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understanding amplitude reduction at two loops and computation of the necessary two-loop mas-
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of NNLO calculations will be feasible and then the problem of reasonable computational cost of
two loops contribution to NNLO cross section will become relevant. In this seminar I will focus
on general features in evaluating master integrals, with emphasis on evaluating master integrals in
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will be given on fast evaluation of generalized polylogarithms, since many master integrals are
expressed in terms of such special functions.
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1. Introduction

In the recent decades, the Standard Model of particle physics has been established as extremely
successful. In particular the LHC accelerator have reached the record-setting high energies of
13 TeV and the experiments recorded large amount of data letting very precise measurements. In
order to keep up with the increasing experimental accuracy as more data is collected, more precise
theoretical predictions and higher loop calculations will be required.

With the better understanding of reduction of one-loop amplitudes to a set of Master Integrals
based on unitarity methods [1, 2] and at the integrand level via the OPP method [3, 4], one-loop
calculations have been fully automated in many numerical tools (some reviews on the topic are [5,
6]). In the recent years, a lot of progress has been made towards the extension of these reduction
methods to the two-loop order at the integral [7, 8, 9] as well as the integrand [10, 11, 12, 13] level.
Contrary to the master integrals at one-loop, which have been known for a long time already [14],
a complete library at two-loops is still missing1. At the moment this seems to be the main obstacle
to obtain a fully automated NNLO calculation framework similar to the one-loop case, that will
satisfy the anticipated precision requirements at the LHC [15].

At one-loop all Feynman integrals (in 4− 2ε dimensions) are expressible in terms of the
logarithm log(x) and the dilogarithm Li2(x), up to the zeroth order in the ε expansion [16], and
these functions are special cases of so called generalized (or Goncharov) polylogarithms (GPLs)
[17, 18, 19, 20, 21, 22]. At two or more loops many Feynman integrals can be likewise expressed in
terms of GPLs [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] (for further references, see [34, 35, 36]),
but there are also integrals which are counter examples, such as notably that of the fully massive
sunset graph [37, 38]. Certain graphs without massive propagators are also believed to be counter
examples [9]. In this talk we will restrict the discussion to GPLs.

In [39] it was conjectured that all GPLs up to weight four, which includes all GPLs needed for
two-loop calculations, can be expressed in terms of logarithms, the classical polylogarithms Lin(x)
(n≤ 4), and one extra special function denoted by Li2,2(x,y). In the same reference it was explic-
itly shown that the conjecture holds true for a subset of GPLs, denoted harmonic polylogarithms
(HPLs), up to weight four. A number of physical calculations of two-loop Feynman integrals with
several scales, i.e. [40, 41, 42, 43, 44] have hinted at the truth of that conjecture.

Since the logarithm and classical polylogarithm are well-known functions, efficient algorithms
for their numerical evaluation have been widely studied and developed. On the other hand, the
GiNaC implementation of Vollinga and Weinzierl [45] is the only publicly available program which
can efficiently evaluate the special function Li2,2(x,y) for any set of complex arguments2. In this
proceeding we discuss an independent algorithm for the efficient evaluation of Li2,2(x,y).

2. Planar double boxes and computational timing

Let’s consider some of the quite complicate two-loops master integrals, the planar double
boxes. The have been firstly calculated by [29, 30] (HMS) and later by [41] (GMT) in the so called

1See also talks by C. G. Papadopoulos and C. Wever.
2The function Li2,2(x,y) are among the “two-dimensional HPLs” which are discussed and implemented in ref. [46]

for some real values of the arguments.
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xyz-parametrization as shown in Fig. 1.

Figure 1: The xyz-parametrization of external momenta for the planar double boxes contributing to pair
production at the LHC. All external momenta are incoming.

The Lorentz invariants are expressed as follows:

S = (q1 +q2)
2 = (q3 +q4)

2, T = (q1−q3)
2 = (q2−q4)

2,

U = (q1−q4)
2 = (q2−q3)

2, q2
3 = M2

3 , q2
4 = M2

4 , (2.1)

where for the xyz parametrization the external momenta are given by different relations according
to the family

P12: p1 =−q3, p2 =−q4, p3 = q1, p4 = q2;

P13: p1 =−q3, p2 = q1, p3 =−q4, p4 = q2; (2.2)

P23: p1 = q2, p2 =−q4, p3 =−q3, p4 = q1;

and

S = m̄2(1+ x̄)2, p2
3 = m̄2x̄2(1− ȳ2),

T =−m̄2x̄((1+ ȳ)(1+ x̄ȳ)−2z̄ȳ(1+ x̄)), p2
4 = m̄2(1− x̄2ȳ2). (2.3)

The double-box master integrals have been calculated by [31] (PTW) in the so called x-
parametrization as shown in Fig. 2. In this case there is a unique parametrization for the external

xp1

xp2

−p123

p123 − xp12

xp2 xp1

p123 − xp12 −p123

xp1

xp2p123 − xp12

−p123

Figure 2: The x-parametrization of external momenta for the three planar double boxes of the families P12

(left), P13 (middle) and P23 (right). All external momenta are incoming.

momenta

q1 = xp1, q2 = xp2, q3 = p123− xp12, q4 =−p1234

p2
i = 0, s12 := p2

12, s23 := p2
23, q := s2

123 (2.4)

and thus

S = s12x2, T = q− (s12 + s23)x,

M2
3 = (1− x)(q− s12x), M2

4 = q. (2.5)
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Clearly, even if there are different parametrization, they describe the same problem and they
are equivalent. Thus there is a mapping between the variables, that for example is in case of q < s12

P12-P13: x̄ = s12x/q−1, ȳ = q(1− x)/(q− s12x), z̄ = (q−qx+ s23x)/(q− s12x); (2.6)

P23: x̄ = s12x/q−1, ȳ = q(1− x)/(q− s12x), z̄ = (q− (s12 + s23)x)/(q− s12x).

Using different parameterizations and different integration strategies, the obtained results looks
differently, even if they are clearly equivalent. In order to better understand we can provide a sam-
ple of the results for the P12−29 master integral

G(1;x)
s2

12

(
G
(

s12 + s23

s12
;x
)(

G
(

0,
q

s12
;x
)
+G

(
0,

q
q− s23

;x
)))

+ . . . x-param. (2.7)

G(−1; x̄)
(
iπ−G(0; ȳ)+2G(0; z̄)

)
+ iπG(−1/ȳ; x̄)− iπG(−1/z̄; x̄)+ . . . xyz-param.

Different parametrization implies different computational costs once we require numerical evalua-
tion. We can consider some “random” phase space points as Tab. 1 and a measure their computa-
tional timing for a master integral, as Tab. 2.

S T p2
3 p2

4

phys1a 5.678 -0.243̄ 0.017 5
phys1b 8 -2 3 1
phys1c 130.05 -20.85 66.7 5.5
phys2a 5.646̄ -1.52̄ 0.213̄ 3
phys2b 3 -0.6̄ 0.5 1
phys2c 226.875 -25.16̄ 175.125 2.3̄

Table 1: Phase space points chosen to test the computational costs of some master integrals.

point HMS PTW PTW+fib.bas. GMT trad. GMT opt.

phys1a 0.44 1600 25 63 1.1
phys1b 12 300 1.5 4.2 0.41
phys1c 17 230 0.86 31 0.58
phys2a 0.72 520 3.2 47 0.55
phys2b 4.8 670 6.1 35 0.66
phys2c 17 240 0.88 42 0.69

Table 2: Evaluation time in sec. for the integral P12-30, i.e. the integral G1111111m0 with seven propaga-
tors and not trivial numerator. Different columns refers to different libraries, as explained in the text.

In Tab. 2 the HMS column refers to the solution by [29, 30], the next is by PTW [31] using
the provided result. Notice this result is valid in the Euclidean region. It is possible to perform
analytic continuation of the result to extend its validity in the physical region. If this is done at
the numerical evaluation step by GiNaC the computational cost raise considerably. On the other
hand the analytic continuation can be done by fibrationBasis command in the HyperInt
package suitable [47] and then the computational time (column PTW+fib.bas.) become of the order
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of HMS. The GMT trad. column is by [41]. Up to now all the solutions are expressed by GPLs up
to weight four. The last column is obtained by using the optimized results published by [41] where
all the results are expressed as conjectured in [39] in terms of logarithms, classical polylogarithms
Lin(x) (n≤ 4), and Li2,2(x,y). The computational cost is typically much faster than in the previous
cases. We can also notice that the computational time change dramatically not only by changing
solution and but also physical point. Furthermore those changes appear unrelated each other, in
the sense one physical point may be fast using one solution and slow using another solution, but
changing point the situation may be is the opposite.

In order to understand this feature we need to look at the GiNaC algorithm. GPLs are defined
as nested integrals

G(z1, . . .zk;y) =
∫ y

0

dt1
t1− z1

∫ t1

0

dt2
t2− z2

. . .
∫ tk−1

0

dtk
tk− zk

. (2.8)

For |y| ≤ |z j| for all j and y 6= z1, G can be evaluated by sum definition

G(z1, . . .zk;y) =
+∞

∑
j1=1

. . .
+∞

∑
jk=1

1
j1 + . . .+ jk

(
y
z1

) j1 1
j2 + . . .+ jk

(
y
z2

) j2
. . .

1
jk

(
y
zk

) jk
. (2.9)

If |y| > |zi| then the analytic continuation is performed by algebraic expressions. One of the sim-
plest is G(z,y) = G(y,z)−G(0,z)+ iπG(0,y). In general a single GPL is expressed as combination
of several that can be evaluated by nested sums

G(. . .zi . . . ;y) = ∑(. . .)G(. . .). (2.10)

Note that if |y/z j| ∼ 1, even if the series is formally convergent, it can be slow convergent series.
In order to improve the computational speed, the Hölder convolution (or other strategies) can be
applied

G(z1, . . .zk;1) =
k

∑
j=0

(−1)JG(1− z j,1− z j−1, . . . ,1− z1;1−1/p)G(z j+1, . . . ,zk;1/p). (2.11)

In practice the evaluation of a single GPL may require iterated use of eqs. (2.10-2.11), leading
to the evaluation of several GPLs. For example the numerical evaluation of G(1,2,3;0.001) is
order of hundred times faster than G(1,2,3;1.999). This is explaining the large differences in the
computational costs as Tab. 2. Furthermore the theoretical achievement obtained by the optimized
library of [41], namely the reduction of GPLs of weight four to the previously mentioned basis of
function can be spoiled by the use of Hölder convolution: the Li2,2(x,y) function is mapped back
to generic GPLs

Li2,2(x,y) = G(0,1/x,0,1/(xy);1) = G(1−1/(xy),1,1/x,1;1/p)+ . . . (2.12)

The main message is the following: once a library of two loops master integrals will be ob-
tained, in order to have a fast and efficient numerical evaluation it is important to develop fast
algorithms. In the next section we present a preliminary discussion about an optimized algorithm
to evaluate the Li2,2(x,y) function.

5



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
8
4

Master integrals and generalized polylogarithms: focus on fast and efficient evaluation
Damiano Tommasini

3. Proposal for and algorithm to evaluate the Li2,2(x,y) function

The algorithm is going to be presented here is inspired by the algorithm Crandall [48] proposed
to evaluate polylogarithms Lin(z). It is worthwhile to quickly summarize that algorithm before
explaining the main idea.

The polylogarithm is evaluated with different formulas according to the value of the variable
complex z.

• If z = 1 we just return the special value Lin(1) = ζ (n),

• if |z| ≤ 1/2 the polylogarithm is evaluated by the definition Lin(z) = ∑
+∞

i=1 zn/n2,

• if |z| ≥ 2 we can apply inversion relation to map the problem to a convergent region by

Lin(1/z) = (−1)n
(
−Lin(z)+

(2iπ)n

n!
Bn(x)+2iπΘ(z)

logn−1 z
(n−1)!

)
where Bn(x) is the Bernoulli polynomial with x = logz

2iπ and Θ(z) = 1 if (ℑ(z)< 0 or ℜ(z)> 1)
and Θ(z) = 0 otherwise;

• finally if |z| ∼ 1 the series is slowly convergent, then we can use a logarithmic expansion of
the polylogarithm that captures the singularity structure for |z| ∼ 1 and is fast convergent

Lin(z) =
+∞

∑
m=0,m6=n

ζ (n−m)

m!
logm z+

logn−1 z
(n−1)!

(Hn−1− log(− logz)) . (3.1)

Analogously the Li2,2(x,y) function can be evaluated3 by several expressions according to the
numerical values of its complex arguments (x,y).

As starting point, Li2,2 can be calculated by the following sum

Li2,2(x,y) =
+∞

∑
i> j>0

xi

i2
y j

j2 =
+∞

∑
i=1, j=1

xi

(i+ j)2
(xy) j

j2 , (3.2)

which converges whenever |x| ≤ 1 and |xy| ≤ 1.
Outside the region of convergence of eq. (3.2) two relations are needed in order to map to the

convergent region. One is obtained by the stuffle property [21, 35] and becomes

Li2,2(x,y) =−Li2,2(y,x)−Li4(xy)+Li2(x)Li2(y), (3.3)

and which is seen to effectively swap the two arguments. Furthermore we need inversion relation

Li2,2(x,y) = Li2,2
(
1/x,1/y

)
−Li4(xy)+3

(
Li4
(
1/x
)
+Li4(y)

)
+2
(

Li3
(
1/x
)
−Li3(y)

)
log(−xy)

+Li2
(
1/x
)(π2

6
+

log2(−xy)
2

)
+

1
2

Li2(y)
(

log2(−xy)− log2(−x)
)
, (3.4)

which is our generalization of the inversion relation for the case of Lin, to Li2,2. As for other
similar relations, this inversion relation requires non-zero imaginary parts on x, y, and xy in order
to be guaranteed correct.

3The full algorithm has been presented in a recent paper [49].
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|x| |xy|
< 1 < 1 no mapping needed
> 1 < 1 stuffle, eq. (3.3)
> 1 > 1 inversion, eq. (3.4)
< 1 > 1 stuffle and inversion

Table 3: A procedure for mapping Li2,2(x,y) to the convergent region. For the case of equalities both cases
are in principle applicable.

The main algorithm is presented in Tab. 3. In principle it is enough to evaluate Li2,2(x,y) for
any complex value of the variables, but can be quite slow convergent for |x| ∼ |y| ∼ 1. In order
to improve the convergence of the sum in this problematic region, some further expressions are
needed. In particular we can start from the one-dimensional integral

Li2,2(x,y) =
∫ 1

0

log(z)Li2(xyz)
z−1/x

dz, (3.5)

expand each term in the integrand and perform integration term by term. This is leading to some
expressions that are generalization of eq. (3.1) and fast convergent. Finally we can plug the special
value Li2,2(1,1) = π4/120.
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