirror symmetry. The wall-crossing phenomenon and its relation with existing mathematical

literature is being investigated, and will soon appear [37].

Twisted Hilbert spaces of N = 2 theories We then move to the study of twisted 3d N = 2

supersymmetric gauge theories. First of all, we describe in details how the system can be viewed as

an effective quantum mechanics. We then study the Hilbert spaces of supersymmetric ground states

H of a selected class of theories.

We already remarked that the ground states are charged under fermion number and flavour

symmetries. As a consequence, the twisted Hilbert space transforms as a virtual representation of

the flavour symmetry. Furthermore, it has a rich dependence on real and complex supersymmetric

deformation parameters obtained by coupling to background vectormultiplets for flavour symmetries,

in a way compatible with the topological twist on Σ. In particular, for a flavour symmetry Gf acting

on chiral multiplets, we may turn on

1. A real mass parameters mf valued in the Cartan subalgebra of GF ,

2. A background Gf -vector bundle Ef on Σ.
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Analogous expression exist for topological symmetries.

We first focus on abelian N = 2 supersymmetric gauge theories with G = U(1). We view the

theory as an effective supersymmetric quantum mechanics for each degree m, whose target space

is a moduli space Mm of solutions to the generalized vortex equations on Σ in the presence of the

background vector bundle Ef . The equations are obtained as in (9), with the appropriate matter

content and with the deformations induced by the background bundles. We tune the deformation

parameters so that the theory presents only Higgs vacua. The generalized vortex moduli spaces

Mm we consider are Kähler becaue of N = 2 supersymmetry, and may or may not be compact,

depending on the matter content and flux m. Provided the moduli space is smooth, we propose that

the supersymmetric ground states can be understood in terms of an L2-cohomology

Hm = H0,•
∂̄mf+δ

(Mm,Fm) , (11)

where Fm denotes a Z2-graded vector bundle that receives contributions from supersymmetric Chern-

Simons terms, a background line bundle for the topological flavour symmetry, and the quantization

of fermion zero modes. The differential is a sum of a conjugated Dolbeault operator,

∂̄mf = e−hf · ∂̄ · ehf , (12)

where the real superpotential hf = mf · µf is constructed from the moment map µf for the action

of the flavour symmetry Gf on Mm, and an extra contribution δ from a 3d superpotential. This

L2-cohomology can depend intricately on the choice of background vector bundle Ef and real mass

parameters mf .

An important consistency check for our proposal is to reproduce the supersymmetric twisted

index on S1 × Σ. We emphasize, however, that as expected from index computations the twisted

Hilbert space exhibits information and a structure that go far beyond the supersymmetric twisted

index:

• There can be dramatic cancellations in computing the supersymmetric index via (8), particu-

larly on Riemann surfaces of genus g > 0.

• The supersymmetric twisted Hilbert space is sensitive to 3d superpotential deformations via

the differential δ, which removes pairs of supersymmetric ground states whose contribution to

the supersymmetric twisted index cancel out.

• The supersymmetric twisted Hilbert space may jump across hyperplanes in the space of real

mass parameters mf where there are non-compact massless degrees of freedom. On the other

hand, the supersymmetric index is a meromorphic function with poles on these hyperplanes.

The same remark applies to real FI parameters for topological flavour symmetries.

viii



• The supersymmetric twisted Hilbert space depends on a choice of holomorphic vector bundle

Ef on Σ for the flavour symmetry Gf , while the supersymmetric twisted index depends only on

its Chern class. The same remark applies to background line bundles associated to topological

flavour symmetries.

The supersymmetric twisted Hilbert space therefore has the potential to provide a more refined

check of supersymmetric dualities such as 3d mirror symmetry.

In order to illustrate some of these points, we provide a brief appetizer. Let us consider a

supersymmetric U(1) Chern-Simons theory at level + 1
2 with a chiral multiplet of charge +1. We

show that the supersymmetric twisted Hilbert space in the s→ +∞ limit is given by

H =

∞⊕
m=1−g

qm
m+g−1⊕
j=0

∧j(Cg) , (13)

where g > 0 is the genus of Σ and the parameter q keeps track of the grading by the topological

flavour symmetry. Notice that there are non-vanishing contributions from an infinite number of

fluxes, m ≥ 1−g. On the other hand, the supersymmetric twisted index is a finite Laurent polynomial

I = q1−g(1− q)g−1 , (14)

with the contributions from fluxes m ≥ 0 cancelling out in the trace. Nevertheless, we demonstrate

that equation (13) agrees with the supersymmetric twisted Hilbert space of a single chiral multiplet

with a positive real mass parameter. Furthermore, we extend this agreement to include a holomor-

phic line bundle for the flavour symmetry. This constitutes a new check of the simplest 3d mirror

symmetry.

Twisted indices and Hilbert spaces of N = 4 theories. As the methods we used for the

Hilbert spaces of N = 2 theories can fail in more complicated examples, we turn to the study of

twisted indices of 3d N = 4 supersymmetric gauge theories. The theories are more rigid and are

open to neater mathematical interpretations.

The twisted indices can be regarded as the flavoured Witten index of the effective supersymmetric

quantum mechanics on R. As already mentioned in this introduction, N = 4 theories possess two

qualitatively different topological twists –the H-twist and C-twist. The topological twist results in

an additional flavour symmetry U(1)t. We can therefore upgrade (6) to

IH,C(y, q, t) = TrHH,C (−1)F yJH qJC tJt , (15)

where HH,C is the Hilbert space of supersymmetric ground states on S1 × Σ and

• JH is the generator of the Cartan subalgebra of the Higgs branch flavour symmetry GH , which

in the N = 4 context acts on the hypermultiplet scalars.
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• JC is the generator of the Cartan subalgebra of the Coulomb branch flavour symmetry GC ,

which is realized as a topological symmetry in the UV.

• Jt is the generator of the combination U(1)t = U(1)H − U(1)C of R-symmetries, which com-

mutes with the two supercharges preserved in both the H-twist and the C-twist.

We recall that in the context of superymmetric quantum mechanics, the Witten index [38]

I = TrH(−1)F , (16)

comes with a strong geometric interpretation. For example, in a 1d N = (0, 2) sigma model to a

compact target M endowed with a holomorphic vector bundle E, the Witten index can be identified

with the holomorphic Euler characteristic

χ
(
M,K

1/2
M ⊗ E

)
=

∫
M

Â(TM) ch(E) . (17)

In the presence of flavour symmetry, this can be promoted to a flavoured Witten index that computes

the equivariant holomorphic Euler characteristic. We can therefore try to provide a geometric

interpretation of the contour integral in equation (17) in terms of holomorphic Euler characteristics.

We focus on 3d N = 4 superconformal quiver theories that have isolated massive vacua in the

presence of generic mass and FI parameters. With our alternative localizing action, the path integral

localizes on the N = 4 version of (9). This takes the schematic form

∗FA + e2
(
µR − 2[ϕ†, ϕ]− τ

)
= 0

∂̄AX = 0 ∂̄AY = 0 ∂̄Aϕ = 0 (18)

ϕ ·X = 0 ϕ · Y = 0 X · Y = 0 ,

where (X,Y ) are the hypermultiplet scalar fields transforming in a quaternionic representation of

G and ϕ is the vector multiplet complex scalar field in the adjoint representation. The solutions

to these equations form a moduli space M, which is again a disjoint union of topologically distinct

sectors labelled by the degree of the gauge bundle

M =
⋃

m∈Λ∨C

Mm , (19)

where Λ∨C is the character lattice of the Coulomb branch flavour symmetry GC . In the s → ∞
limit, we show that Mm has an algebraic description as the moduli space of quasi-maps to the

Higgs branch, Σ →MH , of degree m [39]. 1 More precisely, in the H-twist we recover the twisted

quasi-maps to holomorphic symplectic quotients introduced in [45], while in the C-twist we find a

generalization to arbitrary genus of a construction of [46].

1The moduli space of quasi-maps and their enumerative geometry have been discussed in various contexts, e.g.,
[40, 41, 8, 42, 43, 44].
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In order to provide a concrete interpretation of the contour integral representation of the twisted

index (8) in terms of the enumerative geometry of the moduli space M, we carefully study the

massless fluctuations of the bosonic and fermionic fields around a point p ∈M. From a mathematical

viewpoint, these massless fluctuations can be identified with the virtual tangent bundle to the moduli

space M and give rise to perfect obstruction theories, which coincides with those considered in

[45, 46]. We take the opportunity to remark that related constructions have also been extensively

studied in [47, 46] in the context of the K-theoretic Donaldson-Thomas invariants of Calabi-Yau

three-folds.

From this discussion, we argue that the localized path integral for the twisted index reproduces

a generating function of virtual Euler characteristics of Mm defined by

IH,C =
∑

m∈Λ∨C

(−q)m
∫
Mm

Â(T vir) . (20)

In general, the moduli spaces Mm are non-compact and these integrals are not well-defined.

However, by turning on a real mass parameter with associated fugacity t, we can localize further to

the compact fixed locus of the U(1)t symmetry. This fixed locus L ⊂M coincides with the moduli

space of quasi-maps to a holomorphic Lagrangian LH ⊂ MH known as the compact core. The

virtual tangent bundle then decomposes on the fixed locus as

T vir|Lm
= TLm +Nm , (21)

where TLm is the virtual tangent bundle to the fixed locus and N is the virtual normal bundle. The

path integral then reproduces the virtual Euler characteristic defined by localization with respect to

the U(1)t action,

IH,C =
∑

m∈Λ∨C

(−q)m
∫
Lm

Â (TLm)

ch
(
∧̂•N∨m

) . (22)

where the notation ∧̂• indicates the exterior algebra normalized by the square root of the determinant

bundle. This gives a concrete geometric interpretation to the twisted index.

In order to perform explicit calculations, we can localize further to the fixed locus of the flavour

symmetry GH by turning on mass parameters with associated fugacity a, which play the role of

equivariant parameters. Under our assumptions, we show that the fixed locus is a disjoint union

of smooth compact spaces Mm,I , where I labels the fixed points on MH and m ∈ ΛG is a GNO

quantized flux with tr(m) = m. Each component is given by a product of symmetric products of the

curve Σ,

Mm,I =

rk(G)∏
a=1

SymnIaΣ , (23)

where nIa ’s are non-negative integers which depend on the twist and a component of the magnetic

flux m. On the fixed locus, the virtual tangent space decomposes

T vir
∣∣
Mm,I

= TMm,I +Nm,I , (24)
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where Nm,I are the virtual normal bundles and non-zero weights under the U(1)t×GH action. The

path integral then reproduces the equivariant virtual Euler characteristic via virtual localization,

IH,C =
∑

m∈ΛG

(−q)m
∑
I

∫
Mm,I

Â(TMm,I)

ch(∧̂•N∨m,I)
. (25)

The intersection theory on the symmetric product of a curve is well-known [48, 49, 50] allowing

us to convert the expression (25) into a sum of the residue integrals. We show explicitly that this

reproduces the contour integral representation of the twisted index (8). In particular the fixed loci of

U(1)t ×GH are in one-to-one correspondence with the poles selected by the Jeffrey-Kirwan residue

integral. 2

Sending t→ 1, the twisted index preserves four supercharges that generate a 1d N = (2, 2) and

N = (0, 4) supersymmetric quantum mechanics in the H-twist and C-twist respectively. We can

therefore add further exact terms to the localising action to further constrain the moduli space. In

particular, the C-twisted index can be localised to the space of constant maps to the Higgs branch

MH . In this limit, the virtual Euler characteristic is independent of q and reduces to the equivariant

Rozansky-Witten invariants [4] of MH , associated with the three-manifold S1 × Σ,

IC
∣∣
t→1

=

∫
MH

Â(TMH) ch
(
∧̂•T ∗MH

)g
. (26)

On the other hand, the H-twisted index reduces to a generating function of the Euler classes of the

GH -fixed loci,

IH
∣∣
t→1

=
∑

m∈ΛG

(−q)m
∑
I

(−1)dimC(Mm,I)

∫
Mm,I

e(Mm,I) , (27)

which is independent of the fugacity a.

As mentioned, an important feature of the class of 3d N = 4 supersymmetric gauge theories we

consider is the existence of mirror symmetry, which exchanges the H-twist and the C-twist of a dual

pair of theories T and T ∨. This implies the following relation between the twisted indices of these

theories,

IH [T ](q, y, t) = IC [T ∨](y, q, t−1) , (28)

This provides extremely non-trivial relationship between enumerative invariants of quasi-maps to

pairs of Higgs branches MH and M∨H under the exchange of the degree counting parameters. It is

a remarkable example of symplectic duality for quasi-map spaces.

Outline and Statement of Originality

The thesis is organized as follows. In chapter 1, we review and study supersymmetric quantum

mechanical systems, emphasizing how the space of supersymmetric ground states depends on various

2The geometric interpretation of the twisted index for an N = 2 supersymmetric Chern-Simons theory with an
adjoint chiral multiplet has been studied in the references [51, 52].
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types of deformation parameter. In chapter 2, we review and modify supersymmetric localization

results. In chapter 3, we study the twisted Hilbert spaces of N = 2 supersymmetric gauge theories.

In chapter 4, we turn to the investigation of the twisted indices of N = 4 supersymmetric gauge

theories.

Chapters 1 and 3 are based on materials from the co-authored paper [53]. Chapters 2 and 4

are based on the co-autored pre-print [54]. The graduate work of the candidate also includes the

unrelated paper [55]. Other more related papers are also due to appear soon [37, 56].
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Chapter 1

Supersymmetric Quantum
Mechanics

In this chapter, we treat the material about supersymmetric quantum mechanical systems that

will be needed when studying 3d supersymmetric gauge theories on R × Σ. In section 1.1, we

study N = (0, 2) supersymmetric quantum mechanics. These will arise in the presence of N = 2

supersymmetry in 3d. In section 1.3, we briefly summarise aspects of N = 4 quantum mechanics,

which will arise in the presence of N = 4 supersymmetry.

1.1 N = (0, 2) Supersymmetric Quantum Mechanics

We review and study supersymmetric quantum mechanics with supermultiplets that arise from the

dimensional reduction of N = (0, 2) supermultiplets in two dimensions, emphasizing those aspects

that will be important in applications to 3d N = 2 theories on a R × Σ. For further background

and examples of this class of supersymmetric quantum mechanics we refer the reader to [57, 58, 59]

1.1.1 Setup

An N = (0, 2) supersymmetric quantum mechanics has odd generators Q and Q† that are adjoint

with respect to a Hermitian inner product on the Hilbert space. We suppose the supersymmetric

quantum mechanics has flavour symmetry Gf with conserved charges Jf ∈ t∗f and introduce an

associated real mass parametermf ∈ tf . Here tf is the Cartan subalgebra ofGf . The supersymmetry

algebra is then
{Q,Q} = 0

{Q,Q†} = H −mf · Jf

{Q†, Q†} = 0 ,

(1.1)

where H is the Hamiltonian.

We define supersymmetric ground states as those annihilated by H − mf · Jf . A standard

argument shows that the spectrum of H −mf · Jf is non-negative and that supersymmetric ground
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states are equivalently annihilated by both of the supercharges. We assume that the spectrum is

gapped, in which case the supersymmetric ground states have another equivalent description as the

cohomology of either supercharge Q or Q†.

The requirement that the spectrum is gapped may place constraints on the mass parameters mf .

We will denote the subspace of mass parameters where the spectrum is gapped by cf ⊂ tf . In all of

the examples we are going to consider, cf will consist of a union of chambers cf =
⋃
α cα ⊂ tf cut

out by hyperplanes where there are non-compact massless degrees of freedom.

In this thesis, we will compute the space of supersymmetric ground states H as the cohomology

of the supercharge Q†. Since (−1)F and Jf commute with the supercharges, the space of supersym-

metric ground states is graded by Fermion number and flavour symmetry. Alternatively, we can say

that it is a Z2-graded or virtual representation of the flavour symmetry Gf .

It will be important to understand how the supersymmetric ground states change as the real

mass parameters mf are varied. In our examples, the supercharges obey

∂mfQ = +[µf , Q]

∂mfQ
† = −[µf , Q

†] ,
(1.2)

where µf ∈ t∗f is a Hermitian operator. This is an A-type deformation in the notation of [33]. In

particular, the operator ∂mf +µf commutes with Q† and descends to a complex flat Berry connection

on the sheaf of supersymmetric ground states over cf ⊂ tf . Put simply, while the wavefunctions of

the supersymmetric ground states will depend explicitly on the real mass parameters, H remains

constant as a graded vector space, provided the spectrum remains gapped. Therefore, we associate

a space of supersymmetric vacua Hα to each chamber cα.

We will also encounter examples of B-type deformations of the supersymmetric quantum me-

chanics [33], where the supercharges depend holomorphically or anti-holomorphically on a set of

complex parameters u,
∂uQ = 0

∂ūQ
† = 0 .

(1.3)

In particular, the derivative ∂ū commutes with Q† and, provided the system is gapped, descends

to a holomorphic Berry connection on the sheaf of supersymmetric ground states over the complex

space parametrized by u.

The flavoured supersymmetric index is defined as a graded trace over the full Hilbert space of

the supersymmetric quantum mechanics,

I = Tr(−1)F e−2πβHe−2πiβaf ·Jf . (1.4)

In the Euclidean path integral construction of the supersymmetric index, β is the radius of the circle

and e−2πiβaf ·Jf is a background Wilson line for the flavour symmetry. A standard argument shows
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that only supersymmetric ground states contribute to the supersymmetric index, and therefore, in

each chamber cα we obtain an expression

Iα = TrHα(−1)F e−2πβ(mf+iaf )·Jf

= TrHα(−1)FxJf ,
(1.5)

where

x = e−2πβ(mf+iaf ) (1.6)

is valued in the complexified maximal torus of the flavour symmetry Gf . The supersymmetric index

can therefore be expressed as a graded trace over Hα.

The supersymmetric index Iα computed in equation (1.5) will in general yield a different Lau-

rent polynomial in x in each chamber cα. However, they correspond to Laurent expansions of the

same meromorphic function I(x) in the different chambers cα under the identification (1.6). This

meromorphic function then has poles on the hyperplanes separating these chambers. In the case

cf = tf , the supersymmetric index is a finite Laurent polynomial in x.

Finally, the supersymmetric index is insensitive to B-type deformations.

1.1.2 Geometric Model

We now consider a general class of supersymmetric quantum mechanics of the above type that arise

from supersymmetric sigma models. The construction of these supersymmetric quantum mechanics

has much in common with the construction of 2d N = (0, 2) supersymmetric sigma models [60].

We consider a supersymmetric sigma model specified by the following data:

• A complex manifold M with Hermitian metric.

• A Z-graded Hermitian vector bundle F .

• A holomorphic differential δ : F → F of degree +1 obeying δ2 = 0.

The full Hilbert space of the supersymmetric quantum mechanics consists of smooth square-integrable

sections of

Ω0,•(M) ⊗ F (1.7)

with respect to the Hermitian inner product

〈α, β〉 =

∫
M

ᾱ ∧ ∗β . (1.8)

Here, ∗ denotes the Hodge star operator on M and contraction along fiber directions using the

Hermitian metric on F is understood.

The supersymmetric quantum mechanics has an R-symmetry transforming the supercharges Q,

Q† with charge −1, +1 respectively. Referring to the above geometric data, this R-symmetry can
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be identified with the sum of the form degree on the target space M and the Z-grading on the

Hermitian vector bundle F , modulo an additive constant.

In this thesis, we will only keep track of the Fermion number (−1)F . In particular, we regard

F as a Z2 graded vector bundle with decomposition F = Fe ⊕ Fo into even and odd components.

The Fermion number (−1)F in the supersymmetric quantum mechanics is then given the sum of the

form degree and the Z2-grading on F :

• (−1)q for a section of Ω0,q(M)⊗ Fe and

• (−1)q+1 for a section of Ω0,q(M)⊗ Fo .

Let Gf denote the group of isometries of M that lift to an equivariant action on F preserving its

Hermitian metric and commuting with the holomorphic differential δ. This is the flavour symmetry

of the supersymmetric quantum mechanics. At this point, we assume that M is Kähler and there

exists a corresponding real moment map µf ∈ t∗f . We may then introduce an A-type deformation of

the supersymmetric quantum mechanics by real mass parameters mf ∈ tf , which can be understood

as a real superpotential

hf = mf · µf . (1.9)

This superpotential is the moment map for the U(1)mf ⊂ Gf isometry generated by the mass

parameters mf [61].

Let cf ⊂ tf denote the mass parameters where the fixed locus of the U(1)mf isometry of M

is compact and the spectrum of the supersymmetric quantum mechanics is gapped. If M is non-

compact, this is a disjoint union of chambers cf =
⋃
α cα cut out by hyperplanes. If M is compact,

cf = tf .

The supercharges are identified with

Q = ∂̄†mf + δ†

Q† = ∂̄mf + δ .
(1.10)

where
∂̄†mf := ehf ∂̄†e−hf

∂̄mf := e−hf ∂̄ehf
(1.11)

and ∂̄, ∂̄† denote respectively the twisted Dolbeault operator acting on sections of (1.7) and its

adjoint with respect to the Hermitian inner product (1.8). Finally, δ† is the adjoint of holomorphic

differential δ with respect to the Hermitian metric on F . Note that the supercharge Q† depends

holomorphically on deformations of the holomorphic vector bundle F and the differential δ : they

are B-type deformations of the supersymmetric quantum mechanics.

These supercharges obey the supersymmetry algebra (1.1) with H schematically given by

H =
1

2
∆ + (∂hf )(∂̄hf ) +mf ·Ψ + {δ†, δ} , (1.12)
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where ∆ is the Laplace operator, and mf · Ψ is a term linear in mf containing fermions and no

derivatives. mf · Jf can be seen as the generator of the U(1)mf flavour symmetry.

Provided the mass parameters lie in cf ⊂ tf and the spectrum of the supersymmetric quan-

tum mechanics is gapped, the space of supersymmetric ground states can be identified with L2-

cohomology of the supercharge Q†, which we write schematically as

H0,•
∂̄mf+δ

(M,F ) . (1.13)

Due to the exponential dependence of the supercharge on the mass parameter mf and the condition

of square-normalizability, the computation of this cohomology for a non-compact target space M

will generally yield a different space of supersymmetric ground states Hα in each chamber cα. In

other words, the space of supersymmetric ground states may jump across hyperplanes in tf where

there are massless non-compact degrees of freedom1 .

However, if M is compact, the spectrum of the supersymmetric quantum mechanics is gapped

for any mf and the space of supersymmetric vacua is constant on tf . In this case, we can set mf = 0

and identify the space of supersymmetric ground states with the regular hypercohomology,

H = H0,•
∂̄+δ

(M,F ) . (1.14)

Let us finally consider the supersymmetric index in this class of supersymmetric quantum me-

chanics. The supersymmetric index Iα in each chamber computes the equivariant character of Hα
as a virtual representation of the flavour symmetry Gf . This index is independent of the differential

and can be identified with an equivariant Euler character for L2-cohomology classes of the conju-

gated Dolbeault operator ∂̄mf in equation (1.11). If M is compact, the supersymmetric index I

coincides with the regular equivariant Euler character χ(M,F ).

1.1.3 Examples

Chiral Multiplets

Our first example is a single chiral multiplet (φ, ψ) with a real mass parameter mf for the U(1)f

flavour symmetry. This model is a supersymmetric complex harmonic oscillator. In canonical

quantization, the complex Fermion obeys {ψ, ψ̄} = 1 and the supercharges take the form

Q = ψ

(
− ∂

∂φ
+mf φ̄

)
Q† = ψ̄

(
+
∂

∂φ̄
+mfφ

)
.

(1.15)

1The cohomology groups 1.14 may in general be hard to compute directly. However, sometimes computations
can be approached with the help of holomorphic instanton techniques. The starting observation is that in a given
chamber the spaces of supersymmetric ground states, viewed as vector spaces, do not depend on the value of mf . We
can therefore carefully take a limit mf →∞. In this limit, states are localised around fixed points, and they can be
approximately described as if they were defined on flat space. This perturbative description needs to be supplemented
by instanton corrections. These techniques were developed in [59]. We will go back to these in the forthcoming [56].
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The supercharges obey (1.1) with

H = − ∂2

∂φ∂φ̄
+m2

f |φ|2 −
1

2
mf [ψ, ψ̄] +mfκ

Jf = φ
∂

∂φ
− φ̄ ∂

∂φ̄
+

1

2
[ψ, ψ̄] + κ .

(1.16)

Note that while the supercharges and the combination H − mfJf are unambiguous, H and Jf

individually depend on a normal ordering constant κ, which can be understood as a supersymmetric

Chern-Simons term for the U(1)f flavour symmetry [62, 63].

C+C�

mf > 0mf < 0

Figure 1.1: Chambers c+ = {mf > 0} and c− = {mf < 0} for a single chiral multiplet.

The supersymmetric ground states wavefunctions are annihilated by both supercharges. The

gapped region of parameter space consists of two chambers c± ⊂ tf = R corresponding to mf > 0 and

mf < 0 respectively - see figure 1.1. Choosing the Fock vacuum annihilated by ψ, the normalizable

ground state wavefunctions are
c+ : e−hfφn

c− : ehf φ̄nψ̄ ,
(1.17)

where n ≥ 0. Here we have defined a superpotential

hf = mf |φ|2 . (1.18)

The supersymmetric ground state wavefunctions can also be viewed as harmonic representatives

of L2-cohomology classes for the supercharge Q†. We denote the associated cohomology classes by

[φn ] in the chamber c+ and [ φ̄n ] in the chamber c−. In the second chamber, it is important to

remember the presence of the Fermion ψ̄, which is suppressed in our notation. Since the operator φ

commutes with the supercharge Q†, it has a well-defined action on these cohomology classes,

c+ : φ · [φn ] = [φn+1 ]

c− : φ · [ φ̄n ] = [ φ̄n−1 ] ,
(1.19)

which is compatible with the U(1)f flavour symmetry.

Although the supersymmetric ground state wavefunctions depend onmf , as a vector space graded

by (−1)F and U(1)f , the space of supersymmetric ground states is constant in each chamber,

H+ = xκ+ 1
2

∞⊕
j=0

xjC

H− = −xκ− 1
2

∞⊕
j=0

x−jC .
(1.20)
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Here we have introduced a formal parameter x ∈ C∗ to keep track of the U(1)f charge measured

by Jf . Note that there is a choice of Fermion number for the Fock vacuum, and we have assigned

Fermion number zero to the Fock vacuum annihilated by ψ.

The supersymmetric index computed in each chamber is

I+ = xκ+ 1
2

∞∑
j=0

xj

I− = −xκ− 1
2

∞∑
j=0

x−j .

(1.21)

Recalling that in computing the supersymmetric index we identify x = e−2πβ(mf+iAf ), this corre-

sponds to the expansion of the same meromorphic function

I(x) =
xκ+ 1

2

1− x (1.22)

in the appropriate regime, namely |x| < 1 in c+ and |x| > 1 in c−. This expression coincides

with the 1-loop determinant for a chiral multiplet on a circle with a background supersymmetric

Chern-Simons term for U(1)f at level κ.

This example can be extended to N chiral multiplets (φj , ψj) with flavour symmetry Gf = U(N)

and mass parameters mf = (m1, . . . ,mN ) ∈ tf . There are now massless degrees of freedom on

all coordinate hyperplanes in tf = RN . Having removed these hyperplanes, the gapped region

cf =
⋃
α cα consists of 2N disjoint chambers

cα =

{
mj > 0 αj = +

mj < 0 αj = − , (1.23)

labelled by a sign vector α = (α1, . . . , αN ).

The space of supersymmetric grounds states in each chamber is

Hα =

N⊗
j=1

Hαj (1.24)

where

Hαj =


x
κ+ 1

2
j

∞⊕
n=0

xnjC αj = +

−xκ−
1
2

j

∞⊕
n=0

x−nj C αj = − .
(1.25)

We have chosen the same normal ordering constant κ for each chiral multiplet to preserve the

underlying Gf = U(N) flavour symmetry. As expected, the result reproduces the expansion of the

supersymmetric index
N∏
j=1

x
κ+ 1

2
j

1− xj
(1.26)

in the appropriate regime |xj |αj < 1.
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This model can be understood as a supersymmetric sigma model to M = CN with the standard

flat Kähler metric, supplemented by a Hermitian line bundle F = K
κ+1/2

CN . The flavour symmetry

Gf = U(N) corresponds to the isometries of CN . Introducing real mass parameters corresponds to

a superpotential

hf =
∑
j

mj |φj |2 , (1.27)

which is the moment map for the U(1)mf isometry generated by mf ∈ tf . The chambers cα

correspond to values of the mass parameters where the fixed locus of U(1)mf is compact, namely

the origin of CN .

Fermi Multiplets

Let us now consider a single Fermi multiplet (η, F ) with a real mass parameter mf for the U(1)f

flavour symmetry. In canonical quantization, the complex Fermion obeys {η, η̄} = 1 and

H =
mf

2
[η, η̄] +mfκ

Jf =
1

2
[η, η̄] + κ .

(1.28)

The combination H −mfJf = 0 is again unambiguous, whereas H and Jf individually depend on

a normal ordering constant κ.

In canonical quantization, we can choose a Fock vacuum or reference state |0〉 annihilated by the

Fermion η and assign it Fermion number 0. The supersymmetric ground states are then |0〉 and η̄|0〉
with flavour charge κ+ 1

2 and κ− 1
2 respectively, as measured by Jf . We therefore find

H = xκ+1/2C− xκ−1/2C , (1.29)

in agreement with the supersymmetric index

I = xκ+1/2 − xκ−1/2 . (1.30)

In the quantization of Fermi multiplets, there is a notational freedom to choose the Fock vacuum

or reference state |0〉 to be annihilated by η or η̄. In more complicated examples below, we will use this

freedom to choose the representation that is most convenient for enumerating the supersymmetric

ground states. The Fermion number assigned to this Fock vacuum is, however, meaningful and sets

the Fermion number grading of supersymmetric ground states. This corresponds to an overall sign

in the supersymmetric index. The reader is forewarned that we will typically omit the reference

state |0〉 in our notation.
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Superpotentials

We now present a number of examples that couple chiral and Fermi multiplets with holomorphic

superpotentials and will reappear in computations relevant to 3d N = 2 theories in section 4.4.

Let us first consider a chiral multiplet (φ, ψ) coupled to a Fermi multiplet (η, F ) with the following

J-term superpotential

J(φ) = uφ , (1.31)

where the complex mass parameter u can be regarded as a vacuum expectation value for a background

chiral multiplet. The model preserves a Gf = U(1) flavour symmetry under which (φ, ψ) have charge

+1 and (η, F ) have charge −1. We introduce a corresponding real mass parameter mf 6= 0.

In canonical quantization, the supercharge

Q† =
(
Q†
)(0)

+
(
Q†
)(1)

(1.32)

is a sum of two contributions

(
Q†
)(0)

=

(
∂

∂φ̄
+mfφ

)
ψ̄

(
Q†
)(1)

= J(φ)η , (1.33)

where
(
Q†
)(0)

is the contribution from the chiral multiplet and
(
Q†
)(1)

is the additional contribution

from the Fermi multiplet with J-term superpotential. Note that in this model there is both a real

A-type parameter mf and a complex B-type parameter u.

We assign Fermion number zero to the Fock vacuum annihilated by ψ and η. First, the coho-

mology of
(
Q†
)(0)

consists of the supersymmetric ground states of the chiral multiplet tensored with

those of the Fermi multiplet,

c+ : [φn ] , [φn ] η̄ n ≥ 0

c− : [ φ̄n ] , [ φ̄n ] η̄ n ≥ 0 .
(1.34)

If u = 0, the computation ends here and there is an infinite number of supersymmetric ground

states. Assuming u 6= 0, a short spectral sequence argument shows that the cohomology of the

total supercharge Q† is equivalent to the cohomology of
(
Q†
)(1)

acting on the states (1.34). This is

computed as follows:

• c+:
(
Q†
)(1)

removes pairs [φn+1 ] and [φn ] η̄ with n ≥ 0 leaving only [ 1 ].

• c−:
(
Q†
)(1)

removes pairs [ φ̄n ] and [ φ̄n+1 ] η̄ with n ≥ 0 leaving only [ 1 ] η̄.

We therefore find that for u 6= 0 there is a unique supersymmetric ground state and, setting normal

ordering constants κ = 0, Hα = C in both chambers α = ±.

Let us compare this result with the supersymmetric index. This is computed by multiplying the

contributions from a chiral multiplet of charge +1 and a Fermi multiplet of charge −1, with the
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result I = 1 for both u = 0 and u 6= 0. In summary, the space of supersymmetric vacua is sensitive

to the J-term superpotential whereas the supersymmetric index is not.

Let us now consider a second example with a pair of chiral multiplets φ1, φ2 coupled to a Fermi

multiplet η with superpotential J(φ) = φ1φ2
2. This preserves a U(1)1 × U(1)2 flavour symmetry

whose charges can be chosen as follows,

U(1)1 U(1)2

φ1 1 0
φ2 0 1
η −1 −1

.

Introducing real mass parameters m1,m2 for the flavour symmetry, there are four chambers cα ⊂
tf = R2 labelled by a sign vector α = (α1, α2) - see figure 1.2. We again choose the Fock vacuum

annihilated by ψ1, ψ2 and η.

C++

C+�

C�+

C��

Figure 1.2: Chambers in the space of real mass parameters (m1,m2) ∈ tf = R2 for two chiral
multiplets φ1, φ2 and Fermi multiplet with superpotential J = φ1φ2.

As in our previous example, the supercharge is a sum of contributions from the chiral multiplets

and the superpotential. The cohomology of
(
Q†
)(0)

is again the tensor product of supersymmetric

ground states for the chiral and Fermi multiplets. Let us first consider the chamber c++, in which

we compute the cohomology of
(
Q†
)(1)

= φ1φ2η acting on

[φn1
1 φn2

2 ] , [φn1
1 φn2

2 ]η̄ (1.35)

for n1, n2 ≥ 0. The differential annihilates any [φn1
1 φn2

2 ] and sends the state [φn1
1 φn2

2 ]η̄ to [φn1+1
1 φn2+1

2 ].

The remaining states in cohomology are

[φn1
1 ] n1 ≥ 0

[φn2
2 ] n2 > 0 ,

(1.36)

and therefore

H++ =
⊕
n1≥0

xn1
1 C⊕

⊕
n2>0

xn2
2 C , (1.37)

where again we set κ = 0.

2As in our previous example, we could introduce a dimensionless complex parameter u in the superpotential. Since
the Hilbert space of supersymmetric vacua will not depend on this parameter provided u 6= 0, we set u = 1 for
convenience.
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In the chamber c+−, we compute the cohomology of
(
Q†
)(1)

= φ1φ2η acting on

[φn1
1 φ̄n2

2 ] , [φn1
1 φ̄n2

2 ]η̄ (1.38)

with n1, n2 ≥ 0. The differential annihilates any [φn1
1 φ̄n2

2 ] and sends the state [φn1
1 φ̄n2

2 ]η̄ to

[φn1+1
1 φ̄n2−1

2 ] if it exists. The remaining states in cohomology are

[φn1
1 ] η̄ : n1 ≥ 0[
φ̄n2

2

]
: n2 ≥ 0

(1.39)

and therefore

H+− =
⊕
n1≥0

xn1+1
1 C⊕

⊕
n2≥0

(−x−n2−1
2 )C . (1.40)

There are similar results on regions c−+ and c−−.

This is consistent with expanding the supersymmetric index

I =
1− x1x2

(1− x1)(1− x2)
(1.41)

in the appropriate chambers. The supersymmetric index does not detect the presence of the J-term

superpotential, except through the determination of the flavour symmetry and associated mass

parameters. In particular, the contributions from states removed in pairs by
(
Q†
)(1)

cancel out in

the supersymmetric index.

We consider one final example that will reappear in a three-dimensional problem in section 3.2.3.

We introduce three chiral multiplets φ1, φ2, φ3 coupled to three Fermi multiplets η1, η2, η3 with

J-term superpotentials

J1 = φ2φ3 J2 = φ3φ1 J3 = φ1φ2 . (1.42)

This model in fact arises from a supersymmetric quantum mechanics with four supercharges with

chiral multiplets Φ1, Φ2, Φ3 and cubic superpotential W = Φ1Φ2Φ3. Here, we regard it as an

N = (0, 2) supersymmetric quantum mechanics with flavour symmetry

U(1)T U(1)A
φ1 1 −1
φ2 −1 −1
φ3 0 2

.

Our notation and choice of charges is made with future applications in mind. Checking that the

supersymmetric index is 1 is straighforward.

Introducing real mass parameters mT and mA, there are six chambers cα ⊂ tf = R2 labelled by

sign vectors α = (α1, α2, α3). The sign vectors (+ + +) and (− − −) are not allowed as the mass

parameters of all three chirals must sum to zero. Let us concentrate here on the chamber (+ − +)

corresponding to mass parameters 0 < mA < mT . Following previous examples, we compute the

cohomology of (
Q†
)(1)

= φ1φ2η3 + φ2φ3η1 + φ3φ1η2 (1.43)
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on states

[φn1
1 φ̄n2

2 φn3
3 ]η̄s11 η̄

s2
2 η̄

s3
3 . (1.44)

where n1, n2, n3 ≥ 0 and s1, s2, s3 = 0, 1. We have chosen the Fock vacuum annihilated by ψ1, ψ2, ψ3

and η1, η2, η3 and assigned it Fermion number one.

This example is simple enough to compute representatives of cohomology classes directly. A

more systematic method is to split the supercharge into three terms and apply the method spectral

sequences to compute the cohomology of the total complex in steps. We summarize representatives

of the remaining cohomology classes and their contribution to the supersymmetric index below,

H+−+ I+−+[
φ̄n2
]

+(qy)n+1[
φ1 φ̄

n
2

]
η̄1 −(qy)n+1

[φn3 ] η̄1 −(y2)n+1[
φn+1

3

]
η̄1η̄3 +(y2)n+1

[φn1 ] η̄3 −(qy−1)n+1[
φn+1

1

]
η̄1η̄3 +(qy−1)n+1

[ 1 ] η̄1η̄3 +1

,

where n ≥ 0. Notice that we have chosen the normalization κ such that the vacuum has charge

(qy). All of the contributions to the supersymmetric index cancel in pairs except for the final

line, reproducing the expected result I = 1. A similar analysis can be performed in the remaining

chambers.

A general model consists of N chiral multiplets (φj , ψj) and k Fermi multiplets (ηa, F a) coupled

by holomorphic superpotentials Ja(φ) and Ea(φ). The Hilbert space of supersymmetric ground

states is the cohomology of (
Q†
)(1)

= ηaJa(φ) + η̄aE
a(φ) (1.45)

acting on the tensor product of supersymmetric ground states for the individual chiral and Fermi

multiplets. This can be understood as a supersymmetric sigma model to M = CN together with

the Z2-graded Hermitian vector bundle

F = K
1/2

CN ⊗
∧•f∗√
det f∗

, (1.46)

where f denotes the odd rank-k Hermitian vector bundle on CN with fibers spanned by the complex

fermions ηa. The holomorphic differential δ =
(
Q†
)(1)

is given by the sum of contraction with the

holomorphic section ηaJa(φ) of f and the wedge product with the holomorphic section η̄aE
a(φ) of

f∗.

1.2 Gauge Theory

A vectormultiplet in N = (0, 2) supersymmetric quantum mechanics contains a gauge field Aτ ,

a real scalar σ, and a real auxiliary field D, in addition to the complex fermions λ, λ̃. The real
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mass parameters introduced above can be regarded as coupling to a background vectormultiplet

for the flavour symmetry Gf and turning on a vacuum expectation value mf = 〈σf 〉 for the scalar

component.

We now consider dynamical vectormultiplets for a gauge symmetry G. We focus on G = U(1)

and introduce N chiral multiplets (φj , ψj) transforming with charge Qj . We also introduce a real FI

parameter ζ > 0 and a supersymmetric Wilson line of charge q. These contribute ζD and q(σ+ iAτ )

respectively to the lagrangian. Global anomaly cancellation requires

q − 1

2

N∑
j=1

Qj ∈ Z . (1.47)

This model will arise in computations of the supersymmetric twisted Hilbert space of three-dimensional

gauge theories with G = U(1) on Σ = CP1 in sections 3.2.4-3.2.5.

To compute the supersymmetric ground states, we introduce a supersymmetric sigma model

onto configurations minimizing the Euclidean action in the ‘geometric regime’. We first note that

the auxiliary field can be eliminated by its equation of motion to give D = e2(µ − ζ), where

µ =
∑
j Qj |φj |2 is the moment map for the U(1) action on CN . The classical potential is then

U(σ, φ) = σ2
N∑
j=1

|Qjφj |2 +
e2

2
(µ− ζ)2 (1.48)

Assuming ζ > 0, the classical potential is minimized by configurations

µ− ζ = 0 σ = 0 (1.49)

modulo constant U(1) gauge transformations. At frequencies much smaller than e2
√
ζ, the system

can be described by a supersymmetric sigma model to the Kähler quotient

M = µ−1(ζ)/U(1) . (1.50)

Since the dependence on e2 and ζ is exact, provided the quotient M is smooth we expect the

supersymmetric sigma model exactly to capture the space of supersymmetric ground states in the

supersymmetric gauge theory. Note that for the quotient M to be smooth, we require

Qj =

{
+1 for j = 1, . . . , k

−1 for j = k + 1, . . . , N ,
(1.51)

such that M is the total space of the line bundle O(−1)N−k → CPk−1.

Let us specialize here to the compact case withN chiral multiplets of chargeQj = +1. The flavour

symmetry is Gf = PSU(N), and the chiral multiplets transform in the projective representation of

Gf obtained from the fundamental representation of SU(N). In this case, we find a supersymmetric

sigma model to M = CPN−1. In addition, there is is a Hermitian line bundle F with the following

contributions:
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• A contribution K
1/2

CPN−1 = O(−N2 ) from quantizing chiral multiplet fermions.

• A contribution O(q) from the supersymmetric Wilson line.

The anomaly cancellation condition (1.47) ensures that the combination F = O(q − N
2 ) is well-

defined.

We can further introduce real mass parameters for the chiral multiplets mf = (m1, . . . ,mN )

with
∑
jmj = 0, which parametrize tf = RN−1. In the supersymmetric sigma model, the real mass

parameters introduce a real superpotential hf : CPN−1 → R given by the moment map for the

U(1)mf isometry of CPN−1 generated by mf .

Since the target of the supersymmetric sigma model is compact, the spectrum is always gapped

and the space of supersymmetric ground states is constant over the whole parameter space tf =

RN−1. In particular, at mf = 0 the space of supersymmetric ground states can be identified with

the Dolbeault cohomology

H = H0,•
∂̄

(M,F ) . (1.52)

We introducing complex parameters (x1, . . . , xN ) with
∏
j xj = 1 parametrizing the complexified

maximal torus of Gf = PSU(N) to keep track of the grading by flavour symmetry. Then

H =


Sq−

N
2

(⊕N
j=1 x

−1
j C

)
q ≥ N

2

∅ −N2 < q < N
2

S−q−
N
2

(⊕N
j=1 xjC

)
q ≤ −N2 ,

(1.53)

corresponding to symmetric powers of the fundamental and anti-fundamental representations of

Gf = PSU(N).

The supersymmetric index may be computed independently by localization in the supersymmet-

ric gauge theory [57]. This computation reproduces the characters of the above representations of

Gf = PSU(N),

I =

∮
Γ

dz

z
zq

N∏
j=1

(zxj)
1/2

1− zxj

=


χ
Sq−

N
2 (CN )∗

(x1, . . . , xN ) q ≥ N
2

0 −N2 < q < N
2

χ
S−q−

N
2 CN

(x1, . . . , xN ) q ≤ −N2 .

(1.54)

The contour Γ surrounds the poles at z = x−1
j for all j = 1, . . . , N . The contour integral expression

for the supersymmetric index coincides with the computation of the holomorphic Euler character

χ(M,F ) using the Hirzebruch-Riemann-Roch theorem.

1.3 N = 4 Supersymmetric Quantum Mechanics

We now briefly review the class of N = 4 supersymmetric quantum mechanics that arise from

topological twists of 3d N = 4 theories on a Riemann surface.
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1.3.1 Supersymmetry Algebra

We consider a supersymmetric quantum mechanics with N = 4 supersymmetry and R-symmetry

SU(2)R ⊕ U(1)r. Below, it will be convenient to denote the corresponding Lie algebra by su(2)R ⊕
u(1)r.

The supercharges QA, Q̃A transform in the fundamental representation of SU(2)R and with

weight + 1
2 , − 1

2 under U(1)r. They act on the Hilbert space such that (Q1)† = Q̃2 and (Q2)† = −Q̃1

with respect to the Hermitian inner product. The supercharges generate a supersymmetry algebra

of the form
{QA, QB} = 0

{QA, Q̃B} = εABH + ZAB

{Q̃A, Q̃B} = 0

(1.55)

where H is the Hamiltonian operator and ZAB are central charges transforming in the vector repre-

sentation of SU(2)R. A non-vanishing central charge will break su(2)R to a Cartan subalgbera. In

what follows, we assume only Z := Z12 is non-zero and write the corresponding maximal torus by

u(1)R.

1.3.2 Supersymmetric Ground States

We are primarily interested in the Hilbert space of supersymmetric ground states H annihilated by

all of the supercharges QA, Q̃A. Such states are necessarily annihilated by both the Hamiltonian

H and central charge Z12. H therefore transforms as a representation of the full R-symmetry

SU(2)R ⊕ U(1)r.

To understand the structure of supersymmetric ground states, it is useful to introduce a number

of N = 2 subalgebras. The supercharges Q1 and Q2 generate commuting subalgebras

{Q1,
(
Q1
)†} = H + Z

{Q2,
(
Q2
)†} = H − Z ,

(1.56)

while their sum Q := Q1 + Q̃1 generates a subalgebra {Q,Q†} = 2H in which the central charge

does not appear. We therefore obtain the unitarity bound 〈H〉 ≥ |〈Z〉|.
We may define two spaces that saturate the bound

H+ = {(H + Z)|ψ〉 = 0}

H− = {(H − Z)|ψ〉 = 0} .
(1.57)

Equivalently, H+ is the subspace annihilated by Q1 and its adjoint while H− is the subspace anni-

hilated by Q2 and its adjoint. They are graded by u(1)R⊕u(1)r. The space supersymmetric ground

states is the intersection H = H+ ∩H−.

At the cost of manifest unitarity, it is often convenient to represent the spaces of states as the

cohomology of a supercharge. Provided the spectrum of H + Z, H − Z is gapped, H± coincide
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with the cohomology of Q1, Q2 respectively. The space of supersymmetric ground states H is the

cohomology of Q. From this perspective the u(1)r grading is not manifest. However, introducing

combinations p = R + r and q = R − r, there is a spectral sequence converging to H such that

Ep,q1 = Hp,q+ with differential d1 = Q̃1.

If Z = 0 identically then the unitarity bound becomes 〈H〉 ≥ 0 and the supersymmetric ground

states saturate this bound. If the spectrum of H is gapped, standard arguments show that the space

of supersymmetric ground states H is the cohomology of any one of supercharges Q1, Q2 or Q. In

this case, the spectral sequence must collapse at the first step.

1.3.3 Kähler Sigma Models

Compact Kähler Target

First consider a supersymmetric sigma model defined by a smooth compact Kähler manifold M of

complex dimension m. The Hilbert space consists of complex differential forms Ωp,q(M,C) with

Hermitian inner product

〈α, β〉 =

∫
M

ᾱ ∧ ∗β . (1.58)

The supercharges are

Q1 = ∂̄ Q2 = −∂† Q̃1 = ∂ Q̃2 = ∂̄† (1.59)

with Hamiltonian operator H = 1
2∆ proportional to the Laplacian operator on M and vanishing

central charge Z12 = 0.

The N = 4 supersymmetry algebra neatly encodes the combination of Kähler relations and sl(2)

Lefschetz action on M . In particular, the Cartan generators of the R-symmetry su(2)R ⊕ u(1)r act

by

R =
1

2
(p+ q −m) r =

1

2
(p− q) (1.60)

on (p, q)-forms.

Since Z12 = 0, the space of supersymmetric ground states H = H+ can be understood as the

cohomology of the supercharge Q1 = ∂̄, leading to an identification with Dolbeault cohomology

Hp,q

∂̄
(M), or algebraically with the sheaf cohomology

H =

m⊕
p,q=1

Hq(M,∧pΩM ) . (1.61)

This transforms as a representation of the R-symmetry with su(2)R acting by Lefschetz and u(1)r

by 1
2 (p−q), which is proportional to the Weil operator. For example, for a supersymmetric quantum

mechanics with target M = CPn, we have H = SymnV where V is the fundamental representation

of su(2)R and weight r = 0.

Using instead the supercharge Q = Q1 + Q̃1 = d, we are lead to a description of the space

of supersymmetric ground states H as the de Rham cohomology of M with complex coefficients.
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The equivalence of these descriptions is guaranteed by the degeneration of the Hodge-to-de Rham

spectral sequence for a compact Kähler manifold.

The Witten index of the supersymmetric quantum mechanics coincides with the Euler charac-

teristic of M ,

TrH(−1)F =

m∑
p,q=1

(−1)p+qhp,q =

∫
M

e(TM ) (1.62)

where the fermion number is F = p+ q = 2R+m.

Mass Deformation

Now suppose that M has a Hamiltonian isometry group Gf with moment map µ : M → t∗. Then Gf

is a flavour symmetry of the supersymmetric quantum mechanics. As in the N = (0, 2) case, turning

on mass parameters mf ∈ t for the flavour symmetry amounts to introducing a real superpotential

hf = mf · µf , which corresponds to the moment map for the infinitesimal u(1) action generated

by mf . The critical locus of the moment map hf coincides with the fixed locus of u(1). It is a

well-known fact that hf is a perfect Morse-Bott function. In fact, the critical loci are necessarily

Kähler and have a well-defined Morse index, which is always even3.

In the presence of the mass parameter mf , the supercharges of the supersymmetric quantum

mechanics are deformed to

Q1 = e−hf ∂̄ ehf Q2 = −ehf ∂† e−hf Q̃1 = e−hf∂ ehf Q̃2 = ehf ∂̄† e−hf (1.63)

with the deformed Laplacian as an Hamiltonian and central charge Z12 = mf ·Jf where Jf ∈ tf are

the conserved charges associated to the flavour symmetry.

As the central charge is now non-vanishing it is important to compute the space of supersym-

metric ground states as the cohomology of Q = e−hf d ehf . This generates a standard complex for

the Morse-Bott function hf . However, since hf is perfect there are no differentials. The space of

supersymmetric ground states can therefore be identified with the de Rham cohomology of the fixed

locus.

Suppose the critical locus of hf has components Mα. They are necessarily Kähler submanifolds

with even Morse index ν(Mα). Then the space of supersymmetric ground states is

H =
∑
α

Hα (1.64)

3Around an isolated fixed point, the action can be modelled as a torus action T rk(Gf ) on Cm. Let the complex
coordinates be zj = xj + ixj . Assuming ρi to be the weights of this action, we have, around a fixed point,

mf · µ(z1, . . . , zn) =
1

2

∑
i

|zi|2ρi(mf ) =
1

2

∑
i

(x2
i + y2

i )ρi(mf ) ,

Clearly, the Hessian of this function has an even number of negative eigenvalues, and so the Morse index is even. This
discussion can be generalised to non-isolated fixed points. In this case, one can show that the fixed loci are Kähler
submanifolds, and that on a given submanifolds the Morse index is constant. Similar arguments as in the case of
isolated fixed points go through. See for example ref. [64], section 10.5.6.
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where

Hα = ⊕p,qHq(Mα,∧pT ∗Mα
) . (1.65)

The R-charges of the supersymmetric ground states in Hα are given by

R =
1

2
(p+ q + ν(Mα)−m) r =

1

2
(p− q) (1.66)

Let us again consider the supersymmetric quantum mechanics with M = CPN−1. This has

flavour symmetry G = PSU(N) and therefore we can turn on real mass parameters (m1, . . . ,mN ) ∈
t = RN−1 with

∑
jmj = 0. For generic mass parameters, the critical locus of hm consists of N

isolated fixed points {pj} corresponding to coordinate lines in CPN−1. Supposing that the Kähler

parameter of CPN−1 is ζ > 0 then hm(pj) = ζmj . If we order the mass parameters such that

m1 < · · · < mN then

hf (p1) < hf (p2) < · · · < hf (pN ) (1.67)

and ν(pj) = 2j− 2. There is a single perturbative ground state Ψ(pj) associated to each fixed point

with R-charges R(pj) = 1
2 (ν(pj)− (N − 1)) = j − N+1

2 and r = 0. We therefore find

H = C−N−1
2 ,0 ⊕ · · · ⊕ CN−1

2 ,0 (1.68)

in agreement with our previous result.

1.3.4 Hyperkähler Sigma Models

We finally provide a minimal discussion about hyperkähler sigma models. These are labelled by a

hyperkähler manifold endowed with complex structures (I, J,K) that satisfy the quaternion rela-

tions, together with a hyperholomorphic bundle. Obvious examples are the tangent or cotangent

bundle of the manifolds. The four supercharges in this case are

Q1 = ∂̄I Q2 = ∂̄−I Q̃1 = −∂̄†−I Q̃2 = ∂̄†I . (1.69)

Here, −I is the complex structure opposite to I. Their deformations induced by moment maps for

an isometry group Gf read

Q1 = e−hf ∂̄Ie
hf Q2 = ehf ∂̄−Ie

−hf Q̃1 = −e−hf ∂̄†−Iehf Q̃2 = ehf ∂̄†Ie
−hf . (1.70)

The supercharges satisfy the algebra (1.55) with

H =
1

2
∆mf − (mf · Jf ) , (1.71)

and Z12 = 0. The su(2)R symmetry has a neat interpretation. It simply rotates the complex

structures of the hyperkähler manifold. This action commutes with the Laplacian, and turns into a

su(2)R action on the Hilbert space of supersymmetric ground states4.

4When M is compact, the action has been studied extensively in ref. [65]. Moreover, it is worth noticing that on
the cohomology of hyperkähler manifolds there also is an extended so(1, 4) action [66], which is a composition of the
Leftschetz actions in the three complex structures. In more physical terms, this can be understood from the point
of view of a six dimensional supersymmetric sigma model reduced to a 1d quantum mechanics. In fact, the so(1, 4)
action is nothing else than the residual ‘internal’ Lorentz symmetry in the other five dimensions [67].
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Finally, in the presence of a mass gap, since there is no central charge in this model the Hilbert

space of supersymmetric ground states can be identified (as a vector space) with the cohomology of

the deformed Dolbeault operator in any complex structure.

1.3.5 Two Examples

One Free Chiral Multiplet

As a first example of a N = 4 supersymmetric quantum mechanics, we start with a free chiral

multiplet. With future applications in mind, we denote its fields by (X,ψX , ηY , FY ), where FY is an

auxiliary field. The chiral multiplet has a U(1)f flavour symmetry, and we turn on a corresponding

real mass mf . The supercharges read, on shell

Q1 = ψ̄X

(
∂

∂X̄
+mfX

)
Q2 = ηY

(
∂

∂X̄
+mfX

)
Q̃1 = η̄Y

(
∂

∂X
+mf X̄

)
Q̃2 = ψX

(
− ∂

∂X
+mf X̄

)
.

(1.72)

They satisfy the same algebra of Kähler sigma models. In fact, this system can be thought of

geometrically as an N = 4 quantum mechanics with target space C, and the supercharges admit the

interpretation (1.63).

The supercharges Q1 and Q̃2 can be identified with the supercharges of a free N = (0, 2) chiral

multiplet Q† and Q (1.15). From the point of view of N = (0, 2) supersymmetry, the free chiral

multiplet decomposes into a (0, 2) chiral multiplet (X,ψX) and a Fermi multiplet (ηY , FY ).

Let us consider the space of supersymmetric ground states that are preserved by the four su-

percharges. It is easy to see that all the states annihilated by both Q and Q† are not annihilated

by the two remaining supercharges but one. Geometrically, this is the single representative of the

deformed de Rahm cohomology of C.

One Free Hypermultiplet

Our second and last example is a free hypermultiplet. We denote the fileds by (X,ψX , ψY , Y ). There

is a U(1)f flavour symmetry that acts on X and Y with charges +1 and −1. Turning on a real mass
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for this symmetry, the supercharges read

Q1 = ψ̄X

(
∂

∂X̄
+mfX

)
+ ψ̄Y

(
∂

∂Ȳ
−mfY

)
Q2 = −ψ̄Y

(
∂

∂X
−mf X̄

)
+ ψ̄X

(
∂

∂Y
+mf Ȳ

)
Q̃1 = −ψY

(
∂

∂X̄
+mfX

)
+ ψX

(
∂

∂Ȳ
−mfY

)
Q̃2 = −ψX

(
∂

∂X
−mf X̄

)
− ψY

(
∂

∂Y
+mf Ȳ

)
.

(1.73)

We could write covariantly

QA = −ψ̄X
(
εAB

∂

∂X̃B
−mfX

A

)
+ ψ̄Y

(
εAB

∂

∂XB
−mf X̃

A

)
Q̃A = ψX

(
εAB

∂

∂XB
−mf X̃

A

)
+ ψY

(
εAB

∂

∂X̃B
−mfX

A

)
,

(1.74)

where XA = (X, Ȳ ), X̃A = (Y,−X̄). In this case, the supercharges satisfy the algebra of hyperkähler

sigma models. We can in fact view a free hypermultiplet as an N = 4 supersymmetric quantum

mechanics with target space T ∗C.

Once again, Q1 and Q̃2 obey the algebra of an N = (0, 2) quantum mechanics. From the per-

spective of N = (0, 2) supersymmetry, the free hypermultiplet decomposes into two chiral multiplets

(X,ψX) and (Y, ψY ). As already mentioned, the space of supersymmetric ground states annihilated

by the four supercharges can be identified with the cohomology of any of them.

There are two chambers c± ⊂ tf = R corresponding to mf > 0 and mf < 0. The same reasoning

we used in 1.1.3 shows that the Hilbert space of four-supercharge preserving ground state is spanned

by
c+ : e−hfXn1 Ȳ n2 ψ̄Y

c− : ehf X̄n1Y n2 ψ̄X ,
(1.75)

where n1, n2 ≥ 0. The real superpotential coming from the moment map is

hf = mf

(
|X|2 − |Y |2

)
. (1.76)

These states are representative for the deformed Dolbeault cohomology of T ∗C.
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Chapter 2

Supersymmetric Localization
Results

We now consider 3d N = 2 theories with a topological twist on the product of a real line R and

a compact connected Riemann surface Σ of genus g. This setup falls into the general class of

supersymmetric backgrounds introduced in [68].

In this short chapter, we summarize and modify slightly some localisation results, in particular

the computation of the twisted indices of the theories on S1 × Σ. The twisted indices of N = 2

gauge theories have been studied extensively in [22, 23, 25, 26] from various perspectives, but we will

mainly focus on the results obtained from UV Coulomb branch localisation [23, 25, 26]. Crucially,

we introduce an additional exact action that leads to a different, and for us more appropriate, BPS

locus.

2.1 Topological twist on R× Σ

We start with some elementary algebraic preliminaries. We use Euclidean SU(2) spinor indices α,

and assume that the theory has an unbroken U(1)R R-symmetry. In the absence of central charges,

three-dimensional N = 2 supersymmetric gauge theories enjoy the following supersymmetry algebra

{Qα, Q̃β} = Pαβ , (2.1)

where Qα, Q̃β are the four supercharges of U(1)R charge +1 and −1 respectively. Pαβ are the

momentum generators. The topological twist we use is equivalent to the topological A-twist on Σ,

which redefines the Lorentz group on the plane by mixing it with a fixed unbroken U(1)R ⊂ SU(2)R.

Given a field of charge L under the U12 rotations on the plane, the twist assigns a new spin to the

fields

L′ = L+
1

2
R . (2.2)
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The twist preserves the supercharges that commute with the new Lorentz group. The resulting

algebra is

{Q,Q†} = P0 , (2.3)

where P0 is the generator of translations along R. These supersymmetry algebras can be deformed

by central charges, something we will do soon1.

2.2 3d N = 2 Supermultiplets, Actions and BPS Loci

Consider now some 3d Chern-Simons-matter theory with a gauge group G and a chiral multiplet of

R-charge r in a representation R of the gauge group. Following refs. [23, 69, 26, 25], after performing

the topological twist we use a compact ‘twisted field’ notation for all the supermultiplets. We denote

the fields in the vectormultiplet by

V = (σ,Aµ, λ, λ̄1,Λ1̄, Λ̄, D) , (2.4)

where σ is a real scalar, Aµ is the gauge connection, D is the auxiliary field, whereas λ, λ̄,Λ, Λ̄ are

gauginos. We relegate the supersymmetry transformations of this and any other multiplet to A.1.

In frame-index notation2 , the standard Yang-Mills lagrangian is

LYM = Tr

[
1

2
F01F01̄ +

1

2
(−2iF11̄)2 +

1

2
D2 +

1

2
|Dµσ|2 − iλ̄D0λ− iΛ̄1̄D0Λ1

+2iΛ̄1̄D1λ− 2iΛ1D1̄λ̄− iΛ̄1̄[σ,Λ1] + iλ̄[σ, λ]
]
.

(2.5)

This action is exact with respect to the two supercharges Q, Q† preserved by the topological twist

on Σ. Using the fields of the vectormultiplet, we can also consider Chern-Simons actions

LCS =
k

4π
Tr

(
iεµνρ

(
Aµ∂µAρ −

2i

3
AµAνAρ

)
− 2Dσ + 2iλ̄λ+ 2iΛ̄1̄Λ1

)
, (2.6)

which obviously are not exact. For each semi-simple factor, we will denote kab := khab, where hab

is the Killing form.

Besides the dynamical vectormultiplet, a crucial role will be played by background vectormul-

tiplets for a maximal torus of any global symmetry group Tf ⊂ Gf , which we will turn on at

appropriate times during our discussion. A background vectormultiplet Vf will in particular include

• Real scalar components mf valued in the Cartan subalgebra tf of the flavour symmetry group

Gf known as real masses.

1Depending on the choice of gauge, we might actually be forced to introduce some central charges, but for the sake
of presentation we gloss over details in this summary. See [26].

2We have
e0 = dx3 , e1 =

√
2̄gzz̄dz , e1̄ =

√
2gzz̄dz̄ ,

so that the metric on the Riemann surface is ds2 = e1e1̄ = 2gzz̄dzdz̄ . We also define Fµν = ∂µAν − ∂νAµ −
i[Aµ, Aν ], where ∗F = −2iF11̄ is Hermitian. The holomorphic derivatives and the gauginos are (∂̄A, Λ̄) =

(D1̄e
1̄,Λ1̄e

1̄) and (∂A,Λ) = (D1e1,Λ1e1) .
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• A background connection Af .

For instance, when the gauge group has an overall U(1) factor, the theory has a U(1)T topological

symmetry, and we can turn on a real mass of a background vectormultiplet. This mass is a real

Fayet-Iliopoulos (FI) parameter. We can then add a contribution to the action which for U(k) gauge

groups is of the form

LFI[V ] = − iζ
2π

Tr(D) . (2.7)

Next, let us introduce matter contributions. We denote the fields of a N = 2 twisted chiral

multiplet by

Φ = (φ, ψ, η, F ) . (2.8)

We use the following lagrangian for the chiral multiplet,

LΦ = φ†(−D2
0 − 4D1D1̄ + σ2 + iD − 2iF11̄)φ− F †F

− i

2
ψ̄(D0 + σ)ψ − 2iη̄(D0 − σ)η + 2iψ̄D1η − 2iη̄D1̄ψ

− iψ̄λ̄φ+ iφ†λψ − 2iφ†Λ1η + 2iη̄Λ̄1̄φ ,

(2.9)

which is also Q,Q†-exact. From chiral multiplets we can construct superpotential terms

LW [Φ] + LW̄ [Φ†] =

∫
d2θ W (Φ) + h.c. (2.10)

where W is a holomorphic functional of chiral multiplets with total U(1)R-charge 2. Being super-

descendants, superpotential terms are exact.

Summing the above lagrangian contributions gives

L =
1

e2
LYM +

1

g2
LΦ +

1

g2
W

LW + LFI + LCS (2.11)

where we have inserted parameters e2, g2 and g2
W in front of the actions that are exact.

2.3 Twisted Indices and Contour Integral Formulae

Supersymmetric localization can be used to compute the twisted index of the theory on S1 × Σ,

which is defined as

I = TrH (−1)F e2πiζe2πimf ·Jf , (2.12)

where H is the Hilbert space of states on Σ. By taking limits of (2.11) as the parameters e2, g2,

g2
W tend to zero, we can localize the path integral to the critical loci of the combinations LYM and

LW . By imposing a suitable reality condition for all the fields except for the auxiliary field, the path

integral localizes to solutions of the following equations

∗ FA = −iD , ∂̄Aφ = 0 , dAσ = 0 , F01 = F01̄ = 0 , σ · φ = 0 (2.13)
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as found in [26, 25, 23]. Sometimes, we may also send g2
W to zero and impose the further constraint

δW

δΦ
= 0 . (2.14)

The solutions to these equations are shown in [23, 25, 26] to parametrize the complexified classical

Coulomb branch MC,C. On the Coulomb branch, the gauge group is broken to a maximal torus.

MC,C is parametrized locally by the constant expectation values of the real scalar fields, σa, a ∈
{1, . . . , rk(G)}, combined with flat connections for the gauge group on S1 into the variables

ua = iβ(σa + ia0,a) , (2.15)

where a0,a is the holonomy of a the gauge connection A0,a around S13. These parameters however

may be identified by the action of the Weyl group, and so

MC,C ∼= (C∗)rk(G)/WG . (2.16)

After carefully integrating out the fermionic zero modes, the localized path integral can be written

as a rk(G)-dimensional residue integral over the cover of MC,C parametrized by the variables ua.

For a theory with chiral multiplets Φi in representations Ri of the gauge group, the result is

I =
(2πi)rk(G)

|WG|
∑

m∈ΛG

(−q)m
∑

u∗={ui}

(
JK-Res
u=u∗

(Qu∗(u), η)

ZclassicalZ
vector
1-loop

(∏
i

ZΦi
1-loop

)
Hg drk(G)u

)
.

(2.17)

Here, the first summation is over the GNO quantized flux m valued in the co-character lattice of the

gauge group ΛG. We also have written

q = e2πiζ , (2.18)

where it is understood that ζ, similarly as for the variables u, is complexified by background con-

nections along S1. We also set for simplicity β = 1 henceforth. The exponent m is an element of the

character lattice of the topological symmetry and can therefore be contracted with ζ. For G = U(k),

our main case of interest, m = Tr(m) ∈ Z4.

The integrand is written in terms of exponentiated variables, or fugacities, which are invariant

under large gauge transformations. We set

x = e2πiu, yi = e2πimf,i (2.19)

where mf,i are the real masses associated to U(1)i gauge groups, which are also complexified by

holonomies around S1. Incidentally, these complexifications –which arise from the compactification

3Notice that the parametrization is slightly different than in flat space.
4More generally, m can be obtained from m via the identification of π1(G) with the quotient of ΛG by the co-root

lattice of G.
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on S1– are responsible for washing out the dependence of the indices on real parameters, which will

still be detected by Hilbert spaces. We also denote by ni the background GNO flux induced by a

background connection Af,i.

The one-loop determinants evaluated at the BPS locus are

Zclass =
∏
a,b

(xa)k
abmb , (2.20)

ZΦi
1-loop =

∏
ρi∈Ri

(
x1/2y

1/2
i

1− xρiyi

)ρi(m)+ni+(g−1)(ri−1)

, (2.21)

and

Zvector
1-loop = (−1)

∑
α>0 α(m)

∏
α∈∆

(1− xα)1−g , (2.22)

where ∆ is the set of all roots of g, ρ are the weights of the representation Ri of G in which Φi

transforms, whereas ri is the R-charge of Φi.

The last term in (2.17) can be obtained from integrating out the gaugino zero modes Λ1,Λ1̄:

H = det
ab

[
kab +

∑
i

∑
ρi

ρaρb
1

2

(
1 + xρ

i

yi
1− xρiyi

)]
. (2.23)

The integrand of (2.17) has four types of singular hyperplanes in the domain of the u-integral,

where each of the hyperplane HQ is assigned a charge vector Q ∈ t∗:

• There exist potential singularities where a chiral multiplet becomes massless:

Hρi =
{
u
∣∣∣ ρi(u) + νi ∈ Z

}
(2.24)

The order of the pole is ρ(m) + ni + (g − 1)(ri − 1) + g.

• For each α ∈ ∆, there exist potential singularities at

Hα =
{
u
∣∣∣ α(u) ∈ Z

}
, (2.25)

where the W-boson becomes massless. This singularity corresponds to the boundary of the

Weyl chamber, where the gauge symmetry enhances to a non-Abelian subgroup.

• Finally, the integrand can have a potential singularity at

HQa,± =
{
u
∣∣∣ ua → ±i∞} . (2.26)

The behaviour of the integrand at infinity is governed by the charge of the monopole operators

T± under the gauge and global symmetries in the theory [23, 25, 26], whose explicit form is

not needed for this thesis.
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The integral is given by a sum of the rk(G)-dimensional residue integral over the poles defined

by the intersections of rk(G) singular hyperplanes. The JK-integral [70, 71, 72] is defined by the

property

JK-Res
u=u∗

(Qu∗(u), η)

[
drk(G)u

Q1(u) · · ·Qrk(G)(u)

]

=

 1

|det(Q1, · · · , Qrk(G))|
if η ∈ Cone(Q1, · · · , Qrk(G))

0 else

(2.27)

where Cone(Q1, · · · , Qr) is the positive cone spanned by the charge vectors (Q1, · · · , Qr), and η ∈ t∗

is an auxiliary parameter. This definition includes the charge vector Q± from the hyperplanes at

asymptotic infinities (2.26). The charges Qa,± of these hyperplanes can be defined by examining

the integral of the auxiliary field D̂ in the large u region, and we will briefly comment on this in the

appendix (A.2).

Note that the Jeffrey-Kirwan residue integral operation in (2.27) is ill-defined for the poles which

intersect with the W-boson singularities (2.25). These singularities need to be properly resolved,

and following [25, 26], we will exclude the residues from these poles in the final formula.

For G = U(1) theory, one can show that the residue integral does not depend on the choice of

η, due to the residue theorem. For non-Abelian gauge group, this point is more subtle, due to the

singularities of the W-boson. We will briefly return on this point when necessary.

2.4 An Alternative BPS locus

In this thesis, we consider an alternative localising action akin to the one introduced in section 9 of

reference [69] in the context of the twisted partition function of 2d N = (2, 2) theories on S2. In

particular, we add a (Q+Q†)-exact term,

LH =
1

2i

(
Q+Q†

) [(
λ+ λ̄

)
(µ(φ)− τ)

]
, (2.28)

whose bosonic part is

Lbos
H = iTr [(D − 2F11̄) (µ(φ)− τ)] . (2.29)

Here µ(φ) is a moment map for the gauge action on the representation R. We emphasize that the

parameter τ ∈ t∗ is distinct from the physical 3d FI parameter ζ introduced in equation (2.7). In

fact, as we will explain later, the combination it couples to can be identified with an auxiliary field in

the 1d quantum mechanics on R. Therefore, τ can be viewed as a 1d FI parameter in the quantum

mechanics. We then replace the vectormultiplet action by

1

e2
LYM → 1

t2

(
1

e2
LYM + LH

)
(2.30)
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and consider the limit as t, g → 0 such that t/g → 0, while keeping e finite. After integrating out the

auxiliary field, the path integral localizes to configurations solving the following set of ‘generalized

vortex equations’ on Σ,

∗FA + e2 (µR(φ)− τeff + σkeff ) = 0 , ∂̄Aφ = 0

dAσ = 0 , σ · φ = 0 ,
δW

δΦ
= 0 (2.31)

where it is understood that σ and ∂̄A act in the appropriate representation. Notice that when

integrating out massive matter, the 1d FI parameter τ and the Chern-Simons level k may be affected

by one-loop renormalization, as in (3), and we have therefore introduced a subscript ‘eff’. In this

thesis, however, we will be interpreted in cases where this renormalization is immaterial, and keff

is zero5. This is always the case for N = 4 theories.

Most of our efforts will be centred on finding an effective description of the 3d theories around

the BPS locus (2.31). The result of the supersymmetric localization computation of the index is

mildly affected by the exact term (2.30). In fact, it modifies the charges of the hyperplanes in (2.26).

For G = U(1), we show in the appendix A.2 that the new charges are given by

Q± =
2πm

e2
− vol(Σ)τ , (2.32)

for each GNO flux sector m ∈ Z, where τ is the parameter we introduced in (2.28). There is therefore

a natural choice η0 for the parameter η in (2.27)

η = −2πm

e2
+ vol(Σ)τ := η0 , (2.33)

so that the residue integral (2.17) does not select poles involving the hyperplane at asymptotic

boundaries.

5In principle, also the coupling e is renormalized, but with for us less important consequences. To lighten the
notation, we will not express this renormalization.
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Chapter 3

Twisted Hilbert Spaces of 3d N = 2
Supersymmetric Gauge Theories

The setup R × Σ preserves the same supersymmetry as an N = (0, 2) supersymmetric quantum

mechanics on R of the type considered in chapter 1. As anticipated in the introduction, the aim of this

thesis is to embrace the quantum-mechanical perspective, and to provide a geometric interpretation

of physical observables such as twisted indices and twisted Hilbert spaces of supersymmetric ground

states.

In this chapter, we begin our study by considering the Hilbert spaces of supersymmetric ground

states of some selected N = 2 theories. We emphasize once again that the twisted Hilbert spaces

contain more information than the twisted indices, which correspond to graded traces thereof. Be-

sides cancellations due to the grading, the Hilbert spaces are subject to an intricate dependence

on supersymmetric deformation parameters such as real masses and background connections. In

particular, checks of mirror symmetry can be performed over the full moduli spaces of deformation

parameters.

The chapter is organized as follows. We start by explaining how the three-dimensional supermul-

tiplets decompose into those of the supersymmetric quantum mechanics, and introduce an effective

description that captures the twisted Hilbert spaces of supersymmetric ground states (section 3.1).

Supersymmetric twisted Hilbert spaces are then computed explicitly in a number of examples (sec-

tion 3.2). Finally, as some of these examples are related to each other via three-dimensional mirror

symmetry, we check that the duality holds for the twisted Hilbert spaces (section 3.3).

3.1 Effective Quantum-mechanical Description

We noted in passing in the previous chapter that the supersymmetry algebra preserved by 3d N = 2

Chern-Simons-matter theories on R× Σ is the same as the algebra of a N = (0, 2) supersymmetric

quantum mechanics (1.1)

{Q,Q†} = P0 −mf · Jf . (3.1)
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In this pivotal section, we exploit this fact and introduce a description for the 3d theory in terms

of an effective 1d quantum mechanics valued in field configurations fluctuating around the BPS

locus (2.31).

3.1.1 Decomposing Supermultiplets

Chiral Multiplets

Consider first a 3d chiral multiplet Φ of R-charge r transforming in a unitary representation Rf of a

flavour symmetry Gf . Recall that we can introduce two standard deformation parameters associated

to the flavour symmetry that are compatible with the topological twist on Σ: a real mass parameters

mf ∈ tf and a background gauge connection Af . A background connection induces a holomorphic

bundle Ef on Σ, determined by its (0, 1)-component.

Performing the topological twist on Σ, the three-dimensional chiral multiplet decomposes into

the following supermultiplets in the supersymmetric quantum mechanics:

• A 1d N = (0, 2) chiral multiplet (φ, ψ) valued in smooth sections of EΦ,

• A 1d N = (0, 2) Fermi multiplet (η, F ) valued in smooth sections of Ω0,1
Σ ⊗ EΦ.

Here

EΦ := K
r/2
Σ ⊗ Ef (3.2)

and KΣ is the canonical bundle on Σ. Notice that this may require a choice of a spin structure on

Σ, and different choices are related by tensoring Ef with a flat line bundle on Σ. The holomorphic

bundle EΦ inherits a Hermitian metric from that on the canonical bundle on Σ and the Hermitian

metric on the vector space of the unitary representation Rf .

The action for the chiral multiplet was presented in (2.9). In addition to the standard kinetic

term contributions in the supersymmetric quantum mechanics from these supermultiplets, this action

contains terms that come from E-type superpotentials for the Fermi multiplet,

E = ∂̄Afφ , (3.3)

where ∂̄Af denotes the holomorphic structure on EΦ. Note that the E-term superpotential trans-

forms in the same way as the Fermi multiplet (η, F ), as required for supersymmetry. These terms

are

||E||2 =

∫
Σ

∂Af φ̄ ∧ ∗∂̄Afφ

Re η̄
∂E

∂φ
ψ = Re

∫
Σ

η̄ ∧ ∂̄Afψ ,
(3.4)

where again contraction using the Hermitian metric on EΦ is understood. The E-type superpotential

provides kinetic terms with derivatives along Σ, which correspond to the equation

∂̄Afφ = 0 (3.5)
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in (2.31) and its analogue for the fermionic partners. From the point of view of the supercharge, the

E-term contribution to Q† is proportional to∫
Σ

η̄ ∧ E =

∫
Σ

η̄ ∧ ∂̄Afφ , (3.6)

where contraction using the Hermitian metric on EΦ is understood. The choice of holomorphic

structure ∂̄Af on EΦ is therefore a B-type parameter in the supersymmetric quantum mechanics.

Finally, real mass parameters generate the real superpotential

hf =

∫
Σ

∗(mf · µf ) , (3.7)

where µf ∈ t∗f is the moment map for the action of Gf on the unitary representation Rf . In the

presence of real mass parameters, the supercharges of the supersymmetric quantum mechanics are

formally conjugated by the exponential factor ehf , as in section 1.1.2. This is an A-type deformation

of the supersymmetric quantum mechanics.

3d Superpotentials

The above model can be deformed by a 3d superpotential W (Φ) preserving the R-symmetry used to

perform the topological twist on Σ. A superpotential will place restrictions on the flavour symmetry

Gf and therefore on the allowed background vector bundle Ef and real mass parameters mf .

The superpotential must have R-charge +2 and will therefore transform as a section of the

canonical bundle on the curve Σ in the twisted theory. From the point of view of the quantum

mechanics, it is equivalent to the introduction of a J-term superpotential

JW =
δW

δΦ
, (3.8)

which transforms as a smooth section of Ω1,0
Σ ⊗ ĒΦ. This generates an additional contribution to

the supercharge Q† proportional to ∫
Σ

JW ∧ η =

∫
Σ

δW

δΦ
∧ η , (3.9)

where contraction using the Hermitian metric on EΦ is understood. The superpotential has the

effect of enforcing
δW

δΦ
= 0 , (3.10)

with the higher fermionic corrections. The complex parameters in the 3d superpotential therefore

become B-type deformation parameters in the supersymmetric quantum mechanics.
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Gauge Theory

Now consider a 3d N = 2 vectormultiplet for a compact group G. Performing the topological twist

on Σ, the 3d N = 2 vectormultiplet decomposes into the following multiplets in the supersymmetric

quantum mechanics:

• A 1d N = (0, 2) vectormultiplet consisting of A0, σ, and auxiliary field D1d := D+ ∗F where

∗ is the Hodge operator on Σ.

• A 1d N = (0, 2) chiral multiplet valued with complex scalar component given by the (0, 1)-form

component of the gauge connection on Σ.

In the supersymmetric quantum mechanics, the vectormultiplet is associated to the infinite-dimensional

group G of gauge transformations g : Σ→ G.

Let us consider a dynamical vectormultiplet with gauge symmetry G together with chiral mul-

tiplets Φ of R-charge r transforming in a unitary representation R of G. We suppose the chiral

multiplets transform in a unitary representation Rf of a residual flavour symmetry Gf . We can

again introduce deformation parameters mf and Ef associated to the flavour symmetry Gf . In the

supersymmetric quantum mechanics, the chiral multiplets decompose as above with

EΦ = K
r/2
Σ ⊗ E ⊗ Ef (3.11)

where E, Ef are the holomorphic vector bundles associated to the representations R, Rf . This

follows from the fact that the parameters mf , Ef can be understood as vacuum expectation values

for a background vectormultiplet for the flavour symmetry Gf . Preserving both supercharges of

the supersymmetric quantum mechanics requires D1d
f = 0 and therefore we should also turn on a

compensating auxiliary field iDf = − ∗ Ff given by the curvature of Ef .

If G contains Abelian factors, we can turn on a 3d real FI parameter ζ as well as a 1d FI

parameter τ . As previously noted, the former can be understood as a background expectation value

mT = ζ for the scalar component of a topological flavour symmetry U(1)T . We also introduce a

background holomorphic line bundle LT .

Finally, for each Abelian or simple factor in G, we can introduce a supersymmetric Chern-Simons

term. For example, the contribution to the supersymmetric quantum mechanics from a G = U(1)

Chern-Simons term at level k is

k

2π

∫
Σ

(σ + iA0)F − k

2π

∫
Σ

∗σD1d . (3.12)

In general, we can introduce various mixed Chern-Simons contributions between gauge, flavour and

R-symmetries.
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3.1.2 Effective Quantum Mechanics

In the previous section, we rephrased the topological twist of a 3d N = 2 theory on R × Σ as

an infinite dimensional supersymmetric quantum mechanics on R. We now introduce an effective

supersymmetric quantum mechanics that captures the space of supersymmetric ground states. We

focus exclusively on regimes where there are only ‘Higgs branch’ vacua in the sense of [13]. In

this case, the effective supersymmetric quantum mechanics is a sigma model onto the moduli space

of vortex-like configurations (2.31) that minimize the effective Euclidean action, in line with the

philosophy of [73, 31, 74].

Chiral Multiplets

Let us return to the model with chiral multiplets transforming a unitary representation Rf of a

flavour symmetry Gf from section 3.1.1. The Euclidean action is minimized by time-independent

configurations that minimize the potential of the supersymmetric quantum mechanics

U =

∫
Σ

‖∂̄Afφ‖2 :=

∫
Σ

∂Af φ̄ ∧ ∗∂̄Afφ , (3.13)

which is induced by the E-type superpotential term in equation (3.4). Such configurations therefore

satisfy Āfφ = 0, as in (2.31). In addition, time-independent solutions of the Fermi multiplet

equations of motion obey ∂̄Af η̄ = 0.

We therefore consider an effective supersymmetric quantum mechanics consisting of a finite

number of fluctuations:

• Chiral multiplets (φ, ψ) valued in H0(EΦ)

• Fermi multiplets (η, F ) valued in H1(EΦ) .

Let us define the number of chiral and Fermi multiplet fluctuations by

nC := h0(EΦ) nF := h1(EΦ) . (3.14)

The difference is determined by the Riemann-Roch theorem,

nC − nF = c1(EΦ)− rk(EΦ)(1− g) , (3.15)

and depends on the background holomorphic vector bundle only through c1(EΦ) and rk(EΦ). In

contrast, the individual numbers of fluctuations may depend on the particular choice of holomorphic

vector bundle with these parameters.

Introducing mass parametersmf ∈ tf , we can quantize the chiral and Fermi multiplet fluctuations

as in section 1.1.3. We obtain a supersymmetric twisted Hilbert space Hα in each chamber cα ⊂ tf

where all of the fluctuations are massive. Furthermore, each Hα will jump as the holomorphic vector

bundle Ef is varied whenever the numbers nC and nF change.
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A supersymmetric Chern-Simons term for the flavour symmetry descends to a Chern-Simons term

in the supersymmetric quantum mechanics and shifts the flavour grading of supersymmetric ground

states. For example, for Gf = U(1) the contribution (3.12) to the Lagrangian of the supersymmetric

quantum mechanics is

(mf + iAf,0)kmf (3.16)

where mf = c1(Ef ) is the flavour flux on Σ. This shifts the flavour conserved charge by Jf → Jf +

kmf . This can be further supplemented by a superpotential W (Φ). In this case, we will assume that

we can first quantize the fluctuations as above and then implement the J-term superpotential (3.8)

arising from W (Φ) in the supersymmetric quantum mechanics of these fluctuations.

We explicitly construct the supersymmetric twisted Hilbert spacesHα for a single chiral multiplet

with a supersymmetric Chern-Simons term for the Gf = U(1) flavour symmetry in section 3.2.1.

We then proceed to examples involving superpotentials in sections 3.2.2 and 3.2.3.

Abelian Gauge Theories

We now return to supersymmetric gauge theory. At this point, we specialize to G = U(1) with a

supersymmetric Chern-Simons term at level k. We will introduce parameters ζ, LT associated to

the U(1)T topological symmetry and parameters mf , Ef associated to the flavour symmetry Gf

acting on chiral multiplets. We also introduce a 1d FI parameter τ .

We consider configurations minimizing the action. We first set mf = 0 and then later turn the

mass parameters back on in the effective supersymmetric sigma model description. Configurations

minimizing the Euclidean effective action are solutions to

1

e2
∗ FA + µ = ξeff (σ) (3.17)

dAσ = 0 ∂̄Aφ = 0 σ · φ = 0

modulo gauge transformations g : Σ→ G. Here

ξeff := τ + σkeff (3.18)

is a combination of τ and the 1-loop quantum corrected parameter keff , which is piecewise constant

functions of σ. Finally, µ is the moment map for the action of G = U(1) on the unitary representation

R. In particular, the vectormultiplet scalar σ is real and therefore must be a constant on Σ.

The equations (3.17) admit a variety of different solutions depending on the supersymmetric

Chern-Simons level k, the matter content and the value of τ , similarly to the vacua of the theory.

In this thesis, we focus exclusively on regimes with ‘Higgs branch’ solutions, characterized by σ = 0,

a non-vanishing expectation value for φ and the gauge symmetry completely broken. We can then

focus our attention on solutions of the generalized vortex equations

1

e2
∗ F + µ = τ ∂̄Aφ = 0 , (3.19)
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modulo gauge transformations. We note that these equations play an important role in the A-twist

of 2d N = (2, 2) gauge theories [60, 75].

The moduli space of solutions to the generalized vortex equations (3.19) is a disjoint union of

components

M =
⋃
m

Mm (3.20)

labelled by the flux

m =
1

2π

∫
Σ

F ∈ Z (3.21)

and each component Mm is finite-dimensional. Since the dependence on the gauge coupling is

exact, we expect the spectrum of supersymmetric ground states of U(1)T topological charge m to

be captured by an effective supersymmetric quantum mechanics that is a sigma model with target

space Mm.

The twisted Hilbert space of supersymmetric ground states has the form

H =
⊕
m∈Z

qmHm , (3.22)

where we have introduced a parameter q ∈ C∗ to measure the charge under the topological symmetry

U(1)T . In going over to the twisted index on S1 × Σ with a circle of radius β, this parameter

corresponds to the exponential of ζ as in (2.18), with ζ taken in the same chamber as τ .

The flavour symmetry Gf descends to an isometry of Mm and becomes a flavour symmetry in the

effective supersymmetric quantum mechanics and each Hm transforms as a virtual representation

of Gf . Introducing real mass parameters generates a superpotential in the effective supersymmetric

sigma model equal to the moment map hf for the U(1)mf ⊂ Gf isometry generated by mf . This

has the effect of formally conjugating the supercharges by the exponential of hf .

From the general structure of supersymmetric quantum mechanics summarized in section 1.1.2,

we propose that the supersymmetric ground states with topological charge m are computed by the

L2-cohomology

Hm = H0,•
∂̄mf+δ

(Mm,Fm) (3.23)

where Fm is an appropriate Z2 graded Hermitian vector bundle on Mm. The vector bundle Fm

receives contributions from the following sources:

• A universal contribution of the square root of the canonical bundle
√
KMm

from quantizing

the fermions in chiral multiplets parametrizing Mm.

• There are contributions from Fermi multiplet zero modes, which are solutions to ∂̄Aη = 0 in the

background of a solution to the vortex equations. They transform as sections of a holomorphic

vector bundle f over the moduli space Mm. There is then a contribution to Fm from quantizing

these fluctuations, ⊕
i

(−1)i
∧if∗√
Det(f∗)

. (3.24)
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• A supersymmetric Chern-Simons term at level k for gauge symmetry G = U(1) contributes

an additional factor K−kMm
[76].

• A background holomorphic line bundle LT for the topological flavour symmetry on Σ induces

a line bundle L̃T on the moduli space Mm. This corresponds to an electric impurity in the

language of [77]. Alternatively, the holomorphic line bundle L̃T can be constructed mathe-

matically from the universal line bundle on Σ×Mm and the Deligne pairing 1.

Finally, as in the case of chiral multiplets, a 3d superpotential W (Φ) generates an additional con-

tribution δ to the differential.

Let us briefly comment on the dependence on the mass parameters mf , mirroring the discussion

in supersymmetric quantum mechanics of section 1.1.2. If the moduli space Mm is non-compact,

the cohomology (3.23) will yield a different result in each chamber cα ⊂ tf separated by walls where

there are massless non-compact fluctuations. On the other hand, if Mm is compact we may set

mf = 0 and identify the supersymmetric twisted Hilbert space with the hypercohomology

Hm = H0,•
∂̄+δ

(Mm,Fm) . (3.25)

Finally, the background holomorphic vector bundle Ef is a B-type deformation parameter in the

effective supersymmetric quantum mechanics and therefore Mm, Fm and Hm may jump as this is

deformed.

3.1.3 Vortex Moduli Spaces

The structure of the moduli spaces Mm depends intricately on the gauge and R-charges of the chiral

multiplets, the genus g of Σ, and the background holomorphic vector bundle Ef . In this section,

we nevertheless attempt to make some general comments on their structure that will be used in

examples in section 3.2. We also offer more systematic details in appendix A.3.

First, the vortex moduli space can be understood as an infinite-dimensional Kähler quotient.

The group of gauge transformations g : Σ→ G acts on the infinite-dimensional flat Kähler manifold

Pm parametrized by pairs (∂̄A, φ) with moment map

µG :=
1

e2
∗ F + µ (3.26)

Imposing the complex equation ∂̄Aφ = 0 defines a Kähler submanifold Vm ⊂ Pm with moment

map given by the restriction of the above. The moduli space of solutions to the generalized vortex

equations is then the symplectic quotient Mm = µ−1
G (τ)/G.

1We provide some justification of these claims in the appendices. In appendix A.3, we summarize the construction
of the holomorphic line bundle L̃T using the universal line bundle on Σ×Mm and Deligne pairing. In appendix A.5,
we show that the curvature of this line bundle agrees with the ‘dirty connection’ of the electric impurity introduced
in [77].
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It will be useful to introduce an algebraic description of the moduli spaces Mm. This is obtained

by imposing the complex equation ∂̄Aφ = 0 as above but replacing the real moment map equation

by a stability condition on the pair (∂̄A, φ) and dividing by complexified gauge transformations

g : Σ→ GC. A point in Mm is then specified by the following data:

• A holomorphic line bundle E of degree m.

• A holomorphic section φ of EΦ subject to a stability condition.

Some details concerning stability conditions can be found in appendix A.3. In this chapter, we will

only specify them in examples in section 3.2.

Finally, the algebraic description makes it clear that there is a holomorphic map

j : Mm −→ JΣ (3.27)

to the Picard variety parametrizing the holomorphic line bundle E, whose fibers are toric varieties.

This holomorphic map is not generally surjective. However, when m is sufficiently large it become

a holomorphic fibration whose structure can be useful for computing the cohomology groups (3.23).

We will study an explicit example of this phenomenon in section 3.2.5. If g = 0 then JΣ is a point

and we recover the description of the vortex moduli space as a toric variety [75].

3.2 Examples

3.2.1 1 Chiral Multiplet

We first consider a single chiral multiplet Φ of integer R-charge r. We introduce a real mass

parameter mf and a background holomorphic line bundle Lf for the U(1)f flavour symmetry. For

later convenience, we define

LΦ := K
r/2
Σ ⊗ Lf , (3.28)

where if necessary (as anticipated) we assume a choice of spin structure on Σ. We will return on

this sublety shortly.

The effective supersymmetric quantum mechanics has the following supermultiplets of charge +1

under U(1)f :

• Chiral multiplets (φ, ψ) valued in H0(LΦ).

• Fermi multiplets (η, F ) valued in H1(LΦ).

Let us denote the number of chiral and Fermi multiplet fluctuations by nC = h0(LΦ) and nF =

h1(LΦ) respectively. The difference is fixed by the Riemann-Roch theorem,

nC − nF = mΦ − g + 1

= mf + (r − 1)(g − 1).
(3.29)
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where mf , mΦ are the degrees of Lf , LΦ respectively. For extreme values of the degree, the numbers

of fluctuations are fixed

mΦ > 2g − 2 ⇒
{
nC = mΦ − g + 1

nF = 0

mΦ < 0 ⇒
{
nC = 0

nF = −mΦ + g − 1 .

(3.30)

However, in the intermediate region 0 ≤ mΦ ≤ 2g−2, the individual numbers of fluctuations depend

on the choice of background line bundle LΦ and will jump at loci in the Jacobian parametrizing LΦ.

This dependence can be expressed in a precise manner. Let Picmf (Σ) be the Picard variety

parametrizing isomorphism classes of holomorphic line bundles of degree mf . We can construct a

Poincaré line bundle

P → Picmf (Σ)× Σ (3.31)

with the property that restriction to a point on Picmf (Σ) is a holomorphic line bundle in the

isomorphism class corresponding to that point. We can then define a perfect complex of sheaves on

Picmf (Σ) by means of the derived pushforward

V• = R•π∗(P) , (3.32)

where π : Picm(Σ) × Σ → Picm(Σ) is the projection. These sheaves have the property that their

stalks are the complex vector spaces V•. They are not generally locally free, corresponding to the

fact that the dimension of these vector spaces may jump as the holomorphic line bundle is deformed.

We can then construct the space of supersymmetric ground states as a complex of sheaves

√
detV• ⊗ Sym(V•) (3.33)

on the Picard variety.

There are, however, subtle issues with this construction. The first issue is that the choice of

Poincaré line bundle P is not unique due to C∗ automorphisms of holomorphic line bundles on Σ.

In particular, there is an ambiguity P → P ⊗ π∗(R) where R is any holomorphic line bundle on

Picmf (Σ). This implies that the Poincaré line bundles can be seen as choices of trivializations of

a gerbe on Picmf (Σ), as explained for example in [32]. Since the supersymmetric ground states

are charged under U(1)f , and so transform under the C∗ automorphisms of Lf , the spaces of

supersymmetric ground states transform as complexes of sheaves over this gerbe.

The second issue is that, as already mentioned, we may be forced to make a choice of spin

structure on Σ. This would correspond to the choice of a base point on the Picard gerbe. Since any

two choices differ by a flat bundle, we may change our choice of base point by tensoring the Poincaré

line bundle by the pull-back of a flat line bundle on Σ. This transformation is a simple example of

a Fourier-Mukai transform.
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The structure of the Hilbert space not only depends on the number of fluctuations, but also on

the choice of vacuum and on the chambers for the real masses. We will choose the Fock vacuum of

Fermion number zero to be annihilated by the fermions ψ and η̄. This Fock vacuum then has charge

+ 1
2 (nC −nF ) under U(1)f . The chambers to consider are two: c+ = {mf > 0} and c− = {mf < 0}.

Quantizing the fluctuations as in section 1.1.3, we find

H+ = x
nC−nF

2

∞⊕
j=0

xj

 ⊕
p+q=j

SpCnC ⊗ ∧qCnf


H− = (−1)nC−nF x−
nC−nF

2

∞⊕
j=0

x−j

 ⊕
p+q=j

SpCnC ⊗ ∧qCnf
 .

(3.34)

This reproduces the expansions of the supersymmetric twisted index

I =

(
x1/2

1− x

)nC−nF
(3.35)

in the regions |x| < 1 and |x| > 1 respectively. Note that the supersymmetric twisted index depends

only on the difference nC − nF and therefore on the degree mΦ. On the other hand, H± will jump

as the background line bundle LΦ is varied over the Picard gerbe.

Let us now consider the special case Σ = CP1. The background holomorphic line bundle is now

fixed LΦ = O(mΦ) with mΦ = mf − r and there are either chiral or Fermi multiplet fluctuations,

mΦ ≥ 0 ⇒
{
nC = mΦ + 1

nF = 0

mΦ < 0 ⇒
{
nC = 0

nF = |mΦ| − 1 .

(3.36)

In this case, the effective supersymmetric quantum mechanics has an additional flavour symmetry

U(1)ε transforming the homogeneous coordinates of CP1 by

(z, w)→ (ξ1/2z, ξ−1/2w) . (3.37)

This induces an action on the chiral and Fermi multiplet fluctuations. For example, for mΦ ≥ 0 the

holomorphic sections zmΦ−jwj transform with weight ξ
mΦ
2 −j for j = 0, . . . ,mΦ. The vector space of

chiral multiplet fluctuations therefore decomposes in the following way as a representation of U(1)ε,

ξρCmΦ+1 = ξ
mΦ
2 C⊕ ξ

mΦ
2 −1C⊕ · · · ⊕ ξ−

mΦ
2 C , (3.38)

where

ρ =

(
mΦ

2
,
mΦ − 1

2
, . . . ,−mΦ

2

)
(3.39)

is the appropriate Weyl vector. Similar arguments apply for the Fermi multiplet fluctuations when

mΦ < 0.
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In the region mf > 0, we find

H+ =


x

mΦ+1

2

∞⊕
j=0

xj Sj(ξρCmΦ+1) mΦ ≥ 0

x
mΦ+1

2

|mΦ|−1⊕
j=0

xj ∧j (ξρC|mΦ|−1) mΦ < 0 .

(3.40)

The supersymmetric index is consequently

I =


mΦ∏
j=0

(ξ
mΦ
2
−jx)1/2

1−ξ
mΦ
2
−jx

mΦ ≥ 0

|mΦ|−2∏
j=0

1−ξ
|mΦ|

2
−1−jx

(ξ
|mΦ|

2
−1−jx)1/2

mΦ < 0 ,

(3.41)

which can be combined into the uniform expression

x
mΦ
2

(ξ−
mΦ
2 x, ξ)mΦ+1

, (3.42)

where (a, q)n :=
∏n−1
k=0(1−aqk) is the finite Q-Pochhammer symbol. This is in agreement with the 1-

loop determinant from supersymmetric localization [23], which is a refinement of the one considered

in chapter 2.

3.2.2 XY Model

We now consider a pair of chiral multiplets Φ1, Φ2 with a quadratic superpotential W = Φ1Φ2

and complementary R-charges r1 + r2 = 2. There is a U(1)f flavor symmetry under which Φ1 and

Φ2 have charges Q1 = +1 and Q2 = −1 respectively and we introduce a corresponding real mass

parameter by mf . We will focus here on c+ = {mf > 0} since the opposite chamber can be obtained

by interchanging Φ1 and Φ2.

We fix a background line bundle Lf of degree mf for the U(1)f flavour symmetry and define

LΦj := K
rj/2
Σ ⊗ L

Qj
f . The chiral multiplet Φj contributes nj,c = h0(LΦj ) chiral multiplets and

nj,f = h1(LΦj ) Fermi multiplets to the supersymmetric quantum mechanics. Combining Serre

duality with r1 + r2 = 2, we have

n1 := n1,c = n2,f n2 := n2,c = n1,f (3.43)

and furthermore from the Riemann-Roch theorem

n1 − n2 = (r1 − 1)(g − 1) + mf

= −(r2 − 1)(g − 1) + mf .
(3.44)

Let us denote the chiral multiplet fluctuations by φ1,a, φ2,a′ and the Fermi multiplet fluctuations

by η1,a′ , η2,a where a = 1, . . . , n1 and a′ = 1, . . . , n2. The superpotential W = Φ1Φ2 induces the

following J-type superpotentials

Jη1,a′ = φ2,a′ Jη2,a
= φ1,a . (3.45)
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for the Fermi multiplets in the supersymmetric quantum mechanics.

In quantizing these fluctuations, we choose the Fock vacuum with Fermion number zero to be

annihilated by the fermions ψ1,a, ψ2,a′ and η1,a′ , η2,a. This Fock vacuum is uncharged under U(1)f .

The supersymmetric twisted Hilbert space is then the cohomology of the supercharge

(Q†)(1) =

n2∑
a′=1

Jη1,a′ η1,a′ +

n1∑
a=1

Jη2,aη2,a

=

n2∑
a′=1

φ2,a′η1,a′ +

n1∑
a=1

φ1,aη2,a

(3.46)

acting on wavefunctions [ n1∏
a=1

φka1,a

n2∏
a′=1

φ̄
ka′
2,a′

] n2∏
a′=1

η̄
sa′
1,a′

n1∏
a=1

η̄sa2,a , (3.47)

where ka, ka′ ∈ Z≥0 and s1, s2 ∈ {0, 1} and we use the notation for representatives of supersym-

metric ground states introduced in section 1.1.3. The result is essentially n1 + n2 copies of the

supersymmetric quantum mechanics considered there, consisting of a chiral multiplet φ and a Fermi

multiplet η, with superpotential J = φ. Here, n1 chiral multiplets have positive real mass and n2

chiral multiplets have negative real mass.

There is a single supersymmetric ground state in the cohomology of (Q†)(1) with ka = ka′ = 0,

sa = 0 and sa′ = 1 for all a = 1, . . . , n1 and a′ = 1, . . . , n2. This corresponds to the fermions∏
a′ ψ̄2,a′

∏
a η̄1,a′ acting on our choice of Fock vacuum. The supersymmetric ground state has

vanishing U(1)f charge and Fermion number zero, and so we have H+ = C.

The supersymmetric index computed using localization is a product of contributions from the

chiral multiplets Φ1 and Φ2,

I =

(
x1/2

1− x

)(r1−1)(g−1)+m(
x−1/2

1− x−1

)(r2−1)(g−1)−m
= (−1)(r2−1)(g−1)−m , (3.48)

which is independent of the three-dimensional superpotential W = Φ1Φ2. This agrees with the

single supersymmetric ground state up to a sign related to our choice of Fermion number for the

Fock vacuum.

3.2.3 XY Z Model

Now consider three chiral multiplets Φ1,Φ2,Φ3 with cubic superpotentialW = Φ1Φ2Φ3 and R-charges

such that
∑3
j=1 rj = 2. The flavour symmetry is

Gf = (

3∏
j=1

U(1)j)/U(1)D (3.49)

where U(1)D is the diagonal combination.

It is convenient to represent the charges of the chiral multiplets Φi under U(1)j by a flavour

charge matrix Qij satisfying the following constraints:
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• ∑3
i=1Q

i
j = 0 ensures that the superpotential has zero charge under U(1)j ;

• ∑3
j=1Q

i
j = 0 ensures no fields are charged under the diagonal combination U(1)D;

• rk(Q) = 2 ensures the full flavour symmetry is manifest.

A simple choice of charge matrix is

Q =

 1 -1 0
0 1 -1
-1 0 1

 . (3.50)

We can turn on corresponding real mass parameters mj such that
∑3
j=1mj = 0.

Furthermore, we can introduce background line bundles Lj for each U(1)j such that

L1 ⊗ L2 ⊗ L3 = OΣ . (3.51)

and define LΦi = K
rj/2
Σ ⊗ ∏j L

Qij
j . The chiral multiplet Φi then leads to ni,c = h0(LΦi) chiral

multiplet fluctuations and ni,f = h1(LΦi) Fermi multiplet fluctuations. From the Riemann-Roch

theorem, these numbers satisfy

ni,c − ni,f = (ri − 1)(g − 1) +
∑
j

Qijmj (3.52)

and therefore ∑
i

(ni,c − ni,f ) = 1− g , (3.53)

where mj denotes the degree of Lj .

Combining Serre duality and equation (3.51) we find

H0(Σ, LΦ1
⊗ LΦ2

) ∼= H1(Σ, LΦ3
)∗ . (3.54)

In particular, we have n1,c+n2,c = n3,f together with cyclic permutations of this relation. The super-

potential then induces J-type superpotentials in the effective supersymmetric quantum mechanics

associated to the natural maps

H0(Σ, LΦ1
)⊗H0(Σ, LΦ2

)→ H0(Σ, LΦ1
⊗ LΦ2

) ∼= H1(Σ, LΦ3
)∗ (3.55)

and their cyclic permutations, which are given by multiplication of holomorphic sections. We remark

that these multiplication maps have a rich structure and play a pivotal rôle in the theory of algebraic

curves [78].

The structure of the effective supersymmetric quantum mechanics intricately depends on the

flux m and background line bundles LA and LT . We will first consider the case g > 0 choosing for

simplicity to turn off background line bundles for flavour symmetries, before returning to perform a

more systematic analysis for g = 0 in the presence of non-vanishing background fluxes.
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Example: g ≥ 1

For concreteness, let us specialize to r3 = 2 and r1 = r2 = 0 and rename Φ1 = X, Φ2 = Y and

Φ3 = Z. Furthermore, let us remove the redundant U(1) flavour symmetry and write the flavour

symmetry as Gf = U(1)T × U(1)A with charges

U(1)T U(1)A
X 1 −1
Y −1 −1
Z 0 2

.

The assignment of charges has been selected for a later comparison with U(1) supersymmetric QED.

Turning off background line bundles for flavour symmetries, we have LX = LY = OΣ and

LZ = KΣ and therefore we find a supersymmetric quantum mechanics with

nc,X = nc,Y = nf,Z = 1

nf,X = nf,Y = nc,Z = g
(3.56)

and superpotentials

Jηx,α = yzα Jηy,α = xzα Jηz = xy (3.57)

where α = 1, . . . , g. As an aside, we mention that non-trivial background line bundles would

necessarily introduce J-terms that are sums of monomials, complicating the computation of the

supersymmetric ground states. The special case g = 1 has already appeared as an example of

supersymmetric quantum mechanics in section 1.1.3.

With applications to 3d mirror symmetry in mind, we will consider the chamber c+−+ = {0 <
mA < mT } inside the space of mass parameters tf = R2. The Hilbert space of supersymmetric

ground states in this chamber should reproduce the expansion of supersymmetric twisted index

I = y2g−2

[
(1− qy−1)(1− q−1y−1)

(1− y2)

]g−1

(3.58)

for |q| < |y| < 1, where we have introduced fugacities q and y for the flavour symmetries U(1)T and

U(1)A respectively.

In order to enumerate the supersymmetric ground states in this model, it is convenient to choose

the Fock vacuum annihilated by the fermions ψx, ψy, ψz,α and ηx,α, ηy,α, ηz for all α = 1, . . . , g.

This Fock vacuum is uncharged under the flavour symmetry and here we assign it Fermion num-

ber (−1)F = −1 to match the supersymmetric twisted index. The supersymmetric ground states

correspond to the cohomology of

(Q†)(1) =

g∑
α=1

yzαηx,α +

g∑
α=1

xzαηy,α + xyηz (3.59)

acting on wavefunctions

[xn ȳm
g∏

α=1

zlαα ]

g∏
α=1

η̄sαx,α

g∏
α=1

η̄tαy,αη̄
r
z , (3.60)
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where n,m, lα ∈ Z≥0 and sα, tα, r ∈ {0, 1}. Since the flavour symmetry generators commute with the

supercharge (Q†)(1), we can enumerate the supersymmetric ground states with fixed flavour charge

separately. We find that the computation of the cohomology of (Q†)(1) splits into three qualitatively

different regions depending on the U(1)T charge qT . This is illustrated in figure 3.1.

g�g

IIIIII

qT

Figure 3.1: We separate our discussion of the supersymmetric ground states for the XYZ model into
three regions depending on the U(1)T flavour symmetry charge qT . An arrow marks the point in
region II where we obtain a complete result.

First, there are no supersymmetric ground states of charge qT ≤ −g and therefore the contribu-

tions to the supersymmetric twisted Hilbert space vanishes in region III,

H(qT ) = ∅ qT ≤ −g . (3.61)

Next, we consider qT ≥ g corresponding to region I and find the following representatives of the

supersymmetric ground states with weights[
xn ȳqT−1

]
η̄x,i1 · · · η̄x,in : +(−1)nqqT yqT[

xn+qT−1
]
η̄z η̄x,i1 , · · · , η̄x,in : −(−1)nqqT y−qT

(3.62)

for n = 0, . . . , g and therefore

H(qT ) = qqT (yqT − y−qT )⊗ ∧•(Cg) qT ≥ g . (3.63)

The twisted index should therefore vanish in region I due to the summation over contributions from

an exterior algebra,

∧• (Cg) −→
g∑
j=0

(−1)j
(
g

j

)
= 0 (3.64)

for g > 0. These results are consistent with the supersymmetric twisted index (3.58), which is a

finite Laurent polynomial starting at order O(q1−g) and ending at O(qg−1).

In region II, where the supersymmetric twisted index is non-vanishing, the computation of the

supersymmetric vacua is more intricate. For g = 1, the computation is summarized as an example

in section 1.1.3. The supersymmetric ground state representatives and their weights are[
zn
]
η̄x − y2n+2[

zn
]
η̄xη̄z + y2n

(3.65)

for all n ≥ 0 and thus

H(0) = (1− y2)
⊕
n≥0

y2nC if g = 1 . (3.66)
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This reproduces the supersymmetric index, which is 1.

For g > 1, we have not obtained a systematic closed form for representatives of the supersym-

metric ground states in region II. However, the sector qT = 1 − g is a generalization of the above

computation at g = 1 and we find[
zn1

1 · · · zngg
]
η̄x1
· · · η̄xg + (−1)gq1−gyg+1+2

∑
α nα[

zn1
1 · · · zngg

]
η̄x1
· · · η̄xg η̄z − (−1)gq1−gyg−1+2

∑
α nα

(3.67)

for any n1, . . . , ng ≥ 0 and therefore

H(1−g) = (−1)g−1q1−gyg−1(1− y2)S•
(
y2Cg

)
. (3.68)

This reproduces the correct contribution to the supersymmetric twisted index (3.58) with qT = 1−g,

I(1−g) = (−1)g−1q1−g
(

y

1− y2

)g−1

. (3.69)

Example: g = 0

We now consider g = 0 and introduce non-trivial holomorphic line bundles LA = O(mA) and

LT = O(mT ) for the flavour symmetries such that

LΦ1
= O(mT −mA)

LΦ2
= O(−mT −mA)

LΦ3 = O(2mA − 2) .

(3.70)

The supersymmetric twisted index is

I =

(
y

1− y2

)2mA−1(
q1/2y−1/2

1− qy−1

)mT−mA+1(
q−1/2y−1/2

1− q−1y−1

)−mT−mA+1

. (3.71)

In contrast to g > 0, for any given (mA,mT ) each 3d chiral multiplet leads to either chiral or

Fermi multiplet fluctuations in the supersymmetric quantum mechanics, but not both. Now, a J-

term contribution to the supercharge (Q†)(1) can only exist when two 3d chiral multiplets have chiral

multiplet fluctuations and one has Fermi multiplet fluctuations. This happens when the fluxes that

obey either

1. mT ≥ mA ≥ 1 , or

2. mA ≤ 0 and |mT | ≤ −mA .

Outside of these regions, the supersymmetric ground states are obtained simply by quantizing the

chiral and Fermi multiplet fluctuations. We now spell out the supersymmetric ground states in two

such regions needed to perform checks of mirror symmetry in section 3.3. As above, we consider the

chamber c+−+ = {0 < mA < mT } in the space of real mass parameters.
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First, we consider fluxes obeying the constraints mA ≥ 1, |mT | < mA. Here, LΦ1 , LΦ2 have neg-

ative degree and contribute only Fermi multiplet fluctuations, whereas LΦ3
has non-negative degree

and contributes only chiral multiplet fluctuations. There is no possibility of a J-term superpotential

and therefore we find a tensor product of chiral and Fermi multiplet Fock spaces,

H = qmT y3mA−2S•(y2C2mA−1)⊗ ∧•(qy−1C−mT+mA−1)⊗ ∧•(q−1y−1CmT+mA−1) , (3.72)

reproducing the supersymmetric twisted index (3.71). For future comparison with mirror symmetry,

it is useful to expand this result in powers of q,

H =y3mA−2S•(y2C2mA−1)⊗

⊗
−mT+mA−1⊕

m=−mT−mA+1

qmT+m

( ⊕
i−k=m

∧i(y−1C−mT+mA−1)⊗ ∧k(y−1CmT+mA−1)

)
.

(3.73)

Second, we consider mA ≤ 0, mT > −mA. Here, LΦ1
has non-negative degree and contributes

only chiral multiplet fluctuations, whereas Φ2 and Φ3 have negative degree and contribute only Fermi

multiplet fluctuations. There are again no possible J-term superpotentials. We therefore have

H = qmT y3mA−2S•(qy−1CmT−mA+1)⊗ ∧•(q−1y−1CmT+mA−1)⊗ ∧•(y2C−2mA+1) , (3.74)

reproducing the supersymmetric twisted index (3.71). Expanding again in q, this becomes

H =qmT y3mA−2 ∧• (y2C−2mA+1)⊗

⊗
∞⊕

m=−mT−mA+1

qm

(
mT+mA−1⊕

k=0

Sm−k(y−1CmT−mA+1)⊗ ∧k(y−1CmT+mA−1)

)
.

(3.75)

3.2.4 U(1) 1
2

+ 1 Chiral Multiplet

We now consider supersymmetric Chern-Simons theory with G = U(1) at level k = + 1
2 together

with a single chiral multiplet Φ of charge +1 and R-charge +1.

In the supersymmetric quantum mechanics, the chiral multiplet Φ decomposes into a chiral

multiplet and Fermi multiplet valued in sections of the holomorphic line bundle LΦ and Ω0,1
Σ ⊗ LΦ

respectively, where

LΦ = K
1/2
Σ ⊗ L . (3.76)

The supersymmetric quantum mechanics localizes to solutions of the following system of equations

on Σ,

∗ F + e2
(
φ̄ · φ− ξeff (σ)

)
= 0 ∂̄Aφ = 0 σφ = 0 , (3.77)

where σ is constant and

ξeff (σ) =

{
τ + σ σ > 0

τ σ ≤ 0
(3.78)

is the combination of effective parameters introduced in equation (3.18).
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By integrating (3.77) over Σ we find that there are ‘Higgs branch’ vortex solutions with σ = 0

and φ non-vanishing provided

τ >
2πm

e2Vol(Σ)
, (3.79)

where

m = c1(L) =
1

2π

∫
Σ

F (3.80)

and Vol(Σ) is the volume of Σ. Notice that the right-hand-side takes the same form as (2.33). Here

we take the limit s→ +∞ for

s := τe2Vol(Σ) (3.81)

where this condition is satisfied for any flux m. an effective description of the supersymmetric

quantum mechanics as a sigma model onto the moduli space Mm of solutions to the vortex equations

As explained in section (3.1.3), Mm has a complex algebraic description given in terms of pairs

(L, φ) given by a holomorphc line bundle L and a holomorphic section φ. In appendix A.3.1, we

explain that these pairs can be parametrised by the zeros of φ, which (counting multiplicities) are

mΦ. In turns, the zeros are parametrised by the mΦ-symmetric product of Σ

Mm =

{
SymmΦΣ if mΦ ≥ 0

∅ if mΦ < 0 .
(3.82)

Physically, this is the statement that vortices in this theory have no internal moduli and the sym-

metric product simply parametrizes the positions of the vortices on Σ. Notice that the preimage of a

point under (3.27) is the projective space of holomorphic sections, j−1(LΦ) = PH0(LΦ). The struc-

ture of this map is in general intricate since the dimension h0(LΦ) may jump at loci in the Jacobian.

However, if mΦ > 2g − 2 the dimension h0(LΦ) = mΦ − g + 1 is constant and this holomorphic map

becomes a holomorphic fibration with fiber CPmΦ−g.

The contribution to the twisted Hilbert space of supersymmetric vacua from flux m is captured

by a supersymmetric sigma model to Mm and therefore

Hm =

{
H0,•
∂̄

(Mm,Fm) m ≥ 1− g
∅ m < 1− g (3.83)

where Fm is a Hermitian line bundle on Mm
2. The line bundle Fm receives contributions from the

following sources:

• There is a universal contributionK
1/2
Mm

from quantizing fermions in chiral multiplets parametriz-

ing Mm.

• The supersymmetric Chern-Simons term at level + 1
2 contributes a factor K−1/2

Mm
.

2An important consistency check is that the remaining massless fermions in chiral multiplets transform in the
tangent bundle to Mm. In appendix A.4, we provide a short argument why this claim. This can be thought of as a
simple example of the more general phenomenon that we are going to investigate in the next chapter.
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• Introducing a background line bundle LT for the topological symmetry induces a line bundle

L̃T on the moduli space Mm in the supersymmetric quantum mechanics, as explained in

section 3.1.2.

The universal contribution and that of the supersymmetric Chern-Simons term cancel out, leaving

Fm = L̃T .

For τ < 0 we find ‘topological’ solutions to equations (3.77) with φ = 0, σ = −τ and unbroken

gauge symmetry as τe2 → 0. We expect that the supersymmetric ground states are captured by an

effective supersymmetric Chern-Simons theory in this regime, and hope to return to this in future

work.

Example: g > 0

The supersymmetric ground states in equation (3.83) can be computed by applying the Künneth

formula for the mΦ-fold product of curves ΣmΦ , and then imposing invariance under permutations to

compute cohomology classes on the symmetric product regarded as a quotient SymmΦΣ = ΣmΦ/SmΦ
.

This argument will rely on the following construction of the line bundle L̃T associated to the

U(1)T topological symmetry, which we expand upon in appendix A.3.5. The first step is to construct

a line bundle on the direct product ΣmΦ ,

L�mΦ

T :=
⊗
j

π∗jLT , (3.84)

where

πj : ΣmΦ → Σ (3.85)

is the projection onto the j-th factor. This is invariant under permutations and descends to a

line bundle L̃T on the symmetric product SymmΦΣ. In particular, this construction shows that

c1(L̃T ) = mT η where mT is the degree of LT and η ∈ H1,1(Mm) is the class constructed from the

Kähler form on Σ.

With the above construction in hand, we can proceed to compute the twisted Hilbert space

following arguments in [79], but including higher degree cohomology. First, a short spectral sequence

argument shows that the cohomology of the symmetric product in equation (3.83) can be identified

with the SmΦ
-invariant part of the cohomology H0,•

∂̄
(ΣmΦ , L�mΦ

T ). The latter can be computed using

the Künneth decomposition, with the result

H0,j

∂̄
(SymmΦΣ, L̃T ) = SmΦ−jH0(LT )⊗ ∧jH1(LT ) . (3.86)

We therefore find

H =

∞⊕
m=1−g

qm
⊕

i+j=m+g−1

SiH0(LT )⊗ ∧jH1(LT ) . (3.87)
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where the parameter q is introduced to keep track of charge under the topological flavour symmetry

and we remind the reader that mΦ = m + g − 1.

Introducing the notation nC := h0(LT ) and nF := h1(LT ) with

nC − nF = mT − g + 1 , (3.88)

the supersymmetric twisted index can be computed from the graded trace over the twisted Hilbert

space (3.87) as follows,

I =

∞∑
m=1−g

qm
(
nC − nF + m− g

m− g + 1

)

= q1−g
(

1

1− q

)mT−g+1
(3.89)

This agrees with the contour integral formula from localization in the supersymmetric gauge intro-

duced in section 2.3, with the choice of auxiliary parameter (2.33). In fact, the JK contour integral

formula reduces to ∑
m∈Z

(−q)m
∫

JK

dx

2πix

xm+mT

(1− x)m+g
, (3.90)

where the JK-contour surrounds in this case the pole at z = 1, modulo an overall sign (−1)g. The

twisted supersymmetric index can be identified with the generating function for equivariant Euler

characters

I =

∞∑
m=1−g

(−q)mχ(Mm,Fm) . (3.91)

From this perspective, the contour integral (3.90) from supersymmetric localization reproduces the

computation of the equivariant Euler characters using Hirzebruch-Riemann-Roch [80]. This is an

elementary instance of, and the inspiration for, the index computations we will perform in the next

chapter of this thesis.

A special case summarized in the introduction is LT = OΣ, where nC = 1 and nF = g, and

therefore

H =

∞⊕
m=1−g

qm
m+g−1⊕
j=0

∧j(Cg) (3.92)

with supersymmetric twisted index I = q1−g(1 − q)g−1. Note that while the twisted Hilbert space

contains an infinite number of supersymmetric ground states, the supersymmetric twisted index

truncates to a finite number of terms for g ≥ 1 due to the complete cancellation in the sum over the

exterior algebra when m > 0.

Example: g = 0

Let us now analyze g = 0 in more detail. The vortex moduli space Mm = CPm−1 is now the

complex projective space parametrizing non-vanishing holomorphic sections of LΦ = O(m − 1)
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modulo constant complex gauge transformations. This is consistent with the above construction,

since

Symm−1CP1 ∼= CPm−1 . (3.93)

The supersymmetric quantum mechanics admits a finite-dimensional gauged linear sigma model

description in terms of m chiral multiplets of charge +1 under a U(1) gauge symmetry.

In this case the contributions to Fm have a more straightforward interpretation:

• The contribution to the Lagrangian of the supersymmetric quantum mechanics from a super-

symmetric Chern-Simons term at level k is

k

2π
(σ + iA0)

∫
Σ

F = (σ + iA0)km . (3.94)

This is a supersymmetric Wilson line of charge km in the finite-dimensional gauged quantum

mechanics for CPm−1 and so contributes the line bundle O(km). For a supersymmetric Chern-

Simons term at level k = + 1
2 we find a contribution O(+m

2 ).

• Turning on LT = O(mT ) for the topological symmetry contributes

1

2π
(σ + iA0)

∫
Σ

FT = (σ + iA0)mT , (3.95)

which is a supersymmetric Wilson line of charge mT in the finite-dimensional gauged super-

symmetric quantum mechanics, and therefore the line bundle L̃T = O(mT ) on CPm−1.

Combining these contributions with the universal contribution K
1/2

CPm−1 = O(−m2 ), we find F =

O(mT ) to be in agreement with our previous arguments.

Including the parameter ξ for the additional grading on Σ = CP1, the supersymmetric Hilbert

space now has the form

H =

∞⊕
m=1

qmH0,•
∂̄

(CPm−1,O(mT ))

=

∞⊕
m=1

qm


SmT (ξρCm) if mT ≥ 0

∅ if −m < mT < 0

S|mT |−m(ξρCm) if mT ≤ −m
.

(3.96)

3.2.5 U(1) SQED

We now consider a U(1) gauge theory with two chiral multiplets Φ, Φ̃ of charge +1, −1 respectively.

The theory has both a U(1)T topological and a U(1)A axial flavour symmetry, and we can introduce

corresponding background line bundles LT and LA of degrees mT and mA. The charge assignments

are summarized below,

U(1)G U(1)T U(1)A U(1)R
Φ 1 0 1 1

Φ̃ −1 0 1 1

.
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The supersymmetric twisted index (2.17) in this case is given by

I =
∑
m∈Z

(−q)m
∫

JK

dx

2πi x
xmT

(
x

1
2 y

1
2

1− xy

)m+mA (
x−

1
2 y

1
2

1− x−1y

)−m+mA (
1− y2

(1− xy)(1− y/x)

)g

= (−1)mT
(

y

1− y2

)2mA+g−1(
q1/2y−1/2

1− qy−1

)mT−mA+1−g (
q−1/2y−1/2

1− q−1y−1

)−mT−mA+1−g
,

(3.97)

where the contour JK is specified by the Jeffrey-Kirwan prescription of (2.27).

In the supersymmetric quantum mechanics the chiral multiplets Φ, Φ̃ decompose into chiral and

Fermi multiplets, transforming as scalar and (0, 1)-form sections of the holomorphic line bundles

LΦ := K
1/2
Σ ⊗ L⊗ LA , LΦ̃ := K

1/2
Σ ⊗ L−1 ⊗ LA , (3.98)

of degrees

mΦ = m + mA + g − 1 , mΦ̃ = −m + mA + g − 1 . (3.99)

First setting the mass parameter for the axial flavour symmetry to zero, mA = 0, the supersymmetric

quantum mechanics localizes to solutions of the following system of equations on Σ,

∗ FA + e2
(
φ̄ · φ− ¯̃

φ · φ̃− τeff
)

= ∂̄Aφ = ∂̄Aφ = 0 σφ = σφ̃ = 0 , (3.100)

where τeff = τ when the axial mass parameter vanishes. In the limit s = e2τVol (Σ) → +∞ there

are ‘Higgs branch’ vortex solutions with σ = 0 for each m.

We therefore consider an effective supersymmetric sigma model for each flux m ∈ Z whose

target is the moduli space Mm of solutions to equation (3.100). This moduli space has an algebraic

description in terms of the following holomorphic data:

• A holomorphic line bundle L of degree m.

• A pair of holomorphic sections φ ∈ H0(Σ, LΦ) and φ̃ ∈ H0(Σ, LΦ̃), where φ is required to be

non-vanishing.

The structure of the moduli space and the effective supersymmetric quantum mechanics depends

intricately on the flux m and background line bundles LA and LT . We will first consider the case g > 0

choosing for simplicity to turn off background line bundles for flavour symmetries, before returning

to perform a more systematic analysis for g = 0 in the presence of non-vanishing background fluxes.

Genus g > 0

Let us then consider g > 0 with trivial background line bundles LT = LA = OΣ. The structure of

the supersymmetric quantum mechanics depends on the flux m. We separate our discussion into the

three regions shown in figure 3.2.
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Figure 3.2: We separate our computation of the supersymmetric vacua for supersymmetric QED
into three different regions depending on the flux m ∈ Z. An arrow marks the point in region II
discussed in the main text.

Region I corresponds to m ≥ g. In this region,

h0(LΦ) = m h0(LΦ̃) = 0

h1(LΦ) = 0 h1(LΦ̃) = m ,
(3.101)

independent of the line bundle L. There are therefore exactly m chiral multiplet fluctuations from

Φ and m Fermi multiplet fluctuations from Φ̃. The underlying moduli space of vortices is again a

symmetric product

M = SymmΦΣ . (3.102)

Since mΦ > 2g − 2, the symmetric product is a holomorphic fibration Mm → JΣ with fiber CPm−1.

The Fermi multiplet fluctuations from Φ̃ then transform as a holomorphic section of the vector

bundle F = O(1)⊗ Cm over each fiber.

The existence of the holomorphic fibration implies that the space of supersymmetric ground

states factorizes into contributions from the fibre and base,

Hm = H(b)
m ⊗H(f)

m . (3.103)

The contribution from the base is

H(b)
m =

g⊕
q=0

H0,q

∂̄
(JΣ)

=

g∑
q=0

∧q(Cg) .
(3.104)

The contribution from the fiber is

H(f)
m =

m−1⊕
p=0

m⊕
α=1

H0,p

∂̄

(
CPm−1,K

1/2

CPm−1 ⊗
∧αF√
detF

)

=

m−1⊕
p=0

m⊕
α=1

H0,p

∂̄

(
CPm−1,O(α−m)

)
⊗ ∧α(Cm)

= H0,0

∂̄
(CPm−1,O)⊕H0,m−1

∂̄
(CPm−1,O(−m))

(3.105)

Putting these contributions together and introducing parameters q and y to keep track of the U(1)T

and U(1)A symmetries respectively, we find

Hm = (−1)mqm(ymC− y−mC)⊗ ∧•(Cg) . (3.106)
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In section 3.3.2, we will demonstrate that this result is in complete agreement with 3d mirror

symmetry.

An immediate consequence of the factorization into contributions from the fiber and base is that

the supersymmetric twisted index should vanish in region I due to the complete cancellation

∧• (Cg) −→
g∑
j=0

(−1)j
(
g

j

)
= 0 (3.107)

for g > 0. This is consistent with the supersymmetric localization result (3.97), which for mT =

mA = 0 is a finite Laurent polynomial in q with maximum power qg−1.

Region II corresponds to −g < m < g. While

h0(LΦ)− h1(LΦ) = m

h0(LΦ̃)− h1(LΦ̃) = −m ,
(3.108)

the numbers of chiral and Fermi multiplet fluctuations may jump as the holomorphic line bundle L

varies over the Jacobian JΣ. The computation of the supersymmetric vacua is more difficult in the

region and we do not present a general answer.

An exception is m = 1 − g, which is marked with an arrow in figure 3.2. In this case, the

holomorphic line bundle LΦ has degree mΦ = 0. The stability condition requires the existence of a

non-zero holomorphic section φ, so we conclude that

LΦ = OΣ LΦ̃ = KΣ (3.109)

corresponding to L = K
−1/2
Σ . Recall that there is a holomorphic map Mm → JΣ to the Jacobian

parametrizing L. In this case, the map is particularly simple: there is one non-vanishing fiber over a

single point in the Jacobian. This fiber is parametrized by chiral multiplet fluctuations of the meson

M = ΦΦ̃ valued in H0(KΣ), and the moduli space is therefore Mm = Cg. In addition there is a

Fermi multiplet fluctuation η ∈ H1(KΣ).

Since the moduli space is non-compact, it is essential to turn on a real mass parameter mA for

the U(1)A axial flavour symmetry. We will choose mA > 0. Noting that the meson fluctuations

have charge +2 under the axial flavour symmetry, we conclude that the twisted Hilbert space for

m = 1− g is

H(1−g) = q1−gyg−1(1− y2)
⊕
n≥0

y2nSn(Cg) . (3.110)

The contribution to the supersymmetric twisted index is therefore

I1−g = q1−gyg−1(1− y2)
∑
n≥0

y2n

(
n+ g − 1

g − 1

)

= q1−g
(

y

1− y2

)g−1

.

(3.111)

This agrees with the result from supersymmetric localization (3.97) for mT = mA = 0.
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Finally, region III corresponds to m ≤ −g. In this region, h0(LΦ) = 0. This is incompatible

with the stability condition and therefore there are no supersymmetric ground states in this region.

The result is consistent with the localization expression (3.97), which for mT = mA = 0 is a finite

Laurent polynomial with minimum power q1−g.

Genus g = 0

For genus zero, we perform a more systematic analysis with non-vanishing background fluxes mA,

mT for the flavour symmetries. The holomorphic line bundles on Σ = CP1 associated to the chiral

multiplets are

LΦ := O(m + mA − 1) LΦ̃ := O(−m + mA − 1) . (3.112)

To guide the reader through our analysis, we summarize the structure of moduli spaces Mm and

corresponding contributions to the twisted Hilbert space in the (m,mA) plane in figure 3.3.

m

mA

mT +1

1 Region

I

Region II

Figure 3.3: Summary of the structure of the moduli space and supersymmetric ground states in the
(m,mA) plane. There are no supersymmetric ground states in the shaded regions.

First, we note that in order to satisfy the stability condition we require that h0(LΦ) > 0. This

immediately implies that the moduli space is empty and there are no supersymmetric ground states

in the region m + mA ≤ 0. This corresponds to the large shaded region in figure 3.3.

Now assuming that m+mA > 0, the structure of the moduli space Mm critically depends on the

combination −m+mA, which determines whether Φ̃ generates chiral or Fermi multiplet fluctuations

in the supersymmetric quantum mechanics. We therefore consider two distinct regions separated by

the line m = mA, as shown in figure 3.3.

Region I

We first consider −m+mA ≤ 0. This region is characterized by chiral multiplet fluctuations from Φ

and Fermi multiplet fluctuations from Φ̃:

• nC,Φ = m + mA > 0 .

• nF,Φ̃ = m−mA ≥ 0 .
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• nF,Φ = nC,Φ̃ = 0 .

The moduli space of vortices is therefore parametrized by the non-vanishing chiral multiplet fluctu-

ations of Φ modulo complex rescaling,

Mm = CPm+mA−1. (3.113)

The Fermi multiplet fluctuations η̄Φ̃ have gauge charge +1 and therefore transform as sections of

the holomorphic vector bundle F := O(1)⊗ Cm−mA over Mm.

The contribution to the twisted Hilbert space is therefore given by3

Hm = H0,•
∂̄

(
Mm,K

1/2
Mm
⊗ ∧•F√

det(F)
⊗ L̃T

)
(3.114)

where L̃T is the holomorphic line bundle on the moduli space induced by the holomorphic line

bundle LT = O(mT ) on the curve associated to the topological symmetry. First, we notice that the

combination

K
1/2
Mm
⊗ 1√

det(F)
= O(−m) . (3.115)

Second, the same argument as section 3.2.4 shows that L̃T = O(mT ). Assembling the various pieces,

we find
Hm = H• (Mm,O(mT −m)⊗ ∧•F)

=

m−mA⊕
i=0

H•
(
CPm+mA−1,O(mT −m + i)

)
⊗ ∧i(Cm−mA) .

(3.116)

Including the flavour symmetry and Fermion number grading, we find

Hm =qmym
−mA−mT⊕

i=0

S−mT−mA−i(yCm+mA)⊗ ∧i(−y−1Cm−mA)

⊕ (−1)m+mA−1 qmy−mA
m−mA⊕

max{0,−mT+m}
S−m+mT+i(y−1Cm+mA)⊗ ∧i(−y−1Cm−mA) ,

(3.117)

where the first line arises from the degree zero cohomology and the second from the maximum degree

m+mA−1 cohomology. It follows from the above formula that there are no supersymmetric ground

states when both m > mA and mA > mT . This is the shaded part of region I on the right of Figure

3.3.

The contribution to the supersymmetric twisted index is therefore

Im = qm
−mT−mA∑

i=0

ym−mA−mT−2i(−1)i
(−mT + m− 1− i
−mA −mT − i

)(
m−mA

i

)

+ qm
m−mA∑

max{0,−mT+m}
ym−mA−mT−2i(−1)m+mA−1+i

(
mA + mT − 1 + i

mT −m + i

)(
m−mA

i

)
,

(3.118)

which agrees with the coefficient of qm in the expansion of the supersymmetric twisted index (3.97)

with g = 0, up to an overall sign (−1)mA .

3This computation can be encoded in the cohomology of superprojective space CPm+mA−1|m−mA−1.
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Region II

We now consider the remaining region mA > |m|. This is characterized by chiral multiplet fluctu-

ations from both Φ and Φ̃. The vortex moduli space is therefore a toric variety given by the total

space of the vector bundle

Mm = O(−1)mA−m → CPm+mA−1 . (3.119)

The base is parametrized by the m+mA chiral multiplets from Φ modulo holomorphic gauge trans-

formations and the fiber by the −m + mA chiral multiplets from Φ̃.

This moduli space is non-compact but the U(1)A flavour symmetry acts on the moduli space Mm

with fixed locus given by the compact zero section CPm+mA−1. Therefore, turning on a real mass

parameter mA for the flavour symmetry U(1)A, the effective supersymmetric quantum mechanics is

gapped and the contribution to the twisted Hilbert space is

Hm = H0,•
∂̄mA

(Mm,
√
KMm

⊗ L̃T ) . (3.120)

where ∂̄mA is the Dolbeault operator deformed by the real mass parameter mA and L2-cohomology

classes are understood.

We will not attempt a direct computation here, except in the special case m = −mA + 1,

corresponding to the blue line in figure 3.3. Here, the base of the fibration in equation (3.119)

collapses to a point and the moduli space consists of the fiber Mm = C2mA−1 parametrized by

fluctuations of the meson M = ΦΦ̃. Quantizing these fluctuations, we find

Hm = y2mA−1−mT
∞⊕
j=0

Sj
(
y2C2mA−1

)
, (3.121)

where y2 is the weight of each coordinate on Mm = C2mA−1 and the overall contribution y2mA−1−mT

is the weight of the Fock vacuum induced by KMmA
⊗ L̃T . This agrees with the contribution to the

supersymmetric twisted index

Im = (−1)1+mAy−mT
(

y

1− y2

)2mA−1

, (3.122)

modulo a sign (−1)mA+1.

We finally provide two complete examples of fixed background fluxes (mA,mT ) by summing the

contributions from the entire range of m.

• mA = 0, mT = 0

There are no supersymmetric ground states with m ≤ 0. Summing the contributions from

m > 0, it follows from eq. (3.117) that

H =

∞⊕
m=1

qm(ymC− y−mC) (3.123)
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with supersymmetric twisted index

I =

∞∑
m=1

qm(ym − y−m) =
1− y2

y2
(

1− 1
qy

)(
1− q

y

) . (3.124)

• mA = 1, mT = 0

There are no supersymmetric ground states with m < 0 as the moduli space is empty. For

m > 0, the moduli space is Mm = CPm but nevertheless the contribution (3.118) to the twisted

Hilbert space vanishes. Finally, the non-vanishing contribution from m = 0 gives

H = y S•(y2C) (3.125)

with supersymmetric twisted index

I =
y

1− y2
. (3.126)

3.3 Mirror Symmetry

In this section, we will compare results obtained in section 3.2 to provide new checks of two basic

instances of 3d mirror symmetry, which is an infrared duality. Naturally, we can probe the infrared

regime of the theory by taking the limit of large volume of the curve Vol (Σ) → +∞. The volume

of the curve enters our equations in the dimensionless combination

s =
τe2Vol(Σ)

2π
(3.127)

introduced in (3.81). The deep infrared regime can therefore be reached by taking s → ∞ in a

chamber that is determined by τ .

3.3.1 Particle-Vortex Duality

We consider the following pair:

• I. Chiral multiplet with R-charge r = 0 and supersymmetric Chern-Simons terms kff = kfR =

− 1
2 for the U(1)f flavour symmetry.

• II. U(1) Chern-Simons theory at level k = + 1
2 with one chiral multiplet of charge +1 and

R-charge r = 1 .

In theory II, the monopole operator of topological charge −1 is gauge neutral and can be identified

with the chiral multiplet in theory I. The U(1)f flavour symmetry of theory I is identified with the

U(1)T topological symmetry of theory II and therefore we make the identifications mf = ζ and

x = q.
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We first compare the supersymmetric twisted Hilbert spaces for g ≥ 1. Let us first recall the

supersymmetric twisted Hilbert space of theory I with a background line bundle Lf for the U(1)f

flavour symmetry in the chamber c+ = {mf > 0}. From equation (3.34) we find

H(I)
+ = x−

mf
2 x−

g−1
2 · x

mf−g+1

2

∞⊕
j=0

xj

 ⊕
p+q=j

SpH0(Lf )⊗ ∧qH1(Lf )


= x1−g

∞⊕
j=0

xj

 ⊕
p+q=j

SpH0(Lf )⊗ ∧qH1(Lf )

 ,

(3.128)

where h0(Lf )− h1(Lf ) = mf − g+ 1. The additional factor x−
mf
2 x−

g−1
2 arises from the shift in the

charge of the Fock vacuum induced by the mixed supersymmetric Chern-Simons terms kff = kfR =

− 1
2 .

Now recall the supersymmetric twisted Hilbert space of theory II in the chamber c+ = {τ > 0}.
Introducing a background line bundle LT for the topological symmetry, from equation (3.87) we find

H(II)
+ =

⊕
m≥1−g

qm

( ⊕
p+q=m+g−1

SpH0(LT )⊗ ∧qH1(LT )

)

= q1−g
∞⊕
j=0

qj

 ⊕
p+q=j

SpH0(LT )⊗ ∧qH1(LT )

 (3.129)

where h0(LT ) − h1(LT ) = mT − g + 1. Under the identifications mf = ζ, x = q and Lf = LT , we

find complete agreement between the supersymmetric twisted Hilbert spaces.

This constitutes a more refined check of mirror symmetry than the supersymmetric index. First,

H contains an infinite number of supersymmetric ground states whereas the index I truncates to a

finite Laurent polynomial. Second, we find agreement between the supersymmetric Hilbert space as

we vary the background line bundle Lf = LT over the Jacobian JΣ. The index cannot detect this

phenomenon, as it depends only on the degree of mf = mT .

Let us briefly consider the genus zero case, including the parameter ξ for the additional flavour

symmetry U(1)ε rotating Σ = CP1. For simplicity, we assume that m ≥ 0. The supersymmetric

twisted Hilbert spaces are

H(I)
+ =

∞⊕
j=1

xjSj−1(ξρCm+1)

H(II)
+ =

∞⊕
j=1

xjSm(ξρCj) ,
(3.130)

which agree due to the following isomorphism of graded vector spaces,

Sj−1(ξρCm+1) ∼= Sm(ξρCj) . (3.131)
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3.3.2 XYZ ↔ SQED

We now turn to the investigation of the following pair:

• I. Three chiral multiplets with cubic superpotential W = XY Z and charge matrix:

U(1)T U(1)A U(1)R
X 1 −1 0
Y −1 −1 0
Z 0 2 2

.

• II. U(1) supersymmetric gauge theory with chiral multiplets Φ, Φ̃ with charge matrix:

U(1) U(1)T U(1)A U(1)R
Φ 1 0 1 1

Φ̃ −1 0 1 1

.

Here we identify from the outset the U(1)T×U(1)A flavour symmetry. Under 3d mirror symmetry, Z

is mapped to the gauge invariant combination ΦΦ̃ whereas X,Y are mapped to monopole operators

in the supersymmetric gauge theory of charge ±1 under the topological symmetry.

Let us first consider g > 0. We will not attempt an exhaustive analysis, but specialize to

LA = LT = OΣ and real mass parameters in the chamber

c+−+ = {0 < mA < mT } (3.132)

where we have obtained explicit results on both sides. This corresponds to an expansion of the

supersymmetric twisted index in the region |q| < |y| < 1.

First, there are no supersymmetric ground states of topological charge qT ≤ g on both sides.

Second, we consider the supersymmetric ground states of charge qT ≥ g, whose contributions to the

supersymmetric index vanish. Comparing equations (3.63) and (3.106) we find the contribution to

H+−+ in both theories is

qqT (yqTC− y−qTC)⊗ ∧•(Cg) qT ≥ g (3.133)

modulo an overall sign. Note that qT = m. Finally, in the intermediate region −g < qT < g we

have only computed explicitly the supersymmetric ground states with minumum charge qT = 1− g.

Comparing equations (3.68) and (3.110), we find that the contribution to H+−+ in both theories is

q1−gyg−1(C− y2C)⊗
∞⊕
n=0

y2nSn(Cg) . (3.134)

In regions where we can independently compute the supersymmetric ground states, we therefore find

agreement with mirror symmetry.

We now study the case g = 0 with background fluxes mT , mA for the flavour symmetry. We

separate the analysis into characteristic regions in the (mT ,mA) plane:
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• In the region mA ≤ 0, mT ≥ −mA we have computed the supersymmetric twisted Hilbert space

in both theory I and II. These computations agree, but there are no cancellations in passing

to the supersymmetric twisted index in this case, so we cannot provide a stronger check of

mirror symmetry.

• In the region mA ≤ 0, 0 ≤ mT < −mA, we have computed the supersymmetric twisted Hilbert

space of theory II in equation (3.117). In this case, there are cancellations between bosons and

fermions in computing the supersymmetric twisted index. However, we have not performed

an independent computation for theory I. Nevertheless, it is possible to check that the su-

persymmetric ground states in (3.117) form a subset of those for the three chiral multiplets

X, Y , Z in the absence of a superpotential. This is consistent with the presence of a non-

vanishing J-term differential in supersymmetric quantum mechanics for theory I in this region

and equation (3.117) can be regarded as a prediction for its cohomology.

• In the other direction, we can use our result for supersymmetric ground states of theory I

to make a prediction for the supersymmetric ground states in the unknown region mA ≥ 1,

|mT | < mA of theory II. From equation (3.73),

H(I)
+−+ =qmT y3mA−2S•(y2C2mA−1)⊗

⊗
−mT+mA−1⊕

m=−mT−mA+1

qm

( ⊕
i−k=m

∧i(y−1C−mT+mA−1)⊗ ∧k(y−1CmT+mA−1)

)
.

(3.135)

This should reproduce the cohomology expressed in equation (3.120),

H(II)
+−+ = H0,•

∂̄mA
(Mm,

√
KMm

⊗ L̃T ) , (3.136)

where

Mm = O(−1)mA−m → CPm+mA−1 . (3.137)

In the degenerate case m = −mA + 1 where the base collapses to a point, equation (3.135)

correctly reproduces the cohomology of the unique fibre Mm = C2mA−1. It would be interesting

to understand how to compute this cohomology in the general case.

Finally, demonstrating agreement between regions where there are no supersymmetric ground

states is straightforward. Taking this into consideration, we are able to chart the supersymmetric

ground states on almost the whole range of parameters (mT ,mA,m), aside from a small region that

depends on mT .
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Chapter 4

Twisted Indices of N = 4 Gauge
Theories and Enumerative
Geometry of Quasi-maps

In the previous chapter, we introduced a description of 3d N = 2 Chern-Simons-matter theories in

terms of a 1d effective quantum mechanics. We focussed on the spaces of supersymmetric ground

states of some selected theories, unveiling rich structures and dependences on background parameters

that were hidden by index computations. The target spaces of the quantum mechanics, however,

are in general too complicated and loosely defined to be amenable to similar techniques.

In this chapter, we therefore impose two restrictions. First, we consider a specific class of N = 4

quiver gauge theories. Second, we prioritize the computation of the twisted indices. N = 4 super-

symmetry is restrictive, but it is known to have deep connections with cutting-edge mathematics

in the context of symplectic duality, see for example [81, 82, 83]. Our aim is to give the indices a

mathematical interpretation in terms of the enumerative geometry of spaces of quasi-maps. In this

way, we will be able both to compute some of the indices more easily, and to make predictions about

the enumerative invariants in the context of symplectic duality.

The chapter is organised as follows. In section 4.1, we define the class of 3d N = 4 theories we

are going to study and we provide some background. In particular, we summarize the construction

of one of the moduli spaces of vacua, the Higgs branch MH , in algebraic terms. In section 4.2, we

review the procedure of topological reduction of the 3d N = 4 theories on R × Σ, and study the

moduli space of solutions to the BPS equations M in terms of quasi-maps toMH . More specifically,

we study the massless fluctuations of the bosonic and fermionic fields at a point on the moduli space

and reconstruct the virtual tangent bundle T vir over M. From this discussion, we provide a geometric

interpretation of the contour integral formula as the virtual Euler characteristics constructed from

T vir. In section 4.3, we study the reduced moduli space that preserves four supercharges and

discuss the relation to the twisted indices evaluated in the limit t → 1. In section 4.4, we explore

the geometric interpretations of the twisted indices in concrete examples. Finally, in section 4.5,
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we study the implications of mirror symmetry in this context, and explicitly check the proposed

dualities for some theories in the limit t → 1. This implies a notion of symplectic duality for

quasi-maps invariants.

4.1 Background and Notation

4.1.1 Quiver Gauge Theories

A renormalizable 3d N = 4 supersymmetric gauge theory is specified by a compact group G and

a linear quaternionic representation Q –we refer the reader to [15, 83] for a summary and further

background. In this chapter, we will focus on unitary quiver gauge theories. Introducing an index

I = 1, . . . , L labelling the nodes of the quiver, this corresponds to the choice

G =
∏
I

U(VI) Q = T ∗M (4.1)

where

M =
⊕
I

Hom(WI , VI)⊕
⊕
I≤J

Hom(VI , VJ)⊗QIJ . (4.2)

is a unitary representation of G. Here VI , WI denote complex vector spaces while QIJ are multi-

plicities. In physical parlance, there is a dynamical vectormultiplet for the gauge group G and

• QII hypermultiplets in the adjoint representation of U(VI),

• QIJ hypermultiplets in the bifundamental representation of U(VI)× U(VJ) for I < J ,

• and dimCWI hypermultiplets in the fundamental representation of U(VJ).

An example is the single node quiver with V = CNc , W = CNf and unitary representation M =

Hom(W,V ). This is supersymmetric QCD with G = U(Nc) and Nf fundamental hypermultiplets,

as illustrated in figure 4.1. In the following sections 4.2 and 4.3, we will formulate our constructions

for a general unitary quiver (subject to an assumption explained in section 4.1.2) but our explicit

examples in section 4.4 will be almost exclusively supersymmetric QCD.

Figure 4.1: Quiver for U(Nc) supersymmetric QCD with Nf fundamental hypermultiplets

In what follows, we use Euclidean SU(2) spinor indices α in addition to spinor indices A, Ȧ for

the SU(2)H × SU(2)C R-symmetry, with uniform conventions summarized in Appendix A.1.

With this notation, the vectormultiplet includes a gauge connection Aαβ , scalar fields φȦḂ , and

gauginos λAȦα transforming in the adjoint representation of G. The hypermultiplets contains complex

scalars XA and fermionic spinors ΨȦ
α transforming in the unitary representation M .
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It will be convenient to decompose the supermultiplets under a fixed maximal torus U(1)H ×
U(1)C of the R-symmetry. The vectormultiplet scalars decompose into real and complex components

σ, ϕ, ϕ† transforming with U(1)C charge 0,+1,−1 respectively, while the hypermultiplet scalars

decompose into a pair of complex scalars X, Y transforming with U(1)H charge + 1
2 . The charges

of these fields are shown in table 4.1.

G U(1)H U(1)C U(1)t
σ Adj 0 0 0
ϕ Adj 0 +1 −1
X M + 1

2 0 + 1
2

Y M∗ + 1
2 0 + 1

2

Table 4.1: Summary of gauge and R-symmetry representations.

The flavour symmetry is a product GH ×GC where:

• GH acts on the hypermultiplets and coincides with the unitary transformations of M that act

independently of G, forming an exact sequence

G ↪→ U(M)→ GH → 0 . (4.3)

• GC contains topological symmetry U(1)L under which monopole operators are charged. This

may be enhanced in the IR to a non-Abelian group with maximal torus U(1)L.

We turn on associated real mass deformations valued in the Cartan subalgebras tH , tC of the

flavour symmetry factors:

• Real mass parametersm ∈ tH are vacuum expectation values for the real scalar in a background

vectormultiplet for GH .

• Real FI parameters ζ ∈ tC are vacuum expectation values for the real scalar in a background

twisted vectormultiplet for GC .

In principle, we could also turn on complex FI parameters, but we do not consider them in this

thesis.

In supersymmetric QCD, GH = PSU(Nf ) and GC = U(1), enhanced to GC = SU(2) when

Nf = 2Nc. Correspondingly, we introduce real mass parameters m = (m1, . . . ,mNf ) ∈ RNf−1

satisfying
∑
jmj = 0 and a single FI parameter ζ ∈ R.

It will also be important to introduce a real mass parameter that breaks N = 4 to N = 2 super-

symmetry. Given the maximal torus U(1)H × U(1)C with generators TH , TC , we may decompose

the supermultiplets under the N = 2 supersymmetry commuting with the U(1)t generated by

Tt = TH − TC . (4.4)
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From this perspective, U(1)t is a distinguished flavour symmetry. We can then choose an integer

R-symmetry for the N = 2 supersymmetry algebra generated by RH = 2TH or RC = 2TC . This

choice is important when performing a topological twist on S1 × Σ.

From the perspective of N = 2 supersymmetry σ transforms in a vectormultiplet, while ϕ,

X, Y transform in chiral multiplets whose charges are summarized in table 4.1. There are also

superpotentials

WI = TrVI (ϕXY ) (4.5)

at each node whose R-charges are always +2. The real mass parameters m are now obtained by

coupling to a background N = 2 vectormultiplet for the flavour symmetry GH while ζ is an FI

parameter for the dynamical N = 2 vectormultiplet.

We can now explicitly break to N = 2 supersymmetry by introducing a real mass parameter

mt for the distinguished U(1)t flavour symmetry. This is the mass deformation mentioned in the

introduction to this thesis and, as anticipated there, it will play an important role in this chapter as

a localization parameter.

4.1.2 Moduli Spaces of Vacua

The moduli space of vacua of 3d N = 4 supersymmetric gauge theory includes a Higgs branch and

a Coulomb branch, denoted by MH and MC respectively. They are both hyper-Kähler, such that

the R-symmetries SU(2)H , SU(2)C rotate the complex structure on MH , MC . Furthermore, the

flavour symmetries GH , GC act by tri-Hamiltonian isometries of MH , MC .

The choice of maximal torus U(1)H ×U(1)C selects a complex structure onMH andMC . From

this point of view, they are Kähler manifolds equipped with holomorphic symplectic forms of weight

+1 under Kähler isometries U(1)H , U(1)C . The flavour symmetries GH , GC act by Hamiltonian

isometries of MH , MC that leave invariant the holomorphic symplectic form.

In this chapter, we make a crucial assumption that the supersymmetric quiver gauge theory

flows to a superconformal fixed point and has isolated massive vacua when generic real mass and FI

parameters are turned on. This translates into the assumption thatMH ,MC are conical symplectic

resolutions with isolated fixed points under infinitesimal TH , TC transformations. Furthermore, tH ,

tC describe Kähler resolution parameters for MC , MH under the identifications

tH = H2(MC ,R) , tC = H2(MH ,R) . (4.6)

In more physical terms:

• The mass parameters m ∈ tH are resolution parameters forMC and generate an infinitesimal

Hamiltonian isometry of MH ,
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• The FI parameters ζ ∈ tC are resolution parameters for MH and generate an infinitesimal

Hamiltonian isometry of MC .

This assumption will permeate our considerations on S1 × Σ, allowing explicit computations to

be performed while encompassing an infinite and rich class of examples. A further motivation is

that such theories transform straightforwardly under 3d mirror symmetry and play an important

role in connection with symplectic duality [81, 82]. For further motivation and background we refer

the reader to reference [83]. We will return to this connection in section 4.5.

4.1.3 Higgs Branch Geometry

The Higgs branch is particularly important for consideration of the twisted index on S1 × Σ. We

therefore explain its construction in more detail now. We first set the mass parameters m = 0. The

classical vacuum configurations are solutions to

µR − ζ = 0 µC = 0

σ ·X = 0 ϕ ·X = 0 ϕ† ·X = 0

σ · Y = 0 ϕ · Y = 0 ϕ† · Y = 0

[σ, ϕ] = 0 [ϕ,ϕ†] = 0 ,

(4.7)

modulo gauge transformations. Here it is understood that vectormultiplet scalars act on (X,Y ) in

the representation T ∗M . Finally,

µR = X ·X† − Y † · Y µC = X · Y (4.8)

are the real and complex moment maps for the G action on T ∗M .

Equations (4.7) may be decomposed into contributions from each node labelled by an index

I = 1, . . . , L. Here we are employing shorthand notation such as ζ = {ζ1, . . . , ζL} and µR =

{µR,1, . . . , µR,L} to express the contributions from all of the nodes simultaneously.

For future applications, it is useful to reconsider the vacuum equations in the language of N = 2

supersymmetry. From this perspective, the vacuum equations are

µR − 2[ϕ†, ϕ]− ζ = 0

ϕ ·X = 0 ϕ · Y = 0 µC = 0

σ ·X = 0 σ · Y = 0 [σ, ϕ] = 0 ,

(4.9)

where the first line contains the D-term equations and the second line the F -term equations associ-

ated to the superpotential W = TrV (ϕXY ). Note that the D-term equation involves an additional

commutator compared to (4.7). However, by squaring the D-term equation and imposing the F -term

equations,

‖µR − 2[ϕ†, ϕ]− ζ‖2 = ‖µR − ζ‖2 + 4‖[ϕ†, ϕ]‖2 + 2‖ϕ ·X†‖2 + 2‖ϕ · Y †‖2 , (4.10)

which requires [ϕ†, ϕ] = 0 separately and recovers the remaining equations in (4.7).
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Hyper-Kähler Quotient

Under our assumptions, the FI parameter ζ can be chosen such that G acts freely on solutions to

the vacuum equations (4.7). This typically requires that the FI parameter lie in the complement of

hyperplanes

ζ ∈ RL\ ∪α Hα , (4.11)

which split the parameter space tC = RL into chambers. In supersymmetric QCD, this means we

assume that Nf ≥ Nc and ζ > 0 or ζ < 0.

The implies σ = ϕ = 0 on solutions of the vacuum equations, which would otherwise generate

unbroken gauge transformations. The remaining equations then describe the Higgs branch as a

smooth hyper-Kähler quotient

Mζ,H := T ∗M///ζ G , (4.12)

which is a Nakajima quiver variety [84, 85]. We note that the holomorphic symplectic form on the

Higgs branch is independent of ζ within each chamber, while the real symplectic form or Kähler

structure depends explicitly on ζ.

The assumption of section 4.1.2 requires that

ν :MH,ζ →MH,0 (4.13)

is a conical symplectic resolution. The inverse image

LH,ζ := ν−1(0) (4.14)

is then a compact holomorphic Lagrangian known as the ‘compact core’. This has a convenient

Kähler quotient description, which reads as follows. The choice of chamber selects a holomorphic

Lagrangian splitting T ∗M = L⊕ L∗, corresponding to a decomposition of the hypermultiplet fields

(XL, YL) where YL = 0 on the compact core. We then have

LH,ζ = L//ζ G = {µR|L = 0}/G . (4.15)

We frequently fix a chamber and omit the dependence on ζ, writing MH and LH respectively for

the Higgs branch and its compact core.

In supersymmetric QCD, this assumption requires that Nf ≥ 2Nc. In this case, the Higgs

branch is a cotangent bundle to the grassmannian of Nc-planes in Nf complex dimensions, MH =

T ∗G(Nc, Nf ). The map (4.13) is the Springer resolution of the nilpotent cone closure N̄ρ ⊂ sl(Nf ,C)

labelled by ρT = (Nc, Nf−Nc). The compact core LH = G(Nc, Nf ) is the grassmannian base, where:

• In the chamber ζ > 0, LH is characterized by the decomposition (XL, YL) = (X,Y ) and

corresponds to configurations with Y = 0.

• In the chamber ζ < 0, LH is characterized by the decomposition (XL, YL) = (Y,−X) and

corresponds to configurations with X = 0.
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Algebraic Description

The Higgs branch has an algebraic description as a holomorphic symplectic quotient, obtained by

omitting the D-term equation in favour of an appropriate stability condition, and by dividing by

complex gauge transformations.

Starting from (X,Y ) ∈ T ∗M , solutions of the F-term equation cut out the subspace µ−1
C (0) ⊂

T ∗M . We then impose a stability condition depending on the chamber of ζ ∈ RL\ ∪α Hα and

quotient by complex gauge transformations GC. Under our assumptions, stability coincides with

semi-stability and we obtain a smooth quotient,

MH = µ−1
C (0)s/GC . (4.16)

We do not describe the stability condition for a general quiver, and instead focus later on the example

of supersymmetric QCD 1.

This provides an algebraic description of the tangent bundle to MH , which will reappear in

section 4.2.4. Considering small fluctuations of the hypermultiplets (δX, δY ) compatible with the F-

term equation, modulo infinitesimal complex gauge transformations, generates the following complex

0 −→ gC
α−→ T ∗M

β−→ g∗C −→ 0 (4.17)

of trivial GC-equivariant vector bundles on T ∗M . The maps

α : δg 7→ (δg ·X, δg · Y ) β : (δX, δY ) 7→ X · δY + δX · Y (4.18)

at a point (X,Y ) ∈ T ∗M correspond to infinitesimal complex gauge transformations and the dif-

ferential of the complex moment map respectively. On restriction to the stable locus µ−1
C (0)s, α

is injective and β surjective, and equation (4.17) descends to a complex of vector bundles on MH

whose cohomology is the tangent bundle,

TMH = Ker(β)/Im(α) . (4.19)

In supersymmetric QCD in the chamber ζ > 0, the stable locus consists of solutions where X has

maximal rank and defines a complex Nc-plane in W = CNf . The holomorphic symplectic quotient

{X,Y |X · Y = 0, rk(X) = Nc } /GL(Nc,C) (4.20)

provides an algebraic description ofMH = T ∗G(Nc, Nf ). The tangent bundle is the cohomology of

the complex

0 −→ Hom(V,V)
α−→ T ∗Hom(W,V)

β−→ Hom(V,V) −→ 0 , (4.21)

where V is the tautological complex vector bundle with fiber V = CNc and W is the trivial complex

vector bundle with fiber W . The maps are the infinitesimal complex gauge transformation α : δg 7→
(δgX,−Y δg) and the differential of the complex moment map β : (δX, δY ) 7→ δXY +XδY .

1An account of the appropriate stability condition for a general quiver that is close to the perspective taken here
can be found in [86].
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4.1.4 Mass Parameters and Fixed Loci

We now consider the fate of the Higgs branch vacua in the presence of real mass parameters mt and

m associated to flavour symmetries U(1)t and GH respectively.

U(1)t Mass Parameter

The mass parameter mt is a vacuum expectation value for a background N = 2 vectormultiplet for

the flavour symmetry U(1)t. Accordingly, the supersymmetric vacuum equations (4.7) are modified

by replacing σ → σ +mt (acting in the appropriate representation). More precisely,

σ ·X +
mt

2
X = 0 σ · Y +

mt

2
Y = 0 [σ, ϕ]−mtϕ = 0 (4.22)

in view of the charges presented in table 4.1. The remaining supersymmetric vacua correspond

to configurations (X,Y, ϕ) solving the modified vacuum equations, for which there exists a σ such

that the combined infinitesimal gauge and U(1)t transformation generated by σ and mt leaves the

configuration invariant.

Such configurations are found by setting YL = 0 where T ∗M = L⊕L∗ is the Lagrangian splitting

introduced above. It is useful to note that under the combined gauge and U(1)t transformation that

leaves this configuration invariant, the hypermultiplet fields (XL, YL) transform with weight (0, 1).

This property could be used to characterize the holomorphic Lagrangian splitting.

Geometrically, the remaining supersymmetric vacua correspond to the fixed locus of the U(1)t

Kähler isometry of MH generated by the mass parameter mt. From the discussion above, this

coincides with the compact core,

MU(1)t
H = LH . (4.23)

In the algebraic description, the U(1)t isometry becomes a C∗ action that transforms the holomorphic

symplectic form with weight +1. This will play an important role in the definition of the enumerative

invariants to be considered in section 4.2.

For example, in supersymmetric QCD with Nf ≥ 2Nc in the chamber ζ > 0, the mass defor-

mation requires σ = −mt2 1Nc and Y = 0. Indeed, U(1)t acts on the fibres of MH = T ∗G(Nc, Nf )

with weight +1 such that the remaining supersymmetric vacua coincide with the compact core,

MU(1)t
H = G(Nc, Nf ).

GH Mass Parameters

Let us now add real mass parameters m ∈ tH by turning on a vacuum expectation value for a

background N = 2 vectormultiplet for the GH flavour symmetry. The vacuum equations (4.7) are

modified by

σ → σ +m+mt , (4.24)
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where again it is understood that the mass parameters act in the appropriate representation of

U(1)t ×GH . The remaining vacua now correspond to configurations (X,Y, ϕ) solving the modified

vacuum equations, for which there exists a σ such that the combined infinitesimal gauge and GH ×
U(1)t transformation generated by σ and m+mt leaves the configuration invariant.

Geometrically, the remaining vacua correspond to the fixed locus of the TH × U(1)t isometry of

MH generated m+mt. The assumption of section 4.1.2 requires that for generic mass parameters

m, the fixed locus be a set of isolated points

MTH×U(1)t
H = {vI} . (4.25)

The fixed points necessarily lie in the compact core. Each massive vacuum corresponds to a config-

uration of rk(G) non-vanishing hypermultiplet fields chosen from XL, which we denote collectively

by {Za}. We note that in the algebraic description, TH is promoted to a (C∗)rk(G) action leaving

the holomorphic symplectic form invariant.

In supersymmetric QCD the flavour symmetry GH = PSU(Nf ) acts by Kähler isometries on

MH = T ∗G(Nc, Nf ). Turning on generic mass parameters m = {m1, . . . ,mNf } obeying
∑Nf
i=1mi =

0, there are
(
Nf
Nc

)
massive supersymmetric vacua labelled by distinct subsets I = {i1, . . . , iNc} ⊂

{1, . . . , Nf} where

vI : σa = mia ϕa = 0 Za = Xa
ia . (4.26)

They are the fixed points of a generic TH ×U(1)t isometry ofMH and coincide with the coordinate

hyperplanes in the grassmannian base LH = G(Nc, Nf ).

4.2 N = 4 Twisted Theories on R× Σ

Having defined the class of theories of interest to us, we turn to the compactification on R × Σ.

N = 4 theories admit two topological twists, the Rozansky-Witten twist and its mirror. On a

general three-manifold, these twist can be performed by using the SU(2)C and SU(2)H R-symmetries

respectively; in our configuration, it is sufficient to use their U(1)C and U(1)H subalgebras2. The

resulting topologically twisted theories are special cases of the N = 2 supersymmetric gauge theories

on R× Σ considered in chapter 2.

In this section, we summarize the important aspects of the possible topological twists and of

the localization results. We then take the effective quantum-mechanical perspective, and study the

fluctuations around a point on the moduli space of solutions to the BPS equation (2.31). From

this we will provide a general relation between the twisted indices and enumerative invariants of

the moduli space. An important motivation for the work in this chapter was to understand the

geometric origin of the Jeffrey-Kirwan contour prescription (2.17), as in the original mathematical

constructions [70], and we provide some explanations in this direction.

2For more details on the mirror of the Rozansky-Witten twist, see ref. [87].
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4.2.1 Algebraic Preliminaries

With the real mass and FI parameter deformations we introduced above, the flat space supersym-

metry algebra is

{QAȦα , QBḂβ } = εABεȦḂPαβ − εαβεABδ(Ȧ1̇δḂ)2̇(m · JH)− εαβεȦḂδ(A1δB)2(ζ · JC) (4.27)

where QAȦα denotes the supercharges, Pαβ is the momentum generator, and JH , JC are the conserved

charges associated to the flavour symmetry. Notice that we have to symmetrize over the indices A

and B in the Kronecker deltas, and the real masses break the R-symmetry to a maximal torus

U(1)H × U(1)C
3. Under our conventions, the supercharges Q1Ȧ

α , Q2Ȧ
α have U(1)H charge + 1

2 , − 1
2 ,

while the supercharges QA1̇
α , QA2̇

α have U(1)C charge + 1
2 , − 1

2 .

We now perform the topological twist on R × Σ using U(1)H or U(1)C , and regard the system

as a supersymmetric quantum mechanics on R.

H-Twist

In the H-twist, we restrict to supercharges commuting with the diagonal combination of U(1)H ⊂
SU(2)H and the U(1)12 rotations in the x1,2-plane. The invariant supercharges are

QȦ := Q1Ȧ
1 Q̃Ȧ := Q2Ȧ

2 (4.28)

and generate the N = (2, 2) supersymmetric quantum mechanics

{QȦ, QḂ} = 0

{QȦ, Q̃Ḃ} = εȦḂ(P3 − ζ · JC)− δ(̇A1̇δḂ)2̇m · JH

{Q̃Ȧ, Q̃Ḃ} = 0

(4.29)

with Hamiltonian H = P3 − ζ · JC and central charge Z = −m · JH . In particular, we identify

U(1)R = U(1)C and U(1)r = U(1)H . Notice that this fits into the N = 4 quantum mechanics of

section 1.3, and especially into the algebra of the Kähler model.

C-Twist

In the C-twist, we restrict ourselves to supercharges commuting with the diagonal combination of

U(1)C and the U(1)12 rotations in the x1,2-plane. The invariant supercharges are

QA := QA1̇
1 Q̃A := QA2̇

2 (4.30)

and generate the N = (0, 4) supersymmetric quantum mechanics

{QA, QB} = 0

{QA, Q̃B} = εAB(P3 −m · JH)− δ(A1δB)2ζ · JC

{Q̃A, Q̃B} = 0

(4.31)

3The fully covariant expression involves complex masses, which we do not consider in this thesis.
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with Hamiltonian H = P3 − m · JH and central charge Z = −ζ · JC . In particular, we identify

U(1)R = U(1)C and U(1)r = U(1)H . This algebra is akin to the hyperkähler model introduced in

section 1.3.

Breaking to N = (0, 2)

Turning on the real mass parameter mt, both twists preserve a common 1d N = (0, 2) subalgebra

that commutes with the U(1)t symmetry. The preserved supercharges are

Q := Q11̇
1 Q̃ := Q22̇

2 , (4.32)

and they satisfy the N = (0, 2) algebra

{Q,Q} = 0

{Q,Q†} = P3 −m · JH − ζ · JC −mt · Jt

{Q†, Q†} = 0 .

(4.33)

From the perspective of 3d N = 2 supersymmetry, we are performing topological twists on Σ using

the integer valued R-symmetries generated by RH and RC .

4.2.2 N = 4 Localising Actions

The localization procedure of N = 4 theories can be considered a special case of N = 2 theories.

Thus, to study the BPS loci we simply have to state how N = 4 multiplets decompose into N = 2

multiplets. We have

• The N = 4 vectormultiplet decomposes into an N = 2 vectormultiplet V and an N = 2 chiral

multiplet Φϕ = (ϕ,ψϕ, ηϕ, Fϕ) in the adjoint representation .

• The N = 4 hypermultiplet decomposes into a pair of N = 2 chiral multiplets denoted by

ΦX = (X,ψX , ηX , FX) and ΦY = (Y, ψY , ηY , FY ) transforming in the unitary representations

M and M∗ respectively .

The details of these decompositions can be found in appendix A.1. The theory is endowed with a

N = 2 superpotential W = 〈Y,Φ ·X〉 of R-charge +2.

It is important to note that on the curve Σ, accounting for the R-charges summarized in table 4.1,

the chiral multiplets mentioned above transform as sections of the associated bundles

Pϕ := (P ×G g)⊗K1−r
Σ

PX := (P ×GM)⊗Kr/2
Σ

PY := (P ×GM∗)⊗Kr/2
Σ ,

(4.34)

where

r :=

{
1 H-twist

0 C-twist
(4.35)
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and P is the gauge bundle (which is a principal G-bundle). The N = 4 version of the generalized

vortex equations (2.31) reads

∗FA + e2
(
µR − 2[ϕ†, ϕ]− τ

)
= 0 dAσ = 0

∂̄AX = 0 ∂̄AY = 0 ∂̄Aϕ = 0

ϕ ·X = 0 ϕ · Y = 0 X · Y = 0

σ · ϕ = 0 σ ·X = 0 σ · Y = 0 (4.36)

where it is understood that σ, ϕ and ∂̄A act in the appropriate representation. Notice that µR is

the real moment map associated to the representation T ∗M . The extra term arises from the N = 2

chiral adjoint multiplet present in the N = 4 vectormultiplet, by analogy with the Higgs branch

description (4.10). In the following section, we explain that the algebraic description of the solutions

to these equations coincide with that of ‘quasi-maps’.

4.2.3 The Vortex Moduli Space

We now consider the moduli space of solutions to the generalized vortex equations (4.36) for the

class of supersymmetric theories introduced in section 4.1. Recall that we consider quiver gauge

theories with G =
∏L
I=1 U(NI).

First, solutions of the generalized vortex equations form topologically distinct sectors labelled by

the flux

mI :=
1

2π

∫
Σ

Tr(FI) . (4.37)

We can equivalently write mI = c1(VI) where VI denotes the vector bundle on Σ in the fundamental

representation of U(NI). We use shorthand notation m := {mI} ∈ ZL.

The allowed fluxes m ∈ ZL generate a lattice in the Lie algebra of the Abelian part of G. The

latter can be identified with the dual of the Cartan subalgebra the Coulomb branch flavour symmetry,

t∨C ∼= RL. The flux lattice is then naturally identified with the character lattice

Λ∨C := Hom(TC , U(1)) . (4.38)

The homomorphism ζ 7→ e2πi〈ζ,m〉 arises in the contribution to the path integral from the FI param-

eter. Through the identification (4.6) the flux lattice is equivalently

Λ∨C ' H2(MH ,Z) , (4.39)

which suggests that solutions of the generalized vortex equations are related to holomorphic maps

Σ→MH of degree m. We will explain below in what sense this is realized.

Second, the parameter τ ∈ RL appearing in the generalized vortex equations (4.36) arises from

an exact contribution to the Lagrangian. In what follows, we always choose this parameter to lie in
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the same connected component or chamber of the parameter space RL\ ∪α Hα as the physical FI

parameter ζ.

In general, we expect an intricate dependence of the moduli space of solutions on τ , e2 and

Vol(Σ). As the combination s = τe2Vol(Σ) (already introduced in (3.81)) is varied, the number of

supported vortices may jump, and we expect to observe wall-crossing pheonomena4. In order to

obtain a uniform description of the moduli space of solutions to (4.36) for all fluxes m ∈ ZL, we

will send the parameter s→∞ within the appropriate chamber of RL\ ∪αHα defined by τ . In this

limit, vortices are point-like and an arbitrary number of them can be supported on the curve.

When s → ∞, the magnetic flux is therefore concentrated at a finite set of points P on Σ.

Provided we restrict to Σ−P , the magnetic flux may be neglected in the first line of equation (4.36)

and therefore

µR − 2[ϕ†, ϕ] = τ . (4.40)

This is identical to the D-term equation in theN = 2 supersymmetry description of the Higgs branch

described in equation (4.9). Under the assumptions of section 4.1.2, solutions of the generalized

vortex equations therefore have the property that, for each point in Σ − P , σ = ϕ = 0 and they

determine a point on MH,τ . Together with the remaining equations in (4.36) this is sufficient to

determine that σ = ϕ = 0 everywhere.

In the s → ∞ limit, it is therefore sufficient to restrict our attention to the following system of

equations

∗FA + e2 (µR − τ) = 0

∂̄AX = 0 ∂̄AY = 0 X · Y = 0 (4.41)

whose solutions with a fixed degree m ∈ ZL describe holomorphic maps Σ → MH away from a

finite set of points on Σ. Let us then denote the moduli space of solutions to the generalized vortex

equations (4.41) modulo gauge transformations by M. As explained above, this is a disjoint union

of topologically distinct components,

M =
⋃

m∈Λ∨C

Mm . (4.42)

We emphasize that the moduli space encompasses both boson and fermion zero modes. More

precisely, the moduli space is parametrized by the vacuum expectation values of both 1d N = (0, 2)

chiral multiplets and 1d N = (0, 2) Fermi multiplets. In the following section, we explain that the

algebraic description of the solutions to these equations coincide with that of ‘quasi-maps’.

4We will discuss the moduli space of gauge theories at finite τ and the wall-crossing phenomena in upcoming work
[37].
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4.2.4 Algebraic Description

To understand the vortex moduli spaces Mm and the mathematical interpretation of the twisted

index, we consider an algebraic description of the moduli space of generalized vortex equations (4.41)

in the limit s → ∞. We show that this description coincides with two variations of moduli spaces

of stable quasi-maps Σ→MH in the H-twist and C-twist respectively.

As for the Higgs branch, the algebraic description of the moduli space Mm is found schematically

by removing the D-term vortex equation from (4.41) in favour of a stability condition and dividing

by complex gauge transformations (under which the equation X ·Y is invariant). A solution is then

represented by the following holomorphic data:

• A holomorphic GC-bundle E on Σ;

• Holomorphic sections X, Y of the associated holomorphic vector bundles EX , EY subject to

the complex moment map constraint µC = X · Y = 0;

• Subject to a stability condition;

and modulo complex gauge transformations. We refer to a collection of such algebraic data as

(E,X, Y ). This associates to each point on Σ a point in µ−1
C (0) ⊂ T ∗M . We can therefore regard

this algebraic data as a twisted holomorphic map Σ→ µ−1
C (0) of degree m.

Let us now consider the stability condition arising from the vortex equation,

∗ FA + e2 (µR − τ) = 0 . (4.43)

The determination of the relevant stability condition depends intricately on the choice of parameter

τ and has been studied extensively in particular examples [88, 89, 90].

The s → ∞ limit leads to a simplification in the stability condition: away from a finite set

of points on Σ the curvature term in equation (4.43) can be ignored and the image of the map

Σ→ µ−1
C (0) determined by the algebraic data must lie in the stable locus µ−1

C (0)s. This is precisely

the stability condition introduced in [39, 46, 45] to define quasi-maps Σ → MH . Accounting for

the R-charges as in (4.34), in the C-twist we therefore have an algebraic description of Mm as the

moduli space of quasi-maps Σ → MH of degree m ∈ ZL as considered in [46] for the special case

Σ = CP1. In the H-twist, we have a similar algebraic description as twisted quasi-maps as described

in [45].

4.2.5 Virtual Tangent Bundle

We can further study this identification by computing the massless fluctuations around solutions of

the generalized vortex equations (4.36). By supersymmetry preserved on S1 ×Σ, these fluctuations

must organize into supermultiplets of 1d N = (0, 2) supersymmetry. We will demonstrate that
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the massless fluctuations reproduce the structure of virtual tangent bundles or perfect obstruction

theories for Mm considered in [39, 46, 45].

Let us fix a point on the moduli space represented by the algebraic data (E,X, Y ). Then each of

the three-dimensional chiral multiplets φ = X,Y, ϕ generates a pair of 1d N = (0, 2) supermultiplet

fluctuations at this point:

• Chiral multiplets: (δφ, ψφ) ∈ H0(Eφ).

• Fermi multiplets: (ηφ) ∈ H1(Eφ).

In addition, the three-dimensional vectormultiplet contributes a chiral multiplet fluctuation (δĀ, Λ̄) ∈
H1(EV ), where EV is the holomorphic vector bundle associated with the adjoint representation, cor-

responding to deformations of the holomorphic vector bundle E via the derivative operator ∂̄A, and

a Fermi multiplet λ ∈ H0(EV ) corresponding to infinitesimal holomorphic gauge transformations.

Not all of these fluctuations remain massless. First, let us fix the holomorphic vector bundle

E and consider fluctuations of the hypermultiplets (X,Y ). For the scalar fluctuations (δX, δY ),

linearisation of the complex moment map equation X ·Y = 0 generates the complex of vector spaces

H0(EV )
α0

−→ H0(EX ⊕ EY )
β0

−→ H1(Eϕ)∗ , (4.44)

where the map α0 : δg 7→ (δg · X, δg · Y ) is an infinitesimal complex gauge transformation and

β0 : (δX, δY ) → X · δY + δX · Y is the differential of the complex moment map. The massless

fluctuations of the complex scalars lie in Ker(β0)/Im(α0). We note that under our assumptions α0

is injective.

The same result must hold for the fermion components (ψX , ψY ) of the chiral multiplets by 1d

N = (0, 2) supersymmetry but it is illuminating to check this explicitly. This can be understood

from the Yukawa couplings with the Fermi multiplet fluctuations λ ∈ H0(EV ) and ηϕ ∈ H1(Eϕ).

First, there is ∫
Σ

∗〈λ, ψX ·X†〉+

∫
Σ

∗〈λ, Y † · ψY 〉 . (4.45)

Here we exceptionally denote by 〈·, ·〉 the pairing between the lie algebra g and its dual g∗. Other

contractions are implicit. Let us suppose that the fermion fluctuations take the form (ψX , ψY ) =

(ε · X, ε · Y ) for some fermion ε ∈ H0(EV ), meaning they lie in the image of α0. Then the above

contributions are proportional to ∫
Σ

∗〈µR (X,Y ) , λε〉. (4.46)

By the stability condition, the real moment map cannot vanish identically on Σ and therefore

this coupling generates a mass for the fermions ε and λ. We conclude that the fermion fluctuations

(ψX , ψY ) in the image of α0 become massive. Second, the superpotential (4.5) generates the Yukawa

couplings ∫
Σ

〈 ηϕ , X · ψY + ψX · Y 〉 . (4.47)
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It is clear that if the fermion fluctuations satisfy X ·ψY +ψX ·Y = 0, then the sum of these couplings

vanishes and these fluctuations are massless. Otherwise they pair up with ηϕ to become massive.

We therefore conclude that the remaining massless fluctuations (ψX , ψY ) lie in Ker(β0)/Im(α0). In

addition there are Fermi multiplet fluctuations η̄ϕ in the cokernel of β0. In sum, there are massless

1d N = (0, 2) fluctuations given by the cohomology of the complex (4.44).

Let us now return to considering fluctuations of the holomorphic bundle E via the derivative

operator ∂̄A. Deformations of the holomorphic vector bundle E correspond to elements in H1(E).

However, these deformations must be such that (X,Y ) remain holomorphic sections, meaning they

lie in the kernel of the map

α1 : H1(EV ) −→ H1(EX ⊕ EY ) , (4.48)

where α1 : δĀ→ (δĀ ·X, δĀ · Y ). The same condition must hold for the fermion component of the

chiral multiplet (δĀ, Λ̄), but it is again illuminating to show this directly. This follows by noting

that the Yukawa couplings ∫
Σ

〈Λ̄, Xη̄X〉+

∫
Σ

〈Λ̄, Y η̄Y 〉 (4.49)

vanish when the fermion Λ̄ lies in the kernel of α1.

Finally, let us consider the chiral multiplet fluctuations (δϕ, ψϕ) ∈ H0(Eϕ). The complex scalar

fluctuations must obey δϕ ·X = 0 and δϕ · Y = 0, which means that they lie in the co-kernel of the

map

β1 : H1(EX ⊕ EY )→ H0(Eϕ)∗ , (4.50)

where β1 : (A,B) → X · B + A · Y . Under our assumptions, ϕ vanishes identically on solutions

to the generalized vortex equations and therefore β1 is surjective. Once again, the same condition

must hold for the fermion components of the supermultiplet. This time we consider the remaining

Yukawa couplings ∫
Σ

〈ψϕ , X · ηY + ηX · Y 〉 , (4.51)

which shows that the combination of fermion fluctuations X · ηY + ηX · Y that are not kernel of β1

pair up with the fluctuations ψϕ and become massive.

To sum up, the massless fluctuations around a point on the moduli space M of quasi-maps

Σ →MH represented by algebraic data (E,X, Y ) are encoded in the cohomology of the following

pair of complexes

H0(E)
α0

−→ H0(EX ⊕ EY )
β0

−→ H1(Eϕ)∗

H1(E)
α1

−→ H1(EX ⊕ EY )
β1

−→ H0(Eϕ)∗ .
(4.52)

This can be promoted to a complex of GH ×U(1)t equivariant sheaves on the moduli space M using

the universal construction on M×Σ. The starting point is the universal G-bundle P →M×Σ. We

then have

Rπ•(P)
α−→ Rπ•(PX ⊕ PY )

β−→ Rπ•(Pϕ)∗ , (4.53)
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where π : M × Σ → M is the other projection and the associated vector bundles PX ,PY ,Pϕ are

defined as before using the pullback K = f∗KΣ where f : M × Σ → Σ is the projection. Note

that this mirrors the structure of the complex whose cohomology computes the tangent bundle to

MH outlined in section 4.1.3. In the remainder of the thesis, we will mainly refer to T vir as the

equivariant K-theory class of the complex (4.53).

This construction coincides with the perfect obstruction theory constructed in [46] for Σ = CP1

in the C-twist and [45] in H-twist on a general curve Σ of genus g. The two obstruction theories

have remarkably different features. The obstruction theories for the H-twist is symmetric, meaning

that there is an isomorphism between the complex in degree 0 in (4.53) and the dual of the complex

in degree 1. This implies that the virtual dimension of the moduli space is zero. In the C-twist the

obstruction fails to be symmetric unless the curve is elliptic, so that the canonical bundle is trivial.

A Hirzebruch-Riemann-Roch computation shows that

dimvir (Mm) =

{
0 H-twist

dim (MH) (1− g) C-twist .
(4.54)

The difference between the two twists will be particularly manifest when we attempt to give an

interpretation of the twisted indices.

4.2.6 Mass Parameters and Fixed Loci

The moduli spaces Mm introduced above are in general expected to be non-compact. The presence

of massless non-compact fluctuations would render the computation of the twisted index on S1 ×Σ

ill-defined. To remedy this, we introduce real mass parameters for flavour symmetries that, as for

the Higgs branch in section (4.1.3), will cut down the moduli space to the fixed locus of this flavour

symmetry.

The mass parameter for the U(1)t symmetry associated to the breaking to N = 2 supersymmetry

is enough to ensure the twisted index on S1 × Σ is well-defined and identify its mathematical

interpretation. Further introduction of mass parameters forGH will make the twisted index explicitly

computable in our localization scheme.

U(1)t Mass Parameters

Let us introduce the mass parameter mt for U(1)t. The effect of this deformation is to replace

σ → σ +mt in the generalized vortex equations (4.36), where mt acts with the appropriate weight

according to table 4.1. The remaining moduli space of solutions is the fixed locus of the U(1)t action

on Mm.

First recall from section 4.1.4 that turning on the mass parameter mt restricts the Higgs branch to

a compact holomorphic Lagrangian known as the compact coreMU(1)t
H = LH . This is characterized
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by a holomorphic Lagrangian splitting T ∗M = L ⊕ L∗ such that the hypermultiplet fields in L∗

vanish on the fixed locus and LH = L//ζ G.

Similarly, solutions of the generalized vortex equations invariant under U(1)t correspond to

configurations where the hypermultiplet fields in L∗ vanish and correspond algebraically to twisted

quasi-maps Σ → LH to the compact core. We denote the fixed locus of the moduli space by

M
U(1)t
m = Lm. Upon restriction to the fixed locus, the virtual tangent bundle splits into two pieces

H•(E)
α−→ H•(EL) H•(EL∗)

β−→ H1−•(Eϕ)∗ . (4.55)

transforming with weight 0 and +1 respectively under U(1)t. They can be identified with the virtual

tangent bundle to Lm and the virtual normal bundle respectively. At the level of K-theory classes

we have

T vir
∣∣
L

= T vir
L + tN , (4.56)

where t = e2πimt is the equivariant parameter for the U(1)t symmetry.

In the H-twist, the tangent and normal fluctuations at the fixed locus are related by Serre duality

H•(EL) = H1−•(EL∗)
∗ , H•(E) = H1−•(Eϕ)∗ (4.57)

and Nvir = −
(
T vir
L

)∨
as K-theory classes. When the Higgs branch is a cotangent bundle we expect

that the extended moduli space including fermionic fluctuations is actually a shifted cotangent

bundle T ∗[−1]L. In the C-twist, the virtual normal bundle Nvir can be identified with the class of

the complex

H•(E ⊗KΣ)∗ −→ H•(EL ⊗KΣ)∗ (4.58)

by an application of Serre duality.

GH Mass Parameters

Let us now introduce real mass parameters m ∈ tH and consider localization with respect to

TH ⊂ GH . Under our assumption that fixed points {vI} of MH are isolated, the fixed locus in

M corresponds to a union of MI , where the gauge group G is broken to its maximal torus

G→ U(1)rk(G) . (4.59)

Then the associated degree m vector bundle E decomposes into the sum of line bundles

E = L1 ⊕ · · · ⊕ Lrk(G) , (4.60)

where deg(Li) = mi. The r-vector m = (m1, · · · ,mrk(G)) is valued in the co-character lattice ΛG of

the gauge group G, and satisfies the relation Tr(m) = m. This implies that each fixed locus MI can

be further decomposed into

MI =
⋃

m∈ΛG

Mm,I . (4.61)
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Furthermore, at each fixed locus labeled by I, there are exactly rk(G) non-vanishing chiral

multiplet fields Za, a = 1, . . . , rk(G), which corresponds to the isolated vacua vI in (4.26). Then

each component of the fixed locus Mm,I parametrizes the holomorphic line bundle La together

with non-vanishing holomorphic section Za, which can be identified with the rk(G)-fold product of

symmetric products of a curve Σ

Mm,I =

rk(G)∏
a=1

Symma+r(g−1)Σ , (4.62)

where r is the R-charge. This is a compact smooth Kähler manifold of complex dimension m +

rk(G)r(g − 1).

Now the massless fluctuations transform in the tangent bundle to the fixed loci TMm,I and the

remaining fluctuations are massive. This corresponds to a decomposition of the virtual tangent

bundle

T vir|Mm,I
= TMm,I +Nm,I , (4.63)

where the virtual normal bundle Nm,I encodes the fluctuations that have become massive upon

turning on the mass parameter. These two contributions are known as the ‘fixed’ and ‘moving’

parts and are characterized as those transforming with trivial weight and non-trivial weight under

the TH × U(1)t transformation generated by the mass parameters mH , mt.

4.2.7 Evaluating the Partition Function

The path integral of the twisted index computes the generating function of the equivariant virtual

Euler characteristic of the moduli spaces Mm. This is defined by the following integral

χ(M, Ôvir) =
∑

m∈Λ∨C

(−q)m
∫
Mm

Â(Tvir) , (4.64)

where Â(Tvir) is the A-roof genus of the virtual tangent bundle. This quantity has been extensively

studied in [47, 46] in the context of the enumerative geometry of curves in Calabi-Yau five-folds. The

analogous construction for the four-dimensional Vafa-Witten invariants has been recently studied in

[91].

Due to the non-compactness of Mm, this formula should be evaluated with a proper virtual

localization theorem. Let us first consider the localization with respect to the U(1)t action, which

leads to the expression

χ(M, Ôvir) =
∑

m∈Λ∨C

(−q)m
∫

[Lm]

Â
(
T vir
Lm

)
ch
(
∧̂•N∨m

)
=
∑

m∈Λ∨C

(−q)m
∫

[Lm]

Â
(
T vir
Lm

)
ch
(
Ŝ•N∨m

)
.

(4.65)
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Here we introduced the symmetrized exterior and symmetric algebras

Ŝ•V := (detV )1/2 ⊗ S•V , ∧̂•V := (detV )−1/2 ⊗ ∧•V , (4.66)

where

S•V =
⊕
i≥0

SiV , ∧• V =
⊕
i≥0

(−1)i ∧i V (4.67)

are the symmetric and exterior algebra of V . In the H-twist, the identification of the virtual normal

bundle with N = −(T vir
L )∨ means we can also interpret the twisted index as a symmetrized virtual

χy-genus with y = −t.
These integrals can be explicitly evaluated by a further localization with respect to TH ⊂ GH .

In turning on the real mass parameters m, we have seen that the solutions of the BPS equations are

restricted to the fixed locus MT , which is a disjoint union of the smooth compact fixed loci. Let us

denote the inclusion by σm,I : Mm,I ↪→M. Then the integral decomposes as a sum of contributions

from the distinct components of the fixed locus

χ(M, Ôvir) =
∑

m∈Λ∨C

(−q)m
∑
I

∫
Mm,I

Â
(
TMm,I

)
ch
(
∧̂•N∨m,I

)
=
∑

m∈ΛG

(−q)m
∑
I

∫
Mm,I

Â
(
TMm,I

)
ch(Ŝ•N∨m,I) .

(4.68)

We note the individual contributions from the components of the fixed locus may be interpreted

as the index of the Dirac operator on the smooth space Mm,I twisted by a complex of holomorphic

vector bundles represented by Ŝ•N∨m,I . This is expected form of the partition function of a finite-

dimensional N = (0, 2) supersymmetric quantum mechanics with target space Mm,I .

As discussed in the previous section, under our assumptions, the fixed loci are smooth products

of symmetric products and these integrals can be evaluated explicitly. We will explore an extensive

set of examples in section 4.4.

4.2.8 Relation to Contour Integral Formulae

The main focus of this chapter is to provide a concrete geometric interpretation of the twisted indices

of 3d N = 4 theories on S1 × Σ. For the class of N = 4 theories we consider in this chapter, the

twisted index (2.12) becomes

I = TrH (−1)F e2πiζ·JCe2πim·JH tJt =
∑

m∈Λ∨C

TrHm
(−1)F (−q)me2πim·JH tJt , (4.69)

where H is the Hilbert space of states on Σ. This can be decomposed into topological sectors labelled

by m ∈ Λ∨C , which is a selection parameter in the quantum mechanics. We defined q = e2πiζ and

multiplied by (−1)m for each topological sector for future convenience. m indicates real masses for

the Higgs branch symmetry GH .
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In the N = 4 case, we can write the one-loop determinants presented in section 2.3 as follows

Zvector
1-loop(u) = (2i sinπmt)

(g−1)(2r−1)rk(G)
∏
α∈∆

(2i sinπα(u))α(m)+(g−1)(2r−1)

(2i sinπ(α(u)−mt))α(m)−(g−1)(2r−1)
(4.70)

and

Zhyper
1-loop(u,m) =

∏
i

∏
ρ∈M

(
2i sinπ

(
−ρ(u)−mi + mt

2

))ρ(m)−(g−1)(r−1)(
2i sinπ

(
ρ(u) +mi + mt

2

))ρ(m)+(g−1)(r−1)
, (4.71)

where ∆ is the set of all roots of g and ρ is the weights in a complex representation M of G. The

Hessian reads

H(u,m) = det
ab

[
Hvector
ab (u) +Hhyper

ab (u,m)
]
, (4.72)

where

Hvector
ab (u) =

∑
α∈∆

αaαb
cosπ(α(u)−mt)

2i sinπ(α(u)−mt)
(4.73)

and

Hhyper
ab (u,m) =

∑
i

∑
ρ∈M

ρaρb
(

cosπ(ρ(u) +mi +mt/2)

2i sinπ(ρ(u) +mi +mt/2)
+

cosπ(−ρ(u)−mi +mt/2)

2i sinπ(−ρ(u)−mi +mt/2)

)
.

(4.74)

The integration contour is given by the Jeffrey-Kirwan prescription (2.27), which depends on the

auxiliary parameter η ∈ t∗. We identified a natural choice in (2.33)

η = −2πm

e2
+ Vol(Σ)τ := η0 . (4.75)

It follows that the residue integral (2.17) does not include the poles involving the hyperplane at

asymptotic boundaries.

Notice that by integrating the D-term equation (4.41) over Σ, we obtain∫
Σ

∗ µR = η0 . (4.76)

From this relation we can check that the poles that pass the JK condition with the choice (4.75)

are in one-to-one correspondence with the fixed loci of the moduli space described in section 4.2.65.

Furthermore, the poles that involve the hyperplanes coming from adjoint chiral multiplets do not

contribute to the integral as the residues of such poles always vanish due to the order of zeros in the

numerator. Therefore, for the class of theories we consider, the non-trivial contributions are from

the residue integrals which consist of type of hyperplanes coming from hypermultiplets only. They

correspond to the fixed loci ∑
I

rk(G)∏
a=1

SymmIa+r(g−1)Σ , (4.77)

5As already anticipated in section 2.3, we exclude the poles coming from the W-bosons. Once we exclude these
poles, the final result may of course depend on the choice of η. For the theories we consider in this chapter, however,
we will show in section 4.4.4 that the uniform choice η = η0 > 0 with the residues from the W-boson singularities
excluded reproduces the correct integral representation of the Euler characteristics of the moduli spaces in the τ →∞
chamber.
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parameterized by the sum of the line bundles (4.60) and non-vanishing sections thereof. This dis-

cussion gives a geometric interpretation of the contour expressions, which we extensively study with

various examples in section 4.4. In particular, using the intersection theory of the symmetric prod-

uct of a curve Σ studied in [48, 49], the contour integral expressions of the twisted indices can

be converted to the equivariant integrals computing the virtual Euler characteristics discussed in

section 4.2.7. This provides a powerful way to compute enumerative invariants of moduli spaces of

quasi-maps.

4.3 The Limit t→ 1

As discussed in section 4.2.1, compactifying 3d N = 4 theories on a Riemann surface preserves

1d N = (2, 2) or N = (0, 4) supersymmetry in the H- and C-twist respectively. So far, we have

considered a localization scheme which preserves a N = (0, 2) subalgebra only. Once we turn off

the U(1)t mass parameter, we can add various exact terms to the localising action with respect to

the supercharges that do not commute with the U(1)t symmetry. This further constrains the BPS

moduli space and the twisted indices in the limit t→ 1 are expected to provide a geometric invariant

for a reduced moduli space.

As we will see, the localization scheme which preserves four supercharges turns out to be most

powerful in the C-twist, where we can reduce the bosonic BPS moduli space to the Higgs branch itself,

and the twisted indices can be interpreted as the Rozansky-Witten invariants [4] of the Higgs branch

MH . From the 3d mirror symmetry that exchanges the C- and H-twist, these considerations imply

remarkable statements relating invariants of very differently-looking spaces, which we elaborate on

in section 4.5.

The notation for the fields and the supersymmetry algebra used in this section are summarized

in appendix A.1.

4.3.1 C-twist

Let us start from the C-twist. In addition to the localizing action (2.11) with the term (2.30), we

can write down additional Q-exact terms using the four supercharges in the N = (0, 4) algebra:

1

t2C
LC,vector = Q̃2

(
λ̃1V

†
)

+Q2
(
λ1V

†)+ Q̃1
(
λ̃2V

†
)

+Q1
(
λ2V

†) , (4.78)

where

V =
1

4t2C

(
Q̃2λ̃1 −Q2λ1

)
− 1

4t2C

(
Q̃1λ̃2 −Q1λ2

)
. (4.79)

The bosonic part of this action is a total square

1

t2C
‖ ∗ FA − 2e2[ϕ†, ϕ]‖2 . (4.80)
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If we take the limit tC → 0, the field configuration of the vector multiplet localizes to the intersection

of (4.36) and

∗ FA − 2e2[ϕ†, ϕ] = 0 . (4.81)

For the hypermultiplet, we can add

1

s2
C

LC,hyper[V,X] =
1

s2
C

(
−Q̃B(ψzQBψ̃z̄ + ψz̄QBψ̃z)−QB(ψzQ̃Bψ̃z + ψz̄Q̃Bψ̃z̄)

)
. (4.82)

The bosonic part of this action is

1

s2
C

Lbosonic
C,hyper = 4D1XBD1̄X̃

B + 4D1̄XBD1X̃
B + ϕXBX̃

Bϕ† + ϕ†XBX̃
Bϕ . (4.83)

Taking sC → 0, the path integral localizes to the equations

D1XA = D1̄XA = ϕ ·XB = ϕ† ·XB = 0 , (4.84)

which in particular implies that XA’s are covariantly constant on Σ.

Combining these results, we can define the bosonic C-twisted N = 4 moduli space MN=4 to be

the space of field configurations (A,ϕ,XB) satisfying the following set of equations:

∗ FA − 2[ϕ†, ϕ] = 0 ,

∂̄Aϕ = 0 ,

dAX
B = 0 ,

ϕ ·XB = ϕ† ·XB = 0 ,

µR − τ = 0 , µC = 0 .

(4.85)

Note that the equations for the vector multiplet fields (A,ϕ) alone define the Hitchin moduli space

[92] associated with the gauge group G. For the class of theories that we are interested in, the BPS

equations (4.85) imply ϕ = 0. Furthermore, the real moment map condition, together with the

condition that the sections XA are covariantly constant implies that the vector bundle E must be

trivial. Therefore the bosonic moduli space reduces to the Higgs branchMH itself. Let us now look

at the various contribution in the virtual tangent bundle. The first complex (the deformation space)

in (4.52) reduces to

gC
α−→M ⊕M∗ β−→ g∗C , (4.86)

which defines the tangent space of MH . Similarly, the second complex becomes

Cg ⊗
[
gC

α−→M ⊕M∗ β−→ g∗C
]
. (4.87)

This can be identified with the g copies of the tangent bundle TMH . In the limit t→ 1, the virtual

Euler characteristic gets contributions from the zero-flux sector only, and is therefore independent

of q. In particular, we recover the holomorphic Euler characteristic ofMH valued in
(
∧̂•T ∗MH

)g
,

χ(M, Ôvir)
∣∣
t→1

= χ
(
MH ,

(
∧̂•T ∗MH

)g)
, (4.88)
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which is the Rozansky-Witten invaraint on Σ × S1 associated with the Higgs branch MH . Notice

that in this limit the virtual dimension (4.54) is manifest. This relation between the twisted indices

and the Rozansky-Witten invariants has also been studied in [93].

4.3.2 H-twist

Similarly, for the H-twist, we can write down additional Q-exact terms using the four supercharges

in the N = (2, 2) algebra. We choose

1

t2H
LH,vector,1 = Q1

(
λ2̇V

†)+Q2̇
(
λ̃1V

†
)
, (4.89)

where

V =
1

4t2H

(
Q1̇λ2 −Q1̇λ̃1

)
. (4.90)

As in the C-twist, the bosonic part is a sum of squares, but now takes the form

‖ ∗ FA + iD‖2, (4.91)

where D is the auxiliary field for the N = 2 vector multiplet. Solving the equation of motion for

the D-term, and taking the limit tH → 0 gives rise to the condition

∗ FA + e2(µR − τ) = 0 . (4.92)

Therefore the H-twisted moduli space for the vector multiplet on Σ can be viewed as the intersection

of solutions to (4.36) and (4.92), which can be written as6

∗ FA + e2(µR − τ) = 0 ,

∂̄AXB = 0 ,

∂̄Aϕ = [ϕ†, ϕ] = 0 ,

ϕ ·XB = 0 ,

µC = 0 .

(4.96)

Here, ∂̄A is the Dolbeault operator induced by the gauge connection A, whereas B is a SU(2) index.

Since under our assumptions ϕ vanishes on the moduli space, the bosonic moduli space remains the

same as in the N = 2 case. However, since ϕ decouples from the D-term equation, the derivation of

the stability condition simplifies.

6Notice that there are interesting additional terms that could be added to the action. For example,

1

t2H
LH,vector,2 =

1

4t2H
Q2̇
(

Λ̃1̄,2̇V
†
)

(4.93)

where
V = Q2̇Λ̃1̄,2̇ , (4.94)

whose bosonic part is
‖D1ϕ‖2 . (4.95)

This forces ϕ and ϕ† to be covariantly constant on Σ, not just covariantly holomorphic. We could also add terms

coming from the hypermultiplet, giving ϕ† ·XA = ϕ ·X†A = 0 .
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As mentioned, the additional supercharges do not commute with U(1)t and therefore we consider

the limit t → 1 of the twisted index. In this limit, the virtual χt-genus greatly simplifies to the

generating function of the integral of the Euler class of the fixed loci Lm of the U(1)t action

χ(M, Ôvir)
∣∣
t→1

=
∑

m∈Λ∨C

(−q)m(−1)dimvir(Lm)

∫
[Lm]

e
(
T vir
Lm

)
. (4.97)

For the class of the theories we consider, the localization with respect to the Higgs branch flavour

symmetry GH provides an alternative expression for the index in the t → 1 limit. Since the fixed

loci Mm,I with respect to TH ⊂ GH are smooth and compact, the expression (4.97) can be explicitly

evaluated by a computation of the sum of the Euler characteristic of the fixed loci:

χ(M, Ôvir)
∣∣
t→1

=
∑

m∈ΛG

(−q)m
∑
I

(−1)dimC(Mm,I)

∫
Mm,I

e(Mm,I) , (4.98)

As discussed in the paper [57], the supersymmetric ground states in the effective quantum me-

chanics that preserve N = (2, 2) supersymmetries are singlet under the flavour symmetry GH . This

agrees with the result (4.98), which is independent of the equivariant parameters m.

4.4 Examples

In this section, we apply the strategy outlined above to some concrete examples. We explicitly prove

that the virtual Euler characteristics of the appropriate moduli spaces of quasi-maps, computed via

equivariant localization (4.68), reproduces the contour integral formulae of the twisted indices derived

in [26, 23] and summarized in 4.2.8. For each example, we also discuss and verify interpretations

that become available in the t→ 1 limit, where N = 4 supersymmetry is restored, as anticipated in

the previous section.

4.4.1 Free Hypermultiplets

We start the study of our examples by briefly collecting some facts about the free hypermultiplet,

since they are going to be useful in view of mirror symmetry. In N = 2 language, the hypermultiplet

corresponds to two chiral multiplets ΦX and ΦY , which have a U(1)H flavour symmetry, and which

are charged as follows:

U(1)H U(1)t
X +1 1

2
Y −1 1

2

For an arbitrary R-charge r, the index reads

I =

((
t1/2x

)1/2
1− t1/2x

)mH+mt+(r−1)(g−1)((
t1/2/x

)1/2
1− t1/2/x

)−mH+mt+(r−1)(g−1)

, (4.99)

where mH and mt are the degrees of the line bundles LH and Lt, and x and t are the fugacities

for U(1)H and U(1)t respectively. When t 6= 1, the two factors in (4.99) correspond to the indices
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of ΦX and ΦY . The contribution of each N = 2 chiral multiplet can be understood from the

point of view of the 1d N = (0, 2) quantum mechanics precisely as discussed in section 1.1.3. In

particular, the first factor is the index of a 1d quantum mechanics with h0(Σ,K
r/2
Σ ⊗LH⊗Lt) chirals

and h1(Σ,K
r/2
Σ ⊗ LH ⊗ Lt) fermi multiplets, whose difference is controlled by the Riemann-Roch

theorem. The same (but with the appropriate charges) holds for the second factor. In the t → 1

limit, and turning off background line bundles for flavour symmetries in the C-twist, or Lt only in

the H-twist, the N = (0, 2) multiplets recombine into free 1d N = 4 chiral multiplets (H-twist) or

1d N = 4 hypermultiplets (C-twist). These were studied in sections 1.3.5 and 1.3.5 respectively.

4.4.2 SQED[1]

Let us consider a U(1) gauge theory with a hypermultiplet which has the following charges. This

is the N = 4 version of N = 2 SQED considered in section 3.2.5, and has, in addition, the adjoint

chiral multiplet included in the N = 4 vectormultiplet7

U(1)G U(1)t U(1)H U(1)C
X 1 1

2
1
2 0

Y −1 1
2

1
2 0

ϕ 0 −1 0 1

, (4.100)

The N = 2 BPS equations become

∗ FA + e2(XX† − Y †Y − τ) = 0 ,

∂̄AX = ∂̄AY = 0 , X · Y = 0 ,

∂̄Aϕ = 0 , ϕ ·X = ϕ · Y = 0 .

(4.101)

The moduli space of solutions to the above equations is a disjoint union of topological components

M =
⋃
m∈Z

Mm , (4.102)

indexed by the degree of the holomorphic line bundles L associated to the connection A. X and Y

are holomorphic sections of L⊗Kr/2 and L−1⊗Kr/2 respectively. Integrating the D-term equation

over Σ, we can check that X is non-vanishing, provided

τ >
2πm

e2Vol(Σ)
. (4.103)

Note that this condition is equivalent to the choice η0 > 0 in the twisted index computation (4.75).

Since X is a holomorphic section of a line bundle, the number of zeros of X on Σ is finite and equal

to the degree of L ⊗ Kr/2. The remaining BPS equations imply that Y = ϕ = 0. Therefore the

moduli space in this chamber is

M+
m =

{
(A,X) | ∗ F + e2(XX† − τ) = 0 , ∂̄AX = 0

}
/U(1)G . (4.104)

7Strictly speaking this theory falls short of the class we have previously defined in section 4.1.2. However, the
resolved Higgs branch is well-defined (it is a point) and the computations are still possible. This example contains
the basic building blocks needed for more elaborate examples.
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This space defines the moduli space of Abelian vortices, which we have already encountered in

section 3.2.4. Introducing the notation

Σn := SymnΣ , (4.105)

we have

M+
m = Σn+

, n+ = m + r(g − 1) . (4.106)

The chamber τ < 2πm
e2Vol(Σ) can be treated in a similar way. The bosonic moduli space is con-

structed from non-vanishing sections Y (when they exist) and their corresponding line bundles L,

whereas X is set to zero. In this chamber the bosonic moduli space becomes

M−m = Σn− , n− = −m + r(g − 1) . (4.107)

For concreteness, we will work in the chamber (4.103) for all the flux sectors m ∈ Z by formally

sending τ →∞, and omit the superscript + from M+
m.

H-twist In order to compute the index using virtual localization, we need to study the virtual

tangent space to Mm. In the H-twist, the physical fluctuations around the bosonic moduli space are

given by

(δX,ψX) ∈ H0(L⊗K1/2
Σ ) , (ηX , FX) ∈ H1(L⊗K1/2

Σ ) ,

(δY, ψY ) ∈ H0(L−1 ⊗K1/2
Σ ) , (ηY , FY ) ∈ H1(L−1 ⊗K1/2

Σ ) ,

(ϕ,ψϕ) ∈ H0(O) , (ηϕ, Fϕ) ∈ H1(O)

(4.108)

The virtual tangent space restricted to a point D of the moduli space (4.52) therefore corresponds

to the cohomology of the following two complexes:

H0(O)
α0

−→ H0((O(D)⊕O(D)−1)⊗K1/2
Σ )

β0

−→ H1(O)∗ ,

H1(O)
α1

−→ H1((O(D)⊕O(D)−1)⊗K1/2
Σ )

β1

−→ H0(O)∗ ,
(4.109)

where the map α is defined as multiplication by (X,−Y ), while β is defined by taking an inner

product with (Y,X). Since Y vanishes identically on the moduli space Mm, these complexes split

into two pieces each:

H0(O)
α0

−→ H0(O(D)⊗K1/2
Σ ) , H0(O(D)−1 ⊗K1/2

Σ )
β0

−→ H1(O)∗ ,

H1(O)
α1

−→ H1(O(D)⊗K1/2
Σ ) , H1(O(D)−1 ⊗K1/2

Σ )
β1

−→ H0(O)∗ .
(4.110)

Let us first consider the cohomology of the two complexes on the left hand side. The maps α0 and

α1 are injective and surjective respectively and therefore the cohomology can be written as

TDMm = ker(α1)⊕H0(O(D)⊗K1/2
Σ )/im(α0) , (4.111)

which corresponds to the tangent space of the symmetric product at point D. It follows that some

of the massless fermionic fluctuations at point D encoded by the complexes span the tangent space
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to the bosonic moduli space, as explained in appendix A.3.4. By Serre duality, it is then easy to see

that the combination of the two complexes on the right of (4.110) define the cotangent space T ∗Mm

over the moduli space. Thus the virtual tangent space restricted on Mm is given by

Tvir

∣∣
Mm

= TMm − T ∗Mm , (4.112)

where the second factor has weight t under the U(1)t action. Hence, we can identify the virtual

Euler characteristic with the holomorphic Euler characteristic valued in the exterior powers of the

tangent bundle, which can be identified with the χt-genus of the moduli space Mm. This can be

computed from the ordinary index theorem:

χ(Mm, Ôvir) = χt(Mm) =

∫
Mm

Â(TMm) ch(∧̂•t TMm) , (4.113)

where Ŝ• and ∧̂• are the normalized symmetric and exterior product defined in (4.66). 8

In order to relate this expression to the twisted index computation, we have to introduce classes

over symmetric products as well as some useful identities. First of all, we introduce standard

generators of the cohomology ring of the symmetric product Σn following [48], and as summarized

in appendixA.3.3:

ξi, ξ
′
i ∈ H1(Σn,Z) , η ∈ H2(Σn,Z) . (4.114)

We also define the combination

σi = ξiξ
′
i , i = 1, · · · , g and

g∑
i=1

σi = σ . (4.115)

The generators ξi and ξ′i anticommute with each other and commute with η. The Chern class of the

tangent bundle TΣn is computed in [48]:

c(TΣn) = (1 + η)n−2g+1

g∏
i=1

(1 + η − σi) , (4.116)

from which we obtain the Todd class:

td(TΣn) =

(
η

1− e−η
)n−2g+1 g∏

i=1

η − σi
1− e−η+σi

. (4.117)

This formula can be simplifed by means of the following useful identity due to Don Zagier [49]. For

any power series h(η) on Σn, we have the identity

h(η)n−2g+1

g∏
i=1

h(η − σi) = h(η)n−g+1

g∏
i=1

(
1− σi

h′(η)

h(η)

)
= h(η)n−g+1 exp

(
−σh

′(η)

h(η)

)
,

(4.118)

8In standard notation for the Hirzebruch χy-genus, this is t−dim(Mm)/2χ−t(Mm).
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which follow from σ2
i = 0. If we choose h(η) = η

1−e−η , we get

td(TΣn) =

(
η

1− e−η
)n−g+1

exp

(
σ

eη − 1
− σ

η

)
. (4.119)

The Â genus of the tangent bundle can be obtained from the Todd class (4.119):

Â(TMm) = e−c1(TMm)/2 td(TMm)

=

(
ηe−η/2

1− e−η
)n−g+1

exp

(
σ(eη + 1)

2(eη − 1)
− σ

η

)
,

(4.120)

with n = n+ = m+ g− 1. Finally, the Chern character of the exterior powers of the tangent bundle

can be obtained from (4.116). We find

ch(∧̂•t TMm) =
(
eπimt − e−πimt

)g−1
(
e−η/2+πimt − eη/2−πimt

)n−2g+1

g∏
i=1

(
eπimt−(η−σi)/2 − e−πimt+(η−σi)/2

)
,

(4.121)

where t = e2πimt . Again using the identity (4.118), we can simplify the expression to

ch(∧̂•t TMm) =
(
eπimt − e−πimt

)g−1
(
e−η/2+πimt − eη/2−πimt

)n−g+1

exp

(
−σ(1 + e−η+2πimt)

2(1− e−η+2πimt)

)
.

(4.122)

Combining all these expressions, we now have

χ(Mm, Ôvir) =
(
eπimt − e−πimt

)g−1
∫

Σn

(
η
(
e−(η/2−πimt) − e(η/2−πimt))

eη/2 − e−η/2

)n−g+1

exp

(
σ(eη + 1)

2(eη − 1)
− σ

η
− σ(1 + e−η+2πimt)

2(1− e−η+2πimt)

)
.

(4.123)

The integral can be converted into the residue integral using the following identity, also due to

Don Zagier [49]. For any power series A(η) and B(η), one can show that∫
Σn

A(η)eσB(η) = res
u=0

du
A(u)(1 + uB(u))g

un+1
. (4.124)

Note that this formula holds also for n = 0 where Σn = pt. Using this identity, we find

χt(Mm) = 2πi
(
eπimt − e−πimt

)g−1
res
u=0

(
e−πi(u−mt) − eπi(u−mt)

eπiu − e−πiu
)n−g+1

·
(

e2πiu + 1

2(e2πiu − 1)
− 1 + e2πi(−u+mt)

2(1− e2πi(−u+mt))

)g
.

(4.125)

This exactly reproduces the integral formula of the twisted index in the chamber τ > 2πm
e2Vol(Σ) . One

can check that the residue is non-zero in the region

− g + 1 ≤ m ≤ g − 1 . (4.126)

This is consistent with the geometric observation that Σn becomes a holomorphic fibration over the

Jacobian with fiber CPm−1 when m > g − 1, see appendix A.3.3. In fact, the cohomology of Σn
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factorizes into H•(Σn) = H•(CPm−1) ⊗H• (Jac[g]) and therefore the index vanishes in this region

since χt (Jac[g]) = 0. Multiplying by the weight (−q)m for each flux sector and summing over m, we

have

χt(M) =
∑
m∈Z

(−q)mχt(Mm) = (−q)−g+1
[
(1− qt−1/2)(1− qt1/2)

]g−1

, (4.127)

which agrees with the generating function of the χt genus of the symmetric product of Σ computed

in [48], up to an overall sign. Notice that as dictated by mirror symmetry, this also agrees with the

index of the C-twist of the free hypermultiplet in the absence of background fluxes, see (4.99).

In the limit t→ 1, because of the the relation Â(TM)ch(∧̂•TM) = (−1)dimCMe(M) the virtual

Euler characteristic becomes

χt(M)
∣∣
t→1

= (−1)g−1
∑
m∈Z

qm
∫
Mm

e(Mm) = (−1)g−1q−g+1(1− q)2(g−1) . (4.128)

This reproduces the generating function of the Euler characteristic of the symmetric product of Σ.

C-twist In the case of the C-twist, the underlying moduli space is Mm = Σm. The fluctuations of

the various fields on Mm can be written as follows:

(δX,ψX) ∈ H0(L) , (ηX , FX) ∈ H1(L) ,

(δY, ψY ) ∈ H0(L−1) , (ηY , FY ) ∈ H1(L−1) ,

(ϕ,ψϕ) ∈ H0(KΣ) , (ηϕ, Fϕ) ∈ H1(KΣ)

(4.129)

where deg(L) = m. In this case, the virtual tangent bundle at a point (4.52) coincides with9

H0(O) −→ H0((L⊕ L−1)) −→ H1(KΣ)∗

H1(O) −→ H1((L⊕ L−1)) −→ H0(KΣ)∗ .
(4.130)

Y vanishes identically in the chamber (4.106) and the complex split in various pieces. Note further-

more that H0(L−1) is empty when m > 0. Let us first assume m > 0. Then the virtual tangent

bundle restricted to the bosonic moduli space can be written as

Tvir

∣∣
Mm

= TMm +Nm , (4.131)

where TMm is again the tangent space of the underlying moduli space defined by the complexes

H0(O) −→ H0(L) , H1(O) −→ H1(L) . (4.132)

The second component Nm is the contribution from the normal bundle, which can be obtained from

the cohomology of the remaining complex

H0(L−1)→ H1(KΣ)∗ , H1(L−1)→ H0(KΣ)∗ , (4.133)

9We omit the details about the maps, which we have already spelled out for the H-twist.
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which defines a smooth vector bundle whose class is

[Nm] = −[H•(L⊗KΣ)∗] + [H•(KΣ)∗] . (4.134)

Therefore, for the C-twist, the virtual Euler characteristic computes the holomorphic Euler charac-

teristic valued in Ŝ•N∨m:

χ(Mm, Ôvir) =

∫
Mm

Â(TMm) ∧ ch(Ŝ•N∨m) . (4.135)

Note that this can be extended to m = 0, where the moduli space is a point and the virtual tangent

space is trivial.

The characteristic classes of the normal bundle Nm are be most easily computed by means of a

universal construction. This is summarized in appendix A.3.5. We introduce a universal divisor

∆ ⊂ Σ× SymmΣ (4.136)

of degree m. This is defined by the property that if we restrict to an effective divisor D on Σ '
Σ× {D}, we have

∆|Σ×{D} = D × {D} , (4.137)

which implies

O(∆)|Σ×{D} = O(D) . (4.138)

Let us denote by π and f the projection onto each of the factors:

Σ× SymmΣ

π

xx

f

$$
SymmΣ Σ

(4.139)

Then
R0π∗ (O(∆)⊗ f∗M) |D = H0(Σ,O(D)⊗M) ,

R1π∗ (O(∆)⊗ f∗M) |D = H1(Σ,O(D)⊗M) ,
(4.140)

for any line bundle M on Σ, where R•π∗ is the derived pushforward. For the sake of simplicity, we

will denote it by π∗. In particular, we can write the class of the vector bundle Nm in (4.134) as

[Nm] = −[π∗ (O(∆)⊗ f∗KΣ)
∗
] + [H•(KΣ)∗] . (4.141)

The Grothendieck-Riemann-Roch formula tells us

td(TMm) ch (π∗ (O(∆)⊗ f∗KΣ)) = π∗ [td(Σ× Σm) ch (O(∆)⊗ f∗KΣ)] . (4.142)

Using π∗td(Σ× Σm) = td(Σm) ∧ π∗td(Σ), we find

ch (π∗ (O(∆)⊗ f∗KΣ)) = π∗ [td(Σ) ∧ ch (O(∆)⊗ f∗KΣ)] . (4.143)
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The cohomology class of ∆ on the product Σ × Σm is computed in [50] using the Künneth decom-

position. We can write a class δ ∈ H2(Σ× Σm,Z) as

δ = δ2,0 + δ1,1 + δ0,2 , (4.144)

where δi,j is an element of Hi(Σ)⊗Hj(Σm). The result is

δ = mηΣ + γ + η , (4.145)

where ηΣ is the Kähler class on Σ, and γ is an element of H1(Σ)⊗H1(SymmΣ). One can check that

they satisfy η2
Σ = ηΣγ = γ3 = 0 and γ2 = −2ηΣσ. Using these identities, we find

ch(O(∆)) = eη + mηΣe
η − ηΣσe

η + γeη . (4.146)

The remaining factors in (4.143) can be easily computed:

td(Σ) = 1 + (1− g)ηΣ , ch(f∗KΣ) = 1 + 2(g − 1)ηΣ . (4.147)

Combining all these expressions, we find

ch (π∗ (O(∆)⊗ f∗KΣ)) = (m− σ + g − 1)t−1eη , (4.148)

where t = e2πimt . From this expression, we obtain the Chern class of this bundle. Using σ2
i = 0, we

can rewrite (4.148) as

ch (π∗ (O(∆)⊗ f∗KΣ)) =

[
(m− 1)t−1eη +

g∑
i=1

t−1eη−σi

]
, (4.149)

which implies

c (π∗ (O(∆)⊗ f∗KΣ)) = (1 + η − 2πimt)
m−1

g∏
i=1

(1 + η − 2πimt − σi). (4.150)

Applying the identity (4.118), we arrive at the expression

ch(Ŝ•N∨m) = (eπimt − e−πimt)1−g(e−(η/2−πimt) − e(η/2−πimt)/2)m+(g−1) exp

[
−σ(eη−2πimt − 1)

2(eη−2πimt − 1)

]
.

(4.151)

Multiplying all the contributions, the holomorphic Euler characteristic can now be written as

χ(Mm, Ôvir) = (eπimt − e−πimt)1−g
∫
Mm

(
ηe−η/2

1− e−η
)m−g+1

(e−(η/2−πimt) − e(η/2−πimt))m+(g−1)

∧ exp

[
−σ
η

+
σ(eη + 1)

2(eη − 1)
− σ(eη−2πimt + 1)

2(eη−2πimt − 1)

]
.

(4.152)

Using the identity (4.124), we can convert this formula into the residue integration

χ(Mm, Ôvir) = 2πi(eπimt − e−πimt)1−g res
u=0

(
eπi(−u+mt) − eπi(u−mt)

)m+g−1

(eπiu − e−πiu)
m−g+1

·
(

e2πiu + 1

2(e2πiu − 1)
− e2πi(u−mt) + 1

2(e2πi(u−mt) − 1)

)g
,

(4.153)
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which exactly reproduces the twisted index computation. One can check that

χ(Mm, Ôvir) =

{
1 , m = 0
0 , m 6= 0

(4.154)

Notice that this result is also compatible with the t→ 1 limit as described below (4.88), as well as

with the result of the H-twist of the free hypermultiplet in the absence of background fluxes (4.99),

in accordance with mirror symmetry.

4.4.3 SQED[N ]

Let us now generalize the previous discussion to a U(1) gauge theory with N fundamental hyper-

multiplets. These theories have non-trivial Higgs-branch flavour symmetry, and they satisfy the

conditions spelled out in 4.1.2 provided N ≥ 2. We assume the following charge assignment:

U(1)G U(1)t SU(N)H U(1)H U(1)C
X 1 1

2
1
2 0

Y −1 1
2

1
2 0

ϕ 0 −1 0 0 1

. (4.155)

N = 2 moduli space

The BPS moduli space M that preserves N = 2 supersymmetry is given by triples (A,X, Y ) which

satisfy following equations:

∗ FA + e2
(
XX† − Y †Y − τ

)
= 0 , ∂̄AXi = ∂̄AYi = 0 ,

N∑
i=1

XiYi = 0 , (4.156)

modulo U(1) gauge transformations. As in SQED[1], the moduli space of solutions decomposes into

topological sectors

M =
⋃
m∈Z

Mm , (4.157)

where m is the degree of the gauge bundle. We will work in the limit s → +∞, where we recall

s = e2Vol (Σ) so that the moduli space is uniformly described with non-vanishing X. As explained

in section 4.2.4, the algebraic description of the moduli space coincides with the space of stable

quasi-maps into the Higgs branch T ∗CPN−1 (C-twist) or twisted stable quasi-maps (H-twist).

In order to compute the index, we consider the action of the Higgs branch flavour symmetry

GH = SU(N) and apply the localization principle to the diagonal subgroup

diag (y1 , · · · , yN ) ∈ TH ,

N∏
i=1

yi = 1 . (4.158)

The variables ai’s are chosen to be completely generic, so that we have ai 6= aj for any pair i, j =

1, · · · , N . The subgroup acts on the moduli space as

tH : (dA, {Xi, Yi})→
(
dA, {aiXi, a

−1
i Yi}

)
. (4.159)
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In addition to the TH action, we can also consider the action of U(1)t which acts on X and Y as

multiplication by t1/2 = eπimt . The fixed loci of (4.158) is determined up to the action of the gauge

symmetry. In our limit, the fixed locus is a disjoint union of N components

Mfixed
m =

N⋃
i=1

M
(i)
m , (4.160)

which are defined by setting all the bosonic fields to zero except for one of the Xi’s:

M
(i)
m =

{
(A,Xi)| ∗ FA + e2(XiX

†
i − τ) = 0 , ∂̄AXi = 0

}
/ U(1)G . (4.161)

Note that M
(i)
m can be again identified with a symmetric power of the curve Σ

M
(i)
m = Σn , n = m + r(g − 1) , (4.162)

and that for each fixed locus there exists an inclusion

σi : M
(i)
m →Mm . (4.163)

From now on, we understand the moduli space algebraically and work with its virtual tangent

space. The virtual tangent space at a generic point on Mm is given by the cohomology of the

following complexes:

H0(O)
α0

−→ H0(MX ⊕MY )
β0

−→ H1(K1−r
Σ )∗ ,

H1(O)
α1

−→ H1(MX ⊕MY )
β1

−→ H0(K1−r
Σ )∗ .

(4.164)

Here we defined

MX =

N⊕
i=1

L⊗Kr/2
Σ and MY =

N⊕
i=1

L−1 ⊗Kr/2
Σ , (4.165)

where each summand has weight yit
1/2 and y−1

i t1/2 respectively under the action of TH×U(1)t. We

recall that the maps are defined by

α : ε 7→ (εX1, · · · , εXN ,−εY1, · · · ,−εYN )

β : (A1, · · · , AN , B1, · · · , BN ) 7→
N∑
i=1

AiYi +BiXi .
(4.166)

We notice that if we restrict to points in a component of the fixed locus M
(i)
m , the complexes split

into various pieces. From the first line of (4.164), we have

H0(O) −→ H0(L⊗Kr/2
Σ ) , H0(L−1 ⊗Kr/2

Σ ) −→ H1(K1−r)∗ ,

H0

 N⊕
j 6=i

(L⊕ L−1)⊗Kr/2
Σ

 −→ 0 .
(4.167)

From the second line, we obtain similar complexes with the degree shifted by one:

H1(O) −→ H1(L⊗Kr/2
Σ ) , H1(L−1 ⊗Kr/2

Σ ) −→ H0(K1−r
Σ )∗ −→ 0 ,

H1

 N⊕
j 6=i

(L⊕ L−1)⊗Kr/2
Σ

 −→ 0 .
(4.168)
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As explained around (4.111), we can identify the first complex of (4.167) and (4.168) as the tangent

space of the fixed locus M
(i)
m . Therefore the virtual tangent space restricted to the fixed locus can

be written as

Tvir

∣∣
M

(i)
m

= TM
(i)
m +N

(i)
m . (4.169)

The second piece corresponds to the contributions of the virtual normal bundle N
(i)
m , which have a

non-zero weight under the action of TH × U(1)t. The class of the virtual normal bundle is

[N
(i)
m ] = [H•(L−1 ⊗Kr/2

Σ )]− [H•(K1−r
Σ )∗] +

H•
 N⊕
j 6=i

(L⊕ L−1)⊗Kr/2
Σ

 . (4.170)

The first two terms

[H•(L−1 ⊗Kr/2
Σ )]− [H•(K1−r

Σ )∗] := Ñ
(i)
m , (4.171)

are the contributions of the multiplet Y i and the vector multiplet, whose Chern classes were com-

puted in the last section. The last summand of (4.170) contains contributions from the hypermul-

tiplets (Xj , Yj) with j 6= i, which have non-zero weights (yji, y
−1
ji t) under the action tH × U(1)t.

We will denote the contributions from these fields as N
(i),Xj
m := [H•(L ⊗ K

r/2
Σ )] and N

(i),Yj
m :=

[H•(L−1 ⊗Kr/2
Σ )] for j 6= i. Now the equivariant virtual Euler characteristic can be written as

χ(Mm, Ôvir) =

N∑
i=1

∫
M

(i)
m

Â(TM
(i)
m ) ch(Ŝ•N (i)∨

m )

=

N∑
i=1

∫
M

(i)
m

Â(TM
(i)
m ) ch(Ŝ•Ñ (i)∨

m )

N∏
j 6=i

[
ch(Ŝ•N (i),Xj∨

m ) ch(Ŝ•N (i),Yj∨
m )

]
.

(4.172)

The Chern class of [N
(i),Xj
m ] and [N

(i),Yj
m ] for j 6= i can also be computed from the universal con-

struction discussed in the last section. We can derive

c
(
N

(i),Xj
m ,mji

)
= (1 + η + 2πimji)

n−2g+1

g∏
a=1

(1 + η + 2πimji − σa) . (4.173)

where we defined ai = e2πimi and mij := mi − mj . Using the identity (4.118), we can write the

Chern characteristics of the symmetric powers as

ch
(
Ŝ•N (i),Xj∨

m

)
=

(
e(−η/2+πimji)

1− e−(η−2πimji)

)m+(r−1)(g−1)

exp

[
σ(eη−2πimji + 1)

2(eη−2πimji − 1)

]
. (4.174)

From the multiplet Yj (j 6= i),

ch
(
Ŝ•N (i),Yj∨

m

)
=
(
e(−η/2+πimji+πimt) − eη/2−πimji−πimt

)m−(r−1)(g−1)

· exp

[
σ(e−η+2πi(mji+mt) + 1)

2(e−η+2πi(mji+mt) − 1)

]
.

(4.175)

The contribution from ch
(
Ŝ•Ñ (i)

m

)
is the same as the normal bundle contribution studied in the

last example. We have

ch
(
Ŝ•Ñ (i)∨

m

)
=
(
eπimt − e−πimt

)(2r−1)(g−1)
(
eπimt−η/2 − e−πimt+η/2

)m−(r−1)(g−1)

· exp

[
σ(e−η+2πimt + 1)

2(e−η+2πimt − 1)

]
.

(4.176)
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In converting this expression into the residue integral using (4.124), we find that the equivariant

virtual Euler characteristic can be written as

χ(Mm, Ôvir) = 2πi
(
t1/2 − t−1/2

)(2r−1)(g−1)

·
N∑
i=1

res
u=mi

du

N∏
j=1

(
eπi(−u+mj+mt) − eπi(u−mj−mt)

)m−(g−1)(r−1)(
eπi(u−mj) − eπi(−u+mj)

)m+(g−1)(r−1)

·

 N∑
j=1

(
1 + e2πi(−u+mj)

2(1− e2πi(−u+mj))
+

1 + e2πi(u−mj−mt)

2(1− e2πi(u−mj−mt))

)g .

(4.177)

This again reproduces the integral representation of the twisted index computation.

The t→ 1 limit

H-twist For the H-twist, the expression (4.177) (with r = 1) can be understood as the virtual χt

genus of the U(1)t-fixed locus

L =
⊕
m∈Z

Lm , (4.178)

where Lm can be identified as a space of degree m twisted quasi-maps to the compact core CPN−1,

the base of Higgs branch MH . This space is parametrized by the solution (A,Xi) to the equations

∗ FA + e2
(
XX† − τ

)
= 0 , ∂̄AX = 0 , (4.179)

modulo U(1) gauge tranformations.

The H-twisted N = 4 moduli space for this theory is identical to that of the N = 2 moduli space

defined in (4.157). In the limit t→ 1, we recover the expression for the integral of the virtual Euler

class of the fixed locus L inside the moduli space. This quantity can be directly computed using the

alternative localization scheme with respect to the TH ⊂ GH action. Then the index can be written

as a sum of the Euler characteristics of the smooth compact fixed loci M
(i)
m defined in (4.161). We

have ∑
m∈Z

(−q)mχ(Mm, Ôvir)
∣∣
t→1

= (−1)g−1
∑
m∈Z

qm
N∑
i=1

∫
M

(i)
m

e(M
(i)
m )

= (−1)g−1N(q1/2 − q−1/2)2(g−1) ,

(4.180)

which correctly reproduces the generating function for the Euler characteristic of the N copies of the

SymmΣ. Note that the residue integration at each i is independent of the equivariant parameters

{ai}, which agrees with the fact that the Hilbert space of the effective quantum mechanics is the de

Rham cohomology [57].

C-twist For the C-twist, imposing N = 4 BPS equations trivializes the line bundle L, and the

moduli space parametrizes the the solutions ({Xi, Yi}) to the equation

XX† − Y †Y = τ ,

N∑
i=1

XiYi = 0 , (4.181)
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for constant Xi and Yi, modulo U(1) gauge transformation. This is the resolution of the Higgs

branch MH = T ∗(CPN−1) inside the N = 2 moduli space M.

The t→ 1 limit with r = 0 of the result (4.177) can be understood as the Rozansky-Witten invari-

ant computing the holomorphic Euler characteristic ofMH valued in the vector bundle
(
∧̂•T ∗MH

)g
:

χ(M, Ôvir)
∣∣
t→1

=

∫
MH

Â (TMH) ∧ ch

[(
∧̂•T ∗MH

)⊗g]
. (4.182)

MH is non-compact and this expression can be evaluated from the equivariant localization with

respect to the TH ⊂ GH action. Let us consider the action of gH defined in (4.158). When τ > 0,

the fixed loci are N isolated points, where i-th fixed point is defined by Xi 6= 0 and all the other

bosonic fields are identically zero. From the fixed point formula we arrive at the expression

χ(M, Ôvir)(y → 1) =

N∑
i=1

∏
j 6=i

(
e−πimij

1− e−2πimij

)2∏
j 6=i

(
eπimij − e−πimij

)2g
=

N∑
i=1

∏
j 6=i

(
e−πimij − eπimij

)2(g−1)
.

(4.183)

4.4.4 SQCD[Nc, Nf ]

We can generalize our previous analysis to non-Abelian gauge groups, provided that the fixed loci

of the moduli space are products of symmetric products of the curve Σ. In this section we present

the simplest example, which is SQCD[Nc, Nf ] where Nf ≥ 2Nc, as discussed in section 4.1.2. The

fields of the theory are charged as follows:

U(Nc)G U(1)t SU(N)H U(1)H U(1)C
X 1

2
1
2 0

Y 1
2

1
2 0

ϕ adj −1 1 0 1

(4.184)

N = 2 moduli space

The N = 2 BPS equations for SQCD[Nc, Nf ] read

∗ FA + e2
(
XX† − Y †Y − 2[ϕ†, ϕ]− τ

)
= 0

∂̄AX = ∂̄AY = Dz̄ϕ = 0

ϕ ·X = ϕ · Y = X · Y = 0 .

(4.185)

The moduli space of solutions to BPS equations modulo gauge transformations can be decomposed

into topological sectors labelled by the degree of the holomorphic bundle in the fundamental repre-

sentation associated to the gauge bundle P :

M =
⋃

m∈Λ∨C

Mm . (4.186)
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We again consider the limit s→ +∞, where s = e2Vol (Σ). It follows from the discussion in section

4.2.3 that by using a Hitchin-Kobayashi correspondence, the moduli space has the follwing algebraic

description for every m. A point of the moduli space in the component Mm is given by

• A holomorphic GL(Nc,C)-bundle E of degree m;

• Holomorphic sections (X,Y ) of associated bundles EX and EY , corresponding to Nf copies of

the fundamental and anti-fundamental representation respectively;

• Subject to the complex moment map condition Y ·X = 0;

• Subject to the stability condition that X has generically maximal rank on Σ;

• Modulo complexified gauge transformations.

This can be thought of as the space of stable quasi-maps into the Higgs branchMH = T ∗G(Nc, Nf )

(C-twist) or twisted stable quasi maps (H-twist).

Let us consider the fixed points of a maximal torus TH of the flavour symmetry, which locally

acts as

X 7→ XtH , , Y 7→ tHY , ∂̄AC 7→ ∂̄AC , (4.187)

for tH represented as a diagonal Nf ×Nf matrix, and with AC the connection on the holomorphic

bundle EC. The fixed points are solutions to the equations

gCX = XtH , Y gC = tHY , g−1
C dACgC = dAC , (4.188)

for an element of the complex gauge transformation gC ∈ GC. Given the stability condition on X,

gC must act non-trivially. From the last equation of (4.188), EC decomposes at fixed points as a

direct sum of line bundles

EC = L1 ⊕ · · · ⊕ LNc . (4.189)

Let us denote ma = deg(La), which satisfy

m =
∑
a

ma ∈ H2(MH ,Z) ∼= Z . (4.190)

The associated bundles EX and EY decompose accordingly

EX ∼= (L1 ⊕ · · · ⊕ LNc)⊕Nf ⊗Kr/2

EY ∼=
(
L−1

1 ⊕ · · · ⊕ L−1
Nc

)⊕Nf ⊗Kr/2 .
(4.191)

For later convenience, we also note that on any fixed locus EV and EΦ decompose as 10

EV ∼=

ONc ⊕⊕
a6=b

La ⊗ L−1
b

 and EΦ
∼=

ONc ⊕⊕
a6=b

La ⊗ L−1
b

⊗K1−r
Σ . (4.193)

10In fact, the complexified Lie algebra decomposes under the adjoint action as

gC = tC ⊕
⊕
α∈gC

gCα , (4.192)

where the summands can be identified with diagonal matrices (over which the adjoint action of tC ∼= (a1, · · · , aN ) is
trivial) and matrices with one single off-diagonal entry eij (the action corresponding to xij 7→ aia

−1
j xij).
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Fixed points are labelled by Nc-subsets I = {i1, · · · , iNc} ⊂ {1, · · · , Nf} so that the only non-

vanishing sections are

Xa
ia 6= 0 , (4.194)

and fixed loci reduce to disjoint unions of Nc copies of symmetric products

MT
m =

⊔
(m1,··· ,mNc )∑

a ma=m

(
Nc∏
a=1

Symma+r(g−1)Σ

)
, (4.195)

where as usual r = 1, 0 for H- and C-twist respectively.

The breaking of the gauge bundle into a sum of Abelian contributions makes the generalisation

from SQED[N ] to SQCD[Nc, Nf ] rather straightforward, and we will therefore be brief, mainly

working at the level of K-theory classes. We will work on the component m = (m1, · · · ,mNc) of the

fixed locus I, which we denote MI,m.

Over MI,m, the virtual tangent bundle decomposes into the following contributions

[
Tvir|MI,m

]
=

Nc∑
a=1

(
− [H• (O)] +

[
H•
(
Liaa ⊗Kr/2

Σ

)])

+

Nc∑
a=1

Nf∑
j=1
j 6=ia

H• (Lja ⊗Kr/2
Σ

)
︸ ︷︷ ︸

:=NXaj

+

Nc∑
a=1

Nf∑
j=1

H• ((Lja)−1 ⊗Kr/2
Σ

)
︸ ︷︷ ︸

:=NY aj



−
Nc∑
a=1

H• (Kr
Σ)︸ ︷︷ ︸

:=NΦaa

−∑
a 6=b

H• (L−1
a ⊗ Lb ⊗Kr

Σ

)︸ ︷︷ ︸
:=NΦab

−∑
a6=b

H•(La ⊗ L−1
b )︸ ︷︷ ︸

:=NVab

 .
(4.196)

The first line includes all contributions tangent to the fixed locus (fixed part), whereas all other

contributions are normal (moving part). In order to express these contributions in terms of charac-

teristic classes over the fixed locus
∏Nc
a=1 Σna , let us first define the generators of cohomology class

as follows:

ηa ∈ H2(Σna ,Z) and σab =

g∑
i=1

ξai ξ
′
i
b
, ξai , ξ

′a
i ∈ H1(Σna ,Z) . (4.197)

Then from the fixed part, we obtain the tangent bundle over the fixed locus which contributes

Â
(
TMI,m

)
=

Nc∏
a=1

(
ηae
−ηa/2

1− e−ηa
)ma+(r−1)(g−1)

exp

(
σaa(eηa + 1)

2(eηa − 1)
− σaa

ηa

)
. (4.198)

The contributions from the moving part NI,m can be summarized as

Nc∏
a=1

 Nf∏
j=1
j 6=ia

ch(Ŝ•NXa∨
j )

Nf∏
j=1

ch(Ŝ•NY a∨j )

Nc∏
b=1

ch(∧̂•NΦ∨ab)

∏
a6=b

ch(∧̂•NV ∨ab) . (4.199)

The arguments (4.174)-(4.176) can be straightforwardly generalized to obtain the contribution from

the hypermultiplets:

ch(Ŝ•NXa∨
j ) =

(
e−ηa/2+πimjia

1− e−ηa+2πimjia

)ma+(r−1)(g−1)

exp

[
σaa(eηa−2πimjia + 1)

2(eηa−2πimjia − 1)

]
(4.200)
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and

ch(Ŝ•NY a∨j ) =
(
e−ηa/2+πi(mjia+mt) − eηa/2−πi(mjia+mt)

)ma−(r−1)(g−1)

· exp

[
σaa(e−ηa+2πi(mjia+mt) + 1)

2(e−ηa+2πi(mjia+mt) − 1)

]
.

(4.201)

The contribution from the multiplet in the adjoint representation, NVab and NΦab can be written

as classes on Symma+r(g−1)Σ × Symmb+r(g−1)Σ. We computed the characteristic classes of these

contributions in appendix A.6. To summarize, the vector multiplet contribution is∏
a6=b

ch(∧̂•NV ∨ab) =
∏
a6=b

(
e(−ηa+ηb)/2−πi(mia−mib ) − e(ηa−ηb)/2+πi(mia−mib )

)−ma+mb+1−g

exp

[
(σaa + σbb − σab − σba)

(e−ηa+ηb−2πi(mia−mib ) + 1)

2(e−ηa+ηb−2πi(mia−mib ) − 1)

]
.

(4.202)

Note that the exponential terms in (4.202) with positive and negative root α cancel each other out,

and we are left with a simple expression∏
a 6=b

ch(∧̂•NV ∨ab) = (−1)
∑
α>0 α(m)

∏
a 6=b

(
e(−ηa+ηb)/2−πi(mia−mib ) − e(ηa−ηb)+πi(mia−mib )

)1−g
.

(4.203)

The contribution from the adjoint chiral NΦab can be similarly written as

Nc∏
a,b=1

ch(∧̂•NΦ∨ab) =

Nc∏
a,b=1

(
e(ηa−ηb)+πi(mia−mib )+πimt − e(−ηa+ηb)/2−πi(mia−mib )−πimt

)ma−mb−(1−2r)(g−1)

exp

[
(σaa + σbb − σab − σba)

eηa+ηb+2πi(mia−mib )+2πimt − 1

2(eηa−ηb+2πi(mia−mib )+2πimt − 1)

]
(4.204)

We can now compute the equivariant virtual Euler characteristic, which by (4.68) can be written

as
χ(M, Ôvir)

=
∑
m∈Z

(−q)m
∑

(m1,··· ,mNc )∑
a ma=m

∑
I⊂{1,··· ,Nf}

∫
MI,m

Â(TMI,m)ch(Ŝ•N∨I,m) . (4.205)

where by (4.199), the integral can be expanded as

∫
MI,m

Â(TMI,m)
∏
a∈I

 Nf∏
j=1
j 6=ia

ch(Ŝ•NXa∨
j )

Nf∏
j=1

ch(Ŝ•NY a∨j )

Nc∏
b=1

ch(∧̂•NΦ∨ab)

∏
a 6=b

ch(∧̂•NV ∨ab) .

(4.206)

Combining the result from (4.198)-(4.204), these contributions are equal to

∫
MI,m

(∏
a∈I

ηma+(r−1)(g−1)
a

)
AI(η1, · · · , ηNc) exp

 Nc∑
a,b

σabBI,ab(η1, · · · , ηNc)

 . (4.207)
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where

AI(η1, · · · , ηNc) =
∏
a∈I

Nf∏
j=1

[(
e−ηa/2+πimjia

1− e−ηa+2πimjia

)ma+(r−1)(g−1)

·
(
e−ηa/2+πi(mjia+mt) − e(ηa/2−πi(mjia+mt)

)ma−(r−1)(g−1)
]

∏
a,b∈I
a6=b

(
e(−ηa+ηb)/2−πi(mia−mib ) − e(ηa−ηb)/2+πi(mia−mib )

)−ma+mb+1−g

∏
a,b∈I

(
e(ηa−ηb)/2+πi(mia−mib )+πimt − e(−ηa+ηb)/2−πi(mia−mib )−πimt

)ma−mb−(1−2r)(g−1)

(4.208)

and

BI,ab(η1, · · · , ηNc) = HI,ab(η1, · · · , ηNc)− δabη−1
a , (4.209)

where Hab is given by the expression

HI,ab = δab

Nf∑
j=1

1 + e−ηa+2πimjia

2(1− e−ηa+2πimjia )
+

Nc∑
c6=a

1 + eηa−ηc+2πi(mia−mic )+2πimt

2(1− e(ηa−ηc+2πi(mia−mic )+2πimt))

+

Nf∑
j=1

1 + eηa−2πi(mjia+mt)

2(1− eηa−2πi(mjia+mt))
+

Nc∑
c 6=a

1 + eηc−ηa+2πi(mic−mia )+2πimt

2(1− eηc−ηa+2πi(mic−mia )+2πimt)


+ (1− δab)

[
1 + eηa−ηb+2πi(mia−mib )+2πimt

2(1− eηa−ηb+2πi(mia−mib )+2πimt)
+

1 + eηb−ηa−2πi(mia−mib )+2πimt

2(1− eηb−ηa−2πi(mia−mib )+2πimt)

]
.

(4.210)

The last expression in (4.205) can be converted to a product of residue integrals as in the Abelian

examples. We show in appendix A.6 that the identity (4.124) over Σn can be generalized to integrals

over
∏N
i=1 Σn: For any power series A(η1, · · · , ηNc) and Bab(η1, · · · , ηNc) on

∏Nc
i=1 Σni , we have

∫
∏Nc
i=1 Σni

A(η1, · · · , ηNc) exp

 Nc∑
a,b=1

σabBab(η1, · · · , ηNc)


= res
u1=0

· · · res
uNc=0

A(u1, · · ·uNc)
un1+1

1 · · ·unNc+1
Nc

[
det
ab

(δab + uaBab(u1, · · · , uNc))
]g

.

(4.211)

Then the integral (4.205) becomes

χ(M, Ôvir)

=
∑

m∈ZNc
(−q)

∑Nc
a=1 ma

∑
I⊂{1,··· ,Nf}

res
u1=0

· · · res
uNc=0

AI(u1, · · · , uNc)
[
det
ab

HI,ab(u1, · · · , uNc)
]g

.

(4.212)

By a redefinition of the integration variables ua → ua −mia +mt/2 for each summand labelled by
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I, the integral can be rewritten as

χ(M, Ôvir)

= (2πi)Nc
∑

m∈ZNc
(−q)

∑Nc
a=1 ma

∑
I⊂{1,··· ,Nf}

(
Nc∏
a=1

res
ua=mia−mt/2

)
A(u1, · · · , uNc)

[
det
ab

Hab(u1, · · · , uNc)
]g

.

(4.213)

where A and H is

A(u1, · · · , uNc) =

Nc∏
a=1

Nf∏
j=1

(eπi(−ua+mj+mt/2) − eπi(ua−mj−mt/2))ma−(r−1)(g−1)(
eπi(ua−mj+mt/2) − eπi(−u+mj−mt/2)

)ma+(r−1)(g−1)

Nc∏
a,b=1
a6=b

(
eπi(−ua+ub) − eπi(ua−ub)

)−ma+mb+1−g

Nc∏
a,b=1

(
eπi(ua−ub+mt) − eπi(−ua+ub−mt)

)ma−mb−(1−2r)(g−1)

(4.214)

and

Hab(u1, · · · , uNc) = δab

Nf∑
j=1

1 + e2πi(−ua+mj+mt/2)

2(1− e2πi(−ua+mj+mt/2))
+

Nc∑
c6=a

1 + e2πi(ua−uc+mt)

2(1− e2πi(ua−uc+mt))

+

Nf∑
j=1

1 + e2πi(ua−mj+mt/2)

2(1− e2πi(ua−mj+mt/2))
+

Nc∑
c6=a

1 + e2πi(uc−ua+mt)

2(1− e2πi(uc−ua+mt))


+ (1− δab)

[
1 + e2πi(ua−ub+mt)

2(1− e2πi(ua−ub+mt))
+

1 + e2πi(ub−ua+mt)

2(1− e2πi(ub−ua+mt))

]
.

(4.215)

Finally, it is straightforward to show that the residue integral together with the choice of fixed point

is the equivalent to the Jeffrey-Kirwan residue integral of the integrand with the choice η > 0:

∑
I⊂{1,··· ,Nf}

(
Nc∏
a=1

res
ua=mia−mt/2

)
=

1

N !

∑
u∗={ui}

JK-Res
u=u∗

(Qu∗(u), η > 0) . (4.216)

Therefore we again proved that the equivariant virtual Euler characteristic of the moduli space

reproduces the twisted indices computation. This procedure can be generalized to the class of the

theories defined in section 4.1.2.

The limit t→ 1

H-twist The N = 4 BPS equation for the H-twist is given by

∗ FA + e2
(
XX† − Y †Y − τ

)
= 0 ,

∂̄AX = ∂̄AY = ∂̄Aϕ = [ϕ†, ϕ] = 0 ,

X · ϕ = ϕ · Y = X · Y = 0 ,

(4.217)

modulo U(Nc) gauge transformation. If we consider localization with respect to the U(1)t action,

the fixed locus MU(1)t is parametrized by the solutions (A,X) to the equations

∗ FA + e2
(
XX† − τ

)
= 0 , ∂̄AX = 0 , (4.218)
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modulo U(Nc) gauge transformations, which can be identified as the space of twisted quasi-maps to

the compact core inside the Higgs branchMH = T ∗G(Nc, Nf ), which we denote by L. Similarly to

the SQED example, the index (4.213) with r = 1 can also be thought of as the virtual χt genus

χ(M, Ôvir)|r=1 = χvir
t (L) . (4.219)

In the limit t→ 1, the index reduces to the generating function of the integral of the virtual Euler

class. This can be evaluated using the virtual localization with respect to the TH action (4.187):

χ(M, Ôvir)
∣∣
r=1
t→1

= (−1)Nc(g−1)
∑

m∈ZNc
qm

∑
(m1,··· ,mNc )∑

a ma=m

∑
I

∫
Mm,I

e(TMm,I) . (4.220)

Summing over m, we have

χ(M, Ôvir)
∣∣
r=1
t→1

= (−1)Nc(g−1)

(
Nf
Nc

)(
q1/2 − q−1/2

)2Nc(g−1)

, (4.221)

using the generating function of the Euler numbers for a symmetric product (4.128).

C-twist As we studied in section 4.3, imposing the N = 4 BPS equations trivializes the vector

bundle E, and the moduli space reduces to the resolution of the Higgs branchMH = T ∗G(Nc, Nf ).

The index in the t → 1 limit then computes the equivariant Rozansky-Witten invariants of the

target MH . This can be directly computed from the m = 0 sector of the expression (4.205), taking

the t→ 1 limit and extracting the constant term in the power series expansion of the characteristic

classes. This procedure gives

χ(M, Ôvir)
∣∣
r=0
t→1

=
∑
I

∏
i∈I
j∈I∨

(
e−πimij − eπimij

)2(g−1)
,

(4.222)

where I∨ is the complement of the index set I in {1, · · · , Nf}.

4.5 Mirror Symmetry

4.5.1 Symplectic Duality for Twisted Stable Quasi-maps

A distinctive feature of the class of the theories we consider in this chapter is mirror symmetry. We

can find a pair of UV theories T and T ∨, which are dual under exchange of the following pairs of

objects and parameters:
H-twist ↔ C-twist

MH ↔ MC

GH ↔ GC

{mi} ↔ {ζi}

t ↔ t−1 .

(4.223)
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Recall that the duality holds when the theory flows to the deep infrared. As discuss in section (3.3),

this limit can be viewed as the s → ∞ limit, taken in a chamber determined by τ . It follows that

the twisted indices computed in this chamber are expected to exhibit the duality exchanging the

parameter as in (4.223).

Given the interpretation of the twisted indices we have offered in this chapter, mirror symmetry

implies an extremely non-trivial relation between two generating functions of enumerative invariants

of twisted stable quasi-maps into a conical symplectic resolution of the Higgs branch MH . In fact,

mirror symmetry implies two relations

IH(ζ,m, t)[T ] = IC(m, ζ, t−1)[T ∨] , (4.224)

and

IC(ζ,m, t)[T ] = IH(m, ζ, t−1)[T ∨] . (4.225)

In particular, this exchanges the equivariant parameters m and the degree counting parameters ζ of

two generating functions. We may call this symplectic duality for stable quasi-maps.

The simplest example is the theory SQED[2], which is a self-dual theory T = T ∨. The generating

functions for the first few genera are explicitly computed in [26]. For example, the generating function

for the H-twist with g = 2 is

IH(q, y, t)
∣∣
g=2

= − (1 + t)
[
t(y + y−1 − 2)(q + q−1 − 2) + 4(1− t)2

]
t1/2(t− y)(t− y−1)

, (4.226)

where y = e2πi(m1−m2) and q = e2πiζ . This can now be interpreted as the generating function for

the equivariant virtual χt genus of L, where L can be identified with the space of twisted stable

quasi-maps into P1. On the other hand, for the C-twist, we have

IC(q, y, t)
∣∣
g=2

= − (1 + t)[t(y + y−1 − 2)(q + q−1 − 2) + 4(1− t)2]

t1/2(t− q)(t− q−1)
. (4.227)

This corresponds to the generating function of the virtual Euler characteristic for stable quasi-maps.

It agrees with (4.226) by exchanging q ↔ y and t↔ t−1 as expected.

4.5.2 Mirror Symmetry for the N = 4 Index

As studied in section 4.3, the twisted indices drastically simplify in the limit t→ 1. The H-twisted

indices in this limit can be identified with the sum over the integrals of the Euler class of the fixed

loci

IH(q) := IH(q, a, t)|t→1 =
∑

m∈Λ∨G

(−q)m
∑
I

(−1)dimCMm,I

∫
Mm,I

e
(
Mm,I

)
, (4.228)

which is independent of the equivariant parameters a. On the other hand, C-twisted indices receive

contributions from the degree zero sector only and are therefore independent of q in the limit t→ 1.

The index in this limit computes the Rozansky-Witten invariants

IC(a) := IC(q, a, t)|t→1 =

∫
MH

Â (TMH) ch

[(
∧̂•T ∗MH

)⊗g]
, (4.229)
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where MH is the resolved Higgs branch.

Mirror symmetry, or symplectic duality, takes a simple form in this limit

IH(q)[T ] = IC(y)[T ∨] , (4.230)

with the identification q = y. Below, we show explicitly that this holds for Abelian theories and for

T [SU(N)].

4.5.3 Abelian Gauge Theories

Abelian 3d N = 4 gauge theories are specified by a rank-r gauge group
∏r
a=1 U(1)a and N hy-

permultiplets (Xi, Y i) with charges (Qai ,−Qai ) under U(1)a. We will denote maximal tori of the

symmetry groups GH and GC by TH =
∏N−r
b=1 U(1)b and TC =

∏r
c=1 U(1)c respectively. The charges

of the hypermultiplets will be similarly denoted by (qbi ,−qbi ).
The vectors ~qb are defined only modulo the vectors ~Qa; together, they form a basis for RN . It is

customary to assign to an abelian theory the N ×N matrix

Q =

(
Q
q

)
. (4.231)

The condition det(Q) = 1 ensures that the basis is minimal. We turn on real masses {m1, . . . ,mN−r} ∈
tH ∼= RN−r, and generic FI parameter ~ζ ∈ tC ∼= Rr, and assume that the fixed points of the resolved

Higgs branch under the actions generated by the real masses are isolated.

We claim that isolated fixed points of the Higgs branch are given by a selection of

• r hypermultiplets whose charge matrix is non-degenerate, represented by a multi-index I =

{i1 . . . , ir} ,

• a sign vector {αi1 , . . . , αir}, αij ∈ {+,−} .

This can be seen as follows. The fixed-point equations are(
r∑
a=1

Qiaσa +

N−r∑
b=1

qibmb

)
Xi = 0(

r∑
a=1

Qiaσa +

N−r∑
b=1

qibmb

)
Y i = 0 ,

(4.232)

for generic mass parameters {m1, . . . ,mN−r} and for all i ∈ {1, . . . , N}. We can solve for unique

σa’s only provided r hypermultiplets are non-vanishing, and the associated matrix

QI :=
(
Q
αij
a

)j
a

(4.233)

is non-degenerate. In addition, we have the complex and real moment-map conditions

r∑
j=1

Qija X
ijY ij = 0

r∑
j=1

(
Qija |Xij |2 −Qija |Y ij |2

)
= ζa , a ∈ {1, . . . , r} .

(4.234)
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The first equation tells us that for each ij either Xij or Y ij needs to vanish at a fixed point. The

second equation can always be satisfied by choosing Xij or Y ij appropriately. In fact, QI being

non-degenerate, the vectors ~Qij , j ∈ {1, . . . , r} form a basis of Rr. We can therefore write ζ uniquely

as a linear combination of these vectors, with either positive or negative coefficients. If the coefficient

of ~Qij is positive, we set |Xij |2 to the value of the coefficient and Y ij to zero, otherwise −|Y ij |2 to

the value of the coefficient, and Xij to zero. Solutions are therefore indexed by a sign vector which

encodes the choice at each fixed point, as claimed.

H-twist

To each fixed point on the Higgs branch there corresponds a fixed locus in the space of quasi-maps

of degree m to the Higgs branch, Mm,I . Under our conventions, it is easy to see that the fixed locus

reads

Mm,I =
∑

(m1,...,mr)
∈Zr

r∏
a=1

qmaa

r∏
j=1

Sym
∑
a αijQ

ij
a ma+(g−1) (Σ) ,

r∑
a=1

ma = m . (4.235)

In order to compute the index, we can first redefine the labels ma 7→ m̃j as follows∑
a

αijQ
ij
a ma + (g − 1) := m̃

j
, (4.236)

and then use the generating functions of Euler classes of symmetric products as we did in previous

examples. Notice that the change of variables is possible because each matrix QI must be non-

singular. Then letting

qQ
−1
I j :=

∏
a

qa
QI

a
i , (4.237)

we find, up to an overall sign

IH,I =
∏
i∈I

(
qQ
−1
I j

/2

1− qQ
−1
I j

)2(1−g)

. (4.238)

C-twist

In the C-twist, in order to apply a fixed-point formula, we simply need to find the weights of the

normal fluctuations at fixed points. Given a fixed point I, these correspond to the weights of the

hypermultiplets indexed by the complement of I in {1, . . . , N}, which we denote I∨, at the fixed

point I. In order to obtain them, we first need to solve for the σa’s in (4.232)

~σI = −
(
QTI
)−1

qTI ~m (4.239)

From this, we get that the weights of the hypermultiplets of charge ( ~Qi, ~qi), i ∈ I∨ at the fixed point

I are given by

(qI∨)i ~m , (4.240)
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where

qI∨ := qTI∨ −QTI∨
(
QTI
)−1

qTI . (4.241)

Consequently, the index at the fixed point I reads

II =
∏
i∈I∨

(
y(qI∨ )i/2

1− y(qI∨ )i

)2(g−1)

(4.242)

whith y(qI∨ )i =
∏
b y

(qI∨ )bi
b .

Abelian Mirror Symmetry

We are now ready to discuss abelian mirror symmetry. At the level of charge matrices, it takes a

simple form [94, 15]. Using tildes for mirror variables as above, we have

Q̃ :=

(
q̃

Q̃

)
=

(
Q
q

)−1,T

, ζ̃a = ma m̃a = ζa . (4.243)

We would like to verify that the H-twisted index of a theory, provided the above identifications

hold, coincides with the C-twisted index of the mirror theory. Select a fixed point I, and assume

without loss of generality that I = {1, . . . r}. Notice that

QQ̃T = 1N,N (4.244)

implies (
QI QI∨

qI qI∨

)(
q̃TI Q̃TI
q̃TI∨ Q̃TI∨

)
= 1N,N (4.245)

where we have also decomposed Q̃ in blocks of the same size of those in Q. From this equation, we

can infer that
qIQ̃

T
I + qI∨Q̃

T
I∨ = 0

QIQ̃
T
I +QI∨Q̃

T
I∨ = 0 .

(4.246)

It follows from (4.246) that

(
qI∨ − qIQ−1

I QI∨
)
Q̃TI∨ = 1N−r,N−r , (4.247)

or

Q̃I∨qI∨ = 1N−r,N−r . (4.248)

Chasing through the definitions and the results of the twisted indices, we see that from the contri-

bution of a fixed-point of the C-twisted index labelled by I we get a contribution of a fixed point

of the mirror H-twisted index labelled by I∨, and vice-versa. Therefore, mirror symmetry in this

context holds at the level of the index fixed-point by fixed-point.
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4.5.4 T [SU(N)]

We now perform a similar analysis with T [SU(N)] theories. These theories can be represented as

the quiver in Figure 4.2. They play an important role in the S-duality of the half-BPS boundary

conditions in N = 4 Yang-Mills theory [95].

The twisted indices of T [SU(N)] quiver depends on the FI-parameters ζi=1,··· ,N−1 for each factor

of the gauge group U(1)× · · · × U(N − 1) and mass parameters mi=1,··· ,N for the PSU(N) flavour

symmetry, which satisfies
∑N
i=1mi = 0. The theories in this class are known to be self dual under

exchanging εi ↔ mi for all i, where ζi = εi − εi+1.

Figure 4.2: T [SU(N)] theory

H-twist The moduli space of T [SU(N)] theory can be decomposed into the topological sectors

weighted by the FI-parameters qi = e2πiζi :

M =
⋃

(m1,··· ,mN−1)

∈ZN−1

qm1
1 qm2

2 · · · q
mN−1

N−1 Mm1,··· ,mN−1
. (4.249)

For each factor of the gauge group labelled by a = 1, · · · , N − 1, we denote by

ma =
1

2π

∫
Σ

Tr (Fa) ∈ Z , (4.250)

the degree of the vector bundle Ea of rank a, associated with the U(a) gauge bundle Pa. Let us

denote Xa+1
a , Y aa+1 by the bi-fundamental fields between a-th and a + 1-th nodes, where Xa+1

a can

be regarded as a a× (a+1) matrix whose components are X
a+1(ka+1)
a(ka) , and similarly for the Y . Then

the N = 4 moduli space for the H-twist is given by the space of solutions (A1, · · ·AN−1, X, Y ) to

the equations

∗ Fa + e2
(
Xa+1
a Xa+1

a
† − Y aa+1

†Y aa+1 −Xa
a−1
†Xa

a−1 + Y a−1
a Y a−1

a
† − τa

)
= 0 ,

∂̄AX
a+1
a = ∂̄AY

a
a+1 = 0 , Xa+1

a Y aa+1 = 0 , for a = 1, . . . , N − 1 ,
(4.251)

modulo U(1)× · · · × U(N − 1) gauge transformation.

Let us consider the chamber where all τa’s are sufficiently large. As in the previous examples,

we perform the equivariant localization with respect to the action of the flavour symmetry gH ∈
PSU(Nf ), by turning on the mass parameters mi. If we keep these parameters generic, on the fixed

locus, each factor of the gauge group is abelianized

U(a)→ U(1)a , for a = 1, · · · , N − 1 , (4.252)
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and accordingly the vector bundle Ea is decomposed into the sum of the line bundle

Ea = La(1) ⊕ · · · ⊕ La(a) , (4.253)

on the fixed loci, where deg(La(k)) = ma(k) with ma =
∑a
k=1 ma(k). Then the moduli space reduces

to a disjoint union of N ! fixed loci labelled by a set of the index sets

{I1, · · · , IN−1} , where Ia ⊂ {1, · · · , a+ 1} , |Ia| = a . (4.254)

If we denote the element of the index set Ia by ia(ka) with ka = 1, · · · , a, then on the fixed locus

{I1, · · · , IN−1}, the only non-vanishing bosonic fields in the chiral multiplets are

X
a+1(ia(ka))

a(ka) 6= 0 , for a = 1, · · · , N − 1 . (4.255)

To simplify the notation, let us make a choice of fixed locus defined by Ia = {1, · · · , a} for all a,

where the only non-vanishing bosonic fields in the chiral multiplets are X
a+1(ka)
a(ka) for all ka = 1, · · · , a.

All other fixed points can be obtained by an action of the PSU(N) flavour symmetry. The fixed

locus is described by the equations

∗ Fa(ia) + e2
(
|Xa+1(ia)

a(ia) |2 − |Xa(ia)
a−1(ia)|2 − τa

)
= 0 ,

∂̄AX
a+1(ia)
a(ia) = 0 , for ia = 1, . . . a.

(4.256)

modulo
∏N−1
a=1 U(1)a gauge symmetries, where we defined X

a(ia)
a−1(a) = 0. Here X

a+1(ia)
a(ia) is a holomor-

phic section of the line bundle La(ia) ⊗ L−1
a+1(ia) ⊗K1/2. Therefore the fixed locus can be described

as the 1 + · · ·+N − 1 copies of the symmetric product:

MIa =

N−1∏
a=1

a∏
ia=1

Σma(ia)−ma+1(ia)+g−1 . (4.257)

Then the contribution of this fixed locus to the virtual Euler characteristic in the limit t → 1

(4.228) becomes

∑
ma(ka)∈Z

for ka=1,··· ,a−1
a=1,··· ,N−1

q
m1(1)

1 q
m2(1)+m2(2)

2 · · · q
∑N−1
i=1 mN−1(i)

N−1

∫
MIa

N−1∏
a=1

a∏
ia=1

e
(
Σma(ia)−ma+1(ia)+g−1

)
. (4.258)

It is convenient to change the summation variable as

ma(ka) → ma(ka) +

N−1∑
r=a+1

mr(ka) , for all a, ka (4.259)

the expression (4.258) then becomes

∑
ma(ka)∈Z

for ka=1,··· ,a−1
a=1,··· ,N−1

N−1∏
a=1

(q1 · · · qa)
ma(1) (q2 · · · qa)

ma(2) · · · (qa)
ma(a)

∫
MIa

N−1∏
a=1

a∏
ia=1

e
(
Σma(ia)+g−1

)
. (4.260)
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Let us redefine

qi = e2πi(εi−εi+1) , with

N∑
i=1

εi = 0 , (4.261)

and sum over 1 + · · ·+N − 1 copies of integers ma(ia). Using the relation (4.128), we find a simple

expression
N∏
i 6=j

(
eπi(εi−εj) − eπi(−εi+εj)

)(g−1)

(4.262)

for the fixed locus MIa . Since the result does not depend on the equivariant parameters {mi}, the

contributions from N ! fixed locus are the same. Therefore we conclude

IH({εi}) = (−1)N(N−1)(g−1)/2N !

N∏
i<j

(
eπi(εi−εj) − eπi(−εi+εj)

)2(g−1)

. (4.263)

Note that the result shows the structure of the full SU(N) Coulomb branch symmetry GC enhanced

from the UV topological symmetry U(1)N−1.

C-twist Once we impose the N = 4 BPS equation for the C-twist, the associated vector bundle

E1 ⊕ · · · ⊕ EN−1 trivialises. In the large s limit, the moduli space reduces to the resolved Higgs

branch MH,τ , which can be identified as a cotangent space of a flag variety.

Similarly to the H-twist, the fixed loci of the gH action are given by the choice of the index set

{I1, · · · , IN−1}, where Ia = {ia(1), · · · , ia(N)} ⊂ {1, · · · , a + 1}, for all a. Each fixed locus is an

isolated point, characterised by the non-vanishing bi-fundamental chiral fields

X
a+1(ia(ka))

a(ka) 6= 0 . (4.264)

The C-twisted index in the limit t→ 1 gets contribution from the m = 0 sector only. It is straight-

forward to compute (4.229) equivariantly at each fixed points, which gives the expression

IC({mi}) =
∑

{(I1,··· ,IN−1)}

∏
i∈IN−1

j∈I∨N−1

(
e−πimij/2 − eπimij/2

)2(g−1)

·

·
∏

i∈IN−2

j∈I∨N−2

(
e−πimij/2 − eπimij/2

)2(g−1)

. . .
∏
i∈I1
j∈I∨1

(
e−πimij/2 − eπimij/2

)2(g−1)

,

(4.265)

where the summation is over N ! choices of the fixed locus. I∨a−1 is defined as the complement of

Ia−1 inside the index set {1, · · · , a + 1}. Note that each term in the summation is invariant under

the Weyl group WGH of the flavour symmetry and therefore the contributions from all the fixed loci

are identical. The expression simplifies to

IC({mi}) = N !
∏
i<j

(
e−πimij/2 − eπimij/2

)2(g−1)

. (4.266)
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Comparing two expressions (4.263) and (4.266), we find an agreement

IC({εi})[T [SU(N)]] = IH({mi})[T [SU(N)]] (4.267)

up to an overall sign, under the identification of the parameters εi = mi ,∀i. This agrees with the

self-dual property of T [SU(N)] theories.
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A.1 Supersymmetry Algebra

In this section, we summarize the supersymmetry algebra of twisted N = 4 and N = 2 theories. We

start by fixing our notation for the N = 4 vector multiplet and the N = 4 chiral multiplet, and the

respective decomposition into N = 2 multiplets. We then address the H- and C- twist algebras in

turns. Our convention is that

ε12 = −ε12 = ε1̇2̇ = −ε1̇2̇ = 1 (A.1)

and for contractions between vector and spinor indices we use standard Pauli matrices (σµ)α
β
.

The N = 4 vector multiplet consists of the fields

VN=4 =
(
Aµ, λ

AḂ
α , ϕȦḂ , DAB

)
. (A.2)

The fields are subject to the following reality condition:

DAB =
(
DAB

)†
, ϕȦḂ = −

(
ϕȦḂ

)†
. (A.3)

The multiplet decomposes into an N = 2 vector multiplet V = (Aµ, σ, λ, λ̄,Λ1, Λ̄1̄, D) and an N = 2

chiral multiplet Φϕ = (ϕ,ψϕ, ηϕ, Fϕ) in the adjoint representation with the identification

λ =
1

2
λ2̇2̇

2 , λ̄ =
1

2
λ1̇1̇

1 , Λ1 = λ2̇2̇
1 , Λ̄1̄ = λ1̇1̇

2 ,

σ = ϕ1̇2̇ , D = D12 ,

ϕ† = −1

2
ϕ2̇2̇ , ϕ =

1

2
ϕ1̇1̇ , ψ̄ϕ = λ2̇1̇

1 , ψϕ = λ1̇2̇
1 ,

η̄ϕ = λ1̇2̇
2 , ηϕ = λ2̇1̇

2 , F †ϕ = −D22, Fϕ = D11 .

(A.4)

The N = 4 hypermultiplet consists of fields

HN=4 =
(
XA, X

A†, ψαȦ, ψ̄αȦ

)
(A.5)

In terms of N = 2 fields, we identify

(X,Y †) = (X1, X2), (Y,X†) = (X2†, X1†) , (A.6)

with similar identifications for superpartners.

A.1.1 H-twist

In both twists, we use the following convenient notation for supersymmetry transformations. We

introduce a spinor ζAȦα , and the supersymmetry transformation of a field F is under the N = 4

supercharge QAȦα is the coefficent of ζAȦα in δF . The four supercharges preserved under the H-twist

can be represented by

ζ1Ȧ
1 := ζȦH , ζ2Ȧ

2 := ζ̃ȦH . (A.7)
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Note that the N = 2 subalgebra is generated by ζ 1̇
H and ζ̃ 2̇

H . For convenience, we redefine the vector

multiplet fermions as

λ1Ȧ
1 = λȦ , λ2Ȧ

2 = λ̄Ȧ , λ1,1Ȧ = Λ̄1̄,Ȧ , λ2,2Ȧ = Λ1,Ȧ . (A.8)

The supersymmetry transformation of the vector multiplet is given by

δA0 =
i

2
ζ̃ȦHλȦ −

i

2
ζȦH λ̄Ȧ ,

δA1 = iζ̃ȦHΛȦ,1 ,

δA1̄ = −iζȦHΛ̄Ȧ,1̄ ,

δϕȦḂ =
1

2

(
ζH,Ȧλ̄Ḃ + ζ̃H,ȦλḂ + ζH,Ḃλ̄Ȧ + ζ̃H,ḂλȦ

)
,

δD11 = −iζ̃ȦH
(

2D1λ̄Ȧ −D0Λ̄1̄,Ȧ

)
− iζ̃ḂH

[
Λ̄Ċ1̄ , ϕḂĊ

]
,

δD22 = iζȦH

(
2D1̄λȦ −D0Λ1,Ȧ

)
− iζḂH

[
ΛĊ1 , ϕḂĊ

]
,

δD =
i

2
ζḂH

(
2D1̄Λ̄1̄,Ḃ +D0λ̄Ḃ +

[
λ̄Ċ , ϕḂĊ

])
+
i

2
ζ̃ḂH

(
2D1Λ1,Ḃ +D0λḂ −

[
λĊ , ϕḂĊ

])
,

δλȦ = − (2F11̄ −D) ζH,Ȧ − iζḂHD0ϕḂȦ +
i

2
ζH,Ḋ

[
ϕ Ċ
Ȧ
, ϕ Ḋ

Ċ

]
,

δλ̄Ȧ = (2F11̄ −D) ζ̃H,Ȧ + iζ̃ḂHD0ϕḂȦ +
i

2
ζ̃H,Ḋ

[
ϕ Ċ
Ȧ
, ϕ Ḋ

Ċ

]
,

δΛ1,Ȧ = 2F01̄ζȦ − 2iζḂD1̄ϕḂȦ +D22ζ̃Ȧ ,

δΛ̄1̄,Ȧ = 2F01ζ̃Ȧ + 2iζ̃ḂD1ϕḂȦ +D11ζȦ .

(A.9)

The supersymmetry transformations of the hypermultiplet can be written as(
δX1

δX2

)
=

(
−ζ̃ḂHψ1,Ḃ

−ζḂHψ2,Ḃ

)
,(

δX̃1

δX̃2

)
=

(
−ζḂH ψ̄2,Ḃ

ζ̃ḂH ψ̄1,Ḃ

)
,

(
δψ1,Ȧ

δψ2,Ȧ

)
=

(
−iζH,ȦD0X1 − 2iζ̃H,ȦD1X2 − iζḂHX1ϕḂȦ
iζ̃H,ȦD0X2 − 2iζH,ȦD1̄X1 − iζ̃ḂHX2ϕḂȦ

)
,

(
δψ̄1,Ȧ

δψ̄2,Ȧ

)
=

(
iζH,ȦD0X

2† − 2iζ̃H,ȦD1X
1† − iζḂHX2†ϕḂ,Ȧ

iζ̃H,ȦD0X
1† + 2iζH,ȦD1̄X

2† + iζ̃ḂHX
1†ϕḂȦ

)
.

(A.10)

A.1.2 C-twist

The four supercharges preserved under the C-twist can be written as

ζA,1̇1 = ζAC , ζA,2̇2 = ζ̃AC . (A.11)

The N = 2 subalgebra is generated by ζ1
C and ζ̃2

C . For the vector multiplet, we define

ϕ =
1

2
ϕ11̇ , ϕ

† = −1

2
ϕ22̇ ,

λA1̇
1 = λA , λA2̇

2 = λ̄A , λ1,A1̇ = Λ̄1̄,A , λ2,A2̇ = Λ1,A .

(A.12)
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The supersymmetry transformation of the vector multiplet is given by

δA0 =
i

2
ζ̃ACλA −

i

2
ζAC λ̄A ,

δA1 = iζ̃ACΛA,1 ,

δA1̄ = −iζAC Λ̄A,1̄

δσ =
1

2
ζAC λ̄A −

1

2
ζ̃ACλA ,

δϕ = −1

2
ζ̃AC Λ̄1̄,A ,

δϕ† =
1

2
ζACΛ1,A ,

δDAB = iζAC

(
D1̄Λ̄B1̄ +

1

2
D0λ̄

B − 1

2

[
λ̄B , σ

]
−
[
ΛB1 , ϕ

])
+ (A↔ B) ,

− iζ̃AC
(
D1ΛB1 +

1

2
D0λ

B − 1

2

[
λB , σ

]
−
[
Λ̄B1̄ , ϕ

†])+ (A↔ B) .

δλA =
(
−2F11̄ − iD0σ − 2i[ϕ,ϕ†]

)
ζC,A + 4iζ̃C,AD1ϕ1 −DA

BζC,B ,

δλ̄A =
(
2F11̄ − iD0σ + 2i[ϕ,ϕ†]

)
ζ̃C,A + 4iζC,AD1̄ϕ1̄ −DA

B ζ̃C,B ,

δΛ̄1̄,A = (2F10 + 2iD1σ) ζ̃C,A − 2iD0ϕζ̃C,A − 2iζC,A [σ, ϕ] ,

δΛ1,A = (2F1̄0 − 2iD1̄σ) ζC,A − 2iD0ϕ
†ζC,A − 2iζ̃C,A[σ, ϕ†] .

(A.13)

For the hypermultiplet, we define

ψ1̇
1 = χ , ψ2̇

2 = η , ψ2̇
1 = ψ1 , ψ

1̇
2 = −ψ1̄ ,

ψ̄1̇
1 = χ̄ , ψ̄2̇

2 = η̄ , ψ̄2̇
1 = ψ̄1 , ψ̄

1̇
2 = −ψ̄1̄ .

(A.14)

We have
δXA = ζ̃C,Aχ+ ζC,Aη ,

δXA† = ζ̃AC χ̄+ ζAC η̄ ,(
δχ
δψ1̄

)
=

( −iζBC (D0 + σ)XB

2iζBCD1̄XB − 2iζ̃BCXBϕ
†

)
,(

δψ1

δη

)
=

(
−2iζ̃BCD1XB + 2iζBCXBϕ

iζ̃BC (D0 + σ)XB

)
,

(
δχ̄
δψ̄1̄

)
=

(
iζC,B(D0 − σ)XB†

−2iζC,BD1̄X
B† − 2iζ̃C,BX

B†ϕ†

)
,

(
δψ̄1

δη̄

)
=

(
2iζ̃C,BD1X

B† + 2iζC,BX
B†ϕ

−iζ̃C,B(D0 − σ)XB†

)
.

(A.15)

A.2 Localization in the Large |u| Regions

In this section, we show that the residue integrals involving the hyperplanes of type (2.26) do not

contribute to the integral with the choice (2.33). Let us consider the localizing action we take for

the vector multiplet
1

t2

[
1

e2
LYM + LH

]
, (A.16)
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which is modified from the localizing action used in [23, 25, 26] by an additional term LH. We take

the limit t→ 0 with e finite so that the localisation locus for the vector multiplet is given by

∗ F + iD = 0 , D = −i (µ(φ)− τ) , σ = constant , (A.17)

and therefore the path integral localizes to the finite dimensional integral of the Cartan zero modes

u = iβ(σ + a0). As discussed in [23, 25, 26], it is convenient to allow a constant non-BPS mode D̂

such that the auxiliary field localizes to the field configuration which satisfies

∗ F + iD = iD̂ , where D̂ ∈ Rr . (A.18)

Then the contour integral expression can be derived from the algebra of the zero mode multiplets

V = (u, ū, λ0, λ̄0, D̂).

The modified Q-exact action (A.16) affects the D̂ integrals in the large |u| region. The boundary

integral for a given η in the neighbourhood of the hyperplane (2.26) is governed by the expression

Iasymp(η) =
∑
m∈Z

qm lim
t→0

∮
u→±i∞

du

∫
R+iδ

dD̂

D̂

gm(u,m, D̂) exp

[
βVol(Σ)

2t2e2
D̂2 − iβ

t2

(
−2πm

e2
+ Vol(Σ)τ

)
D̂

]
,

(A.19)

where g(u,m, D̂) is the one-loop contribution with the non-zero D̂ background, which reduces to

the integrand of the expression (2.17) at D̂ = 0. Here δ ∈ t is introduced as a regulator of the D̂

integral, which is chosen in such a way that it satisfies η(δ) < 0 for a choice of η ∈ t∗ in the definition

of the JK-residue integral. [57, 23] The integral can be performed by rescaling D̂ → t2D̂ and taking

the limit t→ 0. We find

Iasymp(η) =
∑
m∈Z

qm
∮
u→±i∞

du

∫
R+iδ

dD̂

D̂
gm(u,m, 0) e−iβ(− 2πm

e2
+Vol(Σ)τ)D̂

= −2πi sgn(η)
∑
m∈Z

qm Θ

[
η

(
2πm

e2
−Vol(Σ)τ

)]∮
u→±i∞

du gm(u,m, 0) .

(A.20)

If we assign the charges to the pole at infinity at each flux sector m as

Q±∞ =
2πm

e2
−Vol(Σ)τ , (A.21)

we can write

Iasymp(η) = −2πi sgn(η)
∑
m∈Z

qm JK-Res
u→±∞

(Q±∞(u), η) gm(u,m, 0) du (A.22)

A.3 Some Mathematical Background on Vortices and Sym-
metric Products

Generalized vortex equations on a Riemann surface have been extensively studied, and their moduli

spaces of solutions have been given an algebraic description by means of an extension of the classical
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Hitchin-Kobayashi correspondence [96, 97, 89, 98]. This correspondence relates holomorphic vector

bundles that satisfy a stability condition to Einstein-Hermitian vector bundles. We recall that the

latter are complex vector bundles endowed with a Hermitian metric, whose curvature (seen as an

endomorphism of the tangent bundle) is a constant times the identity operator. Similarly, the

generalized vortex equations can be formulated as equations for the existence of a specific hermitian

metric on a complex vector bundle, and Einstein-Hermitian metrics can be interpreted as a special

case of these.

The aim of this appendix is to summarize and develop the main notions concerning generalized

vortex equations needed in the bulk of the thesis.

A.3.1 Abelian vortex equations

Let us start with the simplest example. Consider an hermitean line bundle L endowed with a smooth

unitary connection A and a smooth section φ of L. Let Nd denote the space of pairs (A, φ) that are

solutions to the vortex equations on Σ,

1

e2
∗ FA + |φ|2 = τ

∂̄Aφ = 0 ,

(A.23)

where FA is the curvature of the connection A and ∂̄A is the holomorphic structure on L inherited

from dA and the complex structure on Σ. Furthermore, let G be the group of gauge transformations,

G = Hom(Σ, U(1)). The moduli space of vortices is defined by the quotient

Md := Nd /G . (A.24)

This can be understood as an infinite-dimensional Kähler quotient. First, the space of pairs (A, φ)

is an infinite-dimensional Kähler manifold with flat metric

g =
1

4π

∫
Σ

(
1

e2
δA ∧ ∗δA+ ∗|δφ|2

)
dΣ (A.25)

inherited from the metric on Σ and the Hermitian metric on the line bundle L. The second vortex

equation ∂̄Aφ = 0 defines a Kähler submanifold Vd of this space, on which gauge transformations

act with moment map
1

e2
∗ FA + µ(φ) , (A.26)

where µ(φ) = |φ|2. We can therefore express the vortex moduli space as an infinite-dimensional

Kähler quotient Md = Vd //G.

In our computations, we will make use of a Hitchin-Kobayashi correspondence and express the

moduli space of solutions algebraically. First, we notice that by integrating the first vortex equation

in (A.23), a necessary condition for the existence of solutions is

τ ≥ 2πd

e2Vol(Σ)
. (A.27)
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We assume the strict version of this inequality in what follows. It is then clear that the section φ

cannot vanish everywhere on Σ, which is is the simplest instance of a stability condition.

The general strategy of the Hitchin-Kobayashi correspondence for vortices on Σ is to replace

(A.23) with its respective stability condition, and then to take the quotient of the solution to the

remaining one by complex gauge transformations GC = Hom(Σ,C∗). The precise statement in this

case [99] is that given a pair (A, φ) such that φ is a non-vanishing holomorphic section of L, in each

complexified gauge orbit there exists one pair satisfying (A.23), which is unique up to U(1) gauge

transformations G. Furthemore, provided the strict version of (A.27) holds, any solution can be

written in this way.

The relation to the classical Hitchin-Kobayashi correspondence comes from the fact that (A.23)

can be viewed as an equation for a hermitian metric h, intead of a connection A. This is because

given a complex structure ∂̄A and a hermitian metric L there is a unique connection A, the Chern

connection, compatible with both structures. The proof relies on this point of view, and can be

applied also to the case of more general gauge groups. Finally, we remark that this construction can

be viewed as an infinite-dimensional analogue of the Kempff-Ness theorem, applied to the Kähler

quotient Md = Vd //G.

The Hitchin-Kobayashi correspondece implies that the moduli space of solutions to the vortex

equations can be parametrized by pairs (L, φ), where L is a holomorphic line bundle of degree d and

φ is a non-vanishing holomorphic section of L. There is a map from this space to the symmetric

product of the curve SymdΣ. In fact, this parametrizes degree d divisors on Σ, and the map is given

by taking the divisor of zeros of φ

D = p1 + . . .+ pd . (A.28)

From a physical perspective, the points p1, . . . , pd correspond to the positions of the vortex centres.

It turns out that the hermitian line bundle can be recovered by means of the map

j : SymdΣ→ Picd(Σ) ∼= JΣ

: {D} 7→ OΣ(D) .
(A.29)

The connection A is then defined uniquely. Thus, we have an isomorphism

Md
∼= SymdΣ . (A.30)

We notice that the map j has remarkable properties. Provided d ≥ 2g − 1, it is a holomorphic

fibration with fiber CPd−g given by the projective space of global sections PH0(Σ, L), or equivalently

the complete linear system associated to D = p1 + · · · + pd. For d < 2g − 1, the structure of this

map is studied in the context of Brill-Noether theory.
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A.3.2 U(N) Vortices with Fundamental Matter

We now extend our discussion about the Hitchin-Kobayashi correspondnece to U(N) vortices with

fundamental matter. Let E be a holomorphic vector bundle with structure group U(N), endowed

with a d-bar operator ∂̄E . Let φ ∈ H0(Σ, E), that is

∂̄Eφ = 0 . (A.31)

As explained in the section about Abelian vortices, it is convenient to view the vortex equation as

an equation for the metric h. For fundamental matter, we have the u(2)∗-valued equation

∗h F − e2
(
φ · φ†

)h
+ e2τ = 0 , (A.32)

where we emphasize the metric dependence. In analogy to the U(1) case, we would like to derive a

stability condition from this equation. Our presentation is based on [100]. We again integrate over

Σ and we get

µ(E) ≤ e2τVol (Σ)

2π
, (A.33)

where any bundle E µ(E) := deg(E)
rank(E) is the slope. This is a first necessary condition, which we are

now going to refine. Suppose there is a given holomorhic subbundle E′ ⊂ E. As smooth complex

vector bundles, we have

E =smoothly E
′ ⊕ (E/E′) , (A.34)

but this might not be true holomorphically. In fact, let (~e1, ~e2) be a holomorphic unitary frame so

that ~e1 is a basis for E′. Let D∂̄E ,h be the metric connection (the connection induced by the metric

and the Dolbeault operator ∂̄E). We have

D∂̄E ,hea = Aabeb (A.35)

where

A =

(
A
′

B
−B† A⊥

)
. (A.36)

Here A′ is the metric connection that arises from the restriction of h and ∂̄E to E′ and A⊥ gives

a connection on the complement of E′. B is a (1, 0)-form which is interepreted as the second

fundamental form of the embedding E′ ↪→ E (that is, it computes the extrinsic curvature of E′ in

E) and A† is its conjugate transpose1. In obvious notation, we can compute

Fh = dA−A ∧A =

(
F
′
+B ∧B† ∗
∗ F⊥ +B† ∧B

)
. (A.37)

Importantly, a quick computation in local coordinates shows that∫
Σ

Tr
(
∗B ∧B†

)
dΣ ≥ 0 ,∫

Σ

Tr
(
∗B† ∧B

)
dΣ = −

∫
Σ

Tr
(
∗B ∧B†

)
dΣ ≤ 0 ,

(A.38)

1B = (1− π)D∂̄E ,hπ where π is the projection onto L.
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where the only important thing to keep in mind is that B is of type (1, 0). Now, we can also write

(A.32) in local coordinates as(
∗F ′ + ∗B ∧B† ∗

∗ F⊥ + ∗B† ∧B

)
+ e2

(
φ
′ ⊗ φ′∗ − τ ∗
∗ φ⊥ ⊗ φ⊥∗ − τ

)
= 0 . (A.39)

Taking the trace of the upper left component and integrating over the curve, we get that

µ(E′) ≤ e2τVol(Σ)

2π
, (A.40)

with equality if and only if ∫
Σ

Tr
(
∗B ∧B†

)
dΣ = 0 . (A.41)

By definition, if the above equation holds, then

E ∼=hol E
′ ⊕ (E/E′) (A.42)

holomorphically. Now suppose that φ ∈ H0(Σ, E′). Then, taking the trace of the lower-right

component of (A.39), we similarly get

µ (E/E′) ≥ e2τVol(Σ)

2π
(A.43)

with equality if and only if (A.41) holds, E/L is holomorphic and (A.42) holds holomorphically.

We can now summarize the above findings as follows. Let

µM := sup{µ (E) , µ (L) | L holomorhic subbundle of E} ,

µm := inf{(E/L) | L holomorhic subbundle of E, φ ∈ H0(Σ, L)} .
(A.44)

Further, define the following notion of stability for pairs (E, φ)

Definition 1 A pair (E, φ) is stable if and only if

µM <
e2τVol(Σ)

2π
< µm .

Then we have the following

Lemma 1 If there is a metric h satisfying the equations (A.32), then either the pair (E, φ) is stable

or E =hol E
′⊕(E/E′) with φ ∈ H0 (Σ, E′). In the latter case, the pair (E′, φ) satisfies the inequality

µ(E′) <
e2τVol(Σ)

2π

and the holomorphic bundle E/E′ satisfies

µ (E/E′) =
e2τVol(Σ)

2π
.
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In [100] the converse is also proven.

Finally, we consider the s→∞ limit, where s = e2τVol(Σ) In this limit, the stability condition

simplifies drastically. First of all, notice that in this limit the lower bound is obviously satisfied.

As for the upper bound, it is easy to see that it immediately implies that φ cannot be contained

in any subbundle of E. But this means that generically φ has maximal rank. This discussion can

be generalized to matter fields in both the fundamental and anti-fundamental representation at no

cost. The result in the large s limit remains the same. For other representations, more sophisticated

techniques are needed [88, 89].

A.3.3 Cohomology of Symmetric Products

The symmetric product of a curve SymdΣ, and especially its cohomology, plays a central role in this

thesis. The simplest way to understand the latter is via the isomorphism

H•(SymdΣ,K) ∼= H•(Σd,K)Sd , (A.45)

where K is any field. The right-hand side consists of permutation-invariant elements in the coho-

mology of the d-fold product of Σ.

Let us introduce standard generators for the cohomology ring of Σ,

γi ∈ H1,0(Σ,K), γ̃i ∈ H0,1(Σ,K), β ∈ H2(Σ,K) , (A.46)

where i = 1, . . . , g.

They induce cohomology classes in the d-fold product of Σ,

γi,j = 1⊗ · · · ⊗ 1⊗ γi ⊗ 1⊗ · · · ⊗ 1 ∈ H1,0(Σd,K)

γ̃i,j = 1⊗ · · · ⊗ 1⊗ γ̃i ⊗ 1⊗ · · · ⊗ 1 ∈ H0,1(Σd,K)

βj = 1⊗ · · · ⊗ 1⊗ βi ⊗ 1⊗ · · · ⊗ 1 ∈ H1,1(Σd,K) ,

(A.47)

where the generator appears in the j-th factor. The classes

ξi =

d∑
j=1

γi,j , ξ′i =

d∑
j=1

γi,j , η =

d∑
j=1

βj (A.48)

then descend to H•(Σd,K)Sd , and in fact generate it. Clearly, the generators ξi and ξ′i anticommute

with each other and commute with η. There is also one last ring relation:

ξi1ξi2 . . . ξiaξ
′
j1ξ
′
j2 . . . ξ

′
jb

(
ξk1

ξ′k1
− η
)
. . .
(
ξkcξ

′
kc − η

)
ηq = 0 (A.49)

provided

a+ b+ 2c+ q = n+ 1 , (A.50)

For more details, see the standard reference [80].
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From this discussion, it follows that as a graded vector space, we have

µpνqHp,q
(

Symd(Σ)
)
∼=

min(p,q)⊕
i=0

Si(µνC)⊗ ∧p−i (µCg) ∧ ∧q−i (νCg) (A.51)

where µ, ν are grading parameters. It follows that

∑
d∈N

xd

(
µν
∑
p,q

Hp,q
(

Symd(Σ)
))
∼= S•(xC⊕ µνxC)⊗ ∧• (µxCg) ∧ ∧• (νxCg) (A.52)

for another grading parameter x. By taking a graded trace, we get that hp,q
(

Symd(Σ)
)

is the

coefficient of xdµpνq in the series expansion of

(1 + µx)g(1 + νx)g

(1− x)(1− µνx)
(A.53)

around x = 0. Restricting to the grading by the fermion number, which amounts to setting µ = ν =

−1, we can derive a generating function for the Euler-Poincaré characteristic

∑
d∈N

xd

(
d∑
k=0

(−1)kHk
dR

(
Symd(Σ)

))
= (1− x)2(g−1) . (A.54)

It is also useful to understand how the cohomology of a symmetric product is induced from the

fibration structure when d ≥ 2g − 1. The cohomology of a fibration with compact fibres can be

computed using the Serre spectral sequence. In this particular example, the Serre spectral sequence

collapses immediately and

H•(Symd(Σ),K) ∼= H•(CPd−g,K)⊗H•(JΣ,K). (A.55)

Since the Jacobian is isomorphic to a 2g-dimensional torus, its cohomology is an exterior algebra,

whose generators are the classes ξi, ξ
′
i introduced above. The cohomology of the fiber CPd−g is

generated by the Chern class of the dual of the tautological bundle, which is identified with the class

η.

A.3.4 Tangent Spaces of the Symmetric Producs

We recall the construction of the tangent space of Symd(Σ). We take the perspective that this is

the space parameterizing divisors on Σ. The tangent space at a divisor D is given by

TDMm = H0(Σ,O(D)/O) . (A.56)

This has a simple explanation when the divisor D = p1 + · · · + pd consists of separated points and

therefore

TDMm = ×mΦ
i=1TpiΣ . (A.57)

Each cotangent space T ∗pΣ can be identified with mp/(mp)
2, where mp is the ideal of holomorphic

functions vanishing at p. From this point of view, the dual of mp/(mp)
2 is then the space of residues
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of meromorphic functions with a simple pole at p, since there is a pairing given by multiplication

and evaluation. These residues are exactly parametrized by (A.56).

Let us now write L for the holomorphic line bundle induced by O(D). From the short exact

sequence

0 −→ O −→ L −→ LΦ/O −→ 0 , (A.58)

we see that the tangent space (A.56) fits into a long exact sequence

0 −→ H0(O)
α−→ H0(L)

β−→ H0(L/O)
γ−→ H1(O)

δ−→ H1(L) −→ 0 . (A.59)

Notice that both maps α and δ are inherited from multiplication by the holomorphic section φ(D)

whose zeros are parametrized by the divisor D. For fixed D, equation (A.59) is a long exact sequence

of vector spaces, which splits. In particular,

H0(LΦ) = im(β)⊕ coker(β) , (A.60)

and so we can reconstruct the tangent space TDMm from im(β) and coker(β) separately. This means

that we can consider the following two short exact sequences

0 −→ H0(O)
α−→ H0(L)

β−→ im(β) −→ 0

0 −→ coker(β)
γ−→ H1(O)

δ−→ H1(L) −→ 0 .
(A.61)

The first line is the Euler sequence for

j−1(LΦ) = PH0(L) , (A.62)

where j : Symd(Σ) → JΣ is the holomorphic map to the Jacobian parametrizing L. Furthermore,

in the case d > 2g − 2, H1(LΦ) = 0 and so coker(β) = H1(O). The map γ becomes surjective and

corresponds to the derivative of the projection j.

A.3.5 Universal Constructions

A natural way to obtain geometric objects on SymdΣ is to use universal constructions on the product

SymdΣ× Σ. We first explain this in terms of divisors. The subset

∆ = {(D, p) ∈ SymdΣ× Σ | p ∈ D} (A.63)

is called the universal effective divisor on SymdΣ× Σ. An immediate consequence of the definition

is that ∆ cuts out on {D} × Σ precisely the divisor D on Σ. Conversely, given a point p ∈ Σ the

intersection of the universal divisor with SymdΣ×{p} is D̃p×{p}, where the divisor D̃p is the image

of the inclusion
ip : Symd−1(Σ) ↪→ Symd(Σ)

ip : D 7→ D + p .
(A.64)
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The divisor D̃p defines a class in H2(Symd(Σ),Z) which coincides with the cohomology class η

defined in equation (A.48).

This universal construction can be lifted to a universal construction for line bundles. In fact,

the divisor ∆ defines a universal line bundle L = O(∆) on SymdΣ × Σ. In the context of the

U(1) vortex equations, this can be described in terms of the space of pairs (A, φ), as follows. Let

πNd
: Nd × Σ→ Σ denote the projection on the second factor. Then the universal line bundle is

L ∼= (π∗Nd
L)/G, (A.65)

where L = O(D) and the group of gauge transformations G acts on both the space of solutions to

the vortex solutions Nd and the line bundle L [101].

We now summarize some important properties of the universal line bundle. First, for each point

[A, φ] ∈Md there is an isomorphism of U(1)-bundles

L|[A,φ]
∼= L . (A.66)

Second, L has a natural connection called the universal connection, which we will denote A. It is

induced by the connection on

π∗Nd
L→ Nd × Σ, (A.67)

which is trivial in the Nd directions and tautological in the Σ directions, in that on (A, φ)×Σ it acts

exactly like A. In order to pass to the quotient in equation (A.65) and explain further properties of

the universal connection A, we first need to make use of standard constructions in gauge theory.

We first note that the space of solutions (A, φ) to the vortex equations is naturally a principal G-

bundle over the moduli space, Nd → Nd/G = Md. The tangent space can therefore be decomposed

as a direct sum

TNd = TNd,vert ⊕ TNd,hor , (A.68)

where the vertical subspace TNd,vert is canonically defined as the subspace tangent to the fibres of

Nd → Md: they correspond to infinitesimal gauge transformations. However, without additional

structure the horizontal subspace TNd,hor is not canonical, and such a decomposition is equivalent

to a choice of connection one-form θ ∈ Ω1(Nd, g) where g is the Lie agebra of G. Given such a

connection one-form, the horizontal subspace is defined by

T(A,φ)Nhor = {(Ȧ, φ̇) ∈ T(A,φ)N | θ(A,φ)(Ȧ, φ̇) = 0 }, (A.69)

where we follow the standard convention of denoting tangent vectors by (Ȧ, φ̇). Conversely, any

choice of horizontal subspace gives rise to a connection one-form

α(Ȧ, φ̇) = (dAα, iα · φ), (A.70)
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is the action of an infinitesimal gauge transformation α.

We can now define the universal connection A. The connection is uniquely determined by the

action of its curvature FA on tangent vectors (Ȧ, φ̇, u) ∈ T(A,φ,p)(Md × Σ). This is given by

FA((0, 0, u1), (0, 0, u2))|(A,φ,p) = FA(u1, u2)(p)

FA((Ȧ, φ̇, 0), (0, 0, u))|(A,φ,p) = Ȧ(u)|p

FA(((Ȧ1, φ̇1), 0), ((Ȧ2, φ̇2), 0))|(A,φ,p) = Fθ((Ȧ1, φ̇1), (Ȧ2, φ̇2))|p .

(A.71)

Here we are abusing notation somewhat by conflating tangent vectors to Md and Nd. The universal

connection is therefore tautological in the Σ directions and implements Gauss’ law constraint in the

Md directions. At the level of cohomology classes,

− 1

2π
[FA]|[A,φ]×Σ = d ∈ H2(Σ,Z) = Z ;

− 1

2π
[FA]|Md×{p} = η ∈ H2(Symd(Σ),Z) ,

(A.72)

which follows from the fact that the connection is tautological along Σ and the restriction of L to

Md is the holomorphic line bundle induced by the divisor D̃p with class η.

A.3.6 Line Bundles and Deligne Pairing

The universal construction provides a natural way of obtaining a line bundle L̃T on the moduli space

Md = Symd(Σ) starting from a line bundle LT on Σ2. We consider the following diagramme

Symd(Σ)× Σ

Symd(Σ) Σ ,

π p

and a line bundle LT on Σ. Then we have two obvious holomorphic line bundles on Symd(Σ)× Σ:

the pull-back p∗LT and the universal line bundle LT . As explained in reference [79], we can then

produce a holomorphic line bundle L̃T on Symd(Σ) known as the Deligne pairing,

L̃T = 〈L, p∗LT 〉 . (A.73)

We will not provide the details of this construction here. However, it is important to point out that

given connections on LT and L the following equality between the curvatures holds,

FÃ =
1

2π

∫
Σ

FA ∧ FA . (A.74)

Reference [79] provides an alternative description of the Deligne pairing in this particular instance.

The first step is to construct a line bundle on the direct product Σd,

L�mΦ

T :=
⊗
j

π∗jLT , (A.75)

2We write LT for the line bundle because in all our uses of this fact, LT is a background bundle for the topological
symmetry.
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where

πj : Σd → Σ (A.76)

is the projection onto the j-th factor. This is invariant under permutations and descends to a line

bundle L̃T on the symmetric product SymdΣ. In particular, this construction shows that c1(L̃T ) = dη

where dT is the degree of LT and η ∈ H1,1(Md) is the class constructed from the Kähler form on Σ.

A.4 U(1)1/2 with One Chiral: Tangent Bundle from Massless
Fermions

In section 3.2.4, we stated that the contribution to the space of supersymmetric vacua with flux

m is captured by a supersymmetric sigma model to the moduli space Mm = SymmΦ(Σ), where

mΦ = m + g − 1 > 0. An important consistency check is that the massless Fermion fluctuations

transform in the tangent space of Mm.

In this appendix, we show that ker(β) and coker(β) in (A.61) arise from Yukawa couplings in the

original 3d supersymmetric gauge theory, and that the massless fermionic fluctuations are therefore

valued in the tangent space to Mm.

In order to recover ker(β), we first note that terms in the first short exact sequence in (A.61)

correspond to the fermions:

• H0(LΦ): fermions ψ in the N = (0, 2) chiral multiplet obtained from decomposition of the 3d

chiral multiplet Φ.

• H0(O): gauginos λ in the N = (0, 2) vectormultiplet.

In the supersymmetric quantum mechanics, there is a Yukawa coupling proportional to∫
Σ

φ̄Λ0 ∧ ∗ψ . (A.77)

We now note that since the map α : H0(O)→ H0(LΦ) corresponds to multiplication by φ, a Fermion

element in the image of α has the form ψ = φψ′ where ψ′ ∈ H0(O). On the image of α, the Yukawa

coupling then becomes

ψ′Λ0

∫
Σ

∗|φ|2, (A.78)

which generates a mass term for ψ′. As a consequence, we find that

im(β) = H0(LΦ)/H0(O) (A.79)

parametrizes the remaining massless fluctuations.

The second short exact sequence in (A.61) arizes from the remaining fermions:

• H1(LΦ) : fermions η in the N = (0, 2) Fermi multiplet obtained from decomposition of the 3d

chiral multiplet Φ.
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• H1(O) : gauginos Λ̄ in the N = (0, 2) chiral multiplet containing the covariant derivative ∂̄A.

In the supersymmetric quantum mechanics, there is a Yukawa coupling proportional to∫
Σ

Λ̄ ∧ ∗〈φ, η̄〉 . (A.80)

The second short exact sequence (A.61) implies that the image of coker(β) in H1(O) is ker(δ).

Since the map δ : H1(O) → H1(LΦ) corresponds to multiplication by the holomorphic section φ,

a Fermion fluctuation Λ̄ is in its kernel if and only if the product Λ̄φ vanishes in the cohomology

H1(LΦ). Equivalently, Λ̄φ = ∂̄λ for some λ ∈ H0(LΦ). This is the case if and only if the Yukawa

coupling (A.80) vanishes for each η̄ and the Fermion remains massless.

A.5 Background Line Bundles and Electric Impurities

In this appendix, we explain how a background line bundle LT for a topological flavour symmetry

can be understood as an electric impurity in the gauge theory. In particular, we show that the

curvature of the ‘dirty connection’ introduced in [77] coincides with the curvature of the Deligne

pairing (A.74).

We introduce local coordinates {Xa} on the moduli space Md and let A(x,X), φ(x,X) denote a

solution of the vortex equations corresponding to the point in the moduli space with local coordinates

Xa. We also introduce a local coordinate x on Σ. In the notation of Appendix A.3, this corresponds

to a smooth section s : Md → Nd of the principal bundle Nd. We therefore use a shorthand notation

s(X) = (A(x,X), φ(x,X)).

Let us now consider a tangent vector

∂

∂Xa
∈ TXMd . (A.81)

The push-forward of this tangent vector to Vd is given by

s∗

(
∂

∂Xa

)
=

(
∂A

∂Xa

∣∣∣∣
X

,
∂φ

∂Xa

∣∣∣∣
X

)
∈ Ts(X)Nd . (A.82)

This tangent vector need not be horizontal with respect to the connection one-form θ ∈ Ω1(Vd,G)

and therefore we obtain G-valued functions on Md × Σ,

θs(X)

(
s∗

∂

∂Xa

∣∣∣∣
X

)
= αa(x,X) . (A.83)

It follows that s∗θ = αa(x,X)dXa is a connection on Md with covariant derivative

δaA =

(
∂

∂Xa
+ dαa

)
A

δaφ =

(
∂

∂Xa
+ iαa

)
φ .

(A.84)
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The universal connection on Md × Σ can then be expressed

A(X,x) = αa(x,X)dXa +A(X,x) . (A.85)

In reference [77] the bosonic part of the action for the effective supersymmetric quantum me-

chanics of the collective coordinates {Xa} is given by

S =

∫
dx0 gab(X)

dXa

dx0

dXb

dx0
. (A.86)

Here x3 is the euclidean time coordinate on R and the metric on Md is the one inherited from (A.25)

An electric impurity amounts to adding a term (σ+iA0)f to the original gauge theory lagrangian,

where f is an arbitrary function on Σ and σ is the scalar component of the vectormultiplet. It is

shown in [77] that this results in a ‘dirty connection’ Ãa(X) in the effective sigma-model action,

S =

∫
dx0 gab(X)

dXa

dx0

dXb

dx0
+ Ãa(X)

dXa

dx0
. (A.87)

given by

Ãa(X) =

∫
Σ

αa(X) ∧ ∗f . (A.88)

On the other hand, introducing a background line bundle LT for a topological flavour symmetry

on Σ amounts to adding the following contribution to the Lagrangian of the supersymmetric gauge

theory,
1

2π
(σ + iA0) ∗ FT , (A.89)

where FT is the curvature of the connection on the holomorphic line bundle LT . This is equivalent

to an electric impurity with f = 1
2π ∗ FT . The corresponding dirty connection is

ÃT,a(X) =
1

2π

∫
Σ

FT ∧ αa(X) , (A.90)

which can be written more invariantly using the universal connection (A.85) as follows

ÃT (X) =
1

2π

∫
Σ

FT ∧ A(X) . (A.91)

The curvature of the dirty connection is

FÃT (X) =
1

2π

∫
Σ

FT ∧ FA(X) . (A.92)

We therefore see that the curvature of the dirty connection agrees with the curvature of the holo-

morphic line bundle L̃T constructed using Deligne pairing in equation (A.74).
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A.6 Characteristic Classes on a Fixed Locus and their Inte-
gration

In this Appendix, we derive expressions for various characteristic classes of bundles on

MT
(m1,··· ,mk) =

k∏
i=1

SymmiΣ . (A.93)

and their integration, as needed in section 4.4. In particular, we would like to compute (4.202) and

prove the integration formula (4.211).

We start by considering the universal divisor

∆ ⊂ Σ× SymmΣ (A.94)

of degree m, which was introduced in (4.136). We denote by f and π the projections onto Σ and

SymmΣ respectively. Following [48], we denote classes on Σ by

e1, · · · , eg, e′1, · · · , e′g ∈ H1(Σ,Z) , ηΣ ∈ H2(Σ,Z) (A.95)

and as explained in the main body, standard classes on SymmΣ := Σm by

ξi, ξ
′
i ∈ H1(Σm,Z), η ∈ H2(Σm,Z) . (A.96)

By the Künneth decomposition, the class of the universal divisor can be written as

[∆] = mηΣ + γ + η (A.97)

where γ =
∑g
i=1 ξ

′
iei−ξie′i. By the ring relations of the cohomology of the symmetric product (A.49)

and the standard relations on the curve, we have γ2 = −2σηΣ. The Grothendieck-Riemann-Roch

theorem then impies that for any q ∈ Z

td(Σm)ch[π∗O(q∆)] = π∗[td(Σ× Σm)ch(O(q∆))] . (A.98)

From this we obtain

ch[π∗O(q∆)] = π∗[td(Σ)ch(q∆)]

= π∗(1 + (1− g)ηΣ) exp(qmηΣ + qγ + qη)

= π∗(1 + (1− g)ηΣ)(1 + qmηΣ)(1 + qγ − q2σηΣ)eqη

= (qm + (1− g)− q2σ)eqη .

(A.99)

In order to compute the expression (4.202), we first compute the Chern class of the line bundle

π∗(O(−∆a) ⊗ O(∆b)) on SymmaΣ × SymmbΣ, where for the sake of notational simplicity we omit

the pullbacks by the projections on SymmaΣ, SymmbΣ. We can compute

ch[π∗O(−∆a)⊗O(∆b)] = π∗[td(Σ)ch(O(−∆a)⊗O(∆b))]

= π∗(1 + (1− g)ηΣ) exp[−maηΣ − γa − ηa + mbηΣ + γb + ηb]

= [−ma + mb + (1− g)− (σaa + σbb − σab − σba)]e−ηa+ηb ,

(A.100)
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where

σabi = ξai ξ
′
i
b
, σab =

g∑
i=1

σabi , (A.101)

which satisfy the relation γaγb = −2σabηΣ. From this we obtain

c[π∗(O(−∆a)⊗O(∆b))] = (1− ηa + ηb)
−ma+mb−(g−1) exp

[
−σ

aa + σbb − σab − σba
1− ηa + ηb

]
. (A.102)

Let us define a function

h(ηa − ηb) = e(−ηa+ηb+t)/2 − e(ηa−ηb−t)/2 . (A.103)

Then using the relation (σabi )2 = 0, we can show that the contribution from the class [NMVba ] =

[H•(L−1
a ⊗ Lb)] can be written as3

ch(∧̂•NMVba) = h(ηa − ηb)−ma+mb−(g−1) exp

[
(σaa + σbb − σab − σba)

h′(ηa − ηb)
h(ηa − ηb)

]
. (A.104)

We would now like to prove (4.211), which is a generalization of the formula by Don Zagier (4.124)

to integrals over MT =
∏k
a=1 SymnaΣ. We want to show that for any function A(η1, · · · , ηk) and

B(η1, · · · , ηk), we have

∫
MT

A(η1, · · · , ηk) exp

 k∑
a,b=1

σabBab(η1, · · · , ηk)


= res
u1=0

· · · res
uk=0

A(u1, · · ·uk)

un1+1
1 · · ·unk+1

k

[
det
ab

(δab + uaBab(u1, · · · , uk))

]g
.

(A.105)

This can be demonstrated as follows. First we notice that

exp

 k∑
a=1,b=1

σabBab

 =

g∏
i=1

k∏
a=1

k∏
b=1

exp
(
σabi Bab

)
=

g∏
i=1

k∏
a=1

k∏
b=1

(
1 + σabi Bab

)

=

g∏
i=1

 k∑
p=0

∑
all {a1,··· ,ap}
⊂{1,··· ,k}

∑
all {b1,··· ,bp}
⊂{1,··· ,k}

p∏
l=1

p∏
m=1

σalbmi Balbm

 ,

(A.106)

where we used
(
σabi
)2

= 0 as well as the fact that σ’s with different indices commute. We can then

make use of the identity [49]

1 =

∫
Σna

ηnaa

(∏
i∈I

η−1
a σaai

)
(A.107)

and its straightforward generalizations to products of symmetric products. They imply that the only

monomials contained in (A.106) surviving integration are the ones for which the subsets {b1, · · · , bp}
3In the Appendix, we omit the weights under the action of the flavour symmetry TH for the sake of simplicity,

which can be reintroduced easily.
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are permutations of the {a1, · · · , ap}. Let us denote by Sp the permutation group of p elements and

suppose there is an s ∈ Sp so that s(ai) = bi. Then

k∏
l=1

σ
als(al)
i = sgn(s)

k∏
l=1

σalali . (A.108)

Therefore,

∫
MT

A(η1, · · · , ηk)

g∏
i=1

 k∑
p=0

∑
all {a1,··· ,ap}
⊂{1,··· ,k}

∑
all {b1,··· ,bp}
⊂{1,··· ,k}

p∏
l=1

p∏
m=1

(
σalbmi η−1

al

)
ηalBalbm



= res
u1=0

· · · res
uk=0

A(u1, · · ·uk)

un1+1
1 · · ·unk+1

k

g∏
i=1

 k∑
p=0

∑
all {a1,··· ,ap}
⊂{1,··· ,k}

∑
s∈Sp

sgn(s)

p∏
l=1

ualBals(al)



= res
u1=0

· · · res
uk=0

A(u1, · · ·uk)

un1+1
1 · · ·unk+1

k

 k∑
p=0

∑
all {a1,··· ,ap}
⊂{1,··· ,k}

∑
s∈Sp

sgn(s)

p∏
l=1

ualBals(al)


g

,

(A.109)

where in the first line we formally divided and multiplied by ηal with respect to (A.106). By means

of the Leibniz expansion of the determinant, this coincides with (A.105), as required.
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